1
|
McGlacken-Byrne SM, Del Valle I, Xenakis T, Suntharalingham JP, Nel L, Liptrot D, Crespo B, Ogunbiyi OK, Niola P, Brooks T, Solanky N, Conway GS, Achermann JC. Characterizing the Human Fetal Perimeiotic 45,X Ovary at Single-Cell Resolution. J Endocr Soc 2025; 9:bvaf094. [PMID: 40443572 PMCID: PMC12120351 DOI: 10.1210/jendso/bvaf094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Indexed: 06/02/2025] Open
Abstract
Context Turner syndrome (TS) is the most common genetic cause of premature (primary) ovarian insufficiency (POI). Human fetal 45,X ovaries demonstrate marked apoptosis by 15 to 20 weeks post conception (wpc), likely partly driven by X-chromosome haploinsufficiency. However, the genomic drivers of ovarian insufficiency in TS remain largely unexplored. Objective We used single-nuclei sequencing (snRNA-seq) and bulk RNA sequencing (RNA-seq) technologies to profile the transcriptome of ovarian insufficiency in TS. Methods Using snRNA-seq, we profiled 2 perimeiotic 46,XX and 2 45,X (TS) human fetal ovaries (12-13 wpc). Using bulk RNA-seq, we conducted a time-series analysis of human fetal tissue across 4 developmental time points (19 fetal ovary, 20 fetal testis, 8 fetal control tissue (n = 47 total samples; Carnegie stage 22-16 wpc)). Results Germ and somatic cell subpopulations were mostly shared across 46,XX and 45,X ovaries, aside from an oogonia cluster depleted in 45,X ovaries containing genes with functions relating to sex chromosome synapsis. snRNA-seq enabled accurate cell counting across individual cell clusters and revealed that the 45,X ovary has fewer germ cells than the 46,XX ovary in every germ cell subpopulation, confirmed by histopathological analysis. The normal sequence of X-chromosome inactivation and reactivation is disrupted in 45,X ovaries. The 45,X ovary has a globally abnormal transcriptome, with lower expression of genes with proteostasis functions (RSP4X); cell cycle progression (BUB1B); and OXPHOS energy production (COX6C, ATP11C). Discussion We characterize the human fetal perimeiotic 45,X ovary at single-cell resolution and offer insights into the genomic mechanisms of the ovarian insufficiency phenotype in TS.
Collapse
Affiliation(s)
- Sinéad M McGlacken-Byrne
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Ignacio Del Valle
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Theodoros Xenakis
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Jenifer P Suntharalingham
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Lydia Nel
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Danielle Liptrot
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Berta Crespo
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Olumide K Ogunbiyi
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Department of Histopathology, Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust, London WC1N 3JH, UK
| | - Paola Niola
- UCL Genomics, Zayed Centre for Research, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1DZ, UK
| | - Tony Brooks
- UCL Genomics, Zayed Centre for Research, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1DZ, UK
| | - Nita Solanky
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Gerard S Conway
- Institute for Women's Health, University College London, London WC1E 6AU, UK
| | - John C Achermann
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
2
|
Maddhesiya P, Lepko T, Steiner-Mezzardi A, Schneider J, Schwarz V, Merl-Pham J, Berger F, Hauck SM, Ronfani L, Bianchi M, Simon T, Krontira A, Masserdotti G, Götz M, Ninkovic J. Hmgb2 improves astrocyte to neuron conversion by increasing the chromatin accessibility of genes associated with neuronal maturation in a proneuronal factor-dependent manner. Genome Biol 2025; 26:100. [PMID: 40247387 PMCID: PMC12007351 DOI: 10.1186/s13059-025-03556-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/24/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Direct conversion of reactive glial cells to neurons is a promising avenue for neuronal replacement therapies after brain injury or neurodegeneration. The overexpression of neurogenic fate determinants in glial cells results in conversion to neurons. For repair purposes, the conversion should ideally be induced in the pathology-induced neuroinflammatory environment. However, very little is known regarding the influence of the injury-induced neuroinflammatory environment and released growth factors on the direct conversion process. RESULTS We establish a new in vitro culture system of postnatal astrocytes without epidermal growth factor that reflects the direct conversion rate in the injured, neuroinflammatory environment in vivo. We demonstrate that the growth factor combination corresponding to the injured environment defines the ability of glia to be directly converted to neurons. Using this culture system, we show that chromatin structural protein high mobility group box 2 (HMGB2) regulates the direct conversion rate downstream of the growth factor combination. We further demonstrate that Hmgb2 cooperates with neurogenic fate determinants, such as Neurog2, in opening chromatin at the loci of genes regulating neuronal maturation and synapse formation. Consequently, early chromatin rearrangements occur during direct fate conversion and are necessary for full fate conversion. CONCLUSIONS Our data demonstrate novel growth factor-controlled regulation of gene expression during direct fate conversion. This regulation is crucial for proper maturation of induced neurons and could be targeted to improve the repair process.
Collapse
Affiliation(s)
- Priya Maddhesiya
- Department of Cell Biology and Anatomy, Biomedical Center Munich (BMC), Medical Faculty, LMU, Munich, Germany
- Graduate School of Systemic Neurosciences, LMU, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum Munich, Munich, Germany
| | - Tjasa Lepko
- Department of Cell Biology and Anatomy, Biomedical Center Munich (BMC), Medical Faculty, LMU, Munich, Germany
- Graduate School of Systemic Neurosciences, LMU, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum Munich, Munich, Germany
| | | | - Julia Schneider
- Department of Cell Biology and Anatomy, Biomedical Center Munich (BMC), Medical Faculty, LMU, Munich, Germany
- Research Unit Central Nervous System Regeneration, Helmholtz Centre Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Veronika Schwarz
- Department of Cell Biology and Anatomy, Biomedical Center Munich (BMC), Medical Faculty, LMU, Munich, Germany
- Graduate School of Systemic Neurosciences, LMU, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum Munich, Munich, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Centre Munich, German Research Center for Environmental Health, , Neuherberg, Germany
| | - Finja Berger
- Department of Cell Biology and Anatomy, Biomedical Center Munich (BMC), Medical Faculty, LMU, Munich, Germany
- Graduate School of Systemic Neurosciences, LMU, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum Munich, Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Centre Munich, German Research Center for Environmental Health, , Neuherberg, Germany
| | - Lorenza Ronfani
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Bianchi
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Tatiana Simon
- Biomedical Center Munich (BMC), Institute of Physiological Genomics, LMU, Munich, Germany
| | - Anthodesmi Krontira
- Institute of Stem Cell Research, Helmholtz Zentrum Munich, Munich, Germany
- Biomedical Center Munich (BMC), Institute of Physiological Genomics, LMU, Munich, Germany
| | - Giacomo Masserdotti
- Institute of Stem Cell Research, Helmholtz Zentrum Munich, Munich, Germany
- Biomedical Center Munich (BMC), Institute of Physiological Genomics, LMU, Munich, Germany
| | - Magdalena Götz
- Institute of Stem Cell Research, Helmholtz Zentrum Munich, Munich, Germany
- Biomedical Center Munich (BMC), Institute of Physiological Genomics, LMU, Munich, Germany
- Munich Cluster for Systems Neurology SYNERGY, LMU, Munich, Germany
| | - Jovica Ninkovic
- Department of Cell Biology and Anatomy, Biomedical Center Munich (BMC), Medical Faculty, LMU, Munich, Germany.
- Graduate School of Systemic Neurosciences, LMU, Munich, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum Munich, Munich, Germany.
- Research Unit Central Nervous System Regeneration, Helmholtz Centre Munich, German Research Center for Environmental Health, Neuherberg, Germany.
- Munich Cluster for Systems Neurology SYNERGY, LMU, Munich, Germany.
| |
Collapse
|
3
|
Wang J, Zhang Z, Shi F, Li Y, Shi C, Wang T, Sun L, Ao L, Han F, Chen Q, Cao J, Liu J. WTAP-mediated m 6A modification of Hmgb2 contributes to spermatogenic damage induced by PM 2.5 exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125896. [PMID: 39988248 DOI: 10.1016/j.envpol.2025.125896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/31/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
N6-methyladenosine (m6A) is extensively involved in complex spermatogenesis while being extremely sensitive to environmental exposure. Numerous studies have revealed the toxicity of fine particulate matter (PM2.5) to the male reproductive system, but the specific epigenetic mechanisms involved have been underexplored. Here, we investigated the effect of m6A modification on PM2.5-induced male reproductive impairment by establishing a real-time PM2.5-exposed mouse model and a GC-2spd cell model. PM2.5 exposure resulted in damage to the spermatogenic epithelium and mitochondrial abnormalities in spermatocytes and significantly reduced sperm motility in mice. Gene enrichment analyses of testicular tissue differential m6A modified genes were significantly enriched to spermatogenesis in the PM2.5-treated mice compared with the control group, and the expression of the methylase WTAP was markedly decreased after PM2.5 exposure. Moreover, PM2.5 exposure resulted in a significant reduction in the expression of the spermatogenesis-related gene Hmgb2, as well as in the level of the Hmgb2 m6A modification. Transcriptome sequencing and verification experiments suggested that Hmgb2 may regulate spermatocyte ATP levels. In addition, we demonstrated that the m6A methylase WTAP affects Hmgb2 mRNA stability via m6A modification. Our study provides new insights into PM2.5-induced damage to spermatogenesis and reduced sperm motility.
Collapse
Affiliation(s)
- Jiankang Wang
- Institute of Toxicology, College of Preventive Medicine, State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Army Medical University, Chongqing, 400038, China; Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Zhonghao Zhang
- Institute of Toxicology, College of Preventive Medicine, State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Army Medical University, Chongqing, 400038, China; Frontier Medical Training Brigade, Third Military Medical University, Xinjiang, 831200, China
| | - Fuquan Shi
- Institute of Toxicology, College of Preventive Medicine, State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Army Medical University, Chongqing, 400038, China
| | - Yingqing Li
- Institute of Toxicology, College of Preventive Medicine, State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Army Medical University, Chongqing, 400038, China
| | - Chaofeng Shi
- Institute of Toxicology, College of Preventive Medicine, State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Army Medical University, Chongqing, 400038, China
| | - Tong Wang
- Institute of Toxicology, College of Preventive Medicine, State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Army Medical University, Chongqing, 400038, China
| | - Lei Sun
- Institute of Toxicology, College of Preventive Medicine, State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Army Medical University, Chongqing, 400038, China
| | - Lin Ao
- Institute of Toxicology, College of Preventive Medicine, State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Army Medical University, Chongqing, 400038, China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Army Medical University, Chongqing, 400038, China
| | - Qing Chen
- Institute of Toxicology, College of Preventive Medicine, State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Army Medical University, Chongqing, 400038, China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Army Medical University, Chongqing, 400038, China
| | - Jinyi Liu
- Institute of Toxicology, College of Preventive Medicine, State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
4
|
Vrooman LA, Gieske MC, Lawson C, Cesare J, Zhang S, Bartolomei MS, Garcia BA, Hassold TJ, Hunt PA. Effect of Brief Maternal Exposure to Bisphenol A on the Fetal Female Germline in a Mouse Model. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:47002. [PMID: 40036665 PMCID: PMC11980919 DOI: 10.1289/ehp15046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 12/20/2024] [Accepted: 01/13/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Environmental contamination by endocrine-disrupting chemicals (EDCs) has created serious public health, ecological, and regulatory concerns. Prenatal exposures can affect a wide range of developing organ systems and are associated with adverse changes to behavior, metabolism, fertility, and disease risk in the adult. The most serious and puzzling observation for some EDC exposures is the transmission of effects to subsequent unexposed generations (transgenerational effects) in animal models. This requires the induction of epigenetic aberrations to the germline that are not subject to the normal processes of erasure and resetting in subsequent generations. Understanding when and how the germline is vulnerable to environmental contaminants is an essential first step in devising strategies to prevent and reverse their effects. METHODS Fetal mouse oocytes were collected after exposure of the dam to various concentrations of bisphenol A (BPA) or placebo. Meiotic effects were assessed by immunostaining to visualize the synaptonemal complex and recombination sites, as well as whole chromosome fluorescence in situ hybridization probes. Enriched oocyte pools were analyzed by mass spectrometry and RNA sequencing to determine differences in histone posttranslational modifications and gene expression, respectively. RESULTS We found germline effects across a wide range of exposure levels, the severity of which was positively associated with BPA concentration. We identified the onset of meiotic prophase as the vulnerable window of exposure and found surprising exposure-related differences in chromatin. Oocyte analysis by mass spectrometry and immunofluorescence suggested H4K20me2, a histone posttranslational modification involved in DNA damage repair, was particularly affected. Subsequent RNA-seq analysis revealed a relatively small number of differentially expressed genes, but in addition to genes involved in chromatin dynamics, several with important roles in DNA repair/recombination and centromere stability were affected. DISCUSSION Together, our data from a mouse model suggest BPA exposure induced complex molecular differences in the germline that dysregulated chromatin and affected several critical and interrelated meiotic pathways. https://doi.org/10.1289/EHP15046.
Collapse
Affiliation(s)
- Lisa A. Vrooman
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Mary C. Gieske
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Crystal Lawson
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Joseph Cesare
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shuo Zhang
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benjamin A. Garcia
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Terry J. Hassold
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Patricia A. Hunt
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
5
|
Ishahak M, Han RH, Annamalai D, Woodiwiss T, McCornack C, Cleary RT, DeSouza PA, Qu X, Dahiya S, Kim AH, Millman JR. Genetically Engineered Brain Organoids Recapitulate Spatial and Developmental States of Glioblastoma Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410110. [PMID: 39836549 PMCID: PMC11905097 DOI: 10.1002/advs.202410110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/18/2024] [Indexed: 01/23/2025]
Abstract
Glioblastoma (GBM) is an aggressive form of brain cancer that is highly resistant to therapy due to significant intra-tumoral heterogeneity. The lack of robust in vitro models to study early tumor progression has hindered the development of effective therapies. Here, this study develops engineered GBM organoids (eGBOs) harboring GBM subtype-specific oncogenic mutations to investigate the underlying transcriptional regulation of tumor progression. Single-cell and spatial transcriptomic analyses revealed that these mutations disrupt normal neurodevelopment gene regulatory networks resulting in changes in cellular composition and spatial organization. Upon xenotransplantation into immunodeficient mice, eGBOs form tumors that recapitulate the transcriptional and spatial landscape of human GBM samples. Integrative single-cell trajectory analysis of both eGBO-derived tumor cells and patient GBM samples reveal the dynamic gene expression changes in developmental cell states underlying tumor progression. This analysis of eGBOs provides an important validation of engineered cancer organoid models and demonstrates their utility as a model of GBM tumorigenesis for future preclinical development of therapeutics.
