1
|
Chen Y, Mi Y, Tan S, Chen Y, Liu S, Lin S, Yang C, Hong W, Li W. CEA-induced PI3K/AKT pathway activation through the binding of CEA to KRT1 contributes to oxaliplatin resistance in gastric cancer. Drug Resist Updat 2025; 78:101179. [PMID: 39644827 DOI: 10.1016/j.drup.2024.101179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND The serum level of carcinoembryonic antigen (CEA) has prognostic value in patients with gastric cancer (GC) receiving oxaliplatin-based chemotherapy. As the molecular functions of CEA are increasingly uncovered, its role in regulating oxaliplatin resistance in GC attracts attention. METHODS The survival analysis adopted the KaplanMeier method. Effects of CEA on proliferative capacity were investigated using CCK8, colony formation, and xenograft assays. Oxaliplatin sensitivity was identified through IC50 detection, apoptosis analysis, comet assay, organoid culture model, and xenograft assay. Multi-omics approaches were utilized to explore CEA's downstream effects. The binding of CEA to KRT1 was confirmed through proteomic analysis and Co-IP, GST pull-down, and immunofluorescence colocalization assays. Furthermore, small molecule inhibitors were identified using virtual screening and surface plasmon resonance. RESULTS Starting from clinical data, we confirmed that CEA demonstrated superior ability to predict the prognosis of patients with GC who received oxaliplatin-based chemotherapy, particularly in predicting recurrence-free survival based on serum CEA level. In vitro and in vivo experiments revealed CEAhigh GC cells presented increased proliferative capacity and decreased oxaliplatin sensitivity. The resistance phenotype was transmitted through secreted CEA. Multi-omics analysis revealed that CEA activated the PI3K/AKT pathway by binding to KRT1, leading to oxaliplatin resistance. Finally, the small molecule inhibitor evacetrapib, which competitively inhibits the CEA-KRT1 interaction, was identified and validated in vitro. CONCLUSIONS In summary, the CEA-KRT1-PI3K/AKT axis regulates oxaliplatin sensitivity in GC cells. Treatment with small molecule inhibitors such as evacetrapib to inhibit this interaction constitutes a novel therapeutic strategy.
Collapse
Affiliation(s)
- Yifan Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350013, China; Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Yulong Mi
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350013, China; Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Song Tan
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350013, China; Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Yizhen Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350013, China; Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Shaolin Liu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350013, China; Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Shengtao Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350013, China; Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Changshun Yang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350013, China; Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Weifeng Hong
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310005, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310005, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310005, China.
| | - Weihua Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350013, China; Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, China.
| |
Collapse
|
2
|
Funa NS, Mjoseng HK, de Lichtenberg KH, Raineri S, Esen D, Egeskov-Madsen ALR, Quaranta R, Jørgensen MC, Hansen MS, van Cuyl Kuylenstierna J, Jensen KB, Miao Y, Garcia KC, Seymour PA, Serup P. TGF-β modulates cell fate in human ES cell-derived foregut endoderm by inhibiting Wnt and BMP signaling. Stem Cell Reports 2024; 19:973-992. [PMID: 38942030 PMCID: PMC11252478 DOI: 10.1016/j.stemcr.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/30/2024] Open
Abstract
Genetic differences between pluripotent stem cell lines cause variable activity of extracellular signaling pathways, limiting reproducibility of directed differentiation protocols. Here we used human embryonic stem cells (hESCs) to interrogate how exogenous factors modulate endogenous signaling events during specification of foregut endoderm lineages. We find that transforming growth factor β1 (TGF-β1) activates a putative human OTX2/LHX1 gene regulatory network which promotes anterior fate by antagonizing endogenous Wnt signaling. In contrast to Porcupine inhibition, TGF-β1 effects cannot be reversed by exogenous Wnt ligands, suggesting that induction of SHISA proteins and intracellular accumulation of Fzd receptors render TGF-β1-treated cells refractory to Wnt signaling. Subsequently, TGF-β1-mediated inhibition of BMP and Wnt signaling suppresses liver fate and promotes pancreas fate. Furthermore, combined TGF-β1 treatment and Wnt inhibition during pancreatic specification reproducibly and robustly enhance INSULIN+ cell yield across hESC lines. This modification of widely used differentiation protocols will enhance pancreatic β cell yield for cell-based therapeutic applications.
Collapse
Affiliation(s)
- Nina Sofi Funa
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Heidi Katharina Mjoseng
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kristian Honnens de Lichtenberg
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Silvia Raineri
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Deniz Esen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anuska la Rosa Egeskov-Madsen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Roberto Quaranta
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mette Christine Jørgensen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Maria Skjøtt Hansen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jonas van Cuyl Kuylenstierna
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kim Bak Jensen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; BRIC - Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Yi Miao
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Philip A Seymour
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Palle Serup
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
3
|
Yanagihara K, Hayashi Y, Liu Y, Yamaguchi T, Hemmi Y, Kokunugi M, Yamada KU, Fukumoto K, Suga M, Terada S, Nikawa H, Kawabata K, Furue M. Trisomy 12 compromises the mesendodermal differentiation propensity of human pluripotent stem cells. In Vitro Cell Dev Biol Anim 2024; 60:521-534. [PMID: 38169039 PMCID: PMC11126453 DOI: 10.1007/s11626-023-00824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/08/2023] [Indexed: 01/05/2024]
Abstract
Trisomy 12 is one of the most frequent chromosomal abnormalities in cultured human pluripotent stem cells (hPSCs). Although potential oncogenic properties and augmented cell cycle caused by trisomy 12 have been reported, the consequences of trisomy 12 in terms of cell differentiation, which is the basis for regenerative medicine, drug development, and developmental biology studies, have not yet been investigated. Here, we report that trisomy 12 compromises the mesendodermal differentiation of hPSCs. We identified sublines of hPSCs carrying trisomy 12 after their prolonged culture. Transcriptome analysis revealed that these hPSC sublines carried abnormal gene expression patterns in specific signaling pathways in addition to cancer-related cell cycle pathways. These hPSC sublines showed a lower propensity for mesendodermal differentiation in embryoid bodies cultured in a serum-free medium. BMP4-induced exit from the self-renewal state was impaired in the trisomy 12 hPSC sublines, with less upregulation of key transcription factor gene expression. As a consequence, the differentiation efficiency of hematopoietic and hepatic lineages was also impaired in the trisomy 12 hPSC sublines. We reveal that trisomy 12 disrupts the genome-wide expression patterns that are required for proper mesendodermal differentiation.
