1
|
Allen RS, Seifert AW. Spiny mice (Acomys) have evolved cellular features to support regenerative healing. Ann N Y Acad Sci 2025; 1544:5-26. [PMID: 39805008 PMCID: PMC11830558 DOI: 10.1111/nyas.15281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Spiny mice (Acomys spp.) are warm-blooded (homeothermic) vertebrates whose ability to restore missing tissue through regenerative healing has coincided with the evolution of unique cellular and physiological adaptations across different tissue types. This review seeks to explore how these bizarre rodents deploy unique or altered injury response mechanisms to either enhance tissue repair or fully regenerate excised tissue compared to closely related, scar-forming mammals. First, we examine overall trends in healing Acomys tissues, including the cellular stress response, the ability to activate and maintain cell cycle progression, and the expression of certain features in reproductive adults that are normally associated with embryos. Second, we focus on specific cell types that exhibit precisely regulated proliferation to restore missing tissue. While Acomys utilize many of the same cell types involved in scar formation, these cells exhibit divergent activation profiles during regenerative healing. Considered together, current lines of evidence support sustained deployment of proregenerative pathways in conjunction with transient activation of fibrotic pathways to facilitate regeneration and improve tissue repair in Acomys.
Collapse
Affiliation(s)
- Robyn S. Allen
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Ashley W. Seifert
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
- The Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, Kentucky, USA
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
2
|
Allen RS, Biswas SK, Seifert AW. Ear pinna growth and differentiation is conserved in murids and requires BMP signaling for chondrocyte proliferation. Development 2025; 152:DEV204560. [PMID: 39846506 PMCID: PMC11883244 DOI: 10.1242/dev.204560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Despite being a major target of reconstructive surgery, development of the ear pinna remains poorly studied. Here, we provide a cellular characterization of late gestational and postnatal ear pinna development in two rodents and investigate the role of BMP5 in expansion and differentiation of auricular elastic cartilage. We find that ear pinna development is largely conserved between Mus musculus and the highly regenerative Acomys dimidiatus. The pattern of pre-cartilaginous cells is established early in development. These cells are specified into chondroblasts before ear unfolding and then undergo extensive proliferation before maturation. The elastic cartilage, connective tissue fibroblasts, dermal papilla and sheath cells, and adipocytes in the adult pinna are derived from cranial neural crest. Cellular analysis using the naturally occurring short ear mouse mutant shows that loss of BMP5 does not prevent specification of chondroblasts, but does impair chondroblast proliferation. Finally, chondroblast proliferation remains impaired in the adult mid-distal ear pinna of these mutants. Together, these data establish the developmental basis for differentiation of ear pinna tissues.
Collapse
Affiliation(s)
- Robyn S. Allen
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Shishir K. Biswas
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Ashley W. Seifert
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
3
|
Lv Y, Yang W, Kannan PR, Zhang H, Zhang R, Zhao R, Kong X. Materials-based hair follicle engineering: Basic components and recent advances. Mater Today Bio 2024; 29:101303. [PMID: 39498149 PMCID: PMC11532916 DOI: 10.1016/j.mtbio.2024.101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
The hair follicle (HF) is a significant skin appendage whose primary function is to produce the hair shaft. HFs are a non-renewable resource; skin damage or follicle closure may lead to permanent hair loss. Advances in biomaterials and biomedical engineering enable the feasibility of manipulating the HF-associated cell function for follicle reconstruction via rational design. The regeneration of bioengineered HF addresses the issue of limited resources and contributes to advancements in research and applications in hair loss treatment, HF development, and drug screening. Based on these requirements, this review summarizes the basic and recent advances in hair follicle regulation, including four components: acquisition of stem cells, signaling pathways, materials, and engineering methods. Recent studies have focused on efficiently combining these components and reproducing functionality, which would boost fabrication in HF rebuilding ex vivo, thereby eliminating the obstacles of transplantation into animals to promote mature development.
Collapse
Affiliation(s)
- Yudie Lv
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Weili Yang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Perumal Ramesh Kannan
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Han Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Rui Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ruibo Zhao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
4
|
Qiu M, Zhang Z, Zhu S, Liu S, Peng H, Xiong X, Chen J, Hu C, Yang L, Song X, Xia B, Yu C, Yang C. Transcriptome Sequencing and Mass Spectrometry Reveal Genes Involved in the Non-mendelian Inheritance-Mediated Feather Growth Rate in Chicken. Biochem Genet 2024; 62:4120-4136. [PMID: 38280152 PMCID: PMC11427531 DOI: 10.1007/s10528-023-10643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/18/2023] [Indexed: 01/29/2024]
Abstract
The feather growth rate in chickens included early and late feathering. We attempted to characterize the genes and pathways associated with the feather growth rate in chickens that are not in agreement with Mendelian inheritance. Gene expression profiles in the hair follicle tissues of late-feathering cocks (LC), early-feathering cocks (EC), late-feathering hens (LH), and early-feathering hens (EH) were acquired using RNA sequencing (RNA-seq), mass spectrometry (MS), and quantitative reverse transcription PCR (qRT‑PCR). A total of 188 differentially expressed genes (DEGs) were ascertained in EC vs. LC and 538 DEGs were identified in EH vs. LH. We observed that 14 up-regulated genes and 9 down-regulated genes were screened both in EC vs. LC and EH vs. LH. MS revealed that 41 and 138 differentially expressed proteins (DEPs) were screened out in EC vs. LC and EH vs. LH, respectively. Moreover, these DEGs and DEPs were enriched in multiple feather-related pathways, including JAK-STAT, MAPK, WNT, TGF-β, and calcium signaling pathways. qRT-PCR assay showed that the expression of WNT8A was decreased in LC compared with EC, while ALK and GRM4 expression were significantly up-regulated in EH relative to LH. This study helps to elucidate the potential mechanism of the feather growth rate in chickens that do not conform to genetic law.
Collapse
Affiliation(s)
- Mohan Qiu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066, Sichuan, China
| | - Zengrong Zhang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066, Sichuan, China
| | - Shiliang Zhu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066, Sichuan, China
| | - Siyang Liu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066, Sichuan, China
| | - Han Peng
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066, Sichuan, China
| | - Xia Xiong
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066, Sichuan, China
| | - Jialei Chen
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066, Sichuan, China
| | - Chenming Hu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066, Sichuan, China
| | - Li Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066, Sichuan, China
| | - Xiaoyan Song
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066, Sichuan, China
| | - Bo Xia
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066, Sichuan, China
| | - Chunlin Yu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066, Sichuan, China.
| | - Chaowu Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066, Sichuan, China.
| |
Collapse
|
5
|
Amuso VM, Haas MR, Cooper PO, Chatterjee R, Hafiz S, Salameh S, Gohel C, Mazumder MF, Josephson V, Khorsandi K, Horvath A, Rahnavard A, Shook BA. Deep skin fibroblast-mediated macrophage recruitment supports acute wound healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607357. [PMID: 39149286 PMCID: PMC11326280 DOI: 10.1101/2024.08.09.607357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Epithelial and immune cells have long been appreciated for their contribution to the early immune response after injury; however, much less is known about the role of mesenchymal cells. Using single nuclei RNA-sequencing, we defined changes in gene expression associated with inflammation at 1-day post-wounding (dpw) in mouse skin. Compared to keratinocytes and myeloid cells, we detected enriched expression of pro-inflammatory genes in fibroblasts associated with deeper layers of the skin. In particular, SCA1+ fibroblasts were enriched for numerous chemokines, including CCL2, CCL7, and IL33 compared to SCA1- fibroblasts. Genetic deletion of Ccl2 in fibroblasts resulted in fewer wound bed macrophages and monocytes during injury-induced inflammation with reduced revascularization and re-epithelialization during the proliferation phase of healing. These findings highlight the important contribution of deep skin fibroblast-derived factors to injury-induced inflammation and the impact of immune cell dysregulation on subsequent tissue repair.
Collapse
Affiliation(s)
- Veronica M. Amuso
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - MaryEllen R. Haas
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Paula O. Cooper
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Ranojoy Chatterjee
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Sana Hafiz
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Shatha Salameh
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Chiraag Gohel
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Miguel F. Mazumder
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Violet Josephson
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Khatereh Khorsandi
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Anelia Horvath
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Ali Rahnavard
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Brett A. Shook
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
- Department of Dermatology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
6
|
Kang S, Antoniewicz MR, Hay N. Metabolic and transcriptomic reprogramming during contact inhibition-induced quiescence is mediated by YAP-dependent and YAP-independent mechanisms. Nat Commun 2024; 15:6777. [PMID: 39117624 PMCID: PMC11310444 DOI: 10.1038/s41467-024-51117-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Metabolic rewiring during the proliferation-to-quiescence transition is poorly understood. Here, using a model of contact inhibition-induced quiescence, we conducted 13C-metabolic flux analysis in proliferating (P) and quiescent (Q) mouse embryonic fibroblasts (MEFs) to investigate this process. Q cells exhibit reduced glycolysis but increased TCA cycle flux and mitochondrial respiration. Reduced glycolytic flux in Q cells correlates with reduced glycolytic enzyme expression mediated by yes-associated protein (YAP) inhibition. The increased TCA cycle activity and respiration in Q cells is mediated by induced mitochondrial pyruvate carrier (MPC) expression, rendering them vulnerable to MPC inhibition. The malate-to-pyruvate flux, which generates NADPH, is markedly reduced by modulating malic enzyme 1 (ME1) dimerization in Q cells. Conversely, the malate dehydrogenase 1 (MDH1)-mediated oxaloacetate-to-malate flux is reversed and elevated in Q cells, driven by high mitochondrial-derived malate levels, reduced cytosolic oxaloacetate, elevated MDH1 levels, and a high cytoplasmic NAD+/NADH ratio. Transcriptomic analysis revealed large number of genes are induced in Q cells, many of which are associated with the extracellular matrix (ECM), while YAP-dependent and cell cycle-related genes are repressed. The results suggest that high TCA cycle flux and respiration in Q cells are required to generate ATP and amino acids to maintain de-novo ECM protein synthesis and secretion.
Collapse
Affiliation(s)
- Soeun Kang
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Research and Development Section, Jesse Brown VA Medical Center, Chicago, IL, USA.
| |
Collapse
|
7
|
Shang Y, Li M, Zhang L, Han C, Shen K, Wang K, Li Y, Zhang Y, Luo L, Jia Y, Guo K, Cai W, Zhang J, Wang X, Wang H, Hu D. Exosomes derived from mouse vibrissa dermal papilla cells promote hair follicle regeneration during wound healing by activating Wnt/β-catenin signaling pathway. J Nanobiotechnology 2024; 22:425. [PMID: 39030543 PMCID: PMC11264511 DOI: 10.1186/s12951-024-02689-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/01/2024] [Indexed: 07/21/2024] Open
Abstract
Hair follicle (HF) regeneration during wound healing continues to present a significant clinical challenge. Dermal papilla cell-derived exosomes (DPC-Exos) hold immense potential for inducing HF neogenesis. However, the accurate role and underlying mechanisms of DPC-Exos in HF regeneration in wound healing remain to be fully explained. This study, represents the first analysis into the effects of DPC-Exos on fibroblasts during wound healing. Our findings demonstrated that DPC-Exos could stimulate the proliferation and migration of fibroblasts, more importantly, enhance the hair-inducing capacity of fibroblasts. Fibroblasts treated with DPC-Exos were capable of inducing HF neogenesis in nude mice when combined with neonatal mice epidermal cells. In addition, DPC-Exos accelerated wound re-epithelialization and promoted HF regeneration during the healing process. Treatment with DPC-Exos led to increased expression levels of the Wnt pathway transcription factors β-catenin and Lef1 in both fibroblasts and the dermis of skin wounds. Specifically, the application of a Wnt pathway inhibitor reduced the effects of DPC-Exos on fibroblasts and wound healing. Accordingly, these results offer evidence that DPC-Exos promote HF regeneration during wound healing by enhancing the hair-inducing capacity of fibroblasts and activating the Wnt/β-catenin signaling pathway. This suggests that DPC-Exos may represent a promising therapeutic strategy for achieving regenerative wound healing.
