1
|
Desai AV, Bagchi A, Armstrong AE, van Tilburg CM, Basu EM, Robinson GW, Wang H, Casanova M, André N, Campbell-Hewson Q, Wu Y, Cardenas A, Ci B, Ryklansky C, Devlin CE, Meneses-Lorente G, Wulff J, Hutchinson KE, Gajjar A, Fox E. Efficacy and safety of entrectinib in children with extracranial solid or central nervous system (CNS) tumours harbouring NTRK or ROS1 fusions. Eur J Cancer 2025; 220:115308. [PMID: 40086048 DOI: 10.1016/j.ejca.2025.115308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Entrectinib, a central nervous system (CNS)-penetrant TRK/ROS1 inhibitor, has demonstrated clinical activity in children with NTRK1/2/3 or ROS1 fusion-positive extracranial solid and CNS tumours. We present integrated data of entrectinib in children with NTRK or ROS1 fusion-positive tumours from the STARTRK-NG, TAPISTRY, and STARTRK-2 trials. METHODS Efficacy analyses were undertaken on TRK/ROS1 inhibitor-naïve patients aged <18 years with metastatic/locally advanced NTRK1/2/3 or ROS1 fusion-positive extracranial solid or CNS tumours who received ≥1 entrectinib dose and had ≥6 months of follow-up from enrolment. Tumour responses were confirmed by blinded independent central review (BICR) per RECIST v1.1/RANO criteria. PRIMARY ENDPOINT BICR-assessed confirmed objective response rate (cORR). Key secondary endpoints: duration of response (DoR); time to response (TtR); safety. RESULTS As of 16 July 2023, out of 91 safety-evaluable patients, 64 (NTRK: n=44; ROS1: n=20) were efficacy evaluable. In the NTRK and ROS1 subgroups, respectively, median age was 4.0 years and 7.5 years; median survival follow-up was 24.2 months and 27.6 months. cORR was 72.7 % (NTRK, 95 % confidence interval [CI]: 57.2-85.0) and 65.0 % (ROS1, 95 % CI: 40.8-84.6). Median DoR was not reached (NTRK, 95 % CI: 25.4-not evaluable [NE]); ROS1, 95 % CI: 16.2-NE); median TtR was 1.9 months in both subgroups. The most frequently reported treatment-related adverse events included weight gain (35.2 %) and anaemia (31.9 %). CONCLUSION Integrated data from three trials confirm entrectinib induces rapid and durable responses in children with NTRK or ROS1 fusion-positive tumours. The increased duration of safety monitoring does not demonstrate new or cumulative toxicity. Registered clinical trials: STARTRK-NG: NCT02650401; TAPISTRY: NCT04589845; STARTRK-2: NCT02568267.
Collapse
Affiliation(s)
- Ami V Desai
- Department of Pediatrics, Section of Hematology/Oncology/Stem Cell Transplantation, University of Chicago Medical Center, 5721 S. Maryland Ave., Chicago, IL 60637, USA.
| | - Aditi Bagchi
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 260, Memphis, TN 38105, USA.
| | - Amy E Armstrong
- Division of Pediatric Hematology/Oncology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110-1010, USA.
| | - Cornelis M van Tilburg
- Hopp Children's Cancer Center Heidelberg, Im Neuenheimer Feld 430, Heidelberg 69120, Germany; Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany; Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Im Neuenheimer Feld 672, Heidelberg 69120, Germany; German Cancer Consortium, Im Neuenheimer Feld 280, Heidelberg 69120, Germany; National Center for Tumor Diseases, Im Neuenheimer Feld 460, Heidelberg 69120, Germany.
| | - Ellen M Basu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA.
| | - Giles W Robinson
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 260, Memphis, TN 38105, USA.
| | - Huanmin Wang
- Department of Oncology Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Rd, Xicheng District, Beijing 100045, China.
| | - Michela Casanova
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, via Giacomo Venezian, Milan 1 20133, Italy.
| | - Nicolas André
- Pediatric Hematology and Oncology Department, Hôpital pour Enfant de La Timone, AP-HM, 264 Rue Saint-Pierre, Marseille 13005, France; Reverse Molecular Pharmacology for Pediatric Oncology, Centre de Recherche en Cancérologie de Marseille Inserm U1068, Aix-Marseille University, 27 Bd Lei Roure, Marseille 13009, France.
| | - Quentin Campbell-Hewson
- Department of Paediatric Haematology, Oncology and Bone Marrow Transplantation, Great North Children's Hospital, Victoria Wing, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK.
| | - Yeming Wu
- Department of Pediatric Surgery, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Rd, Shanghai 200092, China.
| | - Alison Cardenas
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA (†formerly).
| | - Bo Ci
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA (†formerly).
| | - Carolina Ryklansky
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA (†formerly).
| | - Clare E Devlin
- Roche Products Ltd, Hexagon Place, Shire Park, Falcon Way, Welwyn Garden City, AL7 1TW, UK.
| | | | - Jade Wulff
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA (†formerly).
| | | | - Amar Gajjar
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 260, Memphis, TN 38105, USA.
| | - Elizabeth Fox
- Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, USA.
| |
Collapse
|
2
|
Ding X, Yang J, Wei Y, Wang M, Peng Z, He R, Li X, Zhao D, Leng X, Dong H. The Nexus Between Traditional Chinese Medicine and Immunoporosis: Implications in the Treatment and Management of Osteoporosis. Phytother Res 2025; 39:1826-1846. [PMID: 39625224 DOI: 10.1002/ptr.8397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/21/2024] [Accepted: 11/06/2024] [Indexed: 01/06/2025]
Abstract
Osteoporosis (OP) is a globally prevalent bone disease characterized by reduced bone mass and heightened fracture risk, posing a significant health and economic challenge to aging societies worldwide. Osteoimmunology-an emerging field of study-investigates the intricate relationship between the skeletal and the immune systems, providing insights into the immune system's impact on bone health and disease progression. Recent research has demonstrated the essential roles played by various immune cells (T cells, B cells, macrophages, dendritic cells, mast cells, granulocytes, and innate lymphoid cells) in regulating bone metabolism, homeostasis, formation, and remodeling through interactions with osteoclasts (OC) and osteoblasts (OB). These findings underscore that osteoimmunology provides an essential theoretical framework for understanding the pathogenesis of various skeletal disorders, including OP. Traditional Chinese medicine (TCM) and its active ingredients have significant clinical value in OP treatment. Unfortunately, despite their striking multieffect pathways in the pharmacological field, current research has not yet summarized them in a comprehensive and detailed manner with respect to their interventional roles in immune bone diseases, especially OP. Consequently, this review addresses recent studies on the mechanisms by which immune cells and their communication molecules contribute to OP development. Additionally, it explores the potential therapeutic benefits of TCM and its active components in treating OP from the perspective of osteoimmunology. The objective is to provide a comprehensive framework that enhances the understanding of the therapeutic mechanisms of TCM in treating immune-related bone diseases and to facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xiaolei Ding
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jie Yang
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yuchi Wei
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Mingyue Wang
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zeyu Peng
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Rong He
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyang Leng
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Haisi Dong
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
3
|
Lang J, Ding A, Henninger E, Reese S, Helzer K, Hazelberg X, de Diego CS, Kerr S, Sethakorn N, Bootsma M, Zhao S, Beebe D. Live Cell Sorting of Differentiated Primary Human Osteoclasts Allows Generation of Transcriptomic Signature Matrix. RESEARCH SQUARE 2025:rs.3.rs-6157400. [PMID: 40235499 PMCID: PMC11998790 DOI: 10.21203/rs.3.rs-6157400/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Osteoclasts are specialized cells that degrade the bone matrix to create space for bone regeneration. During tumorigenesis, cancer cells metastasize to bone by disrupting bone's natural remodeling cycle. However, the mechanisms underlying critical bone-tumor interactions are poorly understood due to challenges in isolating osteoclasts from human bone. Thus, the conventional method to obtain osteoclasts for in vitro studies is via the differentiation of peripheral blood monocytes, which results in mixed cultures containing progenitor cells and osteoclasts of varying maturity and nuclearity. Presently, we hypothesized that the transcriptomic signatures of mature, multinucleated osteoclasts are distinct from osteoclasts with fewer nuclei. We established a live cell biomarker expression-based sorting protocol to allow purification of mature osteoclasts while maintaining viability and function. We observed that mature, multinucleated osteoclasts were transcriptomically distinct from those with fewer nuclei and that mature osteoclasts showed higher expression of genes that are associated with osteoclast fusion and function.
Collapse
|
4
|
Sha Y, Huang L, Zhang L, Hou X, Mo C, Pan C, Chen G, Luo S, Ou M. SUGAR-seq reveals the transcriptome and N-linked glycosylation landscape of mononuclear phagocytes at single-cell resolution in a mouse model of autosomal dominant osteopetrosis type 2. BMC Biol 2025; 23:91. [PMID: 40165215 PMCID: PMC11959739 DOI: 10.1186/s12915-025-02193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/14/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Heterozygous mutation of CLCN7 (R286W) is commonly found in patients with benign autosomal dominant osteopetrosis. However, there is no evidence from animal models to confirm that it is a disease mutation. And the characteristics of the bone marrow cell (BMC) landscape in osteopetrosis at the single-cell level are completely unknown till now. RESULTS In this study, we generated the first autosomal dominant osteopetrosis type 2 (ADO2) mouse model with typical phenotypes carried a mutation Clcn7 (r284w) corresponding to CLCN7 (R286W) observed in human patients using gene editing technology. And then, we conducted the first-ever single-cell analysis of the RNA expression and N-linked glycosylation profiles for the mouse BMCs by SUrface-protein Glycan And RNA-sequencing (SUGAR-seq). We identified 14 distinct cell types and similar proportion of neutrophils in both ADO2 and wild type mice, confirmed by flow cytometry analysis. The N-linked glycosylation modifications of BMCs were significantly downregulated detecting by SUGAR-seq, which was similar to the situation of N-Glycan profiling by the 4D Label-Free N-Glycosylation Proteomics Analysis. Particularly noteworthy is the heterogeneity of classic monocytes. We identified six cell subtypes, but only two cell subtypes were found with different proportion of cell, whose different expressed genes were associated with NF-κB-inducing kinase / Nuclear Factor-kappa B (NIK/NF-κB) signaling and other pathway associated with osteoclast differentiation. CONCLUSIONS Our murine model confirms that the human CLCN7 (R286W) is a pathogenic mutation for ADO2. Additionally, our single-cell analyses reveal the heterogeneity of monocytes in ADO2, and the abnormal glycosylation modifications across various subtypes may represent important events in the pathogenesis of osteopetrosis.
Collapse
Affiliation(s)
- Yu Sha
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Lingyu Huang
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Lei Zhang
- The Department of Nuclear Medicine, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Xianliang Hou
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Chune Mo
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Cuiping Pan
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Gengshuo Chen
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Sha Luo
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Minglin Ou
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
- Key Laboratory of Medical Biotechnology and Translational Medicine (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin, 541199, China.
| |
Collapse
|
5
|
Lim W. LGR4 (GPR48): The Emerging Inter-Bridge in Osteoimmunology. Biomedicines 2025; 13:607. [PMID: 40149584 PMCID: PMC11940432 DOI: 10.3390/biomedicines13030607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4), a member of the G-protein-coupled receptor (GPCR) family, has been implicated in various regulatory functions across multiple differentiation stages and numerous target sites in bone diseases. Therefore, LGR4 is a potential regulator of nuclear factor-κB ligand (RANKL) during osteoclast differentiation. However, a comprehensive investigation of its functions and applications in bone immunology is lacking. This review discusses the molecular characteristics, signaling pathways, and role of LGR4 in osteoimmunology, with a particular focus on its interactions with RANKL during osteoclast differentiation, while identifying gaps that warrant further research.
