1
|
Pouncey L, Mok GF. Unravelling early hematoendothelial development through the chick model: Insights and future perspectives. Dev Biol 2025; 523:20-31. [PMID: 40228783 DOI: 10.1016/j.ydbio.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/31/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
The chicken embryo has been an important model in advancing our understanding of early hematoendothelial development, particularly in the formation of hematopoietic stem cells (HSCs) and the endothelial-to-hematopoietic transition (EHT). The accessibility and ease of manipulation of chicken embryos have made them an invaluable tool for researching development of blood and endothelial cells. Early research using this model provided pivotal insights, demonstrating that intra-embryonic regions, such as the dorsal aorta (DA), are primary sources of HSCs, rather than the yolk sac (YS), as previously believed. The identification of intra-aortic hematopoietic clusters (IAHCs) and the process of EHT in the chicken embryo laid the foundation for similar discoveries in other vertebrate species, including mice and zebrafish. Recent advances in genetic tools, such as transgenic chickens expressing fluorescent proteins, have further enhanced the precision of cell lineage tracing and real-time imaging of dynamic cellular processes. This review highlights both historical contributions and contemporary advancements facilitated by the chicken model, underscoring its continued relevance in developmental biology. By examining key findings and methodological innovations, we aim to demonstrate the importance of the chicken embryo as a model system for understanding hematoendothelial development and its potential for informing therapeutic applications in regenerative medicine and blood disorders. Finally, we will underscore potential applications of the chicken model for comparative and omics-level studies in conjunction with other model systems and what future directions lie ahead.
Collapse
Affiliation(s)
- Lydia Pouncey
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, United Kingdom
| | - Gi Fay Mok
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, United Kingdom.
| |
Collapse
|
2
|
Williams RM. Leveraging chicken embryos for studying human enhancers. Dev Biol 2025; 524:123-131. [PMID: 40368318 DOI: 10.1016/j.ydbio.2025.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 04/30/2025] [Accepted: 05/12/2025] [Indexed: 05/16/2025]
Abstract
The dynamic activity of complex gene regulatory networks stands at the core of all cellular functions that define cell identity and behaviour. Gene regulatory networks comprise transcriptional enhancers, acted upon by cell-specific transcription factors to control gene expression in a spatial and temporal specific manner. Enhancers are found in the non-coding genome; pathogenic variants can disrupt enhancer activity and lead to disease. Correlating non-coding variants with aberrant enhancer activity remains a significant challenge. Due to their clinical significance, there is a longstanding interest in understanding enhancer function during early embryogenesis. With the onset of the omics era, it is now feasible to identify putative tissue-specific enhancers from epigenome data. However, such predictions in vivo require validation. The early stages of chick embryogenesis closely parallel those of human, offering an accessible in vivo model in which to assess the activity of putative human enhancer sequences. This review explores the unique advantages and recent advancements in employing chicken embryos to elucidate the activity of human transcriptional enhancers and the potential implications of these findings in human disease.
Collapse
Affiliation(s)
- Ruth M Williams
- University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester, United Kingdom.
| |
Collapse
|
3
|
Prakash A, Weninger J, Singh N, Raman S, Rao M, Kruse K, Ladher RK. Junctional force patterning drives both positional order and planar polarity in the auditory epithelia. Nat Commun 2025; 16:3927. [PMID: 40280944 PMCID: PMC12032022 DOI: 10.1038/s41467-025-58557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
Tissue function depends on the precise organisation of the constituent cells. In the cochlea, the fidelity of hearing depends on mechanosensory hair cells being consistently surrounded by supporting cells. In addition to this positional order, auditory sensitivity depends crucially on planar cell polarity. This is characterised by the alignment of the orientation of eccentrically placed hair bundles on each hair cell. These two levels of order emerge simultaneously despite the cellular fluxes that occur during cochlear development. However, the link between tissue-scale cellular rearrangements and intrinsic cellular mechanisms remains unknown. By combining experimental and theoretical approaches, we find a precise force patterning underpinning positional order and planar cell polarity. This occurs through the modulation of the levels and phospho-type of the regulatory light chain of non-muscle myosin II at specific cell-cell junctions of the auditory epithelium. We propose that the control of junctional mechanics is vital for the organisation of multi-cell-type epithelia.
Collapse
Affiliation(s)
- Anubhav Prakash
- National Centre for Biological Sciences, Tata Institute for Fundamentals Research, GKVK PO, Bangalore, India
| | - Julian Weninger
- Departments of Biochemistry and Theoretical Physics, University of Geneva, Geneva, Switzerland
| | - Nishant Singh
- National Centre for Biological Sciences, Tata Institute for Fundamentals Research, GKVK PO, Bangalore, India
- The University of Trans-Disciplinary Health Sciences and Technology, Yelahanka, Bangalore, India
| | - Sukanya Raman
- National Centre for Biological Sciences, Tata Institute for Fundamentals Research, GKVK PO, Bangalore, India
| | - Madan Rao
- National Centre for Biological Sciences, Tata Institute for Fundamentals Research, GKVK PO, Bangalore, India
| | - Karsten Kruse
- Departments of Biochemistry and Theoretical Physics, University of Geneva, Geneva, Switzerland.
| | - Raj K Ladher
- National Centre for Biological Sciences, Tata Institute for Fundamentals Research, GKVK PO, Bangalore, India.
| |
Collapse
|
4
|
Kim M, Hutchins EJ. CRISPR-Cas13d as a molecular tool to achieve targeted gene expression knockdown in chick embryos. Dev Biol 2025; 519:5-12. [PMID: 39622311 PMCID: PMC11824683 DOI: 10.1016/j.ydbio.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/26/2024] [Accepted: 11/29/2024] [Indexed: 12/11/2024]
Abstract
The chick embryo is a classical model system commonly used in developmental biology due to its amenability to gene perturbation experiments. Pairing this powerful model organism with cutting-edge technology can significantly expand the range of experiments that can be performed. Recently, the CRISPR-Cas13d system has been successfully adapted for use in zebrafish, medaka, killifish, and mouse embryos to achieve targeted gene expression knockdown. Despite its success in other animal models, no prior study has explored the potential of CRISPR-Cas13d in the chick. Here, we present an adaptation of the CRISPR-Cas13d system to achieve targeted gene expression knockdown in the chick embryo. As proof-of-principle, we demonstrate the knockdown of PAX7, an early neural crest marker. Application of this adapted CRISPR-Cas13d technique resulted in effective knockdown of PAX7 expression and function, comparable to knockdown achieved by translation-blocking morpholino. CRISPR-Cas13d complements preexisting knockdown tools such as CRISPR-Cas9 and morpholinos, thereby expanding the experimental potential and versatility of the chick model system.
Collapse
Affiliation(s)
- Minyoung Kim
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA; Oral and Craniofacial Sciences Graduate Program, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Erica J Hutchins
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA; Oral and Craniofacial Sciences Graduate Program, School of Dentistry, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
Rothstein M, Azambuja AP, Kanno TY, Breen C, Simoes-Costa M. TGF-β signaling controls neural crest developmental plasticity via SMAD2/3. Dev Cell 2025:S1534-5807(25)00059-0. [PMID: 39983721 DOI: 10.1016/j.devcel.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2024] [Accepted: 01/28/2025] [Indexed: 02/23/2025]
Abstract
The neural crest is a highly plastic stem cell population that represents an exception to the germ layer theory. Despite being of ectodermal origin, cranial neural crest cells can differentiate into skeletal derivatives typically formed by mesoderm. Here, we report that SMAD2/3-mediated transforming growth factor β (TGF-β) signaling enhances neural crest developmental potential in the chicken embryo. Our results show that TGF-β signaling modulates neural crest axial identity and directly controls the gene circuits that support skeletal differentiation. Cooperation between TGF-β and low levels of WNT signaling in the embryonic head activates cranial-specific cis-regulatory elements. Activation of TGF-β signaling reprogrammed trunk neural crest cells into adopting an anterior identity and led to the development of an improved protocol for the generation of human cranial neural crest cells. Our findings indicate TGF-β signaling is required for the specification of cranial neural crest cells, endowing them with the potential to give rise to the craniofacial skeleton.
Collapse
Affiliation(s)
- Megan Rothstein
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Ana Paula Azambuja
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA; Department of Pathology, Boston Children's Hospital, Boston, MA, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Tatiane Y Kanno
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA; Department of Pathology, Boston Children's Hospital, Boston, MA, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Catriona Breen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Marcos Simoes-Costa
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA; Department of Pathology, Boston Children's Hospital, Boston, MA, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
6
|
Libby ARG, Rito T, Radley A, Briscoe J. An in vivo CRISPR screen in chick embryos reveals a role for MLLT3 in specification of neural cells from the caudal epiblast. Development 2025; 152:DEV204591. [PMID: 39804120 PMCID: PMC11883246 DOI: 10.1242/dev.204591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 02/13/2025]
Abstract
Tissue development relies on the coordinated differentiation of stem cells in dynamically changing environments. The formation of the vertebrate neural tube from stem cells in the caudal lateral epiblast is a well-characterized example. Despite an understanding of the signalling pathways involved, the gene regulatory mechanisms remain poorly defined. To address this, we developed a multiplexed in vivo CRISPR screening approach in chick embryos targeting genes expressed in the caudal epiblast and neural tube. This revealed a role for MLLT3, a component of the super elongation complex, in the specification of neural fate. Perturbation of MLLT3 disrupted neural tube morphology and reduced neural fate acquisition. Mutant forms of retinoic acid receptor A lacking the MLLT3 binding domain similarly reduced neural fate acquisition. Together, these findings validate an in vivo CRISPR screen strategy in chick embryos and identify a previously unreported role for MLLT3 in caudal neural tissue specification.
