1
|
Pipicelli F, Villalba A, Hippenmeyer S. How radial glia progenitor lineages generate cell-type diversity in the developing cerebral cortex. Curr Opin Neurobiol 2025; 93:103046. [PMID: 40383049 DOI: 10.1016/j.conb.2025.103046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/05/2025] [Accepted: 04/18/2025] [Indexed: 05/20/2025]
Abstract
The cerebral cortex is arguably the most complex organ in humans. The cortical architecture is characterized by a remarkable diversity of neuronal and glial cell types that make up its neuronal circuits. Following a precise temporally ordered program, radial glia progenitor (RGP) cells generate all cortical excitatory projection neurons and glial cell-types. Cortical excitatory projection neurons are produced either directly or via intermediate progenitors, through indirect neurogenesis. How the extensive cortical cell-type diversity is generated during cortex development remains, however, a fundamental open question. How do RGPs quantitatively and qualitatively generate all the neocortical neurons? How does direct and indirect neurogenesis contribute to the establishment of neuronal and lineage heterogeneity? Whether RGPs represent a homogeneous and/or multipotent progenitor population, or if RGPs consist of heterogeneous groups is currently also not known. In this review, we will summarize the latest findings that contributed to a deeper insight into the above key questions.
Collapse
Affiliation(s)
- Fabrizia Pipicelli
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Ana Villalba
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
2
|
Huilgol D, Levine JM, Galbavy W, Wang BS, Huang ZJ. Orderly specification and precise laminar deployment of mouse cortical projection neuron types through intermediate progenitors. Dev Cell 2025:S1534-5807(25)00114-5. [PMID: 40068685 DOI: 10.1016/j.devcel.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/11/2024] [Accepted: 02/14/2025] [Indexed: 03/19/2025]
Abstract
The cerebral cortex comprises diverse types of glutamatergic projection neurons (PNs) generated from radial glial progenitors (RGs) through either direct neurogenesis (dNG) or indirect neurogenesis (iNG) via intermediate progenitors (IPs). A foundational concept in corticogenesis is the "inside-out" model, whereby successive generations of PNs sequentially migrate first to deep and then progressively to more superficial layers. However, its biological significance remains unclear, and the role of iNG in this process is unknown. Using genetic strategies linking PN birth dating to projection mapping in mice, we found that the laminar deployment of IP-derived PNs substantially deviates from a stringent inside-out rule: PNs destined to non-consecutive layers are generated at the same time, and different PN types of the same layer are generated at non-contiguous times. The overarching scheme of iNG is the sequential specification and precise laminar deployment of projection-defined PN types, which may contribute to the orderly assembly of cortical output channels and processing streams.
Collapse
Affiliation(s)
- Dhananjay Huilgol
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Jesse M Levine
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Program in Neuroscience and Medical Scientist Training Program, Stony Brook University, Stony Brook, NY, USA
| | - William Galbavy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Bor-Shuen Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Z Josh Huang
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
3
|
Shimaoka K, Hori K, Miyashita S, Inoue YU, Tabe NKN, Sakamoto A, Hasegawa I, Nishitani K, Yamashiro K, Egusa SF, Tatsumoto S, Go Y, Abe M, Sakimura K, Inoue T, Imamura T, Hoshino M. The microcephaly-associated transcriptional regulator AUTS2 cooperates with Polycomb complex PRC2 to produce upper-layer neurons in mice. EMBO J 2025; 44:1354-1378. [PMID: 39815005 PMCID: PMC11876313 DOI: 10.1038/s44318-024-00343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 01/18/2025] Open
Abstract
AUTS2 syndrome is characterized by intellectual disability and microcephaly, and is often associated with autism spectrum disorder, but the underlying mechanisms, particularly concerning microcephaly, remain incompletely understood. Here, we analyze mice mutated for the transcriptional regulator AUTS2, which recapitulate microcephaly. Their brains exhibit reduced division of intermediate progenitor cells (IPCs), leading to fewer neurons and decreased thickness in the upper-layer cortex. Increased expression of the AUTS2 transcriptional target Robo1 in the mutant animals suppresses IPC division, and transcriptomic and chromatin profiling shows that AUTS2 primarily represses transcription of genes like Robo1 in IPCs. Regions around the transcriptional start sites of AUTS2 target genes are enriched for the repressive histone modification H3K27me3, which is reduced in Auts2 mutants. Furthermore, we find that AUTS2 interacts with Polycomb complex PRC2, with which it cooperates to promote IPC division. These findings shed light on the microcephaly phenotype observed in the AUTS2 syndrome.
Collapse
Affiliation(s)
- Kazumi Shimaoka
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Kei Hori
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Satoshi Miyashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Yukiko U Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Nao K N Tabe
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
- Department of NCNP Brain Physiology and Pathology, Institute of Science Tokyo, Tokyo, 113-8510, Japan
| | - Asami Sakamoto
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Ikuko Hasegawa
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Kayo Nishitani
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Kunihiko Yamashiro
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Saki F Egusa
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Shoji Tatsumoto
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Yasuhiro Go
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
- Department of System Neuroscience, Division of Behavioral Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
- Graduate School of Information Science, University of Hyogo, Kobe, Hyogo, 650-0047, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Takayoshi Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Takuya Imamura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan.
- Department of NCNP Brain Physiology and Pathology, Institute of Science Tokyo, Tokyo, 113-8510, Japan.
| |
Collapse
|
4
|
Hatanaka Y, Yamada K, Eritate T, Kawaguchi Y, Hirata T. Neuronal fate resulting from indirect neurogenesis in the mouse neocortex. Cereb Cortex 2024; 34:bhae439. [PMID: 39526524 DOI: 10.1093/cercor/bhae439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Excitatory cortical neurons originate from cortical radial glial cells (RGCs). Initially, these neurons were thought to derive directly from RGCs (direct neurogenesis) and be distributed in an inside-out fashion. However, the discovery of indirect neurogenesis, whereby intermediate neuronal progenitors (INPs) generate neurons, challenged this view. To investigate the integration of neurons via these two modes, we developed a method to identify INP progeny and analyze their fate using transgenic mice expressing tamoxifen-inducible Cre recombinase under the neurogenin-2 promoter, alongside thymidine analog incorporation. Their fate was further analyzed using mosaic analysis with double markers in mice. Indirect neurogenesis was prominent during early neurogenesis, generating neuron types that would emerge slightly later than those produced via direct neurogenesis. Despite the timing difference, both neurogenic modes produced fundamentally similar neuron types, as evidenced by marker expression and cortical-depth location. Furthermore, INPs generated pairs of similar phenotype neurons. These findings suggest that indirect neurogenesis, like direct neurogenesis, generates neuron types in a temporally ordered sequence and increases the number of similar neuron types, particularly in deep layers. Thus, both neurogenic modes cooperatively generate a diverse array of neuron types in a similar order, and their progeny populate together to form a coherent cortical structure.
Collapse
Affiliation(s)
- Yumiko Hatanaka
- Laboratory of Cellular and Molecular Neurobiology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Developmental Neuroscience Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Kentaro Yamada
- Laboratory of Cellular and Molecular Neurobiology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomoki Eritate
- Laboratory of Cellular and Molecular Neurobiology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuo Kawaguchi
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Brain Science Institute, Tamagawa University, Machida, Tokyo 194-8610, Japan
| | - Tatsumi Hirata
- Brain Function Laboratory, National Institute of Genetics, SOKENDAI, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
5
|
Bury LAD, Fu S, Wynshaw-Boris A. Neuronal lineage tracing from progenitors in human cortical organoids reveals mechanisms of neuronal production, diversity, and disease. Cell Rep 2024; 43:114862. [PMID: 39395167 DOI: 10.1016/j.celrep.2024.114862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 08/14/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024] Open
Abstract
The contribution of progenitor subtypes to generating the billions of neurons produced during human cortical neurogenesis is not well understood. We developed the cortical organoid lineage-tracing (COR-LT) system for human cortical organoids. Differential fluorescent reporter activation in distinct progenitor cells leads to permanent reporter expression, enabling the progenitor cell lineage of neurons to be determined. Surprisingly, nearly all excitatory neurons produced in cortical organoids were generated indirectly from intermediate progenitor cells. Additionally, neurons of different progenitor lineages were transcriptionally distinct. Isogenic lines made from an autistic individual with and without a likely pathogenic CTNNB1 variant demonstrated that the variant substantially altered the proportion of neurons derived from specific progenitor cell lineages, as well as the lineage-specific transcriptional profiles of these neurons, suggesting a pathogenic mechanism for this mutation. These results suggest individual progenitor subtypes play roles in generating the diverse neurons of the human cerebral cortex.