Collapse
Affiliation(s)
- Matthew Ishahak
- Division of EndocrinologyMetabolism and Lipid ResearchWashington University School of Medicine660 South Euclid Avenue, Campus Box 8127St. LouisMO63110USA
| | - Rowland H. Han
- Department of GeneticsWashington University School of Medicine4515 McKinley Ave.St. LouisMO63110USA
| | - Devi Annamalai
- Department of GeneticsWashington University School of Medicine4515 McKinley Ave.St. LouisMO63110USA
| | - Timothy Woodiwiss
- Department of Neurological SurgeryUniversity of Iowa Healthcare1800 John Pappajohn PavilionIowa CityIA52242USA
| | - Colin McCornack
- Department of GeneticsWashington University School of Medicine4515 McKinley Ave.St. LouisMO63110USA
| | - Ryan T. Cleary
- Department of GeneticsWashington University School of Medicine4515 McKinley Ave.St. LouisMO63110USA
| | - Patrick A. DeSouza
- Department of GeneticsWashington University School of Medicine4515 McKinley Ave.St. LouisMO63110USA
| | - Xuan Qu
- Department of GeneticsWashington University School of Medicine4515 McKinley Ave.St. LouisMO63110USA
| | - Sonika Dahiya
- Division of NeuropathologyWashington University School of Medicine660 South Euclid Avenue, Campus Box 8118St. LouisMO63110USA
| | - Albert H. Kim
- Department of GeneticsWashington University School of Medicine4515 McKinley Ave.St. LouisMO63110USA
- Taylor Family Department of NeurosurgeryWashington University School of Medicine660 South Euclid Avenue, Campus Box 8057St. LouisMO63110USA
- The Brain Tumor Center at Siteman Cancer Center4921 Parkview PlaceSt. LouisMO63110USA
| | - Jeffrey R. Millman
- Division of EndocrinologyMetabolism and Lipid ResearchWashington University School of Medicine660 South Euclid Avenue, Campus Box 8127St. LouisMO63110USA
- Department of Biomedical EngineeringWashington University1 Brookings Drive, Campus Box 1097St. LouisMO63130USA
| |
Collapse
|
6
|
Fan J, Gillespie KP, Mesaros C, Blair IA. HMGB2-induced calreticulin translocation required for immunogenic cell death and ferroptosis of cancer cells are controlled by the nuclear exporter XPO1. Commun Biol 2024; 7:1234. [PMID: 39354146 PMCID: PMC11445383 DOI: 10.1038/s42003-024-06930-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Cisplatin and oxaliplatin cause the secretion of high mobility group box 1 (HMGB1) protein from cancer cells, which is necessary for initiation of immunogenic cell death (ICD). Calreticulin (CRT) translocation from the endoplasmic reticulum to the plasma membrane is also required; oxaliplatin induces this translocation but cisplatin does not. We have discovered that oxaliplatin causes the secretion of both HMGB1 and HMGB2 from the cell nucleus into the extracellular milieu. We previously showed that cisplatin-mediated secretion of HMGB1 is controlled by the nuclear exporter XPO1 (chromosomal maintenance 1; CRM1). We now find that XPO1 regulates oxaliplatin-mediated secretion of both HMGB1 and HMGB2. XPO1 inhibition causes nuclear accumulation of both proteins, inhibition of oxaliplatin-mediated ferroptosis of colon cancer cells, and inhibition of CRT translocation to the plasma membrane of lung and colon cancer cells. Incubation of cancer cells with cell targeted (CT)-HMGB2 confirmed that HMGB2 is required for the CRT translocation. Furthermore, CT-HMGB2 is three orders of magnitude more potent at inducing CRT translocation than oxaliplatin.
Collapse
Affiliation(s)
- Jingqi Fan
- Penn/CHOP Center of Excellence in Friedreich's Ataxia, Center of Excellence in Environmental Toxicology, and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin P Gillespie
- Penn/CHOP Center of Excellence in Friedreich's Ataxia, Center of Excellence in Environmental Toxicology, and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Clementina Mesaros
- Penn/CHOP Center of Excellence in Friedreich's Ataxia, Center of Excellence in Environmental Toxicology, and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian A Blair
- Penn/CHOP Center of Excellence in Friedreich's Ataxia, Center of Excellence in Environmental Toxicology, and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Dong Y, Zhang Z, Huang Y, Tan X, Li X, Huang M, Feng J, Huang Y, Jian J. The role of HMGB2 in the immune response of Nile tilapia (Oreochromis niloticus) to streptococcal infection. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109845. [PMID: 39159774 DOI: 10.1016/j.fsi.2024.109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/03/2024] [Accepted: 08/17/2024] [Indexed: 08/21/2024]
Abstract
High mobility group protein B2 (HMGB2) is an abundant chromatin-associated protein with pivotal roles in transcription, cell proliferation, differentiation, inflammation, and tumorigenesis. However, its immune function in Nile tilapia (Oreochromis niloticus) remains unclear. In this study, we identified a homologue of HMGB2 from Nile tilapia (On-HMGB2) and investigated its functions in the immune response against streptococcus infection. The open reading frame (ORF) of On-HMGB2 spans 642 bp, encoding 213 amino acids, and contains two conserved HMG domains. On-HMGB2 shares over 80 % homology with other fish species and 74%-76 % homology with mammals. On-HMGB2 was widely distributed in various tissues, with its highest transcript levels in the liver and the lowest in the intestine. Knockdown of On-HMGB2 promoted the inflammatory response in Nile tilapia, increased the bacterial load in the tissues, and led to elevated mortality in Nile tilapia following Streptococcus agalactiae infection. Taken together, On-HMGB2 significantly influences the immune system of Nile tilapia in response to streptococcus infection.
Collapse
Affiliation(s)
- Yuhang Dong
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Zhiqiang Zhang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yongxiong Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Xuyan Tan
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Xing Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Meiling Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Jiaming Feng
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yu Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| |
Collapse
|
8
|
Refael T, Sudman M, Golan G, Pnueli L, Naik S, Preger-Ben Noon E, Henn A, Kaplan A, Melamed P. An i-motif-regulated enhancer, eRNA and adjacent lncRNA affect Lhb expression through distinct mechanisms in a sex-specific context. Cell Mol Life Sci 2024; 81:361. [PMID: 39158745 PMCID: PMC11335282 DOI: 10.1007/s00018-024-05398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/21/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Genome-wide studies have demonstrated regulatory roles for diverse non-coding elements, but their precise and interrelated functions have often remained enigmatic. Addressing the need for mechanistic insight, we studied their roles in expression of Lhb which encodes the pituitary gonadotropic hormone that controls reproduction. We identified a bi-directional enhancer in gonadotrope-specific open chromatin, whose functional eRNA (eRNA2) supports permissive chromatin at the Lhb locus. The central untranscribed region of the enhancer contains an iMotif (iM), and is bound by Hmgb2 which stabilizes the iM and directs transcription specifically towards the functional eRNA2. A distinct downstream lncRNA, associated with an inducible G-quadruplex (G4) and iM, also facilitates Lhb expression, following its splicing in situ. GnRH activates Lhb transcription and increased levels of all three RNAs, eRNA2 showing the highest response, while estradiol, which inhibits Lhb, repressed levels of eRNA2 and the lncRNA. The levels of these regulatory RNAs and Lhb mRNA correlate highly in female mice, though strikingly not in males, suggesting a female-specific function. Our findings, which shed new light on the workings of non-coding elements and non-canonical DNA structures, reveal novel mechanisms regulating transcription which have implications not only in the central control of reproduction but also for other inducible genes.
Collapse
Affiliation(s)
- Tal Refael
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Maya Sudman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Gil Golan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Lilach Pnueli
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Sujay Naik
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, 3109601, Israel
| | - Ella Preger-Ben Noon
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, 3109601, Israel
| | - Arnon Henn
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ariel Kaplan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
9
|
Ishahak M, Han RH, Annamalai D, Woodiwiss T, McCornack C, Cleary RT, DeSouza PA, Qu X, Dahiya S, Kim AH, Millman JR. Modeling glioblastoma tumor progression via CRISPR-engineered brain organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606387. [PMID: 39211284 PMCID: PMC11361109 DOI: 10.1101/2024.08.02.606387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Glioblastoma (GBM) is an aggressive form of brain cancer that is highly resistant to therapy due to significant intra-tumoral heterogeneity. The lack of robust in vitro models to study early tumor progression has hindered the development of effective therapies. Here, we develop engineered GBM organoids (eGBOs) harboring GBM subtype-specific oncogenic mutations to investigate the underlying transcriptional regulation of tumor progression. Single-cell and spatial transcriptomic analyses revealed that these mutations disrupt normal neurodevelopment gene regulatory networks resulting in changes in cellular composition and spatial organization. Upon xenotransplantation into immunodeficient mice, eGBOs form tumors that recapitulate the transcriptional and spatial landscape of human GBM samples. Integrative single-cell trajectory analysis of both eGBO-derived tumor cells and patient GBM samples revealed the dynamic gene expression changes in developmental cell states underlying tumor progression. This analysis of eGBOs provides an important validation of engineered cancer organoid models and demonstrates their utility as a model of GBM tumorigenesis for future preclinical development of therapeutics.
Collapse
|
10
|
Jiang J, Sun M, Wang Y, Huang W, Xia L. Deciphering the roles of the HMGB family in cancer: Insights from subcellular localization dynamics. Cytokine Growth Factor Rev 2024; 78:85-104. [PMID: 39019664 DOI: 10.1016/j.cytogfr.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
The high-mobility group box (HMGB) family consists of four DNA-binding proteins that regulate chromatin structure and function. In addition to their intracellular functions, recent studies have revealed their involvement as extracellular damage-associated molecular patterns (DAMPs), contributing to immune responses and tumor development. The HMGB family promotes tumorigenesis by modulating multiple processes including proliferation, metabolic reprogramming, metastasis, immune evasion, and drug resistance. Due to the predominant focus on HMGB1 in the literature, little is known about the remaining members of this family. This review summarizes the structural, distributional, as well as functional similarities and distinctions among members of the HMGB family, followed by a comprehensive exploration of their roles in tumor development. We emphasize the distributional and functional hierarchy of the HMGB family at both the organizational and subcellular levels, with a focus on their relationship with the tumor immune microenvironment (TIME), aiming to prospect potential strategies for anticancer therapy.
Collapse
Affiliation(s)
- Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi' an 710032, China.
| |
Collapse
|
11
|
Chikhirzhina E, Tsimokha A, Tomilin AN, Polyanichko A. Structure and Functions of HMGB3 Protein. Int J Mol Sci 2024; 25:7656. [PMID: 39062899 PMCID: PMC11276821 DOI: 10.3390/ijms25147656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
HMGB3 protein belongs to the group of HMGB proteins from the superfamily of nuclear proteins with high electrophoretic mobility. HMGB proteins play an active part in almost all cellular processes associated with DNA-repair, replication, recombination, and transcription-and, additionally, can act as cytokines during infectious processes, inflammatory responses, and injuries. Although the structure and functions of HMGB1 and HMGB2 proteins have been intensively studied for decades, very little attention has been paid to HMGB3 until recently. In this review, we summarize the currently available data on the molecular structure, post-translational modifications, and biological functions of HMGB3, as well as the possible role of the ubiquitin-proteasome system-dependent HMGB3 degradation in tumor development.
Collapse
Affiliation(s)
- Elena Chikhirzhina
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia; (A.T.); (A.N.T.); (A.P.)
| | | | | | | |
Collapse
|
12
|
Blair I, Fan J, Gillespie K, Mesaros C. Ferroptosis and HMGB2 induced calreticulin translocation required for immunogenic cell death are controlled by the nuclear exporter XPO1. RESEARCH SQUARE 2024:rs.3.rs-4009459. [PMID: 38496553 PMCID: PMC10942558 DOI: 10.21203/rs.3.rs-4009459/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Cisplatin and oxaliplatin cause the secretion of high mobility group box 1 (HMGB1) from cancer cells, which is necessary for initiation of immunogenic cell death (ICD). Calreticulin (CRT) translocation from the endoplasmic reticulum to the plasma membrane is also required; oxaliplatin induces this translocation but cisplatin does not. We have discovered that oxaliplatin causes the secretion of both HMGB1 and HMGB2 from the nucleus into the extracellular milieu. We previously showed that cisplatin mediated secretion of HMGB1 is controlled by the nuclear exporter XPO1 (chromosomal maintenance 1; CRM1). We now find that XPO1 regulates oxaliplatin mediated secretion of both HMGB1 and HMGB2. XPO1 inhibition causes nuclear accumulation of both proteins, inhibition of oxaliplatin-mediated ferroptosis of colon cancer cells, and inhibition of CRT translocation to the plasma membrane of lung and colon cancer cells. Incubation of cancer cells with cell targeted (CT)-HMGB2 confirmed that HMGB2 is responsible for translocation of CRT to the plasma membrane. CT-HMGB2 is three orders of magnitude more potent than oxaliplatin at inducing CRT translocation. Inhibition of HMGB1 and HMGB2 secretion and/or their activation of nuclear factor-kappa B (NF-kB) has potential utility for treating cardiovascular, and neurodegenerative diseases; whereas CT-HMGB2 could augment therapeutic approaches to cancer treatment.
