1
|
Begeman IJ, Guyer ME, Kang J. Cardiac enhancers: Gateway to the regulatory mechanisms of heart regeneration. Semin Cell Dev Biol 2025; 170:103610. [PMID: 40215762 PMCID: PMC12064385 DOI: 10.1016/j.semcdb.2025.103610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/17/2025] [Accepted: 03/31/2025] [Indexed: 05/10/2025]
Abstract
The adult mammalian heart has limited regenerative capacity. Cardiac injury, such as a myocardial infarction (MI), leads to permanent scarring and impaired heart function. In contrast, neonatal mice and zebrafish possess the ability to repair injured hearts. Cardiac regeneration is driven by profound transcriptional changes, which are controlled by gene regulatory elements, such as tissue regeneration enhancer elements (TREEs). Here, we review recent studies on cardiac injury/regeneration enhancers across species. We further explore regulatory mechanisms governing TREE activities and their associated binding regulators. We also discuss the potential of TREE engineering and how these enhancers can be utilized for heart repair. Decoding the regulatory logic of cardiac regeneration enhancers presents a promising avenue for understanding heart regeneration and advancing therapeutic strategies for heart failure.
Collapse
Affiliation(s)
- Ian J Begeman
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Megan E Guyer
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
2
|
Wang X, Chen L, Wei J, Zheng H, Zhou N, Xu X, Deng X, Liu T, Zou Y. The immune system in cardiovascular diseases: from basic mechanisms to therapeutic implications. Signal Transduct Target Ther 2025; 10:166. [PMID: 40404619 PMCID: PMC12098830 DOI: 10.1038/s41392-025-02220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/22/2024] [Accepted: 03/20/2025] [Indexed: 05/24/2025] Open
Abstract
Immune system plays a crucial role in the physiological and pathological regulation of the cardiovascular system. The exploration history and milestones of immune system in cardiovascular diseases (CVDs) have evolved from the initial discovery of chronic inflammation in atherosclerosis to large-scale clinical studies confirming the importance of anti-inflammatory therapy in treating CVDs. This progress has been facilitated by advancements in various technological approaches, including multi-omics analysis (single-cell sequencing, spatial transcriptome et al.) and significant improvements in immunotherapy techniques such as chimeric antigen receptor (CAR)-T cell therapy. Both innate and adaptive immunity holds a pivotal role in CVDs, involving Toll-like receptor (TLR) signaling pathway, nucleotide-binding oligomerization domain-containing proteins 1 and 2 (NOD1/2) signaling pathway, inflammasome signaling pathway, RNA and DNA sensing signaling pathway, as well as antibody-mediated and complement-dependent systems. Meanwhile, immune responses are simultaneously regulated by multi-level regulations in CVDs, including epigenetics (DNA, RNA, protein) and other key signaling pathways in CVDs, interactions among immune cells, and interactions between immune and cardiac or vascular cells. Remarkably, based on the progress in basic research on immune responses in the cardiovascular system, significant advancements have also been made in pre-clinical and clinical studies of immunotherapy. This review provides an overview of the role of immune system in the cardiovascular system, providing in-depth insights into the physiological and pathological regulation of immune responses in various CVDs, highlighting the impact of multi-level regulation of immune responses in CVDs. Finally, we also discuss pre-clinical and clinical strategies targeting the immune system and translational implications in CVDs.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Liming Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianming Wei
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Hao Zheng
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Ning Zhou
- Department of Cardiovascular Medicine, Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Deng
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China.
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Jiangsu, Nanjing, China.
- State Key Laboratory of Respiratory Disease, Joint International Research Laboratory of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
- Institutes of Advanced Medical Sciences and Huaihe Hospital, Henan University, Kaifeng, Henan, China.
| |
Collapse
|
3
|
Mao X, Mo D, Cheng Y, Lv M. 6PPD impairs immune responses and fin regeneration in zebrafish. Toxicol Lett 2025; 408:32-42. [PMID: 40188975 DOI: 10.1016/j.toxlet.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/14/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), a commonly used antioxidant in tire manufacturing, has been widely detected in the environment and shown to exhibit acute toxicity in several organs. However, the effects of 6PPD on immune responses, particularly following injury, remain poorly understood. In this study, we investigated the impact of 6PPD exposure on immune responses using zebrafish as a model. 6PPD exposure disrupted caudal fin regeneration at various stages of the regenerative process. Further analysis revealed that 6PPD impaired immune responses following fin amputation, as evidenced by the reduced number of lyz+/mpx+ neutrophils and the downregulation of key immune-related genes. Besides, the morphology of neutrophils was changed upon 6PPD exposure, indicating the defective migration of immune cells. The incubation of zebrafish larvae with lipopolysaccharide (LPS), which induces global immune responses, also exhibited impaired immune function when combined with 6PPD exposure. Additionally, the injection of LPS into the egg yolk or trunk exacerbated immune responses at the injury site, yet 6PPD exposure significantly reduced neutrophil accumulation and downregulated the expression of immune-related genes, confirming the toxicity of 6PPD in immune responses. These findings provide new insights into the toxic effects of 6PPD on immune responses during injury, highlighting its potential to impair immune function in animals and human.
Collapse
Affiliation(s)
- Xiaoyu Mao
- College of Language Intelligence, Sichuan International Studies University, Chongqing 400031, PR China
| | - Dashuang Mo
- Department of Immunology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 561113, PR China
| | - Yuqin Cheng
- College of Animal Science and Technology, Southwest University, Chongqing 400715, PR China
| | - Mengzhu Lv
- Department of Immunology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 561113, PR China.
| |
Collapse
|
4
|
Wu B, Constanty F, Beisaw A. Cardiac regeneration: Unraveling the complex network of intercellular crosstalk. Semin Cell Dev Biol 2025; 171:103619. [PMID: 40367899 DOI: 10.1016/j.semcdb.2025.103619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/13/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025]
Abstract
The heart is composed of multiple cell types, including cardiomyocytes, endothelial/endocardial cells, fibroblasts, resident immune cells and epicardium and crosstalk between these cell types is crucial for proper cardiac function and homeostasis. In response to cardiac injury or disease, cell-cell interactions and intercellular crosstalk contribute to remodeling to compensate reduced heart function. In some vertebrates, the heart can regenerate following cardiac injury. While cardiomyocytes play a crucial role in this process, additional cell types are necessary to create a pro-regenerative microenvironment in the injured heart. Here, we review recent literature regarding the importance of cellular crosstalk in promoting cardiac regeneration and provide insight into emerging technologies to investigate cell-cell interactions in vivo. Lastly, we explore recent studies highlighting the importance of inter-organ communication in response to injury and promotion of cardiac regeneration. Importantly, understanding how intercellular and inter-organ crosstalk promote cardiac regeneration is essential for the development of therapeutic strategies to stimulate regeneration in the human heart.