Collapse
Affiliation(s)
- Wonbong Lim
- Department of Orthopaedic Surgery, Chosun University, Gwangju 61453, Republic of Korea; ; Tel.: +82-62-230-6193; Fax: +82-62-226-3379
- Laboratory of Orthopaedic Research, Chosun University, Gwangju 61453, Republic of Korea
- Regional Leading Research Center, Chonnam National University, Yeosu 59626, Republic of Korea
- Department of Premedical Program, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
6
|
Ben Amara H, Martinez DC, Iskhakova K, Emanuelsson L, Norlindh B, Johansson Loo A, Wieland DCF, Zeller-Plumhoff B, Willumeit-Römer R, Plocinski T, Swieszkowski W, Shah FA, Palmquist A, Omar O, Thomsen P. Multifaceted bone response to immunomodulatory magnesium implants: Osteopromotion at the interface and adipogenesis in the bone marrow. Biomaterials 2025; 314:122779. [PMID: 39305536 DOI: 10.1016/j.biomaterials.2024.122779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 11/10/2024]
Abstract
Orthopedic implants made of biodegradable magnesium (Mg) provide an alternative to nondegradable implants for fracture repair. Widely reported to be pro-osteogenic, Mg implants are also believed to be anti-inflammatory and anti-osteoclastic, but this is difficult to reconcile with the early clinical inflammation observed around these implants. Here, by surveying implant healing in a rat bone model, we determined the cellular responses and structural assembly of bone correlated with the surface changes of Mg implants inherent in degradation. We show that, compared to titanium, both high-purity (99.998 %) and clinical-grade, rare earth-alloyed (MgYREZr) Mg implants create an initial, transient proinflammatory environment that facilitates inducible nitric oxide synthase-mediated macrophage polarization, osteoclastogenesis, and neoangiogenesis programs. While this immunomodulation subsequently reinforces reparative osteogenesis at the surface of both Mg implants, the faster degradation of high-purity Mg implants, but not MgYREZr implants, elicits a compositional alteration in the interfacial bone and a previously unknown proadipogenic response with persistent low-grade inflammation in the surrounding bone marrow. Beyond the need for rigorous tailoring of Mg implants, these data highlight the need to closely monitor osseointegration not only at the immediate implant surface but also in the peri-implant bone and adjacent bone marrow.
Collapse
Affiliation(s)
- Heithem Ben Amara
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Diana C Martinez
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Poland
| | - Kamila Iskhakova
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Lena Emanuelsson
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Birgitta Norlindh
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Anna Johansson Loo
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - D C Florian Wieland
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | | | | | - Tomasz Plocinski
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Poland
| | - Wojciech Swieszkowski
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Poland
| | - Furqan A Shah
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Omar Omar
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden.
| |
Collapse
|
7
|
Batal A, Garousi S, Finnson KW, Philip A. CD109, a master regulator of inflammatory responses. Front Immunol 2025; 15:1505008. [PMID: 39990858 PMCID: PMC11842317 DOI: 10.3389/fimmu.2024.1505008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/23/2024] [Indexed: 02/25/2025] Open
Abstract
Inflammation is a complex response to harmful stimuli, crucial for immunity, and linked to chronic diseases and cancer, with TGF-β and NF-κB pathways as key regulators. CD109 is a glycosylphosphatidylinositol (GPI)-anchored protein, that our group has originally identified as a TGF-β co-receptor and inhibitor of TGF-β signaling. CD109 modulates TGF-β and NF-κB pathways, to influence immune responses and inflammation. CD109's multifaceted role in inflammation spans various tissue types, including the skin, lung, bone and bone-related tissues, and various types of cancers. CD109 exerts its effects by modulating processes such as cytokine secretion, immune cell recruitment, macrophage polarization, T helper cell function and cancer cell phenotype and function. Here, we review CD109's regulatory functions in inflammatory responses in these various tissues and cell types. Exploration of CD109's mechanisms of action will enhance our understanding of its contributions to disease pathology and its potential for therapeutic applications.
Collapse
Affiliation(s)
- Adel Batal
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
- Surgical and Interventional Sciences Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Setareh Garousi
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
- Surgical and Interventional Sciences Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Kenneth W. Finnson
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
- Surgical and Interventional Sciences Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Anie Philip
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
- Surgical and Interventional Sciences Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
8
|
Tong X, Fu X, Gong A, Yu G, Chen N, Chen B, Gu J, Liu Z. Effect of Luteolin on cadmium-inhibited bone growth via suppressing osteoclastogenesis in laying chickens. J Anim Sci 2025; 103:skaf033. [PMID: 39921628 PMCID: PMC11912829 DOI: 10.1093/jas/skaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/07/2025] [Indexed: 02/10/2025] Open
Abstract
Luteolin (Lut) is a flavonoid derived from several plant sources. Cadmium (Cd) is a widespread environmental contaminant and potential toxin with detrimental effects on animal health. However, the effect of Lut on Cd-induced inhibition of bone growth in laying chickens remains unclear. This study investigates the effects of Lut on Cd-induced inhibition of bone growth in the femur and tibia of laying chickens. A total of sixty 1-d-old green-eggshell yellow feather laying chickens were randomly assigned to 4 groups after a 5-d acclimation period: basal diet (Con), cadmium chloride (CdCl2, Cd), Lut, and Lut + Cd. Bone microstructure, serum biomarkers of bone remodeling, the levels of Cd, calcium (Ca), phosphorus (P), and trace metal elements were assessed using the micro-computed tomography (Micro-CT), enzyme-linked immunosorbent assay (ELISA), and microwave digestion, respectively. Bone remodeling biomarkers, late endosomal/lysosomal adaptor and MAPK and mTOR activator 1 (LAMTOR1), as well as the phosphorylation of AMP-activated protein kinase α (AMPKα) and protein kinase B (Akt), were quantified using the qRT-PCR and western blot. The results indicated that Lut effectively mitigated Cd-induced bone mass loss compared to the Cd group, resulting in increased bone volume (BV), bone surface/BV (BS/BV), connectivity density (Conn.Dn), and the length and weight of the femur and tibia in laying chickens. Mechanistically, compared to the Cd group, Lut restored the ratio of osteoprotegerin (OPG)/receptor activator of NF-κB ligand (RANKL) in serum and bone tissue, enhanced the expression of bone morphogenetic protein-2 (BMP-2), runt-related transcription factor 2 (Runx2), osteocalcin (OCN), and Osterix (OSX), while reducing the levels of Ca, Cd, and alkaline phosphatase (ALP) activity, as well as the expression of osteopontin (OPN), c-Fos, osteoclast stimulatory-transmembrane protein (OC-STAMP), tartrate-resistant acid phosphatase, cathepsin K (CTSK), matrix metalloprotein-9 (MMP-9), LAMTOR1, and the phosphorylation of AMPKα and Akt. Therefore, Lut alleviates Cd-induced damage to the femur and tibia of chickens by promoting osteogenesis and inhibiting osteoclastogenesis, positioning Lut as a potential therapeutic plant extract for enhancing bone growth in laying chickens.
Collapse
Affiliation(s)
- Xishuai Tong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Xiaohui Fu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Anqing Gong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Gengsheng Yu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Naineng Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Bing Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Jianhong Gu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Zongping Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|
9
|
Shan L, Liao X, Yang X, Zhu E, Yuan H, Zhou J, Li X, Wang B. Naked cuticle homolog 2 controls the differentiation of osteoblasts and osteoclasts and ameliorates bone loss in ovariectomized mice. Genes Dis 2025; 12:101209. [PMID: 39552785 PMCID: PMC11567042 DOI: 10.1016/j.gendis.2024.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/05/2023] [Indexed: 11/19/2024] Open
Abstract
Naked cuticle homolog 2 (NKD2) has been recognized as an antagonist of Wnt/β-catenin signaling and a tumor suppressor. The role of NKD2 in osteoblast and osteoclast differentiation and the mechanism are not fully understood. In this study, we identified the up-regulation of NKD2 during osteoblast and adipocyte differentiation. Functional experiments revealed that NKD2 stimulated osteoblast differentiation and suppressed adipocyte formation. Furthermore, NKD2 down-regulated the expression of receptor activator of nuclear factor-κB ligand in bone marrow mesenchymal stem cells and inhibited osteoclast formation from osteoclast precursor cells. Mechanistic investigations revealed that the regulation of osteoblast and adipocyte differentiation by NKD2 involved Wnt/β-catenin and tuberous sclerosis complex subunit 1 (TSC1)/mechanistic target of rapamycin complex 1 (mTORC1) signaling pathways. Unlike in undifferentiated mesenchymal cells where NKD2 promoted Dishevelled-1 degradation, in the cells differentiating toward osteoblasts or adipocytes NKD2 down-regulated secreted frizzled related protein 1/4 expression and failed to destabilize Dishevelled-1, thereby activating Wnt/β-catenin signaling. Moreover, NKD2 bound to TSC1 and inhibited mTORC1 signaling. Further investigation uncovered an interplay between TSC1/mTORC1 and Wnt/β-catenin signaling pathways. Finally, transplantation of NKD2-overexpressing bone marrow mesenchymal stem cells into the marrow of mice increased osteoblasts, reduced osteoclasts and marrow fat, and partially prevented bone loss in ovariectomized mice. This study provides evidence that NKD2 in mesenchymal stem/progenitor cells reciprocally regulates the differentiation of osteoblasts and adipocytes by modulating Wnt/β-catenin and mTORC1 pathways and inhibits osteoclast formation by down-regulating receptor activator of nuclear factor-κB ligand. It suggests that NKD2 up-regulation may ameliorate postmenopausal bone loss.
Collapse
Affiliation(s)
- Liying Shan
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China
| | - Xiaoxia Liao
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China
| | - Xiaoli Yang
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China
| | - Endong Zhu
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China
| | - Hairui Yuan
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China
| | - Jie Zhou
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China
| | - Xiaoxia Li
- College of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Baoli Wang
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China
| |
Collapse
|
10
|
Wang Z, Deng W, Tang K, Zhou Y, Chen J, Wang B, Zhang Z, Zou J, Zhao W. Isoginkgetin Inhibits RANKL-induced Osteoclastogenesis and Alleviates Bone Loss. Biochem Pharmacol 2025; 231:116673. [PMID: 39613114 DOI: 10.1016/j.bcp.2024.116673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Osteoporosis is characterized by excessive osteoclast activity leading to bone loss, decreased bone mineral density, and increased susceptibility to fractures. Through in vivo/vitro experiments, along with network pharmacology analysis, we aimed to explore the underlying mechanisms of Isoginkgetin (IGG) in inhibiting osteoclastogenesis, providing valuable insights for further research in the future. Firstly, we ascertained the safe concentration of IGG stimulation on BMMs, followed by a systematic exploration of the concentration gradient at which IGG inhibited osteoclastogenesis using TRAP analysis. An osteoporosis model was established to further validate the in vitro experimental findings by combining Micro-CT and immunohistochemical analysis. The results show that IGG did not exhibit cytotoxicity or proliferative effects on BMMs at concentrations equal to or less than 10 μM. Additionally, IGG inhibited the activity of osteoclastogenesis and bone resorption function at lower concentrations. RT-PCR and Western Blot results demonstrated that IGG could downregulate genes and proteins associated with osteoclastogenesis. The Western Blot results also showed that IGG inhibited the phosphorylation expression of P38, ERK, and P65 in the MAPK and NF-κB pathways. At the same time, it rescued the degradation of IκB-α at 15 and 60 min. IGG can also impact the relative expression levels of oxidative proteins such as SOD-1, HO-1, and catalase, thereby influencing cellular equilibrium and stress levels, ultimately inhibiting the formation of mature OC. In vivo experiments demonstrated that IGG alleviated bone loss caused by osteoclasts and improved relevant parameters of trabecular bone. So, IGG effectively attenuated osteoclastogenesis, and improved bone density, thereby portraying its role in osteoporosis management.