Collapse
Affiliation(s)
- Ashley R. G Libby
- The Francis Crick Institute, Developmental Dynamics Group, 1 Midland Rd, London, NW1 1AT, UK
| | - Tiago Rito
- The Francis Crick Institute, Developmental Dynamics Group, 1 Midland Rd, London, NW1 1AT, UK
| | - Arthur Radley
- The Francis Crick Institute, Developmental Dynamics Group, 1 Midland Rd, London, NW1 1AT, UK
| | - James Briscoe
- The Francis Crick Institute, Developmental Dynamics Group, 1 Midland Rd, London, NW1 1AT, UK
| |
Collapse
|
7
|
Singh N, Kaushik R, Prakash A, Singh Saini S, Garg S, Adhikary A, Ladher RK. Mosaic Atoh1 deletion in the chick auditory epithelium reveals a homeostatic mechanism to restore hair cell number. Dev Biol 2024; 516:35-46. [PMID: 39074652 DOI: 10.1016/j.ydbio.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
The mechanosensory hair cell of the vertebrate inner ear responds to the mechanical deflections that result from hearing or change in the acceleration due to gravity, to allow us to perceive and interpret sounds, maintain balance and spatial orientation. In mammals, ototoxic compounds, disease, and acoustic trauma can result in damage and extrusion of hair cells, without replacement, resulting in hearing loss. In contrast, non-mammalian vertebrates can regenerate sensory hair cells. Upon damage, hair cells are extruded and an associated cell type, the supporting cell is transformed into a hair cell. The mechanisms that can trigger regeneration are not known. Using mosaic deletion of the hair cell master gene, Atoh1, in the embryonic avian inner ear, we find that despite hair cells depletion at E9, by E12, hair cell number is restored in sensory epithelium. Our study suggests a homeostatic mechanism can restores hair cell number in the basilar papilla, that is activated when juxtracrine signalling is disrupted. Restoration of hair cell numbers during development may mirror regenerative processes, and our work provides insights into the mechanisms that trigger regeneration.
Collapse
Affiliation(s)
- Nishant Singh
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK PO, Bellary Road, Bangalore, 560065, India; The University of Trans-Disciplinary Health Sciences and Technology, Yelahanka, Bangalore, 560064, India
| | - Raman Kaushik
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK PO, Bellary Road, Bangalore, 560065, India
| | - Anubhav Prakash
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK PO, Bellary Road, Bangalore, 560065, India; Ashoka University, Sonipat, Haryana, 131029, India
| | - Surjit Singh Saini
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK PO, Bellary Road, Bangalore, 560065, India
| | - Sonal Garg
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK PO, Bellary Road, Bangalore, 560065, India
| | - Adrija Adhikary
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK PO, Bellary Road, Bangalore, 560065, India
| | - Raj K Ladher
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK PO, Bellary Road, Bangalore, 560065, India.
| |
Collapse
|
8
|
Lau CH, Liang QL, Zhu H. Next-generation CRISPR technology for genome, epigenome and mitochondrial editing. Transgenic Res 2024; 33:323-357. [PMID: 39158822 DOI: 10.1007/s11248-024-00404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
The application of rapidly growing CRISPR toolboxes and methods has great potential to transform biomedical research. Here, we provide a snapshot of up-to-date CRISPR toolboxes, then critically discuss the promises and hurdles associated with CRISPR-based nuclear genome editing, epigenome editing, and mitochondrial editing. The technical challenges and key solutions to realize epigenome editing in vivo, in vivo base editing and prime editing, mitochondrial editing in complex tissues and animals, and CRISPR-associated transposases and integrases in targeted genomic integration of very large DNA payloads are discussed. Lastly, we discuss the latest situation of the CRISPR/Cas9 clinical trials and provide perspectives on CRISPR-based gene therapy. Apart from technical shortcomings, ethical and societal considerations for CRISPR applications in human therapeutics and research are extensively highlighted.
Collapse
Affiliation(s)
- Cia-Hin Lau
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Qing-Le Liang
- Department of Clinical Laboratory Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Haibao Zhu
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China.
| |
Collapse
|
9
|
Ilyas M, Shah Q, Gul A, Ibrahim H, Fatima R, Babar MM, Rajadas J. Advances in CRISPR-Cas systems for epigenetics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:185-209. [PMID: 39266182 DOI: 10.1016/bs.pmbts.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
The CRISPR-Cas9 method has revolutionized the gene editing. Epigenetic changes, including DNA methylation, RNA modification, and changes in histone proteins, have been intensively studied and found to play a key role in the pathogenesis of human diseases. CRISPR-While the utility of DNA and chromatin modifications, known as epigenetics, is well understood, the functional significance of various alterations of RNA nucleotides has recently gained attention. Recent advancements in improving CRISPR-based epigenetic modifications has resulted in the availability of a powerful source that can selectively modify DNA, allowing for the maintenance of epigenetic memory over several cell divisions. Accurate identification of DNA methylation at specific locations is crucial for the prompt detection of cancer and other diseases, as DNA methylation is strongly correlated to the onset as well as the advancement of such conditions. Genetic or epigenetic perturbations can disrupt the regulation of imprinted genes, resulting in the development of diseases. When histone code editors and DNA de-/ methyltransferases are coupled with catalytically inactive Cas9 (dCas9), and CRISPRa and CRISPRi, they demonstrate excellent efficacy in editing the epigenome of eukaryotic cells. Advancing and optimizing the extracellular delivery platform can, hence, further facilitate the manipulation of CRISPR-Cas9 gene editing technique in upcoming clinical studies. The current chapter focuses on how the CRISP/ Cas9 system provides an avenue for the epigenetic modifications and its employability for human benefit.
Collapse
Affiliation(s)
- Mahnoor Ilyas
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan; Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Qasim Shah
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Huzaifa Ibrahim
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Rania Fatima
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Mustafeez Mujtaba Babar
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan; Advanced Drug Delivery and Regenerative Biomaterials Lab, Stanford University School of Medicine, Stanford University, Palo Alto, CA, United States.
| | - Jayakumar Rajadas
- Advanced Drug Delivery and Regenerative Biomaterials Lab, Stanford University School of Medicine, Stanford University, Palo Alto, CA, United States.
| |
Collapse
|
10
|
Kim M, Hutchins EJ. CRISPR-Cas13d as a molecular tool to achieve targeted gene expression knockdown in chick embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.03.606488. [PMID: 39131308 PMCID: PMC11312552 DOI: 10.1101/2024.08.03.606488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The chick embryo is a classical model system commonly used in developmental biology due to its amenability to gene perturbation experiments. Pairing this powerful model organism with cutting-edge technology can significantly expand the range of experiments that can be performed. Recently, the CRISPR-Cas13d system has been successfully adapted for use in zebrafish, medaka, killifish, and mouse embryos to achieve targeted gene expression knockdown. Despite its success in other animal models, no prior study has explored the potential of CRISPR-Cas13d in the chick. Here, we present an adaptation of the CRISPR-Cas13d system to achieve targeted gene expression knockdown in the chick embryo. As proof-of-principle, we demonstrate the knockdown of PAX7, an early neural crest marker. Application of this adapted CRISPR-Cas13d technique resulted in effective knockdown of PAX7 expression and function, comparable to knockdown achieved by translation-blocking morpholino. CRISPR-Cas13d complements preexisting knockdown tools such as CRISPR-Cas9 and morpholinos, thereby expanding the experimental potential and versatility of the chick model system.
Collapse
Affiliation(s)
- Minyoung Kim
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Oral and Craniofacial Sciences Graduate Program, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Erica J. Hutchins
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Oral and Craniofacial Sciences Graduate Program, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
11
|
Goes CP, Botezelli VS, De La Cruz SM, Cruz MC, Azambuja AP, Simoes-Costa M, Yan CYI. ASCL1 promotes Scrt2 expression in the neural tube. Front Cell Dev Biol 2024; 12:1324584. [PMID: 38655067 PMCID: PMC11036302 DOI: 10.3389/fcell.2024.1324584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/05/2024] [Indexed: 04/26/2024] Open
Abstract
ASCL1 is a transcription factor that directs neural progenitors towards lineage differentiation. Although many of the molecular mechanisms underlying its action have been described, several of its targets remain unidentified. We identified in the chick genome a putative enhancer (cE1) upstream of the transcription factor Scratch2 (Scrt2) locus with a predicted heterodimerization motif for ASCL1 and POU3F2. In this study, we investigated the role of ASCL1 and this enhancer in regulating the expression of the Scrt2 in the embryonic spinal cord. We confirmed that cE1 region interacted with the Scrt2 promoter. cE1 was sufficient to mediate ASCL1-driven expression in the neural tube through the heterodimerization sites. Moreover, Scrt2 expression was inhibited when we removed cE1 from the genome. These findings strongly indicate that ASCL1 regulates Scrt2 transcription in the neural tube through cE1.
Collapse
Affiliation(s)
- Carolina Purcell Goes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Vitória Samartin Botezelli
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Shirley Mirna De La Cruz
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Facultad de Ciencias de la Salud, Universidad Científica del Sur, Lima, Peru
| | - Mário Costa Cruz
- Core Research Facilities (CEFAP), Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Ana Paula Azambuja
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
- Department of Systems Biology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Marcos Simoes-Costa
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
- Department of Systems Biology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Chao Yun Irene Yan
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
12
|
Brukman NG, Valansi C, Podbilewicz B. Sperm induction of somatic cell-cell fusion as a novel functional test. eLife 2024; 13:e94228. [PMID: 38265078 PMCID: PMC10883674 DOI: 10.7554/elife.94228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024] Open
Abstract
The fusion of mammalian gametes requires the interaction between IZUMO1 on the sperm and JUNO on the oocyte. We have recently shown that ectopic expression of mouse IZUMO1 induces cell-cell fusion and that sperm can fuse to fibroblasts expressing JUNO. Here, we found that the incubation of mouse sperm with hamster fibroblasts or human epithelial cells in culture induces the fusion between these somatic cells and the formation of syncytia, a pattern previously observed with some animal viruses. This sperm-induced cell-cell fusion requires a species-matching JUNO on both fusing cells, can be blocked by an antibody against IZUMO1, and does not rely on the synthesis of new proteins. The fusion is dependent on the sperm's fusogenic capacity, making this a reliable, fast, and simple method for predicting sperm function during the diagnosis of male infertility.