Collapse
Affiliation(s)
- Kana Yanagihara
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Yohei Hayashi
- iPS Cell Advanced Characterization and Development Team, RIKEN Bioresource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan.
| | - Yujung Liu
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Tomoko Yamaguchi
- Laboratory of Cell Model for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Yasuko Hemmi
- iPS Cell Advanced Characterization and Development Team, RIKEN Bioresource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Minako Kokunugi
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
- Department of Oral Biology & Engineering Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kozue Uchio Yamada
- Laboratory of Animal Models for Human Diseases, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Ken Fukumoto
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
- Department of Applied Chemistry and Biotechnology, University of Fukui, Fukui City, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Mika Suga
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Satoshi Terada
- Department of Applied Chemistry and Biotechnology, University of Fukui, Fukui City, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Hiroki Nikawa
- Department of Oral Biology & Engineering Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kenji Kawabata
- Laboratory of Cell Model for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Miho Furue
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan.
- Cel-MiM, Ltd., Tokyo, Japan.
| |
Collapse
|
4
|
Knabl P, Schauer A, Pomreinke AP, Zimmermann B, Rogers KW, Čapek D, Müller P, Genikhovich G. Analysis of SMAD1/5 target genes in a sea anemone reveals ZSWIM4-6 as a novel BMP signaling modulator. eLife 2024; 13:e80803. [PMID: 38323609 PMCID: PMC10849676 DOI: 10.7554/elife.80803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 01/28/2024] [Indexed: 02/08/2024] Open
Abstract
BMP signaling has a conserved function in patterning the dorsal-ventral body axis in Bilateria and the directive axis in anthozoan cnidarians. So far, cnidarian studies have focused on the role of different BMP signaling network components in regulating pSMAD1/5 gradient formation. Much less is known about the target genes downstream of BMP signaling. To address this, we generated a genome-wide list of direct pSMAD1/5 target genes in the anthozoan Nematostella vectensis, several of which were conserved in Drosophila and Xenopus. Our ChIP-seq analysis revealed that many of the regulatory molecules with documented bilaterally symmetric expression in Nematostella are directly controlled by BMP signaling. We identified several so far uncharacterized BMP-dependent transcription factors and signaling molecules, whose bilaterally symmetric expression may be indicative of their involvement in secondary axis patterning. One of these molecules is zswim4-6, which encodes a novel nuclear protein that can modulate the pSMAD1/5 gradient and potentially promote BMP-dependent gene repression.
Collapse
Affiliation(s)
- Paul Knabl
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of ViennaViennaAustria
| | - Alexandra Schauer
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
| | | | - Bob Zimmermann
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
| | | | | | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck SocietyTübingenGermany
- University of KonstanzKonstanzGermany
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
| |
Collapse
|
5
|
Zhou W, Yan K, Xi Q. BMP signaling in cancer stemness and differentiation. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:37. [PMID: 38049682 PMCID: PMC10695912 DOI: 10.1186/s13619-023-00181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023]
Abstract
The BMP (Bone morphogenetic protein) signaling pathway plays a central role in metazoan biology, intricately shaping embryonic development, maintaining tissue homeostasis, and influencing disease progression. In the context of cancer, BMP signaling exhibits context-dependent dynamics, spanning from tumor suppression to promotion. Cancer stem cells (CSCs), a modest subset of neoplastic cells with stem-like attributes, exert substantial influence by steering tumor growth, orchestrating therapy resistance, and contributing to relapse. A comprehensive grasp of the intricate interplay between CSCs and their microenvironment is pivotal for effective therapeutic strategies. Among the web of signaling pathways orchestrating cellular dynamics within CSCs, BMP signaling emerges as a vital conductor, overseeing CSC self-renewal, differentiation dynamics, and the intricate symphony within the tumor microenvironment. Moreover, BMP signaling's influence in cancer extends beyond CSCs, intricately regulating cellular migration, invasion, and metastasis. This multifaceted role underscores the imperative of comprehending BMP signaling's contributions to cancer, serving as the foundation for crafting precise therapies to navigate multifaceted challenges posed not only by CSCs but also by various dimensions of cancer progression. This article succinctly encapsulates the diverse roles of the BMP signaling pathway across different cancers, spanning glioblastoma multiforme (GBM), diffuse intrinsic pontine glioma (DIPG), colorectal cancer, acute myeloid leukemia (AML), lung cancer, prostate cancer, and osteosarcoma. It underscores the necessity of unraveling underlying mechanisms and molecular interactions. By delving into the intricate tapestry of BMP signaling's engagement in cancers, researchers pave the way for meticulously tailored therapies, adroitly leveraging its dualistic aspects-whether as a suppressor or promoter-to effectively counter the relentless march of tumor progression.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kun Yan
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiaoran Xi
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, China.
| |
Collapse
|
6
|
Riege D, Herschel S, Heintze L, Fenkl T, Wesseler F, Sievers S, Peifer C, Schade D. Identification of Maleimide-Fused Carbazoles as Novel Noncanonical Bone Morphogenetic Protein Synergizers. ACS Pharmacol Transl Sci 2023; 6:1207-1220. [PMID: 37588754 PMCID: PMC10426274 DOI: 10.1021/acsptsci.3c00103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Indexed: 08/18/2023]
Abstract
Morphogenic signaling pathways govern embryonic development and tissue homeostasis on the cellular level. Precise control of such signaling events paves the way for innovative therapeutic approaches in the field of regenerative medicine. In line with these notions, bone morphogenic protein (BMP) is a major osteogenic driver and pharmacological stimulation of BMP signaling holds supreme potential for diseases and defects of the skeleton. Efforts to identify small-molecule modalities that activate or potentiate the BMP pathway have primarily been focused on the canonical signaling cascade. Here, we describe the phenotypic identification and development of specific carbazolomaleimides 2 as novel noncanonical BMP synergizers with submicromolar osteogenic cellular potency. The devised chemical tools are characterized to specifically regulate Id gene expression in a SMAD-independent, yet highly BMP-dependent fashion. Mechanistic studies revealed that GSK3 inhibition and increased β-catenin levels are partly responsible for this activity. The utility of the new BMP synergizer profile was further exemplified by showing how the synergistic action of canonical and noncanonical BMP enhancers additively amplifies BMP-dependent osteogenic outputs. Carbazolomaleimide 2b serves as a new and unique pharmacological tool for the modulation and study of the BMP pathway.