Collapse
Affiliation(s)
- Zihe Wang
- Guangzhou University of Chinese Medicine, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, China; The Third School of Clinical Medicine of Guangzhou University of Chinese Medicine, China
| | - Wei Deng
- Guangzhou University of Chinese Medicine, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, China; The First School of Clinical Medicine of Guangzhou University of Chinese Medicine, China
| | - Kai Tang
- Guangzhou University of Chinese Medicine, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, China; The First School of Clinical Medicine of Guangzhou University of Chinese Medicine, China
| | - Yi Zhou
- Nanjing University of Chinese Medicine, China
| | - Junchun Chen
- Shenzhen University of Advanced Technology, Chinese Academy of Sciences, China
| | - Bin Wang
- Guangzhou University of Chinese Medicine, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, China; The Third School of Clinical Medicine of Guangzhou University of Chinese Medicine, China
| | - Zhida Zhang
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, China; Guangzhou Medical University, China.
| | - Jian Zou
- Guangzhou University of Chinese Medicine, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, China; Dongguan Hospital of Traditional Chinese Medicine, China.
| | - Wenhua Zhao
- The Second Affiliated Hospital, Guangzhou Medical University, China; Guangzhou Medical University, China.
| |
Collapse
|
11
|
Sabe H, Yahara Y, Ishii M. Cell fusion dynamics: mechanisms of multinucleation in osteoclasts and macrophages. Inflamm Regen 2024; 44:49. [PMID: 39605032 PMCID: PMC11600601 DOI: 10.1186/s41232-024-00360-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Cell-cell fusion is a vital biological process where the membranes of two or more cells merge to form a syncytium. This phenomenon is critical in various physiological and pathological contexts, including embryonic development, tissue repair, immune responses, and the progression of several diseases. Osteoclasts, which are cells from the monocyte/macrophage lineage responsible for bone resorption, have enhanced functionality due to cell fusion. Additionally, other multinucleated giant cells (MGCs) also arise from the fusion of monocytes and macrophages, typically during chronic inflammation and reactions to foreign materials such as prostheses or medical devices. Foreign body giant cells (FBGCs) and Langhans giant cells (LGCs) emerge only under pathological conditions and are involved in phagocytosis, antigen presentation, and the secretion of inflammatory mediators. This review provides a comprehensive overview of the mechanisms underlying the formation of multinucleated cells, with a particular emphasis on macrophages and osteoclasts. Elucidating the intracellular structures, signaling cascades, and fusion-mediating proteins involved in cell-cell fusion enhances our understanding of this fundamental biological process and helps identify potential therapeutic targets for disorders mediated by cell fusion.
Collapse
Affiliation(s)
- Hideaki Sabe
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yasuhito Yahara
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
12
|
Hamza FN, Mohammad KS. Immunotherapy in the Battle Against Bone Metastases: Mechanisms and Emerging Treatments. Pharmaceuticals (Basel) 2024; 17:1591. [PMID: 39770433 PMCID: PMC11679356 DOI: 10.3390/ph17121591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025] Open
Abstract
Bone metastases are a prevalent complication in advanced cancers, particularly in breast, prostate, and lung cancers, and are associated with severe skeletal-related events (SREs), including fractures, spinal cord compression, and debilitating pain. Conventional bone-targeted treatments like bisphosphonates and RANKL inhibitors (denosumab) reduce osteoclast-mediated bone resorption but do not directly impact tumor progression within the bone. This review focuses on examining the growing potential of immunotherapy in targeting the unique challenges posed by bone metastases. Even though immune checkpoint inhibitors (ICIs) have significantly changed cancer treatment, their impact on bone metastases appears limited because of the bone microenvironment's immunosuppressive traits, which include high levels of transforming growth factor-beta (TGFβ) and the immune-suppressing cells, such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). This review underscores the investigation of combined therapeutic approaches that might ease these difficulties, such as the synergy of immune checkpoint inhibitors with agents aimed at bones (denosumab, bisphosphonates), chemotherapy, and radiotherapy, as well as the combination of immune checkpoint inhibitors with different immunotherapeutic methods, including CAR T-cell therapy. This review provides a comprehensive analysis of preclinical studies and clinical trials that show the synergistic potential of these combination approaches, which aim to both enhance immune responses and mitigate bone destruction. By offering an in-depth exploration of how these strategies can be tailored to the bone microenvironment, this review underscores the need for personalized treatment approaches. The findings emphasize the urgent need for further research into overcoming immune evasion in bone metastases, with the goal of improving patient survival and quality of life.
Collapse
Affiliation(s)
- Fatheia N. Hamza
- Department of Biochemistry, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Khalid Said Mohammad
- Department of Anatomy and Genetics, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
13
|
Woo HE, Cho JY, Lim YH. Propionibacterium freudenreichii MJ2-derived extracellular vesicles inhibit RANKL-induced osteoclastogenesis and improve collagen-induced rheumatoid arthritis. Sci Rep 2024; 14:24973. [PMID: 39443658 PMCID: PMC11500175 DOI: 10.1038/s41598-024-76911-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
Rheumatoid arthritis causes excessive bone loss by stimulating osteoclast differentiation. Extracellular vesicles are valuable disease markers, conveyors of distant cell-to-cell communication, and carriers for drug delivery. The aim of this study was to investigate the anti-osteoclastogenic effects of extracellular vesicles derived from dairy Propionibacterium freudenreichii MJ2 (PFEVs) and the improvement effect of PFEVs on collagen-induced arthritis (CIA) animal model. PFEVs were observed by scanning electron microscopy, transmission electron microscopy, nanoparticle tracking analysis, and LC-MS/MS. The inhibitory activity of PFEVs against receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation was investigated in RAW 264.7 cells. PFEVs significantly decreased the expression levels of genes and proteins related to osteoclast differentiation. PFEVs decreased RANK-RANKL binding. In a CIA mouse model, PFEVs treatment significantly reduced arthritis scores and collagen-specific immunoglobulins. PFEVs treatment also reduced pro-inflammatory cytokines and increased anti-inflammatory cytokines. The anti-inflammatory effects were confirmed by H&E staining, and PFEVs treatment inhibited osteoclastogenesis in the CIA mouse model. In conclusion, PFEVs inhibited osteoclast differentiation by inhibiting RANK-RANKL signaling, thereby decreasing the expression of osteoclast differentiation-related genes. PFEVs also improved collagen-induced arthritis by inhibiting inflammation and osteoclastogenesis.
Collapse
Affiliation(s)
- Hee-Eun Woo
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Joo-Young Cho
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Young-Hee Lim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea.
- School of Biosystems and Biomedical Sciences, Korea University, Seoul, 02841, Republic of Korea.
- Department of Laboratory Medicine, Korea University Guro Hospital, Seoul, 08308, Republic of Korea.
| |
Collapse
|
14
|
Xiang Q, Li L, Ji W, Gawlitta D, Walboomers XF, van den Beucken JJJP. Beyond resorption: osteoclasts as drivers of bone formation. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:22. [PMID: 39392536 PMCID: PMC11469995 DOI: 10.1186/s13619-024-00205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Emerging evidence illustrates that osteoclasts (OCs) play diverse roles beyond bone resorption, contributing significantly to bone formation and regeneration. Despite this, OCs remain mysterious cells, with aspects of their lifespan-from origin, fusion, alterations in cellular characteristics, to functions-remaining incompletely understood. Recent studies have identified that embryonic osteoclastogenesis is primarily driven by osteoclast precursors (OCPs) derived from erythromyeloid progenitors (EMPs). These precursor cells subsequently fuse into OCs essential for normal bone development and repair. Postnatally, hematopoietic stem cells (HSCs) become the primary source of OCs, gradually replacing EMP-derived OCs and assuming functional roles in adulthood. The absence of OCs during bone development results in bone structure malformation, including abnormal bone marrow cavity formation and shorter long bones. Additionally, OCs are reported to have intimate interactions with blood vessels, influencing bone formation and repair through angiogenesis regulation. Upon biomaterial implantation, activation of the innate immune system ensues immediately. OCs, originating from macrophages, closely interact with the immune system. Furthermore, evidence from material-induced bone formation events suggests that OCs are pivotal in these de novo bone formation processes. Nevertheless, achieving a pure OC culture remains challenging, and interpreting OC functions in vivo faces difficulties due to the presence of other multinucleated cells around bone-forming biomaterials. We here describe the fusion characteristics of OCPs and summarize reliable markers and morphological changes in OCs during their fusion process, providing guidance for researchers in identifying OCs both in vitro and in vivo. This review focuses on OC formation, characterization, and the roles of OCs beyond resorption in various bone pathophysiological processes. Finally, therapeutic strategies targeting OCs are discussed.
Collapse
Affiliation(s)
- Qianfeng Xiang
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
| | - Lei Li
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, GA, 3508, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, CT, 3584, The Netherlands
| | - X Frank Walboomers
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, the Netherlands
| | - Jeroen J J P van den Beucken
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands.
| |
Collapse
|
15
|
Young EP, Marinoff AE, Lopez-Fuentes E, Sweet-Cordero EA. Osteosarcoma through the Lens of Bone Development, Signaling, and Microenvironment. Cold Spring Harb Perspect Med 2024; 14:a041635. [PMID: 38565264 PMCID: PMC11444254 DOI: 10.1101/cshperspect.a041635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In this work, we review the multifaceted connections between osteosarcoma (OS) biology and normal bone development. We summarize and critically analyze existing research, highlighting key areas that merit further exploration. The review addresses several topics in OS biology and their interplay with normal bone development processes, including OS cell of origin, genomics, tumor microenvironment, and metastasis. We examine the potential cellular origins of OS and how their roles in normal bone growth may contribute to OS pathogenesis. We survey the genomic landscape of OS, highlighting the developmental roles of genes frequently altered in OS. We then discuss the OS microenvironment, emphasizing the transformation of the bone niche in OS to facilitate tumor growth and metastasis. The role of stromal and immune cells is examined, including their impact on tumor progression and therapeutic response. We further provide insights into potential development-informed opportunities for novel therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth P Young
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| | - Amanda E Marinoff
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| | - Eunice Lopez-Fuentes
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| | - E Alejandro Sweet-Cordero
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
16
|
Zhu S, Zhou J, Xie Z. The balance between helper T 17 and regulatory T cells in osteoimmunology and relevant research progress on bone tissue engineering. Immun Inflamm Dis 2024; 12:e70011. [PMID: 39264247 PMCID: PMC11391570 DOI: 10.1002/iid3.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Bone regeneration is a well-regulated dynamic process, of which the prominent role of the immune system on bone homeostasis is more and more revealed by recent research. Before fully activation of the bone remodeling cells, the immune system needs to clean up the microenvironment in facilitating the bone repair initiation. Furthermore, this microenvironment must be maintained properly by various mechanisms over the entire bone regeneration process. OBJECTIVE This review aims to summarize the role of the T-helper 17/Regulatory T cell (Th17/Treg) balance in bone cell remodeling and discuss the relevant progress in bone tissue engineering. RESULTS The role of the immune response in the early stages of bone regeneration is crucial, especially the impact of the Th17/Treg balance on osteoclasts, mesenchymal stem cells (MSCs), and osteoblasts activity. By virtue of these knowledge advancements, innovative approaches in bone tissue engineering, such as nano-structures, hydrogel, and exosomes, are designed to influence the Th17/Treg balance and thereby augment bone repair and regeneration. CONCLUSION Targeting the Th17/Treg balance is a promising innovative strategy for developing new treatments to enhance bone regeneration, thus offering potential breakthroughs in bone injury clinics.
