1
|
Yogi A, Iemura R, Nakatani H, Takasawa K, Gau M, Yamauchi T, Yoshida M, Moriyama K, Ishii T, Hosokawa S, Yamada M, Suzuki H, Kosaki K, Kashimada K, Morio T. BMP2 is a potential causative gene for isolated dextrocardia situs solitus. Eur J Med Genet 2023; 66:104820. [PMID: 37572998 DOI: 10.1016/j.ejmg.2023.104820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 07/27/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
BMP2 (bone morphogenic protein-2) is a member of the TGF-β superfamily and has essential roles in the development of multiple organs, including osteogenesis. Because of its crucial role in organ and skeletal development, Bmp2 null mice is fetal lethal. The recent report has characterized multiple patients with BMP2 haploinsufficiency, describing individuals with BMP2 sequence variants and deletions associated with short stature without endocrinological abnormalities, a recognizable craniofacial gestalt, skeletal anomalies, and congenital heart disease. However, due to a small number of reported patients with BMP2 haploinsufficiency, the genotype and phenotype correlations are not fully understood. We experienced a family of BMP2 haploinsufficiency with a novel frameshift variant NM_001200.4: c.231dup (p.Tyr78Leufs*38) which was predicted to be "pathogenic" by the American College of Genetics and Genomics (ACGM) criteria. In addition to short stature, impaired hearing ability and minor skeletal deformities, the proband exhibited isolated dextrocardia situs solitus without cardiac anomalies and abnormal locations of other visceral organs. Our study would shed light on the crucial role of BMP2 in determining the cardiac axis, and further studies are needed to assemble more cases to elucidate BMP2 role in human heart development.
Collapse
Affiliation(s)
- Analia Yogi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Ryosei Iemura
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hisae Nakatani
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kei Takasawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Maki Gau
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takeru Yamauchi
- Neonatal Intensive Care Unit, Tsuchiura General Hospital, Ibaraki, Japan
| | - Masayuki Yoshida
- Department of Medical Genetics, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Keiji Moriyama
- Department of Maxillofacial Orthognathics, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Taku Ishii
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Susumu Hosokawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Mamiko Yamada
- Center for Medical Genetics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kenichi Kashimada
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| |
Collapse
|
2
|
Sempou E, Khokha MK. Genes and mechanisms of heterotaxy: patients drive the search. Curr Opin Genet Dev 2019; 56:34-40. [PMID: 31234044 DOI: 10.1016/j.gde.2019.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/03/2019] [Accepted: 05/11/2019] [Indexed: 12/17/2022]
Abstract
Heterotaxy, a disorder in which visceral organs, including the heart, are mispatterned along the left-right body axis, contributes to particularly severe forms of congenital heart disease that are difficult to mitigate even despite surgical advances. A higher incidence of heterotaxy among individuals with blood kinship and the existence of rare monogenic disease forms suggest the existence of a genetic component, but the genetic and phenotypic heterogeneity of the disease have rendered gene discovery challenging. Next generation genomics in patients with syndromic, but also non-syndromic and sporadic heterotaxy, have recently helped to uncover new candidate disease genes, expanding the pool of genes already identified via traditional animal studies. Further characterization of these new genes in animal models has uncovered fascinating mechanisms of left-right axis development. In this review, we will discuss recent findings on the functions of heterotaxy genes with identified patient alleles.
Collapse
Affiliation(s)
- Emily Sempou
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, United States.
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, United States
| |
Collapse
|
3
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
4
|
Soukup V, Kozmik Z. The Bmp signaling pathway regulates development of left-right asymmetry in amphioxus. Dev Biol 2018; 434:164-174. [PMID: 29224891 DOI: 10.1016/j.ydbio.2017.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 01/31/2023]
Abstract
Establishment of asymmetry along the left-right (LR) body axis in vertebrates requires interplay between Nodal and Bmp signaling pathways. In the basal chordate amphioxus, the left-sided activity of the Nodal signaling has been attributed to the asymmetric morphogenesis of paraxial structures and pharyngeal organs, however the role of Bmp signaling in LR asymmetry establishment has not been addressed to date. Here, we show that Bmp signaling is necessary for the development of LR asymmetric morphogenesis of amphioxus larvae through regulation of Nodal signaling. Loss of Bmp signaling results in loss of the left-sided expression of Nodal, Gdf1/3, Lefty and Pitx and in gain of ectopic expression of Cerberus on the left side. As a consequence, the larvae display loss of the offset arrangement of axial structures, loss of the left-sided pharyngeal organs including the mouth, and ectopic development of the right-sided organs on the left side. Bmp inhibition thus phenocopies inhibition of Nodal signaling and results in the right isomerism. We conclude that Bmp and Nodal pathways act in concert to specify the left side and that Bmp signaling plays a fundamental role during LR development in amphioxus.
Collapse
Affiliation(s)
- Vladimir Soukup
- Institute of Molecular Genetics, The Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic.
| | - Zbynek Kozmik
- Institute of Molecular Genetics, The Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| |
Collapse
|
5
|
Liu C, Peng G, Jing N. TGF-β signaling pathway in early mouse development and embryonic stem cells. Acta Biochim Biophys Sin (Shanghai) 2018; 50:68-73. [PMID: 29190317 DOI: 10.1093/abbs/gmx120] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/31/2017] [Indexed: 12/30/2022] Open
Abstract
TGF-β superfamily signaling pathways essentially contribute to the broad spectrum of early developmental events including embryonic patterning, cell fate determination and dynamic movements. In this review, we first introduced some key developmental processes that require TGF-β signaling to show the fundamental importance of these pathways. Then we discuss how their activities are regulated, and new findings about how the TGF-β superfamily ligands bind to the chromatin to regulate transcription during embryo development.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Guangdun Peng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
6
|
Transforming growth factor β-induced epithelial to mesenchymal transition requires the Ste20-like kinase SLK independently of its catalytic activity. Oncotarget 2017; 8:98745-98756. [PMID: 29228724 PMCID: PMC5716764 DOI: 10.18632/oncotarget.21928] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/26/2017] [Indexed: 12/27/2022] Open
Abstract
Invasion can be stimulated in vitro using the soluble ligand transforming growth factor-β (TGFβ) to induce a process called epithelial-to-mesenchymal transition (EMT) characterized by cell-cell junction breakdown and an invasive phenotype. We have previously demonstrated a role for Ste20-like kinase SLK cell migration and invasion. Here we show that SLK depletion in NMuMG mammary epithelial cells significantly impairs their TGFβ-induced migration and invasion. Immunofluorescence studies show that a fraction of SLK localizes to E-cadherin-positive adherens junction and that SLK impairs the breakdown of cell-cell contacts. We find that SLK-depleted cultures express significantly lower levels of vimentin protein as well as Snai1 and E-cadherin mRNA levels following TGF-β treatment. Surprisingly, our data show that SLK depletion does not affect the activation and nuclear translocation of Smad3. Furthermore, we show that expression of a dominant negative kinase does not impair tight junction breakdown and rescues Snai1 mRNA expression levels. Together these data suggest that SLK plays a novel role in TGFβ-induced EMT, independent of Smads, in a kinase activity-independent manner.
Collapse
|
7
|
Deng G, Zeng S, Ma J, Zhang Y, Qu Y, Han Y, Yin L, Cai C, Guo C, Shen H. The anti-tumor activities of Neferine on cell invasion and oxaliplatin sensitivity regulated by EMT via Snail signaling in hepatocellular carcinoma. Sci Rep 2017; 7:41616. [PMID: 28134289 PMCID: PMC5278559 DOI: 10.1038/srep41616] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022] Open
Abstract
Tumor invasion and chemotherapy resistance, which are associated with epithelial-mesenchymal transition (EMT), remain as major challenges in hepatocellular carcinoma (HCC) treatment. Neferine, a natural component of Nelumbo nucifera, have been proven the antitumor efficiency in cancer, but the effects of Neferine on HCC invasion and chemosensitivity need to be elucidated. Applying multiple assays of cell proliferation, flow cytometry, immunofluorescence staining, qRT-PCR, Western blot, fluorescence molecular tomography imaging, the influences of Neferine on EMT-regulated viability, apoptosis, invasion, and oxaliplatin (OXA) sensitivity were assessed in HCC cells of HepG2 and Bel-7402, as well as in xenograft animal models in vivo. Here, we reported that Neferine had no obvious effects on HCC cells proliferation, but significantly enhanced cytotoxicity and apoptosis caused by OXA in vitro and in vivo. Through an upregulation of E-cadherin and downregulation of Vimentin, Snail and N-cadherin, Neferine suppressed EMT-induced migration and invasion abilities of HCC cells. TGF-β1 cancelled the effects of Neferine on the migration and invasion of HCC cells. Snail overexpression or TGF-β1-induced EMT attenuated Neferine-mediated OXA sensitization in HCC. Together, our data suggest that Neferine enhances oxaliplatin sensitivity through an inhibition of EMT in HCC cells. Neferine may be used as an OXA sensitizer in HCC chemotherapy.