Collapse
Affiliation(s)
- Yage Shang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Mengyang Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Lixia Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Chao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Kuo Shen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Kejia Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yue Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Liang Luo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Kai Guo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Weixia Cai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jian Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xujie Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
| | - Hongtao Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
8
|
BangHong J, YuKun W, Ao S, Tao S, PeiJun S, XuWen L, Lin L, ZhuYou X, Li Z. Low-level laser activates Wnt/β-catenin signaling pathway-promoting hair follicle stem cell regeneration and wound healing: Upregulate the expression of key downstream gene Lef 1. Skin Res Technol 2024; 30:e13807. [PMID: 38887112 PMCID: PMC11182782 DOI: 10.1111/srt.13807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The objective of this study is to investigate the mechanism by which low-level laser stimulation promotes the proliferation of intraepithelial hair follicle stem cells (HFSCs) in wounds. This research aims to expand the applications of laser treatment, enhance wound repair methods, and establish a theoretical and experimental foundation for achieving accelerated wound healing. METHODS The experimental approach involved irradiating a cell model with low-level laser to assess the proliferation of HFSCs and examine alterations in the expression of proteins related to the Wnt/β-catenin signaling pathway. A mouse back wound model was established to investigate the effects of low-level laser irradiation on wound healing rate, wound microenvironment, and the proliferation of HFSCs in relation to the Wnt/β-catenin signaling pathway. RESULTS The research findings indicate that low-level laser light effectively activates the Wnt signaling pathway, leading to the increased accumulation of core protein β-catenin and the upregulation of key downstream gene Lef 1. Consequently, this regulatory mechanism facilitates various downstream biological effects, including the notable promotion of HFSC proliferation and differentiation into skin appendages and epithelial tissues. As a result, the process of wound healing is significantly accelerated. CONCLUSION Low levels of laser activates the Wnt signalling pathway, promotes the regeneration of hair follicle stem cells and accelerates wound healing.
Collapse
Affiliation(s)
- Jiang BangHong
- Department of Plastic Surgery, The First Affiliated Hospital, Bengbu Medical College, Bengbu, China
| | - Wang YuKun
- Department of Plastic Surgery, The First Affiliated Hospital, Bengbu Medical College, Bengbu, China
| | - Shi Ao
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Sun Tao
- Department of Neurosurgery, The First Affiliated Hospital, Bengbu Medical College, Bengbu, China
| | - Song PeiJun
- Department of Plastic Surgery, The First Affiliated Hospital, Bengbu Medical College, Bengbu, China
| | - Li XuWen
- Department of Plastic Surgery, The First Affiliated Hospital, Bengbu Medical College, Bengbu, China
| | - Li Lin
- Department of Plastic Surgery, The First Affiliated Hospital, Bengbu Medical College, Bengbu, China
| | - Xiong ZhuYou
- Department of Plastic Surgery, The First Affiliated Hospital, Bengbu Medical College, Bengbu, China
| | - Zhang Li
- Department of Plastic Surgery, The First Affiliated Hospital, Bengbu Medical College, Bengbu, China
| |
Collapse
|
9
|
Gumede DB, Abrahamse H, Houreld NN. Targeting Wnt/β-catenin signaling and its interplay with TGF-β and Notch signaling pathways for the treatment of chronic wounds. Cell Commun Signal 2024; 22:244. [PMID: 38671406 PMCID: PMC11046856 DOI: 10.1186/s12964-024-01623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024] Open
Abstract
Wound healing is a tightly regulated process that ensures tissue repair and normal function following injury. It is modulated by activation of pathways such as the transforming growth factor-beta (TGF-β), Notch, and Wnt/β-catenin signaling pathways. Dysregulation of this process causes poor wound healing, which leads to tissue fibrosis and ulcerative wounds. The Wnt/β-catenin pathway is involved in all phases of wound healing, primarily in the proliferative phase for formation of granulation tissue. This review focuses on the role of the Wnt/β-catenin signaling pathway in wound healing, and its transcriptional regulation of target genes. The crosstalk between Wnt/β-catenin, Notch, and the TGF-β signaling pathways, as well as the deregulation of Wnt/β-catenin signaling in chronic wounds are also considered, with a special focus on diabetic ulcers. Lastly, we discuss current and prospective therapies for chronic wounds, with a primary focus on strategies that target the Wnt/β-catenin signaling pathway such as photobiomodulation for healing diabetic ulcers.
Collapse
Affiliation(s)
- Dimakatso B Gumede
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Nicolette N Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa.
| |
Collapse
|
10
|
Cavagnero KJ, Li F, Dokoshi T, Nakatsuji T, O’Neill AM, Aguilera C, Liu E, Shia M, Osuoji O, Hata T, Gallo RL. CXCL12+ dermal fibroblasts promote neutrophil recruitment and host defense by recognition of IL-17. J Exp Med 2024; 221:e20231425. [PMID: 38393304 PMCID: PMC10890925 DOI: 10.1084/jem.20231425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/17/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The skin provides an essential barrier for host defense through rapid action of multiple resident and recruited cell types, but the complex communication network governing these processes is incompletely understood. To define these cell-cell interactions more clearly, we performed an unbiased network analysis of mouse skin during invasive S. aureus infection and revealed a dominant role for CXCL12+ fibroblast subsets in neutrophil communication. These subsets predominantly reside in the reticular dermis, express adipocyte lineage markers, detect IL-17 and TNFα, and promote robust neutrophil recruitment through NFKBIZ-dependent release of CXCR2 ligands and CXCL12. Targeted deletion of Il17ra in mouse fibroblasts resulted in greatly reduced neutrophil recruitment and increased infection by S. aureus. Analogous human CXCL12+ fibroblast subsets abundantly express neutrophil chemotactic factors in psoriatic skin that are subsequently decreased upon therapeutic targeting of IL-17. These findings show that CXCL12+ dermal immune acting fibroblast subsets play a critical role in cutaneous neutrophil recruitment and host defense.
Collapse
Affiliation(s)
- Kellen J. Cavagnero
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Fengwu Li
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Tatsuya Dokoshi
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Teruaki Nakatsuji
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Alan M. O’Neill
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Carlos Aguilera
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Edward Liu
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Michael Shia
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Olive Osuoji
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Tissa Hata
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Richard L. Gallo
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| |
Collapse
|
11
|
Gao Y, Fan Z, Xiao X, Kong D, Han J, Chu W. Epidermal ET-1 signal induces activation of resting hair follicles by upregulating the PI3K/AKT pathway in the dermis. FASEB J 2024; 38:e23476. [PMID: 38334392 DOI: 10.1096/fj.202302207r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
The prevalence of alopecia has increased recently. Hair loss is often accompanied by the resting phase of hair follicles (HFs). Dermal papilla (DP) plays a crucial role in HF development, growth, and regeneration. Activating DP can revive resting HFs. Augmenting WNT/β-catenin signaling stimulates HF growth. However, the factors responsible for activating resting HFs effectively are unclear. In this study, we investigated epidermal cytokines that can activate resting HFs effectively. We overexpressed β-catenin in both in vivo and in vitro models to observe its effects on resting HFs. Then, we screened potential epidermal cytokines from GEO DATASETs and assessed their functions using mice models and skin-derived precursors (SKPs). Finally, we explored the molecular mechanism underlying the action of the identified cytokine. The results showed that activation of WNT/β-catenin in the epidermis prompted telogen-anagen transition. Keratinocytes infected with Ctnnb1-overexpressing lentivirus enhanced SKP expansion. Subsequently, we identified endothelin 1 (ET-1) expressed higher in hair-growing epidermis and induced the proliferation of DP cells and activates telogen-phase HFs in vivo. Moreover, ET-1 promotes the proliferation and stemness of SKPs. Western blot analysis and in vivo experiments revealed that ET-1 induces the transition from telogen-to-anagen phase by upregulating the PI3K/AKT pathway. These findings highlight the potential of ET-1 as a promising cytokine for HF activation and the treatment of hair loss.
Collapse
Affiliation(s)
- Ying Gao
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, China
| | - Zhimeng Fan
- School of Life Sciences, Tsinghua University, Beijing, China
- Faculty of Medicine, Lund University, Lund, Sweden
| | - Xing Xiao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Deqiang Kong
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jimin Han
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Weiwei Chu
- Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| |
Collapse
|
12
|
Frech S, Lichtenberger BM. Modulating embryonic signaling pathways paves the way for regeneration in wound healing. Front Physiol 2024; 15:1367425. [PMID: 38434140 PMCID: PMC10904466 DOI: 10.3389/fphys.2024.1367425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Epithelial tissues, including the skin, are highly proliferative tissues with the capability to constant renewal and regeneration, a feature that is essential for survival as the skin forms a protective barrier against external insults and water loss. In adult mammalian skin, every injury will lead to a scar. The scar tissue that is produced to seal the wound efficiently is usually rigid and lacks elasticity and the skin's original resilience to external impacts, but also secondary appendages such as hair follicles and sebaceous glands. While it was long thought that hair follicles develop solely during embryogenesis, it is becoming increasingly clear that hair follicles can also regenerate within a wound. The ability of the skin to induce hair neogenesis following injury however declines with age. As fetal and neonatal skin have the remarkable capacity to heal without scarring, the recapitulation of a neonatal state has been a primary target of recent regenerative research. In this review we highlight how modulating dermal signaling or the abundance of specific fibroblast subsets could be utilized to induce de novo hair follicles within the wound bed, and thus to shift wound repair with a scar to scarless regeneration.
Collapse
|
13
|
Zhu N, Yan J, Gu W, Yang Q, Lin E, Lu S, Cai B, Xia B, Liu X, Lin C. Dermal papilla cell-secreted biglycan regulates hair follicle phase transit and regeneration by activating Wnt/β-catenin. Exp Dermatol 2024; 33:e14969. [PMID: 37967213 DOI: 10.1111/exd.14969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/06/2023] [Accepted: 10/19/2023] [Indexed: 11/17/2023]
Abstract
Alopecia is a prevalent problem of cutaneous appendages and lacks effective therapy. Recently, researchers have been focusing on mesenchymal components of the hair follicle, i.e. dermal papilla cells, and we previously identified biglycan secreted by dermal papilla cells as the key factor responsible for hair follicle-inducing ability. In this research, we hypothesized biglycan played an important role in hair follicle cycle and regeneration through regulating the Wnt signalling pathway. To characterize the hair follicle cycle and the expression pattern of biglycan, we observed hair follicle morphology in C57BL/6 mice on Days 0, 3, 5, 12 and 18 post-depilation and found that biglycan is highly expressed at both mRNA and protein levels throughout anagen in HFs. To explore the role of biglycan during the phase transit process and regeneration, local injections were administered in C57BL/6 and nude mice. Results showed that local injection of biglycan in anagen HFs delayed catagen progression and involve activating the Wnt/β-catenin signalling pathway. Furthermore, local injection of biglycan induced HF regeneration and up-regulated expression of key Wnt factors in nude mice. In addition, cell analyses exhibited biglycan knockdown inactivated the Wnt signalling pathway in early-passage dermal papilla cell, whereas biglycan overexpression or incubation activated the Wnt signalling pathway in late-passage dermal papilla cells. These results indicate that biglycan plays a critical role in regulating HF cycle transit and regeneration in a paracrine and autocrine fashion by activating the Wnt/β-catenin signalling pathway and could be a potential treatment target for hair loss diseases.
