1
|
D'Amore A, Sundberg M, Lin R, Lubbers ET, Winden KD, Yu L, Gawlinska K, Gawlinski D, Lopez SG, Choe Y, Wightman EV, Liang Y, Modi M, Yuskaitis CJ, Lee HHC, Rotenberg A, Sahin M. Phenotypic rescue via mTOR inhibition in neuron-specific Pten knockout mice reveals AKT and mTORC1-site specific changes. Mol Psychiatry 2025:10.1038/s41380-025-02916-2. [PMID: 39953287 DOI: 10.1038/s41380-025-02916-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/22/2024] [Accepted: 01/30/2025] [Indexed: 02/17/2025]
Abstract
Phosphatase and Tensin Homolog (PTEN) is a dual-specific protein and lipid phosphatase that regulates AKT and downstream signaling of the mechanistic target of rapamycin (mTOR). PTEN functions as a tumor suppressor gene whose mutations result in PTEN Hamartoma Tumor Syndrome (PHTS) characterized by increased cancer risk and neurodevelopmental comorbidity. Here, we generated a novel neuron-specific Pten knock-out mouse model (Syn-Cre/Pten HOM) to test the ability of pharmacologic mTOR inhibition to rescue Pten mutation-associated disease phenotypes in vivo and in vitro. We found that treatment with the mTOR inhibitor, everolimus, increased the survival of Syn-Cre/Pten HOM mice while some neurologic phenotypes persisted. Transcriptomic analyses revealed that in contrast to mice harboring a neuron-specific deletion of the Tuberous Sclerosis Complex 2 gene (Syn-Cre/Tsc2 KO), genes that are under AKT regulation were significantly increased in the Syn-Cre/Pten HOM mice. In addition, genes associated with synapse, extracellular matrix, and myelination were broadly increased in Syn-Cre/Pten HOM mouse neocortex. These findings were confirmed by immunostaining of cortical sections in vivo, which revealed excessive immunoreactivity of myelin basic protein and perineuronal nets (PNN), the specialized extracellular matrix surrounding fast-spiking parvalbumin (PV) interneurons. We also detected increased expression of Synapsin I/PSD95 positive synapses and network hyperactivity phenotypes in Syn-Cre/Pten HOM mice neurons compared to wild-type (WT) neurons in vitro. Strikingly, everolimus treatment rescued the number of synapses and network hyperactivity in the Syn-Cre/Pten HOM mice cortical neuron cultures. Taken together, our results revealed in vivo and in vitro molecular and neuronal network mechanisms underlying neurological phenotypes of PHTS. Notably, pharmacologic mTOR inhibition by everolimus led to successful downstream signaling rescue, including mTOR complex 1 (mTORC1) site-specific suppression of S6 phosphorylation, correlating with phenotypic rescue found in our novel neuron-specific Syn-Cre/Pten HOM mice.
Collapse
Affiliation(s)
- Angelica D'Amore
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Maria Sundberg
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Rui Lin
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Ella T Lubbers
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Kellen D Winden
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Lucy Yu
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Kinga Gawlinska
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
- Department of Clinical Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Krakow, Poland
| | - Dawid Gawlinski
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Sam G Lopez
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Yongho Choe
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Emma V Wightman
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Yini Liang
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Meera Modi
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Christopher J Yuskaitis
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
- Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, USA
| | - Henry Hing Cheong Lee
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, USA
| | - Alexander Rotenberg
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
- Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, USA
| | - Mustafa Sahin
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA.
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, USA.
| |
Collapse
|
2
|
Tavakolian S, Eshkiki ZS, Akbari A, Faghihloo E, Tabaeian SP. PTEN regulation in virus-associated cancers. Pathol Res Pract 2025; 266:155749. [PMID: 39642806 DOI: 10.1016/j.prp.2024.155749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/10/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Despite advancements in science, researchers still face challenges in curing patients with malignancies. This health issue is linked to various risk factors, including alcohol consumption, age, sex, and infectious diseases. Among these, viral agents play a significant role in cancer-related health problems and are currently a subject of ongoing research. In this review, we summarize how several viruses-such as herpesviruses, human papillomavirus, hepatitis B virus, hepatitis C virus, and adenovirus-impact cancer signaling pathways through their effects on the tumor suppressor PTEN.
Collapse
Affiliation(s)
- Shaian Tavakolian
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Zahra Shokati Eshkiki
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seidamir Pasha Tabaeian
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Brandner S. Rodent models of tumours of the central nervous system. Mol Oncol 2024; 18:2842-2870. [PMID: 39324445 PMCID: PMC11619804 DOI: 10.1002/1878-0261.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
Modelling of human diseases is an essential component of biomedical research, to understand their pathogenesis and ultimately, develop therapeutic approaches. Here, we will describe models of tumours of the central nervous system, with focus on intrinsic CNS tumours. Model systems for brain tumours were established as early as the 1920s, using chemical carcinogenesis, and a systematic analysis of different carcinogens, with a more refined histological analysis followed in the 1950s and 1960s. Alternative approaches at the time used retroviral carcinogenesis, allowing a more topical, organ-centred delivery. Most of the neoplasms arising from this approach were high-grade gliomas. Whilst these experimental approaches did not directly demonstrate a cell of origin, the localisation and growth pattern of the tumours already pointed to an origin in the neurogenic zones of the brain. In the 1980s, expression of oncogenes in transgenic models allowed a more targeted approach by expressing the transgene under tissue-specific promoters, whilst the constitutive inactivation of tumour suppressor genes ('knock out')-often resulted in embryonic lethality. This limitation was elegantly solved by engineering the Cre-lox system, allowing for a promoter-specific, and often also time-controlled gene inactivation. More recently, the use of the CRISPR Cas9 technology has significantly increased experimental flexibility of gene expression or gene inactivation and thus added increased value of rodent models for the study of pathogenesis and establishing preclinical models.
Collapse
Affiliation(s)
- Sebastian Brandner
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals, NHS Foundation TrustLondonUK
| |
Collapse
|
4
|
Rybiczka-Tešulov M, Garritsen O, Venø MT, Wieg L, Dijk RV, Rahimi K, Gomes-Duarte A, Wit MD, van de Haar LL, Michels L, van Kronenburg NCH, van der Meer C, Kjems J, Vangoor VR, Pasterkamp RJ. Circular RNAs regulate neuron size and migration of midbrain dopamine neurons during development. Nat Commun 2024; 15:6773. [PMID: 39117691 PMCID: PMC11310423 DOI: 10.1038/s41467-024-51041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Midbrain dopamine (mDA) neurons play an essential role in cognitive and motor behaviours and are linked to different brain disorders. However, the molecular mechanisms underlying their development, and in particular the role of non-coding RNAs (ncRNAs), remain incompletely understood. Here, we establish the transcriptomic landscape and alternative splicing patterns of circular RNAs (circRNAs) at key developmental timepoints in mouse mDA neurons in vivo using fluorescence-activated cell sorting followed by short- and long-read RNA sequencing. In situ hybridisation shows expression of several circRNAs during early mDA neuron development and post-transcriptional silencing unveils roles for different circRNAs in regulating mDA neuron morphology. Finally, in utero electroporation and time-lapse imaging implicate circRmst, a circRNA with widespread morphological effects, in the migration of developing mDA neurons in vivo. Together, these data for the first time suggest a functional role for circRNAs in developing mDA neurons and characterise poorly defined aspects of mDA neuron development.
Collapse
Affiliation(s)
- Mateja Rybiczka-Tešulov
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Oxana Garritsen
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Morten T Venø
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus C, Denmark
- Omiics ApS, Aarhus N, Denmark
| | - Laura Wieg
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Roland van Dijk
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- VectorY Therapeutics, Matrix Innovation Center VI, Amsterdam, The Netherlands
| | - Karim Rahimi
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus C, Denmark
- Department of Genetics, Blavatnik Institute, Harvard Medical School, MA, Boston, USA
| | - Andreia Gomes-Duarte
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- VectorY Therapeutics, Matrix Innovation Center VI, Amsterdam, The Netherlands
| | - Marina de Wit
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lieke L van de Haar
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Berlin Institute for Medical Systems Biology, Max Delbrück Center, Berlin, Germany
| | - Lars Michels
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- VectorY Therapeutics, Matrix Innovation Center VI, Amsterdam, The Netherlands
| | - Nicky C H van Kronenburg
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Christiaan van der Meer
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus C, Denmark
| | - Vamshidhar R Vangoor
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Gambini D, Ferrero S, Bulfamante G, Pisani L, Corbo M, Kuhn E. Cerebellar phenotypes in germline PTEN mutation carriers. Neuropathol Appl Neurobiol 2024; 50:e12970. [PMID: 38504418 DOI: 10.1111/nan.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/21/2024]
Abstract
PTEN hamartoma tumour syndrome (PHTS) comprises different hereditary conditions caused by germline PTEN mutations, predisposing to the development of multiple hamartomas in many body tissues and also increasing the risk of some types of cancer. Cerebellar involvement in PHTS patients has been long known due to the development of a pathognomonic cerebellar hamartoma (known as dysplastic gangliocytoma of the cerebellum or Lhermitte-Duclos disease). Recently, a crucial role of the cerebellum has been highlighted in the pathogenesis of autism spectrum disorders, now recognised as a phenotype expressed in a variable percentage of PHTS children. In addition, rare PTEN variants are indeed identified in medulloblastoma as well, even if they are less frequent than other germline gene mutations. The importance of PTEN and its downstream signalling enzymatic pathways, PI3K/AKT/mTOR, has been studied at different levels in both human clinical settings and animal models, not only leading to a better understanding of the pathogenesis of different disorders but, most importantly, to identify potential targets for specific therapies. In particular, PTEN integrity makes an important contribution to the normal development of tissue architecture in the nervous system, including the cerebellum. Thus, in patients with PTEN germline mutations, the cerebellum is an affected organ that is increasingly recognised in different disorders, whereas, in animal models, cerebellar Pten loss causes a variety of functional and histological alterations. In this review, we summarise the range of cerebellar involvement observed in PHTS and its relationships with germline PTEN mutations, along with the phenotypes expressed by murine models with PTEN deficiency in cerebellar tissue.
Collapse
Affiliation(s)
- Donatella Gambini
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Stefano Ferrero
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gaetano Bulfamante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Human Pathology and Molecular Pathology Unit, TOMA Advanced Biomedical Assays, Busto Arsizio, Italy
| | - Luigi Pisani
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Elisabetta Kuhn
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
6
|
Latchney SE, Ruiz Lopez BR, Womble PD, Blandin KJ, Lugo JN. Neuronal deletion of phosphatase and tensin homolog in mice results in spatial dysregulation of adult hippocampal neurogenesis. Front Mol Neurosci 2023; 16:1308066. [PMID: 38130682 PMCID: PMC10733516 DOI: 10.3389/fnmol.2023.1308066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Adult neurogenesis is a persistent phenomenon in mammals that occurs in select brain structures in both healthy and diseased brains. The tumor suppressor gene, phosphatase and tensin homolog deleted on chromosome 10 (Pten) has previously been found to restrict the proliferation of neural stem/progenitor cells (NSPCs) in vivo. In this study, we aimed to provide a comprehensive picture of how conditional deletion of Pten may regulate the genesis of adult NSPCs in the dentate gyrus of the hippocampus and the subventricular zone bordering the lateral ventricles. Using conventional markers and stereology, we quantified multiple stages of neurogenesis, including proliferating cells, immature neurons (neuroblasts), and apoptotic cells in several regions of the dentate gyrus, including the subgranular zone (SGZ), outer granule cell layer (oGCL), molecular layer, and hilus at 4 and 10 weeks of age. Our data demonstrate that conditional deletion of Pten in mice produces successive increases in dentate gyrus proliferating cells and immature neuroblasts, which confirms the known negative roles Pten has on cell proliferation and maturation. Specifically, we observe a significant increase in Ki67+ proliferating cells in the neurogenic SGZ at 4 weeks of age, but not 10 weeks of age. We also observe a delayed increase in neuroblasts at 10 weeks of age. However, our study expands on previous work by providing temporal, subregional, and neurogenesis-stage resolution. Specifically, we found that Pten deletion initially increases cell proliferation in the neurogenic SGZ, but this increase spreads to non-neurogenic dentate gyrus areas, including the hilus, oGCL, and molecular layer, as mice age. We also observed region-specific increases in apoptotic cells in the dentate gyrus hilar region that paralleled the regional increases in Ki67+ cells. Our work is accordant with the literature showing that Pten serves as a negative regulator of dentate gyrus neurogenesis but adds temporal and spatial components to the existing knowledge.
