1
|
Saade M, Martí E. Early spinal cord development: from neural tube formation to neurogenesis. Nat Rev Neurosci 2025; 26:195-213. [PMID: 39915695 DOI: 10.1038/s41583-025-00906-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 03/26/2025]
Abstract
As one of the simplest and most evolutionarily conserved parts of the vertebrate nervous system, the spinal cord serves as a key model for understanding the principles of nervous system construction. During embryonic development, the spinal cord originates from a population of bipotent stem cells termed neuromesodermal progenitors, which are organized within a transient embryonic structure known as the neural tube. Neural tube morphogenesis differs along its anterior-to-posterior axis: most of the neural tube (including the regions that will develop into the brain and the anterior spinal cord) forms via the bending and dorsal fusion of the neural groove, but the establishment of the posterior region of the neural tube involves de novo formation of a lumen within a solid medullary cord. The early spinal cord primordium consists of highly polarized neural progenitor cells organized into a pseudostratified epithelium. Tight regulation of the cell division modes of these progenitors drives the embryonic growth of the neural tube and initiates primary neurogenesis. A rich history of observational and functional studies across various vertebrate models has advanced our understanding of the cellular events underlying spinal cord development, and these foundational studies are beginning to inform our knowledge of human spinal cord development.
Collapse
Affiliation(s)
- Murielle Saade
- Department of Cells and Tissues, Instituto de Biología Molecular de Barcelona CSIC, Barcelona, Spain.
| | - Elisa Martí
- Department of Cells and Tissues, Instituto de Biología Molecular de Barcelona CSIC, Barcelona, Spain.
| |
Collapse
|
2
|
Sagha M. Neural induction: New insight into the default model and an extended four-step model in vertebrate embryos. Dev Dyn 2025. [PMID: 40105405 DOI: 10.1002/dvdy.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/25/2024] [Accepted: 01/13/2025] [Indexed: 03/20/2025] Open
Abstract
Neural induction is a process by which naïve ectodermal cells differentiate into neural progenitor cells through the inhibition of BMP signaling, a condition typically considered the "default" state in vertebrate embryos. Studies in vertebrate embryos indicate that active FGF/MAPK signaling reduces BMP signaling to facilitate neural induction. Consequently, I propose that FGF stimulation/BMP inhibition more accurately characterizes the default model. Initially, the neuroectoderm is instructed to differentiate into anterior forebrain tissue, with cranial signals stabilizing this outcome. Subsequently, a gradient of caudalizing signals converts the neuroectodermal cells into posterior midbrain, hindbrain, and spinal cord. Furthermore, at the caudal end of the embryo, neuromesodermal progenitor cells are destined to differentiate into both neural progenitor cells and mesodermal cells, aiding in body extension. In light of these observations, I suggest incorporating an additional step, elongation, into the conventional three-step model of neural induction. This updated model encompasses activation, stabilization, transformation, and elongation.
Collapse
Affiliation(s)
- Mohsen Sagha
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
3
|
Şenkal-Turhan S, Bulut-Okumuş E, Şahin F, Yavuz Y, Yılmaz B, Şişli HB, Kalaycı S, Özgün HB, Ömeroğlu Ulu Z, Akkuş Süt P, Doğan A. Derivation of functional neurons from induced pluripotent stem cells using a simple neuromesodermal progenitor generation and rapid spinal cord neuron differentiation process. Hum Cell 2025; 38:69. [PMID: 40080267 DOI: 10.1007/s13577-025-01200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
To generate spinal cord neurons from pluripotent stem cells via neuromesodermal progenitors (NMPs) is not only an important step for regenerative purposes but also required for human developmental research. This study describes a protocol to obtain spinal cord neurons in culture using induced pluripotent stem-cell-derived NMPs. The protocol starts with a 3D culture of NMPs and continues with the transfer of 3D NMPs to monolayer culture in which retinoic acid and sonic hedgehog pathways were triggered sequentially. The established protocol enabled generation of spinal cord neurons with active calcium signaling, electrophysiological activity, axon elongation capacity, and synaptic vesicle trafficking. The expression profile of marker proteins, including β-Tubulin, NeuroD1, Pax6, NeuN, Mnx-1, Isl1, Isl2, Map2, NF, Sox2 was detected to explore the production of developmental regulatory transcription factors and terminal differentiation markers in a time-dependent manner. Cells during differentiation process acquired a fully neural phenotype, which was confirmed by RNA sequencing at the molecular level. The protein expression profile showed neural differentiation induction pathways based on LS-MS/MS analysis. Since NMPs differentiate into spinal cord neuron cells at the developmental stage, the results of this study highlight the further potential of NMP-derived spinal cord neurons in disease modeling and treatment in the clinics.
Collapse
Affiliation(s)
- Selinay Şenkal-Turhan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Ezgi Bulut-Okumuş
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Yavuz Yavuz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Bayram Yılmaz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
- Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Department of Physiology, Faculty of Medicine, Dokuz Eylül University, Izmir, Türkiye
| | - Hatice Burcu Şişli
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Sadık Kalaycı
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Hüseyin Buğra Özgün
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
- Pharmacy, Ataşehir Memorial Hospital, Istanbul, Türkiye
| | - Zehra Ömeroğlu Ulu
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Pınar Akkuş Süt
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye.
| |
Collapse
|
4
|
Stooke-Vaughan GA, Kim S, Yen ST, Son K, Banavar SP, Giammona J, Kimelman D, Campàs O. The physical roles of different posterior tissues in zebrafish axis elongation. Nat Commun 2025; 16:1839. [PMID: 39984461 PMCID: PMC11845790 DOI: 10.1038/s41467-025-56334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/16/2025] [Indexed: 02/23/2025] Open
Abstract
Shaping embryonic tissues requires spatiotemporal changes in genetic and signaling activity as well as in tissue mechanics. Studies linking specific molecular perturbations to changes in the tissue physical state remain sparse. Here we study how specific genetic perturbations affecting different posterior tissues during zebrafish body axis elongation change their physical state, the resulting large-scale tissue flows, and posterior elongation. Using a custom analysis software to reveal spatiotemporal variations in tissue fluidity, we show that dorsal tissues are most fluid at the posterior end, rigidify anterior of this region, and become more fluid again yet further anteriorly. In the absence of notochord (noto mutants) or when the presomitic mesoderm is substantially reduced (tbx16 mutants), dorsal tissues elongate normally. Perturbations of posterior-directed morphogenetic flows in dorsal tissues (vangl2 mutants) strongly affect the speed of elongation, highlighting the essential role of dorsal cell flows in delivering the necessary material to elongate the axis.
Collapse
Affiliation(s)
| | - Sangwoo Kim
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
- Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Shuo-Ting Yen
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Kevin Son
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - Samhita P Banavar
- Department of Physics, University of California, Santa Barbara, CA, USA
- Department of Chemical and Biological Engineering, Princeton University, New Jersey, NJ, USA
| | - James Giammona
- Department of Physics, University of California, Santa Barbara, CA, USA
| | - David Kimelman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Otger Campàs
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
| |
Collapse
|
5
|
Wright R, Wilson V. The role of the node in maintaining axial progenitors. Cells Dev 2025:204004. [PMID: 39954851 DOI: 10.1016/j.cdev.2025.204004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
The production of the vertebrate body axis involves the coordinating activity of the organizer, which coincides in amniotes with the node in the gastrulating embryo. This organizer orchestrates nearby axial progenitor populations that produce the spinal cord and musculoskeleton. Various findings, discussed further in this review, suggest that some of these axial progenitors exhibit stem cell-like properties as they display maintenance behaviour such as self-renewal and sustained contribution to derivative tissues. We consider how the node acts to maintain and regulate these progenitor populations by providing mechanical forces and a niche-like signalling environment.