Collapse
Affiliation(s)
- Luke A D Bury
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Shuai Fu
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
6
|
Thor S. Indirect neurogenesis in space and time. Nat Rev Neurosci 2024; 25:519-534. [PMID: 38951687 DOI: 10.1038/s41583-024-00833-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/03/2024]
Abstract
During central nervous system (CNS) development, neural progenitor cells (NPCs) generate neurons and glia in two different ways. In direct neurogenesis, daughter cells differentiate directly into neurons or glia, whereas in indirect neurogenesis, neurons or glia are generated after one or more daughter cell divisions. Intriguingly, indirect neurogenesis is not stochastically deployed and plays instructive roles during CNS development: increased generation of cells from specific lineages; increased generation of early or late-born cell types within a lineage; and increased cell diversification. Increased indirect neurogenesis might contribute to the anterior CNS expansion evident throughout the Bilateria and help to modify brain-region size without requiring increased NPC numbers or extended neurogenesis. Increased indirect neurogenesis could be an evolutionary driver of the gyrencephalic (that is, folded) cortex that emerged during mammalian evolution and might even have increased during hominid evolution. Thus, selection of indirect versus direct neurogenesis provides a powerful developmental and evolutionary instrument that drives not only the evolution of CNS complexity but also brain expansion and modulation of brain-region size, and thereby the evolution of increasingly advanced cognitive abilities. This Review describes indirect neurogenesis in several model species and humans, and highlights some of the molecular genetic mechanisms that control this important process.
Collapse
Affiliation(s)
- Stefan Thor
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
7
|
Deng H, Tong S, Shen D, Zhang S, Fu Y. The characteristics of excitatory lineage differentiation and the developmental conservation in Reeler neocortex. Cell Prolif 2024; 57:e13587. [PMID: 38084819 PMCID: PMC11056708 DOI: 10.1111/cpr.13587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 04/30/2024] Open
Abstract
The majority of neocortical projection neurons are generated indirectly from radial glial cells (RGCs) mediated by intermediate progenitor cells (IPCs) in mice. IPCs are thought to be a great breakthrough in the evolutionary expansion of the mammalian neocortex. However, the precise ratio of neuron production from IPCs and characteristics of RGC differentiation process are still unclear. Our study revealed that direct neurogenesis was seldom observed and increased slightly at late embryonic stage. Besides, we conducted retrovirus sparse labelling combined carboxyfluorescein diacetate succinimide ester (CFSE) and Tbr2-CreER strain to reconstruct individual lineage tree in situ. The lineage trees simulated the output of RGCs at per round of division in sequence with high temporal, spatial and cellular resolution at P7. We then demonstrated that only 1.90% of neurons emanated from RGCs directly in mouse cerebral neocortex and 79.33% of RGCs contributed to the whole clones through IPCs. The contribution of indirect neurogenesis was underestimated previously because approximately a quarter of IPC-derived neurons underwent apoptosis. Here, we also showed that abundant IPCs from first-generation underwent self-renewing division and generated four neurons ultimately. We confirmed that the intermediate proliferative progenitors expressed higher Cux2 characteristically at early embryonic stage. Finally, we validated that the characteristics of neurogenetic process in lineages and developmental fate of neurons were conserved in Reeler mice. This study contributes to further understanding of neurogenesis in neocortical development.
Collapse
Affiliation(s)
- Huan‐Huan Deng
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Shi‐Yuan Tong
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Dan Shen
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Shu‐Qing Zhang
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Yinghui Fu
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
8
|
Huilgol D, Levine JM, Galbavy W, Wang BS, Josh Huang Z. Orderly specification and precise laminar deployment of cortical glutamatergic projection neuron types through intermediate progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582863. [PMID: 38645016 PMCID: PMC11027211 DOI: 10.1101/2024.03.01.582863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The cerebral cortex comprises diverse types of glutamatergic projection neurons (PNs) generated from radial glial progenitors (RGs) through either direct neurogenesis or indirect neurogenesis (iNG) via intermediate progenitors (IPs). A foundational concept in corticogenesis is the "inside-out" model whereby successive generations of PNs sequentially migrate to deep then progressively more superficial layers, but its biological significance remains unclear; and the role of iNG in this process is unknown. Using genetic strategies linking PN birth-dating to projection mapping in mice, we found that the laminar deployment of IP-derived PNs substantially deviate from an inside-out rule: PNs destined to non-consecutive layers are generated at the same time, and different PN types of the same layer are generated at non-contiguous times. The overarching scheme of iNG is the sequential specification and precise laminar deployment of projection-defined PN types, which may contribute to the orderly assembly of cortical output channels and processing streams. HIGHLIGHTS - Each IP is fate-restricted to generate a pair of near-identical PNs - Corticogenesis involves the orderly generation of fate-restricted IP temporal cohorts - IP temporal cohorts sequentially as well as concurrently specify multiple PN types - The deployment of PN types to specific layers does not follow an inside-out order.
Collapse
|
9
|
Shen Z, Yang J, Zhang Q, Wang K, Lv X, Hu X, Ma J, Shi SH. How variable progenitor clones construct a largely invariant neocortex. Natl Sci Rev 2024; 11:nwad247. [PMID: 38274004 PMCID: PMC10810685 DOI: 10.1093/nsr/nwad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 01/27/2024] Open
Abstract
The neocortex contains a vast collection of diverse neurons organized into distinct layers. While nearly all neocortical neurons are generated by radial glial progenitors (RGPs), it remains largely unclear how a complex yet organized neocortex is constructed reliably and robustly. Here, we show that the division behavior and neuronal output of RGPs are highly constrained with patterned variabilities to support the reliable and robust construction of the mouse neocortex. The neurogenic process of RGPs can be well-approximated by a consistent Poisson-like process unfolding over time, producing deep to superficial layer neurons progressively. The exact neuronal outputs regarding layer occupation are variable; yet, this variability is constrained systematically to support all layer formation, largely reflecting the variable intermediate progenitor generation and RGP neurogenic entry and exit timing differences. Together, these results define the fundamental features of neocortical neurogenesis with a balanced reliability and variability for the construction of the complex neocortex.
Collapse
Affiliation(s)
- Zhongfu Shen
- New Cornerstone Science Laboratory, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiajun Yang
- New Cornerstone Science Laboratory, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiangqiang Zhang
- New Cornerstone Science Laboratory, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kuiyu Wang
- Department of Computer Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohui Lv
- New Cornerstone Science Laboratory, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaolin Hu
- Department of Computer Sciences, Tsinghua University, Beijing 100084, China
| | - Jian Ma
- New Cornerstone Science Laboratory, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Song-Hai Shi
- New Cornerstone Science Laboratory, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
10
|
Cossard A, Stam K, Smets A, Jossin Y. MKL/SRF and Bcl6 mutual transcriptional repression safeguards the fate and positioning of neocortical progenitor cells mediated by RhoA. SCIENCE ADVANCES 2023; 9:eadd0676. [PMID: 37967194 PMCID: PMC10651131 DOI: 10.1126/sciadv.add0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
During embryogenesis, multiple intricate and intertwined cellular signaling pathways coordinate cell behavior. Their slightest alterations can have dramatic consequences for the cells and the organs they form. The transcriptional repressor Bcl6 was recently found as important for brain development. However, its regulation and integration with other signals is unknown. Using in vivo functional approaches combined with molecular mechanistic analysis, we identified a reciprocal regulatory loop between B cell lymphoma 6 (Bcl6) and the RhoA-regulated transcriptional complex megakaryoblastic leukemia/serum response factor (MKL/SRF). We show that Bcl6 physically interacts with MKL/SRF, resulting in a down-regulation of the transcriptional activity of both Bcl6 and MKL/SRF. This molecular cross-talk is essential for the control of proliferation, neurogenesis, and spatial positioning of neural progenitors. Overall, our data highlight a regulatory mechanism that controls neuronal production and neocortical development and reveal an MKL/SRF and Bcl6 interaction that may have broader implications in other physiological functions and in diseases.