Collapse
Affiliation(s)
- Sarah E. Latchney
- Department of Biology, St. Mary’s College of Maryland, St. Mary’s City, MD, United States
| | - Brayan R. Ruiz Lopez
- Department of Biology, St. Mary’s College of Maryland, St. Mary’s City, MD, United States
| | - Paige D. Womble
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Katherine J. Blandin
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Joaquin N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| |
Collapse
|
7
|
Cheung SKK, Kwok J, Or PMY, Wong CW, Feng B, Choy KW, Chang RCC, Burbach JPH, Cheng ASL, Chan AM. Neuropathological signatures revealed by transcriptomic and proteomic analysis in Pten-deficient mouse models. Sci Rep 2023; 13:6763. [PMID: 37185447 PMCID: PMC10130134 DOI: 10.1038/s41598-023-33869-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
PTEN hamartoma tumour syndrome is characterised by mutations in the human PTEN gene. We performed transcriptomic and proteomic analyses of neural tissues and primary cultures from heterozygous and homozygous Pten-knockout mice. The somatosensory cortex of heterozygous Pten-knockout mice was enriched in immune response and oligodendrocyte development Gene Ontology (GO) terms. Parallel proteomic analysis revealed differentially expressed proteins (DEPs) related to dendritic spine development, keratinisation and hamartoma signatures. However, primary astrocytes (ASTs) from heterozygous Pten-knockout mice were enriched in the extracellular matrix GO term, while primary cortical neurons (PCNs) were enriched in immediate-early genes. In ASTs from homozygous Pten-knockout mice, cilium-related activity was enriched, while PCNs exhibited downregulation of forebrain neuron generation and differentiation, implying an altered excitatory/inhibitory balance. By integrating DEPs with pre-filtered differentially expressed genes, we identified the enrichment of traits of intelligence, cognitive function and schizophrenia, while DEPs in ASTs were significantly associated with intelligence and depression.
Collapse
Affiliation(s)
- Stanley K K Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Jacinda Kwok
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada
| | - Penelope M Y Or
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Chi Wai Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Bo Feng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Kwong Wai Choy
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Raymond C C Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - J Peter H Burbach
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alfred S L Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Andrew M Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- Brain and Mind Institute, The Chinese University of Hong Kong, 4/F, Hui Yeung Shing Building, Hong Kong, SAR, China.
| |
Collapse
|
8
|
Cellular senescence in malignant cells promotes tumor progression in mouse and patient Glioblastoma. Nat Commun 2023; 14:441. [PMID: 36707509 PMCID: PMC9883514 DOI: 10.1038/s41467-023-36124-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults, yet it remains refractory to systemic therapy. Elimination of senescent cells has emerged as a promising new treatment approach against cancer. Here, we investigated the contribution of senescent cells to GBM progression. Senescent cells are identified in patient and mouse GBMs. Partial removal of p16Ink4a-expressing malignant senescent cells, which make up less than 7 % of the tumor, modifies the tumor ecosystem and improves the survival of GBM-bearing female mice. By combining single cell and bulk RNA sequencing, immunohistochemistry and genetic knockdowns, we identify the NRF2 transcription factor as a determinant of the senescent phenotype. Remarkably, our mouse senescent transcriptional signature and underlying mechanisms of senescence are conserved in patient GBMs, in whom higher senescence scores correlate with shorter survival times. These findings suggest that senolytic drug therapy may be a beneficial adjuvant therapy for patients with GBM.
Collapse
|
9
|
Wise HM, Harris A, Kriplani N, Schofield A, Caldwell H, Arends MJ, Overton IM, Leslie NR. PTEN Protein Phosphatase Activity Is Not Required for Tumour Suppression in the Mouse Prostate. Biomolecules 2022; 12:1511. [PMID: 36291720 PMCID: PMC9599176 DOI: 10.3390/biom12101511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
Loss PTEN function is one of the most common events driving aggressive prostate cancers and biochemically, PTEN is a lipid phosphatase which opposes the activation of the oncogenic PI3K-AKT signalling network. However, PTEN also has additional potential mechanisms of action, including protein phosphatase activity. Using a mutant enzyme, PTEN Y138L, which selectively lacks protein phosphatase activity, we characterised genetically modified mice lacking either the full function of PTEN in the prostate gland or only lacking protein phosphatase activity. The phenotypes of mice carrying a single allele of either wild-type Pten or PtenY138L in the prostate were similar, with common prostatic intraepithelial neoplasia (PIN) and similar gene expression profiles. However, the latter group, lacking PTEN protein phosphatase activity additionally showed lymphocyte infiltration around PIN and an increased immune cell gene expression signature. Prostate adenocarcinoma, elevated proliferation and AKT activation were only frequently observed when PTEN was fully deleted. We also identify a common gene expression signature of PTEN loss conserved in other studies (including Nkx3.1, Tnf and Cd44). We provide further insight into tumour development in the prostate driven by loss of PTEN function and show that PTEN protein phosphatase activity is not required for tumour suppression.
Collapse
Affiliation(s)
- Helen M. Wise
- Institute of Biological Chemistry, Biophysics and Bioengineering, Riccarton Campus, Heriot Watt University, Nasmyth Building, Edinburgh EH14 4AS, UK
| | - Adam Harris
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Nisha Kriplani
- Institute of Biological Chemistry, Biophysics and Bioengineering, Riccarton Campus, Heriot Watt University, Nasmyth Building, Edinburgh EH14 4AS, UK
| | - Adam Schofield
- Institute of Biological Chemistry, Biophysics and Bioengineering, Riccarton Campus, Heriot Watt University, Nasmyth Building, Edinburgh EH14 4AS, UK
| | - Helen Caldwell
- Edinburgh Pathology, Cancer Research UK Edinburgh Centre, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Mark J. Arends
- Edinburgh Pathology, Cancer Research UK Edinburgh Centre, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Ian M. Overton
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Nick R. Leslie
- Institute of Biological Chemistry, Biophysics and Bioengineering, Riccarton Campus, Heriot Watt University, Nasmyth Building, Edinburgh EH14 4AS, UK
| |
Collapse
|
10
|
Gilhooley MJ, Lindner M, Palumaa T, Hughes S, Peirson SN, Hankins MW. A systematic comparison of optogenetic approaches to visual restoration. Mol Ther Methods Clin Dev 2022; 25:111-123. [PMID: 35402632 PMCID: PMC8956963 DOI: 10.1016/j.omtm.2022.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/04/2022] [Indexed: 02/06/2023]
Abstract
During inherited retinal degenerations (IRDs), vision is lost due to photoreceptor cell death; however, a range of optogenetic tools have been shown to restore light responses in animal models. Restored response characteristics vary between tools and the neuronal cell population to which they are delivered: the interplay between these is complex, but targeting upstream neurons (such as retinal bipolar cells) may provide functional benefit by retaining intraretinal signal processing. In this study, our aim was to compare two optogenetic tools: mammalian melanopsin (hOPN4) and microbial red-shifted channelrhodopsin (ReaChR) expressed within two subpopulations of surviving cells in a degenerate retina. Intravitreal adeno-associated viral vectors and mouse models utilising the Cre/lox system restricted expression to populations dominated by bipolar cells or retinal ganglion cells and was compared with non-targeted delivery using the chicken beta actin (CBA) promoter. In summary, we found bipolar-targeted optogenetic tools produced faster kinetics and flatter intensity-response relationships compared with non-targeted or retinal-ganglion-cell-targeted hOPN4. Hence, optogenetic tools of both mammalian and microbial origins show advantages when targeted to bipolar cells. This demonstrates the advantage of bipolar-cell-targeted optogenetics for vision restoration in IRDs. We therefore developed a bipolar-cell-specific gene delivery system employing a compressed promoter with the potential for clinical translation.
Collapse
Affiliation(s)
- Michael J. Gilhooley
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
- Jules Thorne SCNi, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
- The Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
- Moorfields Eye Hospital, 162, City Road, London EC1V 2PD, UK
| | - Moritz Lindner
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
- Jules Thorne SCNi, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, Deutschhausstrasse 1-2, Marburg 35037, Germany
| | - Teele Palumaa
- Jules Thorne SCNi, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
- East Tallinn Central Hospital Eye Clinic, Ravi 18, 10138 Tallinn, Estonia
| | - Steven Hughes
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
- Jules Thorne SCNi, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
| | - Stuart N. Peirson
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
- Jules Thorne SCNi, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
| | - Mark W. Hankins
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
- Jules Thorne SCNi, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
- Corresponding author Mark W. Hankins, Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
11
|
Mapelli L, Soda T, D’Angelo E, Prestori F. The Cerebellar Involvement in Autism Spectrum Disorders: From the Social Brain to Mouse Models. Int J Mol Sci 2022; 23:ijms23073894. [PMID: 35409253 PMCID: PMC8998980 DOI: 10.3390/ijms23073894] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders that include a variety of forms and clinical phenotypes. This heterogeneity complicates the clinical and experimental approaches to ASD etiology and pathophysiology. To date, a unifying theory of these diseases is still missing. Nevertheless, the intense work of researchers and clinicians in the last decades has identified some ASD hallmarks and the primary brain areas involved. Not surprisingly, the areas that are part of the so-called “social brain”, and those strictly connected to them, were found to be crucial, such as the prefrontal cortex, amygdala, hippocampus, limbic system, and dopaminergic pathways. With the recent acknowledgment of the cerebellar contribution to cognitive functions and the social brain, its involvement in ASD has become unmistakable, though its extent is still to be elucidated. In most cases, significant advances were made possible by recent technological developments in structural/functional assessment of the human brain and by using mouse models of ASD. Mouse models are an invaluable tool to get insights into the molecular and cellular counterparts of the disease, acting on the specific genetic background generating ASD-like phenotype. Given the multifaceted nature of ASD and related studies, it is often difficult to navigate the literature and limit the huge content to specific questions. This review fulfills the need for an organized, clear, and state-of-the-art perspective on cerebellar involvement in ASD, from its connections to the social brain areas (which are the primary sites of ASD impairments) to the use of monogenic mouse models.
Collapse
Affiliation(s)
- Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| | - Teresa Soda
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Brain Connectivity Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| |
Collapse
|
12
|
Pankaew S, Potier D, Grosjean C, Nozais M, Quessada J, Loosveld M, Remy É, Payet-Bornet D. Calcium Signaling Is Impaired in PTEN-Deficient T Cell Acute Lymphoblastic Leukemia. Front Immunol 2022; 13:797244. [PMID: 35185889 PMCID: PMC8847596 DOI: 10.3389/fimmu.2022.797244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
PTEN (Phosphatase and TENsin homolog) is a well-known tumor suppressor involved in numerous types of cancer, including T-cell acute lymphoblastic leukemia (T-ALL). In human, loss-of-function mutations of PTEN are correlated to mature T-ALL expressing a T-cell receptor (TCR) at their cell surface. In accordance with human T-ALL, inactivation of Pten gene in mouse thymocytes induces TCRαβ+ T-ALL development. Herein, we explored the functional interaction between TCRαβ signaling and PTEN. First, we performed single-cell RNA sequencing (scRNAseq) of PTEN-deficient and PTEN-proficient thymocytes. Bioinformatic analysis of our scRNAseq data showed that pathological Ptendel thymocytes express, as expected, Myc transcript, whereas inference of pathway activity revealed that these Ptendel thymocytes display a lower calcium pathway activity score compared to their physiological counterparts. We confirmed this result using ex vivo calcium flux assay and showed that upon TCR activation tumor Ptendel blasts were unable to release calcium ions (Ca2+) from the endoplasmic reticulum to the cytosol. In order to understand such phenomena, we constructed a mathematical model centered on the mechanisms controlling the calcium flux, integrating TCR signal strength and PTEN interactions. This qualitative model displays a dynamical behavior coherent with the dynamics reported in the literature, it also predicts that PTEN affects positively IP3 (inositol 1,4,5-trisphosphate) receptors (ITPR). Hence, we analyzed Itpr expression and unraveled that ITPR proteins levels are reduced in PTEN-deficient tumor cells compared to physiological and leukemic PTEN-proficient cells. However, calcium flux and ITPR proteins expression are not defective in non-leukemic PTEN-deficient T cells indicating that beyond PTEN loss an additional alteration is required. Altogether, our study shows that ITPR/Calcium flux is a part of the oncogenic landscape shaped by PTEN loss and pinpoints a putative role of PTEN in the regulation of ITPR proteins in thymocytes, which remains to be characterized.