Collapse
Affiliation(s)
- Shuyu Zhu
- Kunming Medical University School of Stomatology and Affiliated Stomatology HospitalKunmingYunnan ProvinceChina
| | - Jing Zhou
- Kunming Medical University School of Stomatology and Affiliated Stomatology HospitalKunmingYunnan ProvinceChina
| | - Zhigang Xie
- Kunming Medical University School of Stomatology and Affiliated Stomatology HospitalKunmingYunnan ProvinceChina
| |
Collapse
|
17
|
Chen Z, Choi ER, Encarnacion AM, Yao H, Ding M, Park YH, Choi SM, An YJ, Hong E, Choi HJ, Kim SK, Nam YE, Kim GJ, Park SW, Kim JS, Kim E, Lee S, Cho JH, Lee TH. Discovery of TCP-(MP)-caffeic acid analogs as a new class of agents for treatment of osteoclastic bone loss. Bioorg Chem 2024; 150:107603. [PMID: 38968905 DOI: 10.1016/j.bioorg.2024.107603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Inhibition of LSD1 was proposed as promising and attractive therapies for treating osteoporosis. Here, we synthesized a series of novel TCP-(MP)-Caffeic acid analogs as potential LSD1 inhibitors to assess their inhibitory effects on osteoclastogenesis by using TRAP-staining assay and try to explore the preliminary SAR. Among them, TCP-MP-CA (11a) demonstrated osteoclastic bone loss both in vitro and in vivo, showing a significant improvement in the in vivo effects compared to the LSD1 inhibitor GSK-LSD1. Additionally, we elucidated a mechanism that 11a and its precursor that 11e directly bind to LSD1/CoREST complex through FAD to inhibit LSD1 demethylation activity and influence its downstream IκB/NF-κB signaling pathway, and thus regulate osteoclastic bone loss. These findings suggested 11a or 11e as potential novel candidates for treating osteoclastic bone loss, and a concept for further development of TCP-(MP)-Caffeic acid analogs for therapeutic use in osteoporosis clinics.
Collapse
Affiliation(s)
- Zhihao Chen
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Eun Rang Choi
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Alessandra Marie Encarnacion
- Department of Interdisciplinary Program of Biomedical Engineering, Graduate School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hongyuan Yao
- Department of Interdisciplinary Program of Biomedical Engineering, Graduate School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Mina Ding
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Young-Hoon Park
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Se Myeong Choi
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Yeon Jin An
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Eunmi Hong
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Hye-Ji Choi
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sang Kyoon Kim
- Preclinical Research Center (PRC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Ye Eun Nam
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Geun-Joong Kim
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sang-Wook Park
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jeong-Sun Kim
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Eunae Kim
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jong Hyun Cho
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea; Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Republic of Korea.
| | - Tae-Hoon Lee
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Interdisciplinary Program of Biomedical Engineering, Graduate School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
18
|
Zhu L, Zhang L, Cha J, Li C, Mao B. Loss of ZC4H2, an Arthrogryposis Multiplex Congenita Associated Gene, Promotes Osteoclastogenesis in Mice. Genes (Basel) 2024; 15:1134. [PMID: 39336725 PMCID: PMC11431781 DOI: 10.3390/genes15091134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
ZC4H2 encodes a C4H2-type zinc finger protein, mutations of which lead to a spectrum of diseases known as ZC4H2 associated rare disorders (ZARD). In addition to neurological phenotypes, the most typical symptoms of ZARD are multiple joint contractures of varying degrees, accompanied by abnormal development of muscles and bones, and osteoporosis in some cases. The pathogenic mechanisms of such bone related phenotypes, however, remain unclear. Here, we showed that ZC4H2 is expressed in the developing bones in mice. ZC4H2 knockout mice were neonatal-lethal and smaller in size, with reduced calcification of long bones. Upon induced loss of ZC4H2 postnatally, the femoral bones developed an osteoporosis-like phenotype, with reduced bone mineral density, bone-volume fraction, and trabecular bone number. Knockdown of ZC4H2 showed no clear effect on the expression of osteogenic differentiation genes in in vitro models using mesenchymal stem cells. Interestingly, ZC4H2 knockdown significantly enhanced osteoclast differentiation and bone resorption in induced bone marrow-derived macrophages. We further confirmed that the number of osteoclasts in the long bone of ZC4H2 knockout mice was increased, as well as the expression of the serum bone resorption/osteoporosis marker CTX-1. Our study unveils a new role of ZC4H2 in osteoclast differentiation and bone development, providing new clues on the pathology of ZARD.
Collapse
Affiliation(s)
- Liang Zhu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; (L.Z.); (J.C.); (C.L.)
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
| | - Longlong Zhang
- Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China;
| | - Jingmei Cha
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; (L.Z.); (J.C.); (C.L.)
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
| | - Chaocui Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; (L.Z.); (J.C.); (C.L.)
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; (L.Z.); (J.C.); (C.L.)
| |
Collapse
|
19
|
Devoy EJ, Jabari E, Kotsanos G, Choe RH, Fisher JP. An Exploration of the Role of Osteoclast Lineage Cells in Bone Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39041616 DOI: 10.1089/ten.teb.2024.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Bone defects because of age, trauma, and surgery, which are exacerbated by medication side effects and common diseases such as osteoporosis, diabetes, and rheumatoid arthritis, are a problem of epidemic scale. The present clinical standard for treating these defects includes autografts and allografts. Although both treatments can promote robust regenerative outcomes, they fail to strike a desirable balance of availability, side effect profile, consistent regenerative efficacy, and affordability. This difficulty has contributed to the rise of bone tissue engineering (BTE) as a potential avenue through which enhanced bone regeneration could be delivered. BTE is founded upon a paradigm of using biomaterials, bioactive factors, osteoblast lineage cells (ObLCs), and vascularization to cue deficient bone tissue into a state of regeneration. Despite promising preclinical results, BTE has had modest success in being translated into the clinical setting. One barrier has been the simplicity of its paradigm relative to the complexity of biological bone. Therefore, this paradigm must be critically examined and expanded to better account for this complexity. One potential avenue for this is a more detailed consideration of osteoclast lineage cells (OcLCs). Although these cells ostensibly oppose ObLCs and bone regeneration through their resorptive functions, a myriad of investigations have shed light on their potential to influence bone equilibrium in more complex ways through their interactions with both ObLCs and bone matrix. Most BTE research has not systematically evaluated their influence. Yet contrary to expectations associated with the paradigm, a selection of BTE investigations has demonstrated that this influence can enhance bone regeneration in certain contexts. In addition, much work has elucidated the role of many controllable scaffold parameters in both inhibiting and stimulating the activity of OcLCs in parallel to bone regeneration. Therefore, this review aims to detail and explore the implications of OcLCs in BTE and how they can be leveraged to improve upon the existing BTE paradigm.
Collapse
Affiliation(s)
- Eoin J Devoy
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Erfan Jabari
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - George Kotsanos
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Robert H Choe
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
20
|
Deng H, Guan Y, Dong Q, An R, Wang J. Chitosan-based biomaterials promote bone regeneration by regulating macrophage fate. J Mater Chem B 2024; 12:7480-7496. [PMID: 39016095 DOI: 10.1039/d3tb02563b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The development of various osteogenic biomaterials has not only promoted the development of bone tissue engineering but also provided more possibilities for bone defect repair. However, most previous studies have focused on the interaction of biomaterials on endogenous or exogenous stem cells involved in the bone regeneration process while neglecting the effect of changes in the immune microenvironment of bone defect sites on bone regeneration after biomaterial implantation into the host. With the development of bone immunology, the role of various immune cells, especially macrophages, in bone regeneration has gradually attracted the attention of researchers. An increasing number of studies have begun to target macrophages to better promote bone regeneration by modulating the fate of macrophages in a spatiotemporally ordered manner to mimic the changes in the immune microenvironment of bone defect sites during the natural repair process of bone tissue. Chitosan is one of the most abundant natural polysaccharides in the world. In recent years, various chitosan-based biomaterials have been widely used in macrophage fate modulation and bone regeneration. In this review, we review the interaction between macrophages and scaffold materials, general information about chitosan, the modulation of macrophage fate by chitosan-based biomaterials, and their application in bone regeneration.
Collapse
Affiliation(s)
- Huiling Deng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Yuanyuan Guan
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Quping Dong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Ran An
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Jiecong Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| |
Collapse
|
21
|
Herbert A. Osteogenesis imperfecta type 10 and the cellular scaffolds underlying common immunological diseases. Genes Immun 2024; 25:265-276. [PMID: 38811682 DOI: 10.1038/s41435-024-00277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
Osteogenesis imperfecta type 10 (OI10) is caused by loss of function codon variants in the gene SERPINH1 that encodes heat shock protein 47 (HSP47), rather than in a gene specifying bone formation. The HSP47 variants disrupt the folding of both collagen and the endonuclease IRE1α (inositol-requiring enzyme 1α) that splices X-Box Binding Protein 1 (XBP1) mRNA. Besides impairing bone development, variants likely affect osteoclast differentiation. Three distinct biochemical scaffold play key roles in the differentiation and regulated cell death of osteoclasts. These scaffolds consist of non-templated protein modifications, ordered lipid arrays, and protein filaments. The scaffold components are specified genetically, but assemble in response to extracellular perturbagens, pathogens, and left-handed Z-RNA helices encoded genomically by flipons. The outcomes depend on interactions between RIPK1, RIPK3, TRIF, and ZBP1 through short interaction motifs called RHIMs. The causal HSP47 nonsynonymous substitutions occur in a novel variant leucine repeat region (vLRR) that are distantly related to RHIMs. Other vLRR protein variants are causal for a variety of different mendelian diseases. The same scaffolds that drive mendelian pathology are associated with many other complex disease outcomes. Their assembly is triggered dynamically by flipons and other context-specific switches rather than by causal, mendelian, codon variants.
Collapse
Affiliation(s)
- Alan Herbert
- InsideOutBio, 42 8th Street, Charlestown, MA, USA.
| |
Collapse
|
22
|
Mo S, Kim MK, Jang JS, Lee SH, Hong SJ, Jung S, Kim HH. Unique expression and critical role of metallothionein 3 in the control of osteoclastogenesis and osteoporosis. Exp Mol Med 2024; 56:1791-1806. [PMID: 39085359 PMCID: PMC11372110 DOI: 10.1038/s12276-024-01290-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 08/02/2024] Open
Abstract
Bone homeostasis is maintained by an intricate balance between osteoclasts and osteoblasts, which becomes disturbed in osteoporosis. Metallothioneins (MTs) are major contributors in cellular zinc regulation. However, the role of MTs in bone cell regulation has remained unexplored. Single-cell RNA sequencing analysis discovered that, unlike the expression of other MT members, the expression of MT3 was unique to osteoclasts among various macrophage populations and was highly upregulated during osteoclast differentiation. This unique MT3 upregulation was validated experimentally and supported by ATAC sequencing data analyses. Downregulation of MT3 by gene knockdown or knockout resulted in excessive osteoclastogenesis and exacerbated bone loss in ovariectomy-induced osteoporosis. Transcriptome sequencing of MT3 knockdown osteoclasts and gene set enrichment analysis indicated that the oxidative stress and redox pathways were enriched, which was verified by MT3-dependent regulation of reactive oxygen species (ROS). In addition, MT3 deficiency increased the transcriptional activity of SP1 in a manner dependent on intracellular zinc levels. This MT3-zinc-SP1 axis was crucial for the control of osteoclasts, as zinc chelation and SP1 knockdown abrogated the promotion of SP1 activity and osteoclastogenesis by MT3 deletion. Moreover, SP1 bound to the NFATc1 promoter, and overexpression of an inactive SP1 mutant negated the effects of MT3 deletion on NFATc1 and osteoclastogenesis. In conclusion, MT3 plays a pivotal role in controlling osteoclastogenesis and bone metabolism via dual axes involving ROS and SP1. The present study demonstrated that MT3 elevation is a potential therapeutic strategy for osteolytic bone disorders, and it established for the first time that MT3 is a crucial bone mass regulator.
Collapse
Affiliation(s)
- Shenzheng Mo
- Department of Cell and Developmental Biology, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Min Kyung Kim
- Department of Cell and Developmental Biology, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
- Bone Science R&D Center, Tissue Regeneration Institute, Osstem Implant, Seoul, 07789, Republic of Korea
| | - Ji Sun Jang
- Department of Cell and Developmental Biology, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Seung Hye Lee
- Department of Cell and Developmental Biology, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Seo Jin Hong
- Department of Cell and Developmental Biology, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Suhan Jung
- Department of Cell and Developmental Biology, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Hong-Hee Kim
- Department of Cell and Developmental Biology, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea.