Collapse
Affiliation(s)
- Alexia Cossard
- Laboratory of Mammalian Development and Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels 1200, Belgium
| | | | | | | |
Collapse
|
11
|
Huilgol D, Levine JM, Galbavy W, Wang BS, He M, Suryanarayana SM, Huang ZJ. Direct and indirect neurogenesis generate a mosaic of distinct glutamatergic projection neuron types in cerebral cortex. Neuron 2023; 111:2557-2569.e4. [PMID: 37348506 PMCID: PMC10527425 DOI: 10.1016/j.neuron.2023.05.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 02/27/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023]
Abstract
Variations in size and complexity of the cerebral cortex result from differences in neuron number and composition, rooted in evolutionary changes in direct and indirect neurogenesis (dNG and iNG) that are mediated by radial glia and intermediate progenitors (IPs), respectively. How dNG and iNG differentially contribute to neuronal number, diversity, and connectivity are unknown. Establishing a genetic fate-mapping method to differentially visualize dNG and iNG in mice, we found that while both dNG and iNG contribute to all cortical structures, iNG contributes the largest relative proportions to the hippocampus and neocortex. Within the neocortex, whereas dNG generates all major glutamatergic projection neuron (PN) classes, iNG differentially amplifies and diversifies PNs within each class; the two pathways generate distinct PN types and assemble fine mosaics of lineage-based cortical subnetworks. Our results establish a ground-level lineage framework for understanding cortical development and evolution by linking foundational progenitor types and neurogenic pathways to PN types.
Collapse
Affiliation(s)
- Dhananjay Huilgol
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jesse M Levine
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience and Medical Scientist Training Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - William Galbavy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bor-Shuen Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Miao He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | | | - Z Josh Huang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
12
|
Manuel M, Tan KB, Kozic Z, Molinek M, Marcos TS, Razak MFA, Dobolyi D, Dobie R, Henderson BEP, Henderson NC, Chan WK, Daw MI, Mason JO, Price DJ. Pax6 limits the competence of developing cerebral cortical cells to respond to inductive intercellular signals. PLoS Biol 2022; 20:e3001563. [PMID: 36067211 PMCID: PMC9481180 DOI: 10.1371/journal.pbio.3001563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/16/2022] [Accepted: 07/08/2022] [Indexed: 12/13/2022] Open
Abstract
The development of stable specialized cell types in multicellular organisms relies on mechanisms controlling inductive intercellular signals and the competence of cells to respond to such signals. In developing cerebral cortex, progenitors generate only glutamatergic excitatory neurons despite being exposed to signals with the potential to initiate the production of other neuronal types, suggesting that their competence is limited. Here, we tested the hypothesis that this limitation is due to their expression of transcription factor Pax6. We used bulk and single-cell RNAseq to show that conditional cortex-specific Pax6 deletion from the onset of cortical neurogenesis allowed some progenitors to generate abnormal lineages resembling those normally found outside the cortex. Analysis of selected gene expression showed that the changes occurred in specific spatiotemporal patterns. We then compared the responses of control and Pax6-deleted cortical cells to in vivo and in vitro manipulations of extracellular signals. We found that Pax6 loss increased cortical progenitors' competence to generate inappropriate lineages in response to extracellular factors normally present in developing cortex, including the morphogens Shh and Bmp4. Regional variation in the levels of these factors could explain spatiotemporal patterns of fate change following Pax6 deletion in vivo. We propose that Pax6's main role in developing cortical cells is to minimize the risk of their development being derailed by the potential side effects of morphogens engaged contemporaneously in other essential functions.
Collapse
Affiliation(s)
- Martine Manuel
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Kai Boon Tan
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Zrinko Kozic
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael Molinek
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Tiago Sena Marcos
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Maizatul Fazilah Abd Razak
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Dániel Dobolyi
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Ross Dobie
- Centre for Inflammation Research, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Beth E. P. Henderson
- Centre for Inflammation Research, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Neil C. Henderson
- Centre for Inflammation Research, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Wai Kit Chan
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael I. Daw
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, Zhejiang, People’s Republic of China
| | - John O. Mason
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - David J. Price
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Sapir T, Kshirsagar A, Gorelik A, Olender T, Porat Z, Scheffer IE, Goldstein DB, Devinsky O, Reiner O. Heterogeneous nuclear ribonucleoprotein U (HNRNPU) safeguards the developing mouse cortex. Nat Commun 2022; 13:4209. [PMID: 35864088 PMCID: PMC9304408 DOI: 10.1038/s41467-022-31752-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 06/30/2022] [Indexed: 11/20/2022] Open
Abstract
HNRNPU encodes the heterogeneous nuclear ribonucleoprotein U, which participates in RNA splicing and chromatin organization. Microdeletions in the 1q44 locus encompassing HNRNPU and other genes and point mutations in HNRNPU cause brain disorders, including early-onset seizures and severe intellectual disability. We aimed to understand HNRNPU’s roles in the developing brain. Our work revealed that HNRNPU loss of function leads to rapid cell death of both postmitotic neurons and neural progenitors, with an apparent higher sensitivity of the latter. Further, expression and alternative splicing of multiple genes involved in cell survival, cell motility, and synapse formation are affected following Hnrnpu’s conditional truncation. Finally, we identified pharmaceutical and genetic agents that can partially reverse the loss of cortical structures in Hnrnpu mutated embryonic brains, ameliorate radial neuronal migration defects and rescue cultured neural progenitors’ cell death. HNRNPU is an RNA splicing protein associated with brain disorders such as early onset seizures. Here they show that HNRNPU functions to maintain neural progenitors and their progeny by regulating splicing of key neuronal genes.
Collapse
Affiliation(s)
- Tamar Sapir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Aditya Kshirsagar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Gorelik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Flow Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ingrid E Scheffer
- The University of Melbourne, Austin Health and Royal Children's Hospital, Florey and Murdoch Children's Research Institutes, Melbourne, VIC, Australia
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | | | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
14
|
Espinós A, Fernández‐Ortuño E, Negri E, Borrell V. Evolution of genetic mechanisms regulating cortical neurogenesis. Dev Neurobiol 2022; 82:428-453. [PMID: 35670518 PMCID: PMC9543202 DOI: 10.1002/dneu.22891] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 05/24/2022] [Indexed: 11/20/2022]
Abstract
The size of the cerebral cortex increases dramatically across amniotes, from reptiles to great apes. This is primarily due to different numbers of neurons and glial cells produced during embryonic development. The evolutionary expansion of cortical neurogenesis was linked to changes in neural stem and progenitor cells, which acquired increased capacity of self‐amplification and neuron production. Evolution works via changes in the genome, and recent studies have identified a small number of new genes that emerged in the recent human and primate lineages, promoting cortical progenitor proliferation and increased neurogenesis. However, most of the mammalian genome corresponds to noncoding DNA that contains gene‐regulatory elements, and recent evidence precisely points at changes in expression levels of conserved genes as key in the evolution of cortical neurogenesis. Here, we provide an overview of basic cellular mechanisms involved in cortical neurogenesis across amniotes, and discuss recent progress on genetic mechanisms that may have changed during evolution, including gene expression regulation, leading to the expansion of the cerebral cortex.
Collapse
Affiliation(s)
- Alexandre Espinós
- Instituto de Neurociencias CSIC ‐ UMH, 03550 Sant Joan d'Alacant Spain
| | | | - Enrico Negri
- Instituto de Neurociencias CSIC ‐ UMH, 03550 Sant Joan d'Alacant Spain
| | - Víctor Borrell
- Instituto de Neurociencias CSIC ‐ UMH, 03550 Sant Joan d'Alacant Spain
| |
Collapse
|
15
|
Roque M, de Souza DAR, Rangel-Sosa MM, Altounian M, Hocine M, Deloulme JC, Barbier EL, Mann F, Chauvet S. VPS35 deficiency in the embryonic cortex leads to prenatal cell loss and abnormal development of axonal connectivity. Mol Cell Neurosci 2022; 120:103726. [DOI: 10.1016/j.mcn.2022.103726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 10/18/2022] Open
|
16
|
Multicolor strategies for investigating clonal expansion and tissue plasticity. Cell Mol Life Sci 2022; 79:141. [PMID: 35187598 PMCID: PMC8858928 DOI: 10.1007/s00018-021-04077-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/27/2021] [Accepted: 10/14/2021] [Indexed: 12/20/2022]
Abstract
Understanding the generation of complexity in living organisms requires the use of lineage tracing tools at a multicellular scale. In this review, we describe the different multicolor strategies focusing on mouse models expressing several fluorescent reporter proteins, generated by classical (MADM, Brainbow and its multiple derivatives) or acute (StarTrack, CLoNe, MAGIC Markers, iOn, viral vectors) transgenesis. After detailing the multi-reporter genetic strategies that serve as a basis for the establishment of these multicolor mouse models, we briefly mention other animal and cellular models (zebrafish, chicken, drosophila, iPSC) that also rely on these constructs. Then, we highlight practical applications of multicolor mouse models to better understand organogenesis at single progenitor scale (clonal analyses) in the brain and briefly in several other tissues (intestine, skin, vascular, hematopoietic and immune systems). In addition, we detail the critical contribution of multicolor fate mapping strategies in apprehending the fine cellular choreography underlying tissue morphogenesis in several models with a particular focus on brain cytoarchitecture in health and diseases. Finally, we present the latest technological advances in multichannel and in-depth imaging, and automated analyses that enable to better exploit the large amount of data generated from multicolored tissues.