Collapse
Affiliation(s)
- Daniel Riege
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Sven Herschel
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Linda Heintze
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Teresa Fenkl
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Fabian Wesseler
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
- Compound Management and
Screening Center, Otto-Hahn-Strasse 11, 44227
Dortmund, Germany
| | - Sonja Sievers
- Compound Management and
Screening Center, Otto-Hahn-Strasse 11, 44227
Dortmund, Germany
| | - Christian Peifer
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Dennis Schade
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
- Partner Site Kiel, DZHK,
German Center for Cardiovascular Research, 24105
Kiel, Germany
| |
Collapse
|
7
|
Yang Y, Li Y, Fu J, Li Y, Li S, Ni R, Yang Q, Luo L. Intestinal precursors avoid being misinduced to liver cells by activating Cdx-Wnt inhibition cascade. Proc Natl Acad Sci U S A 2022; 119:e2205110119. [PMID: 36396123 PMCID: PMC9659337 DOI: 10.1073/pnas.2205110119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
During coordinated development of two neighboring organs from the same germ layer, how precursors of one organ resist the inductive signals of the other to avoid being misinduced to wrong cell fate remains a general question in developmental biology. The liver and anterior intestinal precursors located in close proximity along the gut axis represent a typical example. Here we identify a zebrafish leberwurst (lbw) mutant with a unique hepatized intestine phenotype, exhibiting replacement of anterior intestinal cells by liver cells. lbw encodes the Cdx1b homeoprotein, which is specifically expressed in the intestine, and its precursor cells. Mechanistically, in the intestinal precursors, Cdx1b binds to genomic DNA at the regulatory region of secreted frizzled related protein 5 (sfrp5) to activate sfrp5 transcription. Sfrp5 blocks the mesoderm-derived, liver-inductive Wnt2bb signal, thus conferring intestinal precursor cells resistance to Wnt2bb. These results demonstrate that the intestinal precursors avoid being misinduced toward hepatic lineages through the activation of the Cdx1b-Sfrp5 cascade, implicating Cdx/Sfrp5 as a potential pharmacological target for the manipulation of intestinal-hepatic bifurcations, and shedding light on the general question of how precursor cells resist incorrect inductive signals during embryonic development.
Collapse
Affiliation(s)
- Yun Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| | - Yuanyuan Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| | - Jialong Fu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| | - Yanfeng Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| | - Shuang Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| | - Rui Ni
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| | - Qifen Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| |
Collapse
|
8
|
Bottasso-Arias N, Leesman L, Burra K, Snowball J, Shah R, Mohanakrishnan M, Xu Y, Sinner D. BMP4 and Wnt signaling interact to promote mouse tracheal mesenchyme morphogenesis. Am J Physiol Lung Cell Mol Physiol 2022; 322:L224-L242. [PMID: 34851738 PMCID: PMC8794023 DOI: 10.1152/ajplung.00255.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tracheobronchomalacia and complete tracheal rings are congenital malformations of the trachea associated with morbidity and mortality for which the etiology remains poorly understood. Epithelial expression of Wls (a cargo receptor mediating Wnt ligand secretion) by tracheal cells is essential for patterning the embryonic mouse trachea's cartilage and muscle. RNA sequencing indicated that Wls differentially modulated the expression of BMP signaling molecules. We tested whether BMP signaling, induced by epithelial Wnt ligands, mediates cartilage formation. Deletion of Bmp4 from respiratory tract mesenchyme impaired tracheal cartilage formation that was replaced by ectopic smooth muscle, recapitulating the phenotype observed after epithelial deletion of Wls in the embryonic trachea. Ectopic muscle was caused in part by anomalous differentiation and proliferation of smooth muscle progenitors rather than tracheal cartilage progenitors. Mesenchymal deletion of Bmp4 impaired expression of Wnt/β-catenin target genes, including targets of WNT signaling: Notum and Axin2. In vitro, recombinant (r)BMP4 rescued the expression of Notum in Bmp4-deficient tracheal mesenchymal cells and induced Notum promoter activity via SMAD1/5. RNA sequencing of Bmp4-deficient tracheas identified genes essential for chondrogenesis and muscle development coregulated by BMP and WNT signaling. During tracheal morphogenesis, WNT signaling induces Bmp4 in mesenchymal progenitors to promote cartilage differentiation and restrict trachealis muscle. In turn, Bmp4 differentially regulates the expression of Wnt/β-catenin targets to attenuate mesenchymal WNT signaling and to further support chondrogenesis.
Collapse
Affiliation(s)
- Natalia Bottasso-Arias
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Lauren Leesman
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Kaulini Burra
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - John Snowball
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Ronak Shah
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,2University of Cincinnati Honors Program, Cincinnati, Ohio
| | - Megha Mohanakrishnan
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,2University of Cincinnati Honors Program, Cincinnati, Ohio
| | - Yan Xu
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,3Universtiy of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Debora Sinner
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,3Universtiy of Cincinnati, College of Medicine, Cincinnati, Ohio
| |
Collapse
|
9
|
Wang X, Wang W, Wang Y, Chen J, Liu G, Zhang Y. Antibody-free profiling of transcription factor occupancy during early embryogenesis by FitCUT&RUN. Genome Res 2021; 32:378-388. [PMID: 34965941 PMCID: PMC8805719 DOI: 10.1101/gr.275837.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022]
Abstract
Key transcription factors (TFs) play critical roles in zygotic genome activation (ZGA) during early embryogenesis, while genome-wide occupancies of only a few factors have been profiled during ZGA due to the limitation of cell numbers or the lack of high-quality antibodies. Here, we present FitCUT&RUN, a modified CUT&RUN method, in which an Fc fragment of immunoglobulin G is used for tagging, to profile TF occupancy in an antibody-free manner and demonstrate its reliability and robustness using as few as five thousand K562 cells. We applied FitCUT&RUN to zebrafish undergoing embryogenesis to generate reliable occupancy profiles of three known activators of zebrafish ZGA: Nanog, Pou5f3 and Sox19b. By profiling the time-series occupancy of Nanog during zebrafish ZGA, we observed a clear trend toward a gradual increase in Nanog occupancy and found that Nanog occupancy prior to the major phase of ZGA is critical for the activation of a significant proportion of early transcribed genes. Our results further suggested that the sequential binding of Nanog may be controlled by replication timing and the presence of Nanog motifs.