Collapse
Affiliation(s)
- Raffee Wright
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Valerie Wilson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| |
Collapse
|
6
|
Saunders D, Camacho-Macorra C, Steventon B. Spinal cord elongation enables proportional regulation of the zebrafish posterior body. Development 2025; 152:dev204438. [PMID: 39745249 PMCID: PMC11829759 DOI: 10.1242/dev.204438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/15/2024] [Indexed: 01/11/2025]
Abstract
Early embryos display a remarkable ability to regulate tissue patterning in response to changes in tissue size. However, it is not clear whether this ability continues into post-gastrulation stages. Here, we performed targeted removal of dorsal progenitors in the zebrafish tailbud using multiphoton ablation. This led to a proportional reduction in the length of the spinal cord and paraxial mesoderm in the tail, revealing a capacity for the regulation of tissue morphogenesis during tail formation. Following analysis of cell proliferation, gene expression, signalling and cell movements, we found no evidence of cell fate switching from mesoderm to neural fate to compensate for neural progenitor loss. Furthermore, tail paraxial mesoderm length is not reduced upon direct removal of an equivalent number of mesoderm progenitors, ruling out the hypothesis that neuromesodermal competent cells enable proportional regulation. Instead, reduction in cell number across the spinal cord reduces both spinal cord and paraxial mesoderm length. We conclude that spinal cord elongation is a driver of paraxial mesoderm elongation in the zebrafish tail and that this can explain proportional regulation upon neural progenitor reduction.
Collapse
Affiliation(s)
- Dillan Saunders
- Department of Genetics, University of Cambridge, Cambridge, UK, CB2 3EH
| | | | | |
Collapse
|
7
|
The people behind the papers - Dillan Saunders and Benjamin Steventon. Development 2025; 152:dev204593. [PMID: 39786782 DOI: 10.1242/dev.204593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
During early development, embryos coordinate the growth of different tissues to ensure that they reach the correct proportions. A new paper in Development shows that tissue scaling occurs in the tail of the post-gastrulation zebrafish embryo. The study suggests that this scaling is underpinned by multi-tissue tectonics, a mechanism whereby the deformation of one growing tissue can impact the dynamics of a neighbouring tissue. To learn more about the story behind the paper, we caught up with first author Dillan Saunders and corresponding author Benjamin Steventon, an Assistant Professor at the University of Cambridge, UK.
Collapse
|
8
|
Miao Y, Pourquié O. Cellular and molecular control of vertebrate somitogenesis. Nat Rev Mol Cell Biol 2024; 25:517-533. [PMID: 38418851 PMCID: PMC11694818 DOI: 10.1038/s41580-024-00709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Segmentation is a fundamental feature of the vertebrate body plan. This metameric organization is first implemented by somitogenesis in the early embryo, when paired epithelial blocks called somites are rhythmically formed to flank the neural tube. Recent advances in in vitro models have offered new opportunities to elucidate the mechanisms that underlie somitogenesis. Notably, models derived from human pluripotent stem cells introduced an efficient proxy for studying this process during human development. In this Review, we summarize the current understanding of somitogenesis gained from both in vivo studies and in vitro studies. We deconstruct the spatiotemporal dynamics of somitogenesis into four distinct modules: dynamic events in the presomitic mesoderm, segmental determination, somite anteroposterior polarity patterning, and epithelial morphogenesis. We first focus on the segmentation clock, as well as signalling and metabolic gradients along the tissue, before discussing the clock and wavefront and other models that account for segmental determination. We then detail the molecular and cellular mechanisms of anteroposterior polarity patterning and somite epithelialization.
Collapse
Affiliation(s)
- Yuchuan Miao
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
9
|
Pan X, Li H, Putta P, Zhang X. LinRace: cell division history reconstruction of single cells using paired lineage barcode and gene expression data. Nat Commun 2023; 14:8388. [PMID: 38104156 PMCID: PMC10725445 DOI: 10.1038/s41467-023-44173-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023] Open
Abstract
Lineage tracing technology using CRISPR/Cas9 genome editing has enabled simultaneous readouts of gene expressions and lineage barcodes in single cells, which allows for inference of cell lineage and cell types at the whole organism level. While most state-of-the-art methods for lineage reconstruction utilize only the lineage barcode data, methods that incorporate gene expressions are emerging. Effectively incorporating the gene expression data requires a reasonable model of how gene expression data changes along generations of divisions. Here, we present LinRace (Lineage Reconstruction with asymmetric cell division model), which integrates lineage barcode and gene expression data using asymmetric cell division model and infers cell lineages and ancestral cell states using Neighbor-Joining and maximum-likelihood heuristics. On both simulated and real data, LinRace outputs more accurate cell division trees than existing methods. With inferred ancestral states, LinRace can also show how a progenitor cell generates a large population of cells with various functionalities.
Collapse
Affiliation(s)
- Xinhai Pan
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hechen Li
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Pranav Putta
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Xiuwei Zhang
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
10
|
Park C, Owusu-Boaitey KE, Valdes GM, Reddien PW. Fate specification is spatially intermingled across planarian stem cells. Nat Commun 2023; 14:7422. [PMID: 37973979 PMCID: PMC10654723 DOI: 10.1038/s41467-023-43267-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Regeneration requires mechanisms for producing a wide array of cell types. Neoblasts are stem cells in the planarian Schmidtea mediterranea that undergo fate specification to produce over 125 adult cell types. Fate specification in neoblasts can be regulated through expression of fate-specific transcription factors. We utilize multiplexed error-robust fluorescence in situ hybridization (MERFISH) and whole-mount FISH to characterize fate choice distribution of stem cells within planarians. Fate choices are often made distant from target tissues and in a highly intermingled manner, with neighboring neoblasts frequently making divergent fate choices for tissues of different location and function. We propose that pattern formation is driven primarily by the migratory assortment of progenitors from mixed and spatially distributed fate-specified stem cells and that fate choice involves stem-cell intrinsic processes.
Collapse
Affiliation(s)
- Chanyoung Park
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kwadwo E Owusu-Boaitey
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
| | - Giselle M Valdes
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
11
|
Genuth MA, Kojima Y, Jülich D, Kiryu H, Holley SA. Automated time-lapse data segmentation reveals in vivo cell state dynamics. SCIENCE ADVANCES 2023; 9:eadf1814. [PMID: 37267354 PMCID: PMC10413672 DOI: 10.1126/sciadv.adf1814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/27/2023] [Indexed: 06/04/2023]
Abstract
Embryonic development proceeds as a series of orderly cell state transitions built upon noisy molecular processes. We defined gene expression and cell motion states using single-cell RNA sequencing data and in vivo time-lapse cell tracking data of the zebrafish tailbud. We performed a parallel identification of these states using dimensional reduction methods and a change point detection algorithm. Both types of cell states were quantitatively mapped onto embryos, and we used the cell motion states to study the dynamics of biological state transitions over time. The time average pattern of cell motion states is reproducible among embryos. However, individual embryos exhibit transient deviations from the time average forming left-right asymmetries in collective cell motion. Thus, the reproducible pattern of cell states and bilateral symmetry arise from temporal averaging. In addition, collective cell behavior can be a source of asymmetry rather than a buffer against noisy individual cell behavior.
