1
|
Mikami K, Kozono Y, Masukawa M, Kobayashi S. A fast in situ hybridization chain reaction method in Drosophila embryos and ovaries. Fly (Austin) 2025; 19:2428499. [PMID: 39639000 PMCID: PMC11633216 DOI: 10.1080/19336934.2024.2428499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
The in situ hybridization chain reaction (isHCR) is a powerful method for visualizing mRNA in many species. We present a rapid isHCR method for Drosophila embryos and ovaries. Ethylene carbonate was added to the hybridization buffer to facilitate the hybridization reaction, and a modified short hairpin DNA was used in the amplification reaction; these modifications decreased the RNA staining time from 3 days to 1 day. This method is compatible with immunohistochemistry and can detect multiple mRNAs. The proposed method could significantly reduce staining time for Drosophila researchers using isHCR.
Collapse
Affiliation(s)
- Kyohei Mikami
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yasuhiro Kozono
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masaki Masukawa
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Satoru Kobayashi
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Nayak PK, Subramanian A, Schilling TF. Transcriptome profiling of tendon fibroblasts at the onset of embryonic muscle contraction reveals novel force-responsive genes. eLife 2025; 14:e105802. [PMID: 40145570 PMCID: PMC12040314 DOI: 10.7554/elife.105802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here, we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin 1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration, and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.
Collapse
Affiliation(s)
- Pavan K Nayak
- Department of Developmental and Cell Biology, University of CaliforniaIrvineUnited States
| | - Arul Subramanian
- Department of Developmental and Cell Biology, University of CaliforniaIrvineUnited States
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of CaliforniaIrvineUnited States
| |
Collapse
|
3
|
Jiménez S, Senovilla-Ganzo R, Gallego-Flores T, Pérez-Pascual E, Ordeñana-Manso A, Rayo-Morales R, De Pittà M, García-Moreno F. Experimental Neurogenesis in the Embryos of the Gecko Paroedura picta. Methods Mol Biol 2025; 2899:127-145. [PMID: 40067621 DOI: 10.1007/978-1-0716-4386-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
This research introduces innovative tools for studying embryonic neurogenesis in the gecko Paroedura picta. Traditional research methods have been adapted for the gecko's unique biology, including variations of birthdating techniques and the implementation of EdU for tracking neuron generation. We also employ hybridization chain reaction (HCR) to detect specific mRNAs without the need for species-specific antibodies, providing a powerful and flexible tool for studying gene expression patterns in the gecko embryonic brain. However, HCR can also be combined with immunohistochemistry to visualize both RNA and protein distribution. Our work proves the importance of this innovative toolset to understand the evolutionary aspects of nervous system development and the gecko as a valuable model for understanding the ancestral stem amniote.
Collapse
Affiliation(s)
- Sara Jiménez
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Rodrigo Senovilla-Ganzo
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Tatiana Gallego-Flores
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Erise Pérez-Pascual
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitor Ordeñana-Manso
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Raquel Rayo-Morales
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Maurizio De Pittà
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Leioa, Spain
- Basque Center for Applied Mathematics, Bilbao, Spain
- Computational Neuroscience Hub, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain.
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Leioa, Spain.
- IKERBASQUE Foundation, Bilbao, Spain.
| |
Collapse
|
4
|
Fung L, Dranow DB, Subramanian A, Libby N, Schilling TF. Cellular retinoic acid-binding proteins regulate germ cell proliferation and sex determination in zebrafish. Development 2024; 151:dev202549. [PMID: 39575928 DOI: 10.1242/dev.202549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 10/30/2024] [Indexed: 12/14/2024]
Abstract
Cellular retinoic acid (RA)-binding proteins (Crabps) solubilize intracellular RA and transport it to its nuclear receptors or cytoplasmic degradation enzymes. Despite their extreme conservation across chordates, genetic studies of Crabp function have revealed few essential functions. We have generated loss-of-function mutations in all four zebrafish Crabps and find essential roles for Crabp2 proteins in gonad development and sex determination. Transgenic RA reporters show strong RA responses in germ cells at the bipotential stage of gonad development. Double mutants lacking the functions of both Crabp2a and Crabp2b predominantly become male, which correlates with their smaller gonad size and reduced germ cell proliferation during gonad development at late larval and early juvenile stages. In contrast, mutants lacking the functions of both Crabp1a and Crabp1b have normal sex ratios. Exogenous RA treatments at bipotential gonad stages increase germ cell number, consistent with a direct role for RA in promoting germ cell proliferation. Our results suggest essential functions for Crabps in gonad development and sex determination.
Collapse
Affiliation(s)
- Lianna Fung
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Daniel B Dranow
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Arul Subramanian
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Natalia Libby
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| |
Collapse
|
5
|
Yeung TJ, Wilkinson DG. Short-range Fgf signalling patterns hindbrain progenitors to induce the neurogenesis-to-oligodendrogenesis switch. Development 2024; 151:dev204256. [PMID: 39575980 DOI: 10.1242/dev.204256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024]
Abstract
In the vertebrate nervous system, neurogenesis generally precedes gliogenesis. The mechanisms driving the switch in cell type production and generation of the correct proportion of cell types remain unclear. Here, we show that Fgf20 signalling patterns progenitors to induce the switch from neurogenesis to oligodendrogenesis in the zebrafish hindbrain. Fgf20 emanating from earlier-born neurons signals at a short range to downregulate proneural gene expression in the segment centre with high spatial precision along both anterior-posterior and dorsal-ventral axes. This signal induces oligodendrocytes in the segment centre by upregulating olig2 and sox10 expression in pre-patterned competent progenitors. We show that the magnitude of proneural gene downregulation and the quantity of oligodendrocyte precursor cells specified is dependent on the extent of Fgf20 signalling. Overexpression of fgf20a induces precocious specification and differentiation of oligodendrocytes among olig2+ progenitors, resulting in an increase in oligodendrocytes at the expense of neurogenesis. Thus, Fgf20 signalling defines the proportion of each cell type produced. Taken together, Fgf20 signalling from earlier-born neurons patterns hindbrain segments spatially and temporally to induce the neurogenesis-to-oligodendrogenesis switch.
Collapse
Affiliation(s)
- Tim J Yeung
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | |
Collapse
|
6
|
Peloggia J, Cheung KY, Whitfield TT, Petkova MD, Schalek R, Boulanger-Weill J, Wu Y, Wang S, van Hateren NJ, Januszewski M, Jain V, Lichtman JW, Engert F, Piotrowski T, Jesuthasan S. Paired and solitary ionocytes in the zebrafish olfactory epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.620918. [PMID: 39574570 PMCID: PMC11580993 DOI: 10.1101/2024.11.08.620918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
The sense of smell is generated by electrical currents that are influenced by the concentration of ions in olfactory sensory neurons and mucus. In contrast to the extensive morphological and molecular characterization of sensory neurons, there has been little description of the cells that control ion concentrations in the zebrafish olfactory system. Here, we report the molecular and ultrastructural characterization of zebrafish olfactory ionocytes. Transcriptome analysis suggests that the zebrafish olfactory epithelium contains at least three different ionocyte types, which resemble Na + /K + -ATPase-rich (NaR), Na + /Cl - cotransporter (NCC), and H + -ATPase-rich (HR) cells, responsible for calcium, chloride, and pH regulation, respectively, in the zebrafish skin. NaR-like and HR-like ionocytes are usually adjacent to one another, whereas NCC-like cells are usually solitary. The distinct subtypes are differentially distributed: NaR-like/HR-like cell pairs are found broadly within the olfactory epithelium, whereas NCC-like cells reside within the peripheral non-sensory multiciliated cell zone. Comparison of gene expression and serial-section electron microscopy analysis indicates that the NaR-like cells wrap around the HR-like cells and are connected to them by shallow tight junctions. The development of olfactory ionocyte subtypes is also differentially regulated, as pharmacological Notch inhibition leads to a loss of NaR-like and HR-like cells, but does not affect NCC-like ionocyte number. These results provide a molecular and anatomical characterization of olfactory ionocytes in a stenohaline freshwater teleost. The paired ionocytes suggest that both transcellular and paracellular transport regulate ion concentrations in the olfactory epithelium, while the solitary ionocytes may enable independent regulation of multiciliated cells.
Collapse
Affiliation(s)
- Julia Peloggia
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - King Yee Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
- School of Biosciences, Bateson Centre and Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Tanya T. Whitfield
- School of Biosciences, Bateson Centre and Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Mariela D. Petkova
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Richard Schalek
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Jonathan Boulanger-Weill
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Yuelong Wu
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Shuohong Wang
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Nicholas J. van Hateren
- School of Biosciences, Bateson Centre and Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | | | - Viren Jain
- Google Research, Mountain View, CA 94043, USA
| | - Jeff W. Lichtman
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | | | - Suresh Jesuthasan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
- Department of Molecular Biology, Umeå University, Sweden
| |
Collapse
|
7
|
Suh J, Liu Y, Smith J, Watanabe M, Rollins AM, Jenkins MW. A Simple and Fast Optical Clearing Method for Whole-Mount Fluorescence In Situ Hybridization (FISH) Imaging. JOURNAL OF BIOPHOTONICS 2024:e202400258. [PMID: 39389582 DOI: 10.1002/jbio.202400258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
We report a single-step optical clearing method that is compatible with RNA fluorescence in situ hybridization (FISH) imaging. We previously demonstrated microscopy imaging with immunohistochemistry and genetic reporters using a technique called lipid-preserving refractive index matching for prolonged imaging depth (LIMPID). Our protocol reliably produces high-resolution three-dimensional (3D) images with minimal aberrations using high magnification objectives, captures large field-of-view images of whole-mount tissues, and supports co-labeling with antibody and FISH probes. We also custom-designed FISH probes for quail embryos, demonstrating the ease of fabricating probes for use with less common animal models. Furthermore, we show high-quality 3D images using a conventional fluorescence microscope, without using more advanced depth sectioning instruments such as confocal or light-sheet microscopy. For broader adoption, we simplified and optimized 3D-LIMPID-FISH to minimize the barrier to entry, and we provide a detailed protocol to aid users with navigating the thick and thin of 3D microscopy.