Collapse
|
13
|
Blair I, Fan J, Gillespie K, Mesaros C. Ferroptosis and HMGB2 induced calreticulin translocation required for immunogenic cell death are controlled by the nuclear exporter XPO1. RESEARCH SQUARE 2024:rs.3.rs-4009459. [PMID: 38496553 PMCID: PMC10942558 DOI: 10.21203/rs.3.rs-4009459/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Cisplatin and oxaliplatin cause the secretion of high mobility group box 1 (HMGB1) from cancer cells, which is necessary for initiation of immunogenic cell death (ICD). Calreticulin (CRT) translocation from the endoplasmic reticulum to the plasma membrane is also required; oxaliplatin induces this translocation but cisplatin does not. We have discovered that oxaliplatin causes the secretion of both HMGB1 and HMGB2 from the nucleus into the extracellular milieu. We previously showed that cisplatin mediated secretion of HMGB1 is controlled by the nuclear exporter XPO1 (chromosomal maintenance 1; CRM1). We now find that XPO1 regulates oxaliplatin mediated secretion of both HMGB1 and HMGB2. XPO1 inhibition causes nuclear accumulation of both proteins, inhibition of oxaliplatin-mediated ferroptosis of colon cancer cells, and inhibition of CRT translocation to the plasma membrane of lung and colon cancer cells. Incubation of cancer cells with cell targeted (CT)-HMGB2 confirmed that HMGB2 is responsible for translocation of CRT to the plasma membrane. CT-HMGB2 is three orders of magnitude more potent than oxaliplatin at inducing CRT translocation. Inhibition of HMGB1 and HMGB2 secretion and/or their activation of nuclear factor-kappa B (NF-kB) has potential utility for treating cardiovascular, and neurodegenerative diseases; whereas CT-HMGB2 could augment therapeutic approaches to cancer treatment.
Collapse
|
14
|
Choijookhuu N, Yano K, Lkham-Erdene B, Shirouzu S, Kubota T, Fidya, Ishizuka T, Kai K, Chosa E, Hishikawa Y. HMGB2 Promotes De Novo Lipogenesis to Accelerate Hepatocyte Proliferation During Liver Regeneration. J Histochem Cytochem 2024; 72:245-264. [PMID: 38544368 PMCID: PMC11020747 DOI: 10.1369/00221554241241569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/26/2024] [Indexed: 04/16/2024] Open
Abstract
Liver regeneration is a well-orchestrated compensatory process that is regulated by multiple factors. We recently reported the importance of the chromatin protein, a high-mobility group box 2 (HMGB2) in mouse liver regeneration. However, the molecular mechanism remains unclear. In this study, we aimed to study how HMGB2 regulates hepatocyte proliferation during liver regeneration. Seventy-percent partial hepatectomy (PHx) was performed in wild-type (WT) and HMGB2-knockout (KO) mice, and the liver tissues were used for microarray, immunohistochemistry, quantitative polymerase chain reaction (qPCR), and Western blotting analyses. In the WT mice, HMGB2-positive hepatocytes colocalized with cell proliferation markers. In the HMGB2-KO mice, hepatocyte proliferation was significantly decreased. Oil Red O staining revealed the transient accumulation of lipid droplets at 12-24 hr after PHx in the WT mouse livers. In contrast, decreased amount of lipid droplets were found in HMGB2-KO mouse livers, and it was preserved until 36 hr. The microarray, immunohistochemistry, and qPCR results demonstrated that the expression of lipid metabolism-related genes was significantly decreased in the HMGB2-KO mouse livers. The in vitro experiments demonstrated that a decrease in the amount of lipid droplets correlated with decreased cell proliferation activity in HMGB2-knockdown cells. HMGB2 promotes de novo lipogenesis to accelerate hepatocyte proliferation during liver regeneration.
Collapse
Affiliation(s)
- Narantsog Choijookhuu
- Department of Anatomy, Histochemistry and Cell Biology
- Faculty of Medicine, University of Miyazaki, Miyazaki, Japan; and Department of Pathology and Forensic Medicine, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Koichi Yano
- Department of Anatomy, Histochemistry and Cell Biology
- Department of Surgery
| | | | - Shinichiro Shirouzu
- Department of Anatomy, Histochemistry and Cell Biology
- Department of Oral and Maxillofacial Surgery
| | - Toshiki Kubota
- Department of Anatomy, Histochemistry and Cell Biology
- Department of Oral and Maxillofacial Surgery
| | - Fidya
- Department of Anatomy, Histochemistry and Cell Biology
| | | | - Kengo Kai
- Department of Anatomy, Histochemistry and Cell Biology
- Department of Surgery
| | | | | |
Collapse
|
15
|
Zhu J, Wang Y, Lei L, Chen C, Ji L, Li J, Wu C, Yu W, Luo L, Chen W, Liu P, Hong X, Liu X, Chen H, Wei C, Zhu X, Li W. Comparative genomic survey and functional analysis of DKKL1 during spermatogenesis in the Chinese soft-shelled turtle (Pelodiscus sinensis). Int J Biol Macromol 2024; 254:127696. [PMID: 37913874 DOI: 10.1016/j.ijbiomac.2023.127696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/27/2023] [Accepted: 10/15/2023] [Indexed: 11/03/2023]
Abstract
A feature of the Chinese soft-shelled turtle (Pelodiscus sinensis) is seasonal spermatogenesis; however, the underlying molecular mechanism is not well clarified. Here, we firstly cloned and characterized P. sinensis DKKL1, and then performed comparative genomic studies, expression analysis, and functional validation. P. sinensis DKKL1 had 2 putative N-glycosylation sites and 16 phosphorylation sites. DKKL1 also had classic transmembrane structures that were extracellularly localized. DKKL1's genetic distance was close to turtles, followed by amphibians and mammals, but its genetic distance was far from fishes. DKKL1 genes from different species shared distinct genomic characteristics. Meanwhile, they were also relatively conserved among themselves, at least from the perspective of classes. Notably, the transcription factors associated with spermatogenesis were also identified, containing CTCF, EWSR1, and FOXL2. DKKL1 exhibited sexually dimorphic expression only in adult gonads, which was significantly higher than that in other somatic tissues (P < 0.001), and was barely expressed in embryonic gonads. DKKL1 transcripts showed a strong signal in sperm, while faint signals were detected in other male germ cells. DKKL1 in adult testes progressively increased per month (P < 0.05), displaying a seasonal expression trait. DKKL1 was significantly downregulated in testes cells after the sex hormones (17β-estradiol and 17α-methyltestosterone) and Wnt/β-catenin inhibitor treatment (P < 0.05). Likewise, the Wnt/β-catenin inhibitor treatment dramatically repressed CTCF, EWSR1, and FOXL2 expression. Conversely, they were markedly upregulated after the 17β-estradiol and 17α-methyltestosterone treatment, suggesting that the three transcription factors might bind to different promoter regions, thereby negatively regulating DKKL1 transcription in response to the changes in the estrogen and androgen pathways, and positively controlling DKKL1 transcription in answer to the alterations in the Wnt/β-catenin pathway. Knockdown of DKKL1 significantly reduced the relative expression of HMGB2 and SPATS1 (P < 0.01), suggesting that it may be involved in seasonal spermatogenesis of P. sinensis through a positive regulatory interaction with these two genes. Overall, our findings provide novel insights into the genome evolution and potential functions of seasonal spermatogenesis of P. sinensis DKKL1.
Collapse
Affiliation(s)
- Junxian Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, PR China
| | - Yongchang Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China; College of Life Science, Xinjiang Agricultural University, Ulumuqi, Xinjiang, PR China
| | - Luo Lei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Chen Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Liqin Ji
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Jiansong Li
- Huizhou Wealth Xing Industrial Co., Ltd., Huizhou, Guangdong, PR China
| | - Congcong Wu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Wenjun Yu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Laifu Luo
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Weiqin Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Pan Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Xiaoyou Hong
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Xiaoli Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Haigang Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Chengqing Wei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Xinping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, PR China.
| | - Wei Li
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China.
| |
Collapse
|
16
|
Huang Y, Liangpunsakul S, Rudraiah S, Ma J, Keshipeddy SK, Wright D, Costa A, Burgess D, Zhang Y, Huda N, Wang L, Yang Z. HMGB2 is a potential diagnostic marker and therapeutic target for liver fibrosis and cirrhosis. Hepatol Commun 2023; 7:e0299. [PMID: 37930124 PMCID: PMC10629741 DOI: 10.1097/hc9.0000000000000299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/23/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND High mobility group proteins 1 and 2 (HMGB1 and HMGB2) are 80% conserved in amino acid sequence. The function of HMGB1 in inflammation and fibrosis has been extensively characterized. However, an unaddressed central question is the role of HMGB2 on liver fibrosis. In this study, we provided convincing evidence that the HMGB2 expression was significantly upregulated in human liver fibrosis and cirrhosis, as well as in several mouse liver fibrosis models. METHODS The carbon tetrachloride (CCl4) induced liver fibrosis mouse model was used. AAV8-Hmgb2 was utilized to overexpress Hmgb2 in the liver, while Hmgb2-/- mice were used for loss of function experiments. The HMGB2 inhibitor inflachromene and liposome-shHMGB2 (lipo-shHMGB2) were employed for therapeutic intervention. RESULTS The serum HMGB2 levels were also markedly elevated in patients with liver fibrosis and cirrhosis. Deletion of Hmgb2 in Hmgb2-/- mice or inhibition of HMGB2 in mice using a small molecule ICM slowed the progression of CCl4-induced liver fibrosis despite constant HMGB1 expression. In contrast, AAV8-mediated overexpression of Hmgb2 enchanced CCl4-incuded liver fibrosis. Primary hepatic stellate cells (HSCs) isolated from Hmgb2-/- mice showed significantly impaired transdifferentiation and diminished activation of α-SMA, despite a modest induction of HMGB1 protein. RNA-seq analysis revealed the induction of top 45 CCl4-activated genes in multiple signaling pathways including integrin signaling and inflammation. The activation of these genes by CCl4 were abolished in Hmgb2-/- mice or in ICM-treated mice. These included C-X3-C motif chemokine receptor 1 (Cx3cr1) associated with inflammation, cyclin B (Ccnb) associated with cell cycle, DNA topoisomerase 2-alpha (Top2a) associated with intracellular component, and fibrillin (Fbn) and fibromodulin (Fmod) associated with extracellular matrix. CONCLUSION We conclude that HMGB2 is indispensable for stellate cell activation. Therefore, HMGB2 may serve as a potential therapeutic target to prevent HSC activation during chronic liver injury. The blood HMGB2 level may also serve as a potential diagnostic marker to detect early stage of liver fibrosis and cirrhosis in humans.
Collapse
Affiliation(s)
- Yi Huang
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Suthat Liangpunsakul
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, Indiana, USA
- Medicine Service, Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Swetha Rudraiah
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Jing Ma
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, Indiana, USA
| | - Santosh K. Keshipeddy
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Dennis Wright
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Antonio Costa
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Diane Burgess
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Nazmul Huda
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, Indiana, USA
| | - Li Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Zhihong Yang
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
17
|
Neubert EN, DeRogatis JM, Lewis SA, Viramontes KM, Ortega P, Henriquez ML, Buisson R, Messaoudi I, Tinoco R. HMGB2 regulates the differentiation and stemness of exhausted CD8 + T cells during chronic viral infection and cancer. Nat Commun 2023; 14:5631. [PMID: 37704621 PMCID: PMC10499904 DOI: 10.1038/s41467-023-41352-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/31/2023] [Indexed: 09/15/2023] Open
Abstract
Chronic infections and cancers evade the host immune system through mechanisms that induce T cell exhaustion. The heterogeneity within the exhausted CD8+ T cell pool has revealed the importance of stem-like progenitor (Tpex) and terminal (Tex) exhausted T cells, although the mechanisms underlying their development are not fully known. Here we report High Mobility Group Box 2 (HMGB2) protein expression is upregulated and sustained in exhausted CD8+ T cells, and HMGB2 expression is critical for their differentiation. Through epigenetic and transcriptional programming, we identify HMGB2 as a cell-intrinsic regulator of the differentiation and maintenance of Tpex cells during chronic viral infection and in tumors. Despite Hmgb2-/- CD8+ T cells expressing TCF-1 and TOX, these master regulators were unable to sustain Tpex differentiation and long-term survival during persistent antigen. Furthermore, HMGB2 also had a cell-intrinsic function in the differentiation and function of memory CD8+ T cells after acute viral infection. Our findings show that HMGB2 is a key regulator of CD8+ T cells and may be an important molecular target for future T cell-based immunotherapies.
Collapse
Affiliation(s)
- Emily N Neubert
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, 92697, USA
| | - Julia M DeRogatis
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Sloan A Lewis
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
- La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Karla M Viramontes
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Pedro Ortega
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, 92697, USA
| | - Monique L Henriquez
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Rémi Buisson
- Center for Virus Research, University of California Irvine, Irvine, CA, 92697, USA
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, 92697, USA
| | - Ilhem Messaoudi
- Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, 40536, USA
| | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA.
- Center for Virus Research, University of California Irvine, Irvine, CA, 92697, USA.
- Institute for Immunology, University of California, Irvine, Irvine, CA, 92697, USA.
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
18
|
Starkova T, Polyanichko A, Tomilin AN, Chikhirzhina E. Structure and Functions of HMGB2 Protein. Int J Mol Sci 2023; 24:ijms24098334. [PMID: 37176041 PMCID: PMC10179549 DOI: 10.3390/ijms24098334] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
High-Mobility Group (HMG) chromosomal proteins are the most numerous nuclear non-histone proteins. HMGB domain proteins are the most abundant and well-studied HMG proteins. They are involved in variety of biological processes. HMGB1 and HMGB2 were the first members of HMGB-family to be discovered and are found in all studied eukaryotes. Despite the high degree of homology, HMGB1 and HMGB2 proteins differ from each other both in structure and functions. In contrast to HMGB2, there is a large pool of works devoted to the HMGB1 protein whose structure-function properties have been described in detail in our previous review in 2020. In this review, we attempted to bring together diverse data about the structure and functions of the HMGB2 protein. The review also describes post-translational modifications of the HMGB2 protein and its role in the development of a number of diseases. Particular attention is paid to its interaction with various targets, including DNA and protein partners. The influence of the level of HMGB2 expression on various processes associated with cell differentiation and aging and its ability to mediate the differentiation of embryonic and adult stem cells are also discussed.