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
23
|
Chen Z, Yao H, Encarnacion AM, Jeong J, Choi Y, Park S, Lee S, Lee T. Novel Inhibitor of Keap1-Nrf2 Protein-Protein Interaction Attenuates Osteoclastogenesis In Vitro and Prevents OVX-Induced Bone Loss In Vivo. Antioxidants (Basel) 2024; 13:850. [PMID: 39061918 PMCID: PMC11273523 DOI: 10.3390/antiox13070850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Keap1 interacts with Nrf2 by assisting in its ubiquitination and subsequent proteolysis. By preventing ROS accumulation during RANKL-induced osteoclastogenesis, Nrf2 activation can prevent the differentiation of osteoclasts. Additionally, inhibiting the Keap1-Nrf2 PPI can be an effective strategy for triggering Nrf2 to regulate oxidative stress. Structure-based virtual screening was performed to discover a potentially novel Keap1-Nrf2 PPI inhibitor wherein KCB-F06 was identified. The inhibitory effects of KCB-F06 on osteoclastogenesis were investigated in vitro through TRAP staining and bone resorption assays. An ovariectomy-induced osteoporosis mouse model was applied to evaluate KCB-F06's therapeutic effects in vivo. Lastly, the underlying mechanisms were explored using real-time PCR, Western blotting, and co-IP assays. KCB-F06 was discovered as a novel Keap1-Nrf2 PPI inhibitor. As a result, the expression of antioxidants (HO-1 and NQO1) was suppressed, hence reducing ROS accumulation during osteoclastogenesis. Subsequently, this caused the inactivation of RANKL-induced IKB/NF-kB signaling. This eventually led to the downregulation of osteoclast-specific proteins including NFATc1, which is an essential transcription factor for osteoclastogenesis. These results demonstrated that Nrf2 activation in osteoclasts is a valuable tool for osteoclastic bone loss management. In addition, KCB-F06 presents as an alternative candidate for treating osteoclast-related bone diseases and as a novel small molecule that can serve as a model for further Keap1-NRF2 PPI inhibitor development.
Collapse
Affiliation(s)
- Zhihao Chen
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.C.); (S.P.)
| | - Hongyuan Yao
- Department of Interdisciplinary Program of Biomedical Engineering, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; (H.Y.); (A.M.E.); (J.J.)
| | - Alessandra Marie Encarnacion
- Department of Interdisciplinary Program of Biomedical Engineering, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; (H.Y.); (A.M.E.); (J.J.)
| | - Jujin Jeong
- Department of Interdisciplinary Program of Biomedical Engineering, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; (H.Y.); (A.M.E.); (J.J.)
| | - Yunju Choi
- Department of Dental Bioscience, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Sangwook Park
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.C.); (S.P.)
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Taehoon Lee
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.C.); (S.P.)
| |
Collapse
|
24
|
Yang X, Chen M, Wang S, Hu X, Zhou J, Yuan H, Zhu E, Wang B. Cortactin controls bone homeostasis through regulating the differentiation of osteoblasts and osteoclasts. Stem Cells 2024; 42:662-674. [PMID: 38655781 DOI: 10.1093/stmcls/sxae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Cortactin (CTTN), a cytoskeletal protein and substrate of Src kinase, is implicated in tumor aggressiveness. However, its role in bone cell differentiation remains unknown. The current study revealed that CTTN was upregulated during osteoblast and adipocyte differentiation. Functional experiments demonstrated that CTTN promoted the in vitro differentiation of mesenchymal stem/progenitor cells into osteogenic and adipogenic lineages. Mechanistically, CTTN was able to stabilize the protein level of mechanistic target of rapamycin kinase (mTOR), leading to the activation of mTOR signaling. In-depth investigation revealed that CTTN could bind with casitas B lineage lymphoma-c (c-CBL) and counteract the function of c-CBL, a known E3 ubiquitin ligase responsible for the proteasomal degradation of mTOR. Silencing c-Cbl alleviated the impaired differentiation of osteoblasts and adipocytes caused by CTTN siRNA, while silencing mTOR mitigated the stimulation of osteoblast and adipocyte differentiation induced by CTTN overexpression. Notably, transplantation of CTTN-silenced bone marrow stromal cells (BMSCs) into the marrow of mice led to a reduction in trabecular bone mass, accompanied by a decrease in osteoblasts and an increase in osteoclasts. Furthermore, CTTN-silenced BMSCs expressed higher levels of receptor activator of nuclear factor κB ligand (RANKL) than control BMSCs did and promoted osteoclast differentiation when cocultured with bone marrow-derived osteoclast precursor cells. This study provides evidence that CTTN favors osteoblast differentiation by counteracting the c-CBL-induced degradation of mTOR and inhibits osteoclast differentiation by downregulating the expression of RANKL. It also suggests that maintaining an appropriate level of CTTN expression may be advantageous for maintaining bone homeostasis.
Collapse
Affiliation(s)
- Xiaoli Yang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, People's Republic of China
| | - Meng Chen
- Department of hematology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Shuang Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, People's Republic of China
| | - Xingli Hu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, People's Republic of China
| | - Jie Zhou
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, People's Republic of China
| | - Hairui Yuan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, People's Republic of China
| | - Endong Zhu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, People's Republic of China
| | - Baoli Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, People's Republic of China
| |
Collapse
|
25
|
Wang J, Zhang Y, Tang Q, Zhang Y, Yin Y, Chen L. Application of Antioxidant Compounds in Bone Defect Repair. Antioxidants (Basel) 2024; 13:789. [PMID: 39061858 PMCID: PMC11273992 DOI: 10.3390/antiox13070789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Bone defects caused by trauma, tumor resection, and infections are significant clinical challenges. Excessive reactive oxygen species (ROS) usually accumulate in the defect area, which may impair the function of cells involved in bone formation, posing a serious challenge for bone repair. Due to the potent ROS scavenging ability, as well as potential anti-inflammatory and immunomodulatory activities, antioxidants play an indispensable role in the maintenance and protection of bone health and have gained increasing attention in recent years. This narrative review aims to give an overview of the main research directions on the application of antioxidant compounds in bone defect repair over the past decade. In addition, the positive effects of various antioxidants and their biomaterial delivery systems in bone repair are summarized to provide new insights for exploring antioxidant-based strategies for bone defect repair.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yubing Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yinan Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Yin
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
26
|
Zhang F, Liu W, Mao Y, Yang Y, Ling C, Liu Y, Yao F, Zhen Y, Wang X, Zou M. Migrasome, a migration-dependent organelle. Front Cell Dev Biol 2024; 12:1417242. [PMID: 38903534 PMCID: PMC11187097 DOI: 10.3389/fcell.2024.1417242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Migrasomes are organelles produced by migrating cells that form on retraction fibers and are released during cell migration. Migrasomes are involved in physiological and pathological processes such as intercellular communication, cell homeostasis maintenance, signal transduction, disease occurrence and development, and cancer metastasis. In addition, methods and techniques for studying migrasomes are constantly evolving. Here, we review the discovery, formation process, regulation, and known functions of migrasomes, summarize the commonly used specific markers of migrasomes, and the methods for observing migrasomes. Meanwhile, this review also discusses the potential applications of migrasomes in physiological processes, disease diagnosis, treatment, and prognosis, and looks forward to their wider application in biomedicine. In addition, the study of migrasomes will also reveal a new perspective on the mechanism of intercellular communication and promote the further development of life science.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mincheng Zou
- Department of Orthopaedics, Children’s Hospital of Soochow University, Suzhou, China
| |
Collapse
|
27
|
Feng Y, Dang X, Zheng P, Liu Y, Liu D, Che Z, Yao J, Lin Z, Liao Z, Nie X, Liu F, Zhang Y. Quercetin in Osteoporosis Treatment: A Comprehensive Review of Its Mechanisms and Therapeutic Potential. Curr Osteoporos Rep 2024; 22:353-365. [PMID: 38652430 DOI: 10.1007/s11914-024-00868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE OF REVIEW This review aims to provide a theoretical basis and insights for quercetin's clinical application in the prevention and treatment of osteoporosis (OP), analyzing its roles in bone formation promotion, bone resorption inhibition, anti-inflammation, antioxidant effects, and potential mechanisms. RECENT FINDINGS OP, a prevalent bone disorder, is marked by reduced bone mineral density and impaired bone architecture, elevating the risk of fractures in patients. The primary approach to OP management is pharmacotherapy, with quercetin, a phytochemical compound, emerging as a focus of recent interest. This natural flavonoid exerts regulatory effects on bone marrow mesenchymal stem cells, osteoblasts, and osteoclasts and promotes bone health and metabolic equilibrium via anti-inflammatory and antioxidative pathways. Although quercetin has demonstrated significant potential in regulating bone metabolism, there is a need for further high-quality clinical studies focused on medicinal quercetin.
Collapse
Affiliation(s)
- Yanchen Feng
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450099, China
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xue Dang
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Pan Zheng
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yali Liu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Diyan Liu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Zhiying Che
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jianping Yao
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Zixuan Lin
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450099, China
| | - Ziyun Liao
- College of Acupuncture, Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xingyuan Nie
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Feixiang Liu
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450099, China.
| | - Yunke Zhang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, 450003, China.
| |
Collapse
|
28
|
Yongzhen L, Yan G, Jing L, Chenyan R, Chuanqing M, Yun S, Weihui C. Embryonic inhibition of colony-stimulating factor 1 receptor induces enlarged cartilaginous zone of the midpalatal suture in postnatal mice. Orthod Craniofac Res 2024; 27:276-286. [PMID: 37904627 DOI: 10.1111/ocr.12724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/03/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023]
Abstract
OBJECTIVES The midpalatal suture acts as the growth centre of the maxilla. Colony-stimulating factor 1 receptor (CSF1R) is essential for osteoclastogenesis. Deletion of CSF1R, and its ligand, results in significant craniofacial phenotypes but has not been studied in detail in the midpalatal suture. MATERIALS AND METHODS Pregnant ICR mice were treated with the CSF1R inhibitor PLX5622 at embryo Day 14.5 (E14.5) to E17.5. Pups at E18.5, postnatal Day 3 (P3) and P7 were collected for skeletal and histological staining. Osteoclasts were labelled using TRAP staining. PHH3 and TUNEL were employed to detect cell proliferation and apoptosis. Sox9, Ihh, and Col10a1 and Runx2, Col1a1, and DMP1 were used to detect chondrogenic differentiation and osteogenic differentiation, respectively. CD31, MMP9 and CTSK were utilized to assess vascular invasion and osteoclast secretion enzymes, respectively. RESULTS Embryonic inhibition of CSF1R resulted in a depletion of TRAP-positive cells and an enlarged cartilage zone of the midpalatal suture of postnatal mice. Compared to those in the control group, Sox9, Ihh, Col10a1, Runx2 and Col1a1 were upregulated, whereas TUNEL and DMP1 were decreased in this zone. In the trabecular region, Col10a1 was upregulated, while TUNEL, Col1a1 and DMP1 were downregulated. Moreover, the expression of MMP9, CTSK and CD31 was decreased, and invasion into the cartilage zone was delayed. CONCLUSIONS Embryonic inhibition of CSF1R led to an abnormally enlarged cartilaginous zone in the midpalatal suture, potentially due to delayed endochondral ossification caused by the depletion of osteoclasts. Additionally, we established a novel model of midpalatal suture dysplasia, offering prospects for future research.