Collapse
Affiliation(s)
- Miriam A. Genuth
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Yasuhiro Kojima
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Division of Systems Biology, Graduate School of Medicine, Nagoya University, Nagoya 4668550, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Dörthe Jülich
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Hisanori Kiryu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Scott A. Holley
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
12
|
Stepien BK, Pawolski V, Wagner MC, Kurth T, Schmidt MHH, Epperlein HH. The Role of Posterior Neural Plate-Derived Presomitic Mesoderm (PSM) in Trunk and Tail Muscle Formation and Axis Elongation. Cells 2023; 12:cells12091313. [PMID: 37174713 PMCID: PMC10177618 DOI: 10.3390/cells12091313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Elongation of the posterior body axis is distinct from that of the anterior trunk and head. Early drivers of posterior elongation are the neural plate/tube and notochord, later followed by the presomitic mesoderm (PSM), together with the neural tube and notochord. In axolotl, posterior neural plate-derived PSM is pushed posteriorly by convergence and extension of the neural plate. The PSM does not go through the blastopore but turns anteriorly to join the gastrulated paraxial mesoderm. To gain a deeper understanding of the process of axial elongation, a detailed characterization of PSM morphogenesis, which precedes somite formation, and of other tissues (such as the epidermis, lateral plate mesoderm and endoderm) is needed. We investigated these issues with specific tissue labelling techniques (DiI injections and GFP+ tissue grafting) in combination with optical tissue clearing and 3D reconstructions. We defined a spatiotemporal order of PSM morphogenesis that is characterized by changes in collective cell behaviour. The PSM forms a cohesive tissue strand and largely retains this cohesiveness even after epidermis removal. We show that during embryogenesis, the PSM, as well as the lateral plate and endoderm move anteriorly, while the net movement of the axis is posterior.
Collapse
Affiliation(s)
- Barbara K Stepien
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, 01062 Dresden, Germany
| | - Verena Pawolski
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, 01062 Dresden, Germany
| | - Marc-Christoph Wagner
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, 01062 Dresden, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, Electron Microscopy and Histology Facility, Technische Universität Dresden, 01062 Dresden, Germany
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, 01062 Dresden, Germany
| | - Hans-Henning Epperlein
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, 01062 Dresden, Germany
| |
Collapse
|
13
|
Hatakeyama Y, Saito N, Mii Y, Takada R, Shinozuka T, Takemoto T, Naoki H, Takada S. Intercellular exchange of Wnt ligands reduces cell population heterogeneity during embryogenesis. Nat Commun 2023; 14:1924. [PMID: 37024462 PMCID: PMC10079677 DOI: 10.1038/s41467-023-37350-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Wnt signaling is required to maintain bipotent progenitors for neural and paraxial mesoderm cells, the neuromesodermal progenitor (NMP) cells that reside in the epiblast and tailbud. Since epiblast/tailbud cells receive Wnt ligands produced by one another, this exchange may average out the heterogeneity of Wnt signaling levels among these cells. Here, we examined this possibility by replacing endogenous Wnt3a with a receptor-fused form that activates signaling in producing cells, but not in neighboring cells. Mutant mouse embryos show a unique phenotype in which maintenance of many NMP cells is impaired, although some cells persist for long periods. The epiblast cell population of these embryos increases heterogeneity in Wnt signaling levels as embryogenesis progresses and are sensitive to retinoic acid, an endogenous antagonist of NMP maintenance. Thus, mutual intercellular exchange of Wnt ligands in the epiblast cell population reduces heterogeneity and achieves robustness to environmental stress.
Collapse
Affiliation(s)
- Yudai Hatakeyama
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Nen Saito
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8511, Japan.
| | - Yusuke Mii
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- PREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan
| | - Ritsuko Takada
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Takuma Shinozuka
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Tatsuya Takemoto
- Institute of Advanced Medical Sciences, Tokushima University, 3-18-5 Kuramoto-cho, Tokushima, Tokushima, 770-8503, Japan
| | - Honda Naoki
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8511, Japan
| | - Shinji Takada
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
14
|
Nakajima H, Ishikawa H, Yamamoto T, Chiba A, Fukui H, Sako K, Fukumoto M, Mattonet K, Kwon HB, Hui SP, Dobreva GD, Kikuchi K, Helker CSM, Stainier DYR, Mochizuki N. Endoderm-derived islet1-expressing cells differentiate into endothelial cells to function as the vascular HSPC niche in zebrafish. Dev Cell 2023; 58:224-238.e7. [PMID: 36693371 DOI: 10.1016/j.devcel.2022.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 10/26/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023]
Abstract
Endothelial cells (ECs) line blood vessels and serve as a niche for hematopoietic stem and progenitor cells (HSPCs). Recent data point to tissue-specific EC specialization as well as heterogeneity; however, it remains unclear how ECs acquire these properties. Here, by combining live-imaging-based lineage-tracing and single-cell transcriptomics in zebrafish embryos, we identify an unexpected origin for part of the vascular HSPC niche. We find that islet1 (isl1)-expressing cells are the progenitors of the venous ECs that constitute the majority of the HSPC niche. These isl1-expressing cells surprisingly originate from the endoderm and differentiate into ECs in a process dependent on Bmp-Smad signaling and subsequently requiring npas4l (cloche) function. Single-cell RNA sequencing analyses show that isl1-derived ECs express a set of genes that reflect their distinct origin. This study demonstrates that endothelial specialization in the HSPC niche is determined at least in part by the origin of the ECs.
Collapse
Affiliation(s)
- Hiroyuki Nakajima
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan.
| | - Hiroyuki Ishikawa
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; AMED-CREST, AMED, Tokyo 100-0004, Japan; Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| | - Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Hajime Fukui
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Keisuke Sako
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Moe Fukumoto
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Kenny Mattonet
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Hyouk-Bum Kwon
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Subhra P Hui
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata 700019, India
| | - Gergana D Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Kazu Kikuchi
- Department of Cardiac Regeneration Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Christian S M Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany; Philipps-University Marburg, Faculty of Biology, Cell Signaling and Dynamics, Marburg 35043, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany.
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan.
| |
Collapse
|
15
|
Toh K, Saunders D, Verd B, Steventon B. Zebrafish neuromesodermal progenitors undergo a critical state transition in vivo. iScience 2022; 25:105216. [PMID: 36274939 PMCID: PMC9579027 DOI: 10.1016/j.isci.2022.105216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/05/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
The transition state model of cell differentiation proposes that a transient window of gene expression stochasticity precedes entry into a differentiated state. Here, we assess this theoretical model in zebrafish neuromesodermal progenitors (NMps) in vivo during late somitogenesis stages. We observed an increase in gene expression variability at the 24 somite stage (24ss) before their differentiation into spinal cord and paraxial mesoderm. Analysis of a published 18ss scRNA-seq dataset showed that the NMp population is noisier than its derivatives. By building in silico composite gene expression maps from image data, we assigned an 'NM index' to in silico NMps based on the expression of neural and mesodermal markers and demonstrated that cell population heterogeneity peaked at 24ss. Further examination revealed cells with gene expression profiles incongruent with their prospective fate. Taken together, our work supports the transition state model within an endogenous cell fate decision making event.
Collapse
Affiliation(s)
- Kane Toh
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Dillan Saunders
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Berta Verd
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
| | | |
Collapse
|
16
|
Ducos B, Bensimon D, Scerbo P. Vertebrate Cell Differentiation, Evolution, and Diseases: The Vertebrate-Specific Developmental Potential Guardians VENTX/ NANOG and POU5/ OCT4 Enter the Stage. Cells 2022; 11:cells11152299. [PMID: 35892595 PMCID: PMC9331430 DOI: 10.3390/cells11152299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 01/02/2023] Open
Abstract
During vertebrate development, embryonic cells pass through a continuum of transitory pluripotent states that precede multi-lineage commitment and morphogenesis. Such states are referred to as “refractory/naïve” and “competent/formative” pluripotency. The molecular mechanisms maintaining refractory pluripotency or driving the transition to competent pluripotency, as well as the cues regulating multi-lineage commitment, are evolutionarily conserved. Vertebrate-specific “Developmental Potential Guardians” (vsDPGs; i.e., VENTX/NANOG, POU5/OCT4), together with MEK1 (MAP2K1), coordinate the pluripotency continuum, competence for multi-lineage commitment and morphogenesis in vivo. During neurulation, vsDPGs empower ectodermal cells of the neuro-epithelial border (NEB) with multipotency and ectomesenchyme potential through an “endogenous reprogramming” process, giving rise to the neural crest cells (NCCs). Furthermore, vsDPGs are expressed in undifferentiated-bipotent neuro-mesodermal progenitor cells (NMPs), which participate in posterior axis elongation and growth. Finally, vsDPGs are involved in carcinogenesis, whereby they confer selective advantage to cancer stem cells (CSCs) and therapeutic resistance. Intriguingly, the heterogenous distribution of vsDPGs in these cell types impact on cellular potential and features. Here, we summarize the findings about the role of vsDPGs during vertebrate development and their selective advantage in evolution. Our aim to present a holistic view regarding vsDPGs as facilitators of both cell plasticity/adaptability and morphological innovation/variation. Moreover, vsDPGs may also be at the heart of carcinogenesis by allowing malignant cells to escape from physiological constraints and surveillance mechanisms.