Collapse
|
17
|
Belmonte-Mateos C, Pujades C. From Cell States to Cell Fates: How Cell Proliferation and Neuronal Differentiation Are Coordinated During Embryonic Development. Front Neurosci 2022; 15:781160. [PMID: 35046768 PMCID: PMC8761814 DOI: 10.3389/fnins.2021.781160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
The central nervous system (CNS) exhibits an extraordinary diversity of neurons, with the right cell types and proportions at the appropriate sites. Thus, to produce brains with specific size and cell composition, the rates of proliferation and differentiation must be tightly coordinated and balanced during development. Early on, proliferation dominates; later on, the growth rate almost ceases as more cells differentiate and exit the cell cycle. Generation of cell diversity and morphogenesis takes place concomitantly. In the vertebrate brain, this results in dramatic changes in the position of progenitor cells and their neuronal derivatives, whereas in the spinal cord morphogenetic changes are not so important because the structure mainly grows by increasing its volume. Morphogenesis is under control of specific genetic programs that coordinately unfold over time; however, little is known about how they operate and impact in the pools of progenitor cells in the CNS. Thus, the spatiotemporal coordination of these processes is fundamental for generating functional neuronal networks. Some key aims in developmental neurobiology are to determine how cell diversity arises from pluripotent progenitor cells, and how the progenitor potential changes upon time. In this review, we will share our view on how the advance of new technologies provides novel data that challenge some of the current hypothesis. We will cover some of the latest studies on cell lineage tracing and clonal analyses addressing the role of distinct progenitor cell division modes in balancing the rate of proliferation and differentiation during brain morphogenesis. We will discuss different hypothesis proposed to explain how progenitor cell diversity is generated and how they challenged prevailing concepts and raised new questions.
Collapse
Affiliation(s)
| | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
18
|
Su YC, Hung TH, Wang TF, Lee YH, Wang TW, Yu JY. YAP maintains the production of intermediate progenitor cells and upper-layer projection neurons in the mouse cerebral cortex. Dev Dyn 2021; 251:846-863. [PMID: 34931379 DOI: 10.1002/dvdy.448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The Hippo pathway is conserved through evolution and plays critical roles in development, tissue homeostasis and tumorigenesis. Yes-associated protein (YAP) is a transcriptional coactivator downstream of the Hippo pathway. Previous studies have demonstrated that activation of YAP promotes proliferation in the developing brain. Whether YAP is required for the production of neural progenitor cells or neurons in vivo remains unclear. RESULTS We demonstrated that SATB homeobox 2 (SATB2)-positive projection neurons (PNs) in upper layers, but not T-box brain transcription factor 1-positive and Coup-TF interacting protein 2-positive PNs in deep layers, were decreased in the neonatal cerebral cortex of Yap conditional knockout (cKO) mice driven by Nestin-Cre. Cell proliferation was reduced in the developing cerebral cortex of Yap-cKO. SATB2-positive PNs are largely generated from intermediate progenitor cells (IPCs), which are derived from radial glial cells (RGCs) during cortical development. Among these progenitor cells, IPCs but not RGCs were decreased in Yap-cKO. We further demonstrated that cell cycle re-entry was reduced in progenitor cells of Yap-cKO, suggesting that fewer IPCs were generated in Yap-cKO. CONCLUSION YAP is required for the production of IPCs and upper-layer SATB2-positive PNs during development of the cerebral cortex in mice.
Collapse
Affiliation(s)
- Yi-Ching Su
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tzu-Heng Hung
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tzu-Fang Wang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ying-Hsuan Lee
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsu-Wei Wang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Jenn-Yah Yu
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
19
|
Girskis KM, Stergachis AB, DeGennaro EM, Doan RN, Qian X, Johnson MB, Wang PP, Sejourne GM, Nagy MA, Pollina EA, Sousa AMM, Shin T, Kenny CJ, Scotellaro JL, Debo BM, Gonzalez DM, Rento LM, Yeh RC, Song JHT, Beaudin M, Fan J, Kharchenko PV, Sestan N, Greenberg ME, Walsh CA. Rewiring of human neurodevelopmental gene regulatory programs by human accelerated regions. Neuron 2021; 109:3239-3251.e7. [PMID: 34478631 DOI: 10.1016/j.neuron.2021.08.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/02/2021] [Accepted: 08/06/2021] [Indexed: 01/21/2023]
Abstract
Human accelerated regions (HARs) are the fastest-evolving regions of the human genome, and many are hypothesized to function as regulatory elements that drive human-specific gene regulatory programs. We interrogate the in vitro enhancer activity and in vivo epigenetic landscape of more than 3,100 HARs during human neurodevelopment, demonstrating that many HARs appear to act as neurodevelopmental enhancers and that sequence divergence at HARs has largely augmented their neuronal enhancer activity. Furthermore, we demonstrate PPP1R17 to be a putative HAR-regulated gene that has undergone remarkable rewiring of its cell type and developmental expression patterns between non-primates and primates and between non-human primates and humans. Finally, we show that PPP1R17 slows neural progenitor cell cycle progression, paralleling the cell cycle length increase seen predominantly in primate and especially human neurodevelopment. Our findings establish HARs as key components in rewiring human-specific neurodevelopmental gene regulatory programs and provide an integrated resource to study enhancer activity of specific HARs.
Collapse
Affiliation(s)
- Kelly M Girskis
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Andrew B Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Ellen M DeGennaro
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ryan N Doan
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xuyu Qian
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew B Johnson
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Peter P Wang
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gabrielle M Sejourne
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - M Aurel Nagy
- Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, USA; Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Elizabeth A Pollina
- Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - André M M Sousa
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Taehwan Shin
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Program in Biological and Biomedical Sciences, Harvard Medical School, Boston MA, USA
| | - Connor J Kenny
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Julia L Scotellaro
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian M Debo
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Dilenny M Gonzalez
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lariza M Rento
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rebecca C Yeh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Janet H T Song
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc Beaudin
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jean Fan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Nenad Sestan
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Michael E Greenberg
- Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Yang L, Li Z, Liu G, Li X, Yang Z. Developmental Origins of Human Cortical Oligodendrocytes and Astrocytes. Neurosci Bull 2021; 38:47-68. [PMID: 34374948 PMCID: PMC8783027 DOI: 10.1007/s12264-021-00759-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/27/2021] [Indexed: 12/30/2022] Open
Abstract
Human cortical radial glial cells are primary neural stem cells that give rise to cortical glutaminergic projection pyramidal neurons, glial cells (oligodendrocytes and astrocytes) and olfactory bulb GABAergic interneurons. One of prominent features of the human cortex is enriched with glial cells, but there are major gaps in understanding how these glial cells are generated. Herein, by integrating analysis of published human cortical single-cell RNA-Seq datasets with our immunohistochemistical analyses, we show that around gestational week 18, EGFR-expressing human cortical truncated radial glial cells (tRGs) give rise to basal multipotent intermediate progenitors (bMIPCs) that express EGFR, ASCL1, OLIG2 and OLIG1. These bMIPCs undergo several rounds of mitosis and generate cortical oligodendrocytes, astrocytes and olfactory bulb interneurons. We also characterized molecular features of the cortical tRG. Integration of our findings suggests a general picture of the lineage progression of cortical radial glial cells, a fundamental process of the developing human cerebral cortex.