Collapse
Affiliation(s)
- Bailin Wu
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Heidelberg/Mannheim partner site, Germany
| | - Florian Constanty
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Heidelberg/Mannheim partner site, Germany; Helmholtz-Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University, Heidelberg 69117, Germany
| | - Arica Beisaw
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Heidelberg/Mannheim partner site, Germany; Helmholtz-Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University, Heidelberg 69117, Germany.
| |
Collapse
|
5
|
Byatt TC, Razaghi E, Tüzüner S, Simões FC. Immune-mediated cardiac development and regeneration. Semin Cell Dev Biol 2025; 171:103613. [PMID: 40315634 DOI: 10.1016/j.semcdb.2025.103613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/18/2025] [Accepted: 04/16/2025] [Indexed: 05/04/2025]
Abstract
The complex interplay between the immune and cardiovascular systems during development, homeostasis and regeneration represents a rapidly evolving field in cardiac biology. Single cell technologies, spatial mapping and computational analysis have revolutionised our understanding of the diversity and functional specialisation of immune cells within the heart. From the earliest stages of cardiogenesis, where primitive macrophages guide heart tube formation, to the complex choreography of inflammation and its resolution during regeneration, immune cells emerge as central orchestrators of cardiac fate. Translating these fundamental insights into clinical applications represents a major challenge and opportunity for the field. In this Review, we decode the immunological blueprint of heart development and regeneration to transform cardiovascular disease treatment and unlock the regenerative capacity of the human heart.
Collapse
Affiliation(s)
- Timothy C Byatt
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Ehsan Razaghi
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Selin Tüzüner
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Filipa C Simões
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
6
|
Li L, Lu M, Guo L, Zhang X, Liu Q, Zhang M, Gao J, Xu M, Lu Y, Zhang F, Li Y, Zhang R, Liu X, Pan S, Zhang X, Li Z, Chen Y, Su X, Zhang N, Guo W, Yang T, Chen J, Qin Y, Zhang Z, Cui W, Yu L, Gu Y, Yang H, Xu X, Wang J, Burns CE, Burns CG, Han K, Zhao L, Fan G, Su Y. An organ-wide spatiotemporal transcriptomic and cellular atlas of the regenerating zebrafish heart. Nat Commun 2025; 16:3716. [PMID: 40253397 PMCID: PMC12009352 DOI: 10.1038/s41467-025-59070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 04/10/2025] [Indexed: 04/21/2025] Open
Abstract
Adult zebrafish robustly regenerate injured hearts through a complex orchestration of molecular and cellular activities. However, this remarkable process, which is largely non-existent in humans, remains incompletely understood. Here, we utilize integrated spatial transcriptomics (Stereo-seq) and single-cell RNA-sequencing (scRNA-seq) to generate a spatially-resolved molecular and cellular atlas of regenerating zebrafish heart across eight stages. We characterize the cascade of cardiomyocyte cell states responsible for producing regenerated myocardium and explore a potential role for tpm4a in cardiomyocyte re-differentiation. Moreover, we uncover the activation of ifrd1 and atp6ap2 genes as a unique feature of regenerative hearts. Lastly, we reconstruct a 4D "virtual regenerating heart" comprising 569,896 cells/spots derived from 36 scRNA-seq libraries and 224 Stereo-seq slices. Our comprehensive atlas serves as a valuable resource to the cardiovascular and regeneration scientific communities and their ongoing efforts to understand the molecular and cellular mechanisms underlying vertebrate heart regeneration.
Collapse
Affiliation(s)
- Lei Li
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, 518083, China
| | - Meina Lu
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Lidong Guo
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuejiao Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Qun Liu
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
- Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Meiling Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Junying Gao
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Mengyang Xu
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, 518083, China
| | - Yijian Lu
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Fang Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yao Li
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Ruihua Zhang
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Xiawei Liu
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Shanshan Pan
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Xianghui Zhang
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Zhen Li
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Yadong Chen
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Xiaoshan Su
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
- Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Nannan Zhang
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Wenjie Guo
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen, 518120, China
| | - Jing Chen
- China National GeneBank, BGI Research, Shenzhen, 518120, China
| | - Yating Qin
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
- Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| | | | - Wei Cui
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Lindong Yu
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Ying Gu
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, 518083, China
- BGI, Shenzhen, 518083, China
| | - Huanming Yang
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, 518083, China
- BGI, Shenzhen, 518083, China
| | - Xun Xu
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, 518083, China
- BGI, Shenzhen, 518083, China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Caroline E Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - C Geoffrey Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Kai Han
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China.
- Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark.
| | - Long Zhao
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- College of Fisheries, Ocean University of China, Qingdao, 266003, China.
| | - Guangyi Fan
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China.
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, 518083, China.
- BGI Research, Sanya, 572025, China.
- BGI Research, Hangzhou, 310030, China.
| | - Ying Su
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
7
|
Balaraman AK, Altamimi ASA, Babu MA, Goyal K, PadmaPriya G, Bansal P, Rajotiya S, Kumar MR, Rajput P, Imran M, Gupta G, Thangavelu L. The interplay of senescence and MMPs in myocardial infarction: implications for cardiac aging and therapeutics. Biogerontology 2025; 26:46. [PMID: 39832057 DOI: 10.1007/s10522-025-10190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
Aging is associated with a marked increase in cardiovascular diseases, such as myocardial infarction (MI). Cellular senescence is also a crucial factor in the development of age-related MI. Matrix metalloproteinases (MMPs) interaction with cellular senescence is a critical determinant of MI development and outcomes, most notably in the aged heart. After experiencing a heart attack, senescent cells exhibit a Senescence-Associated Secretory Phenotype (SASP) and are involved in tissue regeneration and chronic inflammation. MMPs are necessary for extracellular matrix proteolysis and have a biphasic effect, promoting early heart healing and detrimental change if overexpressed shortly. This review analyses the complex connection between senescence and MMPs in MI and how it influences elderly cardiac performance. Critical findings suggest that increasing cellular senescence in aged hearts elevates MMP activity and aggravates extended ventricular remodeling and dysfunction. Additionally, we explore potential therapeutics that address MMPs and senescence to enhance old MI patient myocardial performance and regeneration.