Collapse
Affiliation(s)
- Nicolas G Brukman
- Department of Biology, Technion-Israel Institute of TechnologyHaifaIsrael
| | - Clari Valansi
- Department of Biology, Technion-Israel Institute of TechnologyHaifaIsrael
| | | |
Collapse
|
13
|
Chong-Morrison V, Mayes S, Simões FC, Senanayake U, Carroll DS, Riley PR, Wilson SW, Sauka-Spengler T. Ac/Ds transposition for CRISPR/dCas9-SID4x epigenome modulation in zebrafish. Biol Open 2023; 12:bio059995. [PMID: 37367831 PMCID: PMC10320716 DOI: 10.1242/bio.059995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Due to its genetic amenability coupled with advances in genome editing, zebrafish is an excellent model to examine the function of (epi)genomic elements. Here, we repurposed the Ac/Ds maize transposition system to efficiently characterise zebrafish cis-regulated elements, also known as enhancers, in F0-microinjected embryos. We further used the system to stably express guide RNAs enabling CRISPR/dCas9-interference (CRISPRi) perturbation of enhancers without disrupting the underlying genetic sequence. In addition, we probed the phenomenon of antisense transcription at two neural crest gene loci. Our study highlights the utility of Ac/Ds transposition as a new tool for transient epigenome modulation in zebrafish.
Collapse
Affiliation(s)
- Vanessa Chong-Morrison
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Sarah Mayes
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Filipa C. Simões
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
- University of Oxford, Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, Oxford OX3 7DQ, UK
| | - Upeka Senanayake
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Dervla S. Carroll
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Paul R. Riley
- University of Oxford, Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, Oxford OX3 7DQ, UK
| | - Stephen W. Wilson
- University College London, Department of Cell & Developmental Biology, London WC1E 6BT, UK
| | - Tatjana Sauka-Spengler
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| |
Collapse
|
14
|
Chapman B, Han JH, Lee HJ, Ruud I, Kim TH. Targeted Modulation of Chicken Genes In Vitro Using CRISPRa and CRISPRi Toolkit. Genes (Basel) 2023; 14:genes14040906. [PMID: 37107664 PMCID: PMC10137795 DOI: 10.3390/genes14040906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Engineering of clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated protein 9 (Cas9) system has enabled versatile applications of CRISPR beyond targeted DNA cleavage. Combination of nuclease-deactivated Cas9 (dCas9) and transcriptional effector domains allows activation (CRISPRa) or repression (CRISPRi) of target loci. To demonstrate the effectiveness of the CRISPR-mediated transcriptional regulation in chickens, three CRISPRa (VP64, VPR, and p300) and three CRISPRi (dCas9, dCas9-KRAB, and dCas9-KRAB-MeCP2) systems were tested in chicken DF-1 cells. By introducing guide RNAs (gRNAs) targeting near the transcription start site (TSS) of each gene in CRISPRa and CRISPRi effector domain-expressing chicken DF-1 cell lines, significant gene upregulation was induced in dCas9-VPR and dCas9-VP64 cells, while significant downregulation was observed with dCas9 and dCas9-KRAB. We further investigated the effect of gRNA positions across TSS and discovered that the location of gRNA is an important factor for targeted gene regulation. RNA sequencing analysis of IRF7 CRISPRa and CRISPRi- DF-1 cells revealed the specificity of CRISPRa and CRISPRi-based targeted transcriptional regulation with minimal off-target effects. These findings suggest that the CRISPRa and CRISPRi toolkits are an effective and adaptable platform for studying the chicken genome by targeted transcriptional modulation.
Collapse
Affiliation(s)
- Brittany Chapman
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jeong Hoon Han
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hong Jo Lee
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Isabella Ruud
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tae Hyun Kim
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
15
|
Fontana L, Alahouzou Z, Miccio A, Antoniou P. Epigenetic Regulation of β-Globin Genes and the Potential to Treat Hemoglobinopathies through Epigenome Editing. Genes (Basel) 2023; 14:genes14030577. [PMID: 36980849 PMCID: PMC10048329 DOI: 10.3390/genes14030577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Beta-like globin gene expression is developmentally regulated during life by transcription factors, chromatin looping and epigenome modifications of the β-globin locus. Epigenome modifications, such as histone methylation/demethylation and acetylation/deacetylation and DNA methylation, are associated with up- or down-regulation of gene expression. The understanding of these mechanisms and their outcome in gene expression has paved the way to the development of new therapeutic strategies for treating various diseases, such as β-hemoglobinopathies. Histone deacetylase and DNA methyl-transferase inhibitors are currently being tested in clinical trials for hemoglobinopathies patients. However, these approaches are often uncertain, non-specific and their global effect poses serious safety concerns. Epigenome editing is a recently developed and promising tool that consists of a DNA recognition domain (zinc finger, transcription activator-like effector or dead clustered regularly interspaced short palindromic repeats Cas9) fused to the catalytic domain of a chromatin-modifying enzyme. It offers a more specific targeting of disease-related genes (e.g., the ability to reactivate the fetal γ-globin genes and improve the hemoglobinopathy phenotype) and it facilitates the development of scarless gene therapy approaches. Here, we summarize the mechanisms of epigenome regulation of the β-globin locus, and we discuss the application of epigenome editing for the treatment of hemoglobinopathies.
Collapse
Affiliation(s)
- Letizia Fontana
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
| | - Zoe Alahouzou
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
- Correspondence: (A.M.); (P.A.)
| | - Panagiotis Antoniou
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, 431 50 Gothenburg, Sweden
- Correspondence: (A.M.); (P.A.)
| |
Collapse
|
16
|
Abstract
Major advances in pathogen identification, treatment, vaccine development, and avian immunology have enabled the enormous expansion in global poultry production over the last 50 years. Looking forward, climate change, reduced feed, reduced water access, new avian pathogens and restrictions on the use of antimicrobials threaten to hamper further gains in poultry productivity and health. The development of novel in vitro cell culture systems, coupled with new genetic tools to investigate gene function, will aid in developing novel interventions for existing and newly emerging poultry pathogens. Our growing capacity to cryopreserve and generate genome-edited chicken lines will also be useful for developing improved chicken breeds for poultry farmers and conserving chicken genetic resources.
Collapse
Affiliation(s)
- Euan Mitchell
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Guillermo Tellez
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Mike J McGrew
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
17
|
Ibrahim M, Stadnicka K. The science of genetically modified poultry. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Abstract
The exuberant development of targeted genome editing has revolutionized research on the chicken genome, generating chickens with beneficial parameters. The chicken model is a crucial experimental tool that can be utilized for drug manufacture, preclinical research, pathological observation, and other applications. In essence, tweaking the chicken’s genome has enabled the poultry industry to get more done with less, generating genetically modified chickens that lay eggs containing large amounts of lifesaving humanized drugs. The transition of gene editing from concept to practical application has been dramatically hastened by the development of programmable nucleases, bringing scientists closer than ever to the efficient producers of tomorrow’s medicines. Combining the developmental and physiological characteristics of the chicken with cutting-edge genome editing, the chicken furnishes a potent frontier that is foreseen to be actively pursued in the future. Herein we review the current and future prospects of gene editing in chickens and the contributions to the development of humanized pharmaceuticals.
Collapse
Affiliation(s)
- Mariam Ibrahim
- Department of Animal Biotechnology and Genetics , PBS University of Science and Technology , 85-084 Bydgoszcz , Poland
| | - Katarzyna Stadnicka
- Department of Oncology , Collegium Medicum Nicolaus Copernicus University , 85-821 Bydgoszcz , Poland
| |
Collapse
|
18
|
Martella A. CRISPR, epigenetics, and cancer. EPIGENETIC CANCER THERAPY 2023:687-707. [DOI: 10.1016/b978-0-323-91367-6.00007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
19
|
Brukman NG, Nakajima KP, Valansi C, Flyak K, Li X, Higashiyama T, Podbilewicz B. A novel function for the sperm adhesion protein IZUMO1 in cell-cell fusion. J Cell Biol 2022; 222:213693. [PMID: 36394541 PMCID: PMC9671554 DOI: 10.1083/jcb.202207147] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/11/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Mammalian sperm-egg adhesion depends on the trans-interaction between the sperm-specific type I glycoprotein IZUMO1 and its oocyte-specific GPI-anchored receptor JUNO. However, the mechanisms and proteins (fusogens) that mediate the following step of gamete fusion remain unknown. Using live imaging and content mixing assays in a heterologous system and structure-guided mutagenesis, we unveil an unexpected function for IZUMO1 in cell-to-cell fusion. We show that IZUMO1 alone is sufficient to induce fusion, and that this ability is retained in a mutant unable to bind JUNO. On the other hand, a triple mutation in exposed aromatic residues prevents this fusogenic activity without impairing JUNO interaction. Our findings suggest a second function for IZUMO1 as a unilateral mouse gamete fusogen.