Collapse
Affiliation(s)
- Ganlu Deng
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shan Zeng
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Junli Ma
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yan Zhang
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yanling Qu
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ying Han
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ling Yin
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Changjing Cai
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Cao Guo
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hong Shen
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| |
Collapse
|
8
|
Protze SI, Liu J, Nussinovitch U, Ohana L, Backx PH, Gepstein L, Keller GM. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat Biotechnol 2016; 35:56-68. [PMID: 27941801 DOI: 10.1038/nbt.3745] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/10/2016] [Indexed: 12/13/2022]
Abstract
The sinoatrial node (SAN) is the primary pacemaker of the heart and controls heart rate throughout life. Failure of SAN function due to congenital disease or aging results in slowing of the heart rate and inefficient blood circulation, a condition treated by implantation of an electronic pacemaker. The ability to produce pacemaker cells in vitro could lead to an alternative, biological pacemaker therapy in which the failing SAN is replaced through cell transplantation. Here we describe a transgene-independent method for the generation of SAN-like pacemaker cells (SANLPCs) from human pluripotent stem cells by stage-specific manipulation of developmental signaling pathways. SANLPCs are identified as NKX2-5- cardiomyocytes that express markers of the SAN lineage and display typical pacemaker action potentials, ion current profiles and chronotropic responses. When transplanted into the apex of rat hearts, SANLPCs are able to pace the host tissue, demonstrating their capacity to function as a biological pacemaker.
Collapse
Affiliation(s)
- Stephanie I Protze
- McEwen Centre for Regenerative Medicine and Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - Jie Liu
- Department of Biology, York University, Toronto, Ontario, Canada.,Division of Cardiology and the Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Udi Nussinovitch
- The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Internal Medicine A, Rappaport Faculty of Medicine and Research Institute and Rambam Health Care Campus, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lily Ohana
- Department of Biology, York University, Toronto, Ontario, Canada.,Division of Cardiology and the Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Peter H Backx
- Department of Biology, York University, Toronto, Ontario, Canada.,Division of Cardiology and the Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Lior Gepstein
- The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Cardiology, Rappaport Faculty of Medicine and Research Institute and Rambam Health Care Campus, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gordon M Keller
- McEwen Centre for Regenerative Medicine and Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Ontario, Canada
| |
Collapse
|
9
|
TGFβ signaling in establishing left–right asymmetry. Semin Cell Dev Biol 2014; 32:80-4. [DOI: 10.1016/j.semcdb.2014.03.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/26/2014] [Indexed: 11/19/2022]
|
10
|
Affiliation(s)
- Jacob F. Warner
- Department of Biology; Duke University; Durham North Carolina
| | - David R. McClay
- Department of Biology; Duke University; Durham North Carolina
| |
Collapse
|
11
|
Bessodes N, Haillot E, Duboc V, Röttinger E, Lahaye F, Lepage T. Reciprocal signaling between the ectoderm and a mesendodermal left-right organizer directs left-right determination in the sea urchin embryo. PLoS Genet 2012; 8:e1003121. [PMID: 23271979 PMCID: PMC3521660 DOI: 10.1371/journal.pgen.1003121] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 10/12/2012] [Indexed: 02/01/2023] Open
Abstract
During echinoderm development, expression of nodal on the right side plays a crucial role in positioning of the rudiment on the left side, but the mechanisms that restrict nodal expression to the right side are not known. Here we show that establishment of left-right asymmetry in the sea urchin embryo relies on reciprocal signaling between the ectoderm and a left-right organizer located in the endomesoderm. FGF/ERK and BMP2/4 signaling are required to initiate nodal expression in this organizer, while Delta/Notch signaling is required to suppress formation of this organizer on the left side of the archenteron. Furthermore, we report that the H(+)/K(+)-ATPase is critically required in the Notch signaling pathway upstream of the S3 cleavage of Notch. Our results identify several novel players and key early steps responsible for initiation, restriction, and propagation of left-right asymmetry during embryogenesis of a non-chordate deuterostome and uncover a functional link between the H(+)/K(+)-ATPase and the Notch signaling pathway.
Collapse
Affiliation(s)
- Nathalie Bessodes
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| | - Emmanuel Haillot
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| | - Véronique Duboc
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| | - Eric Röttinger
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| | - François Lahaye
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| | - Thierry Lepage
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| |
Collapse
|
12
|
Katsu K, Tatsumi N, Niki D, Yamamura KI, Yokouchi Y. Multi-modal effects of BMP signaling on Nodal expression in the lateral plate mesoderm during left-right axis formation in the chick embryo. Dev Biol 2012. [PMID: 23206893 DOI: 10.1016/j.ydbio.2012.11.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During development of left-right asymmetry in the vertebrate embryo, Nodal plays a central role for determination of left-handedness. Bone morphogenetic protein (BMP) signaling has an important role for regulation of Nodal expression, although there is controversy over whether BMP signaling has a positive or negative effect on Nodal expression in the chick embryo. As BMP is a morphogen, we speculated that different concentrations might induce different responses in the cells of the lateral plate mesoderm (LPM). To test this hypothesis, we analyzed the effects of various concentrations of BMP4 and NOGGIN on Nodal expression in the LPM. We found that the effect on Nodal expression varied in a complex fashion with the concentration of BMP. In agreement with previous reports, we found that a high level of BMP signaling induced Nodal expression in the LPM, whereas a low level inhibited expression. However, a high intermediate level of BMP signaling was found to suppress Nodal expression in the left LPM, whereas a low intermediate level induced Nodal expression in the right LPM. Thus, the high and the low intermediate levels of BMP signaling up-regulated Nodal expression, but the high intermediate and low levels of BMP signaling down-regulated Nodal expression. Next, we sought to identify the mechanisms of this complex regulation of Nodal expression by BMP signaling. At the low intermediate level of BMP signaling, regulation depended on a NODAL positive-feedback loop suggesting the possibility of crosstalk between BMP and NODAL signaling. Overexpression of a constitutively active BMP receptor, a constitutively active ACTIVIN/NODAL receptor and SMAD4 indicated that SMAD1 and SMAD2 competed for binding to SMAD4 in the cells of the LPM. Nodal regulation by the high and low levels of BMP signaling was dependent on Cfc up-regulation or down-regulation, respectively. We propose a model for the variable effects of BMP signaling on Nodal expression in which different levels of BMP signaling regulate Nodal expression by a balance between BMP-pSMAD1/4 signaling and NODAL-pSMAD2/4 signaling.
Collapse
Affiliation(s)
- Kenjiro Katsu
- Division of Pattern Formation, Department of Organogenesis, Institute of Molecular Embryology and Genetics, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | | | | | |
Collapse
|
13
|
Nakamura T, Hamada H. Left-right patterning: conserved and divergent mechanisms. Development 2012; 139:3257-62. [PMID: 22912409 DOI: 10.1242/dev.061606] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The left-right (LR) asymmetry of visceral organs is fundamental to their function and position within the body. Over the past decade or so, the molecular mechanisms underlying the establishment of such LR asymmetry have been revealed in many vertebrate and invertebrate model organisms. These studies have identified a gene network that contributes to this process and is highly conserved from sea urchin to mouse. By contrast, some specific steps of the process, such as the symmetry-breaking event and situs-specific organogenesis, appear to have diverged during evolution. Here, we summarize the common and divergent mechanisms by which LR asymmetry is established in vertebrates.