Collapse
Affiliation(s)
- Saran Pankaew
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France.,Aix Marseille Univ, CNRS, I2M, Marseille, France
| | | | | | - Mathis Nozais
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Julie Quessada
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Marie Loosveld
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France.,APHM, Hôpital La Timone, Laboratoire d'Hématologie, Marseille, France
| | | | | |
Collapse
|
13
|
p27, The Cell Cycle and Alzheimer´s Disease. Int J Mol Sci 2022; 23:ijms23031211. [PMID: 35163135 PMCID: PMC8835212 DOI: 10.3390/ijms23031211] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/29/2022] Open
Abstract
The cell cycle consists of successive events that lead to the generation of new cells. The cell cycle is regulated by different cyclins, cyclin-dependent kinases (CDKs) and their inhibitors, such as p27Kip1. At the nuclear level, p27Kip1 has the ability to control the evolution of different phases of the cell cycle and oppose cell cycle progression by binding to CDKs. In the cytoplasm, diverse functions have been described for p27Kip1, including microtubule remodeling, axonal transport and phagocytosis. In Alzheimer’s disease (AD), alterations to cycle events and a purported increase in neurogenesis have been described in the early disease process before significant pathological changes could be detected. However, most neurons cannot progress to complete their cell division and undergo apoptotic cell death. Increased levels of both the p27Kip1 levels and phosphorylation status have been described in AD. Increased levels of Aβ42, tau hyperphosphorylation or even altered insulin signals could lead to alterations in p27Kip1 post-transcriptional modifications, causing a disbalance between the levels and functions of p27Kip1 in the cytoplasm and nucleus, thus inducing an aberrant cell cycle re-entry and alteration of extra cell cycle functions. Further studies are needed to completely understand the role of p27Kip1 in AD and the therapeutic opportunities associated with the modulation of this target.
Collapse
|
14
|
Olmeda D, Cerezo‐Wallis D, Mucientes C, Calvo TG, Cañón E, Alonso‐Curbelo D, Ibarz N, Muñoz J, Rodriguez‐Peralto JL, Ortiz‐Romero P, Ortega S, Soengas MS. Live imaging of neolymphangiogenesis identifies acute antimetastatic roles of dsRNA mimics. EMBO Mol Med 2021; 13:e12924. [PMID: 34762341 PMCID: PMC8649872 DOI: 10.15252/emmm.202012924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022] Open
Abstract
Long-range communication between tumor cells and the lymphatic vasculature defines competency for metastasis in different cancer types, particularly in melanoma. Nevertheless, the discovery of selective blockers of lymphovascular niches has been compromised by the paucity of experimental systems for whole-body analyses of tumor progression. Here, we exploit immunocompetent and immunodeficient mouse models for live imaging of Vegfr3-driven neolymphangiogenesis, as a versatile platform for drug screening in vivo. Spatiotemporal analyses of autochthonous melanomas and patient-derived xenografts identified double-stranded RNA mimics (dsRNA nanoplexes) as potent inhibitors of neolymphangiogenesis, metastasis, and post-surgical disease relapse. Mechanistically, dsRNA nanoplexes were found to exert a rapid dual action in tumor cells and in their associated lymphatic vasculature, involving the transcriptional repression of the lymphatic drivers Midkine and Vegfr3, respectively. This suppressive function was mediated by a cell-autonomous type I interferon signaling and was not shared by FDA-approved antimelanoma treatments. These results reveal an alternative strategy for targeting the tumor cell-lymphatic crosstalk and underscore the power of Vegfr3-lymphoreporters for pharmacological testing in otherwise aggressive cancers.
Collapse
Affiliation(s)
- David Olmeda
- Melanoma LaboratoryMolecular Oncology ProgrammeSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Daniela Cerezo‐Wallis
- Melanoma LaboratoryMolecular Oncology ProgrammeSpanish National Cancer Research Centre (CNIO)MadridSpain
- Present address:
Spanish National Center for Cardiovascular Research (CNIC)MadridSpain
| | - Cynthia Mucientes
- Melanoma LaboratoryMolecular Oncology ProgrammeSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Tonantzin G Calvo
- Melanoma LaboratoryMolecular Oncology ProgrammeSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Estela Cañón
- Melanoma LaboratoryMolecular Oncology ProgrammeSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Direna Alonso‐Curbelo
- Melanoma LaboratoryMolecular Oncology ProgrammeSpanish National Cancer Research Centre (CNIO)MadridSpain
- Present address:
Memorial Sloan Kettering Cancer CentreNew YorkNYUSA
| | - Nuria Ibarz
- Proteomics UnitBiotechnology Programme, ProteoRed‐ISCIIISpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Javier Muñoz
- Proteomics UnitBiotechnology Programme, ProteoRed‐ISCIIISpanish National Cancer Research Centre (CNIO)MadridSpain
| | - José L Rodriguez‐Peralto
- Instituto de Investigación i+12Hospital 12 de OctubreUniversidad Complutense Madrid Medical SchoolMadridSpain
| | - Pablo Ortiz‐Romero
- Department of DermatologyHospital 12 de OctubreUniversidad Complutense Madrid Medical SchoolMadridSpain
| | - Sagrario Ortega
- Mouse Genome Editing Core UnitSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - María S Soengas
- Melanoma LaboratoryMolecular Oncology ProgrammeSpanish National Cancer Research Centre (CNIO)MadridSpain
| |
Collapse
|
15
|
Kato T, Igarashi A, Sesaki H, Iijima M. Generating a new mouse model for nuclear PTEN deficiency by a single K13R mutation. Genes Cells 2021; 26:1014-1022. [PMID: 34661323 DOI: 10.1111/gtc.12902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/01/2022]
Abstract
Many human diseases, including cancer and neurological abnormalities, are linked to deficiencies of phosphatase and tensin homolog deleted on chromosome ten (PTEN), a dual phosphatase that dephosphorylates both lipids and proteins. PTEN functions in multiple intracellular locations, including the plasma membrane and nucleus. Therefore, a critical challenge to understand the pathogenesis of PTEN-associated diseases is to determine the specific role of PTEN at different locations. Toward this goal, the current study generated a mouse line in which lysine 13, which is critical for the nuclear localization of PTEN, is changed to arginine in the lipid-binding domain using the CRISPR-Ca9 gene-editing system. We found that PTENK13R mice show a strong decrease in the localization of PTEN in the nucleus without affecting the protein stability, phosphatase activity, and phosphorylation in the C-terminal tail region. PTENK13R mice are viable but produce smaller neurons and develop microcephaly. These data demonstrate that PTENK13R mice provide a useful animal model to study the role of PTEN in the nucleus in vivo.
Collapse
Affiliation(s)
- Takashi Kato
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Atsushi Igarashi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
PTEN mutations in autism spectrum disorder and congenital hydrocephalus: developmental pleiotropy and therapeutic targets. Trends Neurosci 2021; 44:961-976. [PMID: 34625286 DOI: 10.1016/j.tins.2021.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/27/2022]
Abstract
The lack of effective treatments for autism spectrum disorder (ASD) and congenital hydrocephalus (CH) reflects the limited understanding of the biology underlying these common neurodevelopmental disorders. Although ASD and CH have been extensively studied as independent entities, recent human genomic and preclinical animal studies have uncovered shared molecular pathophysiology. Here, we review and discuss phenotypic, genomic, and molecular similarities between ASD and CH, and identify the PTEN-PI3K-mTOR (phosphatase and tensin homolog-phosphoinositide 3-kinase-mammalian target of rapamycin) pathway as a common underlying mechanism that holds diagnostic, prognostic, and therapeutic promise for individuals with ASD and CH.
Collapse
|
17
|
Chai AP, Chen XF, Xu XS, Zhang N, Li M, Li JN, Zhang L, Zhang D, Zhang X, Mao RR, Ding YQ, Xu L, Zhou QX. A Temporal Activity of CA1 Neurons Underlying Short-Term Memory for Social Recognition Altered in PTEN Mouse Models of Autism Spectrum Disorder. Front Cell Neurosci 2021; 15:699315. [PMID: 34335191 PMCID: PMC8319669 DOI: 10.3389/fncel.2021.699315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022] Open
Abstract
Memory-guided social recognition identifies someone from previous encounters or experiences, but the mechanisms of social memory remain unclear. Here, we find that a short-term memory from experiencing a stranger mouse lasting under 30 min interval is essential for subsequent social recognition in mice, but that interval prolonged to hours by replacing the stranger mouse with a familiar littermate. Optogenetic silencing of dorsal CA1 neuronal activity during trials or inter-trial intervals disrupted short-term memory-guided social recognition, without affecting the ability of being sociable or long-term memory-guided social recognition. Postnatal knockdown or knockout of autism spectrum disorder (ASD)-associated phosphatase and tensin homolog (PTEN) gene in dorsal hippocampal CA1 similarly impaired neuronal firing rate in vitro and altered firing pattern during social recognition. These PTEN mice showed deficits in social recognition with stranger mouse rather than littermate and exhibited impairment in T-maze spontaneous alternation task for testing short-term spatial memory. Thus, we suggest that a temporal activity of dorsal CA1 neurons may underlie formation of short-term memory to be critical for organizing subsequent social recognition but that is possibly disrupted in ASD.
Collapse
Affiliation(s)
- An-Ping Chai
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Xue-Feng Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Xiao-Shan Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Na Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Meng Li
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Jin-Nan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Lei Zhang
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Dai Zhang
- Institute of Mental Health, The Sixth Hospital of Peking University, Beijing, China
| | - Xia Zhang
- Department of Cellular and Molecular Medicine, Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, ON, Canada
- Department of Psychiatry, Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, ON, Canada
| | - Rong-Rong Mao
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Yu-Qiang Ding
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
| | - Qi-Xin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
18
|
Nozais M, Loosveld M, Pankaew S, Grosjean C, Gentil N, Quessada J, Nadel B, Mionnet C, Potier D, Payet-Bornet D. MYC deficiency impairs the development of effector/memory T lymphocytes. iScience 2021; 24:102761. [PMID: 34258568 PMCID: PMC8259416 DOI: 10.1016/j.isci.2021.102761] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 11/28/2022] Open
Abstract
In the thymus, T cell progenitors differentiate in order to generate naive T lymphocytes which migrate in the periphery where they will fulfill their function in the adaptive immune response. During thymopoiesis, genomic alterations in thymocytes can promote leukemia development. Among recurrent alteration is PTEN inactivation, which is associated to MYC overexpression. Herein, we used conditional Pten and Myc knockout mouse models and single-cell RNA-sequencing approach, to investigate the impact of MYC loss on physio-pathological development of PTEN-proficient or PTEN-deficient T lymphocytes. First, our results confirm that MYC is mandatory for PTEN loss-mediated leukemogenesis, while it is not required for terminal steps of thymopoiesis. In contrast, we uncovered that Myc ablation in CD4+CD8+ thymocytes disrupts T lymphocytes homeostasis in the spleen, notably by drastically reducing the number of MYC-deficient effector/memory T cells. Collectively, our data show that besides naive T cells proliferation, MYC is essential for effector/memory differentiation. MYC is essential for PTEN loss-mediated T cell leukemogenesis MYC is required for effector/memory T cell differentiation Expansion of splenic CD8+TCRγδ+ cells in MYC-deficient background
Collapse
Affiliation(s)
- Mathis Nozais
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Parc scientifique de Luminy, Case 906, 13288 Marseille cedex 9, France
| | - Marie Loosveld
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Parc scientifique de Luminy, Case 906, 13288 Marseille cedex 9, France.,APHM, Hôpital La Timone, Laboratoire d'Hématologie, Marseille, France
| | - Saran Pankaew
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Parc scientifique de Luminy, Case 906, 13288 Marseille cedex 9, France
| | - Clémence Grosjean
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Parc scientifique de Luminy, Case 906, 13288 Marseille cedex 9, France
| | - Noémie Gentil
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Parc scientifique de Luminy, Case 906, 13288 Marseille cedex 9, France
| | - Julie Quessada
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Parc scientifique de Luminy, Case 906, 13288 Marseille cedex 9, France
| | - Bertrand Nadel
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Parc scientifique de Luminy, Case 906, 13288 Marseille cedex 9, France
| | - Cyrille Mionnet
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Parc scientifique de Luminy, Case 906, 13288 Marseille cedex 9, France
| | - Delphine Potier
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Parc scientifique de Luminy, Case 906, 13288 Marseille cedex 9, France
| | - Dominique Payet-Bornet
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Parc scientifique de Luminy, Case 906, 13288 Marseille cedex 9, France
| |
Collapse
|
19
|
Igarashi A, Kato T, Sesaki H, Iijima M. Nuclear PTEN deficiency and heterozygous PTEN loss have distinct impacts on brain and lymph node size. Biochem Biophys Res Commun 2021; 555:81-88. [PMID: 33813280 PMCID: PMC8085137 DOI: 10.1016/j.bbrc.2021.03.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 01/08/2023]
Abstract
Defects in PTEN, a critical tumor suppressor, are associated with tumorigenesis and aberrant organ sizes. It has been shown that heterozygous PTEN loss increases brains and neuron size, while the specific loss of nuclear PTEN has the opposite effect. Here, we investigate the impact of a combination of heterozygous PTEN loss and nuclear PTEN loss on the size of various organs, including the brain, liver, thymus, spleen, and inguinal lymph node. We found that the effect of the combination varies among organs. Notably, the combination of heterozygous PTEN loss and nuclear PTEN loss restored the normal size of brains and neurons. In contrast, the liver's size was unaffected by either single PTEN defects or their combination. Strikingly, the size of the inguinal lymph node was greatly increased due to lymphoma by the combination of the two PTEN defects. These data suggest that nuclear PTEN and non-nuclear PTEN function in an antagonistic manner in the brain while acting synergistically in the inguinal lymph node.