Collapse
Affiliation(s)
- Lai Yongzhen
- Department of Oral and Cranio-maxillofacial Science, Fujian Medical university Union Hospital, Fuzhou, China
- Stomatological Key Laboratory of Fujian College and University, Fuzhou, China
| | - Guo Yan
- Stomatological Key Laboratory of Fujian College and University, Fuzhou, China
| | - Liu Jing
- Department of Stomatology, Fujian Maternal and Child Health Hospital, Fuzhou, China
| | - Ren Chenyan
- Stomatological Key Laboratory of Fujian College and University, Fuzhou, China
| | - Mao Chuanqing
- Department of Oral and Cranio-maxillofacial Science, Fujian Medical university Union Hospital, Fuzhou, China
| | - Shi Yun
- Stomatological Key Laboratory of Fujian College and University, Fuzhou, China
| | - Chen Weihui
- Department of Oral and Cranio-maxillofacial Science, Fujian Medical university Union Hospital, Fuzhou, China
- Stomatological Key Laboratory of Fujian College and University, Fuzhou, China
| |
Collapse
|
29
|
Capobianco CA, Hankenson KD, Knights AJ. Temporal dynamics of immune-stromal cell interactions in fracture healing. Front Immunol 2024; 15:1352819. [PMID: 38455063 PMCID: PMC10917940 DOI: 10.3389/fimmu.2024.1352819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/06/2024] [Indexed: 03/09/2024] Open
Abstract
Bone fracture repair is a complex, multi-step process that involves communication between immune and stromal cells to coordinate the repair and regeneration of damaged tissue. In the US, 10% of all bone fractures do not heal properly without intervention, resulting in non-union. Complications from non-union fractures are physically and financially debilitating. We now appreciate the important role that immune cells play in tissue repair, and the necessity of the inflammatory response in initiating healing after skeletal trauma. The temporal dynamics of immune and stromal cell populations have been well characterized across the stages of fracture healing. Recent studies have begun to untangle the intricate mechanisms driving the immune response during normal or atypical, delayed healing. Various in vivo models of fracture healing, including genetic knockouts, as well as in vitro models of the fracture callus, have been implemented to enable experimental manipulation of the heterogeneous cellular environment. The goals of this review are to (1): summarize our current understanding of immune cell involvement in fracture healing (2); describe state-of-the art approaches to study inflammatory cells in fracture healing, including computational and in vitro models; and (3) identify gaps in our knowledge concerning immune-stromal crosstalk during bone healing.
Collapse
Affiliation(s)
- Christina A. Capobianco
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Alexander J. Knights
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
30
|
Hengtrakool P, Leearamwat N, Sengprasert P, Wongphoom J, Chaichana T, Taweevisit M, Ngarmukos S, Tanavalee A, Palaga T, Reantragoon R. Infrapatellar fat pad adipose tissue-derived macrophages display a predominant CD11c+CD206+ phenotype and express genotypes attributable to key features of OA pathogenesis. Front Immunol 2024; 15:1326953. [PMID: 38361943 PMCID: PMC10867170 DOI: 10.3389/fimmu.2024.1326953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024] Open
Abstract
Objectives In knee osteoarthritis (OA), macrophages are the most predominant immune cells that infiltrate synovial tissues and infrapatellar fat pads (IPFPs). Both M1 and M2 macrophages have been described, but their role in OA has not been fully investigated. Therefore, we investigated macrophage subpopulations in IPFPs and synovial tissues of knee OA patients and their correlation with disease severity, examined their transcriptomics, and tested for factors that influenced their polarization. Methods Synovial tissues and IPFPs were obtained from knee OA patients undergoing total knee arthroplasty. Macrophages isolated from these joint tissues were characterized via flow cytometry. Transcriptomic profiling of each macrophage subpopulations was performed using NanoString technology. Peripheral blood monocyte-derived macrophages (MDMs) were treated with synovial fluid and synovial tissue- and IPFP-conditioned media. Synovial fluid-treated MDMs were treated with platelet-rich plasma (PRP) and its effects on macrophage polarization were observed. Results Our findings show that CD11c+CD206+ macrophages were predominant in IPFPs and synovial tissues compared to other macrophage subpopulations (CD11c+CD206-, CD11c-CD206+, and CD11c-CD206- macrophages) of knee OA patients. The abundance of macrophages in IPFPs reflected those in synovial tissues but did not correlate with disease severity as determined from Mankin scoring of cartilage destruction. Our transcriptomics data demonstrated highly expressed genes that were related to OA pathogenesis in CD11c+CD206+ macrophages than CD11c+CD206-, CD11c-CD206+, and CD11c-CD206- macrophages. In addition, MDMs treated with synovial fluid, synovial tissue-conditioned media, or IPFP-conditioned media resulted in different polarization profiles of MDMs. IPFP-conditioned media induced increases in CD86+CD206+ MDMs, whereas synovial tissue-conditioned media induced increases in CD86+CD206- MDMs. Synovial fluid treatment (at 1:8 dilution) induced a very subtle polarization in each macrophage subpopulation. PRP was able to shift macrophage subpopulations and partially reverse the profiles of synovial fluid-treated MDMs. Conclusion Our study provides an insight on the phenotypes and genotypes of macrophages found in IPFPs and synovial tissues of knee OA patients. We also show that the microenvironment plays a role in driving macrophages to polarize differently and shifting macrophage profiles can be reversed by PRP.
Collapse
Affiliation(s)
- Patchanika Hengtrakool
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Nitigorn Leearamwat
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Panjana Sengprasert
- Immunology Division, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jutamas Wongphoom
- Department of Pathology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Thiamjit Chaichana
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Mana Taweevisit
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Srihatach Ngarmukos
- Department of Orthopedics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Biologics for Knee Osteoarthritis Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Aree Tanavalee
- Department of Orthopedics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Biologics for Knee Osteoarthritis Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Rangsima Reantragoon
- Immunology Division, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Skeletal Disorders and Enzyme Reaction Mechanism, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
31
|
Xu W, Chao R, Xie X, Mao Y, Chen X, Chen X, Zhang S. IL13Rα2 as a crucial receptor for Chi3l1 in osteoclast differentiation and bone resorption through the MAPK/AKT pathway. Cell Commun Signal 2024; 22:81. [PMID: 38291404 PMCID: PMC10826115 DOI: 10.1186/s12964-023-01423-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/05/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Previous research has revealed that the 18 glycoside hydrolase gene family (GH18) member Chitinase 3-like 1 (Chi3l1) can regulate osteoclast differentiation and bone resorption. However, its downstream receptors and molecular mechanisms during osteoclastogenesis have yet to be elucidated. METHODS Initially, we conducted a comprehensive investigation to evaluate the effects of recombinant Chi3l1 protein or Chi3l1 siRNA on osteoclast differentiation and the RANKL-induced MAPK/AKT signaling pathways. Moreover, we used immunofluorescence and immunoprecipitation assays to identify IL13Rα2 as the downstream receptor of Chi3l1. Subsequently, we investigated the impact of IL13Rα2 recombinant protein or IL13Rα2-siRNA on osteoclast differentiation and the associated signaling pathways. Finally, we performed in vivo experiments to examine the effect of recombinant IL13Rα2 protein in an LPS-induced mouse model of cranial osteolysis. RESULTS Our findings highlight that the administration of recombinant Chi3l1 protein increased the formation of osteoclasts and bolstered the expression of several osteoclast-specific genes (TRAP, NFATC1, CTR, CTSK, V-ATPase d2, and Dc-STAMP). Additionally, Chi3l1 significantly promoted the RANKL-induced MAPK (ERK/P38/JNK) and AKT pathway activation, whereas Chi3l1 silencing inhibited this process. Next, using immunofluorescence and co-immunoprecipitation assays, we identified IL13Rα2 as the binding partner of Chi3l1 during osteoclastogenesis. IL13Rα2 recombinant protein or IL13Rα2-siRNA also inhibited osteoclast differentiation, and IL13Rα2-siRNA attenuated the RANKL-induced activation of the MAPK (ERK/P38/JNK) and AKT pathways, similar to the effects observed upon silencing of Chi3l1. Moreover, the promoting effect of recombinant Chi3l1 protein on osteoclastogenesis and the activation of the MAPK and AKT pathways was reversed by IL13Rα2 siRNA. Finally, recombinant LI13Rα2 protein significantly attenuated the LPS-induced cranial osteolysis and the number of osteoclasts in vivo. CONCLUSIONS Our findings suggested that IL13Rα2 served as a crucial receptor for Chi3l1, enhancing RANKL-induced MAPK and AKT activation to promote osteoclast differentiation. These findings provide valuable insights into the molecular mechanisms of Chi3l1 in osteoclastogenesis, with potential therapeutic implications for osteoclast-related diseases. Video Abstract.
Collapse
Affiliation(s)
- Weifeng Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
| | - Rui Chao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
| | - Xinru Xie
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
| | - Yi Mao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
| | - Xinwei Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China.
| | - Xuzhuo Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China.
| | - Shanyong Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China.
| |
Collapse
|
32
|
Al-Jipouri A, Eritja À, Bozic M. Unraveling the Multifaceted Roles of Extracellular Vesicles: Insights into Biology, Pharmacology, and Pharmaceutical Applications for Drug Delivery. Int J Mol Sci 2023; 25:485. [PMID: 38203656 PMCID: PMC10779093 DOI: 10.3390/ijms25010485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles released from various cell types that have emerged as powerful new therapeutic option for a variety of diseases. EVs are involved in the transmission of biological signals between cells and in the regulation of a variety of biological processes, highlighting them as potential novel targets/platforms for therapeutics intervention and/or delivery. Therefore, it is necessary to investigate new aspects of EVs' biogenesis, biodistribution, metabolism, and excretion as well as safety/compatibility of both unmodified and engineered EVs upon administration in different pharmaceutical dosage forms and delivery systems. In this review, we summarize the current knowledge of essential physiological and pathological roles of EVs in different organs and organ systems. We provide an overview regarding application of EVs as therapeutic targets, therapeutics, and drug delivery platforms. We also explore various approaches implemented over the years to improve the dosage of specific EV products for different administration routes.
Collapse
Affiliation(s)
- Ali Al-Jipouri
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
| | - Àuria Eritja
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| | - Milica Bozic
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| |
Collapse
|
33
|
Engelmann J, Ragipoglu D, Ben-Batalla I, Loges S. The Role of TAM Receptors in Bone. Int J Mol Sci 2023; 25:233. [PMID: 38203403 PMCID: PMC10779100 DOI: 10.3390/ijms25010233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The TAM (TYRO3, MERTK, and AXL) family of receptor tyrosine kinases are pleiotropic regulators of adult tissue homeostasis maintaining organ integrity and self-renewal. Disruption of their homeostatic balance fosters pathological conditions like autoinflammatory or degenerative diseases including rheumatoid arthritis, lupus erythematodes, or liver fibrosis. Moreover, TAM receptors exhibit prominent cell-transforming properties, promoting tumor progression, metastasis, and therapy resistance in various cancer entities. Emerging evidence shows that TAM receptors are involved in bone homeostasis by regulating osteoblastic bone formation and osteoclastic bone resorption. Therefore, TAM receptors emerge as new key players of the regulatory cytokine network of osteoblasts and osteoclasts and represent accessible targets for pharmacologic therapy for a broad set of different bone diseases, including primary and metastatic bone tumors, rheumatoid arthritis, or osteoporosis.
Collapse
Affiliation(s)
- Janik Engelmann
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, 68167 Mannheim, Germany; (D.R.); (I.B.-B.)
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Deniz Ragipoglu
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, 68167 Mannheim, Germany; (D.R.); (I.B.-B.)
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Isabel Ben-Batalla
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, 68167 Mannheim, Germany; (D.R.); (I.B.-B.)
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Sonja Loges
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, 68167 Mannheim, Germany; (D.R.); (I.B.-B.)
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
34
|
Jariyasakulroj S, Zhang W, Bai J, Zhang M, Lu Z, Chen JF. Ribosome biogenesis controls cranial suture MSC fate via the complement pathway in mouse and human iPSC models. Stem Cell Reports 2023; 18:2370-2385. [PMID: 37977145 PMCID: PMC10724072 DOI: 10.1016/j.stemcr.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023] Open
Abstract
Disruption of global ribosome biogenesis selectively affects craniofacial tissues with unclear mechanisms. Craniosynostosis is a congenital craniofacial disorder characterized by premature fusion of cranial suture(s) with loss of suture mesenchymal stem cells (MSCs). Here we focused on ribosomopathy disease gene Snord118, which encodes a small nucleolar RNA (snoRNA), to genetically disturb ribosome biogenesis in suture MSCs using mouse and human induced pluripotent stem cell (iPSC) models. Snord118 depletion exhibited p53 activation, increased cell death, reduced proliferation, and premature osteogenic differentiation of MSCs, leading to suture growth and craniosynostosis defects. Mechanistically, Snord118 deficiency causes translational dysregulation of ribosomal proteins and downregulation of complement pathway genes. Further complement pathway disruption by knockout of complement C3a receptor 1 (C3ar1) exacerbated MSC and suture defects in mutant mice, whereas activating the complement pathway rescued MSC cell fate and suture growth defects. Thus, ribosome biogenesis controls MSC fate via the complement pathway to prevent craniosynostosis.