Collapse
Affiliation(s)
- Tetsuya Nakamura
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan.
| | | |
Collapse
|
14
|
Kheradmand Kia S, Verbeek E, Engelen E, Schot R, Poot R, de Coo I, Lequin M, Poulton C, Pourfarzad F, Grosveld F, Brehm A, de Wit M, Oegema R, Dobyns W, Verheijen F, Mancini G. RTTN mutations link primary cilia function to organization of the human cerebral cortex. Am J Hum Genet 2012; 91:533-40. [PMID: 22939636 DOI: 10.1016/j.ajhg.2012.07.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/09/2012] [Accepted: 07/11/2012] [Indexed: 10/28/2022] Open
Abstract
Polymicrogyria is a malformation of the developing cerebral cortex caused by abnormal organization and characterized by many small gyri and fusion of the outer molecular layer. We have identified autosomal-recessive mutations in RTTN, encoding Rotatin, in individuals with bilateral diffuse polymicrogyria from two separate families. Rotatin determines early embryonic axial rotation, as well as anteroposterior and dorsoventral patterning in the mouse. Human Rotatin has recently been identified as a centrosome-associated protein. The Drosophila melanogaster homolog of Rotatin, Ana3, is needed for structural integrity of centrioles and basal bodies and maintenance of sensory neurons. We show that Rotatin colocalizes with the basal bodies at the primary cilium. Cultured fibroblasts from affected individuals have structural abnormalities of the cilia and exhibit downregulation of BMP4, WNT5A, and WNT2B, which are key regulators of cortical patterning and are expressed at the cortical hem, the cortex-organizing center that gives rise to Cajal-Retzius (CR) neurons. Interestingly, we have shown that in mouse embryos, Rotatin colocalizes with CR neurons at the subpial marginal zone. Knockdown experiments in human fibroblasts and neural stem cells confirm a role for RTTN in cilia structure and function. RTTN mutations therefore link aberrant ciliary function to abnormal development and organization of the cortex in human individuals.
Collapse
|
15
|
Katsu K, Tokumori D, Tatsumi N, Suzuki A, Yokouchi Y. BMP inhibition by DAN in Hensen's node is a critical step for the establishment of left-right asymmetry in the chick embryo. Dev Biol 2011; 363:15-26. [PMID: 22202776 DOI: 10.1016/j.ydbio.2011.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 11/28/2022]
Abstract
During left-right (L-R) axis formation, Nodal is expressed in the node and has a central role in the transfer of L-R information in the vertebrate embryo. Bone morphogenetic protein (BMP) signaling also has an important role for maintenance of gene expression around the node. Several members of the Cerberus/Dan family act on L-R patterning by regulating activity of the transforming growth factor-β (TGF-β) family. We demonstrate here that chicken Dan plays a critical role in L-R axis formation. Chicken Dan is expressed in the left side of the node shortly after left-handed Shh expression and before the appearance of asymmetrically expressed genes in the lateral plate mesoderm (LPM). In vitro experiments revealed that DAN inhibited BMP signaling but not NODAL signaling. SHH had a positive regulatory effect on Dan expression while BMP4 had a negative effect. Using overexpression and RNA interference-mediated knockdown strategies, we demonstrate that Dan is indispensable for Nodal expression in the LPM and for Lefty-1 expression in the notochord. In the perinodal region, expression of Dan and Nodal was independent of each other. Nodal up-regulation by DAN required NODAL signaling, suggesting that DAN might act synergistically with NODAL. Our data indicate that Dan plays an essential role in the establishment of the L-R axis by inhibiting BMP signaling around the node.
Collapse
Affiliation(s)
- Kenjiro Katsu
- Division of Pattern Formation, Department of Organogenesis, Institute of Molecular Embryology and Genetics, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | | | | | |
Collapse
|
16
|
Wang B, Harrison W, Overbeek PA, Zheng H. Transposon mutagenesis with coat color genotyping identifies an essential role for Skor2 in sonic hedgehog signaling and cerebellum development. Development 2011; 138:4487-97. [PMID: 21937600 PMCID: PMC3177318 DOI: 10.1242/dev.067264] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2011] [Indexed: 01/15/2023]
Abstract
Correct development of the cerebellum requires coordinated sonic hedgehog (Shh) signaling from Purkinje to granule cells. How Shh expression is regulated in Purkinje cells is poorly understood. Using a novel tyrosinase minigene-tagged Sleeping Beauty transposon-mediated mutagenesis, which allows for coat color-based genotyping, we created mice in which the Ski/Sno family transcriptional co-repressor 2 (Skor2) gene is deleted. Loss of Skor2 leads to defective Purkinje cell development, a severe reduction of granule cell proliferation and a malformed cerebellum. Skor2 is specifically expressed in Purkinje cells in the brain, where it is required for proper expression of Shh. Skor2 overexpression suppresses BMP signaling in an HDAC-dependent manner and stimulates Shh promoter activity, suggesting that Skor2 represses BMP signaling to activate Shh expression. Our study identifies an essential function for Skor2 as a novel transcriptional regulator in Purkinje cells that acts upstream of Shh during cerebellum development.
Collapse
Affiliation(s)
- Baiping Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wilbur Harrison
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul A. Overbeek
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
17
|
Smith KA, Noël E, Thurlings I, Rehmann H, Chocron S, Bakkers J. Bmp and nodal independently regulate lefty1 expression to maintain unilateral nodal activity during left-right axis specification in zebrafish. PLoS Genet 2011; 7:e1002289. [PMID: 21980297 PMCID: PMC3183088 DOI: 10.1371/journal.pgen.1002289] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/30/2011] [Indexed: 11/21/2022] Open
Abstract
In vertebrates, left-right (LR) axis specification is determined by a ciliated structure in the posterior region of the embryo. Fluid flow in this ciliated structure is responsible for the induction of unilateral left-sided Nodal activity in the lateral plate mesoderm, which in turn regulates organ laterality. Bmp signalling activity has been implied in repressing Nodal expression on the right side, however its mechanism of action has been controversial. In a forward genetic screen for mutations that affect LR patterning, we identified the zebrafish linkspoot (lin) mutant, characterized by cardiac laterality and mild dorsoventral patterning defects. Mapping of the lin mutation revealed an inactivating missense mutation in the Bmp receptor 1aa (bmpr1aa) gene. Embryos with a mutation in lin/bmpr1aa and a novel mutation in its paralogue, bmpr1ab, displayed a variety of dorsoventral and LR patterning defects with increasing severity corresponding with a decrease in bmpr1a dosage. In Bmpr1a-deficient embryos we observed bilateral expression of the Nodal-related gene, spaw, coupled with reduced expression of the Nodal-antagonist lefty1 in the midline. Using genetic models to induce or repress Bmp activity in combination with Nodal inhibition or activation, we found that Bmp and Nodal regulate lefty1 expression in the midline independently of each other. Furthermore, we observed that the regulation of lefty1 by Bmp signalling is required for its observed downregulation of Nodal activity in the LPM providing a novel explanation for this phenomenon. From these results we propose a two-step model in which Bmp regulates LR patterning. Prior to the onset of nodal flow and Nodal activation, Bmp is required to induce lefty1 expression in the midline. When nodal flow has been established and Nodal activity is apparent, both Nodal and Bmp independently are required for lefty1 expression to assure unilateral Nodal activation and correct LR patterning. Although vertebrates are bilaterally symmetric when observed from the outside, inside the body cavity the organs are positioned asymmetrically with respect to the left and right sides. Cases where all the organs are mirror imaged, known as situs inversus, are not associated with any medical defects. Severe medical problems occur however in infants with a partial organ reversal (situs ambigious or heterotaxia), which arises during embryonic development. Left-right asymmetry in the embryo is established by unilateral expression of Nodal, a member of the Tgf-ß superfamily of secreted growth factors, a role that has been conserved from human to snails. By performing a genetic screen in zebrafish for laterality mutants, we have identified the linkspoot mutant, which displayed partial defects in asymmetric left-right positioning of the internal organs. The gene disrupted in the linkspoot mutant encodes a receptor for bone morphogenetic proteins (Bmp), another member of the Tgf-ß superfamily of secreted growth factors. Further analysis of Bmp over-expression or knock-down models demonstrate that Bmp signalling is required for unilateral Nodal expression, through the initiation and maintenance of an embryonic midline barrier. Our results demonstrate a novel and important mechanism by which left-right asymmetry in the vertebrate embryo is established and regulated.