Collapse
Affiliation(s)
- Tatiana Starkova
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| | - Alexander Polyanichko
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| | - Alexey N Tomilin
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| | - Elena Chikhirzhina
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
19
|
Ghoreishifar M, Vahedi SM, Salek Ardestani S, Khansefid M, Pryce JE. Genome-wide assessment and mapping of inbreeding depression identifies candidate genes associated with semen traits in Holstein bulls. BMC Genomics 2023; 24:230. [PMID: 37138201 PMCID: PMC10157977 DOI: 10.1186/s12864-023-09298-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/05/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND The reduction in phenotypic performance of a population due to mating between close relatives is called inbreeding depression. The genetic background of inbreeding depression for semen traits is poorly understood. Thus, the objectives were to estimate the effect of inbreeding and to identify genomic regions underlying inbreeding depression of semen traits including ejaculate volume (EV), sperm concentration (SC), and sperm motility (SM). The dataset comprised ~ 330 K semen records from ~ 1.5 K Holstein bulls genotyped with 50 K single nucleotide polymorphism (SNP) BeadChip. Genomic inbreeding coefficients were estimated using runs of homozygosity (i.e., FROH > 1 Mb) and excess of SNP homozygosity (FSNP). The effect of inbreeding was estimated by regressing phenotypes of semen traits on inbreeding coefficients. Associated variants with inbreeding depression were also detected by regressing phenotypes on ROH state of the variants. RESULTS Significant inbreeding depression was observed for SC and SM (p < 0.01). A 1% increase in FROH reduced SM and SC by 0.28% and 0.42% of the population mean, respectively. By splitting FROH into different lengths, we found significant reduction in SC and SM due to longer ROH, which is indicative of more recent inbreeding. A genome-wide association study revealed two signals positioned on BTA 8 associated with inbreeding depression of SC (p < 0.00001; FDR < 0.02). Three candidate genes of GALNTL6, HMGB2, and ADAM29, located in these regions, have established and conserved connections with reproduction and/or male fertility. Moreover, six genomic regions on BTA 3, 9, 21 and 28 were associated with SM (p < 0.0001; FDR < 0.08). These genomic regions contained genes including PRMT6, SCAPER, EDC3, and LIN28B with established connections to spermatogenesis or fertility. CONCLUSIONS Inbreeding depression adversely affects SC and SM, with evidence that longer ROH, or more recent inbreeding, being especially detrimental. There are genomic regions associated with semen traits that seems to be especially sensitive to homozygosity, and evidence to support some from other studies. Breeding companies may wish to consider avoiding homozygosity in these regions for potential artificial insemination sires.
Collapse
Affiliation(s)
- Mohammad Ghoreishifar
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3083, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3083, Australia.
| | - Seyed Milad Vahedi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, B2N5E3, Canada
| | | | - Majid Khansefid
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3083, Australia
| | - Jennie E Pryce
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3083, Australia
| |
Collapse
|
20
|
Shirouzu S, Sugita N, Choijookhuu N, Yamaguma Y, Takeguchi K, Ishizuka T, Tanaka M, Fidya F, Kai K, Chosa E, Yamashita Y, Koshimoto C, Hishikawa Y. Pivotal role of High-Mobility Group Box 2 in ovarian folliculogenesis and fertility. J Ovarian Res 2022; 15:133. [PMID: 36539852 PMCID: PMC9769043 DOI: 10.1186/s13048-022-01071-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND High-Mobility Group Box 1 (HMGB1) and HMGB2 are chromatin-associated proteins that belong to the HMG protein family, and are involved in the regulation of DNA transcription during cell differentiation, proliferation and regeneration in various tissues. However, the role of HMGB2 in ovarian folliculogenesis is largely unknown. METHODS We investigated the functional role of HMGB1 and HMGB2 in ovarian folliculogenesis and fertilization using C57BL/6 wild type (WT) and HMGB2-knockout (KO) mice. Ovarian tissues were obtained from WT and HMGB2-KO mice at postnatal days 0, 3, 7, and 2, 6 months of age, then performed immunohistochemistry, qPCR and Western blotting analyses. Oocyte fertilization capability was examined by natural breeding and in vitro fertilization experiments. RESULTS In HMGB2-KO mice, ovary weight was decreased due to reduced numbers of oocytes and follicles. Natural breeding and in vitro fertilization results indicated that HMGB2-KO mice are subfertile, but not sterile. Immunohistochemistry showed that oocytes expressed HMGB2, but not HMGB1, in neonatal and adult WT ovaries. Interestingly, in HMGB2-KO ovaries, a compensatory increase in HMGB1 was found in oocyte nuclei of neonatal and 2-month-old mice; however, this was lost at 6 months of age. CONCLUSIONS The depletion of HMGB2 led to alterations in ovarian morphology and function, suggesting that HMGB2 plays an essential role in ovarian development, folliculogenesis and fertilization.
Collapse
Affiliation(s)
- Shinichiro Shirouzu
- grid.410849.00000 0001 0657 3887Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200, 889-1692 Kihara, Kiyotake, Miyazaki Japan ,grid.410849.00000 0001 0657 3887Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, 5200, 889-1692 Kihara, Kiyotake, Miyazaki Japan
| | - Naohiro Sugita
- grid.410849.00000 0001 0657 3887Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200, 889-1692 Kihara, Kiyotake, Miyazaki Japan ,grid.410849.00000 0001 0657 3887Department of Ophthalmology, Faculty of Medicine, University of Miyazaki, 5200, 889-1692 Kihara, Kiyotake, Miyazaki Japan
| | - Narantsog Choijookhuu
- grid.410849.00000 0001 0657 3887Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200, 889-1692 Kihara, Kiyotake, Miyazaki Japan
| | - Yu Yamaguma
- grid.410849.00000 0001 0657 3887Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200, 889-1692 Kihara, Kiyotake, Miyazaki Japan ,grid.410849.00000 0001 0657 3887Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, 5200, 889-1692 Kihara, Kiyotake, Miyazaki Japan
| | - Kanako Takeguchi
- grid.410849.00000 0001 0657 3887Division of Bio-resources, Department of Biotechnology, Frontier Science Research Center, University of Miyazaki, Kihara, Kiyotake, Miyazaki 5200, 889-1692 Japan
| | - Takumi Ishizuka
- grid.410849.00000 0001 0657 3887Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200, 889-1692 Kihara, Kiyotake, Miyazaki Japan
| | - Mio Tanaka
- grid.410849.00000 0001 0657 3887Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200, 889-1692 Kihara, Kiyotake, Miyazaki Japan
| | - Fidya Fidya
- grid.410849.00000 0001 0657 3887Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200, 889-1692 Kihara, Kiyotake, Miyazaki Japan
| | - Kengo Kai
- grid.410849.00000 0001 0657 3887Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200, 889-1692 Kihara, Kiyotake, Miyazaki Japan ,grid.410849.00000 0001 0657 3887Department of Surgery, Faculty of Medicine, University of Miyazaki, Kihara, Kiyotake, Miyazaki, 889–1692 Japan
| | - Etsuo Chosa
- grid.410849.00000 0001 0657 3887Department of Orthopaedic Surgery, Faculty of Medicine, University of Miyazaki, 5200, 889-1692 Kihara, Kiyotake, Miyazaki Japan
| | - Yoshihiro Yamashita
- grid.410849.00000 0001 0657 3887Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, 5200, 889-1692 Kihara, Kiyotake, Miyazaki Japan
| | - Chihiro Koshimoto
- grid.410849.00000 0001 0657 3887Division of Bio-resources, Department of Biotechnology, Frontier Science Research Center, University of Miyazaki, Kihara, Kiyotake, Miyazaki 5200, 889-1692 Japan
| | - Yoshitaka Hishikawa
- grid.410849.00000 0001 0657 3887Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200, 889-1692 Kihara, Kiyotake, Miyazaki Japan
| |
Collapse
|
21
|
Kumar S, Kappe SHI. PfHMGB2 has a role in malaria parasite mosquito infection. Front Cell Infect Microbiol 2022; 12:1003214. [PMID: 36506024 PMCID: PMC9732239 DOI: 10.3389/fcimb.2022.1003214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2022] Open
Abstract
Differentiation of asexually replicating parasites into gametocytes is critical for successful completion of the sexual phase of the malaria parasite life cycle. Gametes generated from gametocytes fuse to form a zygote which differentiates into ookinetes and oocysts. The sporozoites are formed inside oocysts which migrate to the salivary glands for next cycle of human infection. These morphologically and functionally distinct stages require stage-specific gene expression via specific transcriptional regulators. The capacity of high mobility group box (HMGB) proteins to interact with DNA in a sequence independent manner enables them to regulate higher order chromosome organization and regulation of gene expression. Plasmodium falciparum HMGB2 (PfHMGB2) shows a typical L- shaped predicted structure which is similar to mammalian HMG box proteins and shows very high protein sequence similarity to PyHMGB2 and PbHMGB2. Functional characterization of PfHMGB2 by gene deletion (Pfhmgb2¯) showed that knockout parasites develop normally as asexual stages and undergo gametocytogenesis. Transmission experiments revealed that Pfhmgb2¯ can infect mosquitoes and develop as oocyst stages. However, transmission was reduced compared to wild type (WT) parasites and as a consequence, the salivary gland sporozoites were reduced in number. In summary, we demonstrate that PfHMGB2 has no role in asexual growth and a modest role in sexual phase development and parasite transmission to the mosquito.
Collapse
Affiliation(s)
- Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics , University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
22
|
Yano K, Choijookhuu N, Ikenoue M, Fidya, Fukaya T, Sato K, Lee D, Taniguchi N, Chosa E, Nanashima A, Hishikawa Y. Spatiotemporal expression of HMGB2 regulates cell proliferation and hepatocyte size during liver regeneration. Sci Rep 2022; 12:11962. [PMID: 35831365 PMCID: PMC9279446 DOI: 10.1038/s41598-022-16258-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022] Open
Abstract
Liver regeneration is an extraordinarily complex process involving a variety of factors; however, the role of chromatin protein in hepatocyte proliferation is largely unknown. In this study, we investigated the functional role of high-mobility group box 2 (HMGB2), a chromatin protein in liver regeneration using wild-type and HMGB2-knockout (KO) mice. Liver tissues were sampled after 70% partial hepatectomy (PHx), and analyzed by immunohistochemistry, western blotting and flow cytometry using various markers of cell proliferation. In WT mice, hepatocyte proliferation was strongly correlated with the spatiotemporal expression of HMGB2; however, cell proliferation was significantly delayed in hepatocytes of HMGB2-KO mice. Quantitative PCR demonstrated that cyclin D1 and cyclin B1 mRNAs were significantly decreased in HMGB2-KO mice livers. Interestingly, hepatocyte size was significantly larger in HMGB2-KO mice at 36-72 h after PHx, and these results suggest that hepatocyte hypertrophy appeared in parallel with delayed cell proliferation. In vitro experiments demonstrated that cell proliferation was significantly decreased in HMGB2-KO cells. A significant delay in cell proliferation was also found in HMGB2-siRNA transfected cells. In summary, spatiotemporal expression of HMGB2 is important for regulation of hepatocyte proliferation and cell size during liver regeneration.
Collapse
Affiliation(s)
- Koichi Yano
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.,Department of Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Narantsog Choijookhuu
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Makoto Ikenoue
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.,Department of Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Fidya
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Tomohiro Fukaya
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Katsuaki Sato
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Deokcheol Lee
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889‑1692, Japan
| | - Noboru Taniguchi
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8‑35‑1 Sakuragaoka, Kagoshima, 890‑8520, Japan
| | - Etsuo Chosa
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889‑1692, Japan
| | - Atsushi Nanashima
- Department of Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Yoshitaka Hishikawa
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
| |
Collapse
|
23
|
Cerván-Martín M, Bossini-Castillo L, Guzmán-Jiménez A, Rivera-Egea R, Garrido N, Lujan S, Romeu G, Santos-Ribeiro S, Group I, Group LC, Castilla JA, Gonzalvo MC, Clavero A, Maldonado V, Vicente FJ, Burgos M, Jiménez R, González-Muñoz S, Sánchez-Curbelo J, López-Rodrigo O, Pereira-Caetano I, Marques PI, Carvalho F, Barros A, Bassas L, Seixas S, Gonçalves J, Larriba S, Lopes AM, Palomino-Morales RJ, Carmona FD. Common genetic variation in KATNAL1 non-coding regions is involved in the susceptibility to severe phenotypes of male infertility. Andrology 2022; 10:1339-1350. [PMID: 35752927 PMCID: PMC9546047 DOI: 10.1111/andr.13221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/23/2022] [Accepted: 06/21/2022] [Indexed: 12/03/2022]
Abstract
Background Previous studies in animal models evidenced that genetic mutations of KATNAL1, resulting in dysfunction of its encoded protein, lead to male infertility through disruption of microtubule remodelling and premature germ cell exfoliation. Subsequent studies in humans also suggested a possible role of KATNAL1 single‐nucleotide polymorphisms in the development of male infertility as a consequence of severe spermatogenic failure. Objectives The main objective of the present study is to evaluate the effect of the common genetic variation of KATNAL1 in a large and phenotypically well‐characterised cohort of infertile men because of severe spermatogenic failure. Materials and methods A total of 715 infertile men because of severe spermatogenic failure, including 210 severe oligospermia and 505 non‐obstructive azoospermia patients, as well as 1058 unaffected controls were genotyped for three KATNAL1 single‐nucleotide polymorphism taggers (rs2077011, rs7338931 and rs2149971). Case–control association analyses by logistic regression assuming different models and in silico functional characterisation of risk variants were conducted. Results Genetic associations were observed between the three analysed taggers and different severe spermatogenic failure groups. However, in all cases, the haplotype model (rs2077011*C | rs7338931*T | rs2149971*A) better explained the observed associations than the three risk alleles independently. This haplotype was associated with non‐obstructive azoospermia (adjusted p = 4.96E‐02, odds ratio = 2.97), Sertoli‐cell only syndrome (adjusted p = 2.83E‐02, odds ratio = 5.16) and testicular sperm extraction unsuccessful outcomes (adjusted p = 8.99E‐04, odds ratio = 6.13). The in silico analyses indicated that the effect on severe spermatogenic failure predisposition could be because of an alteration of the KATNAL1 splicing pattern. Conclusions Specific allelic combinations of KATNAL1 genetic polymorphisms may confer a risk of developing severe male infertility phenotypes by favouring the overrepresentation of a short non‐functional transcript isoform in the testis.