Collapse
Affiliation(s)
- Supawadee Jariyasakulroj
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA; Department of Masticatory Science, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Wei Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jianhui Bai
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Minjie Zhang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhipeng Lu
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
35
|
Nagra A, Katsube M, Gao W, Rosin JM, Vora SR. Embryonic inhibition of colony-stimulating factor 1 receptor impacts craniofacial morphogenesis. Orthod Craniofac Res 2023; 26 Suppl 1:20-28. [PMID: 37231583 DOI: 10.1111/ocr.12671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/27/2023]
Abstract
OBJECTIVES Colony-stimulating factor-1 receptor (CSF1R) is vital for the recruitment of monocytes, and their proliferation and differentiation into functional osteoclasts. Mouse studies, where CSF1R and its cognate ligand are absent, have significant craniofacial phenotypes, but these have not been studied in detail. MATERIALS AND METHODS Pregnant CD1 mice were fed diets laced with CSF1R inhibitor-PLX5622 starting at embryonic day 3.5 (E3.5) up to birth. Pups were collected at E18.5 to study CSF1R expression using immunofluorescence. Additional pups were studied at postnatal day 21 (P21) and P28 using microcomputed tomography (μCT) and Geometric Morphometrics, to evaluate craniofacial form. RESULTS CSF1R-positive cells were present throughout the developing craniofacial region, including the jaw bones, surrounding teeth, tongue, nasal cavities, brain, cranial vault and base regions. Animals exposed to the CSF1R inhibitor in utero had severe depletion of CSF1R-positive cells at E18.5 and had significant differences in craniofacial form (size and shape) at postnatal timepoints. Centroid sizes for the mandibular and cranio-maxillary regions were significantly smaller in CSF1R-inhibited animals. Proportionally, these animals had a domed skull, with taller and wider cranial vaults and shortening of their midfacial regions. Mandibles were smaller vertically and anterio-posteriorly, with proportionally wider inter-condylar distances. CONCLUSIONS Embryonic inhibition of CSF1R impacts postnatal craniofacial morphogenesis, with significant influences on the mandibular and cranioskeletal size and shape. These data indicate that CSF1R plays a role in early cranio-skeletal patterning, likely through osteoclast depletion.
Collapse
Affiliation(s)
- Ashina Nagra
- Oral Health Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Motoki Katsube
- Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Wade Gao
- Oral Health Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica M Rosin
- Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Siddharth R Vora
- Oral Health Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
36
|
Jiang T, Xia T, Qiao F, Wang N, Jiang Y, Xin H. Role and Regulation of Transcription Factors in Osteoclastogenesis. Int J Mol Sci 2023; 24:16175. [PMID: 38003376 PMCID: PMC10671247 DOI: 10.3390/ijms242216175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Bones serve mechanical and defensive functions, as well as regulating the balance of calcium ions and housing bone marrow.. The qualities of bones do not remain constant. Instead, they fluctuate throughout life, with functions increasing in some situations while deteriorating in others. The synchronization of osteoblast-mediated bone formation and osteoclast-mediated bone resorption is critical for maintaining bone mass and microstructure integrity in a steady state. This equilibrium, however, can be disrupted by a variety of bone pathologies. Excessive osteoclast differentiation can result in osteoporosis, Paget's disease, osteolytic bone metastases, and rheumatoid arthritis, all of which can adversely affect people's health. Osteoclast differentiation is regulated by transcription factors NFATc1, MITF, C/EBPα, PU.1, NF-κB, and c-Fos. The transcriptional activity of osteoclasts is largely influenced by developmental and environmental signals with the involvement of co-factors, RNAs, epigenetics, systemic factors, and the microenvironment. In this paper, we review these themes in regard to transcriptional regulation in osteoclastogenesis.
Collapse
Affiliation(s)
- Tao Jiang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Tianshuang Xia
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
| | - Fangliang Qiao
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China;
| | - Yiping Jiang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
| | - Hailiang Xin
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| |
Collapse
|
37
|
Boyce BF, Li J, Yao Z, Xing L. Nuclear Factor-Kappa B Regulation of Osteoclastogenesis and Osteoblastogenesis. Endocrinol Metab (Seoul) 2023; 38:504-521. [PMID: 37749800 PMCID: PMC10613774 DOI: 10.3803/enm.2023.501] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 09/27/2023] Open
Abstract
Maintenance of skeletal integrity requires the coordinated activity of multinucleated bone-resorbing osteoclasts and bone-forming osteoblasts. Osteoclasts form resorption lacunae on bone surfaces in response to cytokines by fusion of precursor cells. Osteoblasts are derived from mesenchymal precursors and lay down new bone in resorption lacunae during bone remodeling. Nuclear factorkappa B (NF-κB) signaling regulates osteoclast and osteoblast formation and is activated in osteoclast precursors in response to the essential osteoclastogenic cytokine, receptor activator of NF-κB ligand (RANKL), which can also control osteoblast formation through RANK-RANKL reverse signaling in osteoblast precursors. RANKL and some pro-inflammatory cytokines, including tumor necrosis factor (TNF), activate NF-κB signaling to positively regulate osteoclast formation and functions. However, these cytokines also limit osteoclast and osteoblast formation through NF-κB signaling molecules, including TNF receptor-associated factors (TRAFs). TRAF6 mediates RANKL-induced osteoclast formation through canonical NF-κB signaling. In contrast, TRAF3 limits RANKL- and TNF-induced osteoclast formation, and it restricts transforming growth factor β (TGFβ)-induced inhibition of osteoblast formation in young and adult mice. During aging, neutrophils expressing TGFβ and C-C chemokine receptor type 5 (CCR5) increase in bone marrow of mice in response to increased NF-κB-induced CC motif chemokine ligand 5 (CCL5) expression by mesenchymal progenitor cells and injection of these neutrophils into young mice decreased bone mass. TGFβ causes degradation of TRAF3, resulting in decreased glycogen synthase kinase-3β/β-catenin-mediated osteoblast formation and age-related osteoporosis in mice. The CCR5 inhibitor, maraviroc, prevented accumulation of TGFβ+/CCR5+ neutrophils in bone marrow and increased bone mass by inhibiting bone resorption and increasing bone formation in aged mice. This paper updates current understanding of how NF-κB signaling is involved in the positive and negative regulation of cytokine-mediated osteoclast and osteoblast formation and activation with a focus on the role of TRAF3 signaling, which can be targeted therapeutically to enhance bone mass.
Collapse
Affiliation(s)
- Brendan F. Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Jinbo Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Zhenqiang Yao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
38
|
Lai Y, Guo Y, Liao C, Mao C, Liu J, Ren C, Yang W, Luo L, Chen W. Osteoclast differentiation and dynamic mRNA expression during mice embryonic palatal bone development. Sci Rep 2023; 13:15170. [PMID: 37704707 PMCID: PMC10499879 DOI: 10.1038/s41598-023-42423-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023] Open
Abstract
This study is the first to investigate the process of osteoclast (OCL) differentiation, its potential functions, and the associated mRNA and signalling pathways in embryonic palatal bone. Our findings suggest that OCLs are involved in bone remodelling, bone marrow cavity formation, and blood vessel formation in embryonic palatal bone. We observed TRAP-positive OCLs at embryonic day 16.5 (E16.5), E17.5, and E18.5 at the palatal process of the palate (PPP) and posterior and anterior parts of the palatal process of the maxilla (PPMXP and PPMXA, respectively), with OCL differentiation starting 2 days prior to TRAP positivity. By comparing the key periods of OCL differentiation between PPMX and PPP (E14.5, E15.5, and E16.5) using RNA-seq data of the palates, we found that the PI3K-AKT and MAPK signalling pathways were sequentially enriched, which may play critical roles in OCL survival and differentiation. Csf1r, Tnfrsff11a, Ctsk, Fos, Tyrobp, Fcgr3, and Spi1 were significantly upregulated, while Pik3r3, Tgfbr1, and Mapk3k7 were significantly downregulated, in both PPMX and PPP. Interestingly, Tnfrsff11b was upregulated in PPMX but downregulated in PPP, which may regulate the timing of OCL appearance. These results contribute to the limited knowledge regarding mRNA-specific steps in OCL differentiation in the embryonic palatal bone.
Collapse
Affiliation(s)
- Yongzhen Lai
- Department of Oral and Craniomaxillofacial Science, Fujian Medical University Union Hospital, No. 28, Xinquan Road, Fuzhou, 350001, Fujian, China
- Stomatological Key Laboratory of Fujian College and University, Fuzhou, China
| | - Yan Guo
- Stomatological Key Laboratory of Fujian College and University, Fuzhou, China
| | - Caiyu Liao
- Stomatological Key Laboratory of Fujian College and University, Fuzhou, China
| | - Chuanqing Mao
- Department of Oral and Craniomaxillofacial Science, Fujian Medical University Union Hospital, No. 28, Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Jing Liu
- Department of Stomatology, Fujian Maternal and Child Health Hospital, No. 18 Dao Shan Road, Fuzhou, 350001, Fujian, China
| | - Chengyan Ren
- Stomatological Key Laboratory of Fujian College and University, Fuzhou, China
| | - Wen Yang
- Stomatological Key Laboratory of Fujian College and University, Fuzhou, China
| | - Lin Luo
- Stomatological Key Laboratory of Fujian College and University, Fuzhou, China
| | - Weihui Chen
- Department of Oral and Craniomaxillofacial Science, Fujian Medical University Union Hospital, No. 28, Xinquan Road, Fuzhou, 350001, Fujian, China.
- Stomatological Key Laboratory of Fujian College and University, Fuzhou, China.
| |
Collapse
|
39
|
Torrecillas-Baena B, Pulido-Escribano V, Dorado G, Gálvez-Moreno MÁ, Camacho-Cardenosa M, Casado-Díaz A. Clinical Potential of Mesenchymal Stem Cell-Derived Exosomes in Bone Regeneration. J Clin Med 2023; 12:4385. [PMID: 37445420 DOI: 10.3390/jcm12134385] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Bone metabolism is regulated by osteoblasts, osteoclasts, osteocytes, and stem cells. Pathologies such as osteoporosis, osteoarthritis, osteonecrosis, and traumatic fractures require effective treatments that favor bone formation and regeneration. Among these, cell therapy based on mesenchymal stem cells (MSC) has been proposed. MSC are osteoprogenitors, but their regenerative activity depends in part on their paracrine properties. These are mainly mediated by extracellular vesicle (EV) secretion. EV modulates regenerative processes such as inflammation, angiogenesis, cell proliferation, migration, and differentiation. Thus, MSC-EV are currently an important tool for the development of cell-free therapies in regenerative medicine. This review describes the current knowledge of the effects of MSC-EV in the different phases of bone regeneration. MSC-EV has been used by intravenous injection, directly or in combination with different types of biomaterials, in preclinical models of bone diseases. They have shown great clinical potential in regenerative medicine applied to bone. These findings should be confirmed through standardization of protocols, a better understanding of the mechanisms of action, and appropriate clinical trials. All that will allow the translation of such cell-free therapy to human clinic applications.