Collapse
Affiliation(s)
- Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari Cyber 11, Cyberjaya, Selangor, 63000, Malaysia
| | | | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Uttar Pradesh, Mathura, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India
| | - G PadmaPriya
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Sumit Rajotiya
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Pranchal Rajput
- Division of Research and Innovation, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia
- Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Punjab, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
8
|
Yao J, Zhang Y, Wang Z, Chen Y, Shi X. Maintenance of Cardiac Microenvironmental Homeostasis: A Joint Battle of Multiple Cells. J Cell Physiol 2025; 240:e31496. [PMID: 39632594 DOI: 10.1002/jcp.31496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/24/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Various cells such as cardiomyocytes, fibroblasts and endothelial cells constitute integral components of cardiac tissue. The health and stability of cardiac ecosystem are ensured by the action of a certain type of cell and the intricate interactions between multiple cell types. The dysfunctional cells exert a profound impact on the development of cardiovascular diseases by involving in the pathological process. In this paper, we introduce the dynamic activity, cell surface markers as well as biological function of the various cells in the heart. Besides, we discuss the multiple signaling pathways involved in the cardiac injury including Hippo/YAP, TGF-β/Smads, PI3K/Akt, and MAPK signaling. The complexity of different cell types poses a great challenge to the disease treatment. By characterizing the roles of various cell types in cardiovascular diseases, we sought to discuss the potential strategies for preventing and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Jiayu Yao
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Youtao Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Ziwen Wang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yuejun Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Xingjuan Shi
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| |
Collapse
|
9
|
Jin K, Ma Z, Wang X, Gong C, Sheng J, Chen J, Shen S. The Role of Cardiac Macrophages in Inflammation and Fibrosis after Myocardial Ischemia-Reperfusion. Rev Cardiovasc Med 2024; 25:419. [PMID: 39618853 PMCID: PMC11607502 DOI: 10.31083/j.rcm2511419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 01/03/2025] Open
Abstract
According to current statistics, the mortality rate of cardiovascular diseases remains high, with coronary artery disease being the primary cause of death. Despite the widespread adoption of percutaneous coronary intervention (PCI) in recent years, which has led to a notable decrease in the mortality rate of myocardial infarction (MI), the pathological cardiac remodeling and heart failure that follow myocardial infarction still pose significant clinical challenges. Myocardial ischemia-reperfusion (MIR) injury represents a complex pathophysiological process, and the involvement of macrophages in this injury has consistently been a subject of significant focus. Following MIR, macrophages infiltrate, engulfing tissue debris and necrotic cells, and secreting pro-inflammatory factors. This initial response is crucial for clearing damaged tissue. Subsequently, the pro-inflammatory macrophages (M1) transition to an anti-inflammatory phenotype (M2), a shift that is essential for myocardial fibrosis and cardiac remodeling. This process is dynamic, complex, and continuous. To enhance understanding of this process, this review elaborates on the classification and functions of macrophages within the heart, covering recent research on signaling pathways involved in myocardial infarction through subsequent MIR injury and fibrosis. The ultimate aim is to reduce MIR injury, foster a conducive environment for cardiac recovery, and improve clinical outcomes for MI patients.
Collapse
Affiliation(s)
- Kaiqin Jin
- Department of Cardiology, Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, 442000 Shiyan, Hubei, China
| | - Zijun Ma
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, 442000 Shiyan, Hubei, China
| | - Xiaohe Wang
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, 230001 Hefei, Anhui, China
| | - Chen Gong
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, 230001 Hefei, Anhui, China
| | - Jianlong Sheng
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, 230001 Hefei, Anhui, China
| | - Jun Chen
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, 442000 Shiyan, Hubei, China
| | - Shichun Shen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001 Hefei, Anhui, China
| |
Collapse
|
10
|
Russo MA, Puccetti M, Costantini C, Giovagnoli S, Ricci M, Garaci E, Romani L. Human and gut microbiota synergy in a metabolically active superorganism: a cardiovascular perspective. Front Cardiovasc Med 2024; 11:1411306. [PMID: 39465131 PMCID: PMC11502352 DOI: 10.3389/fcvm.2024.1411306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/26/2024] [Indexed: 10/29/2024] Open
Abstract
Despite significant advances in diagnosis and treatment over recent decades, cardiovascular disease (CVD) remains one of the leading causes of morbidity and mortality in Western countries. This persistent burden is partly due to the incomplete understanding of fundamental pathogenic mechanisms, which limits the effectiveness of current therapeutic interventions. In this context, recent evidence highlights the pivotal role of immuno-inflammatory activation by the gut microbiome in influencing cardiovascular disorders, potentially opening new therapeutic avenues. Indeed, while atherosclerosis has been established as a chronic inflammatory disease of the arterial wall, accumulating data suggest that immune system regulation and anti-inflammatory pathways mediated by gut microbiota metabolites play a crucial role in a range of CVDs, including heart failure, pericardial disease, arrhythmias, and cardiomyopathies. Of particular interest is the emerging understanding of how tryptophan metabolism-by both host and microbiota-converges on the Aryl hydrocarbon Receptor (AhR), a key regulator of immune homeostasis. This review seeks to enhance our understanding of the role of the immune system and inflammation in CVD, with a focus on how gut microbiome-derived tryptophan metabolites, such as indoles and their derivatives, contribute to cardioimmunopathology. By exploring these mechanisms, we aim to facilitate the development of novel, microbiome-centered strategies for combating CVD.
Collapse
Affiliation(s)
| | - Matteo Puccetti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Enrico Garaci
- San Raffaele Research Center, Sulmona, L’Aquila, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- San Raffaele Research Center, Sulmona, L’Aquila, Italy
| |
Collapse
|
11
|
Alshoubaki YK, Nayer B, Lu YZ, Salimova E, Lau SN, Tan JL, Amann-Zalcenstein D, Hickey PF, Del Monte-Nieto G, Vasanthakumar A, Martino MM. Tregs delivered post-myocardial infarction adopt an injury-specific phenotype promoting cardiac repair via macrophages in mice. Nat Commun 2024; 15:6480. [PMID: 39090108 PMCID: PMC11294480 DOI: 10.1038/s41467-024-50806-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Regulatory T cells (Tregs) are key immune regulators that have shown promise in enhancing cardiac repair post-MI, although the mechanisms remain elusive. Here, we show that rapidly increasing Treg number in the circulation post-MI via systemic administration of exogenous Tregs improves cardiac function in male mice, by limiting cardiomyocyte death and reducing fibrosis. Mechanistically, exogenous Tregs quickly home to the infarcted heart and adopt an injury-specific transcriptome that mediates repair by modulating monocytes/macrophages. Specially, Tregs lead to a reduction in pro-inflammatory Ly6CHi CCR2+ monocytes/macrophages accompanied by a rapid shift of macrophages towards a pro-repair phenotype. Additionally, exogenous Treg-derived factors, including nidogen-1 and IL-10, along with a decrease in cardiac CD8+ T cell number, mediate the reduction of the pro-inflammatory monocyte/macrophage subset in the heart. Supporting the pivotal role of IL-10, exogenous Tregs knocked out for IL-10 lose their pro-repair capabilities. Together, this study highlights the beneficial use of a Treg-based therapeutic approach for cardiac repair with important mechanistic insights that could facilitate the development of novel immunotherapies for MI.