Collapse
Affiliation(s)
- Miriam Cerván-Martín
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, de Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Lara Bossini-Castillo
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, de Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Andrea Guzmán-Jiménez
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, de Granada, Spain
| | - Rocío Rivera-Egea
- Andrology Laboratory and Sperm Bank, IVIRMA Valencia, Valencia, Spain.,IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Nicolás Garrido
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.,Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Saturnino Lujan
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Gema Romeu
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Samuel Santos-Ribeiro
- IVI-RMA Lisbon, Lisbon, Portugal.,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | | | | | - José A Castilla
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain.,CEIFER Biobanco - NextClinics, Granada, Spain
| | - M Carmen Gonzalvo
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain
| | - Ana Clavero
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain
| | - Vicente Maldonado
- UGC de Obstetricia y Ginecología, Complejo Hospitalario de Jaén, Jaén, Spain
| | - F Javier Vicente
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,UGC de Urología, HU Virgen de las Nieves, Granada, Spain
| | - Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, de Granada, Spain
| | - Rafael Jiménez
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, de Granada, Spain
| | - Sara González-Muñoz
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, de Granada, Spain
| | - Josvany Sánchez-Curbelo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Olga López-Rodrigo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Iris Pereira-Caetano
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal
| | - Patricia I Marques
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Filipa Carvalho
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Alberto Barros
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Lluís Bassas
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Susana Seixas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - João Gonçalves
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal.,ToxOmics - Centro de Toxicogenómica e Saúde Humana, Nova Medical School, Lisbon, Portugal
| | - Sara Larriba
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alexandra M Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Rogelio J Palomino-Morales
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Granada, Spain
| | - F David Carmona
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, de Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
24
|
Chen F, Li W, Zhang D, Fu Y, Yuan W, Luo G, Liu F, Luo J. MALAT1 regulates hypertrophy of cardiomyocytes by modulating the miR-181a/HMGB2 pathway. Eur J Histochem 2022; 66:3426. [PMID: 35726535 PMCID: PMC9251611 DOI: 10.4081/ejh.2022.3426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/25/2022] [Indexed: 12/27/2022] Open
Abstract
Noncoding RNAs are important for regulation of cardiac hypertrophy. The function of MALAT1 (a long noncoding mRNA), miR-181a, and HMGB2; their contribution to cardiac hypertrophy; and the regulatory relationship between them during this process remain unknown. In the present study, we treated primary cardiomyocytes with angiotensin II (Ang II) to mimic cardiac hypertrophy. MALAT1 expression was significantly downregulated in Ang II-treated cardiomyocytes compared with control cardiomyocytes. Ang II-induced cardiac hypertrophy was suppressed by overexpression of MALAT1 and promoted by genetic knockdown of MALAT1. A dual-luciferase reporter assay demonstrated that MALAT1 acted as a sponge for miR-181a and inhibited its expression during cardiac hypertrophy. Cardiac hypertrophy was suppressed by overexpression of a miR-181a inhibitor and enhanced by overexpression of a miR-181a mimic. HMGB2 was downregulated during cardiac hypertrophy and was identified as a target of miR-181a by bioinformatics analysis and a dual-luciferase reporter assay. miR-181a overexpression decreased the mRNA and protein levels of HMGB2. Rescue experiments indicated that MALAT1 overexpression reversed the effect of miR-181a on HMGB2 expression. In summary, the results of the present study show that MALAT1 acts as a sponge for miR-181a and thereby regulates expression of HMGB2 and development of cardiac hypertrophy. The novel MALAT1/miR-181a/HMGB2 axis might play a crucial role in cardiac hypertrophy and serve as a new therapeutic target.
Collapse
Affiliation(s)
- Feng Chen
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong; Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi .
| | - Wenfeng Li
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong; Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi .
| | - Dandan Zhang
- Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi.
| | - Youlin Fu
- Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi.
| | - Wenjin Yuan
- Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi.
| | - Gang Luo
- Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi.
| | - Fuwei Liu
- Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi.
| | - Jun Luo
- Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi.
| |
Collapse
|
25
|
Tao Z, Helms MN, Leach BCB, Wu X. Molecular insights into the multifaceted functions and therapeutic targeting of high mobility group box 1 in metabolic diseases. J Cell Mol Med 2022; 26:3809-3815. [PMID: 35706377 PMCID: PMC9279590 DOI: 10.1111/jcmm.17448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 10/27/2022] Open
Abstract
HMGB1 is a ubiquitously expressed protein localized in nucleus, cytoplasm, as well as secreted into extracellular space. Nuclear HMGB1 binds to DNAs and RNAs, regulating genomic stability and transcription. Cytoplasmic HMGB1 regulates autophagy through binding to core autophagy regulators. Secreted extracellular HMGB1 functions as a ligand to various receptors (RAGE and TLRs, etc.), regulating multiple signalling pathways, such as MAPK, PI3K and NF-κB signallings. Trafficking and localization of HMGB1 across cellular compartments could be regulated by its posttranslational modifications, which fine-tune its functions in metabolic diseases, inflammation and cancers. The current review examines the up-to-date findings pertaining to the biological functions of HMGB1, with focus on its posttranslational modifications and roles in downstream signalling pathways involved in metabolic diseases. This review also discusses the feasibility of targeting HMGB1 as a potential pharmacological intervention for metabolic diseases.
Collapse
Affiliation(s)
- Zhipeng Tao
- Cutaneous Biology Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - My N Helms
- Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Benjamin C B Leach
- Cutaneous Biology Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xu Wu
- Cutaneous Biology Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Li W, Zhu J, Lei L, Chen C, Liu X, Wang Y, Hong X, Yu L, Xu H, Zhu X. The Seasonal and Stage-Specific Expression Patterns of HMGB2 Suggest Its Key Role in Spermatogenesis in the Chinese Soft-Shelled Turtle (Pelodiscus sinensis). Biochem Genet 2022; 60:2489-2502. [PMID: 35554782 DOI: 10.1007/s10528-022-10229-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/18/2022] [Indexed: 02/06/2023]
Abstract
HMGB2, a member of the high-mobility group (HMG) proteins, was identified as a male-biased gene and plays a crucial role in the germ cells differentiation of mammals. However, its role in spermatogenesis of turtle is still poorly understood. Here, we cloned the Pelodiscus sinensis HMGB2 and analyzed its expression profile in different tissues and in testis at different developmental ages. P. sinensis HMGB2 mRNA was highly expressed in the testis of 3-year-old turtles (P < 0.01), but was hardly detected in ovaries and other somatic tissues. The results of chemical in situ hybridization (CISH) showed that HMGB2 mRNA was specifically expressed in germ cells, where it was mainly distributed in round spermatids and sperm, but not detected in somatic cells, spermatogonia, primary spermatocytes, or secondary spermatocyte. The relative expression of HMGB2 also responded to seasonal changes in testis development in P. sinensis. In different seasons of the year, the relative expression of HMGB2 transcripts in the testis of 1 year and 2 year olds showed an overall upward trend, whereas, in the testis of 3 year old, it peaked in July and then declined in October. Moreover, in April and July, with an increase in ages, the expression of HMGB2 transcripts showed an upward trend. However, in January and October, there was a decline in expression in testis in 3-year-old turtles. These results showed that HMGB2 is closely related to spermatogenesis in P. sinensis.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China
| | - Junxian Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, People's Republic of China
| | - Luo Lei
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, People's Republic of China
| | - Chen Chen
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China
| | - Xiaoli Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China
| | - Yakun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China
| | - Xiaoyou Hong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China
| | - Lingyun Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China
| | - Hongyan Xu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China.
| | - Xinping Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China. .,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, People's Republic of China.
| |
Collapse
|
27
|
Integrated RNA-Seq Analysis Uncovers the Potential Mechanism of the “Kidney Governing Bones” Theory of TCM. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7044775. [PMID: 35399624 PMCID: PMC8986393 DOI: 10.1155/2022/7044775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/27/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022]
Abstract
Background. As in philosophy of traditional Chinese medicine (TCM), the theory of “kidney governing bones” has been demonstrated by a series of scientific studies. Furthermore, many groups including ours have explored the molecular mechanisms related to bone development, growth, and regeneration using modern biology technologies, such as RNA sequencing (RNA-Seq) and isobaric tags for relative and absolute quantification (ITRAQ), and have demonstrated that the underlying molecular mechanisms were highly consistent with the “kidney governing bones” theory. Objective. Kidney-yang deficiency (YD), as a pathological condition, has a passive effect on the skeleton growth; more specifically, it is a state of skeletal metabolic disorder. However, the exact molecular mechanisms related to the “kidney governing bones” theory under the control of multiple organs and systems are still unknown. Methods. In this study, we performed RNA-Seq analysis to investigate and compare the gene expression patterns of six types of tissue (bone, cartilage, kidney, testicle, thyroid gland, and adrenal gland) from YD rats and normal rats and analyzed the interaction effects controlled by multiple functional genes and signaling pathways between those tissues. Results. Our results showed that, in the state of YD, the functions of bone and cartilage were inhibited. Furthermore, multiple organs involving the reproductive, endocrine, and urinary systems were also investigated, and our results showed that YD could cause dysfunctions of these systems by downregulating multiple functional genes and signaling pathways that positively regulate the homeostasis of these tissues. Conclusion. We ensure that “kidney governing bones” was not a simple change in a single gene but the changes in complex biological networks caused by functional changes in multiple genes. This also coincides with the holistic view of TCM, which holds that the human body itself is an organic whole and the functional activities of each organ coordinate with each other.
Collapse
|
28
|
Lee MO, Li J, Davis BW, Upadhyay S, Al Muhisen HM, Suva LJ, Clement TM, Andersson L. Hmga2 deficiency is associated with allometric growth retardation, infertility, and behavioral abnormalities in mice. G3 (BETHESDA, MD.) 2022; 12:6456304. [PMID: 34878116 PMCID: PMC9210324 DOI: 10.1093/g3journal/jkab417] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/23/2021] [Indexed: 05/13/2023]
Abstract
The high mobility group AT-hook 2 (HMGA2) protein works as an architectural regulator by binding AT-rich DNA sequences to induce conformational changes affecting transcription. Genomic deletions disrupting HMGA2 coding sequences and flanking noncoding sequences cause dwarfism in mice and rabbits. Here, CRISPR/Cas9 was used in mice to generate an Hmga2 null allele that specifically disrupts only the coding sequence. The loss of one or both alleles of Hmga2 resulted in reduced body size of 20% and 60%, respectively, compared to wild-type littermates as well as an allometric reduction in skull length in Hmga2-/- mice. Both male and female Hmga2-/- mice are infertile, whereas Hmga2+/- mice are fertile. Examination of reproductive tissues of Hmga2-/- males revealed a significantly reduced size of testis, epididymis, and seminal vesicle compared to controls, and 70% of knock-out males showed externalized penis, but no cryptorchidism was observed. Sperm analyses revealed severe oligospermia in mutant males and slightly decreased sperm viability, increased DNA damage but normal sperm chromatin compaction. Testis histology surprisingly revealed a normal seminiferous epithelium, despite the significant reduction in testis size. In addition, Hmga2-/- mice showed a significantly reduced exploratory behavior. In summary, the phenotypic effects in mouse using targeted mutagenesis confirmed that Hmga2 is affecting prenatal and postnatal growth regulation, male reproductive tissue development, and presents the first indication that Hmga2 function is required for normal mouse behavior. No specific effect, despite an allometric reduction, on craniofacial development was noted in contrast to previous reports of an altered craniofacial development in mice and rabbits carrying deletions of both coding and noncoding sequences at the 5' part of Hmga2.
Collapse
Affiliation(s)
- Mi Ok Lee
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Jingyi Li
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Srijana Upadhyay
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Hadil M Al Muhisen
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Program in Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Tracy M Clement
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Program in Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Leif Andersson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
- Corresponding author: Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Vet Med Research Bldg., 588 Raymond Stotzer Pw, TX 77843, USA.
| |
Collapse
|
29
|
Yamaguma Y, Sugita N, Choijookhuu N, Yano K, Lee D, Ikenoue M, Fidya, Shirouzu S, Ishizuka T, Tanaka M, Yamashita Y, Chosa E, Taniguchi N, Hishikawa Y. Crucial role of high-mobility group box 2 in mouse ovarian follicular development through estrogen receptor beta. Histochem Cell Biol 2022; 157:359-369. [PMID: 35024954 DOI: 10.1007/s00418-022-02074-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
High-mobility group box 2 (HMGB2) is a chromatin-associated protein that is an important regulator of gene transcription, recombination, and repair processes. The functional importance of HMGB2 has been reported in various organs, including the testis, heart, and cartilage. However, its role in the ovary is largely unknown. In this study, ovary tissues from wild-type (WT) and HMGB2-knock-out (KO) mice were examined by histopathological staining and immunohistochemistry. The ovary size and weight were significantly lower in HMGB2-KO mice than in age-matched WT littermates. Histopathological analysis revealed ovarian atrophy and progressive fibrosis in 10-month-old HMGB2-KO mouse ovaries. Compared to age-matched WT mice, the numbers of oocytes and developing follicles were significantly decreased at 2 months of age and were completely depleted at 10 months of age in HMGB2-KO mice. Immunohistochemistry revealed the expression of HMGB2 in the granulosa cells of developing follicles, oocytes, some corpora lutea, and stromal cells. Importantly, HMGB2-positive cells were co-localized with estrogen receptor beta (ERβ), but not ERα. Estrogen response element-binding activity was demonstrated by southwestern histochemistry, and it was decreased in HMGB2-KO mouse ovaries. Cell proliferation activity was also decreased in HMGB2-KO mouse ovaries in parallel with the decreased folliculogenesis. These results indicated that the depletion of HMGB2 induced ovarian atrophy that was characterized by a decreased ovarian size and weight, progressive fibrosis, as well as decreased oocytes and folliculogenesis. In conclusion, we demonstrated the crucial role of HMGB2 in mouse ovarian folliculogenesis through ERβ expression.