Collapse
Affiliation(s)
- Ningxia Zhu
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin, People's Republic of China
| | - Junping Yan
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin, People's Republic of China
| | - Weifan Gu
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin, People's Republic of China
| | - Qilin Yang
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin, People's Republic of China
| | - En Lin
- Department of Histology and Embryology, Shantou University Medical College, Shantou, People's Republic of China
| | - Siyue Lu
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin, People's Republic of China
| | - Bozhi Cai
- Tissue Engineering Laboratory, First Affiliated Hospital, Shantou University Medical College, Shantou, People's Republic of China
| | - Bin Xia
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin, People's Republic of China
| | - Xin Liu
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin, People's Republic of China
| | - Changmin Lin
- Department of Histology and Embryology, Shantou University Medical College, Shantou, People's Republic of China
| |
Collapse
|
14
|
Yampolsky M, Bachelet I, Fuchs Y. Reproducible strategy for excisional skin-wound-healing studies in mice. Nat Protoc 2024; 19:184-206. [PMID: 38030941 DOI: 10.1038/s41596-023-00899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/28/2023] [Indexed: 12/01/2023]
Abstract
Wound healing is a complex physiological process involving various cell types and signaling pathways. The capability to observe the dynamics of wound repair offers valuable insights into the effects of genetic modifications, pharmaceutical interventions or other experimental manipulations on the skin-repair process. Here, we provide a comprehensive protocol for a full-thickness, excisional skin-wound-healing assay in mice, which can easily be performed by any scientist who has received an animal welfare course certificate and can be completed within ~3 h, depending on the number of animals. Crucially, we highlight the importance of considering key aspects of the assay that can dramatically contribute to the reliability and reproducibility of these experiments. We thoroughly discuss the experimental design, necessary preparations, wounding technique and analysis. In addition, we discuss the use of lineage-tracing techniques to monitor cell migration, differentiation and the contribution of different cell populations to the repair process. Overall, we explore key aspects of the skin-wound-healing assay, supplying a detailed procedure and guidelines essential for decreasing variability and obtaining reliable and reproducible results.
Collapse
|
15
|
Liao B, Cui Y, Yu S, He J, Yang X, Zou S, Li S, Zhao P, Xu H, Long M, Wang X. Histological characteristics of hair follicles at different hair cycle and in vitro modeling of hair follicle-associated cells of yak ( Bos grunniens). Front Vet Sci 2023; 10:1277586. [PMID: 38046572 PMCID: PMC10691264 DOI: 10.3389/fvets.2023.1277586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
To adapt to the extreme conditions of plateau environments, yaks have evolved thick hair, making them an ideal model for investigating the mechanisms involved in hair growth. We can gain valuable insights into how hair follicles develop and their cyclic growth in challenging environments by studying yaks. However, the lack of essential data on yak hair follicle histology and the absence of in vitro cell models for hair follicles serve as a limitation to such research objectives. In this study, we investigated the structure of skin tissue during different hair follicle cycles using the yak model. Additionally, we successfully established in vitro models of hair follicle-associated cells derived from yak skin, including dermal papilla cells (DPCs), preadipocytes, and fibroblasts. We optimized the microdissection technique for DPCs culture by simplifying the procedure and reducing the time required. Furthermore, we improved the methodology used to differentiate yak preadipocytes into mature adipocytes, thus increasing the differentiation efficiency. The introduction of yak as a natural model provides valuable research resources for exploring the mechanisms of hair growth and contributes to a deeper understanding of hair follicle biology and the development of regenerative medicine strategies.
Collapse
Affiliation(s)
- Bo Liao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
| | - Junfeng He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xue Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Shengnan Zou
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Sijie Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Pengfei Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Hongwei Xu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Min Long
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiaoyan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
16
|
Lim C, Lim J, Choi S. Wound-Induced Hair Follicle Neogenesis as a Promising Approach for Hair Regeneration. Mol Cells 2023; 46:573-578. [PMID: 37650216 PMCID: PMC10590709 DOI: 10.14348/molcells.2023.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/21/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
The mammalian skin contains hair follicles, which are epidermal appendages that undergo periodic cycles and exhibit mini-organ features, such as discrete stem cell compartments and different cellular components. Wound-induced hair follicle neogenesis (WIHN) is the remarkable ability to regenerate hair follicles after large-scale wounding and occurs in several adult mammals. WIHN is comparable to embryonic hair follicle development in its processes. Researchers are beginning to identify the stem cells that, in response to wounding, develop into neogenic hair follicles, as well as to understand the functions of immune cells, mesenchymal cells, and several signaling pathways that are essential for this process. WIHN represents a promising therapeutic approach to the reprogramming of cellular states for promoting hair follicle regeneration and preventing scar formation. In the scope of this review, we investigate the contribution of several cell types and molecular mechanisms to WIHN.
Collapse
Affiliation(s)
- Chaeryeong Lim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Jooyoung Lim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sekyu Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- School of Medical Science and Engineering, POSTECH, Pohang 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 37673, Korea
- Institute for Convergence Research and Education in Advanced Technology (I_CREATE), Yonsei University, Incheon 21983, Korea
| |
Collapse
|
17
|
Knoedler S, Broichhausen S, Guo R, Dai R, Knoedler L, Kauke-Navarro M, Diatta F, Pomahac B, Machens HG, Jiang D, Rinkevich Y. Fibroblasts - the cellular choreographers of wound healing. Front Immunol 2023; 14:1233800. [PMID: 37646029 PMCID: PMC10461395 DOI: 10.3389/fimmu.2023.1233800] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
Injuries to our skin trigger a cascade of spatially- and temporally-synchronized healing processes. During such endogenous wound repair, the role of fibroblasts is multifaceted, ranging from the activation and recruitment of innate immune cells through the synthesis and deposition of scar tissue to the conveyor belt-like transport of fascial connective tissue into wounds. A comprehensive understanding of fibroblast diversity and versatility in the healing machinery may help to decipher wound pathologies whilst laying the foundation for novel treatment modalities. In this review, we portray the diversity of fibroblasts and delineate their unique wound healing functions. In addition, we discuss future directions through a clinical-translational lens.
Collapse
Affiliation(s)
- Samuel Knoedler
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, United States
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Sonja Broichhausen
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Ruiji Guo
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Ruoxuan Dai
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Leonard Knoedler
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Fortunay Diatta
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Hans-Guenther Machens
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dongsheng Jiang
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
18
|
Li D, Wang TW, Aratani S, Omori S, Tamatani M, Johmura Y, Nakanishi M. Transcriptomic characterization of Lonrf1 at the single-cell level under pathophysiological conditions. J Biochem 2023; 173:459-469. [PMID: 36888978 PMCID: PMC10226518 DOI: 10.1093/jb/mvad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 03/10/2023] Open
Abstract
The LONRF family of proteins consists of three isozymes, LONRF1-3, which harbors RING (really interesting new gene) domain and Lon substrate binding domain. We have recently identified LONRF2 as a protein quality control ubiquitin ligase that acts predominantly in neurons. LONRF2 selectively ubiquitylates misfolded or damaged proteins for degradation. LONRF2-/- mice exhibit late-onset neurological deficits. However, the physiological implications of other LONRF isozymes remain unclear. Here, we analysed Lonrf1 expression and transcriptomics at the single-cell level under normal and pathological conditions. We found that Lonrf1 was ubiquitously expressed in different tissues. Its expression in LSEC and Kupffer cells increased with age in the liver. Lonrf1high Kupffer cells showed activation of regulatory pathways of peptidase activity. In normal and NASH (nonalcoholic steatohepatitis) liver, Lonrf1high LSECs showed activation of NF-kB and p53 pathways and suppression of IFNa, IFNg and proteasome signalling independent of p16 expression. During wound healing, Lonrf1high/p16low fibroblasts showed activation of cell growth and suppression of TGFb and BMP (bone morphogenetic protein) signalling, whereas Lonrf1high/p16high fibroblasts showed activation of WNT (wingless and Int-1) signalling. These results suggest that although Lonrf1 does not seem to be associated with senescence induction and phenotypes, LONRF1 may play a key role in linking oxidative damage responses and tissue remodelling during wound healing in different modes in senescent and nonsenescent cells.
Collapse
Affiliation(s)
- Dan Li
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| | - Teh-Wei Wang
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| | - Sae Aratani
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
- Department of Endocrinology, Metabolism, and Nephrology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Satotaka Omori
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| | - Maho Tamatani
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| | - Yoshikazu Johmura
- Division of Cancer and Senescence Biology, Cancer Research Institute, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
19
|
Phan QM, Salz L, Kindl SS, Lopez JS, Thompson SM, Makkar J, Driskell IM, Driskell RR. Lineage Commitment of Dermal Fibroblast Progenitors is Mediated by Chromatin De-repression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531478. [PMID: 36945417 PMCID: PMC10028926 DOI: 10.1101/2023.03.07.531478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Dermal Fibroblast Progenitors (DFPs) differentiate into distinct fibroblast lineages during skin development. However, the mechanisms that regulate lineage commitment of naive dermal progenitors to form niches around the hair follicle, dermis, and hypodermis, are unknown. In our study, we used multimodal single-cell approaches, epigenetic assays, and allografting techniques to define a DFP state and the mechanisms that govern its differentiation potential. Our results indicate that the overall chromatin profile of DFPs is repressed by H3K27me3 and has inaccessible chromatin at lineage specific genes. Surprisingly, the repressed chromatin profile of DFPs renders them unable to reform skin in allograft assays despite their multipotent potential. Distinct fibroblast lineages, such as the dermal papilla and adipocytes contained specific chromatin profiles that were de-repressed during late embryogenesis by the H3K27-me3 demethylase, Kdm6b/Jmjd3. Tissue-specific deletion of Kdm6b/Jmjd3 resulted in ablating the adipocyte compartment and inhibiting mature dermal papilla functions in single-cell-RNA-seq, ChIPseq, and allografting assays. Altogether our studies reveal a mechanistic multimodal understanding of how DFPs differentiate into distinct fibroblast lineages, and we provide a novel multiomic search-tool within skinregeneration.org.
Collapse
Affiliation(s)
- Quan M. Phan
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Lucia Salz
- North Rhine-Westphalia Technical University of Aachen, Aachen, Germany
| | - Sam S. Kindl
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Jayden S. Lopez
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Sean M. Thompson
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Jasson Makkar
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Iwona M. Driskell
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Ryan R. Driskell
- School of Molecular Biosciences, Washington State University, Pullman, WA
- Center for Reproductive Biology, Washington State University, Pullman, WA
| |
Collapse
|
20
|
Wu Q, Tan XY, Wang YJ, Cheng SW, Cui HW, Yao JL. [Research advances on the mechanism of Wnt/β-catenin signaling pathway in body surface wound healing]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2023; 39:190-195. [PMID: 36878529 DOI: 10.3760/cma.j.cn501225-20220816-00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Wound healing is a slow and complex biological process, including inflammatory reaction, cell proliferation, cell differentiation, cell migration, angiogenesis, extracellular matrix deposition, tissue remodeling, and so on. Wnt signaling pathway can be divided into classical pathway and non-classical pathway. Wnt classical pathway, also known as Wnt/β-catenin signaling pathway, plays an important role in cell differentiation, cell migration, and maintenance of tissue homeostasis. Many inflammatory factors and growth factors are involved in the upstream regulation of this pathway. The activation of Wnt/β-catenin signaling pathway plays an important role in the occurrence, development, regeneration, repair and related treatment of skin wounds. This article review the relationship between Wnt/β-catenin signaling pathway and wound healing, meanwhile summarizes its effects on important processes of wound healing, such as inflammation, cell proliferation, angiogenesis, hair follicle regeneration, and skin fibrosis, as well as the role of inhibitors of Wnt signaling pathway in wound healing.