Collapse
Affiliation(s)
- Nicolas G. Brukman
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Kohdai P. Nakajima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Clari Valansi
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Kateryna Flyak
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Xiaohui Li
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan,Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi, Japan,Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
20
|
Smith SS, Chu D, Qu T, Aggleton JA, Schneider RA. Species-specific sensitivity to TGFβ signaling and changes to the Mmp13 promoter underlie avian jaw development and evolution. eLife 2022; 11:e66005. [PMID: 35666955 PMCID: PMC9246370 DOI: 10.7554/elife.66005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/03/2022] [Indexed: 12/02/2022] Open
Abstract
Precise developmental control of jaw length is critical for survival, but underlying molecular mechanisms remain poorly understood. The jaw skeleton arises from neural crest mesenchyme (NCM), and we previously demonstrated that these progenitor cells express more bone-resorbing enzymes including Matrix metalloproteinase 13 (Mmp13) when they generate shorter jaws in quail embryos versus longer jaws in duck. Moreover, if we inhibit bone resorption or Mmp13, we can increase jaw length. In the current study, we uncover mechanisms establishing species-specific levels of Mmp13 and bone resorption. Quail show greater activation of and sensitivity to transforming growth factor beta (TGFβ) signaling than duck; where intracellular mediators like SMADs and targets like Runt-related transcription factor 2 (Runx2), which bind Mmp13, become elevated. Inhibiting TGFβ signaling decreases bone resorption, and overexpressing Mmp13 in NCM shortens the duck lower jaw. To elucidate the basis for this differential regulation, we examine the Mmp13 promoter. We discover a SMAD-binding element and single nucleotide polymorphisms (SNPs) near a RUNX2-binding element that distinguish quail from duck. Altering the SMAD site and switching the SNPs abolish TGFβ sensitivity in the quail Mmp13 promoter but make the duck promoter responsive. Thus, differential regulation of TGFβ signaling and Mmp13 promoter structure underlie avian jaw development and evolution.
Collapse
Affiliation(s)
- Spenser S Smith
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Daniel Chu
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Tiange Qu
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Jessye A Aggleton
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Richard A Schneider
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
21
|
Investigating chromatin accessibility during development and differentiation by ATAC-sequencing to guide the identification of cis-regulatory elements. Biochem Soc Trans 2022; 50:1167-1177. [PMID: 35604124 PMCID: PMC9246326 DOI: 10.1042/bst20210834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022]
Abstract
Mapping accessible chromatin across time scales can give insights into its dynamic nature, for example during cellular differentiation and tissue or organism development. Analysis of such data can be utilised to identify functional cis-regulatory elements (CRE) and transcription factor binding sites and, when combined with transcriptomics, can reveal gene regulatory networks (GRNs) of expressed genes. Chromatin accessibility mapping is a powerful approach and can be performed using ATAC-sequencing (ATAC-seq), whereby Tn5 transposase inserts sequencing adaptors into genomic DNA to identify differentially accessible regions of chromatin in different cell populations. It requires low sample input and can be performed and analysed relatively quickly compared with other methods. The data generated from ATAC-seq, along with other genomic approaches, can help uncover chromatin packaging and potential cis-regulatory elements that may be responsible for gene expression. Here, we describe the ATAC-seq approach and give examples from mainly vertebrate embryonic development, where such datasets have identified the highly dynamic nature of chromatin, with differing landscapes between cellular precursors for different lineages.
Collapse
|
22
|
Sanketi BD, Kurpios NA. In Ovo Gain- and Loss-of-Function Approaches to Study Gut Morphogenesis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2438:163-181. [PMID: 35147942 DOI: 10.1007/978-1-0716-2035-9_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The polarity of cellular components is essential for cellular shape changes, oriented cell migration, and modulating intra- and intercellular mechanical forces. However, many aspects of polarized cell behavior-especially dynamic cell shape changes during the process of morphogenesis-are almost impossible to study in cells cultured in plastic dishes. Avian embryos have always been a treasured model system to study vertebrate morphogenesis for developmental biologists. Avian embryos recapitulate human biology particularly well in the early stages due to their flat disc gastruloids. Since avian embryos can be manipulated in ovo they present paramount opportunities for highly localized targeting of genetic mechanisms during cellular and developmental processes. Here, we review the application of these methods for both gain of function and loss of function of a gene of interest at a specific developmental stage during left-right (LR) asymmetric gut morphogenesis. These tools present a powerful premise to investigate various polarized cellular activities and molecular processes in vivo in a reproducible manner.
Collapse
Affiliation(s)
- Bhargav D Sanketi
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Natasza A Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
23
|
Abstract
For four decades, genetically altered laboratory animals have provided invaluable information. Originally, genetic modifications were performed on only a few animal species, often chosen because of the ready accessibility of embryonic materials and short generation times. The methods were often slow, inefficient and expensive. In 2013, a new, extremely efficient technology, namely CRISPR/Cas9, not only made the production of genetically altered organisms faster and cheaper, but also opened it up to non-conventional laboratory animal species. CRISPR/Cas9 relies on a guide RNA as a 'location finder' to target DNA double strand breaks induced by the Cas9 enzyme. This is a prerequisite for non-homologous end joining repair to occur, an error prone mechanism often generating insertion or deletion of genetic material. If a DNA template is also provided, this can lead to homology directed repair, allowing precise insertions, deletions or substitutions. Due to its high efficiency in targeting DNA, CRISPR/Cas9-mediated genetic modification is now possible in virtually all animal species for which we have genome sequence data. Furthermore, modifications of Cas9 have led to more refined genetic alterations from targeted single base-pair mutations to epigenetic modifications. The latter offer altered gene expression without genome alteration. With this ever growing genetic toolbox, the number and range of genetically altered conventional and non-conventional laboratory animals with simple or complex genetic modifications is growing exponentially.
Collapse
|
24
|
Shamshirgaran Y, Liu J, Sumer H, Verma PJ, Taheri-Ghahfarokhi A. Tools for Efficient Genome Editing; ZFN, TALEN, and CRISPR. Methods Mol Biol 2022; 2495:29-46. [PMID: 35696026 DOI: 10.1007/978-1-0716-2301-5_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The last two decades have marked significant advancement in the genome editing field. Three generations of programmable nucleases (ZFNs, TALENs, and CRISPR-Cas system) have been adopted to introduce targeted DNA double-strand breaks (DSBs) in eukaryotic cells. DNA repair machinery of the cells has been exploited to introduce insertion and deletions (indels) at the targeted DSBs to study function of any gene-of-interest. The resulting indels were generally assumed to be "random" events produced by "error-prone" DNA repair pathways. However, recent advances in computational tools developed to study the Cas9-induced mutations have changed the consensus and implied the "non-randomness" nature of these mutations. Furthermore, CRISPR-centric tools are evolving at an unprecedented pace, for example, base- and prime-editors are the newest developments that have been added to the genome editing toolbox. Altogether, genome editing tools have revolutionized our way of conducting research in life sciences. Here, we present a concise overview of genome editing tools and describe the DNA repair pathways underlying the generation of genome editing outcome.
Collapse
Affiliation(s)
- Yasaman Shamshirgaran
- Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jun Liu
- Stem Cells and Genome Editing, Genomics and Cellular Sciences, Agriculture Victoria Research, Bundoora, VIC, Australia
| | - Huseyin Sumer
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Paul J Verma
- Aquatics & Livestock Sciences, South Australian Research and Development Institute, Roseworthy, SA, Australia
| | - Amir Taheri-Ghahfarokhi
- Quantitative Biology, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
25
|
Abstract
Neural crest stem/progenitor cells arise early during vertebrate embryogenesis at the border of the forming central nervous system. They subsequently migrate throughout the body, eventually differentiating into diverse cell types ranging from neurons and glia of the peripheral nervous system to bones of the face, portions of the heart, and pigmentation of the skin. Along the body axis, the neural crest is heterogeneous, with different subpopulations arising in the head, neck, trunk, and tail regions, each characterized by distinct migratory patterns and developmental potential. Modern genomic approaches like single-cell RNA- and ATAC-sequencing (seq) have greatly enhanced our understanding of cell lineage trajectories and gene regulatory circuitry underlying the developmental progression of neural crest cells. Here, we discuss how genomic approaches have provided new insights into old questions in neural crest biology by elucidating transcriptional and posttranscriptional mechanisms that govern neural crest formation and the establishment of axial level identity. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Shashank Gandhi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA; ,
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA; ,
| |
Collapse
|
26
|
Ren B, Yang J, Wang C, Yang G, Wang H, Chen Y, Xu R, Fan X, You L, Zhang T, Zhao Y. High-resolution Hi-C maps highlight multiscale 3D epigenome reprogramming during pancreatic cancer metastasis. J Hematol Oncol 2021; 14:120. [PMID: 34348759 PMCID: PMC8336101 DOI: 10.1186/s13045-021-01131-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Background Pancreatic cancer’s poor prognosis is caused by distal metastasis, which is associated with epigenetic changes. However, the role of the 3D epigenome in pancreatic cancer biology, especially its metastasis, remains unclear. Methods Here, we developed high-resolution 3D epigenomic maps of cells derived from normal pancreatic epithelium, primary and metastatic pancreatic cancer by in situ Hi-C, ChIP-seq, ATAC-seq, and RNA-seq to identify key genes involved in pancreatic cancer metastasis Results We found that A/B compartments, contact domains, and chromatin loops changed significantly in metastatic pancreatic cancer cells, which are associated with epigenetic state alterations. Moreover, we found that upregulated genes, which were located in switched compartments, changed contact domains, and metastasis-specific enhancer-promoter loops, were related to cancer metastasis and poor prognosis of patients with pancreatic cancer. We also found that transcription factors in specific enhancer-promoter loop formation were also associated with metastasis. Finally we demonstrated that LIPC, looped to metastasis-specific enhancers, could promote pancreatic cancer metastasis. Conclusions These results highlight the multiscale 3D epigenome reprogramming during pancreatic cancer metastasis and expand our knowledge of mechanisms of gene regulation during pancreatic cancer metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-021-01131-0.