Collapse
Affiliation(s)
- Bertrand Ducos
- LPENS, PSL, CNRS, 24 rue Lhomond, 75005 Paris, France
- IBENS, PSL, CNRS, 46 rue d’Ulm, 75005 Paris, France
- High Throughput qPCR Core Facility, ENS, PSL, 46 rue d’Ulm, 75005 Paris, France
- Correspondence: (B.D.); (D.B.); (P.S.)
| | - David Bensimon
- LPENS, PSL, CNRS, 24 rue Lhomond, 75005 Paris, France
- IBENS, PSL, CNRS, 46 rue d’Ulm, 75005 Paris, France
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90094, USA
- Correspondence: (B.D.); (D.B.); (P.S.)
| | - Pierluigi Scerbo
- LPENS, PSL, CNRS, 24 rue Lhomond, 75005 Paris, France
- IBENS, PSL, CNRS, 46 rue d’Ulm, 75005 Paris, France
- Correspondence: (B.D.); (D.B.); (P.S.)
| |
Collapse
|
17
|
Saud HA, O'Neill PA, Ono Y, Verbruggen B, Van Aerle R, Kim J, Lee JS, Ring BC, Kudoh T. Molecular mechanisms of embryonic tail development in the self-fertilizing mangrove killifish Kryptolebias marmoratus. Development 2021; 148:273863. [PMID: 34951463 PMCID: PMC8722387 DOI: 10.1242/dev.199675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022]
Abstract
Using the self-fertilizing mangrove killifish, we characterized two mutants, shorttail (stl) and balltail (btl). These mutants showed abnormalities in the posterior notochord and muscle development. Taking advantage of a highly inbred isogenic strain of the species, we rapidly identified the mutated genes, noto and msgn1 in the stl and btl mutants, respectively, using a single lane of RNA sequencing without the need of a reference genome or genetic mapping techniques. Next, we confirmed a conserved morphant phenotype in medaka and demonstrate a crucial role of noto and msgn1 in cell sorting between the axial and paraxial part of the tail mesoderm. This novel system could substantially accelerate future small-scale forward-genetic screening and identification of mutations. Therefore, the mangrove killifish could be used as a complementary system alongside existing models for future molecular genetic studies.
Collapse
Affiliation(s)
- Hussein A Saud
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Paul A O'Neill
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Yosuke Ono
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Bas Verbruggen
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Ronny Van Aerle
- Cefas Weymouth Laboratory, International Centre of Excellence for Aquatic Animal Health, Weymouth DT4 8UB, UK
| | - Jaebum Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Brian C Ring
- Department of Biology, College of Science and Math, Valdosta State University, 1500 N. Patterson St., Valdosta, GA 31698, USA
| | - Tetsuhiro Kudoh
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
18
|
Thomson L, Muresan L, Steventon B. The zebrafish presomitic mesoderm elongates through compaction-extension. Cells Dev 2021. [PMID: 34597846 DOI: 10.1101/2021.03.11.434927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In vertebrate embryos the presomitic mesoderm becomes progressively segmented into somites at the anterior end while extending along the anterior-posterior axis. A commonly adopted model to explain how this tissue elongates is that of posterior growth, driven in part by the addition of new cells from uncommitted progenitor populations in the tailbud. However, in zebrafish, much of somitogenesis is associated with an absence of overall volume increase, and posterior progenitors do not contribute new cells until the final stages of somitogenesis. Here, we perform a comprehensive 3D morphometric analysis of the paraxial mesoderm and reveal that extension is linked to a volumetric decrease and an increase in cell density. We also find that individual cells decrease in volume over successive somite stages. Live cell tracking confirms that much of this tissue deformation occurs within the presomitic mesoderm progenitor zone and is associated with non-directional rearrangement. Taken together, we propose a compaction-extension mechanism of tissue elongation that highlights the need to better understand the role tissue intrinsic and extrinsic forces in regulating morphogenesis.
Collapse
Affiliation(s)
- Lewis Thomson
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Leila Muresan
- Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
19
|
Human ESC-derived Neuromesodermal Progenitors (NMPs) Successfully Differentiate into Mesenchymal Stem Cells (MSCs). Stem Cell Rev Rep 2021; 18:278-293. [PMID: 34669151 DOI: 10.1007/s12015-021-10281-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
Mesenchymal Stem Cells (MSCs), as an adult stem cell type, are used to treat various disorders in clinics. However, derivation of homogenous and adequate amount of MSCs limits the regenerative treatment potential. Although mesoderm is the main source of mesenchymal progenitors during embryonic development, neuromesodermal progenitors (NMPs), reside in the primitive streak during development, is known to differentiate into paraxial mesoderm. In the current study, we generated NMPs from human embryonic stem cells (hESC), subsequently derived MSCs and characterized this cell population in vitro and in vivo. Using a bFGF and CHIR induced NMP formation protocol followed by serum containing culture conditions; here we show that MSCs can be generated from NMPs identified by not only the expression of T/Bra and Sox 2 but also FLK-1/PDGFRα in our study. NMP-derived MSCs were plastic adherent fibroblast like cells with colony forming capacity and trilineage (osteo-, chondro- and adipo-genic) differentiation potential. In the present study, we demonstrate that NMP-derived MSCs have an endothelial tendency which might be related to their FLK-1+/PDGFRα + NMP origin. NMP-derived MSCs displayed a protein expression profile of characterized MSCs. Growth factor and angiogenesis related pathway proteins were similarly expressed in NMP-derived MSCs and characterized MSCs. NMP-derived MSCs keep characteristics after short-term and long-term freeze-thaw cycles and localized into bone marrow followed by tail vein injection into NOD/SCID mice. Together, these data showed that hESC-derived NMPs might be used as a precursor cell population for MSC derivation and could be used for in vitro and in vivo research.
Collapse
|
20
|
Romanos M, Allio G, Roussigné M, Combres L, Escalas N, Soula C, Médevielle F, Steventon B, Trescases A, Bénazéraf B. Cell-to-cell heterogeneity in Sox2 and Bra expression guides progenitor motility and destiny. eLife 2021; 10:e66588. [PMID: 34607629 PMCID: PMC8492064 DOI: 10.7554/elife.66588] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Although cell-to-cell heterogeneity in gene and protein expression within cell populations has been widely documented, we know little about its biological functions. By studying progenitors of the posterior region of bird embryos, we found that expression levels of transcription factors Sox2 and Bra, respectively involved in neural tube (NT) and mesoderm specification, display a high degree of cell-to-cell heterogeneity. By combining forced expression and downregulation approaches with time-lapse imaging, we demonstrate that Sox2-to-Bra ratio guides progenitor's motility and their ability to stay in or exit the progenitor zone to integrate neural or mesodermal tissues. Indeed, high Bra levels confer high motility that pushes cells to join the paraxial mesoderm, while high levels of Sox2 tend to inhibit cell movement forcing cells to integrate the NT. Mathematical modeling captures the importance of cell motility regulation in this process and further suggests that randomness in Sox2/Bra cell-to-cell distribution favors cell rearrangements and tissue shape conservation.