Collapse
Affiliation(s)
- Yu Yamaguma
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.,Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Naohiro Sugita
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.,Department of Ophthalmology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Narantsog Choijookhuu
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
| | - Koichi Yano
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.,Department of Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Deokcheol Lee
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Makoto Ikenoue
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.,Department of Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Fidya
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Shinichiro Shirouzu
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.,Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Takumi Ishizuka
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Mio Tanaka
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Yoshihiro Yamashita
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Etsuo Chosa
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Noboru Taniguchi
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Yoshitaka Hishikawa
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| |
Collapse
|
30
|
Sugita N, Choijookhuu N, Yano K, Lee D, Ikenoue M, Fidya, Taniguchi N, Chosa E, Hishikawa Y. Depletion of high-mobility group box 2 causes seminiferous tubule atrophy via aberrant expression of androgen and estrogen receptors in mouse testis†. Biol Reprod 2021; 105:1510-1520. [PMID: 34719720 DOI: 10.1093/biolre/ioab187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/25/2021] [Accepted: 10/01/2021] [Indexed: 01/31/2023] Open
Abstract
High-mobility group box 2, a chromatin-associated protein that interacts with deoxyribonucleic acid, is implicated in multiple biological processes, including gene transcription, replication, and repair. High-mobility group box 2 is expressed in several tissues, including the testis; however, its functional role is largely unknown. Here, we elucidated the role of high-mobility group box 2 in spermatogenesis. Paraffin-embedded testicular tissues were obtained from 8-week-old and 1-year-old wild-type and knock-out mice. Testis weight and number of seminiferous tubules were decreased, whereas atrophic tubules were increased in high-mobility group box 2-depleted mice. Immunohistochemistry revealed that atrophic tubules contained Sertoli cells, but not germ cells. Moreover, decreased cell proliferation and increased apoptosis were demonstrated in high-mobility group box 2-depleted mouse testis. To elucidate the cause of tubule atrophy, we examined the expression of androgen and estrogen receptors, and the results indicated aberrant expression of androgen receptor and estrogen receptor alpha in Sertoli and Leydig cells. Southwestern histochemistry detected decreased estrogen response element-binding sites in high-mobility group box 2-depleted mouse testis. High-mobility group box 1, which has highly similar structure and function as high-mobility group box 2, was examined by immunohistochemistry and western blotting, which indicated increased expression in testis. These findings indicate a compensatory increase in high-mobility group box 1 expression in high-mobility group box 2 knock-out mouse testis. In summary, depletion of high-mobility group box 2 induced aberrant expression of androgen receptor and estrogen receptor alpha, leading to decreased germ cell proliferation and increased apoptosis which resulted in focal seminiferous tubule atrophy.
Collapse
Affiliation(s)
- Naohiro Sugita
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Department of Ophthalmology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Narantsog Choijookhuu
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Koichi Yano
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Department of Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Deokcheol Lee
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Makoto Ikenoue
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Department of Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Fidya
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Noboru Taniguchi
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Etsuo Chosa
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yoshitaka Hishikawa
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
31
|
Paudel YN, Khan SU, Othman I, Shaikh MF. Naturally Occurring HMGB1 Inhibitor, Glycyrrhizin, Modulates Chronic Seizures-Induced Memory Dysfunction in Zebrafish Model. ACS Chem Neurosci 2021; 12:3288-3302. [PMID: 34463468 DOI: 10.1021/acschemneuro.0c00825] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glycyrrhizin (GL) is a well-known pharmacological inhibitor of high mobility group box 1 (HMGB1) and is abundantly present in the licorice root (Glycyrrhiza radix). HMGB1 protein, a key mediator of neuroinflammation, has been implicated in several neurological disorders, including epilepsy. Epilepsy is a devastating neurological disorder with no effective disease-modifying treatment strategies yet, suggesting a pressing need for exploring novel therapeutic options. In the current investigation, using a second hit pentylenetetrazol (PTZ) induced chronic seizure model in adult zebrafish, regulated mRNA expression of HMGB1 was inhibited by pretreatment with GL (25, 50, and 100 mg/kg, ip). A molecular docking study suggests that GL establishes different binding interactions with the various amino acid chains of HMGB1 and Toll-like receptor-4 (TLR4). Our finding suggests that GL pretreatment reduces/suppresses second hit PTZ induced seizure, as shown by the reduction in the seizure score. GL also regulates the second hit PTZ induced behavioral impairment and rescued second hit PTZ related memory impairment as demonstrated by an increase in the inflection ratio (IR) at the 3 h and 24 h T-maze trial. GL inhibited seizure-induced neuronal activity as demonstrated by reduced C-fos mRNA expression. GL also modulated mRNA expression of BDNF, CREB-1, and NPY. The possible mechanism underlying the anticonvulsive effect of GL could be attributed to its anti-inflammatory activity, as demonstrated by the downregulated mRNA expression level of HMGB1, TLR4, NF-kB, and TNF-α. Overall, our finding suggests that GL exerts an anticonvulsive effect and ameliorates seizure-related memory disruption plausibly through regulating of the HMGB1-TLR4-NF-kB axis.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Shafi Ullah Khan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
- Department of Pharmacy, Abasyn University, Ring Road, Peshawar 25120, Pakistan
| | - Iekhsan Othman
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
- Liquid Chromatography-Mass Spectrometry (LCMS) Platform, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
32
|
Papantonis A. HMGs as rheostats of chromosomal structure and cell proliferation. Trends Genet 2021; 37:986-994. [PMID: 34311989 DOI: 10.1016/j.tig.2021.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 11/18/2022]
Abstract
High mobility group proteins (HMGs) are the most abundant nuclear proteins next to histones and are robustly expressed across tissues and organs. HMGs can uniquely bend or bind distorted DNA, and are central to such processes as transcription, recombination, and DNA repair. However, their dynamic association with chromatin renders capturing HMGs on chromosomes challenging. Recent work has changed this and now implicates these factors in spatial genome organization. Here, I revisit older and review recent literature to describe how HMGs rewire spatial chromatin interactions to sustain homeostasis or promote cellular aging. I propose a 'rheostat' model to explain how HMG-box proteins (HMGBs), and to some extent HMG A proteins (HMGAs), may control cellular aging and, likely, cancer progression.
Collapse
Affiliation(s)
- Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany.
| |
Collapse
|
33
|
Deficiency of the novel high mobility group protein HMGXB4 protects against systemic inflammation-induced endotoxemia in mice. Proc Natl Acad Sci U S A 2021; 118:2021862118. [PMID: 33563757 DOI: 10.1073/pnas.2021862118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sepsis is a major cause of mortality in intensive care units, which results from a severely dysregulated inflammatory response that ultimately leads to organ failure. While antibiotics can help in the early stages, effective strategies to curtail inflammation remain limited. The high mobility group (HMG) proteins are chromosomal proteins with important roles in regulating gene transcription. While HMGB1 has been shown to play a role in sepsis, the role of other family members including HMGXB4 remains unknown. We found that expression of HMGXB4 is strongly induced in response to lipopolysaccharide (LPS)-elicited inflammation in murine peritoneal macrophages. Genetic deletion of Hmgxb4 protected against LPS-induced lung injury and lethality and cecal ligation and puncture (CLP)-induced lethality in mice, and attenuated LPS-induced proinflammatory gene expression in cultured macrophages. By integrating genome-wide transcriptome profiling and a publicly available ChIP-seq dataset, we identified HMGXB4 as a transcriptional activator that regulates the expression of the proinflammatory gene, Nos2 (inducible nitric oxide synthase 2) by binding to its promoter region, leading to NOS2 induction and excessive NO production and tissue damage. Similar to Hmgxb4 ablation in mice, administration of a pharmacological inhibitor of NOS2 robustly decreased LPS-induced pulmonary vascular permeability and lethality in mice. Additionally, we identified the cell adhesion molecule, ICAM1, as a target of HMGXB4 in endothelial cells that facilitates inflammation by promoting monocyte attachment. In summary, our study reveals a critical role of HMGXB4 in exacerbating endotoxemia via transcriptional induction of Nos2 and Icam1 gene expression and thus targeting HMGXB4 may be an effective therapeutic strategy for the treatment of sepsis.
Collapse
|
34
|
Chen K, Zhang J, Liang F, Zhu Q, Cai S, Tong X, He Z, Liu X, Chen Y, Mo D. HMGB2 orchestrates mitotic clonal expansion by binding to the promoter of C/EBPβ to facilitate adipogenesis. Cell Death Dis 2021; 12:666. [PMID: 34215724 PMCID: PMC8253743 DOI: 10.1038/s41419-021-03959-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022]
Abstract
High-mobility group box 2 (HMGB2) is an abundant, chromatin-associated protein that plays an essential role in the regulation of transcription, cell proliferation, differentiation, and tumorigenesis. However, the underlying mechanism of HMGB2 in adipogenesis remains poorly known. Here, we provide evidence that HMGB2 deficiency in preadipocytes impedes adipogenesis, while overexpression of HMGB2 increases the potential for adipogenic differentiation. Besides, depletion of HMGB2 in vivo caused the decrease in body weight, white adipose tissue (WAT) mass, and adipocyte size. Consistently, the stromal vascular fraction (SVF) of adipose tissue derived from hmgb2-/- mice presented impaired adipogenesis. When hmgb2-/- mice were fed with high-fat diet (HFD), the body size, and WAT mass were increased, but at a lower rate. Mechanistically, HMGB2 mediates adipogenesis via enhancing expression of C/EBPβ by binding to its promoter at "GGGTCTCAC" specifically during mitotic clonal expansion (MCE) stage, and exogenous expression of C/EBPβ can rescue adipogenic abilities of preadipocytes in response to HMGB2 inhibition. In general, our findings provide a novel mechanism of HMGB2-C/EBPβ axis in adipogenesis and a potential therapeutic target for obesity.
Collapse
MESH Headings
- Adipocytes, White/metabolism
- Adipocytes, White/pathology
- Adipogenesis
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/pathology
- Animals
- Binding Sites
- CCAAT-Enhancer-Binding Protein-beta/genetics
- CCAAT-Enhancer-Binding Protein-beta/metabolism
- Cells, Cultured
- Diet, High-Fat
- Disease Models, Animal
- Female
- Gene Expression Regulation
- HMGB2 Protein/genetics
- HMGB2 Protein/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mitosis
- Obesity/genetics
- Obesity/metabolism
- Obesity/pathology
- Promoter Regions, Genetic
- Signal Transduction
- Weight Gain
- Mice
Collapse
Affiliation(s)
- Keren Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junyan Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Feng Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qi Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shufang Cai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xian Tong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
35
|
Tian H, Petkov PM. Mouse EWSR1 is crucial for spermatid post-meiotic transcription and spermiogenesis. Development 2021; 148:269056. [PMID: 34100066 DOI: 10.1242/dev.199414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022]
Abstract
Spermatogenesis is precisely controlled by complex gene-expression programs. During mammalian male germ-cell development, a crucial feature is the repression of transcription before spermatid elongation. Previously, we discovered that the RNA-binding protein EWSR1 plays an important role in meiotic recombination in mouse, and showed that EWSR1 is highly expressed in late meiotic cells and post-meiotic cells. Here, we used an Ewsr1 pachytene stage-specific knockout mouse model to study the roles of Ewsr1 in late meiotic prophase I and in spermatozoa maturation. We show that loss of EWSR1 in late meiotic prophase I does not affect proper meiosis completion, but does result in defective spermatid elongation and chromocenter formation in the developing germ cells. As a result, male mice lacking EWSR1 after pachynema are sterile. We found that, in Ewsr1 CKO round spermatids, transition from a meiotic gene-expression program to a post-meiotic and spermatid gene expression program related to DNA condensation is impaired, suggesting that EWSR1 plays an important role in regulation of spermiogenesis-related mRNA synthesis necessary for spermatid differentiation into mature sperm.