Collapse
Affiliation(s)
- Atsushi Igarashi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Takashi Kato
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
20
|
Rodgers J, Bano‐Otalora B, Belle MDC, Paul S, Hughes R, Wright P, McDowell R, Milosavljevic N, Orlowska‐Feuer P, Martial FP, Wynne J, Ballister ER, Storchi R, Allen AE, Brown T, Lucas RJ. Using a bistable animal opsin for switchable and scalable optogenetic inhibition of neurons. EMBO Rep 2021; 22:e51866. [PMID: 33655694 PMCID: PMC8097317 DOI: 10.15252/embr.202051866] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 11/09/2022] Open
Abstract
There is no consensus on the best inhibitory optogenetic tool. Since Gi/o signalling is a native mechanism of neuronal inhibition, we asked whether Lamprey Parapinopsin ("Lamplight"), a Gi/o-coupled bistable animal opsin, could be used for optogenetic silencing. We show that short (405 nm) and long (525 nm) wavelength pulses repeatedly switch Lamplight between stable signalling active and inactive states, respectively, and that combining these wavelengths can be used to achieve intermediate levels of activity. These properties can be applied to produce switchable neuronal hyperpolarisation and suppression of spontaneous spike firing in the mouse hypothalamic suprachiasmatic nucleus. Expressing Lamplight in (predominantly) ON bipolar cells can photosensitise retinas following advanced photoreceptor degeneration, with 405 and 525 nm stimuli producing responses of opposite sign in the output neurons of the retina. We conclude that bistable animal opsins can co-opt endogenous signalling mechanisms to allow optogenetic inhibition that is scalable, sustained and reversible.
Collapse
Affiliation(s)
- Jessica Rodgers
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | | | - Mino D C Belle
- Institute of Biomedical and Clinical SciencesUniversity of Exeter Medical SchoolUniversity of ExeterExeterUK
| | - Sarika Paul
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Rebecca Hughes
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Phillip Wright
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Richard McDowell
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Nina Milosavljevic
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Patrycja Orlowska‐Feuer
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
- Department of Neurophysiology and ChronobiologyInstitute of Zoology and Biomedical ResearchJagiellonian University in KrakowKrakowPoland
| | - Franck P Martial
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Jonathan Wynne
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Edward R Ballister
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
- Department of Biomedical EngineeringColumbia UniversityNew YorkNYUSA
| | - Riccardo Storchi
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Annette E Allen
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Timothy Brown
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Robert J Lucas
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
21
|
Lindner M, Gilhooley MJ, Peirson SN, Hughes S, Hankins MW. The functional characteristics of optogenetic gene therapy for vision restoration. Cell Mol Life Sci 2021; 78:1597-1613. [PMID: 32728765 PMCID: PMC7904736 DOI: 10.1007/s00018-020-03597-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 06/20/2020] [Accepted: 07/09/2020] [Indexed: 11/09/2022]
Abstract
Optogenetic strategies to restore vision in patients blind from end-stage retinal degenerations aim to render remaining retinal neurons light-sensitive. We present an innovative combination of multi-electrode array recordings together with a complex pattern-generating light source as a toolset to determine the extent to which neural retinal responses to complex light stimuli can be restored following viral delivery of red-shifted channelrhodopsin in the retinally degenerated mouse. Our data indicate that retinal output level spatiotemporal response characteristics achieved by optogenetic gene therapy closely parallel those observed for normal mice but equally reveal important limitations, some of which could be mitigated using bipolar-cell targeted gene-delivery approaches. As clinical trials are commencing, these data provide important new information on the capacity and limitations of channelrhodopsin-based gene therapies. The toolset we established enables comparing optogenetic constructs and stem-cell-based techniques, thereby providing an efficient and sensitive starting point to identify future approaches for vision restoration.
Collapse
Affiliation(s)
- Moritz Lindner
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, Marburg, Germany.
| | - Michael J Gilhooley
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Neuroophthalmology, Institute of Ophthalmology, London, UK
| | - Stuart N Peirson
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Steven Hughes
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Mark W Hankins
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
22
|
Martín-Flores N, Pérez-Sisqués L, Creus-Muncunill J, Masana M, Ginés S, Alberch J, Pérez-Navarro E, Malagelada C. Synaptic RTP801 contributes to motor-learning dysfunction in Huntington's disease. Cell Death Dis 2020; 11:569. [PMID: 32732871 PMCID: PMC7392897 DOI: 10.1038/s41419-020-02775-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022]
Abstract
RTP801/REDD1 is a stress-responsive protein that mediates mutant huntingtin (mhtt) toxicity in cellular models and is up regulated in Huntington's disease (HD) patients' putamen. Here, we investigated whether RTP801 is involved in motor impairment in HD by affecting striatal synaptic plasticity. To explore this hypothesis, ectopic mhtt was over expressed in cultured rat primary neurons. Moreover, the protein levels of RTP801 were assessed in homogenates and crude synaptic fractions from human postmortem HD brains and mouse models of HD. Finally, striatal RTP801 expression was knocked down with adeno-associated viral particles containing a shRNA in the R6/1 mouse model of HD and motor learning was then tested. Ectopic mhtt elevated RTP801 in synapses of cultured neurons. RTP801 was also up regulated in striatal synapses from HD patients and mouse models. Knocking down RTP801 in the R6/1 mouse striatum prevented motor-learning impairment. RTP801 silencing normalized the Ser473 Akt hyperphosphorylation by downregulating Rictor and it induced synaptic elevation of calcium permeable GluA1 subunit and TrkB receptor levels, suggesting an enhancement in synaptic plasticity. These results indicate that mhtt-induced RTP801 mediates motor dysfunction in a HD murine model, revealing a potential role in the human disease. These findings open a new therapeutic framework focused on the RTP801/Akt/mTOR axis.
Collapse
Affiliation(s)
- Núria Martín-Flores
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, 08036, Barcelona, Catalonia, Spain.
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Catalonia, Spain.
| | - Leticia Pérez-Sisqués
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Catalonia, Spain
| | - Jordi Creus-Muncunill
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- IDIBAPS-Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08036, Barcelona, Spain
| | - Mercè Masana
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- IDIBAPS-Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08036, Barcelona, Spain
| | - Sílvia Ginés
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- IDIBAPS-Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08036, Barcelona, Spain
| | - Jordi Alberch
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- IDIBAPS-Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08036, Barcelona, Spain
| | - Esther Pérez-Navarro
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- IDIBAPS-Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08036, Barcelona, Spain
| | - Cristina Malagelada
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, 08036, Barcelona, Catalonia, Spain.
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08036, Barcelona, Spain.
| |
Collapse
|
23
|
Zhang Y, Pusch S, Innes J, Sidlauskas K, Ellis M, Lau J, El-Hassan T, Aley N, Launchbury F, Richard-Loendt A, deBoer J, Chen S, Wang L, von Deimling A, Li N, Brandner S. Mutant IDH Sensitizes Gliomas to Endoplasmic Reticulum Stress and Triggers Apoptosis via miR-183-Mediated Inhibition of Semaphorin 3E. Cancer Res 2019; 79:4994-5007. [PMID: 31391185 PMCID: PMC7611309 DOI: 10.1158/0008-5472.can-19-0054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/02/2019] [Accepted: 07/25/2019] [Indexed: 02/03/2023]
Abstract
Human astrocytomas and oligodendrogliomas are defined by mutations of the metabolic enzymes isocitrate dehydrogenase (IDH) 1 or 2, resulting in the production of the abnormal metabolite D-2 hydroxyglutarate. Here, we studied the effect of mutant IDH on cell proliferation and apoptosis in a glioma mouse model. Tumors were generated by inactivating Pten and p53 in forebrain progenitors and compared with tumors additionally expressing the Idh1 R132H mutation. Idh-mutant cells proliferated less in vitro and mice with Idh-mutant tumors survived significantly longer compared with Idh-wildtype mice. Comparison of miRNA and RNA expression profiles of Idh-wildtype and Idh-mutant cells and tumors revealed miR-183 was significantly upregulated in IDH-mutant cells. Idh-mutant cells were more sensitive to endoplasmic reticulum (ER) stress, resulting in increased apoptosis and thus reduced cell proliferation and survival. This was mediated by the interaction of miR-183 with the 5' untranslated region of semaphorin 3E, downregulating its function as an apoptosis suppressor. In conclusion, we show that mutant Idh1 delays tumorigenesis and sensitizes tumor cells to ER stress and apoptosis. This may open opportunities for drug treatments targeting the miR-183-semaphorin axis. SIGNIFICANCE: The pathologic metabolite 2-hydroxyglutarate, generated by IDH-mutant astrocytomas, sensitizes tumor cells to ER stress and delays tumorigenesis. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/19/4994/F1.large.jpg.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Stefan Pusch
- Department of Neuropathology, Institute of Pathology, University Heidelberg and Clinical Cooperation Unit Neuropathology German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - James Innes
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Kastytis Sidlauskas
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Matthew Ellis
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Joanne Lau
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Tedani El-Hassan
- Division of Neuropathology, the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Natasha Aley
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Francesca Launchbury
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom
- UCL IQPath Laboratory, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Angela Richard-Loendt
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom
- UCL IQPath Laboratory, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jasper deBoer
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | | | - Lei Wang
- CapitalBio Technology, Beijing, China
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, University Heidelberg and Clinical Cooperation Unit Neuropathology German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ningning Li
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom.
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom.
- Division of Neuropathology, the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
24
|
Merve A, Zhang X, Pomella N, Acquati S, Hoeck JD, Dumas A, Rosser G, Li Y, Jeyapalan J, Vicenzi S, Fan Q, Yang ZJ, Sabò A, Sheer D, Behrens A, Marino S. c-MYC overexpression induces choroid plexus papillomas through a T-cell mediated inflammatory mechanism. Acta Neuropathol Commun 2019; 7:95. [PMID: 31142360 PMCID: PMC6540455 DOI: 10.1186/s40478-019-0739-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 05/14/2019] [Indexed: 12/26/2022] Open
Abstract
Choroid plexus tumours (CPTs) account for 2–5% of brain tumours in children. They can spread along the neuraxis and can recur after treatment. Little is known about the molecular mechanisms underlying their formation and only few high fidelity mouse models of p53-deficient malignant CPTs are available. We show here that c-MYC overexpression in the choroid plexus epithelium induces T-cell inflammation-dependent choroid plexus papillomas in a mouse model. We demonstrate that c-MYC is expressed in a substantial proportion of human choroid plexus tumours and that this subgroup of tumours is characterised by an inflammatory transcriptome and significant inflammatory infiltrates. In compound mutant mice, overexpression of c-MYC in an immunodeficient background led to a decreased incidence of CPP and reduced tumour bulk. Finally, reduced tumour size was also observed upon T-cell depletion in CPP-bearing mice. Our data raise the possibility that benign choroid plexus tumours expressing c-MYC could be amenable to medical therapy with anti-inflammatory drugs.
Collapse
|
25
|
Karras P, Riveiro-Falkenbach E, Cañón E, Tejedo C, Calvo TG, Martínez-Herranz R, Alonso-Curbelo D, Cifdaloz M, Perez-Guijarro E, Gómez-López G, Ximenez-Embun P, Muñoz J, Megias D, Olmeda D, Moscat J, Ortiz-Romero PL, Rodríguez-Peralto JL, Soengas MS. p62/SQSTM1 Fuels Melanoma Progression by Opposing mRNA Decay of a Selective Set of Pro-metastatic Factors. Cancer Cell 2019; 35:46-63.e10. [PMID: 30581152 DOI: 10.1016/j.ccell.2018.11.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 06/27/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022]
Abstract
Modulators of mRNA stability are not well understood in melanoma, an aggressive tumor with complex changes in the transcriptome. Here we report the ability of p62/SQSTM1 to extend mRNA half-life of a spectrum of pro-metastatic factors. These include FERMT2 and other transcripts with no previous links to melanoma. Transcriptomic, proteomic, and interactomic analyses, combined with validation in clinical biopsies and mouse models, identified a selected set of RNA-binding proteins (RBPs) recruited by p62, with IGF2BP1 as a key partner. This p62-RBP interaction distinguishes melanoma from other tumors where p62 controls autophagy or oxidative stress. The relevance of these data is emphasized by follow-up analyses of patient prognosis revealing p62 and FERMT2 as adverse determinants of disease-free survival.