Collapse
Affiliation(s)
- Junwoo Suh
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yehe Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jordan Smith
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michiko Watanabe
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Andrew M Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
8
|
Gallicchio L, Matias NR, Morales-Polanco F, Nava I, Stern S, Zeng Y, Fuller MT. A developmental mechanism to regulate alternative polyadenylation in an adult stem cell lineage. Genes Dev 2024; 38:655-674. [PMID: 39111825 PMCID: PMC11368245 DOI: 10.1101/gad.351649.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Alternative cleavage and polyadenylation (APA) often results in production of mRNA isoforms with either longer or shorter 3' UTRs from the same genetic locus, potentially impacting mRNA translation, localization, and stability. Developmentally regulated APA can thus make major contributions to cell type-specific gene expression programs as cells differentiate. During Drosophila spermatogenesis, ∼500 genes undergo APA when proliferating spermatogonia differentiate into spermatocytes, producing transcripts with shortened 3' UTRs, leading to profound stage-specific changes in the proteins expressed. The molecular mechanisms that specify usage of upstream polyadenylation sites in spermatocytes are thus key to understanding the changes in cell state. Here, we show that upregulation of PCF11 and Cbc, the two components of cleavage factor II (CFII), orchestrates APA during Drosophila spermatogenesis. Knockdown of PCF11 or cbc in spermatocytes caused dysregulation of APA, with many transcripts normally cleaved at a proximal site in spermatocytes now cleaved at their distal site, as in spermatogonia. Forced overexpression of CFII components in spermatogonia switched cleavage of some transcripts to the proximal site normally used in spermatocytes. Our findings reveal a developmental mechanism where changes in expression of specific cleavage factors can direct cell type-specific APA at selected genes.
Collapse
Affiliation(s)
- Lorenzo Gallicchio
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94035, USA
| | - Neuza R Matias
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94035, USA
| | - Fabián Morales-Polanco
- Department of Biology, Stanford University School of Humanities and Sciences, Stanford, California 94035, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94035, USA
| | - Iliana Nava
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94035, USA
| | - Sarah Stern
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94035, USA
| | - Yi Zeng
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94035, USA
| | - Margaret T Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94035, USA;
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94035, USA
| |
Collapse
|
9
|
Tuñon-Ortiz A, Tränkner D, Brockway SN, Raines O, Mahnke A, Grega M, Zelikowsky M, Williams ME. Inhibitory neurons marked by a connectivity molecule regulate memory precision. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602304. [PMID: 39005261 PMCID: PMC11245094 DOI: 10.1101/2024.07.05.602304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The CA3 region is central to hippocampal function during learning and memory and has a unique connectivity. CA3 pyramidal neurons are the targets of huge, excitatory mossy fiber synapses from DG axons and have a high degree of excitatory recurrent connectivity. Thus, inhibition likely plays an outsized importance in constraining excitation and shaping CA3 ensembles during learning and memory. Here, we investigate the function of a never-before studied set of dendrite-targeting, GABAergic neurons defined by expression of the synaptic adhesion molecule, Kirrel3. We discovered that activating Kirrel3-expressing GABAergic neurons specifically impairs memory discrimination and inhibits CA3 pyramidal neurons in novel contexts. Kirrel3 is required for DG-to-GABA synapse formation and variants in Kirrel3 are strong risk factors for neurodevelopmental disorders. Thus, our work suggests that Kirrel3-GABA neurons are a critical source of feed-forward inhibition from DG to CA3 during the encoding and retrieval of contextual memories, a function which may be specifically disrupted in some brain disorders.
Collapse
Affiliation(s)
- Arnulfo Tuñon-Ortiz
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Dimitri Tränkner
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Sarah N Brockway
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Olivia Raines
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Abbey Mahnke
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Matthew Grega
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Moriel Zelikowsky
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Megan E Williams
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| |
Collapse
|
10
|
André M, Dinvaut S, Castellani V, Falk J. 3D exploration of gene expression in chicken embryos through combined RNA fluorescence in situ hybridization, immunofluorescence, and clearing. BMC Biol 2024; 22:131. [PMID: 38831263 PMCID: PMC11149291 DOI: 10.1186/s12915-024-01922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Fine characterization of gene expression patterns is crucial to understand many aspects of embryonic development. The chicken embryo is a well-established and valuable animal model for developmental biology. The period spanning from the third to sixth embryonic days (E3 to E6) is critical for many organ developments. Hybridization chain reaction RNA fluorescent in situ hybridization (HCR RNA-FISH) enables multiplex RNA detection in thick samples including embryos of various animal models. However, its use is limited by tissue opacity. RESULTS We optimized HCR RNA-FISH protocol to efficiently label RNAs in whole mount chicken embryos from E3.5 to E5.5 and adapted it to ethyl cinnamate (ECi) tissue clearing. We show that light sheet imaging of HCR RNA-FISH after ECi clearing allows RNA expression analysis within embryonic tissues with good sensitivity and spatial resolution. Finally, whole mount immunofluorescence can be performed after HCR RNA-FISH enabling as exemplified to assay complex spatial relationships between axons and their environment or to monitor GFP electroporated neurons. CONCLUSIONS We could extend the use of HCR RNA-FISH to older chick embryos by optimizing HCR RNA-FISH and combining it with tissue clearing and 3D imaging. The integration of immunostaining makes possible to combine gene expression with classical cell markers, to correlate expressions with morphological differentiation and to depict gene expressions in gain or loss of function contexts. Altogether, this combined procedure further extends the potential of HCR RNA-FISH technique for chicken embryology.
Collapse
Affiliation(s)
- Maëlys André
- MeLiS, CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69008, Lyon, France.
| | - Sarah Dinvaut
- MeLiS, CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69008, Lyon, France
| | - Valérie Castellani
- MeLiS, CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69008, Lyon, France
| | - Julien Falk
- MeLiS, CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69008, Lyon, France.
| |
Collapse
|
11
|
Schulte S, Shin B, Rothenberg EV, Pierce NA. Multiplex, Quantitative, High-Resolution Imaging of Protein:Protein Complexes via Hybridization Chain Reaction. ACS Chem Biol 2024; 19:280-288. [PMID: 38232374 PMCID: PMC10877569 DOI: 10.1021/acschembio.3c00431] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/18/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Signal amplification based on the mechanism of hybridization chain reaction (HCR) facilitates spatial exploration of gene regulatory networks by enabling multiplex, quantitative, high-resolution imaging of RNA and protein targets. Here, we extend these capabilities to the imaging of protein:protein complexes, using proximity-dependent cooperative probes to conditionally generate a single amplified signal if and only if two target proteins are colocalized within the sample. HCR probes and amplifiers combine to provide automatic background suppression throughout the protocol, ensuring that even if reagents bind nonspecifically in the sample, they will not generate amplified background. We demonstrate protein:protein imaging with a high signal-to-background ratio in human cells, mouse proT cells, and highly autofluorescent formalin-fixed paraffin-embedded (FFPE) human breast tissue sections. Further, we demonstrate multiplex imaging of three different protein:protein complexes simultaneously and validate that HCR enables accurate and precise relative quantitation of protein:protein complexes with subcellular resolution in an anatomical context. Moreover, we establish a unified framework for simultaneous multiplex, quantitative, high-resolution imaging of RNA, protein, and protein:protein targets, with one-step, isothermal, enzyme-free HCR signal amplification performed for all target classes simultaneously.
Collapse
Affiliation(s)
- Samuel
J. Schulte
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Boyoung Shin
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Ellen V. Rothenberg
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Niles A. Pierce
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
- Division
of Engineering and Applied Science, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
12
|
Schulte SJ, Fornace ME, Hall JK, Shin GJ, Pierce NA. HCR spectral imaging: 10-plex, quantitative, high-resolution RNA and protein imaging in highly autofluorescent samples. Development 2024; 151:dev202307. [PMID: 38415752 PMCID: PMC10941662 DOI: 10.1242/dev.202307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/21/2023] [Indexed: 02/29/2024]
Abstract
Signal amplification based on the mechanism of hybridization chain reaction (HCR) provides a unified framework for multiplex, quantitative, high-resolution imaging of RNA and protein targets in highly autofluorescent samples. With conventional bandpass imaging, multiplexing is typically limited to four or five targets owing to the difficulty in separating signals generated by fluorophores with overlapping spectra. Spectral imaging has offered the conceptual promise of higher levels of multiplexing, but it has been challenging to realize this potential in highly autofluorescent samples, including whole-mount vertebrate embryos. Here, we demonstrate robust HCR spectral imaging with linear unmixing, enabling simultaneous imaging of ten RNA and/or protein targets in whole-mount zebrafish embryos and mouse brain sections. Further, we demonstrate that the amplified and unmixed signal in each of the ten channels is quantitative, enabling accurate and precise relative quantitation of RNA and/or protein targets with subcellular resolution, and RNA absolute quantitation with single-molecule resolution, in the anatomical context of highly autofluorescent samples.
Collapse
Affiliation(s)
- Samuel J. Schulte
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mark E. Fornace
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - John K. Hall
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Grace J. Shin
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Niles A. Pierce
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Division of Engineering & Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
13
|
Traenkner D, Shennib O, Johnson A, Weinbrom A, Taylor MR, Williams ME. Modular Splicing Is Linked to Evolution in the Synapse-Specificity Molecule Kirrel3. eNeuro 2023; 10:ENEURO.0253-23.2023. [PMID: 37977826 DOI: 10.1523/eneuro.0253-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
Kirrel3 is a cell-adhesion molecule that instructs the formation of specific synapses during brain development in mouse and Kirrel3 variants may be risk factors for autism and intellectual disabilities in humans. Kirrel3 is predicted to undergo alternative splicing but brain isoforms have not been studied. Here, we present the first in-depth characterization of Kirrel3 isoform diversity in brain using targeted, long-read mRNA sequencing of mouse hippocampus. We identified 19 isoforms with predicted transmembrane and secreted forms and show that even rare isoforms generate detectable protein in the brain. We also analyzed publicly-available long-read mRNA databases from human brain tissue and found 11 Kirrel3 isoforms that, similar to mouse, encode transmembrane and secreted forms. In mice and humans, Kirrel3 diversity arises from alternative, independent use of protein-domain coding exons and alternative early translation-stop signals. Intriguingly, the alternatively spliced exons appear at branch points in the chordate phylogenetic tree, including one exon only found in humans and their closest living relatives, the great apes. Together, these results validate a simple pipeline for analyzing isoform diversity in genes with low expression and suggest that Kirrel3 function is fine-tuned by alternative splicing and may play a role in brain evolution.
Collapse
Affiliation(s)
- Dimitri Traenkner
- Department of Neurobiology, University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Omar Shennib
- Department of Neurobiology, University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Alyssa Johnson
- Department of Neurobiology, University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Adam Weinbrom
- Department of Neurobiology, University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Matthew R Taylor
- Department of Neurobiology, University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Megan E Williams
- Department of Neurobiology, University of Utah, School of Medicine, Salt Lake City, UT 84112
| |
Collapse
|
14
|
Huang T, Guillotin B, Rahni R, Birnbaum KD, Wagner D. A rapid and sensitive, multiplex, whole mount RNA fluorescence in situ hybridization and immunohistochemistry protocol. PLANT METHODS 2023; 19:131. [PMID: 37993896 PMCID: PMC10666358 DOI: 10.1186/s13007-023-01108-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND In the past few years, there has been an explosion in single-cell transcriptomics datasets, yet in vivo confirmation of these datasets is hampered in plants due to lack of robust validation methods. Likewise, modeling of plant development is hampered by paucity of spatial gene expression data. RNA fluorescence in situ hybridization (FISH) enables investigation of gene expression in the context of tissue type. Despite development of FISH methods for plants, easy and reliable whole mount FISH protocols have not yet been reported. RESULTS We adapt a 3-day whole mount RNA-FISH method for plant species based on a combination of prior protocols that employs hybridization chain reaction (HCR), which amplifies the probe signal in an antibody-free manner. Our whole mount HCR RNA-FISH method shows expected spatial signals with low background for gene transcripts with known spatial expression patterns in Arabidopsis inflorescences and monocot roots. It allows simultaneous detection of three transcripts in 3D. We also show that HCR RNA-FISH can be combined with endogenous fluorescent protein detection and with our improved immunohistochemistry (IHC) protocol. CONCLUSIONS The whole mount HCR RNA-FISH and IHC methods allow easy investigation of 3D spatial gene expression patterns in entire plant tissues.