Collapse
Affiliation(s)
- Yasmin K Alshoubaki
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Bhavana Nayer
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Yen-Zhen Lu
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | | | - Sin Nee Lau
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Jean L Tan
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Daniela Amann-Zalcenstein
- Advanced Genomics Facility, Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Peter F Hickey
- Advanced Genomics Facility, Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Gonzalo Del Monte-Nieto
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
- Victorian Heart Institute, Monash University, Victorian Heart Hospital, Melbourne, Australia
| | - Ajithkumar Vasanthakumar
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- La Trobe University, Bundoora, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia.
- Victorian Heart Institute, Monash University, Victorian Heart Hospital, Melbourne, Australia.
| |
Collapse
|
12
|
Sande-Melon M, Bergemann D, Fernández-Lajarín M, González-Rosa JM, Cox AG. Development of a hepatic cryoinjury model to study liver regeneration. Development 2024; 151:dev203124. [PMID: 38975841 PMCID: PMC11318111 DOI: 10.1242/dev.203124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 07/09/2024]
Abstract
The liver is a remarkable organ that can regenerate in response to injury. Depending on the extent of injury, the liver can undergo compensatory hyperplasia or fibrosis. Despite decades of research, the molecular mechanisms underlying these processes are poorly understood. Here, we developed a new model to study liver regeneration based on cryoinjury. To visualise liver regeneration at cellular resolution, we adapted the CUBIC tissue-clearing approach. Hepatic cryoinjury induced a localised necrotic and apoptotic lesion characterised by inflammation and infiltration of innate immune cells. After this initial phase, we observed fibrosis, which resolved as regeneration re-established homeostasis in 30 days. Importantly, this approach enables the comparison of healthy and injured parenchyma within an individual animal, providing unique advantages to previous models. In summary, the hepatic cryoinjury model provides a fast and reproducible method for studying the cellular and molecular pathways underpinning fibrosis and liver regeneration.
Collapse
Affiliation(s)
- Marcos Sande-Melon
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - David Bergemann
- Cardiovascular Research Centre, Massachusetts General Hospital Research Institute, Charlestown Navy Yard Campus, 149, 13th Street, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Miriam Fernández-Lajarín
- Cardiovascular Research Centre, Massachusetts General Hospital Research Institute, Charlestown Navy Yard Campus, 149, 13th Street, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Biology Department, Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA 02467, USA
| | - Juan Manuel González-Rosa
- Cardiovascular Research Centre, Massachusetts General Hospital Research Institute, Charlestown Navy Yard Campus, 149, 13th Street, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Biology Department, Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA 02467, USA
| | - Andrew G. Cox
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3000, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
13
|
Fatehi Hassanabad A, Zarzycki AN, Fedak PWM. Cellular and molecular mechanisms driving cardiac tissue fibrosis: On the precipice of personalized and precision medicine. Cardiovasc Pathol 2024; 71:107635. [PMID: 38508436 DOI: 10.1016/j.carpath.2024.107635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Cardiac fibrosis is a significant contributor to heart failure, a condition that continues to affect a growing number of patients worldwide. Various cardiovascular comorbidities can exacerbate cardiac fibrosis. While fibroblasts are believed to be the primary cell type underlying fibrosis, recent and emerging data suggest that other cell types can also potentiate or expedite fibrotic processes. Over the past few decades, clinicians have developed therapeutics that can blunt the development and progression of cardiac fibrosis. While these strategies have yielded positive results, overall clinical outcomes for patients suffering from heart failure continue to be dire. Herein, we overview the molecular and cellular mechanisms underlying cardiac tissue fibrosis. To do so, we establish the known mechanisms that drive fibrosis in the heart, outline the diagnostic tools available, and summarize the treatment options used in contemporary clinical practice. Finally, we underscore the critical role the immune microenvironment plays in the pathogenesis of cardiac fibrosis.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Anna N Zarzycki
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
14
|
Cardeira-da-Silva J, Wang Q, Sagvekar P, Mintcheva J, Latting S, Günther S, Ramadass R, Yekelchyk M, Preussner J, Looso M, Junker JP, Stainier DYR. Antigen presentation plays positive roles in the regenerative response to cardiac injury in zebrafish. Nat Commun 2024; 15:3637. [PMID: 38684665 PMCID: PMC11058276 DOI: 10.1038/s41467-024-47430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
In contrast to adult mammals, adult zebrafish can fully regenerate injured cardiac tissue, and this regeneration process requires an adequate and tightly controlled immune response. However, which components of the immune response are required during regeneration is unclear. Here, we report positive roles for the antigen presentation-adaptive immunity axis during zebrafish cardiac regeneration. We find that following the initial innate immune response, activated endocardial cells (EdCs), as well as immune cells, start expressing antigen presentation genes. We also observe that T helper cells, a.k.a. Cd4+ T cells, lie in close physical proximity to these antigen-presenting EdCs. We targeted Major Histocompatibility Complex (MHC) class II antigen presentation by generating cd74a; cd74b mutants, which display a defective immune response. In these mutants, Cd4+ T cells and activated EdCs fail to efficiently populate the injured tissue and EdC proliferation is significantly decreased. cd74a; cd74b mutants exhibit additional defects in cardiac regeneration including reduced cardiomyocyte dedifferentiation and proliferation. Notably, Cd74 also becomes activated in neonatal mouse EdCs following cardiac injury. Altogether, these findings point to positive roles for antigen presentation during cardiac regeneration, potentially involving interactions between activated EdCs, classical antigen-presenting cells, and Cd4+ T cells.