Collapse
Affiliation(s)
- Michèle Romanos
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPSToulouseFrance
- Institut de Mathématiques de Toulouse UMR 5219, Université de ToulouseToulouseFrance
| | - Guillaume Allio
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPSToulouseFrance
| | - Myriam Roussigné
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPSToulouseFrance
| | - Léa Combres
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPSToulouseFrance
| | - Nathalie Escalas
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPSToulouseFrance
| | - Cathy Soula
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPSToulouseFrance
| | - François Médevielle
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPSToulouseFrance
| | | | - Ariane Trescases
- Institut de Mathématiques de Toulouse UMR 5219, Université de ToulouseToulouseFrance
| | - Bertrand Bénazéraf
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPSToulouseFrance
| |
Collapse
|
21
|
Wolf S, Wan Y, McDole K. Current approaches to fate mapping and lineage tracing using image data. Development 2021; 148:dev198994. [PMID: 34498046 DOI: 10.1242/dev.198994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Visualizing, tracking and reconstructing cell lineages in developing embryos has been an ongoing effort for well over a century. Recent advances in light microscopy, labelling strategies and computational methods to analyse complex image datasets have enabled detailed investigations into the fates of cells. Combined with powerful new advances in genomics and single-cell transcriptomics, the field of developmental biology is able to describe the formation of the embryo like never before. In this Review, we discuss some of the different strategies and applications to lineage tracing in live-imaging data and outline software methodologies that can be applied to various cell-tracking challenges.
Collapse
Affiliation(s)
- Steffen Wolf
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Yinan Wan
- Biozentrum, University of Basel, Basel, 4056, Switzerland
| | - Katie McDole
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
22
|
Gupta S, Butler SJ. Getting in touch with your senses: Mechanisms specifying sensory interneurons in the dorsal spinal cord. WIREs Mech Dis 2021; 13:e1520. [PMID: 34730293 PMCID: PMC8459260 DOI: 10.1002/wsbm.1520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 11/18/2022]
Abstract
The spinal cord is functionally and anatomically divided into ventrally derived motor circuits and dorsally derived somatosensory circuits. Sensory stimuli originating either at the periphery of the body, or internally, are relayed to the dorsal spinal cord where they are processed by distinct classes of sensory dorsal interneurons (dIs). dIs convey sensory information, such as pain, heat or itch, either to the brain, and/or to the motor circuits to initiate the appropriate response. They also regulate the intensity of sensory information and are the major target for the opioid analgesics. While the developmental mechanisms directing ventral and dorsal cell fates have been hypothesized to be similar, more recent research has suggested that dI fates are specified by novel mechanisms. In this review, we will discuss the molecular events that specify dorsal neuronal patterning in the spinal cord, thereby generating diverse dI identities. We will then discuss how this molecular understanding has led to the development of robust stem cell methods to derive multiple spinal cell types, including the dIs, and the implication of these studies for treating spinal cord injuries and neurodegenerative diseases. This article is categorized under: Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Sandeep Gupta
- Department of NeurobiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Samantha J. Butler
- Department of NeurobiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Intellectual and Developmental Disabilities Research CenterUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
23
|
McLaren SBP, Steventon BJ. Anterior expansion and posterior addition to the notochord mechanically coordinate zebrafish embryo axis elongation. Development 2021; 148:269016. [PMID: 34086031 PMCID: PMC8327291 DOI: 10.1242/dev.199459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/26/2021] [Indexed: 01/02/2023]
Abstract
How force generated by the morphogenesis of one tissue impacts the morphogenesis of other tissues to achieve an elongated embryo axis is not well understood. The notochord runs along the length of the somitic compartment and is flanked on either side by somites. Vacuolating notochord cells undergo a constrained expansion, increasing notochord internal pressure and driving its elongation and stiffening. Therefore, the notochord is appropriately positioned to play a role in mechanically elongating the somitic compartment. We used multi-photon cell ablation to remove specific regions of the zebrafish notochord and quantify the impact on axis elongation. We show that anterior expansion generates a force that displaces notochord cells posteriorly relative to adjacent axial tissues, contributing to the elongation of segmented tissue during post-tailbud stages. Unexpanded cells derived from progenitors at the posterior end of the notochord provide resistance to anterior notochord cell expansion, allowing for stress generation along the anterior-posterior axis. Therefore, notochord cell expansion beginning in the anterior, and addition of cells to the posterior notochord, act as temporally coordinated morphogenetic events that shape the zebrafish embryo anterior-posterior axis. Summary: Targeted multi-photon tissue ablation reveals that coordinated cell expansion and addition to the notochord in zebrafish embryos contributes to the elongation of segmented tissue required for embryo anterior-posterior axis extension.
Collapse
|
24
|
Weterings SDC, van Oostrom MJ, Sonnen KF. Building bridges between fields: bringing together development and homeostasis. Development 2021; 148:270964. [PMID: 34279592 PMCID: PMC8326920 DOI: 10.1242/dev.193268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite striking parallels between the fields of developmental biology and adult tissue homeostasis, these are disconnected in contemporary research. Although development describes tissue generation and homeostasis describes tissue maintenance, it is the balance between stem cell proliferation and differentiation that coordinates both processes. Upstream signalling regulates this balance to achieve the required outcome at the population level. Both development and homeostasis require tight regulation of stem cells at the single-cell level and establishment of patterns at the tissue-wide level. Here, we emphasize that the general principles of embryonic development and tissue homeostasis are similar, and argue that interactions between these disciplines will be beneficial for both research fields.
Collapse
Affiliation(s)
- Sonja D C Weterings
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marek J van Oostrom
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Katharina F Sonnen
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
25
|
Gladysheva J, Evnukova E, Kondakova E, Kulakova M, Efremov V. Neurulation in the posterior region of zebrafish, Danio rerio embryos. J Morphol 2021; 282:1437-1454. [PMID: 34233026 DOI: 10.1002/jmor.21396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 11/06/2022]
Abstract
The neural tube of amniotes is formed through different mechanisms that take place in the anterior and posterior regions and involve neural plate folding or mesenchymal condensation followed by its cavitation. Meanwhile, in teleost trunk region, the neural plate forms the neural keel, while the lumen develops later. However, the data on neurulation and other morphogenetic processes in the posterior body region in Teleostei remain fragmentary. We proposed that there could be variations in the morphogenetic processes, such as cell shape changes and cell rearrangements, in the posterior region compared to the anterior one at the different stages. Here, we performed morphological and histochemical analyses of morphogenetic processes with an emphasis on neurulation in the zebrafish tail bud (TB) and posterior region. To analyze the posterior expression of sox2 and tbxta we performed whole mount in situ hybridization. We showed that the TB cells of variable shapes and orientation are tightly packed, and the neural and notochord primordia develop first. The shape of the neural primordium undergoes numerous changes as a result of cell rearrangements leading to the development of the neural rod. At the prim-6 stage, the cells of the neural primordium directly form the neural rod. The neuroepithelial cells undergo sequential shape changes. At the stage of the neural rod formation, the apical regions of triangular neuroepithelial cells of the floor plate are enriched in F-actin. The neurocoel development onset is above the apical poles of neuroepithelial cells. The expression domains of sox2 and tbxta become more restricted during the development.