Collapse
Affiliation(s)
- Tian Huang
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bruno Guillotin
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Ramin Rahni
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Kenneth D Birnbaum
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
15
|
Raji JI, Potter CJ. Hybridization Chain Reaction RNA Whole-Mount Fluorescence In situ Hybridization of Chemosensory Genes in Mosquito Olfactory Appendages. J Vis Exp 2023:10.3791/65933. [PMID: 38047558 PMCID: PMC11099874 DOI: 10.3791/65933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
Mosquitoes are effective vectors of deadly diseases and can navigate their chemical environment using chemosensory receptors expressed in their olfactory appendages. Understanding how chemosensory receptors are spatially organized in the peripheral olfactory appendages can offer insights into how odor is encoded in the mosquito olfactory system and inform new ways to combat the spread of mosquito-borne diseases. The emergence of third-generation hybridization chain reaction RNA whole-mount fluorescence in situ hybridization (HCR RNA WM-FISH) allows for spatial mapping and simultaneous expression profiling of multiple chemosensory genes. Here, we describe a stepwise approach for performing HCR RNA WM-FISH on the Anopheles mosquito antenna and maxillary palp. We investigated the sensitivity of this technique by examining the expression profile of ionotropic olfactory receptors. We asked if the HCR WM-FISH technique described was suitable for multiplexed studies by tethering RNA probes to three spectrally distinct fluorophores. Results provided evidence that HCR RNA WM-FISH is robustly sensitive to simultaneously detect multiple chemosensory genes in the antenna and maxillary palp olfactory appendages. Further investigations attest to the suitability of HCR WM-FISH for co-expression profiling of double and triple RNA targets. This technique, when applied with modifications, could be adaptable to localize genes of interest in the olfactory tissues of other insect species or in other appendages.
Collapse
Affiliation(s)
- Joshua I Raji
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine
| | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine;
| |
Collapse
|
16
|
Sherman S, Arnold-Ammer I, Schneider MW, Kawakami K, Baier H. Retina-derived signals control pace of neurogenesis in visual brain areas but not circuit assembly. Nat Commun 2023; 14:6020. [PMID: 37758715 PMCID: PMC10533834 DOI: 10.1038/s41467-023-40749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
Brain development is orchestrated by both innate and experience-dependent mechanisms, but their relative contributions are difficult to disentangle. Here we asked if and how central visual areas are altered in a vertebrate brain depleted of any and all signals from retinal ganglion cells throughout development. We transcriptionally profiled neurons in pretectum, thalamus and other retinorecipient areas of larval zebrafish and searched for changes in lakritz mutants that lack all retinal connections. Although individual genes are dysregulated, the complete set of 77 neuronal types develops in apparently normal proportions, at normal locations, and along normal differentiation trajectories. Strikingly, the cell-cycle exits of proliferating progenitors in these areas are delayed, and a greater fraction of early postmitotic precursors remain uncommitted or are diverted to a pre-glial fate. Optogenetic stimulation targeting groups of neurons normally involved in processing visual information evokes behaviors indistinguishable from wildtype. In conclusion, we show that signals emitted by retinal axons influence the pace of neurogenesis in visual brain areas, but do not detectably affect the specification or wiring of downstream neurons.
Collapse
Affiliation(s)
- Shachar Sherman
- Max Planck Institute for Biological Intelligence, Department Genes - Circuits - Behavior, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Irene Arnold-Ammer
- Max Planck Institute for Biological Intelligence, Department Genes - Circuits - Behavior, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Martin W Schneider
- Max Planck Institute for Biological Intelligence, Department Genes - Circuits - Behavior, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka, 411-8540, Japan
| | - Herwig Baier
- Max Planck Institute for Biological Intelligence, Department Genes - Circuits - Behavior, Am Klopferspitz 18, 82152, Martinsried, Germany.
| |
Collapse
|
17
|
Schulte SJ, Fornace ME, Hall JK, Pierce NA. HCR spectral imaging: 10-plex, quantitative, high-resolution RNA and protein imaging in highly autofluorescent samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555626. [PMID: 37693627 PMCID: PMC10491186 DOI: 10.1101/2023.08.30.555626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Signal amplification based on the mechanism of hybridization chain reaction (HCR) provides a unified framework for multiplex, quantitative, high-resolution imaging of RNA and protein targets in highly autofluorescent samples. With conventional bandpass imaging, multiplexing is typically limited to four or five targets due to the difficulty in separating signals generated by fluorophores with overlapping spectra. Spectral imaging has offered the conceptual promise of higher levels of multiplexing, but it has been challenging to realize this potential in highly autofluorescent samples including whole-mount vertebrate embryos. Here, we demonstrate robust HCR spectral imaging with linear unmixing, enabling simultaneous imaging of 10 RNA and/or protein targets in whole-mount zebrafish embryos and mouse brain sections. Further, we demonstrate that the amplified and unmixed signal in each of 10 channels is quantitative, enabling accurate and precise relative quantitation of RNA and/or protein targets with subcellular resolution, and RNA absolute quantitation with single-molecule resolution, in the anatomical context of highly autofluorescent samples. SUMMARY Spectral imaging with signal amplification based on the mechanism of hybridization chain reaction enables robust 10-plex, quantitative, high-resolution imaging of RNA and protein targets in whole-mount vertebrate embryos and brain sections.
Collapse
|
18
|
Subramanian A, Kanzaki LF, Schilling TF. Mechanical force regulates Sox9 expression at the developing enthesis. Development 2023; 150:dev201141. [PMID: 37497608 PMCID: PMC10445799 DOI: 10.1242/dev.201141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Entheses transmit force from tendons and ligaments to the skeleton. Regional organization of enthesis extracellular matrix (ECM) generates differences in stiffness required for force transmission. Two key transcription factors co-expressed in entheseal tenocytes, scleraxis (Scx) and Sox9, directly control production of enthesis ECM components. Formation of embryonic craniofacial entheses in zebrafish coincides with onset of jaw movements, possibly in response to the force of muscle contraction. We show dynamic changes in scxa and sox9a mRNA levels in subsets of entheseal tenocytes that correlate with their roles in force transmission. We also show that transcription of a direct target of Scxa, Col1a, in enthesis ECM is regulated by the ratio of scxa to sox9a expression. Eliminating muscle contraction by paralyzing embryos during early stages of musculoskeletal differentiation alters relative levels of scxa and sox9a in entheses, primarily owing to increased sox9a expression. Force-dependent TGF-β (TGFβ) signaling is required to maintain this balance of scxa and sox9a expression. Thus, force from muscle contraction helps establish a balance of transcription factor expression that controls specialized ECM organization at the tendon enthesis and its ability to transmit force.
Collapse
Affiliation(s)
- Arul Subramanian
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Lauren F. Kanzaki
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
19
|
D'Gama PP, Jurisch-Yaksi N. Methods to study motile ciliated cell types in the zebrafish brain. Methods Cell Biol 2023; 176:103-123. [PMID: 37164533 DOI: 10.1016/bs.mcb.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Cilia are well conserved hair-like structures that have diverse sensory and motile functions. In the brain, motile ciliated cells, known as ependymal cells, line the cerebrospinal fluid (CSF) filled ventricles, where their beating contribute to fluid movement. Ependymal cells have gathered increasing interest since they are associated with hydrocephalus, a neurological condition with ventricular enlargement. In this article, we highlight methods to identify and characterize motile ciliated ependymal lineage in the brain of zebrafish using histological staining and transgenic reporter lines.
Collapse
|
20
|
Clark E, Battistara M, Benton MA. A timer gene network is spatially regulated by the terminal system in the Drosophila embryo. eLife 2022; 11:e78902. [PMID: 36524728 PMCID: PMC10065802 DOI: 10.7554/elife.78902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
In insect embryos, anteroposterior patterning is coordinated by the sequential expression of the 'timer' genes caudal, Dichaete, and odd-paired, whose expression dynamics correlate with the mode of segmentation. In Drosophila, the timer genes are expressed broadly across much of the blastoderm, which segments simultaneously, but their expression is delayed in a small 'tail' region, just anterior to the hindgut, which segments during germband extension. Specification of the tail and the hindgut depends on the terminal gap gene tailless, but beyond this the regulation of the timer genes is poorly understood. We used a combination of multiplexed imaging, mutant analysis, and gene network modelling to resolve the regulation of the timer genes, identifying 11 new regulatory interactions and clarifying the mechanism of posterior terminal patterning. We propose that a dynamic Tailless expression gradient modulates the intrinsic dynamics of a timer gene cross-regulatory module, delineating the tail region and delaying its developmental maturation.
Collapse
Affiliation(s)
- Erik Clark
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
| | - Margherita Battistara
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Matthew A Benton
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Developmental Biology Unit, EMBLHeidelbergGermany
| |
Collapse
|
21
|
He P, Lim K, Sun D, Pett JP, Jeng Q, Polanski K, Dong Z, Bolt L, Richardson L, Mamanova L, Dabrowska M, Wilbrey-Clark A, Madissoon E, Tuong ZK, Dann E, Suo C, Goh I, Yoshida M, Nikolić MZ, Janes SM, He X, Barker RA, Teichmann SA, Marioni JC, Meyer KB, Rawlins EL. A human fetal lung cell atlas uncovers proximal-distal gradients of differentiation and key regulators of epithelial fates. Cell 2022; 185:4841-4860.e25. [PMID: 36493756 DOI: 10.1016/j.cell.2022.11.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/11/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022]
Abstract
We present a multiomic cell atlas of human lung development that combines single-cell RNA and ATAC sequencing, high-throughput spatial transcriptomics, and single-cell imaging. Coupling single-cell methods with spatial analysis has allowed a comprehensive cellular survey of the epithelial, mesenchymal, endothelial, and erythrocyte/leukocyte compartments from 5-22 post-conception weeks. We identify previously uncharacterized cell states in all compartments. These include developmental-specific secretory progenitors and a subtype of neuroendocrine cell related to human small cell lung cancer. Our datasets are available through our web interface (https://lungcellatlas.org). To illustrate its general utility, we use our cell atlas to generate predictions about cell-cell signaling and transcription factor hierarchies which we rigorously test using organoid models.