Collapse
Affiliation(s)
- Q Wu
- Hainan Medical University, Haikou 570105, China
| | - X Y Tan
- Hainan Medical University, Haikou 570105, China
| | - Y J Wang
- Hainan Medical University, Haikou 570105, China
| | - S W Cheng
- Department of Emergency and Trauma Surgery, the First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - H W Cui
- Department of Emergency and Trauma Surgery, the First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - J L Yao
- Department of Emergency and Trauma Surgery, the First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| |
Collapse
|
21
|
Spielman AF, Griffin MF, Parker J, Cotterell AC, Wan DC, Longaker MT. Beyond the Scar: A Basic Science Review of Wound Remodeling. Adv Wound Care (New Rochelle) 2023; 12:57-67. [PMID: 35658581 DOI: 10.1089/wound.2022.0049] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Significance: Increasing development of experimental animal models has allowed for the study of scar formation. However, many pathophysiological unknowns remain in the longest stage of healing, the remodeling stage, which may continue for a year or more. The wound healing process results in different types of scarring classified as normal or pathological depending on failures at each stage. Failures can also occur during wound remodeling, but the molecular mechanisms driving the wound remodeling process have yet to be investigated. Recent Advances: While the current understanding of wound repair is based on investigations of acute healing, these experimental models have informed knowledge of key components of remodeling. This review examines the components that contribute to collagen organization and the final scar, including cell types, their regulation, and signaling pathways. Dysregulation in any one of these components causes pathologic healing. Critical Issues and Future Directions: As wounds continue to remodel months to years after reepithelialization, new models to better understand long-term remodeling will be critical for improving healing outcomes. Further investigation of the contributions of fibroblasts and cell signaling pathways involved during remodeling as well as their potential failures may inform new approaches in promoting regenerative healing beyond reepithelialization.
Collapse
Affiliation(s)
- Amanda F Spielman
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, California, USA
| | - Michelle F Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, California, USA
| | - Jennifer Parker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Asha C Cotterell
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, California, USA
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, California, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
22
|
Oak ASW, Cotsarelis G. Wound-Induced Hair Neogenesis: A Portal to the Development of New Therapies for Hair Loss and Wound Regeneration. Cold Spring Harb Perspect Biol 2023; 15:a041239. [PMID: 36123030 PMCID: PMC9899649 DOI: 10.1101/cshperspect.a041239] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Adult mammals retain the remarkable ability to regenerate hair follicles after wounding. Wound-induced hair neogenesis (WIHN) in many ways recapitulates embryogenesis. The origin of the stem cells that give rise to a nascent hair follicle after wounding and the role of mesenchymal cells and signaling pathways responsible for this regenerative phenomenon are slowly being elucidated. WIHN provides a potential therapeutic window for manipulating cell fate by the introduction of factors during the wound healing process to enhance hair follicle formation.
Collapse
Affiliation(s)
- Allen S W Oak
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - George Cotsarelis
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
23
|
Abstract
Skin is largely composed of an epidermis that overlies a supporting dermis. Recent advancements in our understanding of how diverse groups of dermal fibroblasts regulate epidermal and hair follicle growth and differentiation have been fueled by tools capable of resolving molecular heterogeneity at a single-cell level. Fibroblast heterogeneity can be traced back to their developmental origin before their segregation into spatially distinct fibroblast subtypes. The mechanisms that drive this lineage diversification during development are being unraveled, with studies showing that both large- and small-scale positional signals play important roles during dermal development. Here, we first delineate what is known about the origins of the dermis and the central role of Wnt/β-catenin signaling in its specification across anatomical locations. We then discuss how one of the first morphologically recognizable fibroblast subtypes, the hair follicle dermal condensate lineage, emerges. Leveraging the natural variation of skin and its appendages between species and between different anatomical locations, these collective studies have identified shared and divergent factors that contribute to the extraordinary diversity of skin.
Collapse
Affiliation(s)
- Peggy Myung
- Department of Dermatology, Yale University, New Haven, CT 06510, USA
| | - Thomas Andl
- Burnett School of Biomedical Sciences, Orlando, FL 32827, USA
| | - Radhika Atit
- Department of Biology, Department of Genetics and Genome Sciences, Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
24
|
Sharifi E, Sadati SA, Yousefiasl S, Sartorius R, Zafari M, Rezakhani L, Alizadeh M, Nazarzadeh Zare E, Omidghaemi S, Ghanavatinejad F, Jami M, Salahinejad E, Samadian H, Paiva‐Santos AC, De Berardinis P, Shafiee A, Tay FR, Pourmotabed S, Makvandi P. Cell loaded hydrogel containing Ag-doped bioactive glass-ceramic nanoparticles as skin substitute: Antibacterial properties, immune response, and scarless cutaneous wound regeneration. Bioeng Transl Med 2022; 7:e10386. [PMID: 36176609 PMCID: PMC9471996 DOI: 10.1002/btm2.10386] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/21/2022] [Accepted: 07/16/2022] [Indexed: 12/12/2022] Open
Abstract
An ideal tissue-engineered dermal substitute should possess angiogenesis potential to promote wound healing, antibacterial activity to relieve the bacterial burden on skin, as well as sufficient porosity for air and moisture exchange. In light of this, a glass-ceramic (GC) has been incorporated into chitosan and gelatin electrospun nanofibers (240-360 nm), which MEFs were loaded on it for healing acceleration. The GC was doped with silver to improve the antibacterial activity. The bioactive nanofibrous scaffolds demonstrated antibacterial and superior antibiofilm activities against Gram-negative and Gram-positive bacteria. The nanofibrous scaffolds were biocompatible, hemocompatible, and promoted cell attachment and proliferation. Nanofibrous skin substitutes with or without Ag-doped GC nanoparticles did not induce an inflammatory response and attenuated LPS-induced interleukin-6 release by dendritic cells. The rate of biodegradation of the nanocomposite was similar to the rate of skin regeneration under in vivo conditions. Histopathological evaluation of full-thickness excisional wounds in BALB/c mice treated with mouse embryonic fibroblasts-loaded nanofibrous scaffolds showed enhanced angiogenesis, and collagen synthesis as well as regeneration of the sebaceous glands and hair follicles in vivo.
Collapse
Affiliation(s)
- Esmaeel Sharifi
- Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical ScienceShahrekordIran
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and TechnologiesHamadan University of Medical SciencesHamadanIran
| | - Seyede Athar Sadati
- Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical ScienceShahrekordIran
| | - Satar Yousefiasl
- School of DentistryHamadan University of Medical SciencesHamadanIran
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council (CNR)NaplesItaly
| | - Mahdi Zafari
- National Cell Bank, Pasteur Institute of IranTehranIran
| | - Leila Rezakhani
- Fertility and Infertility Research CenterHealth Technology Institute, Kermanshah University of Medical SciencesKermanshahIran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of MedicineShahroud University of Medical SciencesShahroudIran
| | | | - Shadi Omidghaemi
- Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical ScienceShahrekordIran
| | - Fatemeh Ghanavatinejad
- Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical ScienceShahrekordIran
| | - Mohammad‐Saeid Jami
- Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical ScienceShahrekordIran
| | - Erfan Salahinejad
- Faculty of Materials Science and EngineeringK. N. Toosi University of TechnologyTehranIran
| | - Hadi Samadian
- Dental Implants Research CenterHamadan University of Medical SciencesHamadanIran
| | - Ana Cláudia Paiva‐Santos
- Department of Pharmaceutical Technology, Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
| | | | - Abbas Shafiee
- UQ Diamantina Institute, Translational Research Institute, The University of QueenslandBrisbaneQueenslandAustralia
| | | | - Samiramis Pourmotabed
- Department of Emergency Medicine, School of MedicineHamadan University of Medical SciencesHamadanIran
| | - Pooyan Makvandi
- School of ChemistryDamghan UniversityDamghanIran
- Istituto Italiano di Tecnologia, Centre for Materials InterfacesPontederaPisaItaly
| |
Collapse
|
25
|
Mascharak S, desJardins-Park HE, Davitt MF, Guardino NJ, Gurtner GC, Wan DC, Longaker MT. Modulating Cellular Responses to Mechanical Forces to Promote Wound Regeneration. Adv Wound Care (New Rochelle) 2022; 11:479-495. [PMID: 34465219 PMCID: PMC9245727 DOI: 10.1089/wound.2021.0040] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Significance: Skin scarring poses a major biomedical burden for hundreds of millions of patients annually. However, this burden could be mitigated by therapies that promote wound regeneration, with full recovery of skin's normal adnexa, matrix ultrastructure, and mechanical strength. Recent Advances: The observation of wound regeneration in several mouse models suggests a retained capacity for postnatal mammalian skin to regenerate under the right conditions. Mechanical forces are a major contributor to skin fibrosis and a prime target for devices and therapeutics that could promote skin regeneration. Critical Issues: Wound-induced hair neogenesis, Acomys "spiny" mice, Murphy Roths Large mice, and mice treated with mechanotransduction inhibitors all show various degrees of wound regeneration. Comparison of regenerating wounds in these models against scarring wounds reveals differences in extracellular matrix interactions and in mechanosensitive activation of key signaling pathways, including Wnt, Sonic hedgehog, focal adhesion kinase, and Yes-associated protein. The advent of single-cell "omics" technologies has deepened this understanding and revealed that regeneration may recapitulate development in certain contexts, although it is unknown whether these mechanisms are relevant to healing in tight-skinned animals such as humans. Future Directions: While early findings in mice are promising, comparison across model systems is needed to resolve conflicting mechanisms and to identify conserved master regulators of skin regeneration. There also remains a dire need for studies on mechanomodulation of wounds in large, tight-skinned animals, such as red Duroc pigs, which better approximate human wound healing.
Collapse
Affiliation(s)
- Shamik Mascharak
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine; Stanford University School of Medicine, Stanford, California, USA
| | - Heather E. desJardins-Park
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine; Stanford University School of Medicine, Stanford, California, USA
| | - Michael F. Davitt
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - Nicholas J. Guardino
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - Geoffrey C. Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - Derrick C. Wan
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - Michael T. Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine; Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
26
|
Downregulation of Lhx2 Markedly Impairs Wound Healing in Mouse Fetus. Biomedicines 2022; 10:biomedicines10092132. [PMID: 36140233 PMCID: PMC9496086 DOI: 10.3390/biomedicines10092132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Multiple transitions occur in the healing ability of the skin during embryonic development in mice. Embryos up to embryonic day 13 (E13) regenerate completely without a scar after full-thickness wounding. Then, up to E16, dermal structures can be formed, including skin appendages such as hair follicles. However, after E17, wound healing becomes incomplete, and scar formation is triggered. Lhx2 regulates the switch between maintenance and activation of hair follicle stem cells, which are involved in wound healing. Therefore, we investigated the role of Lhx2 in fetal wound healing. Embryos of ICR mice were surgically wounded at E13, E15, and E17, and the expression of Lhx2 along with mitotic (Ki67 and p63) and epidermal differentiation (keratin-10 and loricrin) markers was analyzed. The effect of Lhx2 knockdown on wound healing was observed. Lhx2 expression was not noticed in E13 due to the absence of folliculogenesis but was evident in the epidermal basal layer of E15 and E17 and at the base of E17 wounds, along with Ki67 and p63 expression. Furthermore, Lhx2 knockdown in E15 markedly prolonged wound healing and promoted clear scar formation. Therefore, Lhx2 expression is involved in cell division associated with wound healing and may contribute to scar formation in late embryos.
Collapse
|
27
|
Park S. Hair Follicle Morphogenesis During Embryogenesis, Neogenesis, and Organogenesis. Front Cell Dev Biol 2022; 10:933370. [PMID: 35938157 PMCID: PMC9354988 DOI: 10.3389/fcell.2022.933370] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
Hair follicles are mini organs that repeat the growth and regression cycle continuously. These dynamic changes are driven by the regulation of stem cells via their multiple niche components. To build the complex structure of hair follicles and surrounding niches, sophisticated morphogenesis is required during embryonic development. This review will explore how hair follicles are formed and maintained through dynamic cellular changes and diverse signaling pathways. In addition, comparison of differences in stem cells and surrounding niche components during embryogenesis, neogenesis, and organogenesis will provide a comprehensive understanding of mechanisms for hair follicle generation and insights into skin regeneration.