Collapse
Affiliation(s)
- João Cardeira-da-Silva
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| | - Qianchen Wang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Pooja Sagvekar
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Janita Mintcheva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
- Humboldt University of Berlin, Berlin, Germany
| | - Stephan Latting
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Radhan Ramadass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Michail Yekelchyk
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jens Preussner
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jan Philipp Junker
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
15
|
Sun J, Peterson EA, Chen X, Wang J. ptx3a + fibroblast/epicardial cells provide a transient macrophage niche to promote heart regeneration. Cell Rep 2024; 43:114092. [PMID: 38607913 PMCID: PMC11092985 DOI: 10.1016/j.celrep.2024.114092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/28/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Macrophages conduct critical roles in heart repair, but the niche required to nurture and anchor them is poorly studied. Here, we investigated the macrophage niche in the regenerating heart. We analyzed cell-cell interactions through published single-cell RNA sequencing datasets and identified a strong interaction between fibroblast/epicardial (Fb/Epi) cells and macrophages. We further visualized the association of macrophages with Fb/Epi cells and the blockage of macrophage response without Fb/Epi cells in the regenerating zebrafish heart. Moreover, we found that ptx3a+ epicardial cells associate with reparative macrophages, and their depletion resulted in fewer reparative macrophages. Further, we identified csf1a expression in ptx3a+ cells and determined that pharmacological inhibition of the csf1a pathway or csf1a knockout blocked the reparative macrophage response. Moreover, we found that genetic overexpression of csf1a enhanced the reparative macrophage response with or without heart injury. Altogether, our studies illuminate a cardiac Fb/Epi niche, which mediates a beneficial macrophage response after heart injury.
Collapse
Affiliation(s)
- Jisheng Sun
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Elizabeth A Peterson
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Xin Chen
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jinhu Wang
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
16
|
Caballero-Sánchez N, Alonso-Alonso S, Nagy L. Regenerative inflammation: When immune cells help to re-build tissues. FEBS J 2024; 291:1597-1614. [PMID: 36440547 PMCID: PMC10225019 DOI: 10.1111/febs.16693] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/29/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
Inflammation is an essential immune response critical for responding to infection, injury and maintenance of tissue homeostasis. Upon injury, regenerative inflammation promotes tissue repair by a timed and coordinated infiltration of diverse cell types and the secretion of growth factors, cytokines and lipids mediators. Remarkably, throughout evolution as well as mammalian development, this type of physiological inflammation is highly associated with immunosuppression. For instance, regenerative inflammation is the consequence of an in situ macrophage polarization resulting in a transition from pro-inflammatory to anti-inflammatory/pro-regenerative response. Immune cells are the first responders upon injury, infiltrating the damaged tissue and initiating a pro-inflammatory response depleting cell debris and necrotic cells. After phagocytosis, macrophages undergo multiple coordinated metabolic and transcriptional changes allowing the transition and dictating the initiation of the regenerative phase. Differences between a highly efficient, complete ad integrum tissue repair, such as, acute skeletal muscle injury, and insufficient regenerative inflammation, as the one developing in Duchenne Muscular Dystrophy (DMD), highlight the importance of a coordinated response orchestrated by immune cells. During regenerative inflammation, these cells interact with others and alter the niche, affecting the character of inflammation itself and, therefore, the progression of tissue repair. Comparing acute muscle injury and chronic inflammation in DMD, we review how the same cells and molecules in different numbers, concentration and timing contribute to very different outcomes. Thus, it is important to understand and identify the distinct functions and secreted molecules of macrophages, and potentially other immune cells, during tissue repair, and the contributors to the macrophage switch leveraging this knowledge in treating diseases.
Collapse
Affiliation(s)
- Noemí Caballero-Sánchez
- Doctoral School of Molecular Cell and Immunobiology, Faculty of Medicine, University of Debrecen, Hungary
- Department of Biochemistry and Molecular Biology, Nuclear Receptor Research Laboratory, Faculty of Medicine, University of Debrecen, Hungary
| | - Sergio Alonso-Alonso
- Instituto Oftalmológico Fernández-Vega, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, Nuclear Receptor Research Laboratory, Faculty of Medicine, University of Debrecen, Hungary
- Departments Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, and Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St Petersburg, Florida, USA
| |
Collapse
|
17
|
Hoque MM, Gbadegoye JO, Hassan FO, Raafat A, Lebeche D. Cardiac fibrogenesis: an immuno-metabolic perspective. Front Physiol 2024; 15:1336551. [PMID: 38577624 PMCID: PMC10993884 DOI: 10.3389/fphys.2024.1336551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Cardiac fibrosis is a major and complex pathophysiological process that ultimately culminates in cardiac dysfunction and heart failure. This phenomenon includes not only the replacement of the damaged tissue by a fibrotic scar produced by activated fibroblasts/myofibroblasts but also a spatiotemporal alteration of the structural, biochemical, and biomechanical parameters in the ventricular wall, eliciting a reactive remodeling process. Though mechanical stress, post-infarct homeostatic imbalances, and neurohormonal activation are classically attributed to cardiac fibrosis, emerging evidence that supports the roles of immune system modulation, inflammation, and metabolic dysregulation in the initiation and progression of cardiac fibrogenesis has been reported. Adaptive changes, immune cell phenoconversions, and metabolic shifts in the cardiac nonmyocyte population provide initial protection, but persistent altered metabolic demand eventually contributes to adverse remodeling of the heart. Altered energy metabolism, mitochondrial dysfunction, various immune cells, immune mediators, and cross-talks between the immune cells and cardiomyocytes play crucial roles in orchestrating the transdifferentiation of fibroblasts and ensuing fibrotic remodeling of the heart. Manipulation of the metabolic plasticity, fibroblast-myofibroblast transition, and modulation of the immune response may hold promise for favorably modulating the fibrotic response following different cardiovascular pathological processes. Although the immunologic and metabolic perspectives of fibrosis in the heart are being reported in the literature, they lack a comprehensive sketch bridging these two arenas and illustrating the synchrony between them. This review aims to provide a comprehensive overview of the intricate relationship between different cardiac immune cells and metabolic pathways as well as summarizes the current understanding of the involvement of immune-metabolic pathways in cardiac fibrosis and attempts to identify some of the previously unaddressed questions that require further investigation. Moreover, the potential therapeutic strategies and emerging pharmacological interventions, including immune and metabolic modulators, that show promise in preventing or attenuating cardiac fibrosis and restoring cardiac function will be discussed.
Collapse
Affiliation(s)
- Md Monirul Hoque
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Joy Olaoluwa Gbadegoye
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Fasilat Oluwakemi Hassan
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amr Raafat
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Djamel Lebeche
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
- Medicine-Cardiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
- Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
18
|
Xu N, Gonzalez BA, Yutzey KE. Macrophage lineages in heart development and regeneration. Curr Top Dev Biol 2024; 156:1-17. [PMID: 38556420 DOI: 10.1016/bs.ctdb.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
During development, macrophage subpopulations derived from hematopoietic progenitors take up residence in the developing heart. Embryonic macrophages are detectable at the early stages of heart formation in the nascent myocardium, valves and coronary vasculature. The specific subtypes of macrophages present in the developing heart reflect the generation of hematopoietic progenitors in the yolk sac, aorta-gonad-mesonephros, fetal liver, and postnatal bone marrow. Ablation studies have demonstrated specific requirements for embryonic macrophages in valve remodeling, coronary and lymphatic vessel development, specialized conduction system maturation, and myocardial regeneration after neonatal injury. The developmental origins of macrophage lineages change over time, with embryonic lineages having more reparative and remodeling functions in comparison to the bone marrow derived myeloid lineages of adults. Here we review the contributions and functions of cardiac macrophages in the developing heart with potential regenerative and reparative implications for cardiovascular disease.