Collapse
Affiliation(s)
- Kelly A. Smith
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emily Noël
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ingrid Thurlings
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Holger Rehmann
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sonja Chocron
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
18
|
Gerhart J, Pfautz J, Neely C, Elder J, DuPrey K, Menko AS, Knudsen K, George-Weinstein M. Noggin producing, MyoD-positive cells are crucial for eye development. Dev Biol 2009; 336:30-41. [PMID: 19778533 DOI: 10.1016/j.ydbio.2009.09.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 09/15/2009] [Accepted: 09/15/2009] [Indexed: 11/15/2022]
Abstract
A subpopulation of cells expresses MyoD mRNA and the cell surface G8 antigen in the epiblast prior to the onset of gastrulation. When an antibody to the G8 antigen was applied to the epiblast, labeled cells were later found in the ocular primordia and muscle and non-muscle forming tissues of the eyes. In the lens, retina and periocular mesenchyme, G8-positive cells synthesized MyoD mRNA and the bone morphogenetic protein inhibitor Noggin. MyoD expressing cells were ablated in the epiblast by labeling them with the G8 MAb and lysing them with complement. Their ablation in the epiblast resulted in eye defects, including anopthalmia, micropthalmia, altered pigmentation and malformations of the lens and/or retina. The right eye was more severely affected than the left eye. The asymmetry of the eye defects in ablated embryos correlated with differences in the number of residual Noggin producing, MyoD-positive cells in ocular tissues. Exogenously supplied Noggin compensated for the ablated epiblast cells. This study demonstrates that MyoD expressing cells serve as a Noggin delivery system to regulate the morphogenesis of the lens and optic cup.
Collapse
Affiliation(s)
- Jacquelyn Gerhart
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA 19096, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Haraguchi M. The role of the transcriptional regulator snail in cell detachment, reattachment and migration. Cell Adh Migr 2009; 3:259-63. [PMID: 19287205 PMCID: PMC2712805 DOI: 10.4161/cam.3.3.8259] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 02/23/2009] [Indexed: 11/19/2022] Open
Abstract
In order to metastasize, cancer cells must first detach from the primary tumor, migrate, invade through tissues and attach to a second site. The transcription factor snail is an important mediator of epithelial-mesenchymal transitions and is involved in tumor progression. Recent data have provided evidence for a requirement for snail expression in metastatic dissemination. Although very little is known about the molecular mechanisms governing metastatic dissemination, we review the possible roles of snail expression in this process. We also review the regulation of snail expression.
Collapse
Affiliation(s)
- Misako Haraguchi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan.
| |
Collapse
|
20
|
Furtado MB, Solloway MJ, Jones VJ, Costa MW, Biben C, Wolstein O, Preis JI, Sparrow DB, Saga Y, Dunwoodie SL, Robertson EJ, Tam PPL, Harvey RP. BMP/SMAD1 signaling sets a threshold for the left/right pathway in lateral plate mesoderm and limits availability of SMAD4. Genes Dev 2009; 22:3037-49. [PMID: 18981480 DOI: 10.1101/gad.1682108] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bistability in developmental pathways refers to the generation of binary outputs from graded or noisy inputs. Signaling thresholds are critical for bistability. Specification of the left/right (LR) axis in vertebrate embryos involves bistable expression of transforming growth factor beta (TGFbeta) member NODAL in the left lateral plate mesoderm (LPM) controlled by feed-forward and feedback loops. Here we provide evidence that bone morphogenetic protein (BMP)/SMAD1 signaling sets a repressive threshold in the LPM essential for the integrity of LR signaling. Conditional deletion of Smad1 in the LPM led to precocious and bilateral pathway activation. NODAL expression from both the left and right sides of the node contributed to bilateral activation, indicating sensitivity of mutant LPM to noisy input from the LR system. In vitro, BMP signaling inhibited NODAL pathway activation and formation of its downstream SMAD2/4-FOXH1 transcriptional complex. Activity was restored by overexpression of SMAD4 and in embryos, elevated SMAD4 in the right LPM robustly activated LR gene expression, an effect reversed by superactivated BMP signaling. We conclude that BMP/SMAD1 signaling sets a bilateral, repressive threshold for NODAL-dependent Nodal activation in LPM, limiting availability of SMAD4. This repressive threshold is essential for bistable output of the LR system.
Collapse
Affiliation(s)
- Milena B Furtado
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yu X, He F, Zhang T, Espinoza-Lewis RA, Lin L, Yang J, Chen Y. Cerberus functions as a BMP agonist to synergistically induce nodal expression during left-right axis determination in the chick embryo. Dev Dyn 2009; 237:3613-23. [PMID: 18985739 DOI: 10.1002/dvdy.21769] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Left-sided expression of Nodal in the lateral plate mesoderm (LPM) during early embryogenesis is a crucial step in establishing the left-right (L-R) axis in vertebrates. In the chick, it was suggested that chick Cerberus (cCer), a Cerberus/Dan family member, induces Nodal expression by antagonizing bone morphogenetic protein (BMP) activity in the left LPM. In contrast, it has also been shown that BMPs positively regulate Nodal expression in the left LPM in the chick embryo. Thus, it is still unclear how the bilaterally expressed BMPs induce Nodal expression only in the left LPM. In this study, we demonstrate that BMP signaling is necessary and sufficient for the induction of Nodal expression in the chick LPM where the type I BMP receptor-IB (BMPR-IB) likely mediates this induction. Tissue grafting experiments indicate the existence of a Nodal inductive factor in the left LPM rather than the presence of a Nodal inhibitory factor in the right LPM. We demonstrate that cCer functions as a BMP agonist instead of antagonist, being able to enhance BMP signaling in cell culture. This conclusion is further supported by the immunoprecipitation assays that provide convincing biochemical evidence for a direct interaction between cCer and BMP receptor. Because cCer is expressed restrictedly in the left LPM, BMPs and cCer appear to act synergistically to activate Nodal expression in the left LPM in the chick.
Collapse
Affiliation(s)
- Xueyan Yu
- Section of Oral Biology, The Ohio State University College of Dentistry, Columbus, Ohio 43210, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Ishimura A, Chida S, Osada SI. Man1, an inner nuclear membrane protein, regulates left-right axis formation by controlling nodal signaling in a node-independent manner. Dev Dyn 2008; 237:3565-76. [DOI: 10.1002/dvdy.21663] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
23
|
de Campos-Baptista MIM, Holtzman NG, Yelon D, Schier AF. Nodal signaling promotes the speed and directional movement of cardiomyocytes in zebrafish. Dev Dyn 2008; 237:3624-33. [PMID: 18985714 PMCID: PMC2632806 DOI: 10.1002/dvdy.21777] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Members of the Nodal family regulate left-right asymmetry during vertebrate organogenesis, but it is unclear how Nodal signaling controls asymmetric morphogenesis at the cellular level. We used high-resolution time-lapse imaging in zebrafish to compare the movements of cardiomyocytes in the presence or absence of Nodal signaling. Loss of Nodal signaling in late-zygotic mutants for the Nodal co-receptor one-eyed pinhead (LZoep) abolished the leftward movement of cardiomyocytes. Global heart rotation was blocked but cardiomyocyte neighbor relationships were maintained as in wild type. Cardiomyocytes in LZoep mutants moved more slowly and less directionally than their wild-type counterparts. The phenotypes observed in the absence of Nodal signaling strongly resemble abnormalities found in BMP signaling mutants. These results indicate that a Nodal-BMP signaling cascade drives left-right heart morphogenesis by regulating the speed and direction of cardiomyocyte movement.
Collapse
Affiliation(s)
- Maria Ines Medeiros de Campos-Baptista
- Department of Molecular and Cellular Biology, Center for Brain Science, Broad Institute, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
24
|
Monteiro R, van Dinther M, Bakkers J, Wilkinson R, Patient R, ten Dijke P, Mummery C. Two novel type II receptors mediate BMP signalling and are required to establish left-right asymmetry in zebrafish. Dev Biol 2008; 315:55-71. [PMID: 18222420 DOI: 10.1016/j.ydbio.2007.11.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 11/12/2007] [Accepted: 11/29/2007] [Indexed: 11/20/2022]
Abstract
Ligands of the transforming growth factor beta (TGFbeta) superfamily, like Nodal and bone morphogenetic protein (BMP), are pivotal to establish left-right (LR) asymmetry in vertebrates. However, the receptors mediating this process are unknown. Here we identified two new type II receptors for BMPs in zebrafish termed bmpr2a and bmpr2b that induce a classical Smad1/5/8 response to BMP binding. Morpholino-mediated knockdown of bmpr2a and bmpr2b showed that they are required for the establishment of concomitant cardiac and visceral LR asymmetry. Expression of early laterality markers in morphants indicated that bmpr2a and bmpr2b act upstream of pitx2 and the nodal-related southpaw (spaw), which are expressed asymmetrically in the lateral plate mesoderm (LPM), and subsequently regulate lefty2 and bmp4 in the left heart field. We demonstrated that bmpr2a is required for lefty1 expression in the midline at early segmentation while bmpr2a/bmpr2b heteromers mediate left-sided spaw expression in the LPM. We propose a mechanism whereby this differential interpretation of BMP signalling through bmpr2a and bmpr2b is essential for the establishment of LR asymmetry in the zebrafish embryo.