Collapse
Affiliation(s)
- Bo Ren
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China
| | - Jinshou Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China
| | - Chengcheng Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China
| | - Gang Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China
| | - Huanyu Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China
| | - Yuan Chen
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China
| | - Ruiyuan Xu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China
| | - Xuning Fan
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing, 100176, People's Republic of China
| | - Lei You
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China.
| | - Taiping Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China.
| | - Yupei Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China.
| |
Collapse
|
27
|
Wachholz GE, Rengel BD, Vargesson N, Fraga LR. From the Farm to the Lab: How Chicken Embryos Contribute to the Field of Teratology. Front Genet 2021; 12:666726. [PMID: 34367238 PMCID: PMC8339958 DOI: 10.3389/fgene.2021.666726] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/11/2021] [Indexed: 02/04/2023] Open
Abstract
Congenital anomalies and its causes, particularly, by external factors are the aim of the field called teratology. The external factors studied by teratology are known as teratogens and can be biological or environmental factors for example, chemicals, medications, recreational drugs, environmental pollutants, physical agents (e.g., X-rays and maternal hyperthermia) and maternal metabolic conditions. Proving the teratogenicity of a factor is a difficult task requiring epidemiology studies as well as experimental teratology evidence from the use of animal models, one of which is the chicken embryo. This model in particular has the advantage of being able to follow development live and in vivo, with rapid development hatching around 21 days, is cheap and easy to manipulate and to observe development. All this allows the chicken embryo to be used in drug screening studies, teratogenic evaluation and studies of mechanisms of teratogenicity. The chicken embryo shares morphological, biochemical and genetic similarities with humans as well as mammalian species, making them ideal to ascertain the actions of teratogens, as well as screen drugs to test for their safety. Pre-clinical trials for new drugs are carried out in rodents and rabbits, however, chicken embryos have been used to screen new compounds or analogs of thalidomide as well as to investigate how some drugs can lead to congenital malformations. Indeed, the chicken embryo has proved valuable in understanding how many congenital anomalies, seen in humans, arise following teratogen exposure. The aim of this review is to highlight the role of the chicken embryo as an experimental model for studies in teratology, exploring its use in drug screening studies, phenotypic evaluation and studies of teratogenic mechanisms of action. Here, we discuss many known teratogens, that have been evaluated using the chicken embryo model including some medicines, such as, thalidomide, valproic acid; recreational drugs including alcohol; environmental influences, such as viruses, specifically ZIKV, which is a newly discovered human teratogen. In addition, we discuss how the chicken embryo has provided insight on the mechanisms of teratogenesis of many compounds and also how this impact on drug safety.
Collapse
Affiliation(s)
- Gabriela Elis Wachholz
- Postgraduate Program of Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Teratogen Information Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Bruna Duarte Rengel
- Postgraduate Program of Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Teratogen Information Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Lucas Rosa Fraga
- Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Teratogen Information Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
28
|
Abstract
The chick embryo is a favored model for developmental studies owing to its accessibility and ease of manipulation. Ex ovo electroporation provides a highly efficient method for screening perturbation phenotypes using a variety of reagents, including CRISPR and morpholinos. Additionally, the chick system lends itself well to rapid medium-throughput enhancer screening. Constructs facilitating tissue-specific protein pull-down can also be transfected using this protocol. Furthermore, bilateral electroporation with control and experimental reagents provides a robust assay for accurately interpreting functional perturbations. For complete details on the use and execution of this protocol, please refer to Williams et al. (2019). Highly efficient method for transfection of early chick embryos Bilateral electroporation allows comparison of control and experimental conditions Non-mosaic, highly reproducible results using various reagents
Collapse
Affiliation(s)
- Ruth M Williams
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Tatjana Sauka-Spengler
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| |
Collapse
|
29
|
Pieplow A, Dastaw M, Sakuma T, Sakamoto N, Yamamoto T, Yajima M, Oulhen N, Wessel GM. CRISPR-Cas9 editing of non-coding genomic loci as a means of controlling gene expression in the sea urchin. Dev Biol 2021; 472:85-97. [PMID: 33482173 PMCID: PMC7956150 DOI: 10.1016/j.ydbio.2021.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 11/28/2022]
Abstract
We seek to manipulate gene function here through CRISPR-Cas9 editing of cis-regulatory sequences, rather than the more typical mutation of coding regions. This approach would minimize secondary effects of cellular responses to nonsense mediated decay pathways or to mutant protein products by premature stops. This strategy also allows for reducing gene activity in cases where a complete gene knockout would result in lethality, and it can be applied to the rapid identification of key regulatory sites essential for gene expression. We tested this strategy here with genes of known function as a proof of concept, and then applied it to examine the upstream genomic region of the germline gene Nanos2 in the sea urchin, Strongylocentrotus purpuratus. We first used CRISPR-Cas9 to target established genomic cis-regulatory regions of the skeletogenic cell transcription factor, Alx1, and the TGF-β signaling ligand, Nodal, which produce obvious developmental defects when altered in sea urchin embryos. Importantly, mutation of cis-activator sites (Alx1) and cis-repressor sites (Nodal) result in the predicted decreased and increased transcriptional output, respectively. Upon identification of efficient gRNAs by genomic mutations, we then used the same validated gRNAs to target a deadCas9-VP64 transcriptional activator to increase Nodal transcription directly. Finally, we paired these new methodologies with a more traditional, GFP reporter construct approach to further our understanding of the transcriptional regulation of Nanos2, a key gene required for germ cell identity in S. purpuratus. With a series of reporter assays, upstream Cas9-promoter targeted mutagenesis, coupled with qPCR and in situ RNA hybridization, we concluded that the promoter of Nanos2 drives strong mRNA expression in the sea urchin embryo, indicating that its primordial germ cell (PGC)-specific restriction may rely instead on post-transcriptional regulation. Overall, we present a proof-of-principle tool-kit of Cas9-mediated manipulations of promoter regions that should be applicable in most cells and embryos for which CRISPR-Cas9 is employed.
Collapse
Affiliation(s)
- Alice Pieplow
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Meseret Dastaw
- Ethiopian Biotechnology Institute, Addis Ababa University, NBH1, 4killo King George VI St, Addis Ababa, Ethiopia
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Naoaki Sakamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Mamiko Yajima
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Nathalie Oulhen
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Gary M Wessel
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
30
|
Gandhi S, Li Y, Tang W, Christensen JB, Urrutia HA, Vieceli FM, Piacentino ML, Bronner ME. A single-plasmid approach for genome editing coupled with long-term lineage analysis in chick embryos. Development 2021; 148:dev193565. [PMID: 33688075 PMCID: PMC8077534 DOI: 10.1242/dev.193565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
An important strategy for establishing mechanisms of gene function during development is through mutation of individual genes and analysis of subsequent effects on cell behavior. Here, we present a single-plasmid approach for genome editing in chick embryos to study experimentally perturbed cells in an otherwise normal embryonic environment. To achieve this, we have engineered a plasmid that encodes Cas9 protein, gene-specific guide RNA (gRNA), and a fluorescent marker within the same construct. Using transfection- and electroporation-based approaches, we show that this construct can be used to perturb gene function in early embryos as well as human cell lines. Importantly, insertion of this cistronic construct into replication-incompetent avian retroviruses allowed us to couple gene knockouts with long-term lineage analysis. We demonstrate the application of our newly engineered constructs and viruses by perturbing β-catenin in vitro and Sox10, Pax6 and Pax7 in the neural crest, retina, and neural tube and segmental plate in vivo, respectively. Together, this approach enables genes of interest to be knocked out in identifiable cells in living embryos and can be broadly applied to numerous genes in different embryonic tissues.
Collapse
Affiliation(s)
- Shashank Gandhi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yuwei Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Weiyi Tang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jens B. Christensen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Hugo A. Urrutia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Felipe M. Vieceli
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael L. Piacentino
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E. Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
31
|
Yusifov E, Dumoulin A, Stoeckli ET. Investigating Primary Cilia during Peripheral Nervous System Formation. Int J Mol Sci 2021; 22:3176. [PMID: 33804711 PMCID: PMC8003989 DOI: 10.3390/ijms22063176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022] Open
Abstract
The primary cilium plays a pivotal role during the embryonic development of vertebrates. It acts as a somatic signaling hub for specific pathways, such as Sonic Hedgehog signaling. In humans, mutations in genes that cause dysregulation of ciliogenesis or ciliary function lead to severe developmental disorders called ciliopathies. Beyond its role in early morphogenesis, growing evidence points towards an essential function of the primary cilium in neural circuit formation in the central nervous system. However, very little is known about a potential role in the formation of the peripheral nervous system. Here, we investigate the presence of the primary cilium in neural crest cells and their derivatives in the trunk of developing chicken embryos in vivo. We found that neural crest cells, sensory neurons, and boundary cap cells all bear a primary cilium during key stages of early peripheral nervous system formation. Moreover, we describe differences in the ciliation of neuronal cultures of different populations from the peripheral and central nervous systems. Our results offer a framework for further in vivo and in vitro investigations on specific roles that the primary cilium might play during peripheral nervous system formation.
Collapse
Affiliation(s)
| | | | - Esther T. Stoeckli
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (E.Y.); (A.D.)
| |
Collapse
|
32
|
Rahman MM, Tollefsbol TO. Targeting cancer epigenetics with CRISPR-dCAS9: Principles and prospects. Methods 2021; 187:77-91. [PMID: 32315755 PMCID: PMC7572534 DOI: 10.1016/j.ymeth.2020.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer therapeutics is an ever-evolving field due to incessant demands for effective and precise treatment options. Over the last few decades, cancer treatment strategies have shifted somewhat from surgery to targeted precision medicine. CRISPR-dCas9 is an emerging version of precision cancer therapy that has been adapted from the prokaryotic CRISPR-Cas system. Once ligated to epigenetic effectors (EE), CRISPR-dCas9 can function as an epigenetic editing tool and CRISPR-dCas9-EE complexes could be exploited to alter cancerous epigenetic features associated with different cancer hallmarks. In this article, we discuss the rationale of epigenetic editing as a therapeutic strategy against cancer. We also outline how sgRNA-dCas9 was derived from the CRISPR-Cas system. In addition, the current status of sgRNA-dCas9 use (in vivo and in vitro) in cancer is updated with a molecular illustration of CRISPR-dCas9-mediated epigenetic and transcriptional modulation. As sgRNA-dCas9 is still at the developmental phase, challenges are inherent to its use. We evaluate major challenges in targeting cancer with sgRNA-dCas9 such as off-target effects, lack of sgRNA designing rubrics, target site selection dilemmas and deficient sgRNA-dCas9 delivery systems. Finally, we appraise the sgRNA-dCas9 as a prospective cancer therapeutic by summarizing ongoing improvements of sgRNA-dCas9 methodology.