Collapse
Affiliation(s)
- Na Xu
- The Heart Institute, Cincinnati Children's Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Brittany A Gonzalez
- The Heart Institute, Cincinnati Children's Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Katherine E Yutzey
- The Heart Institute, Cincinnati Children's Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
19
|
Abstract
Permanent fibrosis and chronic deterioration of heart function in patients after myocardial infarction present a major health-care burden worldwide. In contrast to the restricted potential for cellular and functional regeneration of the adult mammalian heart, a robust capacity for cardiac regeneration is seen during the neonatal period in mammals as well as in the adults of many fish and amphibian species. However, we lack a complete understanding as to why cardiac regeneration takes place more efficiently in some species than in others. The capacity of the heart to regenerate after injury is controlled by a complex network of cellular and molecular mechanisms that form a regulatory landscape, either permitting or restricting regeneration. In this Review, we provide an overview of the diverse array of vertebrates that have been studied for their cardiac regenerative potential and discuss differential heart regeneration outcomes in closely related species. Additionally, we summarize current knowledge about the core mechanisms that regulate cardiac regeneration across vertebrate species.
Collapse
Affiliation(s)
- Michael Weinberger
- Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Paul R Riley
- Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
20
|
Abstract
Tissue regeneration is not simply a local repair event occurring in isolation from the distant, uninjured parts of the body. Rather, evidence indicates that regeneration is a whole-animal process involving coordinated interactions between different organ systems. Here, we review recent studies that reveal how remote uninjured tissues and organ systems respond to and engage in regeneration. We also discuss the need for toolkits and technological advancements to uncover and dissect organ communication during regeneration.
Collapse
Affiliation(s)
- Fei Sun
- Duke Regeneration Center, Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kenneth D. Poss
- Duke Regeneration Center, Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
21
|
Lintao RCV, Kammala AK, Radnaa E, Bettayeb M, Vincent KL, Patrikeev I, Yaklic J, Bonney EA, Menon R. Characterization of fetal microchimeric immune cells in mouse maternal hearts during physiologic and pathologic pregnancies. Front Cell Dev Biol 2023; 11:1256945. [PMID: 37808080 PMCID: PMC10556483 DOI: 10.3389/fcell.2023.1256945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction: During pregnancy, fetal cells can be incorporated into maternal tissues (fetal microchimerism), where they can persist postpartum. Whether these fetal cells are beneficial or detrimental to maternal health is unknown. This study aimed to characterize fetal microchimeric immune cells in the maternal heart during pregnancy and postpartum, and to identify differences in these fetal microchimeric subpopulations between normal and pregnancies complicated by spontaneous preterm induced by ascending infection. Methods: A Cre reporter mouse model, which when mated with wild-type C57BL/6J females resulted in cells and tissues of progeny expressing red fluorescent protein tandem dimer Tomato (mT+), was used to detect fetal microchimeric cells. On embryonic day (E)15, 104 colony-forming units (CFU) E. coli was administered intravaginally to mimic ascending infection, with delivery on or before E18.5 considered as preterm delivery. A subset of pregnant mice was sacrificed at E16 and postpartum day 28 to harvest maternal hearts. Heart tissues were processed for immunofluorescence microscopy and high-dimensional mass cytometry by time-of-flight (CyTOF) using an antibody panel of immune cell markers. Changes in cardiac physiologic parameters were measured up to 60 days postpartum via two-dimensional echocardiography. Results: Intravaginal E. coli administration resulted in preterm delivery of live pups in 70% of the cases. mT + expressing cells were detected in maternal uterus and heart, implying that fetal cells can migrate to different maternal compartments. During ascending infection, more fetal antigen-presenting cells (APCs) and less fetal hematopoietic stem cells (HSCs) and fetal double-positive (DP) thymocytes were observed in maternal hearts at E16 compared to normal pregnancy. These HSCs were cleared while DP thymocytes persisted 28 days postpartum following an ascending infection. No significant changes in cardiac physiologic parameters were observed postpartum except a trend in lowering the ejection fraction rate in preterm delivered mothers. Conclusion: Both normal pregnancy and ascending infection revealed distinct compositions of fetal microchimeric immune cells within the maternal heart, which could potentially influence the maternal cardiac microenvironment via (1) modulation of cardiac reverse modeling processes by fetal stem cells, and (2) differential responses to recognition of fetal APCs by maternal T cells.
Collapse
Affiliation(s)
- Ryan C. V. Lintao
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Enkhtuya Radnaa
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Mohamed Bettayeb
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Kathleen L. Vincent
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Biomedical Engineering and Imaging Sciences Group, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Igor Patrikeev
- Biomedical Engineering and Imaging Sciences Group, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Jerome Yaklic
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Elizabeth A. Bonney
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
22
|
Su X, Wang L, Ma N, Yang X, Liu C, Yang F, Li J, Yi X, Xing Y. Immune heterogeneity in cardiovascular diseases from a single-cell perspective. Front Cardiovasc Med 2023; 10:1057870. [PMID: 37180791 PMCID: PMC10167030 DOI: 10.3389/fcvm.2023.1057870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
A variety of immune cell subsets occupy different niches in the cardiovascular system, causing changes in the structure and function of the heart and vascular system, and driving the progress of cardiovascular diseases (CVDs). The immune cells infiltrating the injury site are highly diverse and integrate into a broad dynamic immune network that controls the dynamic changes of CVDs. Due to technical limitations, the effects and molecular mechanisms of these dynamic immune networks on CVDs have not been fully revealed. With recent advances in single-cell technologies such as single-cell RNA sequencing, systematic interrogation of the immune cell subsets is feasible and will provide insights into the way we understand the integrative behavior of immune populations. We no longer lightly ignore the role of individual cells, especially certain highly heterogeneous or rare subpopulations. We summarize the phenotypic diversity of immune cell subsets and their significance in three CVDs of atherosclerosis, myocardial ischemia and heart failure. We believe that such a review could enhance our understanding of how immune heterogeneity drives the progression of CVDs, help to elucidate the regulatory roles of immune cell subsets in disease, and thus guide the development of new immunotherapies.