Collapse
Affiliation(s)
- Peng He
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - Kyungtae Lim
- Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | - Dawei Sun
- Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | | | - Quitz Jeng
- Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | | | - Ziqi Dong
- Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | - Liam Bolt
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | - Lira Mamanova
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | | | - Elo Madissoon
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - Zewen Kelvin Tuong
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Emma Dann
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Chenqu Suo
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; Department of Paediatrics, Cambridge University Hospitals, Hills Road, Cambridge CB2 0 QQ, UK
| | - Isaac Goh
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Masahiro Yoshida
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Marko Z Nikolić
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Xiaoling He
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - John C Marioni
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK.
| |
Collapse
|
22
|
Visualization of mRNA Expression in Pseudomonas aeruginosa Aggregates Reveals Spatial Patterns of Fermentative and Denitrifying Metabolism. Appl Environ Microbiol 2022; 88:e0043922. [PMID: 35586988 DOI: 10.1128/aem.00439-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gaining insight into the behavior of bacteria at the single-cell level is important given that heterogeneous microenvironments strongly influence microbial physiology. The hybridization chain reaction (HCR) is a technique that provides in situ molecular signal amplification, enabling simultaneous mapping of multiple target RNAs at small spatial scales. To refine this method for biofilm applications, we designed and validated new probes to visualize the expression of key catabolic genes in Pseudomonas aeruginosa aggregates. In addition to using existing probes for the dissimilatory nitrate reductase (narG), we developed probes for a terminal oxidase (ccoN1), nitrite reductase (nirS), nitrous oxide reductase (nosZ), and acetate kinase (ackA). These probes can be used to determine gene expression levels across heterogeneous populations such as biofilms. Using these probes, we quantified gene expression across oxygen gradients in aggregate populations grown using the agar block biofilm assay (ABBA). We observed distinct patterns of catabolic gene expression, with upregulation occurring in particular ABBA regions both within individual aggregates and over the aggregate population. Aerobic respiration (ccoN1) showed peak expression under oxic conditions, whereas fermentation (ackA) showed peak expression in the anoxic cores of high metabolic activity aggregates near the air-agar interface. Denitrification genes narG, nirS, and nosZ showed peak expression in hypoxic and anoxic regions, although nirS expression remained at peak levels deeper into anoxic environments than other denitrification genes. These results reveal that the microenvironment correlates with catabolic gene expression in aggregates, and they demonstrate the utility of HCR in unveiling cellular activities at the microscale level in heterogeneous populations. IMPORTANCE To understand bacteria in diverse contexts, we must understand the variations in behaviors and metabolisms they express spatiotemporally. Populations of bacteria are known to be heterogeneous, but the ways this variation manifests can be challenging to characterize due to technical limitations. By focusing on energy conservation, we demonstrate that HCR v3.0 can visualize nuances in gene expression, allowing us to understand how metabolism in Pseudomonas aeruginosa biofilms responds to microenvironmental variation at high spatial resolution. We validated probes for four catabolic genes, including a constitutively expressed oxidase, acetate kinase, nitrite reductase, and nitrous oxide reductase. We showed that the genes for different modes of metabolism are expressed in overlapping but distinct subpopulations according to oxygen concentrations in a predictable fashion. The spatial transcriptomic technique described here has the potential to be used to map microbial activities across diverse environments.
Collapse
|
23
|
Zelarayan L, Vendrell V, Domínguez-Frutos E, López-Hernández I, Schimmang-Alonso K, Alonso MT, Alvarez Y, Maier H, Anderson MJ, Lewandoski M, Schimmang T. Inactivation of Fgf3 and Fgf4 within the Fgf3/Fgf4/Fgf15 gene cluster reveals their redundant requirement for mouse inner ear induction and embryonic survival. Dev Dyn 2022; 251:877-884. [PMID: 34719815 PMCID: PMC10506400 DOI: 10.1002/dvdy.435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Fibroblast growth factors (Fgfs) are required for survival and organ formation during embryogenesis. Fgfs often execute their functions redundantly. Previous analysis of Fgf3 mutants revealed effects on inner ear formation and embryonic survival with incomplete penetrance. RESULTS Here, we show that presence of a neomycin resistance gene (neo) replacing the Fgf3 coding region leads to reduced survival during embryogenesis and an increased penetrance of inner ear defects. Fgf3neo/neo mutants showed reduced expression of Fgf4, which is positioned in close proximity to the Fgf3 locus in the mouse genome. Conditional inactivation of Fgf4 during inner ear development on a Fgf3 null background using Fgf3/4 cis mice revealed a redundant requirement between these Fgfs during otic placode induction. In contrast, inactivation of Fgf3 and Fgf4 in the pharyngeal region where both Fgfs are also co-expressed using a Foxg1-Cre driver did not affect development of the pharyngeal arches. However, these mutants showed reduced perinatal survival. CONCLUSIONS These results highlight the importance of Fgf signaling during development. In particular, different members of the Fgf family act redundantly to guarantee inner ear formation and embryonic survival.
Collapse
Affiliation(s)
- Laura Zelarayan
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen (UMG), Goettingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Goettingen, Germany
- Unidad de Excelencia, Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Victor Vendrell
- Unidad de Excelencia, Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Elena Domínguez-Frutos
- Unidad de Excelencia, Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Iris López-Hernández
- Unidad de Excelencia, Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Kiril Schimmang-Alonso
- Unidad de Excelencia, Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - María Teresa Alonso
- Unidad de Excelencia, Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Yolanda Alvarez
- Unidad de Excelencia, Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Hannes Maier
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
| | - Matthew J. Anderson
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Mark Lewandoski
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Thomas Schimmang
- Unidad de Excelencia, Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| |
Collapse
|
24
|
Sanaki-Matsumiya M, Matsuda M, Gritti N, Nakaki F, Sharpe J, Trivedi V, Ebisuya M. Periodic formation of epithelial somites from human pluripotent stem cells. Nat Commun 2022; 13:2325. [PMID: 35484123 PMCID: PMC9050736 DOI: 10.1038/s41467-022-29967-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/11/2022] [Indexed: 12/19/2022] Open
Abstract
During embryonic development, epithelial cell blocks called somites are periodically formed according to the segmentation clock, becoming the foundation for the segmental pattern of the vertebral column. The process of somitogenesis has recently been recapitulated with murine and human pluripotent stem cells. However, an in vitro model for human somitogenesis coupled with the segmentation clock and epithelialization is still missing. Here, we report the generation of human somitoids, organoids that periodically form pairs of epithelial somite-like structures. Somitoids display clear oscillations of the segmentation clock that coincide with the segmentation of the presomitic mesoderm. The resulting somites show anterior-posterior and apical-basal polarities. Matrigel is essential for epithelialization but dispensable for the differentiation into somite cells. The size of somites is rather constant, irrespective of the initial cell number. The amount of WNT signaling instructs the proportion of mesodermal lineages in somitoids. Somitoids provide a novel platform to study human somitogenesis. Somitogenesis has been well characterized in model organisms, resulting in detailed description of the somite segmentation clock. Here they generate somitogenic organoids from human pluripotent stem cells that recapitulate somitogenesis, periodic segmentation, and proper polarity.
Collapse
Affiliation(s)
| | - Mitsuhiro Matsuda
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain
| | - Nicola Gritti
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain
| | - Fumio Nakaki
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain
| | - James Sharpe
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain
| | - Vikas Trivedi
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain.,EMBL Heidelberg, Developmental Biology Unit, Heidelberg, Germany
| | - Miki Ebisuya
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain.
| |
Collapse
|
25
|
Dempsey WP, Du Z, Nadtochiy A, Smith CD, Czajkowski K, Andreev A, Robson DN, Li JM, Applebaum S, Truong TV, Kesselman C, Fraser SE, Arnold DB. Regional synapse gain and loss accompany memory formation in larval zebrafish. Proc Natl Acad Sci U S A 2022; 119:e2107661119. [PMID: 35031564 PMCID: PMC8784156 DOI: 10.1073/pnas.2107661119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 12/03/2021] [Indexed: 11/18/2022] Open
Abstract
Defining the structural and functional changes in the nervous system underlying learning and memory represents a major challenge for modern neuroscience. Although changes in neuronal activity following memory formation have been studied [B. F. Grewe et al., Nature 543, 670-675 (2017); M. T. Rogan, U. V. Stäubli, J. E. LeDoux, Nature 390, 604-607 (1997)], the underlying structural changes at the synapse level remain poorly understood. Here, we capture synaptic changes in the midlarval zebrafish brain that occur during associative memory formation by imaging excitatory synapses labeled with recombinant probes using selective plane illumination microscopy. Imaging the same subjects before and after classical conditioning at single-synapse resolution provides an unbiased mapping of synaptic changes accompanying memory formation. In control animals and animals that failed to learn the task, there were no significant changes in the spatial patterns of synapses in the pallium, which contains the equivalent of the mammalian amygdala and is essential for associative learning in teleost fish [M. Portavella, J. P. Vargas, B. Torres, C. Salas, Brain Res. Bull 57, 397-399 (2002)]. In zebrafish that formed memories, we saw a dramatic increase in the number of synapses in the ventrolateral pallium, which contains neurons active during memory formation and retrieval. Concurrently, synapse loss predominated in the dorsomedial pallium. Surprisingly, we did not observe significant changes in the intensity of synaptic labeling, a proxy for synaptic strength, with memory formation in any region of the pallium. Our results suggest that memory formation due to classical conditioning is associated with reciprocal changes in synapse numbers in the pallium.