Collapse
Affiliation(s)
- Lin Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Translational Brain Research, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhenmeiyu Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Translational Brain Research, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guoping Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Translational Brain Research, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaosu Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Translational Brain Research, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Translational Brain Research, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
21
|
Bedogni F, Hevner RF. Cell-Type-Specific Gene Expression in Developing Mouse Neocortex: Intermediate Progenitors Implicated in Axon Development. Front Mol Neurosci 2021; 14:686034. [PMID: 34321999 PMCID: PMC8313239 DOI: 10.3389/fnmol.2021.686034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/03/2021] [Indexed: 01/06/2023] Open
Abstract
Cerebral cortex projection neurons (PNs) are generated from intermediate progenitors (IPs), which are in turn derived from radial glial progenitors (RGPs). To investigate developmental processes in IPs, we profiled IP transcriptomes in embryonic mouse neocortex, using transgenic Tbr2-GFP mice, cell sorting, and microarrays. These data were used in combination with in situ hybridization to ascertain gene sets specific for IPs, RGPs, PNs, interneurons, and other neural and non-neural cell types. RGP-selective transcripts (n = 419) included molecules for Notch receptor signaling, proliferation, neural stem cell identity, apical junctions, necroptosis, hippo pathway, and NF-κB pathway. RGPs also expressed specific genes for critical interactions with meningeal and vascular cells. In contrast, IP-selective genes (n = 136) encoded molecules for activated Delta ligand presentation, epithelial-mesenchymal transition, core planar cell polarity (PCP), axon genesis, and intrinsic excitability. Interestingly, IPs expressed several “dependence receptors” (Unc5d, Dcc, Ntrk3, and Epha4) that induce apoptosis in the absence of ligand, suggesting a competitive mechanism for IPs and new PNs to detect key environmental cues or die. Overall, our results imply a novel role for IPs in the patterning of neuronal polarization, axon differentiation, and intrinsic excitability prior to mitosis. Significantly, IPs highly express Wnt-PCP, netrin, and semaphorin pathway molecules known to regulate axon polarization in other systems. In sum, IPs not only amplify neurogenesis quantitatively, but also molecularly “prime” new PNs for axogenesis, guidance, and excitability.
Collapse
Affiliation(s)
| | - Robert F Hevner
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
22
|
Mark B, Lai SL, Zarin AA, Manning L, Pollington HQ, Litwin-Kumar A, Cardona A, Truman JW, Doe CQ. A developmental framework linking neurogenesis and circuit formation in the Drosophila CNS. eLife 2021; 10:67510. [PMID: 33973523 PMCID: PMC8139831 DOI: 10.7554/elife.67510] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/10/2021] [Indexed: 01/02/2023] Open
Abstract
The mechanisms specifying neuronal diversity are well characterized, yet it remains unclear how or if these mechanisms regulate neural circuit assembly. To address this, we mapped the developmental origin of 160 interneurons from seven bilateral neural progenitors (neuroblasts) and identify them in a synapse-scale TEM reconstruction of the Drosophila larval central nervous system. We find that lineages concurrently build the sensory and motor neuropils by generating sensory and motor hemilineages in a Notch-dependent manner. Neurons in a hemilineage share common synaptic targeting within the neuropil, which is further refined based on neuronal temporal identity. Connectome analysis shows that hemilineage-temporal cohorts share common connectivity. Finally, we show that proximity alone cannot explain the observed connectivity structure, suggesting hemilineage/temporal identity confers an added layer of specificity. Thus, we demonstrate that the mechanisms specifying neuronal diversity also govern circuit formation and function, and that these principles are broadly applicable throughout the nervous system.
Collapse
Affiliation(s)
- Brandon Mark
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| | - Sen-Lin Lai
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| | - Aref Arzan Zarin
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| | - Laurina Manning
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| | - Heather Q Pollington
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| | - Ashok Litwin-Kumar
- Mortimer B Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, United States
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, MRC Laboratory of Molecular Biology, Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Friday Harbor Laboratories, University of Washington, Friday Harbor, United States
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| |
Collapse
|
23
|
Ulmke PA, Sakib MS, Ditte P, Sokpor G, Kerimoglu C, Pham L, Xie Y, Mao X, Rosenbusch J, Teichmann U, Nguyen HP, Fischer A, Eichele G, Staiger JF, Tuoc T. Molecular Profiling Reveals Involvement of ESCO2 in Intermediate Progenitor Cell Maintenance in the Developing Mouse Cortex. Stem Cell Reports 2021; 16:968-984. [PMID: 33798452 PMCID: PMC8072132 DOI: 10.1016/j.stemcr.2021.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Intermediate progenitor cells (IPCs) are neocortical neuronal precursors. Although IPCs play crucial roles in corticogenesis, their molecular features remain largely unknown. In this study, we aimed to characterize the molecular profile of IPCs. We isolated TBR2-positive (+) IPCs and TBR2-negative (-) cell populations in the developing mouse cortex. Comparative genome-wide gene expression analysis of TBR2+ IPCs versus TBR2- cells revealed differences in key factors involved in chromatid segregation, cell-cycle regulation, transcriptional regulation, and cell signaling. Notably, mutation of many IPC genes in human has led to intellectual disability and caused a wide range of cortical malformations, including microcephaly and agenesis of corpus callosum. Loss-of-function experiments in cortex-specific mutants of Esco2, one of the novel IPC genes, demonstrate its critical role in IPC maintenance, and substantiate the identification of a central genetic determinant of IPC biogenesis. Our data provide novel molecular characteristics of IPCs in the developing mouse cortex.
Collapse
Affiliation(s)
- Pauline Antonie Ulmke
- Institute for Neuroanatomy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - M Sadman Sakib
- German Center for Neurodegenerative Diseases, Goettingen, Germany
| | - Peter Ditte
- Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany
| | - Godwin Sokpor
- Institute for Neuroanatomy, University Medical Center, Georg-August-University, Goettingen, Germany; Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Cemil Kerimoglu
- German Center for Neurodegenerative Diseases, Goettingen, Germany
| | - Linh Pham
- Institute for Neuroanatomy, University Medical Center, Georg-August-University, Goettingen, Germany; Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Yuanbin Xie
- Institute for Neuroanatomy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Xiaoyi Mao
- Institute for Neuroanatomy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Joachim Rosenbusch
- Institute for Neuroanatomy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Ulrike Teichmann
- Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Andre Fischer
- German Center for Neurodegenerative Diseases, Goettingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Goettingen, Germany
| | - Gregor Eichele
- Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Tran Tuoc
- Institute for Neuroanatomy, University Medical Center, Georg-August-University, Goettingen, Germany; Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany.
| |
Collapse
|
24
|
Shen Z, Lin Y, Yang J, Jörg DJ, Peng Y, Zhang X, Xu Y, Hernandez L, Ma J, Simons BD, Shi SH. Distinct progenitor behavior underlying neocortical gliogenesis related to tumorigenesis. Cell Rep 2021; 34:108853. [PMID: 33730566 DOI: 10.1016/j.celrep.2021.108853] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 01/20/2021] [Accepted: 02/19/2021] [Indexed: 12/21/2022] Open
Abstract
Radial glial progenitors (RGPs) give rise to the vast majority of neurons and glia in the neocortex. Although RGP behavior and progressive generation of neocortical neurons have been delineated, the exact process of neocortical gliogenesis remains elusive. Here, we report the precise progenitor behavior and gliogenesis program at single-cell resolution in the mouse neocortex. Fractions of dorsal RGPs transition from neurogenesis to gliogenesis progressively, producing astrocytes, oligodendrocytes, or both in well-defined propensities of ∼60%, 15%, and 25%, respectively, by fate-restricted "intermediate" precursor cells (IPCs). Although the total number of IPCs generated by individual RGPs appears stochastic, the output of individual IPCs exhibit clear patterns in number and subtype and form discrete local subclusters. Clonal loss of tumor suppressor Neurofibromatosis type 1 leads to excessive production of glia selectively, especially oligodendrocyte precursor cells. These results quantitatively delineate the cellular program of neocortical gliogenesis and suggest the cellular and lineage origin of primary brain tumor.
Collapse
Affiliation(s)
- Zhongfu Shen
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yang Lin
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiajun Yang
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - David J Jörg
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Yuwei Peng
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiuli Zhang
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yifan Xu
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Luisirene Hernandez
- Neuroscience Graduate Program, Feil Family Brain & Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jian Ma
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Benjamin D Simons
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK.
| | - Song-Hai Shi
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Neuroscience Graduate Program, Feil Family Brain & Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
25
|
Figueres-Oñate M, Sánchez-González R, López-Mascaraque L. Deciphering neural heterogeneity through cell lineage tracing. Cell Mol Life Sci 2021; 78:1971-1982. [PMID: 33151389 PMCID: PMC7966193 DOI: 10.1007/s00018-020-03689-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022]
Abstract
Understanding how an adult brain reaches an appropriate size and cell composition from a pool of progenitors that proliferates and differentiates is a key question in Developmental Neurobiology. Not only the control of final size but also, the proper arrangement of cells of different embryonic origins is fundamental in this process. Each neural progenitor has to produce a precise number of sibling cells that establish clones, and all these clones will come together to form the functional adult nervous system. Lineage cell tracing is a complex and challenging process that aims to reconstruct the offspring that arise from a single progenitor cell. This tracing can be achieved through strategies based on genetically modified organisms, using either genetic tracers, transfected viral vectors or DNA constructs, and even single-cell sequencing. Combining different reporter proteins and the use of transgenic mice revolutionized clonal analysis more than a decade ago and now, the availability of novel genome editing tools and single-cell sequencing techniques has vastly improved the capacity of lineage tracing to decipher progenitor potential. This review brings together the strategies used to study cell lineages in the brain and the role they have played in our understanding of the functional clonal relationships among neural cells. In addition, future perspectives regarding the study of cell heterogeneity and the ontogeny of different cell lineages will also be addressed.