Collapse
MESH Headings
- Animals
- Body Patterning/genetics
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Bone Morphogenetic Proteins/genetics
- Bone Morphogenetic Proteins/physiology
- COS Cells
- Cells, Cultured
- Chlorocebus aethiops
- DNA, Complementary/biosynthesis
- Dose-Response Relationship, Drug
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Genetic Linkage
- Immunohistochemistry
- In Situ Hybridization
- Luciferases/metabolism
- Microinjections
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/pharmacology
- Osteoblasts/cytology
- Phylogeny
- Plasmids
- RNA, Messenger/metabolism
- Signal Transduction
- Stem Cells/cytology
- Synteny
- Transcription, Genetic
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
- beta-Galactosidase/genetics
Collapse
Affiliation(s)
- Rui Monteiro
- Hubrecht Institute, Netherlands Institute for Developmental Biology, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
25
|
Schlueter J, Brand T. Left-right axis development: examples of similar and divergent strategies to generate asymmetric morphogenesis in chick and mouse embryos. Cytogenet Genome Res 2007; 117:256-67. [PMID: 17675867 DOI: 10.1159/000103187] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 08/24/2006] [Indexed: 12/18/2022] Open
Abstract
Left-right asymmetry of internal organs is widely distributed in the animal kingdom. The chick and mouse embryos have served as important model organisms to analyze the mechanisms underlying the establishment of the left-right axis. In the chick embryo many genes have been found to be asymmetrically expressed in and around the node, while the same genes in the mouse show symmetric expression patterns. In the mouse there is strong evidence for an establishment of left-right asymmetry through nodal cilia. In contrast, in the chick and in many other organisms left-right asymmetry is probably generated by an early-acting event involving membrane depolarization. In both birds and mammals a conserved Nodal-Lefty-Pitx2 module exists that controls many aspects of asymmetric morphogenesis. This review also gives examples of divergent mechanisms of establishing asymmetric organ formation. Thus there is ample evidence for conserved and non-conserved strategies to generate asymmetry in birds and mammals.
Collapse
Affiliation(s)
- J Schlueter
- Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
26
|
Chocron S, Verhoeven MC, Rentzsch F, Hammerschmidt M, Bakkers J. Zebrafish Bmp4 regulates left-right asymmetry at two distinct developmental time points. Dev Biol 2007; 305:577-88. [PMID: 17395172 DOI: 10.1016/j.ydbio.2007.03.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 02/21/2007] [Accepted: 03/01/2007] [Indexed: 11/19/2022]
Abstract
Left-right (LR) asymmetry is regulated by early asymmetric signals within the embryo. Even though the role of the bone morphogenetic protein (BMP) pathway in this process has been reported extensively in various model organisms, opposing models for the mechanism by which BMP signaling operates still prevail. Here we show that in zebrafish embryos there are two distinct phases during LR patterning in which BMP signaling is required. Using transgenic lines that ectopically express either noggin3 or bmp2b, we show a requirement for BMP signaling during early segmentation to repress southpaw expression in the right lateral plate mesoderm and regulate both visceral and heart laterality. A second phase was identified during late segmentation, when BMP signaling is required in the left lateral plate mesoderm to regulate left-sided gene expression and heart laterality. Using morpholino knock down experiments, we identified Bmp4 as the ligand responsible for both phases of BMP signaling. In addition, we detected bmp4 expression in Kupffer's vesicle and show that restricted knock down of bmp4 in this structure results in LR patterning defects. The identification of these two distinct and opposing activities of BMP signaling provides new insight into how BMP signaling can regulate LR patterning.
Collapse
Affiliation(s)
- Sonja Chocron
- Cardiac Development and Genetics Group, Hubrecht Laboratory, Uppsalalaan 8, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Manning L, Ohyama K, Saeger B, Hatano O, Wilson SA, Logan M, Placzek M. Regional morphogenesis in the hypothalamus: a BMP-Tbx2 pathway coordinates fate and proliferation through Shh downregulation. Dev Cell 2006; 11:873-85. [PMID: 17141161 DOI: 10.1016/j.devcel.2006.09.021] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 07/25/2006] [Accepted: 09/25/2006] [Indexed: 10/23/2022]
Abstract
A central challenge in embryonic development is to understand how growth and pattern are coordinated to direct emerging new territories during morphogenesis. Here, we report on a signaling cascade that links cell proliferation and fate, promoting formation of a distinct progenitor domain within the developing chick hypothalamus. We show that the downregulation of Shh in floor plate-like cells in the forebrain governs their progression to a distinctive, proliferating hypothalamic progenitor domain. Shh downregulation occurs via a local BMP-Tbx2 pathway, Tbx2 acting to repress Shh expression. We show in vivo and in vitro that forced maintenance of Shh in hypothalamic progenitors prevents their normal morphogenesis, leading to maintenance of the Shh receptor, ptc, and preventing progression to an Emx2(+)-proliferative progenitor state. Our data identify a molecular pathway for the downregulation of Shh via a BMP-Tbx2 pathway and provide a mechanism for expansion of a discrete progenitor domain within the developing forebrain.
Collapse
Affiliation(s)
- Liz Manning
- MRC Centre Development for Developmental and Biomedical Genetics, University of Sheffield, Sheffield S10 2TN, UK
| | | | | | | | | | | | | |
Collapse
|
28
|
Gerhart J, Elder J, Neely C, Schure J, Kvist T, Knudsen K, George-Weinstein M. MyoD-positive epiblast cells regulate skeletal muscle differentiation in the embryo. J Cell Biol 2006; 175:283-92. [PMID: 17060497 PMCID: PMC2064569 DOI: 10.1083/jcb.200605037] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Accepted: 09/15/2006] [Indexed: 11/22/2022] Open
Abstract
MyoD mRNA is expressed in a subpopulation of cells within the embryonic epiblast. Most of these cells are incorporated into somites and synthesize Noggin. Ablation of MyoD-positive cells in the epiblast subsequently results in the herniation of organs through the ventral body wall, a decrease in the expression of Noggin, MyoD, Myf5, and myosin in the somites and limbs, and an increase in Pax-3-positive myogenic precursors. The addition of Noggin lateral to the somites compensates for the loss of MyoD-positive epiblast cells. Skeletal muscle stem cells that arise in the epiblast are utilized in the somites to promote muscle differentiation by serving as a source of Noggin.
Collapse
Affiliation(s)
- Jacquelyn Gerhart
- Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Vonica A, Brivanlou AH. The left-right axis is regulated by the interplay of Coco, Xnr1 and derrière in Xenopus embryos. Dev Biol 2006; 303:281-94. [PMID: 17239842 DOI: 10.1016/j.ydbio.2006.09.039] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 09/15/2006] [Accepted: 09/20/2006] [Indexed: 11/22/2022]
Abstract
Formation of the left-right axis involves a symmetry-breaking signal originating in the node or its equivalents, which increases TGF-beta signaling on the left side of the embryo and ultimately leads to asymmetric patterning of the viscera. DAN domain proteins are extracellular inhibitors of TGF-beta ligands, and are involved in regulating the left-right axis in chick, mouse and zebrafish. We find that Coco, a Xenopus DAN family member, and two TGF-beta ligands, Xnr1 and derrière, are coexpressed in the posterior paraxial mesoderm at neurula stage. Side-specific protein depletion demonstrated that left-right patterning requires Coco exclusively on the right side, and Xnr1 and derrière exclusively on the left, despite their bilateral expression pattern. In the absence of Coco, the TGF-beta signal is bilateral. Interactions among the three proteins show that derrière is required for normal levels of Xnr1 expression, while Coco directly inhibits both ligands. We conclude that derrière, Xnr1, and Coco define a posttranscriptionally regulated signaling center, which is a necessary link in the signaling chain leading to an increased TGF-beta signal on the left side of the embryo.