Collapse
Affiliation(s)
- Sangbum Park
- Institute for Quantitative Health Science & Engineering (IQ), Michigan State University, East Lansing, MI, United States
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
- *Correspondence: Sangbum Park,
| |
Collapse
|
28
|
Cell Population Dynamics in Wound-Induced Hair Follicle Neogenesis Model. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071058. [PMID: 35888146 PMCID: PMC9322605 DOI: 10.3390/life12071058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
Abstract
Hair follicle (HF) regeneration can be achieved in the center of large full-thickness wounds on mouse backs (wound-induced HF neogenesis model, WIHN). Investigations with this model have allowed for the identification of some of the factors limiting the extent of fibrosis, which creates a permissive environment for the reposition of HF. For WIHN, specific subpopulations of cells rather than cell types are permissive to this process. Detailed information on the cellular composition in WIHN is not available. Here, we provide a description of changes in cell numbers of fibroblasts, HF dermal papilla, endothelial cells, keratinocytes (interfollicular epidermis, HF-infundibulum, HF-isthmus, HF-bulge (basal and suprabasal), HF-hair germ) and immune cells (macrophages, monocytes, dendritic cells, T cells (CD4+, CD8+, CD4+/CD8+, regulatory T cells) and neutrophils) based on flow cytometric analysis. We compared unwounded skin with large wounds (1.5 × 1.5 cm) at different time points after wounding. We found that non-immune dermal cells have the largest share in the skin at all time points studied, and that the number of epidermal cells started increasing nine days after wounding, which precede isthmus cells and bulge cells, mirroring the development of hair follicles. Monocytes and neutrophils represent most myeloid cells in wounds and remain in wounds even beyond the inflammatory phase of wound healing. Macrophages can be identified as inflammatory and alternative cells and are also found in wounds even in the late remodeling phase of wound healing. Lastly, we provide information about T cells in large wounds. Most T cells in the wounds were CD8+ at all time points and expressed γδTCR, which was previously thought to be expressed mainly on CD4+. We also report the existence of double positive CD4/CD8. Our study provides a guide in terms of time points suitable for the further study of cell subpopulations aiming to dissect the cellular heterogeneity in WIHN. Our results might set the base for the comparison of WIHN between control mice and animals manipulated to influence HF neogenesis and the full understanding of the responsible actors allowing for HF regeneration.
Collapse
|
29
|
THY1-mediated mechanisms converge to drive YAP activation in skin homeostasis and repair. Nat Cell Biol 2022; 24:1049-1063. [PMID: 35798842 DOI: 10.1038/s41556-022-00944-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/18/2022] [Indexed: 12/24/2022]
Abstract
Anchored cells of the basal epidermis constantly undergo proliferation in an overcrowded environment. An important regulator of epidermal proliferation is YAP, which can be controlled by both cell-matrix and cell-cell interactions. Here, we report that THY1, a GPI-anchored protein, inhibits epidermal YAP activity through converging molecular mechanisms. THY1 deficiency leads to increased adhesion by activating the integrin-β1-SRC module. Notably, regardless of high cellular densities, the absence of THY1 leads to the dissociation of an adherens junction complex that enables the release and translocation of YAP. Due to increased YAP-dependent proliferation, Thy1-/- mice display enhanced wound repair and hair follicle regeneration. Taken together, our work reveals THY1 as a crucial regulator of cell-matrix and cell-cell interactions that controls YAP activity in skin homeostasis and regeneration.
Collapse
|
30
|
Xue Y, Reddy SK, Garza LA. Toward Understanding Wound Immunology for High-Fidelity Skin Regeneration. Cold Spring Harb Perspect Biol 2022; 14:a041241. [PMID: 35667792 PMCID: PMC9248820 DOI: 10.1101/cshperspect.a041241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Effective tissue repair is vital for the survival of organisms. Yet, how the immune system coordinates with tissue stem cells (SCs) to effect postnatal tissue restoration remains elusive. This review presents current knowledge surrounding wound-induced SC and immune signaling that favors tissue repair, including wound healing and regeneration. We discuss factors that affect regenerative capacities among organisms and the dynamics of local immune cells and SCs during reepithelialization. We also present recent insights into how immune niches communicate with SCs or other body systems to restore the epithelial architecture. Additionally, we summarize our findings on functional wound regeneration, specifically how alarmin (double-stranded RNA [dsRNA])-activated Toll-like receptor signaling and host-microbe interaction-related immune pathways alter the regenerative property of skin SCs. Last, we touch on mechanisms by which known immunologic cellular and molecular signaling might boost the skin's regenerative property. Overall, this review will provide insights into how therapeutically modulating immune signaling could enhance postnatal tissue regeneration.
Collapse
Affiliation(s)
| | - Sashank K Reddy
- Department of Plastic and Reconstructive Surgery
- Department of Biomedical Engineering
- Institute for NanoBioTechnology
| | - Luis A Garza
- Department of Dermatology
- Department of Cell Biology
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21231, USA
| |
Collapse
|
31
|
Ganier C, Rognoni E, Goss G, Lynch M, Watt FM. Fibroblast Heterogeneity in Healthy and Wounded Skin. Cold Spring Harb Perspect Biol 2022; 14:a041238. [PMID: 35667795 PMCID: PMC9248828 DOI: 10.1101/cshperspect.a041238] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fibroblasts are the main cell type in the dermis. They are responsible for the synthesis and deposition of structural proteins such as collagen and elastin, which are integrated into the extracellular matrix (ECM). Mouse and human studies using flow cytometry, cell culture, skin reconstitution, and lineage tracing experiments have shown the existence of different subpopulations of fibroblasts, including papillary fibroblasts, reticular fibroblasts, and fibroblasts comprising the dermal papilla at the base of the hair follicle. In recent years, the technological advances in single-cell sequencing have allowed researchers to study the repertoire of cells present in full-thickness skin including the dermis. Multiple groups have confirmed that distinct fibroblast populations can be identified in mouse and human dermis on the basis of differences in the transcriptional profile. Here, we discuss the current state of knowledge regarding dermal fibroblast heterogeneity in healthy mouse and human skin, highlighting the similarities and differences between mouse and human fibroblast subpopulations. We also discuss how fibroblast heterogeneity may provide insights into physiological wound healing and its dysfunction in pathological states such as hypertrophic and keloid scars.
Collapse
Affiliation(s)
- Clarisse Ganier
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Emanuel Rognoni
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Georgina Goss
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Magnus Lynch
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
- St John's Institute of Dermatology, King's College London, London SE1 9RT, United Kingdom
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| |
Collapse
|
32
|
Han J, Lin K, Choo H, He J, Wang X, Wu Y, Chen X. β-Catenin Signaling Evokes Hair Follicle Senescence by Accelerating the Differentiation of Hair Follicle Mesenchymal Progenitors. Front Cell Dev Biol 2022; 10:839519. [PMID: 35478971 PMCID: PMC9037041 DOI: 10.3389/fcell.2022.839519] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Rationale: β-catenin signaling controls multiple fibroblast subsets, with its overactivity promoting the differentiation of hair follicle dermal stem cells (hfDSCs) and the hyperactivation of interfollicular fibroblasts. Understanding the concept of hfDSC activation and modulation offers hope towards the therapeutic armamentarium in dermatology and related comorbidities, as well as their potential applications in gerontology (the study of physiological aging). Having a comprehensive understanding in this stochastic process could also further yield important, novel insights into the molecular basis of skin aging to improve lifespan and preventing aging-related diseases. Methods: A new CD34CrePGR mouse line was generated. Through fate-tracing models and a series of β-catenin genetic experiments, our study depicts how the wound environment increases phosphorylated β-catenin in hfDSCs and facilitates their differentiation into dermal papilla (DP) and dermal sheath (DS). In mice carrying hfDSC-specific activated allele of β-catenin, hfDSCs accelerated their differentiation into DP cells. Results: Notably, with β-catenin stabilization in CD34-expressing cells and potential activation of canonical Wnt signaling, the mutant mice showed a brief increase of hair density in the short term, but over time leads to a senescence phenotype developing premature canities and thinning [hair follicle (HF) miniaturization]. Conclusion: β-catenin signaling drove HF senescence by accelerating differentiation of CD34+ hfDSCs, resulting in phenotypes attributable to the differentiation of the hfDSCs into DP cells and the loss of their stem cell potential. Therefore, our study reveals that the regulation of β-catenin signaling in hfDSCs may potentially become an important subject for future exploration in development of clinically effective therapies for hair loss treatment and an excellent model for revealing new therapeutic approaches to reverse aging or retarding the development of alopecia.
Collapse
Affiliation(s)
- Jimin Han
- Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, China.,School of Life Sciences, Tsinghua University, Beijing, China.,The Shenzhen Key Laboratory of Health Sciences and Technology, Shenzhen, China, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Kaijun Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huiqin Choo
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China
| | - Jia He
- Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, China
| | - Xusheng Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yaojiong Wu
- School of Life Sciences, Tsinghua University, Beijing, China.,The Shenzhen Key Laboratory of Health Sciences and Technology, Shenzhen, China, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Xiaodong Chen
- Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, China
| |
Collapse
|
33
|
Capolupo L, Khven I, Lederer AR, Mazzeo L, Glousker G, Ho S, Russo F, Montoya JP, Bhandari DR, Bowman AP, Ellis SR, Guiet R, Burri O, Detzner J, Muthing J, Homicsko K, Kuonen F, Gilliet M, Spengler B, Heeren RMA, Dotto GP, La Manno G, D'Angelo G. Sphingolipids control dermal fibroblast heterogeneity. Science 2022; 376:eabh1623. [PMID: 35420948 DOI: 10.1126/science.abh1623] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human cells produce thousands of lipids that change during cell differentiation and can vary across individual cells of the same type. However, we are only starting to characterize the function of these cell-to-cell differences in lipid composition. Here, we measured the lipidomes and transcriptomes of individual human dermal fibroblasts by coupling high-resolution mass spectrometry imaging with single-cell transcriptomics. We found that the cell-to-cell variations of specific lipid metabolic pathways contribute to the establishment of cell states involved in the organization of skin architecture. Sphingolipid composition is shown to define fibroblast subpopulations, with sphingolipid metabolic rewiring driving cell-state transitions. Therefore, cell-to-cell lipid heterogeneity affects the determination of cell states, adding a new regulatory component to the self-organization of multicellular systems.