Collapse
Affiliation(s)
- Julia Gladysheva
- Department of Embryology of the Faculty of Biology of St. Petersburg University, St. Petersburg, Russian Federation.,The Scandinavia AVA-PETER Clinic, St. Petersburg, Russian Federation
| | - Evdokia Evnukova
- Department of Embryology of the Faculty of Biology of St. Petersburg University, St. Petersburg, Russian Federation
| | - Ekaterina Kondakova
- Department of Embryology of the Faculty of Biology of St. Petersburg University, St. Petersburg, Russian Federation.,Federal State Scientific Establishment "Berg State Research Institute on Lake and River Fisheries" (GosNIORH), St. Petersburg branch of VNIRO, Russian federal Research Institute of Fisheries and Oceanography, Moscow, Russian Federation
| | - Milana Kulakova
- Department of Embryology of the Faculty of Biology of St. Petersburg University, St. Petersburg, Russian Federation
| | - Vladimir Efremov
- Department of Embryology of the Faculty of Biology of St. Petersburg University, St. Petersburg, Russian Federation
| |
Collapse
|
26
|
Guillot C, Djeffal Y, Michaut A, Rabe B, Pourquié O. Dynamics of primitive streak regression controls the fate of neuromesodermal progenitors in the chicken embryo. eLife 2021; 10:64819. [PMID: 34227938 PMCID: PMC8260230 DOI: 10.7554/elife.64819] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
In classical descriptions of vertebrate development, the segregation of the three embryonic germ layers completes by the end of gastrulation. Body formation then proceeds in a head to tail fashion by progressive deposition of lineage-committed progenitors during regression of the primitive streak (PS) and tail bud (TB). The identification by retrospective clonal analysis of a population of neuromesodermal progenitors (NMPs) contributing to both musculoskeletal precursors (paraxial mesoderm) and spinal cord during axis formation challenged these notions. However, classical fate mapping studies of the PS region in amniotes have so far failed to provide direct evidence for such bipotential cells at the single-cell level. Here, using lineage tracing and single-cell RNA sequencing in the chicken embryo, we identify a resident cell population of the anterior PS epiblast, which contributes to neural and mesodermal lineages in trunk and tail. These cells initially behave as monopotent progenitors as classically described and only acquire a bipotential fate later, in more posterior regions. We show that NMPs exhibit a conserved transcriptomic signature during axis elongation but lose their epithelial characteristicsin the TB. Posterior to anterior gradients of convergence speed and ingression along the PS lead to asymmetric exhaustion of PS mesodermal precursor territories. Through limited ingression and increased proliferation, NMPs are maintained and amplified as a cell population which constitute the main progenitors in the TB. Together, our studies provide a novel understanding of the PS and TB contribution through the NMPs to the formation of the body of amniote embryos.
Collapse
Affiliation(s)
- Charlene Guillot
- Department of Pathology, Brigham and Women's Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States.,Harvard Stem Cell Institute, Boston, United States
| | - Yannis Djeffal
- Department of Pathology, Brigham and Women's Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States.,Harvard Stem Cell Institute, Boston, United States
| | - Arthur Michaut
- Department of Pathology, Brigham and Women's Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States.,Harvard Stem Cell Institute, Boston, United States
| | - Brian Rabe
- Department of Genetics, Harvard Medical School, Boston, United States.,Howard Hughes Medical Institute, Boston, United States
| | - Olivier Pourquié
- Department of Pathology, Brigham and Women's Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States.,Harvard Stem Cell Institute, Boston, United States
| |
Collapse
|
27
|
Ye Z, Braden CR, Wills A, Kimelman D. Identification of in vivo Hox13-binding sites reveals an essential locus controlling zebrafish brachyury expression. Development 2021; 148:268973. [PMID: 34061173 DOI: 10.1242/dev.199408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022]
Abstract
During early embryogenesis, the vertebrate embryo extends from anterior to posterior because of the progressive addition of cells from a posteriorly localized neuromesodermal progenitor (NMp) population. An autoregulatory loop between Wnt and Brachyury/Tbxt is required for NMps to retain mesodermal potential and, hence, normal axis development. We recently showed that Hox13 genes help to support body axis formation and to maintain the autoregulatory loop, although the direct Hox13 target genes were unknown. Here, using a new method for identifying in vivo transcription factor-binding sites, we identified more than 500 potential Hox13 target genes in zebrafish. Importantly, we found two highly conserved Hox13-binding elements far from the tbxta transcription start site that also contain a conserved Tcf7/Lef1 (Wnt response) site. We show that the proximal of the two elements is sufficient to confer somitogenesis-stage expression to a tbxta promoter that, on its own, only drives NMp expression during gastrulation. Importantly, elimination of this proximal element produces shortened embryos due to aberrant formation of the most posterior somites. Our study provides a potential direct connection between Hox13 and regulation of the Wnt/Brachyury loop.
Collapse
Affiliation(s)
- Zhi Ye
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | - Christopher R Braden
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | - Andrea Wills
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | - David Kimelman
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| |
Collapse
|
28
|
Shaker MR, Lee JH, Sun W. Embryonal Neuromesodermal Progenitors for Caudal Central Nervous System and Tissue Development. J Korean Neurosurg Soc 2021; 64:359-366. [PMID: 33896149 PMCID: PMC8128519 DOI: 10.3340/jkns.2020.0359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/08/2021] [Accepted: 01/28/2021] [Indexed: 01/20/2023] Open
Abstract
Neuromesodermal progenitors (NMPs) constitute a bipotent cell population that generates a wide variety of trunk cell and tissue types during embryonic development. Derivatives of NMPs include both mesodermal lineage cells such as muscles and vertebral bones, and neural lineage cells such as neural crests and central nervous system neurons. Such diverse lineage potential combined with a limited capacity for self-renewal, which persists during axial elongation, demonstrates that NMPs are a major source of trunk tissues. This review describes the identification and characterization of NMPs across multiple species. We also discuss key cellular and molecular steps for generating neural and mesodermal cells for building up the elongating trunk tissue.
Collapse
Affiliation(s)
- Mohammed R. Shaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland, Australia
| | - Ju-Hyun Lee
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | - Woong Sun
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
29
|
Hudson C, Yasuo H. Neuromesodermal Lineage Contribution to CNS Development in Invertebrate and Vertebrate Chordates. Genes (Basel) 2021; 12:genes12040592. [PMID: 33920662 PMCID: PMC8073528 DOI: 10.3390/genes12040592] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Ascidians are invertebrate chordates and the closest living relative to vertebrates. In ascidian embryos a large part of the central nervous system arises from cells associated with mesoderm rather than ectoderm lineages. This seems at odds with the traditional view of vertebrate nervous system development which was thought to be induced from ectoderm cells, initially with anterior character and later transformed by posteriorizing signals, to generate the entire anterior-posterior axis of the central nervous system. Recent advances in vertebrate developmental biology, however, show that much of the posterior central nervous system, or spinal cord, in fact arises from cells that share a common origin with mesoderm. This indicates a conserved role for bi-potential neuromesoderm precursors in chordate CNS formation. However, the boundary between neural tissue arising from these distinct neural lineages does not appear to be fixed, which leads to the notion that anterior-posterior patterning and neural fate formation can evolve independently.
Collapse
|
30
|
Wymeersch FJ, Wilson V, Tsakiridis A. Understanding axial progenitor biology in vivo and in vitro. Development 2021; 148:148/4/dev180612. [PMID: 33593754 DOI: 10.1242/dev.180612] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The generation of the components that make up the embryonic body axis, such as the spinal cord and vertebral column, takes place in an anterior-to-posterior (head-to-tail) direction. This process is driven by the coordinated production of various cell types from a pool of posteriorly-located axial progenitors. Here, we review the key features of this process and the biology of axial progenitors, including neuromesodermal progenitors, the common precursors of the spinal cord and trunk musculature. We discuss recent developments in the in vitro production of axial progenitors and their potential implications in disease modelling and regenerative medicine.