Collapse
Affiliation(s)
- Panagiotis Karras
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Erica Riveiro-Falkenbach
- Hospital Universitario 12 de Octubre, Instituto Investigación i+12, Medical School, Universidad Complutense, Madrid, Spain
| | - Estela Cañón
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Cristina Tejedo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Tonantzin G Calvo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Raúl Martínez-Herranz
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Direna Alonso-Curbelo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Metehan Cifdaloz
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Eva Perez-Guijarro
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | | | | | | | - Diego Megias
- Confocal Microscopy Unit, CNIO, Madrid 28029, Spain
| | - David Olmeda
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Jorge Moscat
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Pablo L Ortiz-Romero
- Hospital Universitario 12 de Octubre, Instituto Investigación i+12, Medical School, Universidad Complutense, Madrid, Spain
| | - Jose L Rodríguez-Peralto
- Hospital Universitario 12 de Octubre, Instituto Investigación i+12, Medical School, Universidad Complutense, Madrid, Spain.
| | - María S Soengas
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain.
| |
Collapse
|
26
|
French CA, Vinueza Veloz MF, Zhou K, Peter S, Fisher SE, Costa RM, De Zeeuw CI. Differential effects of Foxp2 disruption in distinct motor circuits. Mol Psychiatry 2019; 24:447-462. [PMID: 30108312 PMCID: PMC6514880 DOI: 10.1038/s41380-018-0199-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 05/17/2018] [Accepted: 06/08/2018] [Indexed: 01/27/2023]
Abstract
Disruptions of the FOXP2 gene cause a speech and language disorder involving difficulties in sequencing orofacial movements. FOXP2 is expressed in cortico-striatal and cortico-cerebellar circuits important for fine motor skills, and affected individuals show abnormalities in these brain regions. We selectively disrupted Foxp2 in the cerebellar Purkinje cells, striatum or cortex of mice and assessed the effects on skilled motor behaviour using an operant lever-pressing task. Foxp2 loss in each region impacted behaviour differently, with striatal and Purkinje cell disruptions affecting the variability and the speed of lever-press sequences, respectively. Mice lacking Foxp2 in Purkinje cells showed a prominent phenotype involving slowed lever pressing as well as deficits in skilled locomotion. In vivo recordings from Purkinje cells uncovered an increased simple spike firing rate and decreased modulation of firing during limb movements. This was caused by increased intrinsic excitability rather than changes in excitatory or inhibitory inputs. Our findings show that Foxp2 can modulate different aspects of motor behaviour in distinct brain regions, and uncover an unknown role for Foxp2 in the modulation of Purkinje cell activity that severely impacts skilled movements.
Collapse
Affiliation(s)
- Catherine A. French
- 0000 0004 0453 9636grid.421010.6Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - María F. Vinueza Veloz
- 000000040459992Xgrid.5645.2Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands ,grid.442230.3School of Medicine, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador
| | - Kuikui Zhou
- 000000040459992Xgrid.5645.2Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands ,0000000119573309grid.9227.eThe Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Saša Peter
- 000000040459992Xgrid.5645.2Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Simon E. Fisher
- 0000 0004 0501 3839grid.419550.cLanguage and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands ,0000000122931605grid.5590.9Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Rui M. Costa
- 0000 0004 0453 9636grid.421010.6Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal ,0000000419368729grid.21729.3fDepartment of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Chris I. De Zeeuw
- 000000040459992Xgrid.5645.2Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands ,0000 0001 2153 6865grid.418101.dNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| |
Collapse
|
27
|
Li N, Zhang Y, Sidlauskas K, Ellis M, Evans I, Frankel P, Lau J, El-Hassan T, Guglielmi L, Broni J, Richard-Loendt A, Brandner S. Inhibition of GPR158 by microRNA-449a suppresses neural lineage of glioma stem/progenitor cells and correlates with higher glioma grades. Oncogene 2018; 37:4313-4333. [PMID: 29720725 PMCID: PMC6072706 DOI: 10.1038/s41388-018-0277-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/22/2018] [Accepted: 03/28/2018] [Indexed: 12/19/2022]
Abstract
To identify biomarkers for glioma growth, invasion and progression, we used a candidate gene approach in mouse models with two complementary brain tumour phenotypes, developing either slow-growing, diffusely infiltrating gliomas or highly proliferative, non-invasive primitive neural tumours. In a microRNA screen we first identified microRNA-449a as most significantly differentially expressed between these two tumour types. miR-449a has a target dependent effect, inhibiting cell growth and migration by downregulation of CCND1 and suppressing neural phenotypes by inhibition of G protein coupled-receptor (GPR) 158. GPR158 promotes glioma stem cell differentiation and induces apoptosis and is highest expressed in the cerebral cortex and in oligodendrogliomas, lower in IDH mutant astrocytomas and lowest in the most malignant form of glioma, IDH wild-type glioblastoma. The correlation of GPR158 expression with molecular subtypes, patient survival and therapy response suggests a possible role of GPR158 as prognostic biomarker in human gliomas.
Collapse
Affiliation(s)
- Ningning Li
- Department of Neurodegeneration, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Ying Zhang
- Department of Neurodegeneration, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Kastytis Sidlauskas
- Department of Neurodegeneration, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Matthew Ellis
- Department of Neurodegeneration, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Ian Evans
- Division of Medicine, University College London, University Street, London, WC1E 6JF, UK
| | - Paul Frankel
- Division of Medicine, University College London, University Street, London, WC1E 6JF, UK
| | - Joanne Lau
- Department of Neurodegeneration, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Tedani El-Hassan
- Division of Neuropathology, the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust Queen Square, London, WC1N 3BG, UK
| | - Loredana Guglielmi
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Jessica Broni
- Department of Neurodegeneration, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
- UCL IQPath laboratory, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Angela Richard-Loendt
- Department of Neurodegeneration, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
- UCL IQPath laboratory, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Sebastian Brandner
- Department of Neurodegeneration, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
- Division of Neuropathology, the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
28
|
Abstract
The mechanistic target of rapamycin (mTOR) is an important signaling hub that integrates environmental information regarding energy availability and stimulates anabolic molecular processes and cell growth. Abnormalities in this pathway have been identified in several syndromes in which autism spectrum disorder (ASD) is highly prevalent. Several studies have investigated mTOR signaling in developmental and neuronal processes that, when dysregulated, could contribute to the development of ASD. Although many potential mechanisms still remain to be fully understood, these associations are of great interest because of the clinical availability of mTOR inhibitors. Clinical trials evaluating the efficacy of mTOR inhibitors to improve neurodevelopmental outcomes have been initiated.
Collapse
Affiliation(s)
- Kellen D. Winden
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Darius Ebrahimi-Fakhari
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mustafa Sahin
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
29
|
Intermittent fasting uncovers and rescues cognitive phenotypes in PTEN neuronal haploinsufficient mice. Sci Rep 2018; 8:8595. [PMID: 29872062 PMCID: PMC5988674 DOI: 10.1038/s41598-018-26814-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/16/2018] [Indexed: 01/16/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) is an important protein with key modulatory functions in cell growth and survival. PTEN is crucial during embryogenesis and plays a key role in the central nervous system (CNS), where it directly modulates neuronal development and synaptic plasticity. Loss of PTEN signaling function is associated with cognitive deficits and synaptic plasticity impairment. Accordingly, Pten mutations have a strong link with autism spectrum disorder. In this study, neuronal Pten haploinsufficient male mice were subjected to a long-term environmental intervention – intermittent fasting (IF) – and then evaluated for alterations in exploratory, anxiety and learning and memory behaviors. Although no significant effects on spatial memory were observed, mutant mice showed impaired contextual fear memory in the passive avoidance test – an outcome that was effectively rescued by IF. In this study, we demonstrated that IF modulation, in addition to its rescue of the memory deficit, was also required to uncover behavioral phenotypes otherwise hidden in this neuronal Pten haploinsufficiency model.
Collapse
|
30
|
Igarashi A, Itoh K, Yamada T, Adachi Y, Kato T, Murata D, Sesaki H, Iijima M. Nuclear PTEN deficiency causes microcephaly with decreased neuronal soma size and increased seizure susceptibility. J Biol Chem 2018; 293:9292-9300. [PMID: 29735527 DOI: 10.1074/jbc.ra118.002356] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/20/2018] [Indexed: 12/25/2022] Open
Abstract
Defects in phosphatase and tensin homolog (PTEN) are associated with neurological disorders and tumors. PTEN functions at two primary intracellular locations: the plasma membrane and the nucleus. At the membrane, PTEN functions as a phosphatidylinositol (3,4,5)-trisphosphate phosphatase and suppresses PI 3-kinase signaling that drives cell growth and tumorigenesis. However, the in vivo function of nuclear PTEN is unclear. Here, using CRISPR/Cas9, we generated a mouse model in which PTEN levels in the nucleus are decreased. Nuclear PTEN-deficient mice were born with microcephaly and maintained a small brain during adulthood. The size of neuronal soma was significantly smaller in the cerebellum, cerebral cortex, and hippocampus. Also, these mice were prone to seizure. No changes in PI 3-kinase signaling were observed. By contrast, the size of other organs was unaffected. Therefore, nuclear PTEN is essential for the health of the brain by promoting the growth of neuronal soma size during development.
Collapse
Affiliation(s)
- Atsushi Igarashi
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Kie Itoh
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Tatsuya Yamada
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Yoshihiro Adachi
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Takashi Kato
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Daisuke Murata
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Hiromi Sesaki
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Miho Iijima
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
31
|
Yang T, Moore M, He F. Pten regulates neural crest proliferation and differentiation during mouse craniofacial development. Dev Dyn 2017; 247:304-314. [PMID: 29115005 DOI: 10.1002/dvdy.24605] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/20/2017] [Accepted: 11/01/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The phosphatase and tensin homolog deleted on chromosome TEN (Pten) is implicated in a broad range of developmental events and diseases. However, its role in neural crest and craniofacial development has not been well illustrated. RESULTS Using genetically engineered mouse models, we showed that inactivating Pten specifically in neural crest cells causes malformation of craniofacial structures. Pten conditional knockout mice exhibit perinatal lethality with overgrowth of craniofacial structures. At the cellular level, Pten deficiency increases cell proliferation rate and enhances osteoblast differentiation. Our data further revealed that inactivating Pten elevates PI3K/Akt signaling activity in neural crest derivatives, and confirmed that attenuation of PI3K/Akt activity led to decreased neural crest cell proliferation and differentiation both in vitro and in vivo. CONCLUSIONS Our study revealed that Pten is essential for craniofacial morphogenesis in mice. Inactivating Pten in neural crest cells increases proliferation rate and promotes their differentiation toward osteoblasts. Our data further indicate that Pten acts via modulating PI3K/Akt activity during these processes. Developmental Dynamics 247:304-314, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tianfang Yang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana
| | - Matthew Moore
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana
| | - Fenglei He
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana
| |
Collapse
|
32
|
Whole-body imaging of lymphovascular niches identifies pre-metastatic roles of midkine. Nature 2017; 546:676-680. [PMID: 28658220 DOI: 10.1038/nature22977] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/25/2017] [Indexed: 12/14/2022]
Abstract
Cutaneous melanoma is a type of cancer with an inherent potential for lymph node colonization, which is generally preceded by neolymphangiogenesis. However, sentinel lymph node removal does not necessarily extend the overall survival of patients with melanoma. Moreover, lymphatic vessels collapse and become dysfunctional as melanomas progress. Therefore, it is unclear whether (and how) lymphangiogenesis contributes to visceral metastasis. Soluble and vesicle-associated proteins secreted by tumours and/or their stroma have been proposed to condition pre-metastatic sites in patients with melanoma. Still, the identities and prognostic value of lymphangiogenic mediators remain unclear. Moreover, our understanding of lymphangiogenesis (in melanomas and other tumour types) is limited by the paucity of mouse models for live imaging of distal pre-metastatic niches. Injectable lymphatic tracers have been developed, but their limited diffusion precludes whole-body imaging at visceral sites. Vascular endothelial growth factor receptor 3 (VEGFR3) is an attractive 'lymphoreporter' because its expression is strongly downregulated in normal adult lymphatic endothelial cells, but is activated in pathological situations such as inflammation and cancer. Here, we exploit this inducibility of VEGFR3 to engineer mouse melanoma models for whole-body imaging of metastasis generated by human cells, clinical biopsies or endogenously deregulated oncogenic pathways. This strategy revealed early induction of distal pre-metastatic niches uncoupled from lymphangiogenesis at primary lesions. Analyses of the melanoma secretome and validation in clinical specimens showed that the heparin-binding factor midkine is a systemic inducer of neo-lymphangiogenesis that defines patient prognosis. This role of midkine was linked to a paracrine activation of the mTOR pathway in lymphatic endothelial cells. These data support the use of VEGFR3 reporter mice as a 'MetAlert' discovery platform for drivers and inhibitors of metastasis.