Collapse
Affiliation(s)
- William P Dempsey
- Department of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089
| | - Zhuowei Du
- Department of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089
| | - Anna Nadtochiy
- Translational Imaging Center, University of Southern California, Los Angeles, CA 90089
| | - Colton D Smith
- Department of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089
| | - Karl Czajkowski
- Information Sciences Institute, University of Southern California, Los Angeles, CA 90292
| | - Andrey Andreev
- Translational Imaging Center, University of Southern California, Los Angeles, CA 90089
| | - Drew N Robson
- Systems Neuroscience & Neuroengineering, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Jennifer M Li
- Systems Neuroscience & Neuroengineering, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Serina Applebaum
- Department of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089
| | - Thai V Truong
- Translational Imaging Center, University of Southern California, Los Angeles, CA 90089
| | - Carl Kesselman
- Information Sciences Institute, University of Southern California, Los Angeles, CA 90292
- Daniel J. Epstein Department of Industrial and Systems Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
| | - Scott E Fraser
- Department of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089
- Translational Imaging Center, University of Southern California, Los Angeles, CA 90089
| | - Don B Arnold
- Department of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089;
| |
Collapse
|
26
|
Lohoff T, Ghazanfar S, Missarova A, Koulena N, Pierson N, Griffiths JA, Bardot ES, Eng CHL, Tyser RCV, Argelaguet R, Guibentif C, Srinivas S, Briscoe J, Simons BD, Hadjantonakis AK, Göttgens B, Reik W, Nichols J, Cai L, Marioni JC. Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis. Nat Biotechnol 2022; 40:74-85. [PMID: 34489600 PMCID: PMC8763645 DOI: 10.1038/s41587-021-01006-2] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Molecular profiling of single cells has advanced our knowledge of the molecular basis of development. However, current approaches mostly rely on dissociating cells from tissues, thereby losing the crucial spatial context of regulatory processes. Here, we apply an image-based single-cell transcriptomics method, sequential fluorescence in situ hybridization (seqFISH), to detect mRNAs for 387 target genes in tissue sections of mouse embryos at the 8-12 somite stage. By integrating spatial context and multiplexed transcriptional measurements with two single-cell transcriptome atlases, we characterize cell types across the embryo and demonstrate that spatially resolved expression of genes not profiled by seqFISH can be imputed. We use this high-resolution spatial map to characterize fundamental steps in the patterning of the midbrain-hindbrain boundary (MHB) and the developing gut tube. We uncover axes of cell differentiation that are not apparent from single-cell RNA-sequencing (scRNA-seq) data, such as early dorsal-ventral separation of esophageal and tracheal progenitor populations in the gut tube. Our method provides an approach for studying cell fate decisions in complex tissues and development.
Collapse
Affiliation(s)
- T Lohoff
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - S Ghazanfar
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - A Missarova
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - N Koulena
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - N Pierson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - J A Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Genomics Plc, Cambridge, UK
| | - E S Bardot
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - C-H L Eng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - R C V Tyser
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - R Argelaguet
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - C Guibentif
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - S Srinivas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - J Briscoe
- The Francis Crick Institute, London, UK
| | - B D Simons
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- The Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - A-K Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - B Göttgens
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - W Reik
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Epigenetics Programme, Babraham Institute, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
| | - J Nichols
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - L Cai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - J C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
| |
Collapse
|
27
|
Thiel W, Esposito EJ, Findley AP, Blume ZI, Mitchell DM. Modulation of retinoid-X-receptors differentially regulates expression of apolipoprotein genes apoc1 and apoeb by zebrafish microglia. Biol Open 2021; 11:273656. [PMID: 34878094 PMCID: PMC8822359 DOI: 10.1242/bio.058990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022] Open
Abstract
Transcriptome analyses performed in both human and zebrafish indicate strong expression of Apoe and Apoc1 by microglia. Apoe expression by microglia is well appreciated, but Apoc1 expression has not been well-examined. PPAR/RXR and LXR/RXR receptors appear to regulate expression of the apolipoprotein gene cluster in macrophages, but a similar role in microglia in vivo has not been studied. Here, we characterized microglial expression of apoc1 in the zebrafish central nervous system (CNS) in situ and demonstrate that in the CNS, apoc1 expression is unique to microglia. We then examined the effects of PPAR/RXR and LXR/RXR modulation on microglial expression of apoc1 and apoeb during early CNS development using a pharmacological approach. Changes in apoc1 and apoeb transcripts in response to pharmacological modulation were quantified by RT-qPCR in whole heads, and in individual microglia using hybridization chain reaction (HCR) in situ hybridization. We found that expression of apoc1 and apoeb by microglia were differentially regulated by LXR/RXR and PPAR/RXR modulating compounds, respectively, during development. Our results also suggest RXR receptors could be involved in endogenous induction of apoc1 expression by microglia. Collectively, our work supports the use of zebrafish to better understand regulation and function of these apolipoproteins in the CNS. Summary: Here we investigate expression of two apolipoprotein genes by microglia in the zebrafish model during normal development, and in contexts of pharmacological manipulations that target candidate regulatory receptors.
Collapse
Affiliation(s)
- Whitney Thiel
- Biological Sciences, University of Idaho, Moscow, ID 83844, Russia
| | - Emma J Esposito
- Biological Sciences, University of Idaho, Moscow, ID 83844, Russia
| | - Anna P Findley
- Biological Sciences, University of Idaho, Moscow, ID 83844, Russia
| | - Zachary I Blume
- Biological Sciences, University of Idaho, Moscow, ID 83844, Russia
| | - Diana M Mitchell
- Biological Sciences, University of Idaho, Moscow, ID 83844, Russia
| |
Collapse
|
28
|
Schwarzkopf M, Liu MC, Schulte SJ, Ives R, Husain N, Choi HMT, Pierce NA. Hybridization chain reaction enables a unified approach to multiplexed, quantitative, high-resolution immunohistochemistry and in situ hybridization. Development 2021; 148:dev199847. [PMID: 35020875 PMCID: PMC8645210 DOI: 10.1242/dev.199847] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022]
Abstract
RNA in situ hybridization based on the mechanism of the hybridization chain reaction (HCR) enables multiplexed, quantitative, high-resolution RNA imaging in highly autofluorescent samples, including whole-mount vertebrate embryos, thick brain slices and formalin-fixed paraffin-embedded tissue sections. Here, we extend the benefits of one-step, multiplexed, quantitative, isothermal, enzyme-free HCR signal amplification to immunohistochemistry, enabling accurate and precise protein relative quantitation with subcellular resolution in an anatomical context. Moreover, we provide a unified framework for simultaneous quantitative protein and RNA imaging with one-step HCR signal amplification performed for all target proteins and RNAs simultaneously.
Collapse
Affiliation(s)
- Maayan Schwarzkopf
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mike C. Liu
- Molecular Instruments, Los Angeles, CA 90041, USA
| | - Samuel J. Schulte
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rachel Ives
- Molecular Instruments, Los Angeles, CA 90041, USA
| | - Naeem Husain
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Niles A. Pierce
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Division of Engineering & Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
29
|
Mayeur H, Lanoizelet M, Quillien A, Menuet A, Michel L, Martin KJ, Dejean S, Blader P, Mazan S, Lagadec R. When Bigger Is Better: 3D RNA Profiling of the Developing Head in the Catshark Scyliorhinus canicula. Front Cell Dev Biol 2021; 9:744982. [PMID: 34746140 PMCID: PMC8569936 DOI: 10.3389/fcell.2021.744982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
We report the adaptation of RNA tomography, a technique allowing spatially resolved, genome-wide expression profiling, to a species occupying a key phylogenetic position in gnathostomes, the catshark Scyliorhinus canicula. We focused analysis on head explants at an embryonic stage, shortly following neural tube closure and of interest for a number of developmental processes, including early brain patterning, placode specification or the establishment of epithalamic asymmetry. As described in the zebrafish, we have sequenced RNAs extracted from serial sections along transverse, horizontal and sagittal planes, mapped the data onto a gene reference taking advantage of the high continuity genome recently released in the catshark, and projected read counts onto a digital model of the head obtained by confocal microscopy. This results in the generation of a genome-wide 3D atlas, containing expression data for most protein-coding genes in a digital model of the embryonic head. The digital profiles obtained for candidate forebrain regional markers along antero-posterior, dorso-ventral and left-right axes reproduce those obtained by in situ hybridization (ISH), with expected relative organizations. We also use spatial autocorrelation and correlation as measures to analyze these data and show that they provide adequate statistical tools to extract novel expression information from the model. These data and tools allow exhaustive searches of genes exhibiting any predefined expression characteristic, such a restriction to a territory of interest, thus providing a reference for comparative analyses across gnathostomes. This methodology appears best suited to species endowed with large embryo or organ sizes and opens novel perspectives to a wide range of evo-devo model organisms, traditionally counter-selected on size criterion.
Collapse
Affiliation(s)
- Hélène Mayeur
- CNRS, Sorbonne Université, UMR 7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls sur Mer, France
| | - Maxence Lanoizelet
- CNRS, Sorbonne Université, UMR 7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls sur Mer, France
| | - Aurélie Quillien
- Molecular, Cellular and Developmental Biology (MCD UMR 5077), Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Arnaud Menuet
- UMR 7355, Experimental and Molecular Immunology and Neurogenetics, CNRS and University of Orléans, Orléans, France
| | - Léo Michel
- CNRS, Sorbonne Université, UMR 7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls sur Mer, France
| | - Kyle John Martin
- United Kingdom Research and Innovation, Biotechnology and Biological Sciences Research Council, Swindon, United Kingdom
| | - Sébastien Dejean
- Institut de Mathématiques de Toulouse, Université de Toulouse, CNRS, UPS, UMR 5219, Toulouse, France
| | - Patrick Blader
- Molecular, Cellular and Developmental Biology (MCD UMR 5077), Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sylvie Mazan
- CNRS, Sorbonne Université, UMR 7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls sur Mer, France
| | - Ronan Lagadec
- CNRS, Sorbonne Université, UMR 7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls sur Mer, France
| |
Collapse
|
30
|
The habenula clock influences response to a stressor. Neurobiol Stress 2021; 15:100403. [PMID: 34632007 PMCID: PMC8488752 DOI: 10.1016/j.ynstr.2021.100403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022] Open
Abstract
The response of an animal to a sensory stimulus depends on the nature of the stimulus and on expectations, which are mediated by spontaneous activity. Here, we ask how circadian variation in the expectation of danger, and thus the response to a potential threat, is controlled. We focus on the habenula, a mediator of threat response that functions by regulating neuromodulator release, and use zebrafish as the experimental system. Single cell transcriptomics indicates that multiple clock genes are expressed throughout the habenula, while quantitative in situ hybridization confirms that the clock oscillates. Two-photon calcium imaging indicates a circadian change in spontaneous activity of habenula neurons. To assess the role of this clock, a truncated clocka gene was specifically expressed in the habenula. This partially inhibited the clock, as shown by changes in per3 expression as well as altered day-night variation in dopamine, serotonin and acetylcholine levels. Behaviourally, anxiety-like responses evoked by an alarm pheromone were reduced. Circadian effects of the pheromone were disrupted, such that responses in the day resembled those at night. Behaviours that are regulated by the pineal clock and not triggered by stressors were unaffected. We suggest that the habenula clock regulates the expectation of danger, thus providing one mechanism for circadian change in the response to a stressor.