Collapse
|
10
|
Bou-Rouphael J, Durand BC. T-Cell Factors as Transcriptional Inhibitors: Activities and Regulations in Vertebrate Head Development. Front Cell Dev Biol 2021; 9:784998. [PMID: 34901027 PMCID: PMC8651982 DOI: 10.3389/fcell.2021.784998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Since its first discovery in the late 90s, Wnt canonical signaling has been demonstrated to affect a large variety of neural developmental processes, including, but not limited to, embryonic axis formation, neural proliferation, fate determination, and maintenance of neural stem cells. For decades, studies have focused on the mechanisms controlling the activity of β-catenin, the sole mediator of Wnt transcriptional response. More recently, the spotlight of research is directed towards the last cascade component, the T-cell factor (TCF)/Lymphoid-Enhancer binding Factor (LEF), and more specifically, the TCF/LEF-mediated switch from transcriptional activation to repression, which in both embryonic blastomeres and mouse embryonic stem cells pushes the balance from pluri/multipotency towards differentiation. It has been long known that Groucho/Transducin-Like Enhancer of split (Gro/TLE) is the main co-repressor partner of TCF/LEF. More recently, other TCF/LEF-interacting partners have been identified, including the pro-neural BarH-Like 2 (BARHL2), which belongs to the evolutionary highly conserved family of homeodomain-containing transcription factors. This review describes the activities and regulatory modes of TCF/LEF as transcriptional repressors, with a specific focus on the functions of Barhl2 in vertebrate brain development. Specific attention is given to the transcriptional events leading to formation of the Organizer, as well as the roles and regulations of Wnt/β-catenin pathway in growth of the caudal forebrain. We present TCF/LEF activities in both embryonic and neural stem cells and discuss how alterations of this pathway could lead to tumors.
Collapse
Affiliation(s)
| | - Béatrice C. Durand
- Sorbonne Université, CNRS UMR7622, IBPS Developmental Biology Laboratory, Campus Pierre et Marie Curie, Paris, France
| |
Collapse
|
11
|
Greenfeld H, Lin J, Mullins MC. The BMP signaling gradient is interpreted through concentration thresholds in dorsal-ventral axial patterning. PLoS Biol 2021; 19:e3001059. [PMID: 33481775 PMCID: PMC7857602 DOI: 10.1371/journal.pbio.3001059] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/03/2021] [Accepted: 01/07/2021] [Indexed: 12/24/2022] Open
Abstract
Bone Morphogenetic Protein (BMP) patterns the dorsal–ventral (DV) embryonic axis in all vertebrates, but it is unknown how cells along the DV axis interpret and translate the gradient of BMP signaling into differential gene activation that will give rise to distinct cell fates. To determine the mechanism of BMP morphogen interpretation in the zebrafish gastrula, we identified 57 genes that are directly activated by BMP signaling. By using Seurat analysis of single-cell RNA sequencing (scRNA-seq) data, we found that these genes are expressed in at least 3 distinct DV domains of the embryo. We distinguished between 3 models of BMP signal interpretation in which cells activate distinct gene expression through interpretation of thresholds of (1) the BMP signaling gradient slope; (2) the BMP signal duration; or (3) the level of BMP signal activation. We tested these 3 models using quantitative measurements of phosphorylated Smad5 (pSmad5) and by examining the spatial relationship between BMP signaling and activation of different target genes at single-cell resolution across the embryo. We found that BMP signaling gradient slope or BMP exposure duration did not account for the differential target gene expression domains. Instead, we show that cells respond to 3 distinct levels of BMP signaling activity to activate and position target gene expression. Together, we demonstrate that distinct pSmad5 threshold levels activate spatially distinct target genes to pattern the DV axis. This study tested three models of how a BMP morphogen gradient is translated into differential gene activation that specifies distinct cell fates, finding that BMP signal concentration thresholds, not gradient shape or signal duration, position three distinct gene activation domains.
Collapse
Affiliation(s)
- Hannah Greenfeld
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
| | - Jerome Lin
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
| | - Mary C. Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
12
|
Mukherjee S, Chaturvedi P, Rankin SA, Fish MB, Wlizla M, Paraiso KD, MacDonald M, Chen X, Weirauch MT, Blitz IL, Cho KW, Zorn AM. Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network. eLife 2020; 9:58029. [PMID: 32894225 PMCID: PMC7498262 DOI: 10.7554/elife.58029] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022] Open
Abstract
Lineage specification is governed by gene regulatory networks (GRNs) that integrate the activity of signaling effectors and transcription factors (TFs) on enhancers. Sox17 is a key transcriptional regulator of definitive endoderm development, and yet, its genomic targets remain largely uncharacterized. Here, using genomic approaches and epistasis experiments, we define the Sox17-governed endoderm GRN in Xenopus gastrulae. We show that Sox17 functionally interacts with the canonical Wnt pathway to specify and pattern the endoderm while repressing alternative mesectoderm fates. Sox17 and β-catenin co-occupy hundreds of key enhancers. In some cases, Sox17 and β-catenin synergistically activate transcription apparently independent of Tcfs, whereas on other enhancers, Sox17 represses β-catenin/Tcf-mediated transcription to spatially restrict gene expression domains. Our findings establish Sox17 as a tissue-specific modifier of Wnt responses and point to a novel paradigm where genomic specificity of Wnt/β-catenin transcription is determined through functional interactions between lineage-specific Sox TFs and β-catenin/Tcf transcriptional complexes. Given the ubiquitous nature of Sox TFs and Wnt signaling, this mechanism has important implications across a diverse range of developmental and disease contexts.
Collapse
Affiliation(s)
- Shreyasi Mukherjee
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, United States
| | - Praneet Chaturvedi
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, United States
| | - Scott A Rankin
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, United States
| | - Margaret B Fish
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
| | - Marcin Wlizla
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Kitt D Paraiso
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States.,Center for Complex Biological Systems, University of California, Irvine, Irvine, United States
| | - Melissa MacDonald
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, United States
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology (CAGE), Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Matthew T Weirauch
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, United States.,Center for Autoimmune Genomics and Etiology (CAGE), Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Ira L Blitz
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
| | - Ken Wy Cho
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
| | - Aaron M Zorn
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, United States
| |
Collapse
|
13
|
Upregulation of miR-92a-2-5p potentially contribute to anorectal malformations by inhibiting proliferation and enhancing apoptosis via PRKCA/β-catenin. Biomed Pharmacother 2020; 127:110117. [DOI: 10.1016/j.biopha.2020.110117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
|
14
|
Kuwahara A, Lewis AE, Coombes C, Leung FS, Percharde M, Bush JO. Delineating the early transcriptional specification of the mammalian trachea and esophagus. eLife 2020; 9:e55526. [PMID: 32515350 PMCID: PMC7282815 DOI: 10.7554/elife.55526] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
The genome-scale transcriptional programs that specify the mammalian trachea and esophagus are unknown. Though NKX2-1 and SOX2 are hypothesized to be co-repressive master regulators of tracheoesophageal fates, this is untested at a whole transcriptomic scale and their downstream networks remain unidentified. By combining single-cell RNA-sequencing with bulk RNA-sequencing of Nkx2-1 mutants and NKX2-1 ChIP-sequencing in mouse embryos, we delineate the NKX2-1 transcriptional program in tracheoesophageal specification, and discover that the majority of the tracheal and esophageal transcriptome is NKX2-1 independent. To decouple the NKX2-1 transcriptional program from regulation by SOX2, we interrogate the expression of newly-identified tracheal and esophageal markers in Sox2/Nkx2-1 compound mutants. Finally, we discover that NKX2-1 binds directly to Shh and Wnt7b and regulates their expression to control mesenchymal specification to cartilage and smooth muscle, coupling epithelial identity with mesenchymal specification. These findings create a new framework for understanding early tracheoesophageal fate specification at the genome-wide level.