Collapse
|
33
|
Annunziato S, Kas SM, Nethe M, Yücel H, Del Bravo J, Pritchard C, Bin Ali R, van Gerwen B, Siteur B, Drenth AP, Schut E, van de Ven M, Boelens MC, Klarenbeek S, Huijbers IJ, van Miltenburg MH, Jonkers J. Modeling invasive lobular breast carcinoma by CRISPR/Cas9-mediated somatic genome editing of the mammary gland. Genes Dev 2017; 30:1470-80. [PMID: 27340177 PMCID: PMC4926868 DOI: 10.1101/gad.279190.116] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/27/2016] [Indexed: 11/25/2022]
Abstract
Annunziato et al. describe a novel strategy for in vivo validation of candidate tumor suppressors implicated in invasive lobular breast carcinoma (ILC). Whereas intraductal injection of Cas9-encoding lentiviruses induced Cas9-specific immune responses and development of tumors that did not resemble ILC, lentiviral delivery of a Pten targeting sgRNA in mice with mammary gland-specific loss of E-cadherin and expression of Cas9 efficiently induced ILC development. Large-scale sequencing studies are rapidly identifying putative oncogenic mutations in human tumors. However, discrimination between passenger and driver events in tumorigenesis remains challenging and requires in vivo validation studies in reliable animal models of human cancer. In this study, we describe a novel strategy for in vivo validation of candidate tumor suppressors implicated in invasive lobular breast carcinoma (ILC), which is hallmarked by loss of the cell–cell adhesion molecule E-cadherin. We describe an approach to model ILC by intraductal injection of lentiviral vectors encoding Cre recombinase, the CRISPR/Cas9 system, or both in female mice carrying conditional alleles of the Cdh1 gene, encoding for E-cadherin. Using this approach, we were able to target ILC-initiating cells and induce specific gene disruption of Pten by CRISPR/Cas9-mediated somatic gene editing. Whereas intraductal injection of Cas9-encoding lentiviruses induced Cas9-specific immune responses and development of tumors that did not resemble ILC, lentiviral delivery of a Pten targeting single-guide RNA (sgRNA) in mice with mammary gland-specific loss of E-cadherin and expression of Cas9 efficiently induced ILC development. This versatile platform can be used for rapid in vivo testing of putative tumor suppressor genes implicated in ILC, providing new opportunities for modeling invasive lobular breast carcinoma in mice.
Collapse
Affiliation(s)
- Stefano Annunziato
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Sjors M Kas
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Micha Nethe
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Hatice Yücel
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Jessica Del Bravo
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Colin Pritchard
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Rahmen Bin Ali
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Bas van Gerwen
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Bjørn Siteur
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Anne Paulien Drenth
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Eva Schut
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Marieke van de Ven
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Mirjam C Boelens
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Ivo J Huijbers
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Martine H van Miltenburg
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; Cancer Genomics Netherlands, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
34
|
Liu XY, Zhang LJ, Chen Z, Liu LB. The PTEN inhibitor bpV(pic) promotes neuroprotection against amyloid β-peptide (25-35)-induced oxidative stress and neurotoxicity. Neurol Res 2017; 39:758-765. [PMID: 28436304 DOI: 10.1080/01616412.2017.1317916] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiao-Ying Liu
- Department of Endocrinology, Fujian Institute of Endocrinology, Union Hospital of Fujian Medical University, Fuzhou, China
| | - Li-Jing Zhang
- Zhejiang Department of Pharmacology, Pharmaceutical college, Ningbo, China
| | - Zhou Chen
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Li-Bin Liu
- Department of Endocrinology, Fujian Institute of Endocrinology, Union Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
35
|
Magdalon J, Sánchez-Sánchez SM, Griesi-Oliveira K, Sertié AL. Dysfunctional mTORC1 Signaling: A Convergent Mechanism between Syndromic and Nonsyndromic Forms of Autism Spectrum Disorder? Int J Mol Sci 2017; 18:ijms18030659. [PMID: 28335463 PMCID: PMC5372671 DOI: 10.3390/ijms18030659] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/28/2022] Open
Abstract
Whereas autism spectrum disorder (ASD) exhibits striking heterogeneity in genetics and clinical presentation, dysfunction of mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway has been identified as a molecular feature common to several well-characterized syndromes with high prevalence of ASD. Additionally, recent findings have also implicated mTORC1 signaling abnormalities in a subset of nonsyndromic ASD, suggesting that defective mTORC1 pathway may be a potential converging mechanism in ASD pathology across different etiologies. However, the mechanistic evidence for a causal link between aberrant mTORC1 pathway activity and ASD neurobehavioral features varies depending on the ASD form involved. In this review, we first discuss six monogenic ASD-related syndromes, including both classical and potentially novel mTORopathies, highlighting their contribution to our understanding of the neurobiological mechanisms underlying ASD, and then we discuss existing evidence suggesting that aberrant mTORC1 signaling may also play a role in nonsyndromic ASD.
Collapse
Affiliation(s)
- Juliana Magdalon
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
| | - Sandra M Sánchez-Sánchez
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil.
| | - Karina Griesi-Oliveira
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
| | - Andréa L Sertié
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
| |
Collapse
|
36
|
Wang L, Zhou K, Fu Z, Yu D, Huang H, Zang X, Mo X. Brain Development and Akt Signaling: the Crossroads of Signaling Pathway and Neurodevelopmental Diseases. J Mol Neurosci 2016; 61:379-384. [PMID: 28025777 PMCID: PMC5344939 DOI: 10.1007/s12031-016-0872-y] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 11/25/2016] [Indexed: 12/12/2022]
Abstract
Neurodevelopmental biology, coupled with the application of advanced histological, imaging, molecular, cellular, biochemical, and genetic approaches, has provided new insights into these intricate genetic, cellular, and molecular events. During telencephalic development, specific neural progenitor cells (NPCs) proliferate, differentiate into numerous cell types, migrate to their apposite positions, and form an integrated circuitry. Critical disturbance to this dynamic process via genetic and environmental risk can cause neurological disorders and disability. The phosphatidylinositol-3-OH kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling cascade contributes to mediate various cellular processes, including cell proliferation and growth, and nutrient uptake. In light of its critical function, dysregulation of this node has been regarded as a root cause of several neurodevelopmental diseases, such as megalencephaly ("big brain"), microcephaly ("small brain"), autism spectrum disorders, intellectual disability, schizophrenia, and epilepsy. In this review, particular emphasis will be given to the PI3K-Akt-mTOR signaling pathway and their paramount importance in neurodevelopment of the cerebral neocortex, because of its critical roles in complex cognition, emotional regulation, language, and behaviors.
Collapse
Affiliation(s)
- Long Wang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Kai Zhou
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Zhi Fu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Di Yu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Hesuyuan Huang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Xiaodong Zang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
37
|
Abstract
As many as 5% of human cancers appear to be of hereditable etiology. Of the more than 50 characterized familial cancer syndromes, most involve disease affecting multiple organs and many can be traced to one or more abnormalities in specific genes. Studying these syndromes in humans is a difficult task, especially when it comes to genes that may manifest themselves early in gestation. It has been made somewhat easier with the development of genetically engineered mice (GEM) that phenotypically mimic many of these inheritable human cancers. The past 15 years has seen the establishment of mouse lines heterozygous or homozygous null for genes known or suspected of being involved in human cancer syndromes, including APC, ATM, BLM, BRCA1, BRCA2, LKB1, MEN1, MLH, MSH, NF1, TP53, PTEN, RB1, TSC1, TSC2, VHL, and XPA. These lines not only provide models for clinical disease and pathology, but also provide avenues to investigate molecular pathology, gene-gene and protein-tissue interaction, and, ultimately, therapeutic intervention. Possibly of even greater importance, they provide a means of looking at placental and fetal tissues, where genetic abnormalities are often first detected and where they may be most easily corrected. We will review these mouse models, examine their usefulness in medical research, and furnish sources of animals and references.
Collapse
Affiliation(s)
- Jerrold M Ward
- Veterinary and Tumor Pathology Section, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, USA.
| | | |
Collapse
|
38
|
Zhu G, Rankin SL, Larson JD, Zhu X, Chow LML, Qu C, Zhang J, Ellison DW, Baker SJ. PTEN Signaling in the Postnatal Perivascular Progenitor Niche Drives Medulloblastoma Formation. Cancer Res 2016; 77:123-133. [PMID: 27815386 DOI: 10.1158/0008-5472.can-16-1991] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/30/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023]
Abstract
Loss of the tumor suppressor gene PTEN exerts diverse outcomes on cancer in different developmental contexts. To gain insight into the effect of its loss on outcomes in the brain, we conditionally inactivated the murine Pten gene in neonatal neural stem/progenitor cells. Pten inactivation created an abnormal perivascular proliferative niche in the cerebellum that persisted in adult animals but did not progress to malignancy. Proliferating cells showed undifferentiated morphology and expressed the progenitor marker Nestin but not Math1, a marker of committed granule neuron progenitors. Codeletion of Pten and Trp53 resulted in fully penetrant medulloblastoma originating from the perivascular niche, which exhibited abnormal blood vessel networks and advanced neuronal differentiation of tumor cells. EdU pulse-chase experiments demonstrated a perivascular cancer stem cell population in Pten/Trp53 double mutant medulloblastomas. Genetic analyses revealed recurrent somatic inactivations of the tumor suppressor gene Ptch1 and a recapitulation of the sonic hedgehog subgroup of human medulloblastomas. Overall, our results showed that PTEN acts to prevent the proliferation of a progenitor niche in postnatal cerebellum predisposed to oncogenic induction of medulloblastoma. Cancer Res; 77(1); 123-33. ©2016 AACR.
Collapse
Affiliation(s)
- Guo Zhu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee.,Integrated Program in Biomedical Sciences, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Sherri L Rankin
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jon D Larson
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Xiaoyan Zhu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Lionel M L Chow
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Chunxu Qu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - David W Ellison
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee. .,Integrated Program in Biomedical Sciences, The University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
39
|
Ferone G, Song JY, Sutherland KD, Bhaskaran R, Monkhorst K, Lambooij JP, Proost N, Gargiulo G, Berns A. SOX2 Is the Determining Oncogenic Switch in Promoting Lung Squamous Cell Carcinoma from Different Cells of Origin. Cancer Cell 2016; 30:519-532. [PMID: 27728803 PMCID: PMC5065004 DOI: 10.1016/j.ccell.2016.09.001] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/05/2016] [Accepted: 09/07/2016] [Indexed: 11/18/2022]
Abstract
Lung squamous cell carcinoma (LSCC) is a devastating malignancy with no effective treatments, due to its complex genomic profile. Therefore, preclinical models mimicking its salient features are urgently needed. Here we describe mouse models bearing various combinations of genetic lesions predominantly found in human LSCC. We show that SOX2 but not FGFR1 overexpression in tracheobronchial basal cells combined with Cdkn2ab and Pten loss results in LSCC closely resembling the human counterpart. Interestingly, Sox2;Pten;Cdkn2ab mice develop LSCC with a more peripheral location when Club or Alveolar type 2 (AT2) cells are targeted. Our model highlights the essential role of SOX2 in commanding the squamous cell fate from different cells of origin and represents an invaluable tool for developing better intervention strategies.
Collapse
MESH Headings
- Animals
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Proliferation/genetics
- Disease Models, Animal
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Receptor, Fibroblast Growth Factor, Type 1/biosynthesis
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- SOXB1 Transcription Factors/genetics
- Transcription, Genetic
- Tumor Microenvironment
Collapse
Affiliation(s)
- Giustina Ferone
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Ji-Ying Song
- Division of Experimental Animal Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Kate D Sutherland
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Rajith Bhaskaran
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Building 5, Moscow 143026, Russia
| | - Kim Monkhorst
- Division of Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jan-Paul Lambooij
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Natalie Proost
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Gaetano Gargiulo
- Department of Molecular Oncology, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13092 Berlin, Germany
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Building 5, Moscow 143026, Russia.
| |
Collapse
|
40
|
García-Fernández M, Karras P, Checinska A, Cañón E, Calvo GT, Gómez-López G, Cifdaloz M, Colmenar A, Espinosa-Hevia L, Olmeda D, Soengas MS. Metastatic risk and resistance to BRAF inhibitors in melanoma defined by selective allelic loss of ATG5. Autophagy 2016; 12:1776-1790. [PMID: 27464255 DOI: 10.1080/15548627.2016.1199301] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Melanoma is a paradigm of aggressive tumors with a complex and heterogeneous genetic background. Still, melanoma cells frequently retain developmental traits that trace back to lineage specification programs. In particular, lysosome-associated vesicular trafficking is emerging as a melanoma-enriched lineage dependency. However, the contribution of other lysosomal functions such as autophagy to melanoma progression is unclear, particularly in the context of metastasis and resistance to targeted therapy. Here we mined a broad spectrum of cancers for a meta-analysis of mRNA expression, copy number variation and prognostic value of 13 core autophagy genes. This strategy identified heterozygous loss of ATG5 at chromosome band 6q21 as a distinctive feature of advanced melanomas. Importantly, partial ATG5 loss predicted poor overall patient survival in a manner not shared by other autophagy factors and not recapitulated in other tumor types. This prognostic relevance of ATG5 copy number was not evident for other 6q21 neighboring genes. Melanocyte-specific mouse models confirmed that heterozygous (but not homozygous) deletion of Atg5 enhanced melanoma metastasis and compromised the response to targeted therapy (exemplified by dabrafenib, a BRAF inhibitor in clinical use). Collectively, our results support ATG5 as a therapeutically relevant dose-dependent rheostat of melanoma progression. Moreover, these data have important translational implications in drug design, as partial blockade of autophagy genes may worsen (instead of counteracting) the malignant behavior of metastatic melanomas.