Collapse
Affiliation(s)
- Laura Capolupo
- Interfaculty Institute of Bioengineering and Global Health Institute, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Irina Khven
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Alex R Lederer
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Luigi Mazzeo
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Galina Glousker
- School of Life Sciences, Swiss Institute for Experimental Cancer Research, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Sylvia Ho
- Interfaculty Institute of Bioengineering and Global Health Institute, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Francesco Russo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, 80131 Napoli, Italy
| | - Jonathan Paz Montoya
- Interfaculty Institute of Bioengineering and Global Health Institute, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Dhaka R Bhandari
- Institute for Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Andrew P Bowman
- Maastricht MultiModal Molecular Imaging Institute, Division of Imaging Mass Spectrometry, Maastricht University, 6629 ER Maastricht, Netherlands
| | - Shane R Ellis
- Maastricht MultiModal Molecular Imaging Institute, Division of Imaging Mass Spectrometry, Maastricht University, 6629 ER Maastricht, Netherlands
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Romain Guiet
- Faculté des Sciences de la Vie, Bioimaging and Optics Platform, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015 Vaud, Switzerland
| | - Olivier Burri
- Faculté des Sciences de la Vie, Bioimaging and Optics Platform, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015 Vaud, Switzerland
| | - Johanna Detzner
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany
| | - Johannes Muthing
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany
| | - Krisztian Homicsko
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, CH-1011 Lausanne, Switzerland
- Swiss Cancer Center Leman, CH-1015 Lausanne, Switzerland
- The Ludwig Institute for Cancer Research, Lausanne Branch, CH-1066 Epalinges, Switzerland
| | - François Kuonen
- Département de Dermatologie et Vénéréologie, Centre Hospitalier Universitaire Vaudois, CH-1011 Lausanne, Switzerland
| | - Michel Gilliet
- Département de Dermatologie et Vénéréologie, Centre Hospitalier Universitaire Vaudois, CH-1011 Lausanne, Switzerland
| | - Bernhard Spengler
- Institute for Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging Institute, Division of Imaging Mass Spectrometry, Maastricht University, 6629 ER Maastricht, Netherlands
| | - G Paolo Dotto
- Personalized Cancer Prevention Research Unit, Head and Neck Surgery Division, Centre Hospitalier Universitaire Vaudois, CH-1011 Lausanne, Switzerland
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Gioele La Manno
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Giovanni D'Angelo
- Interfaculty Institute of Bioengineering and Global Health Institute, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, 80131 Napoli, Italy
| |
Collapse
|
34
|
Michalak-Micka K, Klar AS, Dasargyri A, Biedermann T, Reichmann E, Moehrlen U. The influence of CD26 + and CD26 - fibroblasts on the regeneration of human dermo-epidermal skin substitutes. Sci Rep 2022; 12:1944. [PMID: 35121765 PMCID: PMC8816920 DOI: 10.1038/s41598-022-05309-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/04/2022] [Indexed: 11/15/2022] Open
Abstract
CD26, also known as dipeptidyl peptidase IV (DPPIV), is a multifunctional transmembrane protein playing a significant role in the cutaneous wound healing processes in the mouse skin. However, only scarce data are available regarding the distribution and function of this protein in the human skin. Therefore, the aim of this study was to investigate the impact of CD26 deficiency in human primary fibroblasts on the regeneration of human tissue-engineered skin substitutes in vivo. Dermo-epidermal skin analogs, based on collagen type I hydrogels, were populated either with human CD26+ or CD26knockout fibroblasts and seeded with human epidermal keratinocytes. These skin substitutes were transplanted onto the back of immune-incompetent rodents. Three weeks post-transplantation, the grafts were excised and analyzed with respect to specific epidermal and dermal maturation markers. For the first time, we show here that the expression of CD26 protein in human dermis is age-dependent. Furthermore, we prove that CD26+ fibroblasts are more active in the production of extracellular matrix (ECM) both in vitro and in vivo and are necessary to achieve rapid epidermal and dermal homeostasis after transplantation.
Collapse
Affiliation(s)
- Katarzyna Michalak-Micka
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Agnes S Klar
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Athanasia Dasargyri
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Ernst Reichmann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Ueli Moehrlen
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland.
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
- Department of Surgery, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.
- University of Zurich, Zurich, Switzerland.
| |
Collapse
|
35
|
Xue M, Zhao R, March L, Jackson C. Dermal Fibroblast Heterogeneity and Its Contribution to the Skin Repair and Regeneration. Adv Wound Care (New Rochelle) 2022; 11:87-107. [PMID: 33607934 DOI: 10.1089/wound.2020.1287] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Significance: Dermal fibroblasts are the major cell type in the skin's dermal layer. These cells originate from distinct locations of the embryo and reside in unique niches in the dermis. Different dermal fibroblasts exhibit distinct roles in skin development, homeostasis, and wound healing. Therefore, these cells are becoming attractive candidates for cell-based therapies in wound healing. Recent Advances: Human skin dermis comprises multiple fibroblast subtypes, including papillary, reticular, and hair follicle-associated fibroblasts, and myofibroblasts after wounding. Recent studies reveal that these cells play distinct roles in wound healing and contribute to diverse healing outcomes, including nonhealing chronic wound or excessive scar formation, such as hypertrophic scars (HTS) and keloids, with papillary fibroblasts having antiscarring and reticular fibroblast scar-forming properties. Critical Issues: The identities and functions of dermal fibroblast subpopulations in many respects remain unknown. In this review, we summarize the current understanding of dermal fibroblast heterogeneity, including their defined cell markers and dermal niches, dynamic changes, and contributions to skin wound healing, with the emphasis on scarless healing, healing with excessive scars (HTS and keloids), chronic wounds, and the potential application of this heterogeneity for developing cell-based therapies that allow wounds to heal faster with less scarring. Future Directions: Heterogeneous dermal fibroblast populations and their functions are poorly characterized. Refining and advancing our understanding of dermal fibroblast heterogeneity and their participation in skin homeostasis and wound healing may create potential therapeutic applications for nonhealing chronic wounds or wounds that heal with excessive scarring.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Ruilong Zhao
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Lyn March
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Christopher Jackson
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
36
|
Jamerson TA, Talbot CC, Dina Y, Kwatra SG, Garza LA, Aguh C. Gene expression profiling suggests severe, extensive central centrifugal cicatricial alopecia may be both clinically and biologically distinct from limited disease subtypes. Exp Dermatol 2022; 31:789-793. [PMID: 35007355 DOI: 10.1111/exd.14524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/24/2021] [Accepted: 01/06/2022] [Indexed: 11/29/2022]
Abstract
The natural history of central centrifugal cicatricial alopecia (CCCA) is widely variable. Some patients experience rapid progression to extensive, end-stage disease while others never approach extensive involvement over decades, suggesting heterogeneity in CCCA disease phenotype. To better characterize clinically severe disease in CCCA, tissue samples were obtained from the peripheral, hair bearing lesional scalp of women with clinically focal, limited, and extensive CCCA disease involvement. A microarray analysis was conducted to identify differential expression of genes previously identified to be preferentially expressed in the lesional scalp vs non-lesional scalp of CCCA patients. Clinically extensive, severe CCCA was characterized by increased expression of MMP9, SFRP4, and MSR1 when directly compared with focal and limited disease. These biomarkers correspond to dysregulated pathways of fibrosis, Wnt signaling, and macrophage-mediated inflammatory processes, respectively. These findings hold significance for both possible targets for future study of prognostic markers of disease severity and new potential therapeutic targets. In summary, this study suggests clinically extensive, severe CCCA may have a differential gene expression pattern in the lesional scalp of affected patients, in addition to its clinical distinction.
Collapse
Affiliation(s)
| | - C Conover Talbot
- Johns Hopkins Medical Institute Single Cell & Transcriptomics Core, Baltimore, Maryland, USA
| | - Yemisi Dina
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Shawn G Kwatra
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Luis A Garza
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Crystal Aguh
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
37
|
Rognoni E, Goss G, Hiratsuka T, Sipilä KH, Kirk T, Kober KI, Lui PP, Tsang VSK, Hawkshaw NJ, Pilkington SM, Cho I, Ali N, Rhodes LE, Watt FM. Role of distinct fibroblast lineages and immune cells in dermal repair following UV radiation-induced tissue damage. eLife 2021; 10:e71052. [PMID: 34939928 PMCID: PMC8747514 DOI: 10.7554/elife.71052] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Solar ultraviolet radiation (UVR) is a major source of skin damage, resulting in inflammation, premature ageing, and cancer. While several UVR-induced changes, including extracellular matrix reorganisation and epidermal DNA damage, have been documented, the role of different fibroblast lineages and their communication with immune cells has not been explored. We show that acute and chronic UVR exposure led to selective loss of fibroblasts from the upper dermis in human and mouse skin. Lineage tracing and in vivo live imaging revealed that repair following acute UVR is predominantly mediated by papillary fibroblast proliferation and fibroblast reorganisation occurs with minimal migration. In contrast, chronic UVR exposure led to a permanent loss of papillary fibroblasts, with expansion of fibroblast membrane protrusions partially compensating for the reduction in cell number. Although UVR strongly activated Wnt signalling in skin, stimulation of fibroblast proliferation by epidermal β-catenin stabilisation did not enhance papillary dermis repair. Acute UVR triggered an infiltrate of neutrophils and T cell subpopulations and increased pro-inflammatory prostaglandin signalling in skin. Depletion of CD4- and CD8-positive cells resulted in increased papillary fibroblast depletion, which correlated with an increase in DNA damage, pro-inflammatory prostaglandins, and reduction in fibroblast proliferation. Conversely, topical COX-2 inhibition prevented fibroblast depletion and neutrophil infiltration after UVR. We conclude that loss of papillary fibroblasts is primarily induced by a deregulated inflammatory response, with infiltrating T cells supporting fibroblast survival upon UVR-induced environmental stress.
Collapse
Affiliation(s)
- Emanuel Rognoni
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's HospitalLondonUnited Kingdom
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of LondonLondonUnited Kingdom
| | - Georgina Goss
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's HospitalLondonUnited Kingdom
| | - Toru Hiratsuka
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's HospitalLondonUnited Kingdom
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Kalle H Sipilä
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's HospitalLondonUnited Kingdom
| | - Thomas Kirk
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of LondonLondonUnited Kingdom
| | - Katharina I Kober
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg UniversityHeidelbergGermany
| | - Prudence PokWai Lui
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's HospitalLondonUnited Kingdom
| | - Victoria SK Tsang
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of LondonLondonUnited Kingdom
| | - Nathan J Hawkshaw
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester and Salford Royal NHS Foundation TrustManchesterUnited Kingdom
| | - Suzanne M Pilkington
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester and Salford Royal NHS Foundation TrustManchesterUnited Kingdom
| | - Inchul Cho
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's HospitalLondonUnited Kingdom
| | - Niwa Ali
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's HospitalLondonUnited Kingdom
- The Francis Crick InstituteLondonUnited Kingdom
| | - Lesley E Rhodes
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester and Salford Royal NHS Foundation TrustManchesterUnited Kingdom
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's HospitalLondonUnited Kingdom
| |
Collapse
|
38
|
Thompson SM, Phan QM, Winuthayanon S, Driskell IM, Driskell RR. Parallel single cell multi-omics analysis of neonatal skin reveals transitional fibroblast states that restricts differentiation into distinct fates. J Invest Dermatol 2021; 142:1812-1823.e3. [PMID: 34922949 DOI: 10.1016/j.jid.2021.11.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
Abstract
One of the keys to achieving skin regeneration lies within understanding the heterogeneity of neonatal fibroblasts, which support skin regeneration. However, the molecular underpinnings regulating the cellular states and fates of these cells are not fully understood. To investigate this, we performed a parallel multi-omics analysis by processing neonatal murine skin for single-cell ATAC-sequencing (scATAC-seq) and single-cell RNA-sequencing (scRNA-seq) separately. Our approach revealed that fibroblast clusters could be sorted into papillary and reticular lineages based on transcriptome profiling, as previously published. However, scATAC-seq analysis of neonatal fibroblast lineage markers, such as, Dpp4/CD26, Corin, and Dlk1 along with markers of myofibroblasts, revealed accessible chromatin in all fibroblast populations despite their lineage-specific transcriptome profiles. These results suggests that accessible chromatin does not always translate to gene expression and that many fibroblast lineage markers reflect a fibroblast state, which includes neonatal papillary, reticular, and myofibroblasts. This analysis also provides a possible explanation as to why these marker genes can be promiscuously expressed in different fibroblast populations under different conditions. Our scATAC-seq analysis also revealed that the functional lineage restriction between dermal papilla and adipocyte fates are regulated by distinct chromatin landscapes. Finally, we have developed a webtool for our multi-omics analysis: https://skinregeneration.org/scatacseq-and-scrnaseq-data-from-thompson-et-al-2021-2/.