Collapse
|
31
|
Moreno-Velásquez SD, Pérez JC. Imaging and Quantification of mRNA Molecules at Single-Cell Resolution in the Human Fungal Pathogen Candida albicans. mSphere 2021; 6:e0041121. [PMID: 34232078 PMCID: PMC8386430 DOI: 10.1128/msphere.00411-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/24/2021] [Indexed: 11/20/2022] Open
Abstract
The study of gene expression in fungi has typically relied on measuring transcripts in populations of cells. A major disadvantage of this approach is that the transcripts' spatial distribution and stochastic variation among individual cells within a clonal population is lost. Traditional fluorescence in situ hybridization techniques have been of limited use in fungi due to poor specificity and high background signal. Here, we report that in situ hybridization chain reaction (HCR), a method that employs split-initiator probes to trigger signal amplification upon mRNA-probe hybridization, is ideally suited for the imaging and quantification of low-abundance transcripts at single-cell resolution in the fungus Candida albicans. We show that HCR allows the absolute quantification of transcripts within a cell by microscopy as well as their relative quantification by flow cytometry. mRNA imaging also revealed the subcellular localization of specific transcripts. Furthermore, we establish that HCR is amenable to multiplexing by visualizing different transcripts in the same cell. Finally, we combine HCR with immunostaining to image specific mRNAs and proteins simultaneously within a single C. albicans cell. The fungus is a major pathogen in humans where it can colonize and invade mucosal surfaces and most internal organs. The technical development that we introduce, therefore, paves the way to study the patterns of expression of pathogenesis-associated C. albicans genes in infected organs at single-cell resolution. IMPORTANCE Tools to visualize and quantify transcripts at single-cell resolution have enabled the dissection of spatiotemporal patterns of gene expression in animal cells and tissues. Yet the accurate quantification of transcripts at single-cell resolution remains challenging for the much smaller microbial cells. Widespread phenomena such as stochastic variation in transcript levels among cells-even within a clonal population-seem to play important roles in the biology of many microorganisms. Investigating this process requires microbial cell-optimized procedures to image and measure mRNAs at single-molecule resolution. In this report, we adapt and expand in situ hybridization chain reaction (HCR) combined with split-initiator probes to visualize transcripts in the human-pathogenic fungus Candida albicans at high resolution.
Collapse
Affiliation(s)
- Sergio D. Moreno-Velásquez
- Interdisciplinary Center for Clinical Research, University Hospital Würzburg, Würzburg, Germany
- Institute for Molecular Infection Biology, University Würzburg, Würzburg, Germany
| | - J. Christian Pérez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
32
|
Enhanced Ca 2+ signaling, mild primary aldosteronism, and hypertension in a familial hyperaldosteronism mouse model ( Cacna1h M1560V/+ ). Proc Natl Acad Sci U S A 2021; 118:2014876118. [PMID: 33879608 PMCID: PMC8092574 DOI: 10.1073/pnas.2014876118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Primary aldosteronism (increased production of the adrenal steroid hormone aldosterone) is the most common cause of secondary hypertension. We here generated a mouse model of familial hyperaldosteronism type IV with a heterozygous gain-of-function mutation in a calcium channel gene (Cacna1hM1560V/+). Cacna1hM1560V/+ mice have about twofold elevated aldosterone:renin ratios (a screening parameter for primary aldosteronism) and elevated blood pressure, with an overall mild phenotype. Elevated adrenal aldosterone synthase expression in Cacna1hM1560V/+ mice is associated with increased intracellular calcium concentrations in glomerulosa cells. This model allows for the ex vivo analysis of calcium signaling in aldosterone-producing glomerulosa cells of the adrenal gland. Cacna1h−/− mice have normal aldosterone synthase expression, with implications for the evaluation of CACNA1H as a therapeutic target. Gain-of-function mutations in the CACNA1H gene (encoding the T-type calcium channel CaV3.2) cause autosomal-dominant familial hyperaldosteronism type IV (FH-IV) and early-onset hypertension in humans. We used CRISPR/Cas9 to generate Cacna1hM1560V/+ knockin mice as a model of the most common FH-IV mutation, along with corresponding knockout mice (Cacna1h−/−). Adrenal morphology of both Cacna1hM1560V/+ and Cacna1h−/− mice was normal. Cacna1hM1560V/+ mice had elevated aldosterone:renin ratios (a screening parameter for primary aldosteronism). Their adrenal Cyp11b2 (aldosterone synthase) expression was increased and remained elevated on a high-salt diet (relative autonomy, characteristic of primary aldosteronism), but plasma aldosterone was only elevated in male animals. The systolic blood pressure of Cacna1hM1560V/+ mice was 8 mmHg higher than in wild-type littermates and remained elevated on a high-salt diet. Cacna1h−/− mice had elevated renal Ren1 (renin-1) expression but normal adrenal Cyp11b2 levels, suggesting that in the absence of CaV3.2, stimulation of the renin-angiotensin system activates alternative calcium entry pathways to maintain normal aldosterone production. On a cellular level, Cacna1hM1560V/+ adrenal slices showed increased baseline and peak intracellular calcium concentrations in the zona glomerulosa compared to controls, but the frequency of calcium spikes did not rise. We conclude that FH-IV, on a molecular level, is caused by elevated intracellular Ca2+ concentrations as a signal for aldosterone production in adrenal glomerulosa cells. We demonstrate that a germline Cacna1h gain-of-function mutation is sufficient to cause mild primary aldosteronism, whereas loss of CaV3.2 channel function can be compensated for in a chronic setting.
Collapse
|
33
|
Wu H, Zhou WJ, Liu L, Fan Z, Tang H, Yu RQ, Jiang JH. In vivo mRNA imaging based on tripartite DNA probe mediated catalyzed hairpin assembly. Chem Commun (Camb) 2021; 56:8782-8785. [PMID: 32618290 DOI: 10.1039/d0cc03596c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herein, we develop a novel tripartite DNA probe to transport phosphorothioated substrate hairpins and an aptamer for the intramolecular CHA circuit, which achieves detection of a low amount of specific mRNA in living cells and mice. Our study provides an improved strategy to promote in vivo fluorescence imaging applications in early-stage clinical diagnosis.
Collapse
Affiliation(s)
- Han Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Wen-Jing Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Lan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Ze Fan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Hao Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| |
Collapse
|
34
|
Pond AJR, Hwang S, Verd B, Steventon B. A deep learning approach for staging embryonic tissue isolates with small data. PLoS One 2021; 16:e0244151. [PMID: 33417603 PMCID: PMC7793293 DOI: 10.1371/journal.pone.0244151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Machine learning approaches are becoming increasingly widespread and are now present in most areas of research. Their recent surge can be explained in part due to our ability to generate and store enormous amounts of data with which to train these models. The requirement for large training sets is also responsible for limiting further potential applications of machine learning, particularly in fields where data tend to be scarce such as developmental biology. However, recent research seems to indicate that machine learning and Big Data can sometimes be decoupled to train models with modest amounts of data. In this work we set out to train a CNN-based classifier to stage zebrafish tail buds at four different stages of development using small information-rich data sets. Our results show that two and three dimensional convolutional neural networks can be trained to stage developing zebrafish tail buds based on both morphological and gene expression confocal microscopy images, achieving in each case up to 100% test accuracy scores. Importantly, we show that high accuracy can be achieved with data set sizes of under 100 images, much smaller than the typical training set size for a convolutional neural net. Furthermore, our classifier shows that it is possible to stage isolated embryonic structures without the need to refer to classic developmental landmarks in the whole embryo, which will be particularly useful to stage 3D culture in vitro systems such as organoids. We hope that this work will provide a proof of principle that will help dispel the myth that large data set sizes are always required to train CNNs, and encourage researchers in fields where data are scarce to also apply ML approaches.
Collapse
Affiliation(s)
| | - Seongwon Hwang
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Berta Verd
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Benjamin Steventon
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
35
|
Anderson MJ, Magidson V, Kageyama R, Lewandoski M. Fgf4 maintains Hes7 levels critical for normal somite segmentation clock function. eLife 2020; 9:55608. [PMID: 33210601 PMCID: PMC7717904 DOI: 10.7554/elife.55608] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
During vertebrate development, the presomitic mesoderm (PSM) periodically segments into somites, which will form the segmented vertebral column and associated muscle, connective tissue, and dermis. The periodicity of somitogenesis is regulated by a segmentation clock of oscillating Notch activity. Here, we examined mouse mutants lacking only Fgf4 or Fgf8, which we previously demonstrated act redundantly to prevent PSM differentiation. Fgf8 is not required for somitogenesis, but Fgf4 mutants display a range of vertebral defects. We analyzed Fgf4 mutants by quantifying mRNAs fluorescently labeled by hybridization chain reaction within Imaris-based volumetric tissue subsets. These data indicate that FGF4 maintains Hes7 levels and normal oscillatory patterns. To support our hypothesis that FGF4 regulates somitogenesis through Hes7, we demonstrate genetic synergy between Hes7 and Fgf4, but not with Fgf8. Our data indicate that Fgf4 is potentially important in a spectrum of human Segmentation Defects of the Vertebrae caused by defective Notch oscillations.
Collapse
Affiliation(s)
- Matthew J Anderson
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, United States
| | - Valentin Magidson
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mark Lewandoski
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, United States
| |
Collapse
|
36
|
Tu R, Duan B, Song X, Xie T. Dlp-mediated Hh and Wnt signaling interdependence is critical in the niche for germline stem cell progeny differentiation. SCIENCE ADVANCES 2020; 6:eaaz0480. [PMID: 32426496 PMCID: PMC7220319 DOI: 10.1126/sciadv.aaz0480] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/28/2020] [Indexed: 05/04/2023]
Abstract
Although multiple signaling pathways work synergistically in various niches to control stem cell self-renewal and differentiation, it remains poorly understood how they cooperate with one another molecularly. In the Drosophila ovary, Hh and Wnt pathways function in the niche to promote germline stem cell (GSC) progeny differentiation. Here, we show that glypican Dlp-mediated Hh and Wnt signaling interdependence operates in the niche to promote GSC progeny differentiation by preventing BMP signaling. Hh/Wnt-mediated dlp repression is essential for their signaling interdependence in niche cells and for GSC progeny differentiation by preventing BMP signaling. Mechanistically, Hh and Wnt downstream transcription factors directly bind to the same dlp regulatory region and recruit corepressors composed of transcription factor Croc and Egg/H3K9 trimethylase to repress Dlp expression. Therefore, our study reveals a novel mechanism for Hh/Wnt signaling-mediated direct dlp repression and a novel regulatory mechanism for Dlp-mediated Hh/Wnt signaling interdependence in the GSC differentiation niche.
Collapse
Affiliation(s)
- Renjun Tu
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Bo Duan
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Xiaoqing Song
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Ting Xie
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Corresponding author.
| |
Collapse
|
37
|
Choi HMT, Schwarzkopf M, Pierce NA. Multiplexed Quantitative In Situ Hybridization with Subcellular or Single-Molecule Resolution Within Whole-Mount Vertebrate Embryos: qHCR and dHCR Imaging (v3.0). Methods Mol Biol 2020; 2148:159-178. [PMID: 32394381 DOI: 10.1007/978-1-0716-0623-0_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In situ hybridization based on the mechanism of hybridization chain reaction (HCR) enables multiplexed quantitative mRNA imaging in the anatomical context of whole-mount vertebrate embryos. Third-generation in situ HCR (v3.0) provides automatic background suppression throughout the protocol, dramatically enhancing performance and ease of use. In situ HCR v3.0 supports two quantitative imaging modes: (1) qHCR imaging for analog mRNA relative quantitation with subcellular resolution in an anatomical context and (2) dHCR imaging for digital mRNA absolute quantitation with single-molecule resolution in an anatomical context. Here, we provide protocols for qHCR and dHCR imaging in whole-mount zebrafish, chicken, and mouse embryos.