Collapse
Affiliation(s)
- Xin Su
- China Academy of Chinese Medical Sciences, Guang’anmen Hospital, Beijing, China
| | - Li Wang
- Department of Breast Surgery, Xingtai People’s Hospital, Xingtai, China
| | - Ning Ma
- Department of Breast Surgery, Dezhou Second People’s Hospital, Dezhou, China
| | - Xinyu Yang
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Can Liu
- China Academy of Chinese Medical Sciences, Guang’anmen Hospital, Beijing, China
| | - Fan Yang
- China Academy of Chinese Medical Sciences, Guang’anmen Hospital, Beijing, China
| | - Jun Li
- China Academy of Chinese Medical Sciences, Guang’anmen Hospital, Beijing, China
| | - Xin Yi
- Department of Cardiology, Beijing Huimin Hospital, Beijing, China
| | - Yanwei Xing
- China Academy of Chinese Medical Sciences, Guang’anmen Hospital, Beijing, China
| |
Collapse
|
23
|
Ji L, Shi Y, Bian Q. Comparative genomics analyses reveal sequence determinants underlying interspecies variations in injury-responsive enhancers. BMC Genomics 2023; 24:177. [PMID: 37020217 PMCID: PMC10077677 DOI: 10.1186/s12864-023-09283-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Injury induces profound transcriptional remodeling events, which could lead to only wound healing, partial tissue repair, or perfect regeneration in different species. Injury-responsive enhancers (IREs) are cis-regulatory elements activated in response to injury signals, and have been demonstrated to promote tissue regeneration in some organisms such as zebrafish and flies. However, the functional significances of IREs in mammals remain elusive. Moreover, whether the transcriptional responses elicited by IREs upon injury are conserved or specialized in different species, and what sequence features may underlie the functional variations of IREs have not been elucidated. RESULTS We identified a set of IREs that are activated in both regenerative and non-regenerative neonatal mouse hearts upon myocardial ischemia-induced damage by integrative epigenomic and transcriptomic analyses. Motif enrichment analysis showed that AP-1 and ETS transcription factor binding motifs are significantly enriched in both zebrafish and mouse IREs. However, the IRE-associated genes vary considerably between the two species. We further found that the IRE-related sequences in zebrafish and mice diverge greatly, with the loss of IRE inducibility accompanied by a reduction in AP-1 and ETS motif frequencies. The functional turnover of IREs between zebrafish and mice is correlated with changes in transcriptional responses of the IRE-associated genes upon injury. Using mouse cardiomyocytes as a model, we demonstrated that the reduction in AP-1 or ETS motif frequency attenuates the activation of IREs in response to hypoxia-induced damage. CONCLUSIONS By performing comparative genomics analyses on IREs, we demonstrated that inter-species variations in AP-1 and ETS motifs may play an important role in defining the functions of enhancers during injury response. Our findings provide important insights for understanding the molecular mechanisms of transcriptional remodeling in response to injury across species.
Collapse
Affiliation(s)
- Luzhang Ji
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Yuanyuan Shi
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Qian Bian
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.
| |
Collapse
|
24
|
Yin X, Yin X, Pan X, Zhang J, Fan X, Li J, Zhai X, Jiang L, Hao P, Wang J, Chen Y. Post-myocardial infarction fibrosis: Pathophysiology, examination, and intervention. Front Pharmacol 2023; 14:1070973. [PMID: 37056987 PMCID: PMC10086160 DOI: 10.3389/fphar.2023.1070973] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Cardiac fibrosis plays an indispensable role in cardiac tissue homeostasis and repair after myocardial infarction (MI). The cardiac fibroblast-to-myofibroblast differentiation and extracellular matrix collagen deposition are the hallmarks of cardiac fibrosis, which are modulated by multiple signaling pathways and various types of cells in time-dependent manners. Our understanding of the development of cardiac fibrosis after MI has evolved in basic and clinical researches, and the regulation of fibrotic remodeling may facilitate novel diagnostic and therapeutic strategies, and finally improve outcomes. Here, we aim to elaborate pathophysiology, examination and intervention of cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Xiaoying Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinxin Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Pan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jingyu Zhang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinhui Fan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaxin Li
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoxuan Zhai
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lijun Jiang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Panpan Hao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiali Wang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
25
|
Cao J, Zhang Y, Yang Y, Xie J, Su Z, Li F, Li J, Zhang B, Wang Z, Zhang P, Li Z, He L, Liu H, Zheng W, Zhang S, Hong A, Chen X. Turning gray selenium and sublimed sulfur into a nanocomposite to accelerate tissue regeneration by isothermal recrystallization. J Nanobiotechnology 2023; 21:57. [PMID: 36803772 PMCID: PMC9942369 DOI: 10.1186/s12951-023-01796-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/24/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Globally, millions of patients suffer from regenerative deficiencies, such as refractory wound healing, which is characterized by excessive inflammation and abnormal angiogenesis. Growth factors and stem cells are currently employed to accelerate tissue repair and regeneration; however, they are complex and costly. Thus, the exploration of new regeneration accelerators is of considerable medical interest. This study developed a plain nanoparticle that accelerates tissue regeneration with the involvement of angiogenesis and inflammatory regulation. METHODS Grey selenium and sublimed sulphur were thermalized in PEG-200 and isothermally recrystallised to composite nanoparticles (Nano-Se@S). The tissue regeneration accelerating activities of Nano-Se@S were evaluated in mice, zebrafish, chick embryos, and human cells. Transcriptomic analysis was performed to investigate the potential mechanisms involved during tissue regeneration. RESULTS Through the cooperation of sulphur, which is inert to tissue regeneration, Nano-Se@S demonstrated improved tissue regeneration acceleration activity compared to Nano-Se. Transcriptome analysis revealed that Nano-Se@S improved biosynthesis and ROS scavenging but suppressed inflammation. The ROS scavenging and angiogenesis-promoting activities of Nano-Se@S were further confirmed in transgenic zebrafish and chick embryos. Interestingly, we found that Nano-Se@S recruits leukocytes to the wound surface at the early stage of regeneration, which contributes to sterilization during regeneration. CONCLUSION Our study highlights Nano-Se@S as a tissue regeneration accelerator, and Nano-Se@S may provide new inspiration for therapeutics for regenerative-deficient diseases.
Collapse
Affiliation(s)
- Jieqiong Cao
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yibo Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yiqi Yang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Junye Xie
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zijian Su
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Fu Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Jingsheng Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Bihui Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zhenyu Wang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Peiguang Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zhixin Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Liu He
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Hongwei Liu
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wenjie Zheng
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Shuixing Zhang
- The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - An Hong
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China.
- The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Xiaojia Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China.