Collapse
Affiliation(s)
- Sean M Thompson
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Quan M Phan
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Sarayut Winuthayanon
- School of Molecular Biosciences, Washington State University, Pullman, WA; Center for Reproductive Biology, Washington State University, Pullman, WA
| | - Iwona M Driskell
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Ryan R Driskell
- School of Molecular Biosciences, Washington State University, Pullman, WA; Center for Reproductive Biology, Washington State University, Pullman, WA. https://twitter.com/Driskellab
| |
Collapse
|
39
|
Frech S, Forsthuber A, Korosec A, Lipp K, Kozumov V, Lichtenberger BM. Hedgehog-signalling in papillary fibroblasts is essential for hair follicle regeneration during wound healing. J Invest Dermatol 2021; 142:1737-1748.e5. [PMID: 34922948 DOI: 10.1016/j.jid.2021.11.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/09/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022]
Abstract
Patients suffering from large scars such as burn victims not only encounter aesthetical challenges but also ongoing itching or pain that substantially deteriorates their quality of life. Skin appendages such as hair follicles (HFs) rarely regenerate within the healing wound. As they are crucial for skin homeostasis and the lack thereof constitutes one of the main limitations to scarless wound healing, their regeneration represents a major objective for regenerative medicine. Fibroblasts, the main resident cell type of the skin dermis, mediate embryonic HF morphogenesis and are particularly involved in wound healing as they orchestrate extracellular matrix (ECM) remodeling and collagen deposition in the wound bed. Importantly, dermal fibroblasts originate from two distinct developmental lineages with unique functions that differently mediate the response to epidermal signals such as Hedgehog (Hh)-signalling. In the present study, we show that Hh-signalling in the reticular fibroblast lineage promotes the initial phase of wound repair, possibly by modulating angiogenesis and fibroblast proliferation, while Hh-signalling in papillary fibroblasts is essential to induce de novo HF formation within the healing wound.
Collapse
Affiliation(s)
- Sophie Frech
- Skin & Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14a, 1090 Vienna, Austria
| | - Agnes Forsthuber
- Skin & Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14a, 1090 Vienna, Austria
| | - Ana Korosec
- Skin & Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14a, 1090 Vienna, Austria
| | - Katharina Lipp
- Skin & Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14a, 1090 Vienna, Austria
| | - Viktor Kozumov
- Skin & Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14a, 1090 Vienna, Austria
| | - Beate M Lichtenberger
- Skin & Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14a, 1090 Vienna, Austria.
| |
Collapse
|
40
|
Evaluation of In Vitro Wound-Healing Potential, Antioxidant Capacity, and Antimicrobial Activity of Stellaria media (L.) Vill. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311526] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The healing of skin wounds remains an important concern in medicine, especially in chronic wounds caused by various diseases such as diabetes. Using herbs or herbal products to heal skin wounds is a therapeutic challenge for traditional medicine. In this context, the main aim of our work was to highlight the in vitro healing potential of Stellaria media (L.) Vill. (SM) extract using the scratch assay on normal human dermal fibroblasts (NHDF). The ability to stimulate cell migration and proliferation under the influence of different concentrations of SM extract (range between 12.5 and 200 µg/mL) was determined compared to the control (untreated in vitro-simulated wound) and positive control (allantoin 50 µg/mL). Our results showed that the concentration of 100 µg/mL SM extract applied on the simulated wound recorded the strongest and fastest (24 h) migration (with wound closure) and proliferation of NHDF compared with the control. In addition, the SM extract was characterized in terms of bioactive compounds (total phenols and flavonoids content), antioxidant capacity (FRAP (The Ferric-Reducing Antioxidant Power) assay and electrochemical method), and antimicrobial activity. The results show that the SM extract contains a considerable amount of polyphenols (17.19 ± 1.32 mg GAE/g dw and 7.28 ± 1.18 mg QE/g dw for total phenol and flavonoid content, respectively) with antioxidant capacity. Antimicrobial activity against Gram-positive bacteria (S. aureus) is higher than E. coli at a dose of 15 µg/mL. This study showed that Stellaria media is a source of polyphenols compounds with antioxidant capacity, and for the first time, its wound healing potential was emphasized.
Collapse
|
41
|
Thulabandu V, Nehila T, Ferguson JW, Atit RP. Dermal EZH2 orchestrates dermal differentiation and epidermal proliferation during murine skin development. Dev Biol 2021; 478:25-40. [PMID: 34166654 PMCID: PMC8384472 DOI: 10.1016/j.ydbio.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/28/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
Skin development and patterning is dependent on factors that regulate the stepwise differentiation of dermal fibroblasts concomitant with dermal-epidermal reciprocal signaling, two processes that are poorly understood. Here we show that dermal EZH2, the methyltransferase enzyme of the epigenetic Polycomb Repressive Complex 2 (PRC2), is a new coordinator of both these processes. Dermal EZH2 activity is present during dermal fibroblast differentiation and is required for spatially restricting Wnt/β-catenin signaling to reinforce dermal fibroblast cell fate. Later in development, dermal EZH2 regulates the expression of reticular dermal markers and initiation of secondary hair follicles. Embryos lacking dermal Ezh2 have elevated epidermal proliferation and differentiation that can be rescued by small molecule inhibition of retinoic acid (RA) signaling. Together, our study reveals that dermal EZH2 is acting like a rheostat to control the levels of Wnt/β-catenin and RA signaling to impact fibroblast differentiation cell autonomously and epidermal keratinocyte development non-cell autonomously, respectively.
Collapse
Affiliation(s)
| | - Timothy Nehila
- Dept. of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - James W Ferguson
- Dept. of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Radhika P Atit
- Dept. of Biology, Case Western Reserve University, Cleveland, OH, USA; Dept. of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA; Dept. of Dermatology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
42
|
Pilloni A, Ceccarelli S, Bosco D, Gerini G, Marchese C, Marini L, Rojas MA. Effect of Chlorhexidine Digluconate in Early Wound Healing of Human Gingival Tissues. A Histological, Immunohistochemical and Biomolecular Analysis. Antibiotics (Basel) 2021; 10:antibiotics10101192. [PMID: 34680773 PMCID: PMC8532903 DOI: 10.3390/antibiotics10101192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 01/18/2023] Open
Abstract
Chlorhexidine digluconate (CHX) is considered the gold standard for oral cavity antiseptic treatment. Nevertheless, several in vitro studies have reported detrimental effects in oral tissue repair. The aim of the present study was to evaluate the in vivo effect of post-surgical CHX mouth rinse on gingival tissue (G) 24 h after injury. G biopsies were obtained in three patients 24 h after surgery with the indication of post-surgical 0.12% CHX use and were compared with those obtained from the same patients without any antiseptic use. Changes in collagen production, cell proliferation, and apoptosis were examined by histological and Ki-67/P53 immunohistochemical analysis. Fibrotic markers (COL1A1, αSMA), proapoptotic protein (BAX) expression, and wound healing-related gene modulation (RAC1, SERPINE1, TIMP1) were analyzed by quantitative real-time PCR analysis. CHX was able to reduce cellular proliferation and increase collagen deposition, proapoptotic molecule and fibrotic marker expression, and myofibroblast differentiation, reduce expression of RAC1 and trigger expression of SERPINE1 and TIMP1, showing “scar wound healing response” pattern. This study assessed for the first time the in vivo effects of CHX on gingival tissue. The demonstration of a CHX-induced fibrotic transformation, leading to scar repair, supports the need for new post-surgical clinical protocols based on a strategic and personalized use of CHX.
Collapse
Affiliation(s)
- Andrea Pilloni
- Department of Oral and Maxillofacial Sciences, Section of Periodontics, Sapienza University of Rome, Via Caserta 6, 00161 Rome, Italy; (A.P.); (L.M.)
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (S.C.); (G.G.); (C.M.)
| | - Daniela Bosco
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy;
| | - Giulia Gerini
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (S.C.); (G.G.); (C.M.)
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (S.C.); (G.G.); (C.M.)
| | - Lorenzo Marini
- Department of Oral and Maxillofacial Sciences, Section of Periodontics, Sapienza University of Rome, Via Caserta 6, 00161 Rome, Italy; (A.P.); (L.M.)
| | - Mariana A. Rojas
- Department of Oral and Maxillofacial Sciences, Section of Periodontics, Sapienza University of Rome, Via Caserta 6, 00161 Rome, Italy; (A.P.); (L.M.)
- Correspondence:
| |
Collapse
|
43
|
Cao H, Wang W, Xiao J, Huang D, Gao Y, Zhu D. Comparison of two methods for isolation and culture of human foreskin fibroblasts. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:800-808. [PMID: 34565722 PMCID: PMC10929966 DOI: 10.11817/j.issn.1672-7347.2021.200431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVES The efficient acquisition and purification of fibroblasts as ideal seed cells are very important. For optimization of the isolation and culture of human foreskin fibroblasts (HFF), we compared the improved tissue culture method (ITCM) and the enzyme digestion method (EDM). METHODS In ITCM, the skin tissue was digested with 0.1% Type II collagenase overnight at 4 ℃, the epidermis was separated from the dermis and digested again with 0.25% trypsin at room temperature for 15 min, and then the tissue block was attached to the culture dish. In EDM, the skin tissue was digested with 0.25% trypsin overnight at 4 ℃, the epidermis was separated from the dermis and digested with 0.1% Type II collagenase overnight at 4 ℃, the tissue block was filtered and squeezed together with the enzyme mixture, the filter was rinsed with medium containing fetal bovine serum, and the cell suspension was cultured. Both ITCM and EDM used 2 digestion enzymes, but the order, digestion time, and temperature of the 2 enzymes were different. The final inoculations of ITCM and EDM in the dishes for subsequent culture were tissue blocks and cell suspensions, respectively. In this study, HFF cells were isolated and cultured with ITCM and EDM, and the cell morphology was observed from Passage 0 to Passage 3 in the ITCM and EDM groups. The cell purity was identified by staining for vimentin, CD68, and Pan-keratin. The growth curves of Passage 3 were plotted to compare the proliferation ability of the 2 groups. Passage 3 HFF cells in the ITCM and EDM groups were irradiated with medium-wave ultraviolet (UVB) at an energy value of 120 mJ/cm2 to establish a light damage model. The experiments were grouped into an UVB group and a control group (Control) according to the presence or absence of UVB irradiation. Platelet-poor plasma (PPP) was extracted by secondary centrifugation, and the HFF cells of ITCM and EDM groups were cultured in groups using complete medium containing different concentrations (0, 2.5%, 5.0%, and 10.0%) of PPP, and the proliferation of damaged cells was detected by cell counting kit-8 after 24 h of PPP incubation. RESULTS A large number of HFF could be observed in the ITCM group up to day 3, which was less affected by impurities; the observation of HFF morphology in the EDM group was affected by more impurities. By day 9, cells in both ITCM and EDM groups could be passaged; HFF isolated and cultured in vitro by the 2 methods showed long spindle-shaped, swirling growth. The positive rates of vimentin in the ITCM and EDM groups when HFF cells were cultured up to Passage 2 were significantly different [(97.36±0.76)% vs (99.4±0.56)%, P<0.01)]. The positive rates of CD68 were also significantly different [(70.8±0.46)% vs (78.37±0.75)%, P<0.01]. The expressions of pan-keratin in the ITCM group and the EDM group were positive and negative, respectively. There was no difference in vimentin and pan-keratin staining results between the ITCM group and the EDM group when HFF were cultured to Passage 3. The positive rates of CD68 between the ITCM group and the EDM group were significantly different [(74.73±1.37)% vs (85.27±2.63)%, P<0.001]. The proliferative capacity of HFF cells in Passage 3 was significantly higher in the EDM group than that in the ITCM group (P<0.05). After UVB (120 mJ/cm2) irradiation, HFFs procured by the 2 isolation methods showed damage. The damage repair test demonstrated that the 2.5% PPP+UVB irradiation group showed significantly higher repair competence than the other groups (all P<0.05). CONCLUSIONS In contrast with HFFs isolated via ITCM, HFF cells isolated by EDM have a faster purification rate and a stronger proliferative capacity. Therapy with PPP can moderately repair UVB-induced damage to HFFs. The results provide a theoretical basis for clinical treatment studies in the future.