Collapse
Affiliation(s)
- Filip J Wymeersch
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Valerie Wilson
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield S10 2TN UK .,Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| |
Collapse
|
31
|
Diaz‐Cuadros M, Pourquie O. In vitro systems: A new window to the segmentation clock. Dev Growth Differ 2021; 63:140-153. [PMID: 33460448 PMCID: PMC8048467 DOI: 10.1111/dgd.12710] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/12/2023]
Abstract
Segmental organization of the vertebrate body plan is established by the segmentation clock, a molecular oscillator that controls the periodicity of somite formation. Given the dynamic nature of the segmentation clock, in vivo studies in vertebrate embryos pose technical challenges. As an alternative, simpler models of the segmentation clock based on primary explants and pluripotent stem cells have recently been developed. These ex vivo and in vitro systems enable more quantitative analysis of oscillatory properties and expand the experimental repertoire applicable to the segmentation clock. Crucially, by eliminating the need for model organisms, in vitro models allow us to study the segmentation clock in new species, including our own. The human oscillator was recently recapitulated using induced pluripotent stem cells, providing a window into human development. Certainly, a combination of in vivo and in vitro work holds the most promising potential to unravel the mechanisms behind vertebrate segmentation.
Collapse
Affiliation(s)
- Margarete Diaz‐Cuadros
- Department of GeneticsHarvard Medical SchoolBostonMassachusettsUSA
- Department of PathologyBrigham and Women’s HospitalBostonMassachusettsUSA
| | - Olivier Pourquie
- Department of GeneticsHarvard Medical SchoolBostonMassachusettsUSA
- Department of PathologyBrigham and Women’s HospitalBostonMassachusettsUSA
- Harvard Stem Cell InstituteBostonMassachusettsUSA
| |
Collapse
|
32
|
Sambasivan R, Steventon B. Neuromesodermal Progenitors: A Basis for Robust Axial Patterning in Development and Evolution. Front Cell Dev Biol 2021; 8:607516. [PMID: 33520989 PMCID: PMC7843932 DOI: 10.3389/fcell.2020.607516] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
During early development the vertebrate embryo elongates through a combination of tissue shape change, growth and progenitor cell expansion across multiple regions of the body axis. How these events are coordinated across the length of the embryo to generate a well-proportioned body axis is unknown. Understanding the multi-tissue interplay of morphogenesis, growth and cell fate specification is essential for us to gain a complete understanding how diverse body plans have evolved in a robust manner. Within the posterior region of the embryo, a population of bipotent neuromesodermal progenitors generate both spinal cord and paraxial mesoderm derivatives during the elongation of the vertebrate body. Here we summarize recent data comparing neuromesodermal lineage and their underlying gene-regulatory networks between species and through development. We find that the common characteristic underlying this population is a competence to generate posterior neural and paraxial mesoderm cells, with a conserved Wnt/FGF and Sox2/T/Tbx6 regulatory network. We propose the hypothesis that by maintaining a population of multi-germ layer competent progenitors at the posterior aspect of the embryo, a flexible pool of progenitors is maintained whose contribution to the elongating body axis varies as a consequence of the relative growth rates occurring within anterior and posterior regions of the body axis. We discuss how this capacity for variation in the proportions and rates of NM specification might have been important allowing for alterations in the timing of embryo growth during evolution.
Collapse
Affiliation(s)
- Ramkumar Sambasivan
- Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Benjamin Steventon
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
33
|
Anderson MJ, Magidson V, Kageyama R, Lewandoski M. Fgf4 maintains Hes7 levels critical for normal somite segmentation clock function. eLife 2020; 9:55608. [PMID: 33210601 PMCID: PMC7717904 DOI: 10.7554/elife.55608] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
During vertebrate development, the presomitic mesoderm (PSM) periodically segments into somites, which will form the segmented vertebral column and associated muscle, connective tissue, and dermis. The periodicity of somitogenesis is regulated by a segmentation clock of oscillating Notch activity. Here, we examined mouse mutants lacking only Fgf4 or Fgf8, which we previously demonstrated act redundantly to prevent PSM differentiation. Fgf8 is not required for somitogenesis, but Fgf4 mutants display a range of vertebral defects. We analyzed Fgf4 mutants by quantifying mRNAs fluorescently labeled by hybridization chain reaction within Imaris-based volumetric tissue subsets. These data indicate that FGF4 maintains Hes7 levels and normal oscillatory patterns. To support our hypothesis that FGF4 regulates somitogenesis through Hes7, we demonstrate genetic synergy between Hes7 and Fgf4, but not with Fgf8. Our data indicate that Fgf4 is potentially important in a spectrum of human Segmentation Defects of the Vertebrae caused by defective Notch oscillations.
Collapse
Affiliation(s)
- Matthew J Anderson
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, United States
| | - Valentin Magidson
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mark Lewandoski
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, United States
| |
Collapse
|
34
|
Sox2 and Canonical Wnt Signaling Interact to Activate a Developmental Checkpoint Coordinating Morphogenesis with Mesoderm Fate Acquisition. Cell Rep 2020; 33:108311. [PMID: 33113369 PMCID: PMC7653682 DOI: 10.1016/j.celrep.2020.108311] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/11/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Animal embryogenesis requires a precise coordination between morphogenesis and cell fate specification. During mesoderm induction, mesodermal fate acquisition is tightly coordinated with the morphogenetic process of epithelial-to-mesenchymal transition (EMT). In zebrafish, cells exist transiently in a partial EMT state during mesoderm induction. Here, we show that cells expressing the transcription factor Sox2 are held in the partial EMT state, stopping them from completing the EMT and joining the mesoderm. This is critical for preventing the formation of ectopic neural tissue. The mechanism involves synergy between Sox2 and the mesoderm-inducing canonical Wnt signaling pathway. When Wnt signaling is inhibited in Sox2-expressing cells trapped in the partial EMT, cells exit into the mesodermal territory but form an ectopic spinal cord instead of mesoderm. Our work identifies a critical developmental checkpoint that ensures that morphogenetic movements establishing the mesodermal germ layer are accompanied by robust mesodermal cell fate acquisition.
Collapse
|
35
|
Kuzmicz-Kowalska K, Kicheva A. Regulation of size and scale in vertebrate spinal cord development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e383. [PMID: 32391980 PMCID: PMC8244110 DOI: 10.1002/wdev.383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/25/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022]
Abstract
All vertebrates have a spinal cord with dimensions and shape specific to their species. Yet how species‐specific organ size and shape are achieved is a fundamental unresolved question in biology. The formation and sculpting of organs begins during embryonic development. As it develops, the spinal cord extends in anterior–posterior direction in synchrony with the overall growth of the body. The dorsoventral (DV) and apicobasal lengths of the spinal cord neuroepithelium also change, while at the same time a characteristic pattern of neural progenitor subtypes along the DV axis is established and elaborated. At the basis of these changes in tissue size and shape are biophysical determinants, such as the change in cell number, cell size and shape, and anisotropic tissue growth. These processes are controlled by global tissue‐scale regulators, such as morphogen signaling gradients as well as mechanical forces. Current challenges in the field are to uncover how these tissue‐scale regulatory mechanisms are translated to the cellular and molecular level, and how regulation of distinct cellular processes gives rise to an overall defined size. Addressing these questions will help not only to achieve a better understanding of how size is controlled, but also of how tissue size is coordinated with the specification of pattern. This article is categorized under:Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Signaling Pathways > Global Signaling Mechanisms Nervous System Development > Vertebrates: General Principles
Collapse
|
36
|
Roberts C. Regulating Retinoic Acid Availability during Development and Regeneration: The Role of the CYP26 Enzymes. J Dev Biol 2020; 8:jdb8010006. [PMID: 32151018 PMCID: PMC7151129 DOI: 10.3390/jdb8010006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
This review focuses on the role of the Cytochrome p450 subfamily 26 (CYP26) retinoic acid (RA) degrading enzymes during development and regeneration. Cyp26 enzymes, along with retinoic acid synthesising enzymes, are absolutely required for RA homeostasis in these processes by regulating availability of RA for receptor binding and signalling. Cyp26 enzymes are necessary to generate RA gradients and to protect specific tissues from RA signalling. Disruption of RA homeostasis leads to a wide variety of embryonic defects affecting many tissues. Here, the function of CYP26 enzymes is discussed in the context of the RA signalling pathway, enzymatic structure and biochemistry, human genetic disease, and function in development and regeneration as elucidated from animal model studies.