Collapse
Affiliation(s)
- Bárbara Torrecillas-Baena
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Victoria Pulido-Escribano
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Gabriel Dorado
- Department Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 14004 Córdoba, Spain
| | - María Ángeles Gálvez-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Marta Camacho-Cardenosa
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 14004 Córdoba, Spain
| |
Collapse
|
40
|
Tsai J, Kaneko K, Suh AJ, Bockman R, Park-Min KH. Origin of Osteoclasts: Osteoclast Precursor Cells. J Bone Metab 2023; 30:127-140. [PMID: 37449346 PMCID: PMC10346003 DOI: 10.11005/jbm.2023.30.2.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 07/18/2023] Open
Abstract
Osteoclasts are multinucleated bone-resorbing cells and a key player in bone remodeling for health and disease. Since the discovery of osteoclasts in 1873, the structure and function of osteoclasts and the molecular and cellular mechanisms of osteoclastogenesis have been extensively studied. Moreover, it has been well established that osteoclasts are differentiated in vitro from myeloid cells such as bone marrow macrophages or monocytes. The concept showing that osteoclasts are derived from a specific population (named osteoclast precursor cells [OCPs]) among myeloid cells has been long hypothesized. However, the specific precursor population of osteoclasts is not clearly defined yet. A growing body of work provides evidence of the developmental origin and lifespan of murine osteoclasts, particularly in vivo. Here, we review the emerging evidence that supports the existence of OCPs and discuss current insights into their identity.
Collapse
Affiliation(s)
- Jefferson Tsai
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY,
USA
| | - Kaichi Kaneko
- Division of Rheumatology, Department of Internal Medicine, Toho University Sakura Medical Center, Chiba,
Japan
| | - Andrew J. Suh
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY,
USA
| | - Richard Bockman
- Division of Endocrinology and Metabolism, Hospital for Special Surgery, New York, NY,
USA
- Department of Medicine, Weill Cornell Medical College, New York, NY,
USA
| | - Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY,
USA
- Department of Medicine, Weill Cornell Medical College, New York, NY,
USA
- BCMB Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY,
USA
| |
Collapse
|
41
|
Fuiten AM, Yoshimoto Y, Shukunami C, Stadler HS. Digits in a dish: An in vitro system to assess the molecular genetics of hand/foot development at single-cell resolution. Front Cell Dev Biol 2023; 11:1135025. [PMID: 36994104 PMCID: PMC10040768 DOI: 10.3389/fcell.2023.1135025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
In vitro models allow for the study of developmental processes outside of the embryo. To gain access to the cells mediating digit and joint development, we identified a unique property of undifferentiated mesenchyme isolated from the distal early autopod to autonomously re-assemble forming multiple autopod structures including: digits, interdigital tissues, joints, muscles and tendons. Single-cell transcriptomic analysis of these developing structures revealed distinct cell clusters that express canonical markers of distal limb development including: Col2a1, Col10a1, and Sp7 (phalanx formation), Thbs2 and Col1a1 (perichondrium), Gdf5, Wnt5a, and Jun (joint interzone), Aldh1a2 and Msx1 (interdigital tissues), Myod1 (muscle progenitors), Prg4 (articular perichondrium/articular cartilage), and Scx and Tnmd (tenocytes/tendons). Analysis of the gene expression patterns for these signature genes indicates that developmental timing and tissue-specific localization were also recapitulated in a manner similar to the initiation and maturation of the developing murine autopod. Finally, the in vitro digit system also recapitulates congenital malformations associated with genetic mutations as in vitro cultures of Hoxa13 mutant mesenchyme produced defects present in Hoxa13 mutant autopods including digit fusions, reduced phalangeal segment numbers, and poor mesenchymal condensation. These findings demonstrate the robustness of the in vitro digit system to recapitulate digit and joint development. As an in vitro model of murine digit and joint development, this innovative system will provide access to the developing limb tissues facilitating studies to discern how digit and articular joint formation is initiated and how undifferentiated mesenchyme is patterned to establish individual digit morphologies. The in vitro digit system also provides a platform to rapidly evaluate treatments aimed at stimulating the repair or regeneration of mammalian digits impacted by congenital malformation, injury, or disease.
Collapse
Affiliation(s)
- Allison M. Fuiten
- Research Center, Shriners Children’s, Portland, OR, United States
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, United States
| | - Yuki Yoshimoto
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - H. Scott Stadler
- Research Center, Shriners Children’s, Portland, OR, United States
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, United States
- *Correspondence: H. Scott Stadler,
| |
Collapse
|
42
|
Klf4 haploinsufficiency in Sp7+ lineage leads to underdeveloped mandibles and insufficient elongation of mandibular incisor. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166636. [PMID: 36584722 DOI: 10.1016/j.bbadis.2022.166636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
The mandible is an important component of the craniofacial bones, whose development is regulated by complex molecular networks and involves the well-coordinated development of the bone, cartilage, and teeth. Previously, we demonstrated that Krüppel-like factor 4 (KLF4) promoted dentinogenesis and osteogenesis, but it was enigmatic whether Klf4 participated in the development of the mandible. In this study, the Sp7-Cre; Klf4f/+ mice exhibited underdeveloped mandibles and insufficient elongation of the mandibular incisor when compared with Klf4f/+ and Sp7-Cre mice. Moreover, morphological and molecular analysis showed that the alveolar bone mass was significantly decreased in KLF4 deficient mice, accompanied by reduced expression of osteoblast-related genes. Meanwhile, the KLF4 deficient mice had decreased expression of receptor activator of nuclear factor kappa-Β ligand (RANKL) and no significant change of osteoprotegerin (OPG) in the alveolar bone near the mandibular incisor. Simultaneously, the osteoclastogenesis in the alveolar bone of KLF4 deficient mice was attenuated, which was demonstrated by a diminished number of tartrate-resistant acid phosphatase positive (TRAP+), matrix metallopeptidase 9 positive (MMP9+), and cathepsin K positive (CTSK+) multinucleated osteoclasts, respectively. Collectively, our study suggested that Klf4 participated in mandibular development, and Klf4 in Sp7+ lineage affected osteogenesis directly and osteoclastogenesis indirectly.
Collapse
|
43
|
Elson A, Anuj A, Barnea-Zohar M, Reuven N. The origins and formation of bone-resorbing osteoclasts. Bone 2022; 164:116538. [PMID: 36028118 DOI: 10.1016/j.bone.2022.116538] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Osteoclasts (OCLs) are hematopoietic cells whose physiological function is to degrade bone. OCLs are key players in the processes that determine and maintain the mass, shape, and physical properties of bone. OCLs adhere to bone tightly and degrade its matrix by secreting protons and proteases onto the underlying surface. The combination of low pH and proteases degrades the mineral and protein components of the matrix and forms a resorption pit; the degraded material is internalized by the cell and then secreted into the circulation. Insufficient or excessive activity of OCLs can lead to significant changes in bone and either cause or exacerbate symptoms of diseases, as in osteoporosis, osteopetrosis, and cancer-induced bone lysis. OCLs are derived from monocyte-macrophage precursor cells whose origins are in two distinct embryonic cell lineages - erythromyeloid progenitor cells of the yolk sac, and hematopoietic stem cells. OCLs are formed in a multi-stage process that is induced by the cytokines M-CSF and RANKL, during which the cells differentiate, fuse to form multi-nucleated cells, and then differentiate further to become mature, bone-resorbing OCLs. Recent studies indicate that OCLs can undergo fission in vivo to generate smaller cells, called "osteomorphs", that can be "re-cycled" by fusing with other cells to form new OCLs. In this review we describe OCLs and discuss their cellular origins and the cellular and molecular events that drive osteoclastogenesis.
Collapse
Affiliation(s)
- Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Anuj Anuj
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
44
|
Omi M, Mishina Y. Roles of osteoclasts in alveolar bone remodeling. Genesis 2022; 60:e23490. [PMID: 35757898 PMCID: PMC9786271 DOI: 10.1002/dvg.23490] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022]
Abstract
Osteoclasts are large multinucleated cells from hematopoietic origin and are responsible for bone resorption. A balance between osteoclastic bone resorption and osteoblastic bone formation is critical to maintain bone homeostasis. The alveolar bone, also called the alveolar process, is the part of the jawbone that holds the teeth and supports oral functions. It differs from other skeletal bones in several aspects: its embryonic cellular origin, the form of ossification, and the presence of teeth and periodontal tissues; hence, understanding the unique characteristic of the alveolar bone remodeling is important to maintain oral homeostasis. Excessive osteoclastic bone resorption is one of the prominent features of bone diseases in the jaw such as periodontitis. Therefore, inhibiting osteoclast formation and bone resorptive process has been the target of therapeutic intervention. Understanding the mechanisms of osteoclastic bone resorption is critical for the effective treatment of bone diseases in the jaw. In this review, we discuss basic principles of alveolar bone remodeling with a specific focus on the osteoclastic bone resorptive process and its unique functions in the alveolar bone. Lastly, we provide perspectives on osteoclast-targeted therapies and regenerative approaches associated with bone diseases in the jaw.
Collapse
Affiliation(s)
- Maiko Omi
- Department of Biologic and Materials Sciences & ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| |
Collapse
|
45
|
Kohtala S, Nedal TMV, Kriesi C, Moen SH, Ma Q, Ødegaard KS, Standal T, Steinert M. Automated Quantification of Human Osteoclasts Using Object Detection. Front Cell Dev Biol 2022; 10:941542. [PMID: 35865628 PMCID: PMC9294346 DOI: 10.3389/fcell.2022.941542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022] Open
Abstract
A balanced skeletal remodeling process is paramount to staying healthy. The remodeling process can be studied by analyzing osteoclasts differentiated in vitro from mononuclear cells isolated from peripheral blood or from buffy coats. Osteoclasts are highly specialized, multinucleated cells that break down bone tissue. Identifying and correctly quantifying osteoclasts in culture are usually done by trained personnel using light microscopy, which is time-consuming and susceptible to operator biases. Using machine learning with 307 different well images from seven human PBMC donors containing a total of 94,974 marked osteoclasts, we present an efficient and reliable method to quantify human osteoclasts from microscopic images. An open-source, deep learning-based object detection framework called Darknet (YOLOv4) was used to train and test several models to analyze the applicability and generalizability of the proposed method. The trained model achieved a mean average precision of 85.26% with a correlation coefficient of 0.99 with human annotators on an independent test set and counted on average 2.1% more osteoclasts per culture than the humans. Additionally, the trained models agreed more than two independent human annotators, supporting a more reliable and less biased approach to quantifying osteoclasts while saving time and resources. We invite interested researchers to test their datasets on our models to further strengthen and validate the results.
Collapse
Affiliation(s)
- Sampsa Kohtala
- TrollLABS, Department of Mechanical and Industrial Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- *Correspondence: Sampsa Kohtala,
| | - Tonje Marie Vikene Nedal
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Carlo Kriesi
- TrollLABS, Department of Mechanical and Industrial Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Vitroscope AS, Trondheim, Norway
| | - Siv Helen Moen
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Qianli Ma
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kristin Sirnes Ødegaard
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Therese Standal
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Hematology, St. Olavs University Hospital, Trondheim, Norway
| | - Martin Steinert
- TrollLABS, Department of Mechanical and Industrial Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
46
|
Arinda BN, Innabi YA, Grasis JA, Oviedo NJ. Non-traditional roles of immune cells in regeneration: an evolutionary perspective. Development 2022; 149:275269. [PMID: 35502784 PMCID: PMC9124569 DOI: 10.1242/dev.199903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Immune cells are known to engage in pathogen defense. However, emerging research has revealed additional roles for immune cells, which are independent of their function in the immune response. Here, we underscore the ability of cells outside of the adaptive immune system to respond to recurring infections through the lens of evolution and cellular memory. With this in mind, we then discuss the bidirectional crosstalk between the immune cells and stem cells and present examples where these interactions regulate tissue repair and regeneration. We conclude by suggesting that comprehensive analyses of the immune system may enable biomedical applications in stem cell biology and regenerative medicine.
Collapse
Affiliation(s)
- Beryl N Arinda
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Yacoub A Innabi
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Juris A Grasis
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA.,Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| | - Néstor J Oviedo
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA.,Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| |
Collapse
|
47
|
Ginhoux F, Martin P. Insights into the role of immune cells in development and regeneration. Development 2022; 149:275254. [DOI: 10.1242/dev.200829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 138648Singapore
| | - Paul Martin
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|