- The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
26
|
Tang C, Deng L, Luo Q, He G. Identification of oxidative stress-related genes and potential mechanisms in atherosclerosis. Front Genet 2023; 13:998954. [PMID: 36685865 PMCID: PMC9845256 DOI: 10.3389/fgene.2022.998954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Atherosclerosis (AS) is the main cause of death in individuals with cardiovascular and cerebrovascular diseases. A growing body of evidence suggests that oxidative stress plays an essential role in Atherosclerosis pathology. The aim of this study was to determine genetic mechanisms associated with Atherosclerosis and oxidative stress, as well as to construct a diagnostic model and to investigate its immune microenvironment. Seventeen oxidative stress-related genes were identified. A four-gene diagnostic model was constructed using the least absolute shrinkage and selection operator (LASSO) algorithm based on these 17 genes. The area under the Receiver Operating Characteristic (ROC) curve (AUC) was 0.967. Based on the GO analysis, cell-substrate adherens junction and focal adhesion were the most enriched terms. KEGG analysis revealed that these overlapping genes were enriched in pathways associated with Alzheimer's disease and Parkinson's disease, as well as with prion disease pathways and ribosomes. Immune cell infiltration correlation analysis showed that the immune cells with significant differences were CD4 memory activated T cells and follicular helper T cells in the GSE43292 dataset and CD4 naïve T cells and CD4 memory resting T cells in the GSE57691 dataset. We identified 17 hub genes that were closely associated with oxidative stress in AS and constructed a four-gene (aldehyde dehydrogenase six family member A1 (ALDH6A1), eukaryotic elongation factor 2 kinase (EEF2K), glutaredoxin (GLRX) and l-lactate dehydrogenase B (LDHB)) diagnostic model with good accuracy. The four-gene diagnostic model was also found to have good discriminatory efficacy for the immune cell infiltration microenvironment of AS. Overall, these findings provide valuable information and directions for future research into Atherosclerosis diagnosis and aid in the discovery of biological mechanisms underlying AS with oxidative stress.
Collapse
Affiliation(s)
- Chao Tang
- Department of Cardiology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China,*Correspondence: Chao Tang,
| | - Lingchen Deng
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Luo
- Department of Cardiology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Guijun He
- Department of Cardiology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
27
|
Ludke A, Hatta K, Yao A, Li RK. Uterus: A Unique Stem Cell Reservoir Able to Support Cardiac Repair via Crosstalk among Uterus, Heart, and Bone Marrow. Cells 2022; 11:cells11142182. [PMID: 35883625 PMCID: PMC9324611 DOI: 10.3390/cells11142182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Clinical evidence suggests that the prevalence of cardiac disease is lower in premenopausal women compared to postmenopausal women and men. Although multiple factors contribute to this difference, uterine stem cells may be a major factor, as a high abundance of these cells are present in the uterus. Uterine-derived stem cells have been reported in several studies as being able to contribute to cardiac neovascularization after injury. However, our studies uniquely show the presence of an “utero-cardiac axis”, in which uterine stem cells are able to home to cardiac tissue to promote tissue repair. Additionally, we raise the possibility of a triangular relationship among the bone marrow, uterus, and heart. In this review, we discuss the exchange of stem cells across different organs, focusing on the relationship that exists between the heart, uterus, and bone marrow. We present increasing evidence for the existence of an utero-cardiac axis, in which the uterus serves as a reservoir for cardiac reparative stem cells, similar to the bone marrow. These cells, in turn, are able to migrate to the heart in response to injury to promote healing.
Collapse
Affiliation(s)
- Ana Ludke
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.L.); (K.H.); (A.Y.)
| | - Kota Hatta
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.L.); (K.H.); (A.Y.)
| | - Alina Yao
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.L.); (K.H.); (A.Y.)
| | - Ren-Ke Li
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.L.); (K.H.); (A.Y.)
- Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Correspondence: ; Tel.: +1-416-581-7492
| |
Collapse
|
28
|
Becker T, Becker CG. Regenerative neurogenesis: the integration of developmental, physiological and immune signals. Development 2022; 149:275248. [PMID: 35502778 PMCID: PMC9124576 DOI: 10.1242/dev.199907] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In fishes and salamanders, but not mammals, neural stem cells switch back to neurogenesis after injury. The signalling environment of neural stem cells is strongly altered by the presence of damaged cells and an influx of immune, as well as other, cells. Here, we summarise our recently expanded knowledge of developmental, physiological and immune signals that act on neural stem cells in the zebrafish central nervous system to directly, or indirectly, influence their neurogenic state. These signals act on several intracellular pathways, which leads to changes in chromatin accessibility and gene expression, ultimately resulting in regenerative neurogenesis. Translational approaches in non-regenerating mammals indicate that central nervous system stem cells can be reprogrammed for neurogenesis. Understanding signalling mechanisms in naturally regenerating species show the path to experimentally promoting neurogenesis in mammals.
Collapse
Affiliation(s)
- Thomas Becker
- Center for Regenerative Therapies at the TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany.,Centre for Discovery Brain Sciences, University of Edinburgh Medical School, Biomedical Science, Edinburgh, EH16 4SB, Scotland
| | - Catherina G Becker
- Center for Regenerative Therapies at the TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany.,Centre for Discovery Brain Sciences, University of Edinburgh Medical School, Biomedical Science, Edinburgh, EH16 4SB, Scotland
| |
Collapse
|
29
|
Ginhoux F, Martin P. Insights into the role of immune cells in development and regeneration. Development 2022; 149:275254. [DOI: 10.1242/dev.200829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 138648Singapore
| | - Paul Martin
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
30
|
Abstract
Although best known for their phagocytic and immunological functions, macrophages have increasingly been recognised as key players in the development, homeostasis and regeneration of their host tissues. Early during development, macrophages infiltrate and colonise all tissues within the body, developing symbiotically with their host tissues and acquiring unique functional adaptations based on the tissue microenvironment. These embryonic resident tissue macrophages (RTMs) are ontogenically distinct from the later adult bone marrow-derived monocytes, and in some tissues are self-maintained independently of general circulation at a steady state. In this article, we briefly discuss the ontogeny, maintenance and unique tissue adaptions of RTMs focusing on microglia, Kupffer cells, Langerhans cells, intestinal macrophages, cardiac macrophages and tumour-associated macrophages, and highlight their role in development, homeostasis and dysfunction.
Collapse
Affiliation(s)
- Christopher Zhe Wei Lee
- Singapore Immunology Network, 8A Biomedical Grove, Singapore 138648, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network, 8A Biomedical Grove, Singapore 138648, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.,Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9-04-07, 2 Medical Drive, Singapore 117593, Singapore.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, 31 Third Hospital Ave, #03-03 Bowyer Block C, Singapore 168753, Singapore
| |
Collapse
|