Collapse
Affiliation(s)
- Mohammad Mijanur Rahman
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA; Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA; Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA; Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA; Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| |
Collapse
|
33
|
Martella A, Fisher DI. Regulation of Gene Expression and the Elucidative Role of CRISPR-Based Epigenetic Modifiers and CRISPR-Induced Chromosome Conformational Changes. CRISPR J 2021; 4:43-57. [PMID: 33616442 DOI: 10.1089/crispr.2020.0108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In complex multicellular systems, gene expression is regulated at multiple stages through interconnected complex molecular pathways and regulatory networks. Transcription is the first step in gene expression and is subject to multiple layers of regulation in which epigenetic mechanisms such as DNA methylation, histone tail modifications, and chromosomal conformation play an essential role. In recent years, CRISPR-Cas9 systems have been employed to unearth this complexity and provide new insights on the contribution of chromatin dysregulation in the development of genetic diseases, as well as new tools to prevent or reverse this dysregulation. In this review, we outline the recent development of a variety of CRISPR-based epigenetic editors for targeted DNA methylation/demethylation, histone modification, and three-dimensional DNA conformational change, highlighting their relative performance and impact on gene regulation. Finally, we provide insights on the future developments aimed to accelerate our understanding of the causal relationship between epigenetic marks, genome organization, and gene regulation.
Collapse
Affiliation(s)
- Andrea Martella
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - David I Fisher
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
34
|
Khwatenge CN, Nahashon SN. Recent Advances in the Application of CRISPR/Cas9 Gene Editing System in Poultry Species. Front Genet 2021; 12:627714. [PMID: 33679892 PMCID: PMC7933658 DOI: 10.3389/fgene.2021.627714] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/19/2021] [Indexed: 12/28/2022] Open
Abstract
CRISPR/Cas9 system genome editing is revolutionizing genetics research in a wide spectrum of animal models in the genetic era. Among these animals, is the poultry species. CRISPR technology is the newest and most advanced gene-editing tool that allows researchers to modify and alter gene functions for transcriptional regulation, gene targeting, epigenetic modification, gene therapy, and drug delivery in the animal genome. The applicability of the CRISPR/Cas9 system in gene editing and modification of genomes in the avian species is still emerging. Up to date, substantial progress in using CRISPR/Cas9 technology has been made in only two poultry species (chicken and quail), with chicken taking the lead. There have been major recent advances in the modification of the avian genome through their germ cell lineages. In the poultry industry, breeders and producers can utilize CRISPR-mediated approaches to enhance the many required genetic variations towards the poultry population that are absent in a given poultry flock. Thus, CRISPR allows the benefit of accessing genetic characteristics that cannot otherwise be used for poultry production. Therefore CRISPR/Cas9 becomes a very powerful and robust tool for editing genes that allow for the introduction or regulation of genetic information in poultry genomes. However, the CRISPR/Cas9 technology has several limitations that need to be addressed to enhance its use in the poultry industry. This review evaluates and provides a summary of recent advances in applying CRISPR/Cas9 gene editing technology in poultry research and explores its potential use in advancing poultry breeding and production with a major focus on chicken and quail. This could aid future advancements in the use of CRISPR technology to improve poultry production.
Collapse
Affiliation(s)
- Collins N. Khwatenge
- Department of Biological Sciences, Tennessee State University, Nashville, IN, United States
- Department of Agriculture and Environmental Sciences, Tennessee State University, Nashville, TN, United States
| | - Samuel N. Nahashon
- Department of Agriculture and Environmental Sciences, Tennessee State University, Nashville, TN, United States
| |
Collapse
|
35
|
Characterising open chromatin in chick embryos identifies cis-regulatory elements important for paraxial mesoderm formation and axis extension. Nat Commun 2021; 12:1157. [PMID: 33608545 PMCID: PMC7895974 DOI: 10.1038/s41467-021-21426-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 01/25/2021] [Indexed: 01/31/2023] Open
Abstract
Somites arising from paraxial mesoderm are a hallmark of the segmented vertebrate body plan. They form sequentially during axis extension and generate musculoskeletal cell lineages. How paraxial mesoderm becomes regionalised along the axis and how this correlates with dynamic changes of chromatin accessibility and the transcriptome remains unknown. Here, we report a spatiotemporal series of ATAC-seq and RNA-seq along the chick embryonic axis. Footprint analysis shows differential coverage of binding sites for several key transcription factors, including CDX2, LEF1 and members of HOX clusters. Associating accessible chromatin with nearby expressed genes identifies cis-regulatory elements (CRE) for TCF15 and MEOX1. We determine their spatiotemporal activity and evolutionary conservation in Xenopus and human. Epigenome silencing of endogenous CREs disrupts TCF15 and MEOX1 gene expression and recapitulates phenotypic abnormalities of anterior-posterior axis extension. Our integrated approach allows dissection of paraxial mesoderm regulatory circuits in vivo and has implications for investigating gene regulatory networks.
Collapse
|
36
|
Bonatto Paese CL, Brooks EC, Aarnio-Peterson M, Brugmann SA. Ciliopathic micrognathia is caused by aberrant skeletal differentiation and remodeling. Development 2021; 148:148/4/dev194175. [PMID: 33589509 DOI: 10.1242/dev.194175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
Ciliopathies represent a growing class of diseases caused by defects in microtubule-based organelles called primary cilia. Approximately 30% of ciliopathies are characterized by craniofacial phenotypes such as craniosynostosis, cleft lip/palate and micrognathia. Patients with ciliopathic micrognathia experience a particular set of difficulties, including impaired feeding and breathing, and have extremely limited treatment options. To understand the cellular and molecular basis for ciliopathic micrognathia, we used the talpid2 (ta2 ), a bona fide avian model for the human ciliopathy oral-facial-digital syndrome subtype 14. Histological analyses revealed that the onset of ciliopathic micrognathia in ta2 embryos occurred at the earliest stages of mandibular development. Neural crest-derived skeletal progenitor cells were particularly sensitive to a ciliopathic insult, undergoing unchecked passage through the cell cycle and subsequent increased proliferation. Furthermore, whereas neural crest-derived skeletal differentiation was initiated, osteoblast maturation failed to progress to completion. Additional molecular analyses revealed that an imbalance in the ratio of bone deposition and resorption also contributed to ciliopathic micrognathia in ta2 embryos. Thus, our results suggest that ciliopathic micrognathia is a consequence of multiple aberrant cellular processes necessary for skeletal development, and provide potential avenues for future therapeutic treatments.
Collapse
Affiliation(s)
- Christian Louis Bonatto Paese
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Evan C Brooks
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Megan Aarnio-Peterson
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Samantha A Brugmann
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA .,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Shriners Children's Hospital, Cincinnati, OH 45229, USA
| |
Collapse
|
37
|
Chu D, Nguyen A, Smith SS, Vavrušová Z, Schneider RA. Stable integration of an optimized inducible promoter system enables spatiotemporal control of gene expression throughout avian development. Biol Open 2020; 9:bio055343. [PMID: 32917762 PMCID: PMC7561481 DOI: 10.1242/bio.055343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/27/2020] [Indexed: 01/18/2023] Open
Abstract
Precisely altering gene expression is critical for understanding molecular processes of embryogenesis. Although some tools exist for transgene misexpression in developing chick embryos, we have refined and advanced them by simplifying and optimizing constructs for spatiotemporal control. To maintain expression over the entire course of embryonic development we use an enhanced piggyBac transposon system that efficiently integrates sequences into the host genome. We also incorporate a DNA targeting sequence to direct plasmid translocation into the nucleus and a D4Z4 insulator sequence to prevent epigenetic silencing. We designed these constructs to minimize their size and maximize cellular uptake, and to simplify usage by placing all of the integrating sequences on a single plasmid. Following electroporation of stage HH8.5 embryos, our tetracycline-inducible promoter construct produces robust transgene expression in the presence of doxycycline at any point during embryonic development in ovo or in culture. Moreover, expression levels can be modulated by titrating doxycycline concentrations and spatial control can be achieved using beads or gels. Thus, we have generated a novel, sensitive, tunable, and stable inducible-promoter system for high-resolution gene manipulation in vivo.
Collapse
Affiliation(s)
- Daniel Chu
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| | - An Nguyen
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| | - Spenser S Smith
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| | - Zuzana Vavrušová
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| | - Richard A Schneider
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| |
Collapse
|
38
|
Goes CP, Vieceli FM, De La Cruz SM, Simões-Costa M, Yan CYI. Scratch2, a Snail Superfamily Member, Is Regulated by miR-125b. Front Cell Dev Biol 2020; 8:769. [PMID: 32984310 PMCID: PMC7477046 DOI: 10.3389/fcell.2020.00769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022] Open
Abstract
Scratch2 is a transcription factor expressed in a very restricted population of vertebrate embryonic neural cell precursors involved in their survival, differentiation, and migration. The mechanisms that control its expression remain unknown and could contribute towards our understanding of gene regulation during neural differentiation and evolution. Here we investigate the role of microRNAs (miRNAs) in the Scrt2 post-transcriptional regulatory mechanism. We identified binding sites for miR-125b and -200b in the Scrt2 3′UTR in silico. We confirmed the repressive-mediated activity of the Scrt2 3′UTR through electroporation of luciferase constructs into chick embryos. Further, both CRISPR/Cas9-mediated deletion of miR-125b/-200b responsive elements from chicken Scrt2 3′UTR and expression of miRNAs sponges increased Scrt2 expression field, suggesting a role for these miRNAs as post-transcriptional regulators of Scrt2. The biological effect of miR-125b titration was much more pronounced than that of miR-200b. Therefore, we propose that, after transcription, miR-125b fine-tunes the Scrt2 expression domain.