Collapse
Affiliation(s)
- Alin Vonica
- The Laboratory of Vertebrate Embryology, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
30
|
Toyoizumi R, Takeuchi S, Mogi K. Subtilisin-like proprotein convertase activity is necessary for left–right axis determination in Xenopus neurula embryos. Dev Genes Evol 2006; 216:607-22. [PMID: 16820955 DOI: 10.1007/s00427-006-0081-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2006] [Accepted: 04/21/2006] [Indexed: 11/24/2022]
Abstract
Signaling by members of TGF-beta superfamily requires the activity of a family of site-specific endopeptidases, known as Subtilisin-like proprotein convertases (SPCs), which cleave these ligands into mature, active forms. To explore the role of SPCs in lateral plate mesoderm (LPM) differentiation in Xenopus, two SPC inhibitors, decanoyl-Arg-Val-Lys-Arg-chloromethylketone (Dec-RVKR-CMK) and hexa-arginine, were injected into the left and right LPM of Xenopus neurulae. Left-side injection caused heart-specific left-right reversal, and this phenotype was rescued by co-injection of mature Nodal protein. In contrast, right-side injection caused left-right reversal of both the heart and gut. Tailbud embryos were less sensitive to SPC inhibitors than neurula embryos. Injection of inhibitors into either side of neurula embryos completely abolished expression of the left-LPM-specific genes, Xnr-1, antivin, and pitx2. SPC1 enzyme (Furin) was injected into the left or right LPM of mid-neurula embryos to determine the effect of enhancing SPC activity. Left-side injection of SPC1 did not cause a significant left-right reversal of the internal organs. However, right-side injection of SPC1 strongly induced the expression of Xnr-1 and pitx2 in the right LPM, and caused 100% left-right reversal of both the heart and gut. These results suggest that moderate level of SPC activity in the right LPM of the neurulae is necessary for proper left-right specification. Taken together, SPC enzymatic activity must be present in both LPMs for expression of the left-handed genes and left-right axis determination of the heart and gut in Xenopus embryos.
Collapse
Affiliation(s)
- Ryuji Toyoizumi
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Tsuchiya 2946, Hiratsuka, Kanagawa, 259-1293, Japan
| | | | | |
Collapse
|
31
|
Ellertsdottir E, Ganz J, Dürr K, Loges N, Biemar F, Seifert F, Ettl AK, Kramer-Zucker AK, Nitschke R, Driever W. A mutation in the zebrafish Na,K-ATPase subunitatp1a1a.1provides genetic evidence that the sodium potassium pump contributes to left-right asymmetry downstream or in parallel to nodal flow. Dev Dyn 2006; 235:1794-808. [PMID: 16628609 DOI: 10.1002/dvdy.20800] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
While there is a good conceptual framework of dorsoventral and anterioposterior axes formation in most vertebrate groups, understanding of left-right axis initiation is fragmentary. Diverse mechanisms have been implied to contribute to the earliest steps of left-right asymmetry, including small molecule signals, gap junctional communication, membrane potential, and directional flow of extracellular liquid generated by monocilia in the node region. Here we demonstrate that a mutation in the zebrafish Na,K-ATPase subunit atp1a1a causes left-right defects including isomerism of internal organs at the anatomical level. The normally left-sided Nodal signal spaw as well as its inhibitor lefty are expressed bilaterally, while pitx2 may appear random or bilateral. Monocilia movement and fluid circulation in Kupffer's vesicle are normal in atp1a1a(m883) mutant embryos. Therefore, the Na,K-ATPase is required downstream or in parallel to monocilia function during initiation of left-right asymmetry in zebrafish.
Collapse
Affiliation(s)
- Elin Ellertsdottir
- Developmental Biology, Institute Biology 1, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Simard A, Di Pietro E, Young CR, Plaza S, Ryan AK. Alterations in heart looping induced by overexpression of the tight junction protein Claudin-1 are dependent on its C-terminal cytoplasmic tail. Mech Dev 2006; 123:210-27. [PMID: 16500087 DOI: 10.1016/j.mod.2005.12.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 12/21/2005] [Accepted: 12/21/2005] [Indexed: 10/25/2022]
Abstract
In vertebrates, the positioning of the internal organs relative to the midline is asymmetric and evolutionarily conserved. A number of molecules have been shown to play critical roles in left-right patterning. Using representational difference analysis to identify genes that are differentially expressed on the left and right sides of the chick embryo, we cloned chick Claudin-1, an integral component of epithelial tight junctions. Here, we demonstrate that retroviral overexpression of Claudin-1, but not Claudin-3, on the right side of the chick embryo between HH stages 4 and 7 randomizes the direction of heart looping. This effect was not observed when Claudin-1 was overexpressed on the left side of the embryo. A small, but reproducible, induction of Nodal expression in the perinodal region on the right side of the embryo was noted in embryos that were injected with Claudin-1 retroviral particles on their right sides. However, no changes in Lefty,Pitx2 or cSnR expression were observed. In addition, Flectin expression remained higher in the left dorsal mesocardial folds of embryos with leftwardly looped hearts resulting from Claudin-1 overexpression on the right side of the embryo. We demonstrated that Claudin-1's C-terminal cytoplasmic tail is essential for this effect: mutation of a PKC phosphorylation site in the Claudin-1 C-terminal cytoplasmic domain at threonine-206 eliminates Claudin-1's ability to randomize the direction of heart looping. Taken together, our data provide evidence that appropriate expression of the tight junction protein Claudin-1 is required for normal heart looping and suggest that phosphorylation of its cytoplasmic tail is responsible for mediating this function.
Collapse
Affiliation(s)
- Annie Simard
- Departments of Pediatrics and Human Genetics, McGill University, Montréal, Que., Canada
| | | | | | | | | |
Collapse
|
33
|
Ramsdell AF. Left–right asymmetry and congenital cardiac defects: Getting to the heart of the matter in vertebrate left–right axis determination. Dev Biol 2005; 288:1-20. [PMID: 16289136 DOI: 10.1016/j.ydbio.2005.07.038] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 07/21/2005] [Accepted: 07/26/2005] [Indexed: 01/20/2023]
Abstract
Cellular and molecular left-right differences that are present in the mesodermal heart fields suggest that the heart is lateralized from its inception. Left-right asymmetry persists as the heart fields coalesce to form the primary heart tube, and overt, morphological asymmetry first becomes evident when the heart tube undergoes looping morphogenesis. Thereafter, chamber formation, differentiation of the inflow and outflow tracts, and position of the heart relative to the midline are additional features of heart development that exhibit left-right differences. Observations made in human clinical studies and in animal models of laterality disease suggest that all of these features of cardiac development are influenced by the embryonic left-right body axis. When errors in left-right axis determination happen, they almost always are associated with complex congenital heart malformations. The purpose of this review is to highlight what is presently known about cardiac development and upstream processes of left-right axis determination, and to consider how perturbation of the left-right body plan might ultimately result in particular types of congenital heart defects.
Collapse
Affiliation(s)
- Ann F Ramsdell
- Department of Cell and Developmental Biology and Anatomy, School of Medicine and Program in Women's Studies, College of Arts and Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
34
|
Abstract
Bone morphogenetic proteins (BMPs) play pleiotropic roles during embryonic development as well as throughout life. Recent genetic approaches especially using the mouse gene knockout system revealed that BMP signaling is greatly involved in early embryonic patterning, which is a dynamic event to establish three-dimensional polarities. The purpose of this review is to describe the diverse function of BMPs through different receptor signaling systems during embryonic patterning including gastrulation and establishment of the left-right asymmetry.
Collapse
Affiliation(s)
- Satoshi Kishigami
- Molecular Developmental Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
35
|
Raya A, Izpisua Belmonte JC. Unveiling the establishment of left-right asymmetry in the chick embryo. Mech Dev 2005; 121:1043-54. [PMID: 15296970 DOI: 10.1016/j.mod.2004.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 05/11/2004] [Accepted: 05/11/2004] [Indexed: 11/17/2022]
Abstract
Vertebrates display striking left-right asymmetries in the placement of internal organs, which are concealed by a seemingly bilaterally symmetric body plan. The establishment of asymmetries about the left-right axis occurs early during embryo development and requires the concerted and sequential action of several epigenetic, genetic and cellular mechanisms. Experiments in the chick embryo model have contributed crucially to our current understanding of such mechanisms and are reviewed here. Particular emphasis is given to the elucidation of a genetic network that conveys left-right information from Hensen's node to the organ primordia, characterized to a significant degree of detail in the chick embryo. We also point out a number of early and late events in the determination of left-right asymmetries that are currently poorly understood and for whose study the chick embryo model presents several advantages. We anticipate that the availability of the chick genome sequence will be combined with multidisciplinary approaches from experimental embryology, biophysics, live-cell imaging, and mathematical modeling to boost up our knowledge of left-right organ asymmetry in the near future.