Collapse
Affiliation(s)
- María Figueres-Oñate
- Department of Molecular, Cellular and Development Neurobiology, Instituto Cajal-CSIC, 28002, Madrid, Spain
- Max Planck Research Unit for Neurogenetics, 60438, Frankfurt am Main, Germany
| | - Rebeca Sánchez-González
- Department of Molecular, Cellular and Development Neurobiology, Instituto Cajal-CSIC, 28002, Madrid, Spain
| | - Laura López-Mascaraque
- Department of Molecular, Cellular and Development Neurobiology, Instituto Cajal-CSIC, 28002, Madrid, Spain.
| |
Collapse
|
26
|
Hoye ML, Silver DL. Decoding mixed messages in the developing cortex: translational regulation of neural progenitor fate. Curr Opin Neurobiol 2021; 66:93-102. [PMID: 33130411 PMCID: PMC8058166 DOI: 10.1016/j.conb.2020.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/10/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022]
Abstract
Regulation of stem cell fate decisions is elemental to faithful development, homeostasis, and organismal fitness. Emerging data demonstrate pluripotent stem cells exhibit a vast transcriptional landscape, which is refined as cells differentiate. In the developing neocortex, transcriptional priming of neural progenitors, coupled with post-transcriptional control, is critical for defining cell fates of projection neurons. In particular, radial glial progenitors exhibit dynamic post-transcriptional regulation, including subcellular mRNA localization, RNA decay, and translation. These processes involve both cis-regulatory and trans-regulatory factors, many of which are implicated in neurodevelopmental disease. This review highlights emerging post-transcriptional mechanisms which govern cortical development, with a particular focus on translational control of neuronal fates, including those relevant for disease.
Collapse
Affiliation(s)
- Mariah L Hoye
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, United States; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States; Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
27
|
Bonnefont J, Vanderhaeghen P. Neuronal fate acquisition and specification: time for a change. Curr Opin Neurobiol 2021; 66:195-204. [PMID: 33412482 PMCID: PMC8064025 DOI: 10.1016/j.conb.2020.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
During embryonic development, neural stem/progenitor cells generate hundreds of different cell types through the combination of intrinsic and extrinsic cues. Recent data obtained in mouse and human cortical neurogenesis provide novel views about this interplay and how it evolves with time, whether during irreversible cell fate transitions that neural stem cells undergo to become neurons, or through gradual temporal changes of competence that lead to increased neuronal diversity from a common stem cell pool. In each case the temporal changes result from a dynamic balance between intracellular states and extracellular signalling factors. The underlying mechanisms are mostly conserved across species, but some display unique features in human corticogenesis, thereby linking temporal features of neurogenesis and human brain evolution.
Collapse
Affiliation(s)
- Jérôme Bonnefont
- Université Libre de Bruxelles (U.L.B.), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium; VIB-KULeuven Center for Brain & Disease Research, KULeuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium.
| | - Pierre Vanderhaeghen
- Université Libre de Bruxelles (U.L.B.), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium; VIB-KULeuven Center for Brain & Disease Research, KULeuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium.
| |
Collapse
|
28
|
Lin Y, Yang J, Shen Z, Ma J, Simons BD, Shi SH. Behavior and lineage progression of neural progenitors in the mammalian cortex. Curr Opin Neurobiol 2020; 66:144-157. [PMID: 33227588 DOI: 10.1016/j.conb.2020.10.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022]
Abstract
The cerebral cortex is a central structure in the mammalian brain that enables higher cognitive functions and intellectual skills. It is the hallmark of the mammalian nervous system with enormous complexity, consisting of a large number of neurons and glia that are diverse in morphology, molecular expression, biophysical properties, circuit connectivity and physiological function. Cortical neurons and glia are generated by neural progenitor cells during development. Ensuring the correct cell cycle kinetics, fate behavior and lineage progression of neural progenitor cells is essential to determine the number and types of neurons and glia in the cerebral cortex, which together constitute neural circuits for brain function. In this review, we discuss recent findings on mammalian cortical progenitor cell types and their lineage behaviors in generating neurons and glia, cortical evolution and expansion, and advances in brain organoid technology that allow the modeling of human cortical development under normal and disease conditions.
Collapse
Affiliation(s)
- Yang Lin
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiajun Yang
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhongfu Shen
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jian Ma
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Benjamin D Simons
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK
| | - Song-Hai Shi
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
29
|
Llorca A, Marín O. Orchestrated freedom: new insights into cortical neurogenesis. Curr Opin Neurobiol 2020; 66:48-56. [PMID: 33096393 DOI: 10.1016/j.conb.2020.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/03/2020] [Accepted: 09/02/2020] [Indexed: 11/17/2022]
Abstract
In mammals, the construction of the cerebral cortex involves the coordinated output of large populations of apical progenitor cells. Cortical progenitor cells use intrinsic molecular programs and complex regulatory mechanisms to generate a large diversity of excitatory projection neurons in appropriate numbers. In this review, we summarize recent findings regarding the neurogenic behavior of cortical progenitors during neurogenesis. We describe alternative models explaining the generation of neuronal diversity among excitatory projection neurons and the role of intrinsic and extrinsic signals in the modulation of the individual output of apical progenitor cells.
Collapse
Affiliation(s)
- Alfredo Llorca
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom.
| |
Collapse
|
30
|
Jungas T, Joseph M, Fawal MA, Davy A. Population Dynamics and Neuronal Polyploidy in the Developing Neocortex. Cereb Cortex Commun 2020; 1:tgaa063. [PMID: 34296126 PMCID: PMC8152829 DOI: 10.1093/texcom/tgaa063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 11/27/2022] Open
Abstract
The mammalian neocortex is composed of different subtypes of projection neurons that are generated sequentially during embryogenesis by differentiation of neural progenitors. While molecular mechanisms that control neuronal production in the developing neocortex have been extensively studied, the dynamics and absolute numbers of the different progenitor and neuronal populations are still poorly characterized. Here, we describe a medium throughput approach based on flow cytometry and well-known identity markers of cortical subpopulations to collect quantitative data over the course of mouse neocortex development. We collected a complete dataset in a physiological developmental context on two progenitor and two neuron populations, including relative proportions and absolute numbers. Our study reveals unexpected total numbers of Tbr2+ progenitors. In addition, we show that polyploid neurons are present throughout neocortex development.
Collapse
Affiliation(s)
- Thomas Jungas
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Mathieu Joseph
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
- Montreal Clinical Research Institute (IRCM), Montreal, QC H2W 1R7, Canada
- Department of Molecular Biology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mohamad-Ali Fawal
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Alice Davy
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
31
|
Vaid S, Huttner WB. Transcriptional Regulators and Human-Specific/Primate-Specific Genes in Neocortical Neurogenesis. Int J Mol Sci 2020; 21:ijms21134614. [PMID: 32610533 PMCID: PMC7369782 DOI: 10.3390/ijms21134614] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/09/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
During development, starting from a pool of pluripotent stem cells, tissue-specific genetic programs help to shape and develop functional organs. To understand the development of an organ and its disorders, it is important to understand the spatio-temporal dynamics of the gene expression profiles that occur during its development. Modifications in existing genes, the de-novo appearance of new genes, or, occasionally, even the loss of genes, can greatly affect the gene expression profile of any given tissue and contribute to the evolution of organs or of parts of organs. The neocortex is evolutionarily the most recent part of the brain, it is unique to mammals, and is the seat of our higher cognitive abilities. Progenitors that give rise to this tissue undergo sequential waves of differentiation to produce the complete sets of neurons and glial cells that make up a functional neocortex. We will review herein our understanding of the transcriptional regulators that control the neural precursor cells (NPCs) during the generation of the most abundant class of neocortical neurons, the glutametergic neurons. In addition, we will discuss the roles of recently-identified human- and primate-specific genes in promoting neurogenesis, leading to neocortical expansion.