Collapse
Affiliation(s)
- Harry M T Choi
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Maayan Schwarzkopf
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Niles A Pierce
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Division of Engineering & Applied Science, California Institute of Technology, Pasadena, CA, USA.
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
38
|
Schwarzkopf M, Choi HMT, Pierce NA. Multiplexed Quantitative In Situ Hybridization for Mammalian or Bacterial Cells in Suspension: qHCR Flow Cytometry (v3.0). Methods Mol Biol 2020; 2148:127-141. [PMID: 32394379 DOI: 10.1007/978-1-0716-0623-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
In situ hybridization based on the mechanism of hybridization chain reaction (HCR) enables high-throughput expression profiling of mammalian or bacterial cells via flow cytometry. Third-generation in situ HCR (v3.0) provides automatic background suppression throughout the protocol, dramatically enhancing performance and ease of use. In situ HCR v3.0 supports analog mRNA relative quantitation via qHCR flow cytometry. Here, we provide protocols for multiplexed qHCR flow cytometry for mammalian or bacterial cells in suspension.
Collapse
Affiliation(s)
- Maayan Schwarzkopf
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Harry M T Choi
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Niles A Pierce
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Division of Engineering & Applied Science, California Institute of Technology, Pasadena, CA, USA.
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
39
|
Schwarzkopf M, Choi HMT, Pierce NA. Multiplexed Quantitative In Situ Hybridization for Mammalian Cells on a Slide: qHCR and dHCR Imaging (v3.0). Methods Mol Biol 2020; 2148:143-156. [PMID: 32394380 DOI: 10.1007/978-1-0716-0623-0_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In situ hybridization based on the mechanism of hybridization chain reaction (HCR) enables multiplexed quantitative mRNA imaging in diverse sample types. Third-generation in situ HCR (v3.0) provides automatic background suppression throughout the protocol, dramatically enhancing performance and ease of use. In situ HCR v3.0 supports two quantitative imaging modes: (1) qHCR imaging for analog mRNA relative quantitation with subcellular resolution and (2) dHCR imaging for digital mRNA absolute quantitation with single-molecule resolution. Here, we provide protocols for qHCR and dHCR imaging in mammalian cells on a slide.
Collapse
Affiliation(s)
- Maayan Schwarzkopf
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Harry M T Choi
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Niles A Pierce
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Division of Engineering & Applied Science, California Institute of Technology, Pasadena, CA, USA.
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
40
|
Quantitative Visualization of Gene Expression in Mucoid and Nonmucoid Pseudomonas aeruginosa Aggregates Reveals Localized Peak Expression of Alginate in the Hypoxic Zone. mBio 2019; 10:mBio.02622-19. [PMID: 31848278 PMCID: PMC6918079 DOI: 10.1128/mbio.02622-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It is well appreciated that oxygen- and other nutrient-limiting gradients characterize microenvironments within chronic infections that foster bacterial tolerance to treatment and the immune response. However, determining how bacteria respond to these microenvironments has been limited by a lack of tools to study bacterial functions at the relevant spatial scales in situ Here, we report the application of the hybridization chain reaction (HCR) v3.0 to provide analog mRNA relative quantitation of Pseudomonas aeruginosa single cells as a step toward this end. To assess the potential for this method to be applied to bacterial populations, we visualized the expression of genes needed for the production of alginate (algD) and the dissimilatory nitrate reductase (narG) at single-cell resolution within laboratory-grown aggregates. After validating new HCR probes, we quantified algD and narG expression across microenvironmental gradients within both single aggregates and aggregate populations using the agar block biofilm assay (ABBA). For mucoid and nonmucoid ABBA populations, narG was expressed in hypoxic and anoxic regions, while alginate expression was restricted to the hypoxic zone (∼40 to 200 μM O2). Within individual aggregates, surface-adjacent cells expressed alginate genes at higher levels than interior cells, revealing that alginate expression is not constitutive in mucoid P. aeruginosa but instead varies with oxygen availability. These results establish HCR v3.0 as a versatile and robust tool to resolve subtle differences in gene expression at spatial scales relevant to microbial assemblages. This advance has the potential to enable quantitative studies of microbial gene expression in diverse contexts, including pathogen activities during infections.IMPORTANCE A goal for microbial ecophysiological research is to reveal microbial activities in natural environments, including sediments, soils, or infected human tissues. Here, we report the application of the hybridization chain reaction (HCR) v3.0 to quantitatively measure microbial gene expression in situ at single-cell resolution in bacterial aggregates. Using quantitative image analysis of thousands of Pseudomonas aeruginosa cells, we validated new P. aeruginosa HCR probes. Within in vitro P. aeruginosa aggregates, we found that bacteria just below the aggregate surface are the primary cells expressing genes that protect the population against antibiotics and the immune system. This observation suggests that therapies targeting bacteria growing with small amounts of oxygen may be most effective against these hard-to-treat infections. More generally, this proof-of-concept study demonstrates that HCR v3.0 has the potential to identify microbial activities in situ at small spatial scales in diverse contexts.
Collapse
|
41
|
Kim HS, Neugebauer J, McKnite A, Tilak A, Christian JL. BMP7 functions predominantly as a heterodimer with BMP2 or BMP4 during mammalian embryogenesis. eLife 2019; 8:48872. [PMID: 31566563 PMCID: PMC6785266 DOI: 10.7554/elife.48872] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/28/2019] [Indexed: 12/15/2022] Open
Abstract
BMP7/BMP2 or BMP7/BMP4 heterodimers are more active than homodimers in vitro, but it is not known whether these heterodimers signal in vivo. To test this, we generated knock in mice carrying a mutation (Bmp7R-GFlag) that prevents proteolytic activation of the dimerized BMP7 precursor protein. This mutation eliminates the function of BMP7 homodimers and all other BMPs that normally heterodimerize with BMP7. While Bmp7 null homozygotes are live born, Bmp7R-GFlag homozygotes are embryonic lethal and have broadly reduced BMP activity. Furthermore, compound heterozygotes carrying the Bmp7R-G allele together with a null allele of Bmp2 or Bmp4 die during embryogenesis with defects in ventral body wall closure and/or the heart. Co-immunoprecipitation assays confirm that endogenous BMP4/7 heterodimers exist. Thus, BMP7 functions predominantly as a heterodimer with BMP2 or BMP4 during mammalian development, which may explain why mutations in either Bmp4 or Bmp7 lead to a similar spectrum of congenital defects in humans.
Collapse
Affiliation(s)
- Hyung-Seok Kim
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, School of Medicine, University of Utah, Salt Lake City, United States
| | - Judith Neugebauer
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, School of Medicine, University of Utah, Salt Lake City, United States
| | - Autumn McKnite
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, School of Medicine, University of Utah, Salt Lake City, United States
| | - Anup Tilak
- Department of Cell and Developmental Biology, School of Medicine, Oregon Health and Sciences University, Portland, United States
| | - Jan L Christian
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, School of Medicine, University of Utah, Salt Lake City, United States
| |
Collapse
|
42
|
Zheng X, Wang Y, Bu S, Chen Z, Wan J. Point-of-care detection of 16S rRNA of Staphylococcus aureus based on multiple biotin-labeled DNA probes. Mol Cell Probes 2019; 47:101427. [PMID: 31369831 DOI: 10.1016/j.mcp.2019.101427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/10/2019] [Accepted: 07/25/2019] [Indexed: 01/09/2023]
Abstract
A visual method that combines multiple biotin-labeled DNA probes and lateral-flow nucleic acid biosensor was developed to detect Staphylococcus aureus. The 16S rRNA from Staphyloccocus aureus (S. aureus), coupled with multiple biotin-labeled DNA probes, was functionalized in a signal structure for lateral-flow point-of-care detection. The secondary structure of the 16S rRNA was unwound by two specific capture probes modified by Fam and multiple bridge probes, which extended additional sequences for use as initiators. By utilizing the initiators, each target 16S rRNA with multiple DNA probes could tether a number of biotin molecules, so that a large number of streptavidin-labeled gold nanoparticles could be introduced in the lateral flow assay. The images of the lateral flow detection results obtained using a smartphone were transmitted to a computer via Wi-Fi or Bluetooth connection for quantitative processing by ImageJ. The limit of detection was 103 cfu/mL without sample enrichment, and decreased to 0.12 cfu/mL following a 3-h enrichment of samples in growth medium. Notably, this method presented high specificity and applicability for the detection of S. aureus in food samples. In short, the developed visual non-specific operation method is very suitable for point-of-care diagnosis of pathogens in resource-limited countries.
Collapse
Affiliation(s)
- Xiaoliang Zheng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yue Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Shengjun Bu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Zhibao Chen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Jiayu Wan
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.
| |
Collapse
|
43
|
Ranzoni AM, Strzelecka PM, Cvejic A. Application of single-cell RNA sequencing methodologies in understanding haematopoiesis and immunology. Essays Biochem 2019; 63:217-225. [PMID: 31186287 PMCID: PMC6610449 DOI: 10.1042/ebc20180072] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/31/2022]
Abstract
The blood and immune system are characterised by utmost diversity in its cellular components. This heterogeneity can solely be resolved with the application of single-cell technologies that enable precise examination of cell-to-cell variation. Single-cell transcriptomics is continuously pushing forward our understanding of processes driving haematopoiesis and immune responses in physiological settings as well as in disease. Remarkably, in the last five years, a number of studies involving single-cell RNA sequencing (scRNA-seq) allowed the discovery of new immune cell types and revealed that haematopoiesis is a continuous rather than a stepwise process, thus challenging the classical haematopoietic lineage tree model. This review summarises the most recent studies which applied scRNA-seq to answer outstanding questions in the fields of haematology and immunology and discusses the present challenges and future directions.
Collapse
Affiliation(s)
- Anna M Ranzoni
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, U.K
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, U.K
- Wellcome Trust - Medical Research Council Stem Cell Institute, Cambridge CB2 1QR, U.K
| | - Paulina M Strzelecka
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, U.K
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, U.K
- Wellcome Trust - Medical Research Council Stem Cell Institute, Cambridge CB2 1QR, U.K
| | - Ana Cvejic
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, U.K.