Collapse
Affiliation(s)
- María García-Fernández
- a Melanoma Laboratory , Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Panagiotis Karras
- a Melanoma Laboratory , Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Agnieszka Checinska
- a Melanoma Laboratory , Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Estela Cañón
- a Melanoma Laboratory , Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Guadalupe T Calvo
- a Melanoma Laboratory , Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Gonzalo Gómez-López
- b Bioinformatics Unit , Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Metehan Cifdaloz
- a Melanoma Laboratory , Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Angel Colmenar
- a Melanoma Laboratory , Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Luis Espinosa-Hevia
- c Cytogenetics Unit , Spanish National Cancer Research Center (CNIO) , Madrid , Spain
| | - David Olmeda
- a Melanoma Laboratory , Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - María S Soengas
- a Melanoma Laboratory , Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| |
Collapse
|
41
|
Lee JE, Lim MS, Park JH, Park CH, Koh HC. PTEN Promotes Dopaminergic Neuronal Differentiation Through Regulation of ERK-Dependent Inhibition of S6K Signaling in Human Neural Stem Cells. Stem Cells Transl Med 2016; 5:1319-1329. [PMID: 27388240 DOI: 10.5966/sctm.2015-0200] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 04/18/2016] [Indexed: 02/05/2023] Open
Abstract
: Phosphatase and tension homolog (PTEN) is a widely known negative regulator of insulin/phosphatidylinositol 3-kinase (PI3K) signaling. The PI3K/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) and Ras-extracellular signal-regulated kinase (Ras-ERK) signaling pathways are the chief mechanisms controlling the survival, proliferation, and differentiation of neural stem cells (NSCs). However, the roles of PTEN in Akt/mTOR and ERK signaling during proliferation and neuronal differentiation of human NSCs (hNSCs) are poorly understood. Treatment of proliferating hNSCs with a specific inhibitor of PTEN or overexpression of the PTEN inactive mutant G129E resulted in an increase in the expression levels of Ki67, p-S6 kinase (p-S6K), and p-ERK without affecting p-Akt expression during proliferation of hNSCs. Therefore, we focused on the regulatory effect of PTEN in S6K and ERK signaling during dopaminergic neuronal differentiation of hNSCs. Overexpression of PTEN during neuronal differentiation of hNSCs caused an increase in p-S6K expression and a decrease in p-ERK expression. Conversely, inhibition of PTEN increased p-ERK expression and decreased p-S6K expression. Inhibition of ERK by a specific chemical inhibitor, U0126, promoted neuronal generation, especially of tyrosine hydroxylase-positive neurons. p-S6K expression increased in a time-dependent manner during differentiation, and this effect was enhanced by U0126. These results indicated that PTEN promoted neuronal differentiation by inhibition of ERK signaling, which in turn induced activation of S6K. Our data suggest that ERK pathways participate in crosstalk with S6K through PTEN signaling during neuronal differentiation of hNSCs. These results represent a novel pathway by which PTEN may modulate the interplay between ERK and S6K signaling, leading to increased neuronal differentiation in hNSCs. SIGNIFICANCE This article adds to the body of knowledge about the mechanism of extracellular signal-regulated kinase (ERK)-mediated differentiation by describing the molecular function of phosphatase and tension homolog (PTEN) during the neuronal differentiation of human neural stem cells (hNSCs). Previous studies showed that S6K signaling promoted neuronal differentiation in hNSCs via the phosphatidylinositol 3-kinase Akt-mammalian target of rapamycin signaling pathway. A further series of studies investigated whether this S6 kinase-induced differentiation in hNSCs involves regulation of ERK signaling by PTEN. The current study identified a novel mechanism by which PTEN regulates neuronal differentiation in hNSCs, suggesting that activating PTEN function promotes dopaminergic neuronal differentiation and providing an important resource for future studies of PTEN function.
Collapse
Affiliation(s)
- Jeong Eun Lee
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul, Republic of Korea Hanyang Biomedical Research Institute, Seoul, Republic of Korea
| | - Mi Sun Lim
- Hanyang Biomedical Research Institute, Seoul, Republic of Korea Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea Research and Development Center, Jeil Pharmaceutical Company, Limited, Yongin, Republic of Korea
| | - Jae Hyeon Park
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul, Republic of Korea Hanyang Biomedical Research Institute, Seoul, Republic of Korea Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Chang Hwan Park
- Hanyang Biomedical Research Institute, Seoul, Republic of Korea Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hyun Chul Koh
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul, Republic of Korea Hanyang Biomedical Research Institute, Seoul, Republic of Korea Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
42
|
Cupolillo D, Hoxha E, Faralli A, De Luca A, Rossi F, Tempia F, Carulli D. Autistic-Like Traits and Cerebellar Dysfunction in Purkinje Cell PTEN Knock-Out Mice. Neuropsychopharmacology 2016; 41:1457-66. [PMID: 26538449 PMCID: PMC4832032 DOI: 10.1038/npp.2015.339] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 10/13/2015] [Accepted: 10/26/2015] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by impaired social interaction, isolated areas of interest, and insistence on sameness. Mutations in Phosphatase and tensin homolog missing on chromosome 10 (PTEN) have been reported in individuals with ASDs. Recent evidence highlights a crucial role of the cerebellum in the etiopathogenesis of ASDs. In the present study we analyzed the specific contribution of cerebellar Purkinje cell (PC) PTEN loss to these disorders. Using the Cre-loxP recombination system, we generated conditional knockout mice in which PTEN inactivation was induced specifically in PCs. We investigated PC morphology and physiology as well as sociability, repetitive behavior, motor learning, and cognitive inflexibility of adult PC PTEN-mutant mice. Loss of PTEN in PCs results in autistic-like traits, including impaired sociability, repetitive behavior and deficits in motor learning. Mutant PCs appear hypertrophic and show structural abnormalities in dendrites and axons, decreased excitability, disrupted parallel fiber and climbing fiber synapses and late-onset cell death. Our results unveil new roles of PTEN in PC function and provide the first evidence of a link between the loss of PTEN in PCs and the genesis of ASD-like traits.
Collapse
Affiliation(s)
- Dario Cupolillo
- Department of Neuroscience, Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy,Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Eriola Hoxha
- Department of Neuroscience, Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy,Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Alessio Faralli
- Department of Neuroscience, Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy,Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Annarita De Luca
- Department of Neuroscience, Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy,Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Ferdinando Rossi
- Department of Neuroscience, Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy,Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Filippo Tempia
- Department of Neuroscience, Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy,Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Daniela Carulli
- Department of Neuroscience, Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy,Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), University of Turin, Turin, Italy,Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), University of Turin, Regione Gonzole 10, Orbassano, Turin 10043, Italy, Tel: +39 011 6706614, Fax: +39 011 670 6621, E-mail:
| |
Collapse
|
43
|
Rapamycin prevents, but does not reverse, aberrant migration in Pten knockout neurons. Neurobiol Dis 2016; 93:12-20. [PMID: 26992888 DOI: 10.1016/j.nbd.2016.03.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 02/08/2016] [Accepted: 03/10/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Phosphatase and tensin homolog (PTEN) is a major negative regulator of the Akt/mammalian target of rapamycin (MTOR) pathway. Mutations in PTEN have been found in a subset of individuals with autism and macrocephaly. Further, focal cortical dysplasia (FCD) has been observed in patients with PTEN mutations prompting us to examine the role of Pten in neuronal migration. The dentate gyrus of Pten(Flox/Flox) mice was injected with Cre- and non-Cre-expressing retroviral particles, which integrate into the dividing genome to birthdate cells. Control and Pten knockout (KO) cell position in the granule cell layer was quantified over time to reveal that Pten KO neurons exhibit an aberrant migratory phenotype beginning at 7.5days-post retroviral injection (DPI). We then assessed whether rapamycin, a mTor inhibitor, could prevent or reverse aberrant migration of granule cells. The preventative group received daily intraperitoneal (IP) injections of rapamycin from 3 to 14 DPI, before discrepancies in cell position have been established, while the reversal group received rapamycin afterward, from 14 to 24 DPI. We found that rapamycin prevented and reversed somal hypertrophy. However, rapamycin prevented, but did not reverse aberrant migration in Pten KO cells. We also find that altered migration occurs through mTorC1 and not mTorC2 activity. Together, these findings suggest a temporal window by which rapamycin can treat aberrant migration, and may have implications for the use of rapamycin to treat PTEN-mutation associated disorders. SIGNIFICANCE STATEMENT Mutations in phosphatase and tensin homolog (PTEN) have been linked to a subset of individuals with autism and macrocephaly, as well as Cowden Syndrome and focal cortical dysplasia. Pten loss leads to neuronal hypertrophy, but the role of Pten in neuronal migration is unclear. Here we have shown that loss of Pten leads to aberrant migration, which can be prevented but not reversed by treatment with rapamycin, a mTor inhibitor. These results are important to consider as clinical trials are developed to examine rapamycin as a therapeutic for autism with PTEN mutations. Our findings show that some abnormalities cannot be reversed, and suggest the potential need for genetic screening and preventative treatment.
Collapse
|
44
|
Gutilla EA, Buyukozturk MM, Steward O. Long-term consequences of conditional genetic deletion of PTEN in the sensorimotor cortex of neonatal mice. Exp Neurol 2016; 279:27-39. [PMID: 26896833 DOI: 10.1016/j.expneurol.2016.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 12/18/2022]
Abstract
Targeted deletion of the phosphatase and tensin homolog on chromosome ten (PTEN) gene in the sensorimotor cortex of neonatal mice enables robust regeneration of corticospinal tract (CST) axons following spinal cord injury as adults. Here, we assess the consequences of long-term conditional genetic PTEN deletion on cortical structure and neuronal morphology and screen for neuropathology. Mice with a LoxP-flanked exon 5 of the PTEN gene (PTENf/f mice) received AAV-Cre injections into the sensorimotor cortex at postnatal day 1 (P1) and were allowed to survive for up to 18months. As adults, mice were assessed for exploratory activity (open field), and motor coordination using the Rotarod®. Some mice received injections of Fluorogold into the spinal cord to retrogradely label the cells of origin of the CST. Brains were prepared for neurohistology and immunostained for PTEN and phospho-S6, which is a downstream marker of mammalian target of rapamycin (mTOR) activation. Immunostaining revealed a focal area of PTEN deletion affecting neurons in all cortical layers, although in some cases PTEN expression was maintained in many small-medium sized neurons in layers III-IV. Neurons lacking PTEN were robustly stained for pS6. Cortical thickness was significantly increased and cortical lamination was disrupted in the area of PTEN deletion. PTEN-negative layer V neurons that give rise to the CST, identified by retrograde labeling, were larger than neurons with maintained PTEN expression, and the relative area occupied by neuropil vs. cell bodies was increased. There was no evidence of tumor formation or other neuropathology. Mice with PTEN deletion exhibited open field activity comparable to controls and there was a trend for impaired Rotarod performance (not statistically significant). Our findings indicate that early postnatal genetic deletion of PTEN that is sufficient to enable axon regeneration by adult neurons causes neuronal hypertrophy but no other detectable neuropathology.
Collapse
Affiliation(s)
- Erin A Gutilla
- Reeve-Irvine Research Center, University of California, Irvine, United States; Departments of Anatomy and Neurobiology, University of California, Irvine, United States; School of Medicine, University of California, Irvine, United States
| | - Melda M Buyukozturk
- Reeve-Irvine Research Center, University of California, Irvine, United States; Departments of Anatomy and Neurobiology, University of California, Irvine, United States; School of Medicine, University of California, Irvine, United States
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California, Irvine, United States; Departments of Anatomy and Neurobiology, University of California, Irvine, United States; Neurobiology and Behavior, University of California, Irvine, United States; Neurosurgery, University of California, Irvine, United States; School of Medicine, University of California, Irvine, United States.
| |
Collapse
|
45
|
Hayakawa Y, Kawada M, Nishikawa H, Ochiya T, Saya H, Seimiya H, Yao R, Hayashi M, Kai C, Matsuda A, Naoe T, Ohtsu A, Okazaki T, Saji H, Sata M, Sugimura H, Sugiyama Y, Toi M, Irimura T. Report on the use of non-clinical studies in the regulatory evaluation of oncology drugs. Cancer Sci 2016; 107:189-202. [PMID: 26919617 PMCID: PMC4768389 DOI: 10.1111/cas.12857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 01/04/2023] Open
Abstract
Non-clinical studies are necessary at each stage of the development of oncology drugs. Many experimental cancer models have been developed to investigate carcinogenesis, cancer progression, metastasis, and other aspects in cancer biology and these models turned out to be useful in the efficacy evaluation and the safety prediction of oncology drugs. While the diversity and the degree of engagement in genetic changes in the initiation of cancer cell growth and progression are widely accepted, it has become increasingly clear that the roles of host cells, tissue microenvironment, and the immune system also play important roles in cancer. Therefore, the methods used to develop oncology drugs should continuously be revised based on the advances in our understanding of cancer. In this review, we extensively summarize the effective use of those models, their advantages and disadvantages, ranges to be evaluated and limitations of the models currently used for the development and for the evaluation of oncology drugs.