Collapse
|
32
|
Nelson BR, Hodge RD, Daza RA, Tripathi PP, Arnold SJ, Millen KJ, Hevner RF. Intermediate progenitors support migration of neural stem cells into dentate gyrus outer neurogenic niches. eLife 2020; 9:53777. [PMID: 32238264 PMCID: PMC7159924 DOI: 10.7554/elife.53777] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/30/2020] [Indexed: 12/18/2022] Open
Abstract
The hippocampal dentate gyrus (DG) is a unique brain region maintaining neural stem cells (NCSs) and neurogenesis into adulthood. We used multiphoton imaging to visualize genetically defined progenitor subpopulations in live slices across key stages of mouse DG development, testing decades old static models of DG formation with molecular identification, genetic-lineage tracing, and mutant analyses. We found novel progenitor migrations, timings, dynamic cell-cell interactions, signaling activities, and routes underlie mosaic DG formation. Intermediate progenitors (IPs, Tbr2+) pioneered migrations, supporting and guiding later emigrating NSCs (Sox9+) through multiple transient zones prior to converging at the nascent outer adult niche in a dynamic settling process, generating all prenatal and postnatal granule neurons in defined spatiotemporal order. IPs (Dll1+) extensively targeted contacts to mitotic NSCs (Notch active), revealing a substrate for cell-cell contact support during migrations, a developmental feature maintained in adults. Mouse DG formation shares conserved features of human neocortical expansion.
Collapse
Affiliation(s)
- Branden R Nelson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States.,Department of Neurological Surgery, University of Washington, Seattle, United States
| | - Rebecca D Hodge
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
| | - Ray Am Daza
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
| | - Prem Prakash Tripathi
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Freiburg, Germany.,Signaling Research Centers BIOSS and CIBSS, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathleen J Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States.,Department of Pediatrics, University of Washington, Seattle, United States
| | - Robert F Hevner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States.,Department of Neurological Surgery, University of Washington, Seattle, United States
| |
Collapse
|
33
|
Cárdenas A, Borrell V. Molecular and cellular evolution of corticogenesis in amniotes. Cell Mol Life Sci 2020; 77:1435-1460. [PMID: 31563997 PMCID: PMC11104948 DOI: 10.1007/s00018-019-03315-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/03/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023]
Abstract
The cerebral cortex varies dramatically in size and complexity between amniotes due to differences in neuron number and composition. These differences emerge during embryonic development as a result of variations in neurogenesis, which are thought to recapitulate modifications occurred during evolution that culminated in the human neocortex. Here, we review work from the last few decades leading to our current understanding of the evolution of neurogenesis and size of the cerebral cortex. Focused on specific examples across vertebrate and amniote phylogeny, we discuss developmental mechanisms regulating the emergence, lineage, complexification and fate of cortical germinal layers and progenitor cell types. At the cellular level, we discuss the fundamental impact of basal progenitor cells and the advent of indirect neurogenesis on the increased number and diversity of cortical neurons and layers in mammals, and on cortex folding. Finally, we discuss recent work that unveils genetic and molecular mechanisms underlying this progressive expansion and increased complexity of the amniote cerebral cortex during evolution, with a particular focus on those leading to human-specific features. Whereas new genes important in human brain development emerged the recent hominid lineage, regulation of the patterns and levels of activity of highly conserved signaling pathways are beginning to emerge as mechanisms of central importance in the evolutionary increase in cortical size and complexity across amniotes.
Collapse
Affiliation(s)
- Adrián Cárdenas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas y Universidad Miguel Hernández, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas y Universidad Miguel Hernández, 03550, Sant Joan d'Alacant, Alicante, Spain.
| |
Collapse
|
34
|
Johnson CA, Ghashghaei HT. Sp2 regulates late neurogenic but not early expansive divisions of neural stem cells underlying population growth in the mouse cortex. Development 2020; 147:dev186056. [PMID: 32001437 PMCID: PMC7044455 DOI: 10.1242/dev.186056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/23/2020] [Indexed: 12/18/2022]
Abstract
Cellular and molecular mechanisms underlying the switch from self-amplification of cortical stem cells to neuronal and glial generation are incompletely understood, despite their importance for neural development. Here, we have investigated the role of the transcription factor specificity protein 2 (Sp2) in expansive and neurogenic divisions of the developing cerebral cortex by combining conditional genetic deletion with the mosaic analysis with double markers (MADM) system in mice. We find that loss of Sp2 in progenitors undergoing neurogenic divisions results in prolonged mitosis due to extension of early mitotic stages. This disruption is correlated with depletion of the populations of upper layer neurons in the cortex. In contrast, early cortical neural stem cells proliferate and expand normally in the absence of Sp2. These results indicate a stage-specific requirement for Sp2 in neural stem and progenitor cells, and reveal mechanistic differences between the early expansive and later neurogenic periods of cortical development.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Caroline A Johnson
- Department of Molecular Biomedical Sciences College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - H Troy Ghashghaei
- Department of Molecular Biomedical Sciences College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
35
|
Yin C, Zhou X, Yao YG, Wang W, Wu Q, Wang X. Abundant Self-Amplifying Intermediate Progenitors in the Subventricular Zone of the Chinese Tree Shrew Neocortex. Cereb Cortex 2020; 30:3370-3380. [DOI: 10.1093/cercor/bhz315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
During evolution, neural progenitor cells in the subventricular zone (SVZ) have fundamental functions, ranging from brain volume expansion to the generation of a six-layered neocortex. In lissencephalic animal models, such as rodents, the majority of neural progenitors in the SVZ are intermediate progenitor cells (IPCs). Most IPCs in rodents undergo neurogenic division, and only a small portion of them divide a very limited number of times to generate a few neurons. Meanwhile, in gyrencephalic animals, such as primates, IPCs are able to self-renew for up to five successive divisions. However, abundant IPCs with successive proliferative capacity have not been directly observed in nonprimate species. In this study, we examined the development of neural progenitors in the Chinese tree shrew (Tupaia belangeri chinensis), a lissencephalic animal with closer affinity than rodents to primates. We identified an expansion of the SVZ and the presence of outer radial glial (oRG) cells in the neocortex. We also found that IPCs have the capacity to self-amplify multiple times and therefore serve as major proliferative progenitors. To our knowledge, our study provides the first direct evidence of abundant IPCs with proliferative potential in a nonprimate species, further supporting the key role of IPCs in brain expansion.
Collapse
Affiliation(s)
- Chonghai Yin
- School of Life Science, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xin Zhou
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong-Gang Yao
- Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Brain Disorders, Beijing 100069, China
| |
Collapse
|
36
|
Llorca A, Ciceri G, Beattie R, Wong FK, Diana G, Serafeimidou-Pouliou E, Fernández-Otero M, Streicher C, Arnold SJ, Meyer M, Hippenmeyer S, Maravall M, Marin O. A stochastic framework of neurogenesis underlies the assembly of neocortical cytoarchitecture. eLife 2019; 8:51381. [PMID: 31736464 PMCID: PMC6968929 DOI: 10.7554/elife.51381] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/15/2019] [Indexed: 01/23/2023] Open
Abstract
The cerebral cortex contains multiple areas with distinctive cytoarchitectonic patterns, but the cellular mechanisms underlying the emergence of this diversity remain unclear. Here, we have investigated the neuronal output of individual progenitor cells in the developing mouse neocortex using a combination of methods that together circumvent the biases and limitations of individual approaches. Our experimental results indicate that progenitor cells generate pyramidal cell lineages with a wide range of sizes and laminar configurations. Mathematical modeling indicates that these outcomes are compatible with a stochastic model of cortical neurogenesis in which progenitor cells undergo a series of probabilistic decisions that lead to the specification of very heterogeneous progenies. Our findings support a mechanism for cortical neurogenesis whose flexibility would make it capable to generate the diverse cytoarchitectures that characterize distinct neocortical areas.