Collapse
Affiliation(s)
- Akela Kuwahara
- Program in Craniofacial Biology, University of California San FranciscoSan FranciscoUnited States
- Department of Cell and Tissue Biology, University of California San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San FranciscoSan FranciscoUnited States
- Developmental and Stem Cell Biology Graduate Program, University of California San FranciscoSan FranciscoUnited States
| | - Ace E Lewis
- Program in Craniofacial Biology, University of California San FranciscoSan FranciscoUnited States
- Department of Cell and Tissue Biology, University of California San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San FranciscoSan FranciscoUnited States
| | - Coohleen Coombes
- Program in Craniofacial Biology, University of California San FranciscoSan FranciscoUnited States
- Department of Cell and Tissue Biology, University of California San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San FranciscoSan FranciscoUnited States
- Department of Biology, San Francisco State UniversitySan FranciscoUnited States
| | - Fang-Shiuan Leung
- Program in Craniofacial Biology, University of California San FranciscoSan FranciscoUnited States
- Department of Cell and Tissue Biology, University of California San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San FranciscoSan FranciscoUnited States
| | - Michelle Percharde
- MRC London Institute of Medical Sciences (LMS)LondonUnited Kingdom
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College LondonLondonUnited Kingdom
| | - Jeffrey O Bush
- Program in Craniofacial Biology, University of California San FranciscoSan FranciscoUnited States
- Department of Cell and Tissue Biology, University of California San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San FranciscoSan FranciscoUnited States
| |
Collapse
|
15
|
Garriock RJ, Chalamalasetty RB, Zhu J, Kennedy MW, Kumar A, Mackem S, Yamaguchi TP. A dorsal-ventral gradient of Wnt3a/β-catenin signals controls mouse hindgut extension and colon formation. Development 2020; 147:dev.185108. [PMID: 32156757 DOI: 10.1242/dev.185108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/19/2020] [Indexed: 12/20/2022]
Abstract
Despite the importance of Wnt signaling for adult intestinal stem cell homeostasis and colorectal cancer, relatively little is known about its role in colon formation during embryogenesis. The development of the colon starts with the formation and extension of the hindgut. We show that Wnt3a is expressed in the caudal embryo in a dorsal-ventral (DV) gradient across all three germ layers, including the hindgut. Using genetic and lineage-tracing approaches, we describe novel dorsal and ventral hindgut domains, and show that ventrolateral hindgut cells populate the majority of the colonic epithelium. A Wnt3a-β-catenin-Sp5/8 pathway, which is active in the dorsal hindgut endoderm, is required for hindgut extension and colon formation. Interestingly, the absence of Wnt activity in the ventral hindgut is crucial for proper hindgut morphogenesis, as ectopic stabilization of β-catenin in the ventral hindgut via gain- or loss-of-function mutations in Ctnnb1 or Apc, respectively, leads to severe colonic hyperplasia. Thus, the DV Wnt gradient is required to coordinate growth between dorsal and ventral hindgut domains to regulate the extension of the hindgut that leads to colon formation.
Collapse
Affiliation(s)
- Robert J Garriock
- Center for Cancer Research, Cancer and Developmental Biology Laboratory, Cell Signaling in Vertebrate Development Section, NCI-Frederick, NIH, Frederick, MD 21702, USA
| | - Ravindra B Chalamalasetty
- Center for Cancer Research, Cancer and Developmental Biology Laboratory, Cell Signaling in Vertebrate Development Section, NCI-Frederick, NIH, Frederick, MD 21702, USA
| | - JianJian Zhu
- Center for Cancer Research, Cancer and Developmental Biology Laboratory, Cell Signaling in Vertebrate Development Section, NCI-Frederick, NIH, Frederick, MD 21702, USA
| | - Mark W Kennedy
- Center for Cancer Research, Cancer and Developmental Biology Laboratory, Cell Signaling in Vertebrate Development Section, NCI-Frederick, NIH, Frederick, MD 21702, USA
| | - Amit Kumar
- Center for Cancer Research, Cancer and Developmental Biology Laboratory, Cell Signaling in Vertebrate Development Section, NCI-Frederick, NIH, Frederick, MD 21702, USA
| | - Susan Mackem
- Center for Cancer Research, Cancer and Developmental Biology Laboratory, Cell Signaling in Vertebrate Development Section, NCI-Frederick, NIH, Frederick, MD 21702, USA
| | - Terry P Yamaguchi
- Center for Cancer Research, Cancer and Developmental Biology Laboratory, Cell Signaling in Vertebrate Development Section, NCI-Frederick, NIH, Frederick, MD 21702, USA
| |
Collapse
|
16
|
Long C, Xiao Y, Li S, Tang X, Yuan Z, Bai Y. Involvement of proliferative and apoptotic factors in the development of hindgut in rat fetuses with ethylenethiourea-induced anorectal malformations. Acta Histochem 2020; 122:151466. [PMID: 31787253 DOI: 10.1016/j.acthis.2019.151466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/16/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Anorectal malformations (ARMs) are common congenital malformations of the terminal digestive tract, but little is known regarding their pathogenesis. Aberrant cell proliferation/apoptosis are believed to be involved in ARMs. However, there are no studies on proliferation/apoptosis-related genes. PURPOSE We aimed to investigate the spatiotemporal expression patterns of two proliferation/apoptosis-related genes (MYC proto-oncogene and tumor protein p53) and explore their potential functions in the hindguts of ethylene thiourea-induced ARMs rat fetuses. METHODS MYC and p53 expression was evaluated using immunohistochemical staining, western blotting, and quantitative real-time polymerase chain reaction (RT-qPCR). Terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) and p53 costaining were performed to assay the colocalization of apoptotic and p53-expressing cells. RESULTS Rat fetuses with ARMs displayed fusion failure of the urogenital septum and cloacal membrane. In the control group, MYC was persistently expressed from gestational day (GD)14 to GD16 and distributed throughout the hindgut, while p53 was weakly detected in the terminal segment of the urethra and hindgut; in the ARMs group, MYC expression was obviously reduced, while p53 was widely and highly expressed in the urethra and hindgut. Western blotting and RT-qPCR confirmed the decrease in MYC and increase in p53 expression in ARMs. TUNEL and p53 co-staining revealed considerable overlap between apoptotic and p53-expressing cells. CONCLUSION The expression patterns of c-myc and p53 were disrupted in ARMs rat embryos, and the downregulation of c-myc and upregulation of p53 might be related to the development of ARMs at the key time points of ARMs morphogenesis.