Collapse
Affiliation(s)
- Angel Raya
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
| | | |
Collapse
|
36
|
Hoshino A, Koide M, Ono T, Yasugi S. Sex-specific and left-right asymmetric expression pattern of Bmp7 in the gonad of normal and sex-reversed chicken embryos. Dev Growth Differ 2005; 47:65-74. [PMID: 15771626 DOI: 10.1111/j.1440-169x.2004.00783.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A genetic switch determines whether the indifferent gonad develops into an ovary or a testis. In adult females of many avian species, the left ovary is functional while the right one regresses. In the embryo, bone morphogenetic proteins (BMP) mediate biological effects in many organ developments but their roles in avian sex determination and gonadal differentiation remains largely unknown. Here, we report the sex-specific and left-right (L-R) asymmetric expression pattern of Bmp7 in the chicken gonadogenesis. Bmp7 was L-R asymmetrically expressed at the beginning of genital ridge formation. After sexual differentiation occurred, sex-specific expression pattern of Bmp7 was observed in the ovary mesenchyme. In addition, ovary-specific Bmp7 expression was reduced in experimentally induced female-to-male reversal using the aromatase inhibitor (AI). These dynamic changes of expression pattern of Bmp7 in the gonad with or without AI treatment suggest that BMP may play roles in determination of L-R asymmetric development and sex-dependent differentiation in the avian gonadogenesis.
Collapse
Affiliation(s)
- Anshin Hoshino
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | | | | | |
Collapse
|
37
|
Kishigami S, Yoshikawa SI, Castranio T, Okazaki K, Furuta Y, Mishina Y. BMP signaling through ACVRI is required for left–right patterning in the early mouse embryo. Dev Biol 2004; 276:185-93. [PMID: 15531373 DOI: 10.1016/j.ydbio.2004.08.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2003] [Revised: 07/07/2004] [Accepted: 08/20/2004] [Indexed: 12/01/2022]
Abstract
Vertebrate organisms are characterized by dorsal-ventral and left-right asymmetry. The process that establishes left-right asymmetry during vertebrate development involves bone morphogenetic protein (BMP)-dependent signaling, but the molecular details of this signaling pathway remain poorly defined. This study tests the role of the BMP type I receptor ACVRI in establishing left-right asymmetry in chimeric mouse embryos. Mouse embryonic stem (ES) cells with a homozygous deletion at Acvr1 were used to generate chimeric embryos. Chimeric embryos were rescued from the gastrulation defect of Acvr1 null embryos but exhibited abnormal heart looping and embryonic turning. High mutant contribution chimeras expressed left-side markers such as nodal bilaterally in the lateral plate mesoderm (LPM), indicating that loss of ACVRI signaling leads to left isomerism. Expression of lefty1 was absent in the midline of chimeric embryos, but shh, a midline marker, was expressed normally, suggesting that, despite formation of midline, its barrier function was abolished. High-contribution chimeras also lacked asymmetric expression of nodal in the node. These data suggest that ACVRI signaling negatively regulates left-side determinants such as nodal and positively regulates lefty1. These functions maintain the midline, restrict expression of left-side markers, and are required for left-right pattern formation during embryogenesis in the mouse.
Collapse
Affiliation(s)
- Satoshi Kishigami
- Molecular Developmental Biology Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
38
|
Vega S, Morales AV, Ocaña OH, Valdés F, Fabregat I, Nieto MA. Snail blocks the cell cycle and confers resistance to cell death. Genes Dev 2004; 18:1131-43. [PMID: 15155580 PMCID: PMC415638 DOI: 10.1101/gad.294104] [Citation(s) in RCA: 687] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Snail zinc-finger transcription factors trigger epithelial-mesenchymal transitions (EMTs), endowing epithelial cells with migratory and invasive properties during both embryonic development and tumor progression. During EMT, Snail provokes the loss of epithelial markers, as well as changes in cell shape and the expression of mesenchymal markers. Here, we show that in addition to inducing dramatic phenotypic alterations, Snail attenuates the cell cycle and confers resistance to cell death induced by the withdrawal of survival factors and by pro-apoptotic signals. Hence, Snail favors changes in cell shape versus cell division, indicating that with respect to oncogenesis, although a deregulation/increase in proliferation is crucial for tumor formation and growth, this may not be so for tumor malignization. Finally, the resistance to cell death conferred by Snail provides a selective advantage to embryonic cells to migrate and colonize distant territories, and to malignant cells to separate from the primary tumor, invade, and form metastasis.
Collapse
Affiliation(s)
- Sonia Vega
- Instituto Cajal, Consejo Superior de Investigaciones Cieutificas, 28002 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Members of the transforming growth factor beta (TGF-beta) family of multifunctional peptides are involved in almost every aspect of development. Model systems, ranging from genetically tractable invertebrates to genetically engineered mice, have been used to determine the mechanisms of TGF-beta signaling in normal development and in pathological situations. Furthermore, mutations in genes for the ligands, receptors, extracellular modulators, and intracellular signaling molecules have been associated with several human disorders. The most common are those associated with the development and maintenance of the skeletal system and axial patterning. This review focuses on the mechanisms of TGF-beta signaling with special emphasis on the molecules involved in human disorders of patterning and skeletal development.
Collapse
Affiliation(s)
- Rosa Serra
- Department of Cell Biology, University of Alabama, Birmingham 35294-0005, USA.
| | | |
Collapse
|
40
|
Abstract
TGFss signals belonging to the Nodal family set up the embryonic axes, induce mesoderm and endoderm, pattern the nervous system, and determine left-right asymmetry in vertebrates. Nodal signaling activates a canonical TGFss pathway involving activin receptors, Smad2 transcription factors, and FoxH1 coactivators. In addition, Nodal signaling is dependent on coreceptors of the EGF-CFC family and antagonized by the Lefty and Cerberus families of secreted factors. Additional modulators of Nodal signaling include convertases that regulate the generation of the mature signal, and factors such as Arkadia and DRAP1 that regulate the cellular responses to the signal. Complex regulatory cascades and autoregulatory loops coordinate Nodal signaling during early development. Nodals have concentration-dependent roles and can act both locally and at a distance. These studies demonstrate that Nodal signaling is modulated at almost every level to precisely orchestrate tissue patterning during vertebrate embryogenesis.
Collapse
Affiliation(s)
- Alexander F Schier
- Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
41
|
Martínez-Alvarez C, Blanco MJ, Pérez R, Rabadán MA, Aparicio M, Resel E, Martínez T, Nieto MA. Snail family members and cell survival in physiological and pathological cleft palates. Dev Biol 2004; 265:207-18. [PMID: 14697364 DOI: 10.1016/j.ydbio.2003.09.022] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Palate fusion is a complex process that involves the coordination of a series of cellular changes including cell death and epithelial to mesenchymal transition (EMT). Since members of the Snail family of zinc-finger regulators are involved in both triggering of the EMT and cell survival, we decided to study their putative role in palatal fusion. Furthermore, Snail genes are induced by transforming growth factor beta gene (TGF-beta) superfamily members, and TGF-beta(3) null mutant mice (TGF-beta(3)-/-) show a cleft palate phenotype. Here we show that in the wild-type mouse at the time of fusion, Snail is expressed in a few cells of the midline epithelial seam (MES), compatible with a role in triggering of the EMT in a small subpopulation of the MES. We also find an intriguing relationship between the expression of Snail family members and cell survival associated to the cleft palate condition. Indeed, Snail is expressed in the medial edge epithelial (MEE) cells in TGF-beta(3)-/-mouse embryo palates, where it is activated by the aberrant expression of its inducer, TGF-beta(1), in the underlying mesenchyme. In contrast to Snail-deficient wild-type pre-adhesion MEE cells, Snail-expressing TGF-beta(3) mutant MEE cells survive as they do their counterparts in the chick embryo. Interestingly, Slug is the Snail family member expressed in the chick MEE, providing another example of interchange of Snail and Slug expression between avian and mammalian embryos. We propose that in the absence of TGF-beta(3), TGF-beta(1) is upregulated in the mesenchyme, and that in both physiological (avian) and pathological (TGF-beta(3)-/-mammalian) cleft palates, it induces the expression of Snail genes promoting the survival of the MEE cells and permitting their subsequent differentiation into keratinized stratified epithelium.