Collapse
Affiliation(s)
- Hui Cao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208.
| | - Wei Wang
- Department of Dermatology, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208, China.
| | - Jingchuan Xiao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208
| | - Denggao Huang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208
| | - Yuanhui Gao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208
| | - Dan Zhu
- Central Laboratory, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208
| |
Collapse
|
44
|
The bright side of fibroblasts: molecular signature and regenerative cues in major organs. NPJ Regen Med 2021; 6:43. [PMID: 34376677 PMCID: PMC8355260 DOI: 10.1038/s41536-021-00153-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is a pathologic process characterized by the replacement of parenchymal tissue by large amounts of extracellular matrix, which may lead to organ dysfunction and even death. Fibroblasts are classically associated to fibrosis and tissue repair, and seldom to regeneration. However, accumulating evidence supports a pro-regenerative role of fibroblasts in different organs. While some organs rely on fibroblasts for maintaining stem cell niches, others depend on fibroblast activity, particularly on secreted molecules that promote cell adhesion, migration, and proliferation, to guide the regenerative process. Herein we provide an up-to-date overview of fibroblast-derived regenerative signaling across different organs and discuss how this capacity may become compromised with aging. We further introduce a new paradigm for regenerative therapies based on reverting adult fibroblasts to a fetal/neonatal-like phenotype.
Collapse
|
45
|
Pereira D, Sequeira I. A Scarless Healing Tale: Comparing Homeostasis and Wound Healing of Oral Mucosa With Skin and Oesophagus. Front Cell Dev Biol 2021; 9:682143. [PMID: 34381771 PMCID: PMC8350526 DOI: 10.3389/fcell.2021.682143] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Epithelial tissues are the most rapidly dividing tissues in the body, holding a natural ability for renewal and regeneration. This ability is crucial for survival as epithelia are essential to provide the ultimate barrier against the external environment, protecting the underlying tissues. Tissue stem and progenitor cells are responsible for self-renewal and repair during homeostasis and following injury. Upon wounding, epithelial tissues undergo different phases of haemostasis, inflammation, proliferation and remodelling, often resulting in fibrosis and scarring. In this review, we explore the phenotypic differences between the skin, the oesophagus and the oral mucosa. We discuss the plasticity of these epithelial stem cells and contribution of different fibroblast subpopulations for tissue regeneration and wound healing. While these epithelial tissues share global mechanisms of stem cell behaviour for tissue renewal and regeneration, the oral mucosa is known for its outstanding healing potential with minimal scarring. We aim to provide an updated review of recent studies that combined cell therapy with bioengineering exporting the unique scarless properties of the oral mucosa to improve skin and oesophageal wound healing and to reduce fibrotic tissue formation. These advances open new avenues toward the ultimate goal of achieving scarless wound healing.
Collapse
Affiliation(s)
| | - Inês Sequeira
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
46
|
Fujimura Y, Watanabe M, Ohno K, Kobayashi Y, Takashima S, Nakamura H, Kosumi H, Wang Y, Mai Y, Lauria A, Proserpio V, Ujiie H, Iwata H, Nishie W, Nagayama M, Oliviero S, Donati G, Shimizu H, Natsuga K. Hair follicle stem cell progeny heal blisters while pausing skin development. EMBO Rep 2021; 22:e50882. [PMID: 34085753 DOI: 10.15252/embr.202050882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Injury in adult tissue generally reactivates developmental programs to foster regeneration, but it is not known whether this paradigm applies to growing tissue. Here, by employing blisters, we show that epidermal wounds heal at the expense of skin development. The regenerated epidermis suppresses the expression of tissue morphogenesis genes accompanied by delayed hair follicle (HF) growth. Lineage tracing experiments, cell proliferation dynamics, and mathematical modeling reveal that the progeny of HF junctional zone stem cells, which undergo a morphological transformation, repair the blisters while not promoting HF development. In contrast, the contribution of interfollicular stem cell progeny to blister healing is small. These findings demonstrate that HF development can be sacrificed for the sake of epidermal wound regeneration. Our study elucidates the key cellular mechanism of wound healing in skin blistering diseases.
Collapse
Affiliation(s)
- Yu Fujimura
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mika Watanabe
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Department of Life Sciences and Systems Biology, Molecular Biotechnology Centre, University of Turin, Turin, Italy
| | - Kota Ohno
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Yasuaki Kobayashi
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Shota Takashima
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideki Nakamura
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideyuki Kosumi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yunan Wang
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yosuke Mai
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Andrea Lauria
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Centre, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Candiolo, Italy
| | - Valentina Proserpio
- Italian Institute for Genomic Medicine, Candiolo, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Iwata
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Wataru Nishie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaharu Nagayama
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Centre, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Candiolo, Italy
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Centre, University of Turin, Turin, Italy
| | - Hiroshi Shimizu
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ken Natsuga
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
47
|
Goss G, Rognoni E, Salameti V, Watt FM. Distinct Fibroblast Lineages Give Rise to NG2+ Pericyte Populations in Mouse Skin Development and Repair. Front Cell Dev Biol 2021; 9:675080. [PMID: 34124060 PMCID: PMC8194079 DOI: 10.3389/fcell.2021.675080] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
We have examined the developmental origins of Ng2+ perivascular cell populations that adhere to the basement membrane of blood vessels, and their contribution to wound healing. Neural/glial antigen 2 (Ng2) labeled most perivascular cells (70-80%) in developing and adult mouse back skin, a higher proportion than expressed by other pericyte markers Tbx18, Nestin and Pdgfrβ. In adult mouse back skin Ng2+ perivascular cells could be categorized into 4 populations based on whether they expressed Pdgfrα and Pdgfrβ individually or in combination or were Pdgfr-negative. Lineage tracing demonstrated that although Ng2+ cells in embryonic and neonatal back skin contributed to multiple cell types they did not give rise to interfollicular fibroblasts within the dermis. Lineage tracing of distinct fibroblast populations during skin development showed that papillary fibroblasts (Lrig1+) gave rise to Ng2+ perivascular cells in the upper dermis, whilst Ng2+ perivascular cells in the lower dermis were primarily derived from reticular Dlk1+ fibroblasts. Following wounding of adult skin, Ng2+ dermal cells only give rise to Ng2+ blood vessel associated cells and did not contribute to other fibroblast lineages. The relative abundance of Ng2+ Pdgfrβ+ perivascular populations was comparable in wounded and non-wounded skin, indicating that perivascular heterogeneity was maintained during full thickness skin repair. In the wound bed Ng2+ perivascular populations were primarily derived from Lrig1+ papillary or Dlk1+ reticular fibroblast lineages, according to the location of the regenerating blood vessels. We conclude that Ng2+ perivascular cells represent a heterogeneous lineage restricted population that is primarily recruited from the papillary or reticular fibroblast lineages during tissue regeneration.
Collapse
Affiliation(s)
| | | | | | - Fiona M. Watt
- Centre for Stem Cells and Regenerative Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
| |
Collapse
|
48
|
Lichtenberger BM, Kasper M. Cellular heterogeneity and microenvironmental control of skin cancer. J Intern Med 2021; 289:614-628. [PMID: 32976658 DOI: 10.1111/joim.13177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022]
Abstract
Healthy tissues harbour a surprisingly high number of cells that carry well-known cancer-causing mutations without impacting their physiological function. In recent years, strong evidence accumulated that the immediate environment of mutant cells profoundly impact their prospect of malignant progression. In this review, focusing on the skin, we investigate potential key mechanisms that ensure tissue homeostasis despite the presence of mutant cells, as well as critical factors that may nudge the balance from homeostasis to tumour formation. Functional in vivo studies and single-cell transcriptome analyses have revealed a tremendous cellular heterogeneity and plasticity within epidermal (stem) cells and their respective niches, revealing for example wild-type epithelial cells, fibroblasts or immune-cell subsets as critical in preventing cancer formation and malignant progression. It's the same cells, however, that can drive carcinogenesis. Therefore, understanding the abundance and molecular variation of cell types in health and disease, and how they interact and modulate the local signalling environment will thus be key for new therapeutic avenues in our battle against cancer.
Collapse
Affiliation(s)
- B M Lichtenberger
- From the, Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - M Kasper
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
49
|
Williams KL, Garza LA. Diverse cellular players orchestrate regeneration after wounding. Exp Dermatol 2021; 30:605-612. [PMID: 33251597 PMCID: PMC8059097 DOI: 10.1111/exd.14248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/30/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022]
Abstract
Fibrosis is one of the largest sources of human morbidity. The skin is a complex organ where interplay between diverse cell types and signalling pathways is essential both in homeostasis and wound repair, which can result in fibrosis or regeneration. This makes skin a useful model to study fibrosis and regeneration. While fibrosis often occurs postinjury, both clinical and laboratory observations suggest skin regeneration, complete with reconstituted cell diversity and de novo hair follicles, is possible. Extensive research performed in pursuit of skin regeneration has elucidated the key players, both cellular and molecular. Interestingly, some cells known for their homeostatic function are not implicated in regeneration or wound-induced hair neogenesis (WIHN), suggesting regeneration harnesses separate functional pathways from embryogenesis or other non-homeostatic mechanisms. For example, classic bulge cells, noted for their role in normally cycling hair follicles, do not finally contribute to long-lived cells in the regenerated tissue. During healing, multiple populations of cells, among them specific epithelial lineages, mesenchymal cells, and immune cells promote regenerative outcomes in the wounded skin. Ultimately, targeting specific populations of cells will be essential in manipulating a postwound environment to favour regeneration in lieu of fibrosis.
Collapse
Affiliation(s)
- Kaitlin L Williams
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luis A Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
50
|
Van Hove L, Lecomte K, Roels J, Vandamme N, Vikkula HK, Hoorens I, Ongenae K, Hochepied T, Donati G, Saeys Y, Quist SR, Watt FM, van Loo G, Hoste E. Fibrotic enzymes modulate wound-induced skin tumorigenesis. EMBO Rep 2021; 22:e51573. [PMID: 33780134 DOI: 10.15252/embr.202051573] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 01/18/2023] Open
Abstract
Fibroblasts are a major component of the microenvironment of most solid tumours. Recent research elucidated a large heterogeneity and plasticity of activated fibroblasts, indicating that their role in cancer initiation, growth and metastasis is complex and context-dependent. Here, we performed genome-wide expression analysis comparing fibroblasts in normal, inflammatory and tumour-associated skin. Cancer-associated fibroblasts (CAFs) exhibit a fibrotic gene signature in wound-induced tumours, demonstrating persistent extracellular matrix (ECM) remodelling within these tumours. A top upregulated gene in mouse CAFs encodes for PRSS35, a protease capable of collagen remodelling. In human skin, we observed PRSS35 expression uniquely in the stroma of high-grade squamous cell carcinomas. Ablation of PRSS35 in mouse models of wound- or chemically-induced tumorigenesis resulted in aberrant collagen composition in the ECM and increased tumour incidence. Our results indicate that fibrotic enzymes expressed by CAFs can regulate squamous tumour initiation by remodelling the ECM.
Collapse
Affiliation(s)
- Lisette Van Hove
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kim Lecomte
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jana Roels
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Applied Mathematics, Computer Sciences and Statistics, Ghent University, Ghent, Belgium
| | - Niels Vandamme
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Applied Mathematics, Computer Sciences and Statistics, Ghent University, Ghent, Belgium
| | - Hanna-Kaisa Vikkula
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Isabelle Hoorens
- Department of Dermatology, University Hospital Ghent, Ghent, Belgium
| | - Katia Ongenae
- Department of Dermatology, University Hospital Ghent, Ghent, Belgium
| | - Tino Hochepied
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Center, University of Turin, Turin, Italy.,Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Yvan Saeys
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Applied Mathematics, Computer Sciences and Statistics, Ghent University, Ghent, Belgium
| | - Sven R Quist
- Department of Dermatology and Venereology, Otto-von-Guericke University, Magdeburg, Germany
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Geert van Loo
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Esther Hoste
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| |
Collapse
|