Collapse
Affiliation(s)
- Caiyun Long
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Yunxia Xiao
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Siying Li
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Xiaobing Tang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Zhengwei Yuan
- The Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Yuzuo Bai
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
17
|
Haerlingen B, Opitz R, Vandernoot I, Trubiroha A, Gillotay P, Giusti N, Costagliola S. Small-Molecule Screening in Zebrafish Embryos Identifies Signaling Pathways Regulating Early Thyroid Development. Thyroid 2019; 29:1683-1703. [PMID: 31507237 DOI: 10.1089/thy.2019.0122] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Defects in embryonic development of the thyroid gland are a major cause for congenital hypothyroidism in human newborns, but the underlying molecular mechanisms are still poorly understood. Organ development relies on a tightly regulated interplay between extrinsic signaling cues and cell intrinsic factors. At present, however, there is limited knowledge about the specific extrinsic signaling cues that regulate foregut endoderm patterning, thyroid cell specification, and subsequent morphogenetic processes in thyroid development. Methods: To begin to address this problem in a systematic way, we used zebrafish embryos to perform a series of in vivo phenotype-driven chemical genetic screens to identify signaling cues regulating early thyroid development. For this purpose, we treated zebrafish embryos during different developmental periods with a panel of small-molecule compounds known to manipulate the activity of major signaling pathways and scored phenotypic deviations in thyroid, endoderm, and cardiovascular development using whole-mount in situ hybridization and transgenic fluorescent reporter models. Results: Systematic assessment of drugged embryos recovered a range of thyroid phenotypes including expansion, reduction or lack of the early thyroid anlage, defective thyroid budding, as well as hypoplastic, enlarged, or overtly disorganized presentation of the thyroid primordium after budding. Our pharmacological screening identified bone morphogenetic protein and fibroblast growth factor signaling as key factors for thyroid specification and early thyroid organogenesis, highlighted the importance of low Wnt activities during early development for thyroid specification, and implicated drug-induced cardiac and vascular anomalies as likely indirect mechanisms causing various forms of thyroid dysgenesis. Conclusions: By integrating the outcome of our screening efforts with previously available information from other model organisms including Xenopus, chicken, and mouse, we conclude that signaling cues regulating thyroid development appear broadly conserved across vertebrates. We therefore expect that observations made in zebrafish can inform mammalian models of thyroid organogenesis to further our understanding of the molecular mechanisms of congenital thyroid diseases.
Collapse
Affiliation(s)
- Benoit Haerlingen
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Robert Opitz
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Isabelle Vandernoot
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Achim Trubiroha
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Pierre Gillotay
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Nicoletta Giusti
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Sabine Costagliola
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
18
|
Stewart ME, Donahue KM, Wilke EG, Shifley ET. LOC496300 is expressed in the endoderm of developing Xenopus laevis embryos. MICROPUBLICATION BIOLOGY 2019; 2019:10.17912/micropub.biology.000150. [PMID: 32550462 PMCID: PMC7252394 DOI: 10.17912/micropub.biology.000150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | - Emily T Shifley
- Northern Kentucky University; Highland Heights, KY,
Correspondence to: Emily T Shifley ()
| |
Collapse
|
19
|
Abstract
The human stomach contains two primary domains: the corpus, which contains the fundic epithelium, and the antrum. Each of these domains has distinct cell types and functions, and therefore each presents with unique disease pathologies. Here, we detail two protocols to differentiate human pluripotent stem cells (hPSCs) into human gastric organoids (hGOs) that recapitulate both domains. Both protocols begin with the differentiation of hPSCs into definitive endoderm (DE) using activin A, followed by the generation of free-floating 3D posterior foregut spheroids using FGF4, Wnt pathway agonist CHIR99021 (CHIR), BMP pathway antagonist Noggin, and retinoic acid. Embedding spheroids in Matrigel and continuing 3D growth in epidermal growth factor (EGF)-containing medium for 4 weeks results in antral hGOs (hAGOs). To obtain fundic hGOs (hFGOs), spheroids are additionally treated with CHIR and FGF10. Induced differentiation of acid-secreting parietal cells in hFGOs requires temporal treatment of BMP4 and the MEK inhibitor PD0325901 for 48 h on protocol day 30. In total, it takes ~34 d to generate hGOs from hPSCs. To date, this is the only approach that generates functional human differentiated gastric cells de novo from hPSCs.
Collapse
|
20
|
Ge L, Cui Y, Liu B, Yin X, Pang J, Han J. ERα and Wnt/β‑catenin signaling pathways are involved in angelicin‑dependent promotion of osteogenesis. Mol Med Rep 2019; 19:3469-3476. [PMID: 30864714 PMCID: PMC6472132 DOI: 10.3892/mmr.2019.9999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 02/20/2019] [Indexed: 01/08/2023] Open
Abstract
Reports of the ameliorative effect of angelicin on sex hormone deficiency-induced osteoporosis have highlighted this compound as a candidate for the treatment of osteoporosis. However, the molecular mechanisms of action of angelicin on osteoblast differentiation have not been thoroughly researched. The aim of the present study was to evaluate the effect of angelicin on the proliferation, differentiation and mineralization of rat calvarial osteoblasts using a Cell Counting Kit-8, alkaline phosphatase activity and the expression of osteogenic genes and proteins. Treatment with angelicin promoted the proliferation, matrix mineralization and upregulation of osteogenic marker genes including collagen type I α 1 and bone γ-carboxyglutamate in fetal rat calvarial osteoblasts. Furthermore, angelicin promoted the expression of β-catenin and runt related transcription factor 2, which serve a vital role in the Wnt/β-catenin signaling pathway. Consistently, the osteogenic effect of angelicin was attenuated by the use of a Wnt inhibitor. Moreover, angelicin increased the expression of estrogen receptor α (ERα), which also serves a key role in osteoblast differentiation. Taken together, these results demonstrated that angelicin may promote osteoblast differentiation through activation of ERα and the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Luna Ge
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Yazhou Cui
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Baoyan Liu
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Xiaoli Yin
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Jingxiang Pang
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Jinxiang Han
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| |
Collapse
|
21
|
Madan B, Harmston N, Nallan G, Montoya A, Faull P, Petretto E, Virshup DM. Temporal dynamics of Wnt-dependent transcriptome reveal an oncogenic Wnt/MYC/ribosome axis. J Clin Invest 2018; 128:5620-5633. [PMID: 30300142 DOI: 10.1172/jci122383] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/02/2018] [Indexed: 12/18/2022] Open
Abstract
Activating mutations in the Wnt pathway drive a variety of cancers, but the specific targets and pathways activated by Wnt ligands are not fully understood. To bridge this knowledge gap, we performed a comprehensive time-course analysis of Wnt-dependent signaling pathways in an orthotopic model of Wnt-addicted pancreatic cancer, using a porcupine (PORCN) inhibitor currently in clinical trials, and validated key results in additional Wnt-addicted models. The temporal analysis of the drug-perturbed transcriptome demonstrated direct and indirect regulation of more than 3,500 Wnt-activated genes (23% of the transcriptome). Regulation was both via Wnt/β-catenin and through the modulation of protein abundance of important transcription factors, including MYC, via Wnt-dependent stabilization of proteins (Wnt/STOP). Our study identifies a central role of Wnt/β-catenin and Wnt/STOP signaling in controlling ribosome biogenesis, a key driver of cancer proliferation.