Collapse
Affiliation(s)
- Yoshihiro Hayakawa
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Division of Pathogenic BiochemistryDepartment of BioscienceInstitute of Natural MedicineUniversity of ToyamaToyamaJapan
| | - Manabu Kawada
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Institute of Microbial ChemistryMicrobial Chemistry Research FoundationNumazu‐shiJapan
| | - Hiroyoshi Nishikawa
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Division of Cancer ImmunologyExploratory Oncology Research and Clinical Trial CenterNational Cancer CenterChibaJapan
| | - Takahiro Ochiya
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Division of Molecular and Cellular MedicineNational Cancer Center Research InstituteTokyoJapan
| | - Hideyuki Saya
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Division of Gene RegulationInstitute for Advanced Medical ResearchSchool of MedicineKeio UniversityTokyoJapan
| | - Hiroyuki Seimiya
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Division of Molecular BiotherapyCancer Chemotherapy CenterJapanese Foundation for Cancer ResearchTokyoJapan
| | - Ryoji Yao
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Division of Cell BiologyCancer InstituteJapanese Foundation for Cancer ResearchTokyoJapan
| | - Masahiro Hayashi
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Department of PharmacyToranomon HospitalTokyoJapan
| | - Chieko Kai
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Laboratory Animal Research CenterInstitute of Medical ScienceThe University of TokyoTokyoJapan
| | - Akira Matsuda
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Department of Medicinal ChemistryFaculty of Pharmaceutical SciencesHokkaido UniversitySapporoJapan
| | - Tomoki Naoe
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- National Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Atsushi Ohtsu
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Exploratory Oncology Research and Clinical Trial CenterNational Cancer CenterChibaJapan
| | - Taku Okazaki
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Division of Immune RegulationInstitute for Genome ResearchTokushima UniversityTokushimaJapan
| | - Hideo Saji
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Department of Patho‐Functional Bioanalysis, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Masataka Sata
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Department of Cardiovascular MedicineInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Haruhiko Sugimura
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Department of Tumor PathologyHamamatsu University School of MedicineShizuokaJapan
| | - Yuichi Sugiyama
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Sugiyama LaboratoryRIKEN Innovation CenterRIKEN Cluster for Industry PartnershipsKanagawaJapan
| | - Masakazu Toi
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Department of Breast SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Tatsuro Irimura
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Juntendo University School of MedicineTokyoJapan
| |
Collapse
|
46
|
Benedykcinska A, Ferreira A, Lau J, Broni J, Richard-Loendt A, Henriquez NV, Brandner S. Generation of brain tumours in mice by Cre-mediated recombination of neural progenitors in situ with the tamoxifen metabolite endoxifen. Dis Model Mech 2015; 9:211-20. [PMID: 26704996 PMCID: PMC4770146 DOI: 10.1242/dmm.022715] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/21/2015] [Indexed: 01/10/2023] Open
Abstract
Targeted cell- or region-specific gene recombination is widely used in the functional analysis of genes implicated in development and disease. In the brain, targeted gene recombination has become a mainstream approach to study neurodegeneration or tumorigenesis. The use of the Cre-loxP system to study tumorigenesis in the adult central nervous system (CNS) can be limited, when the promoter (such as GFAP) is also transiently expressed during development, which can result in the recombination of progenies of different lineages. Engineering of transgenic mice expressing Cre recombinase fused to a mutant of the human oestrogen receptor (ER) allows the circumvention of transient developmental Cre expression by inducing recombination in the adult organism. The recombination of loxP sequences occurs only in the presence of tamoxifen. Systemic administration of tamoxifen can, however, exhibit toxicity and might also recombine unwanted cell populations if the promoter driving Cre expression is active at the time of tamoxifen administration. Here, we report that a single site-specific injection of an active derivative of tamoxifen successfully activates Cre recombinase and selectively recombines tumour suppressor genes in neural progenitor cells of the subventricular zone in mice, and we demonstrate its application in a model for the generation of intrinsic brain tumours.
Collapse
Affiliation(s)
- Anna Benedykcinska
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Andreia Ferreira
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Joanne Lau
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Jessica Broni
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Angela Richard-Loendt
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Nico V Henriquez
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
47
|
Waugh MG. PIPs in neurological diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1066-82. [PMID: 25680866 DOI: 10.1016/j.bbalip.2015.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 12/19/2022]
Abstract
Phosphoinositide (PIP) lipids regulate many aspects of cell function in the nervous system including receptor signalling, secretion, endocytosis, migration and survival. Levels of PIPs such as PI4P, PI(4,5)P2 and PI(3,4,5)P3 are normally tightly regulated by phosphoinositide kinases and phosphatases. Deregulation of these biochemical pathways leads to lipid imbalances, usually on intracellular endosomal membranes, and these changes have been linked to a number of major neurological diseases including Alzheimer's, Parkinson's, epilepsy, stroke, cancer and a range of rarer inherited disorders including brain overgrowth syndromes, Charcot-Marie-Tooth neuropathies and neurodevelopmental conditions such as Lowe's syndrome. This article analyses recent progress in this area and explains how PIP lipids are involved, to varying degrees, in almost every class of neurological disease. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Mark G Waugh
- Lipid and Membrane Biology Group, Institute for Liver and Digestive Health, UCL, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom.
| |
Collapse
|
48
|
Sathyamurthy A, Yin DM, Barik A, Shen C, Bean JC, Figueiredo D, She JX, Xiong WC, Mei L. ERBB3-mediated regulation of Bergmann glia proliferation in cerebellar lamination. Development 2015; 142:522-32. [PMID: 25564653 DOI: 10.1242/dev.115931] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cortical lamination is crucial for the assembly of cerebellar circuitry. In this process, granule neurons (GNs) migrate along Bergmann glia (BG), which are specialized astroglial cells, from the external granule layer to the internal granule layer. However, the molecular mechanisms underlying BG development are not well understood. Here, we show that GFAP::Cre;Erbb3(F/F) mice, which lack Erbb3 in both radial glia and neurons, exhibit impairments in balance and motor coordination. Cerebellar lamination is aberrant, with misplaced Purkinje neurons and GN clusters. These phenotypes were not observed in Math1::CreER(T2);Erbb3(F/F) mice, where the Erbb3 gene was deleted in GNs, suggesting involvement of non-neuronal Erbb3 in cerebellar lamination. Mechanistic studies indicate that ERBB3 is crucial for the proliferation of BG, which are required for GN migration. These observations identify a crucial role for ERBB3 in cerebellar lamination and reveal a novel mechanism that regulates BG development.
Collapse
Affiliation(s)
- Anupama Sathyamurthy
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Dong-Min Yin
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Arnab Barik
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Chengyong Shen
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Jonathan C Bean
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Dwight Figueiredo
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Wen-Cheng Xiong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA Charlie Norwood VA Medical Center, Augusta, GA 30904, USA Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Lin Mei
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA Charlie Norwood VA Medical Center, Augusta, GA 30904, USA Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| |
Collapse
|
49
|
Grande V, Manassero G, Vercelli A. Neuroprotective and anti-inflammatory roles of the phosphatase and tensin homolog deleted on chromosome Ten (PTEN) Inhibition in a Mouse Model of Temporal Lobe Epilepsy. PLoS One 2014; 9:e114554. [PMID: 25501575 PMCID: PMC4264755 DOI: 10.1371/journal.pone.0114554] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 11/11/2014] [Indexed: 11/18/2022] Open
Abstract
Excitotoxic damage represents the major mechanism leading to cell death in many human neurodegenerative diseases such as ischemia, trauma and epilepsy. Caused by an excess of glutamate that acts on metabotropic and ionotropic excitatory receptors, excitotoxicity activates several death signaling pathways leading to an extensive neuronal loss and a consequent strong activation of astrogliosis. Currently, the search for a neuroprotective strategy is aimed to identify the level in the signaling pathways to block excitotoxicity avoiding the loss of important physiological functions and side effects. To this aim, PTEN can be considered an ideal candidate: downstream the excitatory receptors activated in excitotoxicity (whose inhibition was shown to be not clinically viable), it is involved in neuronal damage and in the first stage of the reactive astrogliosis in vivo. In this study, we demonstrated the involvement of PTEN in excitotoxicity through its pharmacological inhibition by dipotassium bisperoxo (picolinato) oxovanadate [bpv(pic)] in a model of temporal lobe epilepsy, obtained by intraperitoneal injection of kainate in 2-month-old C57BL/6J male mice. We have demonstrated that inhibition of PTEN by bpv(pic) rescues neuronal death and decreases the reactive astrogliosis in the CA3 area of the hippocampus caused by systemic administration of kainate. Moreover, the neurotoxin administration increases significantly the scanty presence of mitochondrial PTEN that is significantly decreased by the administration of the inhibitor 6 hr after the injection of kainate, suggesting a role of PTEN in mitochondrial apoptosis. Taken together, our results confirm the key role played by PTEN in the excitotoxic damage and the strong anti-inflammatory and neuroprotective potential of its inhibition.
Collapse
Affiliation(s)
- Valentina Grande
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Torino, Orbassano, Torino, Italy
- * E-mail:
| | - Giusi Manassero
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Torino, Orbassano, Torino, Italy
- Department of Internal Medicine, University of Genova, Genova, Italy
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Torino, Orbassano, Torino, Italy
| |
Collapse
|
50
|
Kim HJ, Ryu J, Woo HM, Cho SS, Sung MK, Kim SC, Park MH, Park T, Koo SK. Patterns of gene expression associated with Pten deficiency in the developing inner ear. PLoS One 2014; 9:e97544. [PMID: 24893171 PMCID: PMC4043736 DOI: 10.1371/journal.pone.0097544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 04/19/2014] [Indexed: 12/26/2022] Open
Abstract
In inner ear development, phosphatase and tensin homolog (PTEN) is necessary for neuronal maintenance, such as neuronal survival and accurate nerve innervations of hair cells. We previously reported that Pten conditional knockout (cKO) mice exhibited disorganized fasciculus with neuronal apoptosis in spiral ganglion neurons (SGNs). To better understand the genes and signaling networks related to auditory neuron maintenance, we compared the profiles of differentially expressed genes (DEGs) using microarray analysis of the inner ear in E14.5 Pten cKO and wild-type mice. We identified 46 statistically significant transcripts using significance analysis of microarrays, with the false-discovery rate set at 0%. Among the DEGs, expression levels of candidate genes and expression domains were validated by quantitative real-time RT-PCR and in situ hybridization, respectively. Ingenuity pathway analysis using DEGs identified significant signaling networks associated with apoptosis, cellular movement, and axon guidance (i.e., secreted phosphoprotein 1 (Spp1)-mediated cellular movement and regulator of G-protein signaling 4 (Rgs4)-mediated axon guidance). This result was consistent with the phenotypic defects of SGNs in Pten cKO mice (e.g., neuronal apoptosis, abnormal migration, and irregular nerve fiber patterns of SGNs). From this study, we suggest two key regulatory signaling networks mediated by Spp1 and Rgs4, which may play potential roles in neuronal differentiation of developing auditory neurons.
Collapse
Affiliation(s)
- Hyung Jin Kim
- Division of Intractable Diseases, Center for Biomedical Sciences, National Institute of Health, Chungcheongbuk-do, South Korea
| | - Jihee Ryu
- Division of Intractable Diseases, Center for Biomedical Sciences, National Institute of Health, Chungcheongbuk-do, South Korea
| | - Hae-Mi Woo
- Division of Intractable Diseases, Center for Biomedical Sciences, National Institute of Health, Chungcheongbuk-do, South Korea
| | - Samuel Sunghwan Cho
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
| | - Min Kyung Sung
- Korean BioInformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Sang Cheol Kim
- Korean BioInformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Mi-Hyun Park
- Division of Intractable Diseases, Center for Biomedical Sciences, National Institute of Health, Chungcheongbuk-do, South Korea
| | - Taesung Park
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
- Department of Statistics, Seoul National University, Seoul, South Korea
| | - Soo Kyung Koo
- Division of Intractable Diseases, Center for Biomedical Sciences, National Institute of Health, Chungcheongbuk-do, South Korea
- * E-mail:
| |
Collapse
|