Collapse
Affiliation(s)
- Carolina Purcell Goes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Molecular Biology and Genetics, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Felipe Monteleone Vieceli
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Shirley Mirna De La Cruz
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcos Simões-Costa
- Department of Molecular Biology and Genetics, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Chao Yun Irene Yan
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
39
|
Wittig JG, Münsterberg A. The Chicken as a Model Organism to Study Heart Development. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037218. [PMID: 31767650 DOI: 10.1101/cshperspect.a037218] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heart development is a complex process and begins with the long-range migration of cardiac progenitor cells during gastrulation. This culminates in the formation of a simple contractile tube with multiple layers, which undergoes remodeling into a four-chambered heart. During this morphogenesis, additional cell populations become incorporated. It is important to unravel the underlying genetic and cellular mechanisms to be able to identify the embryonic origin of diseases, including congenital malformations, which impair cardiac function and may affect life expectancy or quality. Owing to the evolutionary conservation of development, observations made in nonamniote and amniote vertebrate species allow us to extrapolate to human. This review will focus on the contributions made to a better understanding of heart development through studying avian embryos-mainly the chicken but also quail embryos. We will illustrate the classic and recent approaches used in the avian system, give an overview of the important discoveries made, and summarize the early stages of cardiac development up to the establishment of the four-chambered heart.
Collapse
Affiliation(s)
- Johannes G Wittig
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
40
|
Xu X, Hulshoff MS, Tan X, Zeisberg M, Zeisberg EM. CRISPR/Cas Derivatives as Novel Gene Modulating Tools: Possibilities and In Vivo Applications. Int J Mol Sci 2020; 21:E3038. [PMID: 32344896 PMCID: PMC7246536 DOI: 10.3390/ijms21093038] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
The field of genome editing started with the discovery of meganucleases (e.g., the LAGLIDADG family of homing endonucleases) in yeast. After the discovery of transcription activator-like effector nucleases and zinc finger nucleases, the recently discovered clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated proteins (Cas) system has opened a new window of applications in the field of gene editing. Here, we review different Cas proteins and their corresponding features including advantages and disadvantages, and we provide an overview of the different endonuclease-deficient Cas protein (dCas) derivatives. These dCas derivatives consist of an endonuclease-deficient Cas9 which can be fused to different effector domains to perform distinct in vitro applications such as tracking, transcriptional activation and repression, as well as base editing. Finally, we review the in vivo applications of these dCas derivatives and discuss their potential to perform gene activation and repression in vivo, as well as their potential future use in human therapy.
Collapse
Affiliation(s)
- Xingbo Xu
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; (X.X.); (M.S.H.)
- German Centre for Cardiovascular Research (DZHK), 37075 Göttingen, Germany; (X.T.); (M.Z.)
| | - Melanie S. Hulshoff
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; (X.X.); (M.S.H.)
- German Centre for Cardiovascular Research (DZHK), 37075 Göttingen, Germany; (X.T.); (M.Z.)
- Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Xiaoying Tan
- German Centre for Cardiovascular Research (DZHK), 37075 Göttingen, Germany; (X.T.); (M.Z.)
- Department of Nephrology and Rheumatology, University Medical Center of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Michael Zeisberg
- German Centre for Cardiovascular Research (DZHK), 37075 Göttingen, Germany; (X.T.); (M.Z.)
- Department of Nephrology and Rheumatology, University Medical Center of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Elisabeth M. Zeisberg
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; (X.X.); (M.S.H.)
- German Centre for Cardiovascular Research (DZHK), 37075 Göttingen, Germany; (X.T.); (M.Z.)
| |
Collapse
|
41
|
Syding LA, Nickl P, Kasparek P, Sedlacek R. CRISPR/Cas9 Epigenome Editing Potential for Rare Imprinting Diseases: A Review. Cells 2020; 9:cells9040993. [PMID: 32316223 PMCID: PMC7226972 DOI: 10.3390/cells9040993] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022] Open
Abstract
Imprinting diseases (IDs) are rare congenital disorders caused by aberrant dosages of imprinted genes. Rare IDs are comprised by a group of several distinct disorders that share a great deal of homology in terms of genetic etiologies and symptoms. Disruption of genetic or epigenetic mechanisms can cause issues with regulating the expression of imprinted genes, thus leading to disease. Genetic mutations affect the imprinted genes, duplications, deletions, and uniparental disomy (UPD) are reoccurring phenomena causing imprinting diseases. Epigenetic alterations on methylation marks in imprinting control centers (ICRs) also alters the expression patterns and the majority of patients with rare IDs carries intact but either silenced or overexpressed imprinted genes. Canonical CRISPR/Cas9 editing relying on double-stranded DNA break repair has little to offer in terms of therapeutics for rare IDs. Instead CRISPR/Cas9 can be used in a more sophisticated way by targeting the epigenome. Catalytically dead Cas9 (dCas9) tethered with effector enzymes such as DNA de- and methyltransferases and histone code editors in addition to systems such as CRISPRa and CRISPRi have been shown to have high epigenome editing efficiency in eukaryotic cells. This new era of CRISPR epigenome editors could arguably be a game-changer for curing and treating rare IDs by refined activation and silencing of disturbed imprinted gene expression. This review describes major CRISPR-based epigenome editors and points out their potential use in research and therapy of rare imprinting diseases.
Collapse
Affiliation(s)
- Linn Amanda Syding
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, v.v.i, 252 50 Vestec, Czech Republic
| | - Petr Nickl
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, v.v.i, 252 50 Vestec, Czech Republic
| | - Petr Kasparek
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, v.v.i, 252 50 Vestec, Czech Republic
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the CAS, v.v.i, 252 50 Vestec, Czech Republic
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, v.v.i, 252 50 Vestec, Czech Republic
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the CAS, v.v.i, 252 50 Vestec, Czech Republic
- Correspondence: ; Tel.: +420-325-873-243
| |
Collapse
|
42
|
Fernando MB, Ahfeldt T, Brennand KJ. Modeling the complex genetic architectures of brain disease. Nat Genet 2020; 52:363-369. [PMID: 32203467 PMCID: PMC7909729 DOI: 10.1038/s41588-020-0596-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022]
Abstract
The genetic architecture of each individual comprises common and rare variants that, acting alone and in combination, confer risk of disease. The cell-type-specific and/or context-dependent functional consequences of the risk variants linked to brain disease must be resolved. Coupling human induced pluripotent stem cell (hiPSC)-based technology with CRISPR-based genome engineering facilitates precise isogenic comparisons of variants across genetic backgrounds. Although functional-validation studies are typically performed on one variant in isolation and in one cell type at a time, complex genetic diseases require multiplexed gene perturbations to interrogate combinations of genes and resolve physiologically relevant disease biology. Our aim is to discuss advances at the intersection of genomics, hiPSCs and CRISPR. A better understanding of the molecular mechanisms underlying disease risk will improve genetic diagnosis, drive phenotypic drug discovery and pave the way toward precision medicine.
Collapse
Affiliation(s)
- Michael B Fernando
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Alper Neural Stem Cell Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tim Ahfeldt
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Alper Neural Stem Cell Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen J Brennand
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Alper Neural Stem Cell Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
43
|
Follow Me! A Tale of Avian Heart Development with Comparisons to Mammal Heart Development. J Cardiovasc Dev Dis 2020; 7:jcdd7010008. [PMID: 32156044 PMCID: PMC7151090 DOI: 10.3390/jcdd7010008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
Avian embryos have been used for centuries to study development due to the ease of access. Because the embryos are sheltered inside the eggshell, a small window in the shell is ideal for visualizing the embryos and performing different interventions. The window can then be covered, and the embryo returned to the incubator for the desired amount of time, and observed during further development. Up to about 4 days of chicken development (out of 21 days of incubation), when the egg is opened the embryo is on top of the yolk, and its heart is on top of its body. This allows easy imaging of heart formation and heart development using non-invasive techniques, including regular optical microscopy. After day 4, the embryo starts sinking into the yolk, but still imaging technologies, such as ultrasound, can tomographically image the embryo and its heart in vivo. Importantly, because like the human heart the avian heart develops into a four-chambered heart with valves, heart malformations and pathologies that human babies suffer can be replicated in avian embryos, allowing a unique developmental window into human congenital heart disease. Here, we review avian heart formation and provide comparisons to the mammalian heart.
Collapse
|
44
|
Li K, Liu Y, Cao H, Zhang Y, Gu Z, Liu X, Yu A, Kaphle P, Dickerson KE, Ni M, Xu J. Interrogation of enhancer function by enhancer-targeting CRISPR epigenetic editing. Nat Commun 2020; 11:485. [PMID: 31980609 PMCID: PMC6981169 DOI: 10.1038/s41467-020-14362-5] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/03/2020] [Indexed: 12/22/2022] Open
Abstract
Tissue-specific gene expression requires coordinated control of gene-proximal and -distal cis-regulatory elements (CREs), yet functional analysis of gene-distal CREs such as enhancers remains challenging. Here we describe CRISPR/dCas9-based enhancer-targeting epigenetic editing systems, enCRISPRa and enCRISPRi, for efficient analysis of enhancer function in situ and in vivo. Using dual effectors capable of re-writing enhancer-associated chromatin modifications, we show that enCRISPRa and enCRISPRi modulate gene transcription by remodeling local epigenetic landscapes at sgRNA-targeted enhancers and associated genes. Comparing with existing methods, the improved systems display more robust perturbations of enhancer activity and gene transcription with minimal off-targets. Allele-specific targeting of enCRISPRa to oncogenic TAL1 super-enhancer modulates TAL1 expression and cancer progression in xenotransplants. Single or multi-loci perturbations of lineage-specific enhancers using an enCRISPRi knock-in mouse establish in vivo evidence for lineage-restricted essentiality of developmental enhancers during hematopoiesis. Hence, enhancer-targeting CRISPR epigenetic editing provides opportunities for interrogating enhancer function in native biological contexts.