Collapse
Affiliation(s)
- Babita Madan
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Nathan Harmston
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore.,Centre for Computational Biology and Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| | - Gahyathiri Nallan
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Alex Montoya
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Peter Faull
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Enrico Petretto
- Centre for Computational Biology and Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore.,MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - David M Virshup
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore.,Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
22
|
Trisno SL, Philo KED, McCracken KW, Catá EM, Ruiz-Torres S, Rankin SA, Han L, Nasr T, Chaturvedi P, Rothenberg ME, Mandegar MA, Wells SI, Zorn AM, Wells JM. Esophageal Organoids from Human Pluripotent Stem Cells Delineate Sox2 Functions during Esophageal Specification. Cell Stem Cell 2018; 23:501-515.e7. [PMID: 30244869 DOI: 10.1016/j.stem.2018.08.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/24/2018] [Accepted: 08/15/2018] [Indexed: 01/20/2023]
Abstract
Tracheal and esophageal disorders are prevalent in humans and difficult to accurately model in mice. We therefore established a three-dimensional organoid model of esophageal development through directed differentiation of human pluripotent stem cells. Sequential manipulation of bone morphogenic protein (BMP), Wnt, and RA signaling pathways was required to pattern definitive endoderm into foregut, anterior foregut (AFG), and dorsal AFG spheroids. Dorsal AFG spheroids grown in a 3D matrix formed human esophageal organoids (HEOs), and HEO cells could be transitioned into two-dimensional cultures and grown as esophageal organotypic rafts. In both configurations, esophageal tissues had proliferative basal progenitors and a differentiated stratified squamous epithelium. Using HEO cultures to model human esophageal birth defects, we identified that Sox2 promotes esophageal specification in part through repressing Wnt signaling in dorsal AFG and promoting survival. Consistently, Sox2 ablation in mice causes esophageal agenesis. Thus, HEOs present a powerful platform for modeling human pathologies and tissue engineering.
Collapse
Affiliation(s)
- Stephen L Trisno
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Katherine E D Philo
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kyle W McCracken
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Emily M Catá
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sonya Ruiz-Torres
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Scott A Rankin
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lu Han
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Talia Nasr
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Praneet Chaturvedi
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | - Susanne I Wells
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Aaron M Zorn
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - James M Wells
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
23
|
Microarray analysis of miRNAs during hindgut development in rat embryos with ethylenethiourea‑induced anorectal malformations. Int J Mol Med 2018; 42:2363-2372. [PMID: 30106085 PMCID: PMC6192757 DOI: 10.3892/ijmm.2018.3809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 08/02/2018] [Indexed: 11/28/2022] Open
Abstract
Anorectal malformations (ARMs) are one of the most common congenital malformations of the digestive tract; however, the pathogenesis of this disease remains to be fully elucidated. MicroRNAs (miRNAs) are important in gastrointestinal development and may be involved in the pathogenesis of ARMs. The present study aimed to profile miRNAs and examine their potential functions in rats with ethylenethiourea (ETU)-induced ARMs. Pregnant Wistar rats (n=36) were divided randomly into ETU-treated and control groups. The rats in the ETU-treated group were gavage-fed 1% ETU (125 mg/kg) on gestational day 10 (GD10), whereas the control group rats received a corresponding dose of saline. Embryos were harvested by cesarean section on GD14, GD15 and GD16. Hindgut tissue was isolated from the fetuses for RNA extraction and microarray analysis, followed by bioinformatics analysis and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) validation. Overall, 38 miRNAs were differentially expressed (all upregulated) on GD14, 49 (32 upregulated and 17 downregulated) on GD15, and 42 (all upregulated) on GD16 in the ARM group compared with the normal group. The top 18 miRNAs with |log2(fold change)| >4.25 were selected for further bioinformatics analysis. Among these miRNAs, five were differentially expressed at two time-points and were involved in ARM-associated signaling pathways. The RT-qPCR analysis revealed that three miRNA (miR), miR-125b-2-3p, miR-92a-2-5p and miR-99a-5p, were significantly differentially expressed in rats with ARMs compared with the normal group. In conclusion, the results suggested that the differential expression of miR-125b-2-3p, miR-92a-2-5p and miR-99a-5p during key time-points of anorectal formation in rats may have functions in the pathogenesis of ARM.
Collapse
|
24
|
David CJ, Massagué J. Contextual determinants of TGFβ action in development, immunity and cancer. Nat Rev Mol Cell Biol 2018; 19:419-435. [PMID: 29643418 DOI: 10.1038/s41580-018-0007-0] [Citation(s) in RCA: 596] [Impact Index Per Article: 85.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Few cell signals match the impact of the transforming growth factor-β (TGFβ) family in metazoan biology. TGFβ cytokines regulate cell fate decisions during development, tissue homeostasis and regeneration, and are major players in tumorigenesis, fibrotic disorders, immune malfunctions and various congenital diseases. The effects of the TGFβ family are mediated by a combinatorial set of ligands and receptors and by a common set of receptor-activated mothers against decapentaplegic homologue (SMAD) transcription factors, yet the effects can differ dramatically depending on the cell type and the conditions. Recent progress has illuminated a model of TGFβ action in which SMADs bind genome-wide in partnership with lineage-determining transcription factors and additionally integrate inputs from other pathways and the chromatin to trigger specific cellular responses. These new insights clarify the operating logic of the TGFβ pathway in physiology and disease.