Collapse
Affiliation(s)
- Hui Tian
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
36
|
Morinaga H, Muta Y, Tanaka T, Tanabe M, Hamaguchi Y, Yanase T. High-mobility group box 2 protein is essential for the early phase of adipogenesis. Biochem Biophys Res Commun 2021; 557:97-103. [PMID: 33862466 DOI: 10.1016/j.bbrc.2021.03.149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/26/2021] [Indexed: 11/20/2022]
Abstract
Understanding of the mechanism of adipogenesis is essential for the control of obesity, which predisposes toward numerous health problems. High-mobility group box protein 2 (HMGB2) is a non-histone chromosomal protein that facilitates DNA replication, transcription, recombination, and repair. Here, we studied the role of HMGB2 in adipogenic differentiation. The expression of HMGB2 was measured at the mRNA and protein levels in cultured 3T3-L1 pre-adipocyte cells and during the process of adipogenic differentiation induced bya cocktail of insulin, 3-isobutyl-1-methylxanthine, and dexamethasone. This increased in the early phase and decreased in the late phase of differentiation. However, 3T3-L1 pre-adipocyte cells did not differentiate into adipocytes after the knockdown of HMGB2 expression by small interfering RNA (siRNA). Similarly, mesenchymal stem cells (MSCs) isolated from Hmgb2-/- mice did not express peroxisome proliferator-activated receptor gamma (PPARγ) in response to the adipocyte differentiation cocktail and did not differentiate. Wnt/β-catenin signaling is a negative regulator of adipogenic differentiation. We found that β-catenin expression was downregulated during 3T3-L1 adipogenic differentiation, as expected, but not when endogenous HMBG2 expression was knocked down using siRNA. These results indicate that HMGB2 plays an essential role in the early phase of the differentiation of pre-adipocytes and MSCs, and probably interacts with other regulators, such as PPARγ and Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Hidetaka Morinaga
- Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University, Fukuoka, Japan; Department of Medicine and Bioregulatory Science, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan.
| | - Yoshimi Muta
- Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Tomoko Tanaka
- The Department of Bioregulatory Science of Life-related Diseases of Fukuoka University, Fukuoka, Japan; Department of Regenerative Medicine and Transplantation Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Makito Tanabe
- Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Yuriko Hamaguchi
- Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University, Fukuoka, Japan; Department of Regenerative Medicine and Transplantation Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Toshihiko Yanase
- Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University, Fukuoka, Japan; Seiwakai Muta Hospital, Fukuoka, Japan
| |
Collapse
|
37
|
Pan Z, Zhu C, Chang G, Wu N, Ding H, Wang H. Differential expression analysis and identification of sex-related genes by gonad transcriptome sequencing in estradiol-treated and non-treated Ussuri catfish Pseudobagrus ussuriensis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:565-581. [PMID: 33523351 DOI: 10.1007/s10695-021-00932-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
The Ussuri catfish (Pseudobagrus ussuriensis) has an XX/XY sex determination system but its sex determination gene(s) remain unknown. To better understand the molecular sex determination mechanism, transcriptome analysis was conducted to obtain sex-related gene expression profiles. Transcriptome analyses were made of male and female developing/differentiating gonads by high-throughput RNA sequencing, including gonads from fish given an estradiol-induced sex reversal treatment. A total of 81,569 unigenes were assembled and 39,904 were significantly matched to known unique proteins by comparison with public databases. Twenty specifically expressed and 142 differentially expressed sex-related genes were extracted from annotated data by comparing the treatment groups. These genes are involved in spermatogenesis (e.g., Dnali1, nectin3, klhl10, mybl1, Katnal1, Eno4, Mns1, Spag6, Tsga10, Septin7), oogenesis (e.g., Lagr5, Fmn2, Npm2, zar1, Fbxo5, Fbxo43, Prdx4, Nrip1, Lfng, Atrip), gonadal development/differentiation (e.g., Cxcr4b, Hmgb2, Cftr, Ch25h, brip1, Prdm9, Tdrd1, Star, dmrt1, Tut4, Hsd17b12a, gdf9, dnd, arf1, Spata22), and estradiol response (e.g., Mmp14, Lhcgr, vtg1, vtg2, esr2b, Piwil1, Aifm1, Hsf1, gdf9). Dmrt1 and gdf9 may play an essential role in sex determination in P. ussuriensis. The expression patterns of six random genes were validated by quantitative real-time PCR, which confirmed the reliability and accuracy of the RNA-seq results. These data provide a valuable resource for future studies of gene expression and for understanding the molecular mechanism of sex determination/differentiation and gonadal development/differentiation (including hormone-induced sexual reversal) in Ussuri catfish. This has the potential to assist in producing monosex Ussuri catfish to increase aquacultural productivity.
Collapse
Affiliation(s)
- ZhengJun Pan
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China.
| | - ChuanKun Zhu
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - GuoLiang Chang
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - Nan Wu
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - HuaiYu Ding
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - Hui Wang
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| |
Collapse
|
38
|
Zhang X, Dang Y, Liu R, Zhao S, Ma J, Qin Y. MicroRNA-127-5p impairs function of granulosa cells via HMGB2 gene in premature ovarian insufficiency. J Cell Physiol 2020; 235:8826-8838. [PMID: 32391592 DOI: 10.1002/jcp.29725] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/10/2020] [Indexed: 12/30/2022]
Abstract
Distinct microRNA (miRNA) profiles have been reported in premature ovarian insufficiency (POI), but their functional relevance in POI is not yet clearly stated. In this study, aberrant expressions of miR-127-5p and high mobility group box 2 (HMGB2) were observed by microarrays in granulosa cells (GCs) from biochemical POI (bPOI) women and further confirmed by a quantitative reverse-transcription polymerase chain reaction. Immortalized human granulosa cell line and mouse primary ovarian GCs were used for functional validation. Orthotopic mouse model was established to examine the role of miR-127-5p in vivo. Finally, the expression of miR-127-5p was measured in the plasma of bPOI women. The receiver operating characteristic curve analysis was performed to determine the indicative role of miR-127-5p for ovarian reserve. Results showed the upregulation of miR-127-5p was identified in GCs from bPOI patients. It inhibited GCs proliferation and impaired DNA damage repair capacity through targeting HMGB2, which was significantly downregulated in GCs from the same cohort of cases. miR-127-5p was confirmed to attenuate DNA repair capability via HMGB2 in mouse ovary in vivo. Intriguingly, the upexpression of miR-127-5p was also detected in plasma of bPOI individuals, suggesting that miR-127-5p could be a promising indicator for bPOI. Taken together, our results discovered the deleterious effects of miR-127-5p on GCs function and its predictive value in POI process. The target gene HMGB2 could be considered as a new candidate for POI. This study highlights the importance of DNA repair capacity for ovarian function and sheds light on the epigenetic mechanism in the pathogenicity of POI.
Collapse
Affiliation(s)
- Xinyue Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Yujie Dang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Ran Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Shidou Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Jinlong Ma
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Yingying Qin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| |
Collapse
|
39
|
Cámara-Quílez M, Barreiro-Alonso A, Rodríguez-Bemonte E, Quindós-Varela M, Cerdán ME, Lamas-Maceiras M. Differential Characteristics of HMGB2 Versus HMGB1 and their Perspectives in Ovary and Prostate Cancer. Curr Med Chem 2020; 27:3271-3289. [PMID: 30674244 DOI: 10.2174/0929867326666190123120338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/28/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
Abstract
We have summarized common and differential functions of HMGB1 and HMGB2 proteins with reference to pathological processes, with a special focus on cancer. Currently, several "omic" approaches help us compare the relative expression of these 2 proteins in healthy and cancerous human specimens, as well as in a wide range of cancer-derived cell lines, or in fetal versus adult cells. Molecules that interfere with HMGB1 functions, though through different mechanisms, have been extensively tested as therapeutic agents in animal models in recent years, and their effects are summarized. The review concludes with a discussion on the perspectives of HMGB molecules as targets in prostate and ovarian cancers.
Collapse
Affiliation(s)
- María Cámara-Quílez
- EXPRELA Group, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxia. Facultade de Ciencias, INIBIC- Universidade da Coruna, Campus de A Zapateira, 15071, A Coruna, Spain
| | - Aida Barreiro-Alonso
- EXPRELA Group, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxia. Facultade de Ciencias, INIBIC- Universidade da Coruna, Campus de A Zapateira, 15071, A Coruna, Spain
| | - Esther Rodríguez-Bemonte
- EXPRELA Group, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxia. Facultade de Ciencias, INIBIC- Universidade da Coruna, Campus de A Zapateira, 15071, A Coruna, Spain
| | - María Quindós-Varela
- Translational Cancer Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Carretera del Pasaje s/n, 15006 A Coruña, Spain
| | - M Esperanza Cerdán
- EXPRELA Group, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxia. Facultade de Ciencias, INIBIC- Universidade da Coruna, Campus de A Zapateira, 15071, A Coruna, Spain
| | - Mónica Lamas-Maceiras
- EXPRELA Group, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxia. Facultade de Ciencias, INIBIC- Universidade da Coruna, Campus de A Zapateira, 15071, A Coruna, Spain
| |
Collapse
|
40
|
Fang Y, Liang F, Yuan R, Zhu Q, Cai S, Chen K, Zhang J, Luo X, Chen Y, Mo D. High mobility group box 2 regulates skeletal muscle development through ribosomal protein S6 kinase 1. FASEB J 2020; 34:12367-12378. [DOI: 10.1096/fj.202001183r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Ying Fang
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Feng Liang
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Renqiang Yuan
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Qi Zhu
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Shufang Cai
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Keren Chen
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Junyan Zhang
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Xiaorong Luo
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Delin Mo
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| |
Collapse
|
41
|
De Martinis M, Ginaldi L, Sirufo MM, Pioggia G, Calapai G, Gangemi S, Mannucci C. Alarmins in Osteoporosis, RAGE, IL-1, and IL-33 Pathways: A Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:medicina56030138. [PMID: 32204562 PMCID: PMC7142770 DOI: 10.3390/medicina56030138] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022]
Abstract
Alarmins are endogenous mediators released by cells following insults or cell death to alert the host’s innate immune system of a situation of danger or harm. Many of these, such as high-mobility group box-1 and 2 (HMGB1, HMGB2) and S100 (calgranulin proteins), act through RAGE (receptor for advanced glycation end products), whereas the IL-1 and IL-33 cytokines bind the IL-1 receptors type I and II, and the cellular receptor ST2, respectively. The alarmin family and their signal pathways share many similarities of cellular and tissue localization, functions, and involvement in various physiological processes and inflammatory diseases including osteoporosis. The aim of the review was to evaluate the role of alarmins in osteoporosis. A bibliographic search of the published scientific literature regarding the role of alarmins in osteoporosis was organized independently by two researchers in the following scientific databases: Pubmed, Scopus, and Web of Science. The keywords used were combined as follows: “alarmins and osteoporosis”, “RAGE and osteoporosis”, “HMGB1 and osteoporosis”, “IL-1 and osteoporosis”, “IL 33 and osteopororsis”, “S100s protein and osteoporosis”. The information was summarized and organized in the present review. We highlight the emerging roles of alarmins in various bone remodeling processes involved in the onset and development of osteoporosis, as well as their potential role as biomarkers of osteoporosis severity and progression. Findings of the research suggest a potential use of alarmins as pharmacological targets in future therapeutic strategies aimed at preventing bone loss and fragility fractures induced by aging and inflammatory diseases.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health, & Environmental Sciences, University of L’Aquila, 6700 L’Aquila, Italy; (M.D.M.); (L.G.); (M.M.S.)
| | - Lia Ginaldi
- Department of Life, Health, & Environmental Sciences, University of L’Aquila, 6700 L’Aquila, Italy; (M.D.M.); (L.G.); (M.M.S.)
| | - Maria Maddalena Sirufo
- Department of Life, Health, & Environmental Sciences, University of L’Aquila, 6700 L’Aquila, Italy; (M.D.M.); (L.G.); (M.M.S.)
| | - Giovanni Pioggia
- National Research Council of Italy (CNR)-Institute for Biomedical Research and Innovation (IRIB), 98164 Messina, Italy;
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Carmen Mannucci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
- Correspondence: ; Tel.: +39-090-22-12-697
| |
Collapse
|
42
|
Wang M, Gauthier A, Daley L, Dial K, Wu J, Woo J, Lin M, Ashby C, Mantell LL. The Role of HMGB1, a Nuclear Damage-Associated Molecular Pattern Molecule, in the Pathogenesis of Lung Diseases. Antioxid Redox Signal 2019; 31:954-993. [PMID: 31184204 PMCID: PMC6765066 DOI: 10.1089/ars.2019.7818] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022]
Abstract
Significance: High-mobility group protein box 1 (HMGB1), a ubiquitous nuclear protein, regulates chromatin structure and modulates the expression of many genes involved in the pathogenesis of lung cancer and many other lung diseases, including those that regulate cell cycle control, cell death, and DNA replication and repair. Extracellular HMGB1, whether passively released or actively secreted, is a danger signal that elicits proinflammatory responses, impairs macrophage phagocytosis and efferocytosis, and alters vascular remodeling. This can result in excessive pulmonary inflammation and compromised host defense against lung infections, causing a deleterious feedback cycle. Recent Advances: HMGB1 has been identified as a biomarker and mediator of the pathogenesis of numerous lung disorders. In addition, post-translational modifications of HMGB1, including acetylation, phosphorylation, and oxidation, have been postulated to affect its localization and physiological and pathophysiological effects, such as the initiation and progression of lung diseases. Critical Issues: The molecular mechanisms underlying how HMGB1 drives the pathogenesis of different lung diseases and novel therapeutic approaches targeting HMGB1 remain to be elucidated. Future Directions: Additional research is needed to identify the roles and functions of modified HMGB1 produced by different post-translational modifications and their significance in the pathogenesis of lung diseases. Such studies will provide information for novel approaches targeting HMGB1 as a treatment for lung diseases.
Collapse
Affiliation(s)
- Mao Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Alex Gauthier
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - LeeAnne Daley
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Katelyn Dial
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Jiaqi Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Joanna Woo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Mosi Lin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Charles Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Lin L. Mantell
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
- Center for Inflammation and Immunology, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York
| |
Collapse
|
43
|
Kučírek M, Bagherpoor AJ, Jaroš J, Hampl A, Štros M. HMGB2 is a negative regulator of telomerase activity in human embryonic stem and progenitor cells. FASEB J 2019; 33:14307-14324. [PMID: 31661640 DOI: 10.1096/fj.201901465rrr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
High-mobility group box (HMGB)1 and HMGB2 proteins are the subject of intensive research because of their involvement in DNA replication, repair, transcription, differentiation, proliferation, cell signaling, inflammation, and tumor migration. Using inducible, stably transfected human embryonic stem cells (hESCs) capable of the short hairpin RNA-mediated knockdown (KD) of HMGB1 and HMGB2, we provide evidence that deregulation of HMGB1 or HMGB2 expression in hESCs and their differentiated derivatives (neuroectodermal cells) results in distinct modulation of telomere homeostasis. Whereas HMGB1 enhances telomerase activity, HMGB2 acts as a negative regulator of telomerase activity in the cell. Stimulation of telomerase activity in the HMGB2-deficient cells may be related to activation of the PI3K/protein kinase B/ glycogen synthase kinase-3β/β-catenin signaling pathways by HMGB1, augmented TERT/telomerase RNA subunit transcription, and possibly also because of changes in telomeric repeat-containing RNA (TERRA) and TERRA-polyA+ transcription. The impact of HMGB1/2 KD on telomerase transcriptional regulation observed in neuroectodermal cells is partially masked in hESCs by their pluripotent state. Our findings on differential roles of HMGB1 and HMGB2 proteins in regulation of telomerase activity may suggest another possible outcome of HMGB1 targeting in cells, which is currently a promising approach aiming at increasing the anticancer activity of cytotoxic agents.-Kučírek, M., Bagherpoor, A. J., Jaroš, J., Hampl, A., Štros, M. HMGB2 is a negative regulator of telomerase activity in human embryonic stem and progenitor cells.