Collapse
Affiliation(s)
- Kailong Li
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yuxuan Liu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hui Cao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yuannyu Zhang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zhimin Gu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xin Liu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Andy Yu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- SURF-Stem Cell Program, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Pranita Kaphle
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kathryn E Dickerson
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Min Ni
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jian Xu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
45
|
Early chromatin shaping predetermines multipotent vagal neural crest into neural, neuronal and mesenchymal lineages. Nat Cell Biol 2019; 21:1504-1517. [PMID: 31792380 PMCID: PMC7188519 DOI: 10.1038/s41556-019-0428-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 10/28/2019] [Indexed: 01/28/2023]
Abstract
The enteric nervous system (ENS) predominantly originates from vagal neural crest cells (VNC) that emerge from the caudal hindbrain, invade the foregut and populate the gastrointestinal tract. However, the gene regulatory network (GRN) orchestrating the early specification of VNC remains unknown. Using an EdnrB enhancer, we generated a comprehensive temporal map of the chromatin and transcriptional landscape of VNC in the avian model, revealing three VNC cell clusters (neural, neurogenic and mesenchymal), each predetermined epigenetically prior to neural tube delamination. We identify and functionally validate regulatory cores (Sox10/Tfap2B/SoxB/Hbox) mediating each programme and elucidate their combinatorial activities with other spatiotemporally-specific transcription factors (bHLH/NR). Our global deconstruction of the VNC-GRN in vivo sheds light on critical early regulatory mechanisms that may influence the divergent neural phenotypes in enteric neuropathies.
Collapse
|
46
|
MacLeod RS, Cawley KM, Gubrij I, Nookaew I, Onal M, O'Brien CA. Effective CRISPR interference of an endogenous gene via a single transgene in mice. Sci Rep 2019; 9:17312. [PMID: 31754144 PMCID: PMC6872636 DOI: 10.1038/s41598-019-53611-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Drawbacks of conditional gene deletion in mice include the need for extensive breeding and, often, a lack of cell type-specificity. CRISPR interference (CRISPRi) is an alternative approach for loss-of-function studies that inhibits expression by guiding a transcriptional repressor to the transcription start-site of target genes. However, there has been limited exploration of CRISPRi in mice. We tested the effectiveness of a single CRISPRi transgene broadly expressing a single guide RNA and a catalytically dead Cas9 fused to the KRAB repressor domain to suppress a well-characterized target gene, Tnfsf11. The phenotype of CRISPRi transgenic mice was compared to mice with germline deletion of Tnfsf11, which are osteopetrotic and do not form lymph nodes. High transgene expression mimicked gene deletion, with failure of lymph node development and classic signs of osteopetrosis such as high bone mass and failure of tooth eruption. Mice with low transgene expression were normal and mice with medium expression displayed an intermediate phenotype. Transgene expression in tissues from these mice correlated inversely with Tnfsf11 mRNA levels. These results demonstrate that a single CRISPRi transgene can effectively suppress a target gene in mice and suggest that this approach may be useful for cell type-specific loss-of-function studies.
Collapse
Affiliation(s)
- Ryan S MacLeod
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA
- Division of Endocrinology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA
| | - Keisha M Cawley
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA
- Division of Endocrinology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA
| | - Igor Gubrij
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA
- Division of Endocrinology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA
| | - Intawat Nookaew
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA
- Department of Bioinformatics, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA
| | - Melda Onal
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA
| | - Charles A O'Brien
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA.
- Division of Endocrinology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA.
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA.
- Central Arkansas Veterans Healthcare System, Little Rock, 72205, AR, USA.
| |
Collapse
|
47
|
Williams RM, Candido-Ferreira I, Repapi E, Gavriouchkina D, Senanayake U, Ling ITC, Telenius J, Taylor S, Hughes J, Sauka-Spengler T. Reconstruction of the Global Neural Crest Gene Regulatory Network In Vivo. Dev Cell 2019; 51:255-276.e7. [PMID: 31639368 PMCID: PMC6838682 DOI: 10.1016/j.devcel.2019.10.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/31/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023]
Abstract
Precise control of developmental processes is encoded in the genome in the form of gene regulatory networks (GRNs). Such multi-factorial systems are difficult to decode in vertebrates owing to their complex gene hierarchies and dynamic molecular interactions. Here we present a genome-wide in vivo reconstruction of the GRN underlying development of the multipotent neural crest (NC) embryonic cell population. By coupling NC-specific epigenomic and transcriptional profiling at population and single-cell levels with genome/epigenome engineering in vivo, we identify multiple regulatory layers governing NC ontogeny, including NC-specific enhancers and super-enhancers, novel trans-factors, and cis-signatures allowing reverse engineering of the NC-GRN at unprecedented resolution. Furthermore, identification and dissection of divergent upstream combinatorial regulatory codes has afforded new insights into opposing gene circuits that define canonical and neural NC fates early during NC ontogeny. Our integrated approach, allowing dissection of cell-type-specific regulatory circuits in vivo, has broad implications for GRN discovery and investigation.
Collapse
Affiliation(s)
- Ruth M Williams
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Ivan Candido-Ferreira
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Emmanouela Repapi
- University of Oxford, MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK
| | - Daria Gavriouchkina
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Upeka Senanayake
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Irving T C Ling
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK; University of Oxford, Department of Paediatric Surgery, Children's Hospital Oxford, Oxford, UK
| | - Jelena Telenius
- University of Oxford, MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK; University of Oxford, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Stephen Taylor
- University of Oxford, MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK
| | - Jim Hughes
- University of Oxford, MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK; University of Oxford, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Tatjana Sauka-Spengler
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK.
| |
Collapse
|
48
|
Gammill LS, Jacques-Fricke B, Roffers-Agarwal J. Embryological and Genetic Manipulation of Chick Development. Methods Mol Biol 2019; 1920:75-97. [PMID: 30737687 DOI: 10.1007/978-1-4939-9009-2_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability to combine embryological manipulations with gene function analysis in an amniote embryo makes the chick a valuable system for the vertebrate developmental biologist. This chapter describes methods for those unfamiliar with the chick system wishing to initiate experiments in their lab. After outlining methods to prepare chick embryos, protocols are provided for introducing beads or cells expressing secreted factors, and for culturing tissue explants as a means of assessing development in vitro. Approaches to achieve gain of function and loss of function (morpholino oligonucleotides) in chick are outlined, and methods for introducing these reagents by electroporation are detailed.
Collapse
Affiliation(s)
- Laura S Gammill
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
| | - Bridget Jacques-Fricke
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.,Department of Biology, Hamline University, Saint Paul, MN, USA
| | - Julaine Roffers-Agarwal
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
49
|
Lau CH, Suh Y. In vivo epigenome editing and transcriptional modulation using CRISPR technology. Transgenic Res 2018; 27:489-509. [PMID: 30284145 PMCID: PMC6261694 DOI: 10.1007/s11248-018-0096-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/25/2018] [Indexed: 01/11/2023]
Abstract
The rapid advancement of CRISPR technology has enabled targeted epigenome editing and transcriptional modulation in the native chromatin context. However, only a few studies have reported the successful editing of the epigenome in adult animals in contrast to the rapidly growing number of in vivo genome editing over the past few years. In this review, we discuss the challenges facing in vivo epigenome editing and new strategies to overcome the huddles. The biggest challenge has been the difficulty in packaging dCas9 fusion proteins required for manipulation of epigenome into the adeno-associated virus (AAV) delivery vehicle. We review the strategies to address the AAV packaging issue, including small dCas9 orthologues, truncated dCas9 mutants, a split-dCas9 system, and potent truncated effector domains. We discuss the dCas9 conjugation strategies to recruit endogenous chromatin modifiers and remodelers to specific genomic loci, and recently developed methods to recruit multiple copies of the dCas9 fusion protein, or to simultaneous express multiple gRNAs for robust epigenome editing or synergistic transcriptional modulation. The use of Cre-inducible dCas9-expressing mice or a genetic cross between dCas9- and sgRNA-expressing flies has also helped overcome the transgene delivery issue. We provide perspective on how a combination use of these strategies can facilitate in vivo epigenome editing and transcriptional modulation.
Collapse
Affiliation(s)
- Cia-Hin Lau
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR, China
| | - Yousin Suh
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
50
|
Tani-Matsuhana S, Vieceli FM, Gandhi S, Inoue K, Bronner ME. Transcriptome profiling of the cardiac neural crest reveals a critical role for MafB. Dev Biol 2018; 444 Suppl 1:S209-S218. [PMID: 30236445 DOI: 10.1016/j.ydbio.2018.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 09/05/2018] [Accepted: 09/15/2018] [Indexed: 12/11/2022]
Abstract
The cardiac neural crest originates in the caudal hindbrain, migrates to the heart, and contributes to septation of the cardiac outflow tract and ventricles, an ability unique to this neural crest subpopulation. Here we have used a FoxD3 neural crest enhancer to isolate a pure population of cardiac neural crest cells for transcriptome analysis. This has led to the identification of transcription factors, signaling receptors/ligands, and cell adhesion molecules upregulated in the early migrating cardiac neural crest. We then functionally tested the role of one of the upregulated transcription factors, MafB, and found that it acts as a regulator of Sox10 expression specifically in the cardiac neural crest. Our results not only reveal the genome-wide profile of early migrating cardiac neural crest cells, but also provide molecular insight into what makes the cardiac neural crest unique.
Collapse
Affiliation(s)
- Saori Tani-Matsuhana
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Felipe Monteleone Vieceli
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shashank Gandhi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kunio Inoue
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|