Collapse
Affiliation(s)
- Charles J David
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Tsinghua University School of Medicine, Department of Basic Sciences, Beijing, China
| | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
25
|
Abstract
Germ cell tumors (GCTs) arising in infants, children, and adolescents present a set of special challenges. GCTs make up about 3% of malignancies in children aged 0–18 and nearly 15% of cancers in adolescents. Epidemiologic and molecular evidence suggests that GCTs in young children likely represent a distinct biologic group as compared to GCTs of older adolescents and adults. Despite this difference, pediatric GCTs are typically treated with cisplatin-based multiagent regimens similar to those used in adults. There is evidence that children are particularly vulnerable to late effects of conventional therapy, including ototoxicity, pulmonary abnormalities, and secondary malignancies, motivating the search for molecular targets for novel therapies. Evidence is accumulating that the genes and mechanisms controlling normal germ cell development are particularly relevant to the understanding of germ cell tumorigenesis. Perturbations in the epigenetic program of germ cell differentiation, with resulting effects on the regulation of pluripotency, may contribute to the marked histologic variability of GCTs. Perturbations in the KIT receptor signaling pathway have been identified via next-generation sequencing studies and in genome-wide association studies of testicular cancer susceptibility. Here, we review these and other biological insights that may fuel further translational and clinical research in childhood GCTs.
Collapse
|
26
|
Eicher AK, Berns HM, Wells JM. Translating Developmental Principles to Generate Human Gastric Organoids. Cell Mol Gastroenterol Hepatol 2018; 5:353-363. [PMID: 29552623 PMCID: PMC5852324 DOI: 10.1016/j.jcmgh.2017.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/22/2017] [Indexed: 12/24/2022]
Abstract
Gastric diseases, including peptic ulcer disease and gastric cancer, are highly prevalent in human beings. Despite this, the cellular biology of the stomach remains poorly understood relative to other gastrointestinal organs such as the liver, intestine, and colon. In particular, little is known about the molecular basis of stomach development and the differentiation of gastric lineages. Although animal models are useful for studying gastric development, function, and disease, there are major structural and physiological differences in human stomachs that render these models insufficient. To look at gastric development, function, and disease in a human context, a model system of the human stomach is imperative. This review details how this was achieved through the directed differentiation of human pluripotent stem cells in a 3-dimensional environment into human gastric organoids (HGOs). Similar to previous work that has generated human intestine, colon, and lung tissue in vitro, HGOs were generated in vitro through a step-wise differentiation designed to mimic the temporal-spatial signaling dynamics that control stomach development in vivo. HGOs can be used for a variety of purposes, including genetic modeling, drug screening, and potentially even in future patient transplantation. Moreover, HGOs are well suited to study the development and interactions of nonepithelial cell types, such as endothelial, neuronal, and mesenchymal, which remain almost completely unstudied. This review discusses the basics of stomach morphology, function, and developmental pathways involved in generating HGOs. We also highlight important gaps in our understanding of how epithelial and mesenchymal interactions are essential for the development and overall function of the human stomach.
Collapse
Key Words
- 3-D, 3-dimensional
- BMP, bone morphogenetic protein
- Directed Differentiation
- ECL, enterochromaffin-like
- ENCC, enteric neural crest cell
- ENS, enteric nervous system
- Endoderm
- GI, gastrointestinal
- Gastric Development
- HDGC, hereditary diffuse gastric cancer
- HGO, human gastric organoid
- Organoids
- PSC, pluripotent stem cell
- Pluripotent Stem Cells
- Shh, Sonic hedgehog
- e, embryonic day
- hPSC, human pluripotent stem cell
Collapse
Affiliation(s)
- Alexandra K. Eicher
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - H. Matthew Berns
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - James M. Wells
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,Correspondence Address correspondence to: James M. Wells, PhD, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229. fax: (513) 636-4317.Cincinnati Children's Hospital Medical Center3333 Burnet AvenueCincinnatiOhio 45229
| |
Collapse
|
27
|
Rankin SA, McCracken KW, Luedeke DM, Han L, Wells JM, Shannon JM, Zorn AM. Timing is everything: Reiterative Wnt, BMP and RA signaling regulate developmental competence during endoderm organogenesis. Dev Biol 2017; 434:121-132. [PMID: 29217200 DOI: 10.1016/j.ydbio.2017.11.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 12/13/2022]
Abstract
A small number of signaling pathways are used repeatedly during organogenesis, and they can have drastically different effects on the same population of cells depending on the embryonic stage. How cellular competence changes over developmental time is not well understood. Here we used Xenopus, mouse, and human pluripotent stem cells to investigate how the temporal sequence of Wnt, BMP, and retinoic acid (RA) signals regulates endoderm developmental competence and organ induction, focusing on respiratory fate. While Nkx2-1+ lung fate is not induced until late somitogenesis stages, here we show that lung competence is restricted by the gastrula stage as a result of Wnt and BMP-dependent anterior-posterior (A-P) patterning. These early Wnt and BMP signals make posterior endoderm refractory to subsequent RA/Wnt/BMP-dependent lung induction. We further mapped how RA modulates the response to Wnt and BMP in a temporal specific manner. In the gastrula RA promotes posterior identity, however in early somite stages of development RA regulates respiratory versus pharyngeal potential in anterior endoderm and midgut versus hindgut potential in posterior endoderm. Together our data suggest a dynamic and conserved response of vertebrate endoderm during organogenesis, wherein early Wnt/BMP/RA impacts how cells respond to later Wnt/BMP/RA signals, illustrating how reiterative combinatorial signaling can regulate both developmental competence and subsequent fate specification.
Collapse
Affiliation(s)
- Scott A Rankin
- Center for Stem Cell&Organoid Medicine (CuSTOM), Perinatal Institute, Divisions of Developmental Biology the Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Kyle W McCracken
- Center for Stem Cell&Organoid Medicine (CuSTOM), Perinatal Institute, Divisions of Developmental Biology the Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - David M Luedeke
- Center for Stem Cell&Organoid Medicine (CuSTOM), Perinatal Institute, Divisions of Developmental Biology the Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Lu Han
- Center for Stem Cell&Organoid Medicine (CuSTOM), Perinatal Institute, Divisions of Developmental Biology the Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - James M Wells
- Center for Stem Cell&Organoid Medicine (CuSTOM), Perinatal Institute, Divisions of Developmental Biology the Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - John M Shannon
- Pulmonary Biology, Cincinnati Children's Hospital, and the Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA.
| | - Aaron M Zorn
- Center for Stem Cell&Organoid Medicine (CuSTOM), Perinatal Institute, Divisions of Developmental Biology the Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|