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, U.K
- Wellcome Trust - Medical Research Council Stem Cell Institute, Cambridge CB2 1QR, U.K
| |
Collapse
|
44
|
Narayanan R, Oates AC. Detection of mRNA by Whole Mount in situ Hybridization and DNA Extraction for Genotyping of Zebrafish Embryos. Bio Protoc 2019; 9:e3193. [PMID: 33654992 PMCID: PMC7854236 DOI: 10.21769/bioprotoc.3193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/28/2019] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
In situ hybridization is used to visualize the spatial distribution of gene transcripts in tissues and in embryos, providing important information about disease and development. Current methods involve the use of complementary riboprobes incorporating non-radioactive labels that can be detected by immunohistochemistry and coupled to chromogenic or fluorescent visualization. Although recent fluorescent methods have allowed new capabilities such as single-molecule counting, qualitative chromogenic detection remains important for many applications because of its relative simplicity, low cost and high throughput, and ease of imaging using transmitted light microscopy. A remaining challenge is combining high contrast signals with reliable genotyping after hybridization. Dextran sulfate is commonly added to the hybridization buffer to shorten development times and improve contrast, but this reagent inhibits PCR-based genotyping. This paper describes a modified protocol for in situ hybridization in fixed whole mount zebrafish embryos using digoxigenin (DIG) labeled riboprobes that are detected with alkaline phosphatase conjugated anti-DIG antibodies and nitroblue tetrazolium (NBT)/5-bromo-4-chloro-3-indolyl-phosphate (BCIP) chromogenic substrates. To yield embryos compatible with downstream genotyping after hybridization without sacrificing contrast of the signal, this protocol omits dextran sulfate and utilizes a lower hybridization temperature.
Collapse
Affiliation(s)
- Rachna Narayanan
- Interfaculty Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- The Francis Crick Institute, London, United Kingdom
| | - Andrew C. Oates
- Interfaculty Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- The Francis Crick Institute, London, United Kingdom
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
45
|
Vaz R, Hofmeister W, Lindstrand A. Zebrafish Models of Neurodevelopmental Disorders: Limitations and Benefits of Current Tools and Techniques. Int J Mol Sci 2019; 20:ijms20061296. [PMID: 30875831 PMCID: PMC6471844 DOI: 10.3390/ijms20061296] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
For the past few years there has been an exponential increase in the use of animal models to confirm the pathogenicity of candidate disease-causing genetic variants found in patients. One such animal model is the zebrafish. Despite being a non-mammalian animal, the zebrafish model has proven its potential in recapitulating the phenotypes of many different human genetic disorders. This review will focus on recent advances in the modeling of neurodevelopmental disorders in zebrafish, covering aspects from early brain development to techniques used for modulating gene expression, as well as how to best characterize the resulting phenotypes. We also review other existing models of neurodevelopmental disorders, and the current efforts in developing and testing compounds with potential therapeutic value.
Collapse
Affiliation(s)
- Raquel Vaz
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden.
| | - Wolfgang Hofmeister
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000 Odense, Denmark and the Novo Nordisk Foundation for Stem cell Biology (Danstem), University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine and Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, 171 76 Stockholm, Sweden.
| |
Collapse
|
46
|
Radpour R, Forouharkhou F. Single-cell analysis of tumors: Creating new value for molecular biomarker discovery of cancer stem cells and tumor-infiltrating immune cells. World J Stem Cells 2018; 10:160-171. [PMID: 30631391 PMCID: PMC6325074 DOI: 10.4252/wjsc.v10.i11.160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023] Open
Abstract
Biomarker-driven individualized treatment in oncology has made tremendous progress through technological developments, new therapeutic modalities and a deeper understanding of the molecular biology for tumors, cancer stem cells and tumor-infiltrating immune cells. Recent technical developments have led to the establishment of a variety of cancer-related diagnostic, prognostic and predictive biomarkers. In this regard, different modern OMICs approaches were assessed in order to categorize and classify prognostically different forms of neoplasia. Despite those technical advancements, the extent of molecular heterogeneity at the individual cell level in human tumors remains largely uncharacterized. Each tumor consists of a mixture of heterogeneous cell types. Therefore, it is important to quantify the dynamic cellular variations in order to predict clinical parameters, such as a response to treatment and or potential for disease recurrence. Recently, single-cell based methods have been developed to characterize the heterogeneity in seemingly homogenous cancer cell populations prior to and during treatment. In this review, we highlight the recent advances for single-cell analysis and discuss the challenges and prospects for molecular characterization of cancer cells, cancer stem cells and tumor-infiltrating immune cells.
Collapse
Affiliation(s)
- Ramin Radpour
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Farzad Forouharkhou
- Department for Bioinformatics, Persian Bioinformatics System, Tehran 14166, Iran
| |
Collapse
|
47
|
Strzelecka PM, Ranzoni AM, Cvejic A. Dissecting human disease with single-cell omics: application in model systems and in the clinic. Dis Model Mech 2018; 11:dmm036525. [PMID: 30401698 PMCID: PMC6262815 DOI: 10.1242/dmm.036525] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Probing cellular population diversity at single-cell resolution became possible only in recent years. The popularity of single-cell 'omic' approaches, which allow researchers to dissect sample heterogeneity and cell-to-cell variation, continues to grow. With continuous technological improvements, single-cell omics are becoming increasingly prevalent and contribute to the discovery of new and rare cell types, and to the deciphering of disease pathogenesis and outcome. Animal models of human diseases have significantly facilitated our understanding of the mechanisms driving pathologies and resulted in the development of more efficient therapies. The application of single-cell omics to animal models improves the precision of the obtained insights, and brings single-cell technology closer to the clinical field. This Review focuses on the use of single-cell omics in cellular and animal models of diseases, as well as in samples from human patients. It also highlights the potential of these approaches to further improve the diagnosis and treatment of various pathologies, and includes a discussion of the advantages and remaining challenges in implementing these technologies into clinical practice.
Collapse
Affiliation(s)
- Paulina M Strzelecka
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, Cambridge CB2 1QR, UK
| | - Anna M Ranzoni
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, Cambridge CB2 1QR, UK
| | - Ana Cvejic
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, Cambridge CB2 1QR, UK
| |
Collapse
|
48
|
Meinecke L, Sharma PP, Du H, Zhang L, Nie Q, Schilling TF. Modeling craniofacial development reveals spatiotemporal constraints on robust patterning of the mandibular arch. PLoS Comput Biol 2018; 14:e1006569. [PMID: 30481168 PMCID: PMC6258504 DOI: 10.1371/journal.pcbi.1006569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022] Open
Abstract
How does pattern formation occur accurately when confronted with tissue growth and stochastic fluctuations (noise) in gene expression? Dorso-ventral (D-V) patterning of the mandibular arch specifies upper versus lower jaw skeletal elements through a combination of Bone morphogenetic protein (Bmp), Endothelin-1 (Edn1), and Notch signaling, and this system is highly robust. We combine NanoString experiments of early D-V gene expression with live imaging of arch development in zebrafish to construct a computational model of the D-V mandibular patterning network. The model recapitulates published genetic perturbations in arch development. Patterning is most sensitive to changes in Bmp signaling, and the temporal order of gene expression modulates the response of the patterning network to noise. Thus, our integrated systems biology approach reveals non-intuitive features of the complex signaling system crucial for craniofacial development, including novel insights into roles of gene expression timing and stochasticity in signaling and gene regulation.
Collapse
Affiliation(s)
- Lina Meinecke
- Department of Mathematics, University of California, Irvine, CA, United States of America
- Center for Complex Biological Systems, University of California, Irvine, CA, United States of America
| | - Praveer P. Sharma
- Center for Complex Biological Systems, University of California, Irvine, CA, United States of America
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States of America
| | - Huijing Du
- Department of Mathematics, University of Nebraska, Lincoln, NE, United States of America
| | - Lei Zhang
- Beijing International Center for Mathematical Research, Peking University, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, CA, United States of America
- Center for Complex Biological Systems, University of California, Irvine, CA, United States of America
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States of America
| | - Thomas F. Schilling
- Center for Complex Biological Systems, University of California, Irvine, CA, United States of America
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States of America
| |
Collapse
|
49
|
Ranzoni AM, Cvejic A. Single-cell biology: resolving biological complexity, one cell at a time. Development 2018; 145:dev163972. [PMID: 29986899 DOI: 10.1242/dev.163972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/04/2018] [Indexed: 12/13/2022]
Abstract
In March 2018, over 250 researchers came together at the Wellcome Genome Campus in Hinxton, Cambridge, UK, to present their latest research in the area of single-cell biology. A highly interdisciplinary meeting, the Single Cell Biology conference covered a variety of topics, ranging from cutting-edge technological innovation, developmental biology and stem cell research to evolution and cancer. This meeting report summarises the key findings presented and the major research themes that emerged during the conference.
Collapse
Affiliation(s)
- Anna M Ranzoni
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, Cambridge CB2 1QR, UK
| | - Ana Cvejic
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, Cambridge CB2 1QR, UK
| |
Collapse
|
50
|
Choi HMT, Schwarzkopf M, Fornace ME, Acharya A, Artavanis G, Stegmaier J, Cunha A, Pierce NA. Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. Development 2018; 145:dev165753. [PMID: 29945988 PMCID: PMC6031405 DOI: 10.1242/dev.165753] [Citation(s) in RCA: 802] [Impact Index Per Article: 114.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/02/2018] [Indexed: 12/17/2022]
Abstract
In situ hybridization based on the mechanism of the hybridization chain reaction (HCR) has addressed multi-decade challenges that impeded imaging of mRNA expression in diverse organisms, offering a unique combination of multiplexing, quantitation, sensitivity, resolution and versatility. Here, with third-generation in situ HCR, we augment these capabilities using probes and amplifiers that combine to provide automatic background suppression throughout the protocol, ensuring that reagents will not generate amplified background even if they bind non-specifically within the sample. Automatic background suppression dramatically enhances performance and robustness, combining the benefits of a higher signal-to-background ratio with the convenience of using unoptimized probe sets for new targets and organisms. In situ HCR v3.0 enables three multiplexed quantitative analysis modes: (1) qHCR imaging - analog mRNA relative quantitation with subcellular resolution in the anatomical context of whole-mount vertebrate embryos; (2) qHCR flow cytometry - analog mRNA relative quantitation for high-throughput expression profiling of mammalian and bacterial cells; and (3) dHCR imaging - digital mRNA absolute quantitation via single-molecule imaging in thick autofluorescent samples.
Collapse
Affiliation(s)
- Harry M T Choi
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Maayan Schwarzkopf
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mark E Fornace
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Aneesh Acharya
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Georgios Artavanis
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Johannes Stegmaier
- Center for Advanced Methods in Biological Image Analysis, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
- Institute for Automation & Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe 76344, Germany
- Institute of Imaging & Computer Vision, RWTH Aachen University, Aachen 52074, Germany
| | - Alexandre Cunha
- Center for Advanced Methods in Biological Image Analysis, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
- Center for Data-Driven Discovery, California Institute of Technology, Pasadena, CA 91125, USA
| | - Niles A Pierce
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Division of Engineering & Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|