Collapse
Affiliation(s)
- Concepción Martínez-Alvarez
- Departamento de Anatomía y Embriología Humana I, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Bisgrove BW, Morelli SH, Yost HJ. Genetics of human laterality disorders: insights from vertebrate model systems. Annu Rev Genomics Hum Genet 2003; 4:1-32. [PMID: 12730129 DOI: 10.1146/annurev.genom.4.070802.110428] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many internal organs in the vertebrate body are asymmetrically oriented along the left-right (L-R) body axis. Organ asymmetry and some components of the molecular signaling pathways that direct L-R development are highly conserved among vertebrate species. Although individuals with full reversal of organ L-R asymmetry (situs inversus totalis) are healthy, significant morbidity and mortality is associated with perturbations in laterality that result in discordant orientation of organ systems and complex congenital heart defects. In humans and other vertebrates, genetic alterations of L-R signaling pathways can result in a wide spectrum of laterality defects. In this review we categorize laterality defects in humans, mice, and zebrafish into specific classes based on altered patterns of asymmetric gene expression, organ situs defects, and midline phenotypes. We suggest that this classification system provides a conceptual framework to help consolidate the disparate laterality phenotypes reported in humans and vertebrate model organisms, thereby refining our understanding of the genetics of L-R development. This approach helps suggest candidate genes and genetic pathways that might be perturbed in human laterality disorders and improves diagnostic criteria.
Collapse
Affiliation(s)
- Brent W Bisgrove
- Huntsman Cancer Institute, Center for Children, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA.
| | | | | |
Collapse
|
43
|
Abstract
The heart develops from two bilateral heart fields that are formed during early gastrulation. In recent years, signaling pathways that specify cardiac mesoderm have been extensively analyzed. In addition, a battery of transcription factors that regulate different aspects of cardiac morphogenesis and cytodifferentiation have been identified and characterized in model organisms. At the anterior pole, a secondary heart field is formed, which in its molecular make-up, appears to be similar to the primary heart field. The cardiac outflow tract and the right ventricle to a large extent are derivatives of this anterior heart field. Cardiac mesoderm receives positional information by which it is patterned along the three body axes. The molecular control of left-right axis development has received particular attention, and the underlying regulatory network begins to emerge. Cardiac chamber development involves the activation of a transcription program that is different from the one present in the primary heart field and regulates cardiac morphogenesis in a region-specific manner. This review also attempts to identify areas in which additional research is needed to fully understand early cardiac development.
Collapse
Affiliation(s)
- Thomas Brand
- Department of Cell and Molecular Biology, Technical University of Braunschweig, 38106 Braunschweig, Germany.
| |
Collapse
|
44
|
Saijoh Y, Oki S, Ohishi S, Hamada H. Left-right patterning of the mouse lateral plate requires nodal produced in the node. Dev Biol 2003; 256:160-72. [PMID: 12654299 DOI: 10.1016/s0012-1606(02)00121-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Initial determination of left-right (L-R) polarity in mammalian embryos takes place in the node. However, it is not known how asymmetric signals are generated in the node and transferred to the lateral plate mesoderm (LPM). Mice homozygous for a hypomorphic Nodal allele (Nodal(neo)) were generated and found to exhibit L-R defects, including right isomerism. Although the mutant embryos express Nodal at gastrulation stages, the subsequent expression of this gene in the node and left LPM is lost. A transgene that conferred Nodal expression specifically in the node rescued the L-R defects of the Nodal(neo/neo) embryos. Conversely, ectopic expression of the Nodal inhibitor Lefty2 in the node of Nodal(neo/+) embryos resulted in a phenotype similar to that of the Nodal(neo/neo) mutant. These results indicate that Nodal produced in the node is required for expression of Nodal and other left side-specific genes in the LPM.
Collapse
Affiliation(s)
- Yukio Saijoh
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Osaka 565-0871, Suita, Japan.
| | | | | | | |
Collapse
|
45
|
Linask KK. Regulation of heart morphology: current molecular and cellular perspectives on the coordinated emergence of cardiac form and function. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2003; 69:14-24. [PMID: 12768654 DOI: 10.1002/bdrc.10004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND During early heart development, in addition to cells being induced to differentiate into cardiomyocytes, pathways are activated that lead to cardiac morphogenesis or the development of form. METHODS Orchestration of organogenesis involves the incremental activation of regulatory pathways that lead to pivotal transition points, such as cardiac compartment delineation and looping. Each embryonic stage sets up the correct patterning of morphoregulatory molecules that will regulate the next process, until an organ is formed from the mesoderm layer after gastrulation. The current review provides an understanding of the morphoregulatory, cell adhesion and extracellular matrix-mediated, processes that coordinate development of heart form with that of function. The period reviewed encompasses the formation of a definitive cardiac compartment from the lateral plate mesoderm to the time-point in which the single, beating heart tube loops directionally to the right. Looping results in the correct spatial orientation for subsequent modeling of the four-chambered heart. Even subtle alterations in looping can form the basis upon which malformations of the inlet or the outlet regions of the heart, or both, are superimposed. RESULTS In the future, DNA microarray data sets may allow modeling the specific sequence of gene regulatory dynamics leading to these transition points to discover the regulatory "modes" that the cells adopt during heart organogenesis. The regulatory genes, however, can only specify the proteins that will be present. CONCLUSIONS To fully understand the timing and mechanisms underlying heart development, it is necessary to define the sequential synthesis, patterning, and interaction of the proteins, and of still other receptors, which eventually drive cells to organize into functioning organs.
Collapse
Affiliation(s)
- Kersti K Linask
- Department of Cell Biology, University of Medicine and Dentistry of New Jersey-SOM Stratford, NJ 08084, USA.
| |
Collapse
|
46
|
Abstract
The internal organs of all vertebrates are asymmetrically organised across the left-right axis. The development of this asymmetry is controlled by a molecular pathway that includes the signalling molecule Nodal and the transcription factor Pitx2, proteins encoded by genes that are predominantly expressed on the left side of all vertebrate embryos studied to date. Vertebrates share Phylum Chordata with two other groups of animals, amphioxus and the urochordates (including ascidians). Both these taxa develop left-right asymmetries, and recent studies have begun to address the degree of conservation of nodal and Pitx2 in this process. Pitx2 is a member of the Pitx homeobox gene family, and in both amphioxus and ascidians Pitx gene expression is predominantly left sided. These studies suggest that left-right asymmetry in all chordates is regulated by a conserved developmental pathway, and that this pathway evolved before the separation of the lineages leading to living chordates.
Collapse
Affiliation(s)
- Clive J Boorman
- School of Animal and Microbial Sciences, The University of Reading, Whiteknights, UK
| | | |
Collapse
|
47
|
Fischer A, Viebahn C, Blum M. FGF8 acts as a right determinant during establishment of the left-right axis in the rabbit. Curr Biol 2002; 12:1807-16. [PMID: 12419180 DOI: 10.1016/s0960-9822(02)01222-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND FGF8 has been implicated in the transfer of left-right (L-R) asymmetry from the embryonic midline (node) to the lateral plate mesoderm (LPM). Surprisingly, opposite roles have been described in chick and mouse. In mouse, FGF8 is required for the left-asymmetric expression of nodal, lefty2, and Pitx2. In chick, FGF8 represses nodal and Pitx2 on the right side. This discrepancy could reflect evolutionary differences between birds and mammals. Alternatively, the right-asymmetric expression of fgf8, which is not found in mouse, at the chick node may be a prerequisite of right-sided function. Finally, chick (blastodisc) and mouse (egg cylinder) differ with respect to the topology of the early gastrula/neurula embryo. RESULTS The rabbit blastodisc was investigated as an additional mammalian L-R model system. While nodal, lefty, and Pitx2 showed asymmetric expression in the left LPM, fgf8 and all other midline marker genes were symmetrically expressed at the node like in mouse. Left-sided application of FGF8 repressed the endogenous transcription of nodal as well as ectopic expression induced by the parallel administration of BMP4. Right-sided inhibition of FGF8 signaling induced bilateral marker gene expression, demonstrating that, in rabbit, FGF8 acts as a right determinant like in chick. CONCLUSIONS These findings suggest that the anatomy of the early embryo (blastodisc versus egg cylinder) rather than taxonomical differences or asymmetry in expression constitutes an important determinant of FGF8 function in L-R axis formation. The rabbit may provide a useful model for early human embryogenesis, as human embryos develop via a blastodisc as well.
Collapse
Affiliation(s)
- Anja Fischer
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, PO Box 3640, 76021 Karlsruhe, Germany
| | | | | |
Collapse
|
48
|
|
49
|
Long S, Ahmad N, Rebagliati M. Zebrafish hearts and minds: nodal signaling in cardiac and neural left-right asymmetry. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2002; 67:27-36. [PMID: 12858520 DOI: 10.1101/sqb.2002.67.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- S Long
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|