Collapse
Affiliation(s)
- Alfredo Llorca
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Gabriele Ciceri
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Robert Beattie
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Fong Kuan Wong
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Giovanni Diana
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Eleni Serafeimidou-Pouliou
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Marian Fernández-Otero
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Carmen Streicher
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Meyer
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Miguel Maravall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Oscar Marin
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
37
|
Alvarez-Saavedra M, Yan K, De Repentigny Y, Hashem LE, Chaudary N, Sarwar S, Yang D, Ioshikhes I, Kothary R, Hirayama T, Yagi T, Picketts DJ. Snf2h Drives Chromatin Remodeling to Prime Upper Layer Cortical Neuron Development. Front Mol Neurosci 2019; 12:243. [PMID: 31680852 PMCID: PMC6811508 DOI: 10.3389/fnmol.2019.00243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/20/2019] [Indexed: 01/23/2023] Open
Abstract
Alterations in the homeostasis of either cortical progenitor pool, namely the apically located radial glial (RG) cells or the basal intermediate progenitors (IPCs) can severely impair cortical neuron production. Such changes are reflected by microcephaly and are often associated with cognitive defects. Genes encoding epigenetic regulators are a frequent cause of intellectual disability and many have been shown to regulate progenitor cell growth, including our inactivation of the Smarca1 gene encoding Snf2l, which is one of two ISWI mammalian orthologs. Loss of the Snf2l protein resulted in dysregulation of Foxg1 and IPC proliferation leading to macrocephaly. Here we show that inactivation of the closely related Smarca5 gene encoding the Snf2h chromatin remodeler is necessary for embryonic IPC expansion and subsequent specification of callosal projection neurons. Telencephalon-specific Smarca5 cKO embryos have impaired cell cycle kinetics and increased cell death, resulting in fewer Tbr2+ and FoxG1+ IPCs by mid-neurogenesis. These deficits give rise to adult mice with a dramatic reduction in Satb2+ upper layer neurons, and partial agenesis of the corpus callosum. Mice survive into adulthood but molecularly display reduced expression of the clustered protocadherin genes that may further contribute to altered dendritic arborization and a hyperactive behavioral phenotype. Our studies provide novel insight into the developmental function of Snf2h-dependent chromatin remodeling processes during brain development.
Collapse
Affiliation(s)
- Matías Alvarez-Saavedra
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Keqin Yan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Lukas E. Hashem
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Nidhi Chaudary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Shihab Sarwar
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Doo Yang
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Ilya Ioshikhes
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Teruyoshi Hirayama
- KOKORO-Biology Group, Integrated Biology Laboratories, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Department of Anatomy and Developmental Neurobiology, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Integrated Biology Laboratories, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - David J. Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
38
|
Lv X, Ren SQ, Zhang XJ, Shen Z, Ghosh T, Xianyu A, Gao P, Li Z, Lin S, Yu Y, Zhang Q, Groszer M, Shi SH. TBR2 coordinates neurogenesis expansion and precise microcircuit organization via Protocadherin 19 in the mammalian cortex. Nat Commun 2019; 10:3946. [PMID: 31477701 PMCID: PMC6718393 DOI: 10.1038/s41467-019-11854-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/06/2019] [Indexed: 11/09/2022] Open
Abstract
Cerebral cortex expansion is a hallmark of mammalian brain evolution; yet, how increased neurogenesis is coordinated with structural and functional development remains largely unclear. The T-box protein TBR2/EOMES is preferentially enriched in intermediate progenitors and supports cortical neurogenesis expansion. Here we show that TBR2 regulates fine-scale spatial and circuit organization of excitatory neurons in addition to enhancing neurogenesis in the mouse cortex. TBR2 removal leads to a significant reduction in neuronal, but not glial, output of individual radial glial progenitors as revealed by mosaic analysis with double markers. Moreover, in the absence of TBR2, clonally related excitatory neurons become more laterally dispersed and their preferential synapse development is impaired. Interestingly, TBR2 directly regulates the expression of Protocadherin 19 (PCDH19), and simultaneous PCDH19 expression rescues neurogenesis and neuronal organization defects caused by TBR2 removal. Together, these results suggest that TBR2 coordinates neurogenesis expansion and precise microcircuit assembly via PCDH19 in the mammalian cortex.
Collapse
Affiliation(s)
- Xiaohui Lv
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Si-Qiang Ren
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center of Biological Structures, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xin-Jun Zhang
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Zhongfu Shen
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center of Biological Structures, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tanay Ghosh
- Inserm, UMR-S839, Sorbonne Université, Institut du Fer à Moulin, Paris, 75005, France.,Department of Clinical Neurosciences, Wellcome Trust-Medical Research Council- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Anjin Xianyu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Graduate Program in Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Peng Gao
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Zhizhong Li
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Susan Lin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Yang Yu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Qiangqiang Zhang
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Matthias Groszer
- Inserm, UMR-S839, Sorbonne Université, Institut du Fer à Moulin, Paris, 75005, France
| | - Song-Hai Shi
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center of Biological Structures, School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Graduate Program in Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA. .,Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
39
|
Oberst P, Fièvre S, Baumann N, Concetti C, Bartolini G, Jabaudon D. Temporal plasticity of apical progenitors in the developing mouse neocortex. Nature 2019; 573:370-374. [PMID: 31462778 DOI: 10.1038/s41586-019-1515-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 07/29/2019] [Indexed: 12/20/2022]
Abstract
The diverse subtypes of excitatory neurons that populate the neocortex are born from apical progenitors located in the ventricular zone. During corticogenesis, apical progenitors sequentially generate deep-layer neurons followed by superficial-layer neurons directly or via the generation of intermediate progenitors. Whether neurogenic fate progression necessarily implies fate restriction in single progenitor types is unknown. Here we specifically isolated apical progenitors and intermediate progenitors, and fate-mapped their respective neuronal progeny following heterochronic transplantation into younger embryos. We find that apical progenitors are temporally plastic and can re-enter past molecular, electrophysiological and neurogenic states when exposed to an earlier-stage environment by sensing dynamic changes in extracellular Wnt. By contrast, intermediate progenitors are committed progenitors that lack such retrograde fate plasticity. These findings identify a diversity in the temporal plasticity of neocortical progenitors, revealing that some subtypes of cells can be untethered from their normal temporal progression to re-enter past developmental states.
Collapse
Affiliation(s)
- Polina Oberst
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.,Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sabine Fièvre
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Natalia Baumann
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Cristina Concetti
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.,Institute of Neuroscience, ETH Zürich, Schwerzenbach, Switzerland
| | - Giorgia Bartolini
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland. .,Clinic of Neurology, Geneva University Hospital, Geneva, Switzerland.
| |
Collapse
|
40
|
Abstract
In spite of the high metabolic cost of cellular production, the brain contains only a fraction of the neurons generated during embryonic development. In the rodent cerebral cortex, a first wave of programmed cell death surges at embryonic stages and affects primarily progenitor cells. A second, larger wave unfolds during early postnatal development and ultimately determines the final number of cortical neurons. Programmed cell death in the developing cortex is particularly dependent on neuronal activity and unfolds in a cell-specific manner with precise temporal control. Pyramidal cells and interneurons adjust their numbers in sync, which is likely crucial for the establishment of balanced networks of excitatory and inhibitory neurons. In contrast, several other neuronal populations are almost completely eliminated through apoptosis during the first two weeks of postnatal development, highlighting the importance of programmed cell death in sculpting the mature cerebral cortex.
Collapse
Affiliation(s)
- Fong Kuan Wong
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; .,MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; .,MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
41
|
Hevner RF. Intermediate progenitors and Tbr2 in cortical development. J Anat 2019; 235:616-625. [PMID: 30677129 DOI: 10.1111/joa.12939] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2019] [Indexed: 12/19/2022] Open
Abstract
In developing cerebral cortex, intermediate progenitors (IPs) are transit amplifying cells that specifically express Tbr2 (gene: Eomes), a T-box transcription factor. IPs are derived from radial glia (RG) progenitors, the neural stem cells of developing cortex. In turn, IPs generate glutamatergic projection neurons (PNs) exclusively. IPs are found in ventricular and subventricular zones, where they differentiate as distinct ventricular IP (vIP) and outer IP (oIP) subtypes. Morphologically, IPs have short processes, resembling filopodia or neurites, that transiently contact other cells, most importantly dividing RG cells to mediate Delta-Notch signaling. Also, IPs secrete a chemokine, Cxcl12, which guides interneuron and microglia migrations and promotes thalamocortical axon growth. In mice, IPs produce clones of 1-12 PNs, sometimes spanning multiple layers. After mitosis, IP daughter cells undergo asymmetric cell death in the majority of instances. In mice, Tbr2 is necessary for PN differentiation and subtype specification, and to repress IP-genic transcription factors. Tbr2 directly represses Insm1, an IP-genic transcription factor gene, as well as Pax6, a key activator of Tbr2 transcription. Without Tbr2, abnormal IPs transiently accumulate in elevated numbers. More broadly, Tbr2 regulates the transcriptome by activating or repressing hundreds of direct target genes. Notably, Tbr2 'unlocks' and activates PN-specific genes, such as Tbr1, by recruiting Jmjd3, a histone H3K27me3 demethylase that removes repressive epigenetic marks placed by polycomb repressive complex 2. IPs have played an important role in the evolution and gyrification of mammalian cerebral cortex, and TBR2 is essential for human brain development.
Collapse
Affiliation(s)
- Robert F Hevner
- Department of Pathology, University of California, San Diego, CA, USA
| |
Collapse
|