Collapse
Affiliation(s)
- Catherine Roberts
- Developmental Biology of Birth Defects, UCL-GOS Institute of Child Health, 30 Guilford St, London WC1N 1EH, UK;
- Institute of Medical and Biomedical Education St George’s, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| |
Collapse
|
37
|
Mallo M. The vertebrate tail: a gene playground for evolution. Cell Mol Life Sci 2020; 77:1021-1030. [PMID: 31559446 PMCID: PMC11104866 DOI: 10.1007/s00018-019-03311-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/25/2022]
Abstract
The tail of all vertebrates, regardless of size and anatomical detail, derive from a post-anal extension of the embryo known as the tail bud. Formation, growth and differentiation of this structure are closely associated with the activity of a group of cells that derive from the axial progenitors that build the spinal cord and the muscle-skeletal case of the trunk. Gdf11 activity switches the development of these progenitors from a trunk to a tail bud mode by changing the regulatory network that controls their growth and differentiation potential. Recent work in the mouse indicates that the tail bud regulatory network relies on the interconnected activities of the Lin28/let-7 axis and the Hox13 genes. As this network is likely to be conserved in other mammals, it is possible that the final length and anatomical composition of the adult tail result from the balance between the progenitor-promoting and -repressing activities provided by those genes. This balance might also determine the functional characteristics of the adult tail. Particularly relevant is its regeneration potential, intimately linked to the spinal cord. In mammals, known for their complete inability to regenerate the tail, the spinal cord is removed from the embryonic tail at late stages of development through a Hox13-dependent mechanism. In contrast, the tail of salamanders and lizards keep a functional spinal cord that actively guides the tail's regeneration process. I will argue that the distinct molecular networks controlling tail bud development provided a collection of readily accessible gene networks that were co-opted and combined during evolution either to end the active life of those progenitors or to make them generate the wide diversity of tail shapes and sizes observed among vertebrates.
Collapse
Affiliation(s)
- Moisés Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.
| |
Collapse
|
38
|
Fulton T, Lenz MO, Muresan L, Andrews T, Lancaster C, Horton E, Steventon B. Long-term in toto cell tracking using lightsheet microscopy of the zebrafish tailbud. Wellcome Open Res 2019. [DOI: 10.12688/wellcomeopenres.14907.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In toto light-sheet imaging allows the tracking of entire growing tissues with high spatial and temporal resolution for many hours. However, this technology requires a sample to be immobilised to ensure that the tissue of interest remains within the field of view throughout the image acquisition period. We have developed a method of mounting and image capture for long-term light-sheet imaging of a growing zebrafish tailbud from the 18 somite stage through to the end of somitogenesis. By tracking the global movement of the tailbud during image acquisition and feeding this back to the microscope stage, we are able to ensure that the growing tissue remains within the field of view throughout image acquisition. Here, we present three representative datasets of embryos in which all nuclei are labelled and tracked until the completion of somitogenesis.
Collapse
|
39
|
Abstract
Every animal grows from a single fertilized egg into an intricate network of cell types and organ systems. This process is captured in a lineage tree: a diagram of every cell's ancestry back to the founding zygote. Biologists have long sought to trace this cell lineage tree in individual organisms and have developed a variety of technologies to map the progeny of specific cells. However, there are billions to trillions of cells in complex organisms, and conventional approaches can only map a limited number of clonal populations per experiment. A new generation of tools that use molecular recording methods integrated with single cell profiling technologies may provide a solution. Here, we summarize recent breakthroughs in these technologies, outline experimental and computational challenges, and discuss biological questions that can be addressed using single cell dynamic lineage tracing.
Collapse
Affiliation(s)
- Aaron McKenna
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - James A Gagnon
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
40
|
Razy-Krajka F, Stolfi A. Regulation and evolution of muscle development in tunicates. EvoDevo 2019; 10:13. [PMID: 31249657 PMCID: PMC6589888 DOI: 10.1186/s13227-019-0125-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/08/2019] [Indexed: 12/16/2022] Open
Abstract
For more than a century, studies on tunicate muscle formation have revealed many principles of cell fate specification, gene regulation, morphogenesis, and evolution. Here, we review the key studies that have probed the development of all the various muscle cell types in a wide variety of tunicate species. We seize this occasion to explore the implications and questions raised by these findings in the broader context of muscle evolution in chordates.
Collapse
Affiliation(s)
- Florian Razy-Krajka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| |
Collapse
|
41
|
Nowotschin S, Hadjantonakis AK. Lights, Camera, Action! Visualizing the Cellular Choreography of Mouse Gastrulation. Dev Cell 2019; 47:684-685. [PMID: 30562508 DOI: 10.1016/j.devcel.2018.11.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
When it comes to live imaging, the mouse has always played catch-up with models like the zebrafish or fruit fly. Recent work reports a technical tour de force toward the in toto visualization of mouse early post-implantation embryo development at an unprecedented spatio-temporal resolution.
Collapse
Affiliation(s)
- Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
42
|
Salvador-Martínez I, Grillo M, Averof M, Telford MJ. Is it possible to reconstruct an accurate cell lineage using CRISPR recorders? eLife 2019; 8:e40292. [PMID: 30688650 PMCID: PMC6349403 DOI: 10.7554/elife.40292] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/11/2019] [Indexed: 02/02/2023] Open
Abstract
Cell lineages provide the framework for understanding how cell fates are decided during development. Describing cell lineages in most organisms is challenging; even a fruit fly larva has ~50,000 cells and a small mammal has >1 billion cells. Recently, the idea of applying CRISPR to induce mutations during development, to be used as heritable markers for lineage reconstruction, has been proposed by several groups. While an attractive idea, its practical value depends on the accuracy of the cell lineages that can be generated. Here, we use computer simulations to estimate the performance of these approaches under different conditions. We incorporate empirical data on CRISPR-induced mutation frequencies in Drosophila. We show significant impacts from multiple biological and technical parameters - variable cell division rates, skewed mutational outcomes, target dropouts and different sequencing strategies. Our approach reveals the limitations of published CRISPR recorders, and indicates how future implementations can be optimised. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Irepan Salvador-Martínez
- Centre for Life’s Origins and Evolution, Department of Genetics Evolution and EnvironmentUniversity College LondonLondonUnited Kingdom
| | - Marco Grillo
- Institut de Génomique Fonctionnelle de Lyon (IGFL)École Normale Supérieure de LyonLyonFrance
- Centre National de la Recherche Scientifique (CNRS)ParisFrance
| | - Michalis Averof
- Institut de Génomique Fonctionnelle de Lyon (IGFL)École Normale Supérieure de LyonLyonFrance
- Centre National de la Recherche Scientifique (CNRS)ParisFrance
| | - Maximilian J Telford
- Centre for Life’s Origins and Evolution, Department of Genetics Evolution and EnvironmentUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
43
|
Fulton T, Lenz MO, Muresan L, Lancaster C, Horton E, Steventon B. Long-term in toto cell tracking using lightsheet microscopy of the zebrafish tailbud. Wellcome Open Res 2018. [DOI: 10.12688/wellcomeopenres.14907.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In toto light-sheet imaging allows the tracking of entire growing tissues with high spatial and temporal resolution for many hours. However, this technology requires a sample to be immobilised to ensure that the tissue of interest remains within the field of view throughout the image acquisition period. We have developed a method of mounting and image capture for long-term light-sheet imaging of a growing zebrafish tailbud from the 18 somite stage through to the end of somitogenesis. By tracking the global movement of the tailbud during image acquisition and feeding this back to the microscope stage, we are able to ensure that the growing tissue remains within the field of view throughout image acquisition. Here, we present three representative datasets of embryos in which all nuclei are labelled and tracked until the completion of somitogenesis.
Collapse
|