Collapse
Affiliation(s)
- Martin Kučírek
- Laboratory of Analysis of Chromosomal Proteins, Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Alireza J Bagherpoor
- Laboratory of Analysis of Chromosomal Proteins, Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Josef Jaroš
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Cell and Tissue Regeneration, International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Aleš Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Cell and Tissue Regeneration, International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Michal Štros
- Laboratory of Analysis of Chromosomal Proteins, Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
44
|
Huilgol D, Venkataramani P, Nandi S, Bhattacharjee S. Transcription Factors That Govern Development and Disease: An Achilles Heel in Cancer. Genes (Basel) 2019; 10:E794. [PMID: 31614829 PMCID: PMC6826716 DOI: 10.3390/genes10100794] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
Development requires the careful orchestration of several biological events in order to create any structure and, eventually, to build an entire organism. On the other hand, the fate transformation of terminally differentiated cells is a consequence of erroneous development, and ultimately leads to cancer. In this review, we elaborate how development and cancer share several biological processes, including molecular controls. Transcription factors (TF) are at the helm of both these processes, among many others, and are evolutionarily conserved, ranging from yeast to humans. Here, we discuss four families of TFs that play a pivotal role and have been studied extensively in both embryonic development and cancer-high mobility group box (HMG), GATA, paired box (PAX) and basic helix-loop-helix (bHLH) in the context of their role in development, cancer, and their conservation across several species. Finally, we review TFs as possible therapeutic targets for cancer and reflect on the importance of natural resistance against cancer in certain organisms, yielding knowledge regarding TF function and cancer biology.
Collapse
Affiliation(s)
- Dhananjay Huilgol
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| | | | - Saikat Nandi
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| | - Sonali Bhattacharjee
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| |
Collapse
|
45
|
Wang Y, Yang Y, Chen Q, Zhai H, Xie Z, Ke F. PfHMGB2 protects yellow catfish (Pelteobagrus fulvidraco) from bacterial infection by promoting phagocytosis and proliferation of PBL. FISH & SHELLFISH IMMUNOLOGY 2019; 93:567-574. [PMID: 31394161 DOI: 10.1016/j.fsi.2019.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
HMGB2, a member of the high mobility group box family, plays an important role in host immune responses. However, the mechanism of action of HMGB2 is not well understood. Herein, a homologue from yellow catfish (Pelteobagrus fulvidraco) was cloned and named PfHMGB2. The deduced amino acid sequence of PfHMGB2 possessed a typical tripartite structure (two DNA binding boxes and an acid tail) and shared 90% identity with the predicted HMGB2 from I. punctatus. The mRNA of PfHMGB2 was widely distributed in all 11 tested tissues in healthy fish bodies and was significantly induced in the liver and head kidney when yellow catfish were injected with inactivated Aeromonas hydrophila. Consistently, PfHMGB2 mRNA could also be induced in yellow catfish peripheral blood leucocytes (PBL) by lipopolysaccharide. The recombinant PfHMGB2 protein was purified from E. coli BL21 (DE3):pET-28a/PfHMGB2 and showed DNA-binding affinity. Moreover, rPfHMGB2 improved the phagocytosis and proliferation activity and upregulated the mRNA expression of the pro-inflammatory cytokine TNFα in yellow catfish PBL. These results indicated that PfHMGB2 could protect yellow catfish from pathogen infection by activating PBL.
Collapse
Affiliation(s)
- Yun Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Hubei Province, Wuhan, 430056, China; Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Henan Province, Pingdingshan, 467036, China.
| | - Yanyan Yang
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Henan Province, Pingdingshan, 467036, China
| | - Qianying Chen
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Henan Province, Pingdingshan, 467036, China
| | - Hanfei Zhai
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Henan Province, Pingdingshan, 467036, China
| | - Zhaohui Xie
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Henan Province, Pingdingshan, 467036, China
| | - Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
46
|
Mandke P, Vasquez KM. Interactions of high mobility group box protein 1 (HMGB1) with nucleic acids: Implications in DNA repair and immune responses. DNA Repair (Amst) 2019; 83:102701. [PMID: 31563843 DOI: 10.1016/j.dnarep.2019.102701] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 01/10/2023]
Abstract
High mobility group box protein 1 (HMGB1) is a highly versatile, abundant, and ubiquitously expressed, non-histone chromosomal protein, which belongs to the HMGB family of proteins. These proteins form an integral part of the architectural protein repertoire to support chromatin structure in the nucleus. In the nucleus, the role of HMGB1 is attributed to its ability to bind to undamaged DNA, damaged DNA, and alternative (i.e. non-B) DNA structures with high affinity and subsequently induce bending of the DNA substrates. Due to its binding to DNA, HMGB1 has been implicated in critical biological processes, such as DNA transcription, replication, repair, and recombination. In addition to its intracellular functions, HMGB1 can also be released in the extracellular space where it elicits immunological responses. HMGB1 associates with many different molecules, including DNA, RNA, proteins, and lipopolysaccharides to modulate a variety of processes in both DNA metabolism and in innate immunity. In this review, we will focus on the implications of the interactions of HMGB1 with nucleic acids in DNA repair and immune responses. We report on the roles of HMGB1 in nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR) and DNA double-strand break repair (DSBR). We also report on its roles in immune responses via its potential effects on antigen receptor diversity generation [V(D)J recombination] and interactions with foreign and self-nucleic acids. HMGB1 expression is altered in a variety of cancers and immunological disorders. However, due to the diversity and complexity of the biological processes influenced by HMGB1 (and its family members), a detailed understanding of the intracellular and extracellular roles of HMGB1 in DNA damage repair and immune responses is warranted to ensure the development of effective HMGB1-related therapies.
Collapse
Affiliation(s)
- Pooja Mandke
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX, 78723, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX, 78723, USA.
| |
Collapse
|
47
|
Sato M, Miyata K, Tian Z, Kadomatsu T, Ujihara Y, Morinaga J, Horiguchi H, Endo M, Zhao J, Zhu S, Sugizaki T, Igata K, Muramatsu M, Minami T, Ito T, Bianchi ME, Mohri S, Araki K, Node K, Oike Y. Loss of Endogenous HMGB2 Promotes Cardiac Dysfunction and Pressure Overload-Induced Heart Failure in Mice. Circ J 2019; 83:368-378. [PMID: 30487376 DOI: 10.1253/circj.cj-18-0925] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
BACKGROUND The rapid increase in the number of heart failure (HF) patients in parallel with the increase in the number of older people is receiving attention worldwide. HF not only increases mortality but decreases quality of life, creating medical and social problems. Thus, it is necessary to define molecular mechanisms underlying HF development and progression. HMGB2 is a member of the high-mobility group superfamily characterized as nuclear proteins that bind DNA to stabilize nucleosomes and promote transcription. A recent in vitro study revealed that HMGB2 loss in cardiomyocytes causes hypertrophy and increases HF-associated gene expression. However, it's in vivo function in the heart has not been assessed. METHODS AND RESULTS Western blotting analysis revealed increased HMGB2 expression in heart tissues undergoing pressure overload by transverse aorta constriction (TAC) in mice. Hmgb2 homozygous knockout (Hmgb2-/-) mice showed cardiac dysfunction due to AKT inactivation and decreased sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2a activity. Compared to wild-type mice, Hmgb2-/- mice had worsened cardiac dysfunction after TAC surgery, predisposing mice to HF development and progression. CONCLUSIONS This study demonstrates that upregulation of cardiac HMGB2 is an adaptive response to cardiac stress, and that loss of this response could accelerate cardiac dysfunction, suggesting that HMGB2 plays a cardioprotective role.
Collapse
Affiliation(s)
- Michio Sato
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University
- Department of Cardiovascular Medicine, Saga University
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University
- Department of Immunology, Allergy and Vascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Zhe Tian
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University
| | | | - Jun Morinaga
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University
| | - Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University
| | - Motoyoshi Endo
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University
| | - Jiabin Zhao
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University
| | - Shunshun Zhu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University
| | - Taichi Sugizaki
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University
| | - Kimihiro Igata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University
| | - Masashi Muramatsu
- Division of Molecular and Vascular Biology, Institute of Resource Development and Analysis, Kumamoto University
| | - Takashi Minami
- Division of Molecular and Vascular Biology, Institute of Resource Development and Analysis, Kumamoto University
| | - Takashi Ito
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Science
| | - Marco E Bianchi
- Chromatin Dynamics Unit, San Raffaele University and Scientific Institute
| | - Satoshi Mohri
- First Department of Physiology, Kawasaki Medical School
| | - Kimi Araki
- Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University
- Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University
| |
Collapse
|
48
|
Wang GH, Wang JJ, Yue B, Du X, Du HH, Zhang M, Hu YH. High mobility group box 2 of black rockfish Sebastes schlegelii: Gene cloning, immunoregulatory properties and antibacterial effect. FISH & SHELLFISH IMMUNOLOGY 2019; 84:719-725. [PMID: 30393172 DOI: 10.1016/j.fsi.2018.10.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 06/08/2023]
Abstract
High-mobility group box 2 (HMGB2) is a non-histone chromosomal protein that involved diverse functions such as transcriptional regulation and innate immune responses in mammalian. In teleost, very limited studies on HMGB2 proteins have been documented. Black rockfish (Sebastes schlegelii) is an economic fish species and cultured worldwide. However, the study of black rockfish about immunology is very scarce. In the present study, a HMGB2 homologue gene (SsHMGB2) was identified and characterized in black rockfish. The open reading frame of SsHMGB2 is 648 bp, and the deduced amino acid sequence of SsHMGB2 shares 74.4%-91.2% overall sequence identities with the HMGB2 proteins of several fish species. In silico analysis identified several conserved features, including two basic HMG boxes and an acidic C-terminal tail composed of 24 Asp/Glu residues. Expression of SsHMGB2 occurred in multiple tissues and was upregulated during pathogens infection. Recombinant SsHMGB2 (rSsHMGB2) exhibited apparent binding activities against DNA. In vivo studies showed that the expressions of multiple immune-related genes in head kidney were significantly enhanced when black rockfish were treated with rSsHMGB2. Furthermore, rSsHMGB2 reduced pathogen dissemination and replication in fish kidney and spleen. Taken together, these results suggest that SsHMGB2 possesses apparent immunoregulatory properties and played a role in fighting bacterial infection.
Collapse
Affiliation(s)
- Guang-Hua Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing-Jing Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Bin Yue
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xue Du
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - He-He Du
- Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Min Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Yong-Hua Hu
- Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China.
| |
Collapse
|
49
|
Gaskell H, Ge X, Nieto N. High-Mobility Group Box-1 and Liver Disease. Hepatol Commun 2018; 2:1005-1020. [PMID: 30202816 PMCID: PMC6128227 DOI: 10.1002/hep4.1223] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/03/2018] [Indexed: 12/12/2022] Open
Abstract
High‐mobility group box‐1 (HMGB1) is a ubiquitous protein. While initially thought to be simply an architectural protein due to its DNA‐binding ability, evidence from the last decade suggests that HMGB1 is a key protein participating in the pathogenesis of acute liver injury and chronic liver disease. When it is passively released or actively secreted after injury, HMGB1 acts as a damage‐associated molecular pattern that communicates injury and inflammation to neighboring cells by the receptor for advanced glycation end products or toll‐like receptor 4, among others. In the setting of acute liver injury, HMGB1 participates in ischemia/reperfusion, sepsis, and drug‐induced liver injury. In the context of chronic liver disease, it has been implicated in alcoholic liver disease, liver fibrosis, nonalcoholic steatohepatitis, and hepatocellular carcinoma. Recently, specific posttranslational modifications have been identified that could condition the effects of the protein in the liver. Here, we provide a detailed review of how HMGB1 signaling participates in acute liver injury and chronic liver disease.
Collapse
Affiliation(s)
- Harriet Gaskell
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Xiaodong Ge
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Natalia Nieto
- Department of Pathology University of Illinois at Chicago Chicago IL.,Department of Medicine University of Illinois at Chicago Chicago IL
| |
Collapse
|
50
|
HMGB2 is a novel adipogenic factor that regulates ectopic fat infiltration in skeletal muscles. Sci Rep 2018; 8:9601. [PMID: 29942000 PMCID: PMC6018498 DOI: 10.1038/s41598-018-28023-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/05/2018] [Indexed: 01/22/2023] Open
Abstract
Although various surgical procedures have been developed for chronic rotator cuff tear repair, the re-tear rate remains high with severe fat infiltration. However, little is known about the molecular regulation of this process. Mesenchymal stem cells (MSCs) in the intra-muscular space are origin of ectopic fat cells in skeletal muscle. We have previously shown that high-mobility group box 2 (HMGB2), which is a nuclear protein commonly associated with mesenchymal differentiation, is involved in the early articular cartilage degeneration. In this study, we addressed the role of HMGB2 in adipogenesis of MSCs and fat infiltration into skeletal muscles. HMGB2 was highly expressed in undifferentiated MSCs and co-localized with platelet-derived growth factor receptor α (PDGFRA) known as an MSC-specific marker, while their expressions were decreased during adipocytic differentiation. Under the deficiency of HMGB2, the expressions of adipogenesis-related molecules were reduced, and adipogenic differentiation is substantially impaired in MSCs. Moreover, HMGB2+ cells were generated in the muscle belly of rat supraspinatus muscles after rotator cuff transection, and some of these cells expressed PDGFRA in intra-muscular spaces. Thus, our findings suggest that the enhance expression of HMGB2 induces the adipogenesis of MSCs and the fat infiltration into skeletal muscles through the cascade of HMGB2-PDGFRA.
Collapse
|