1
|
Rasaily M, Ngiimei D S, Thaosen RK, Gupta S, Deka S, Tamuli R. Methods for the detection of intracellular calcium in filamentous fungi. MethodsX 2024; 12:102570. [PMID: 38322134 PMCID: PMC10844858 DOI: 10.1016/j.mex.2024.102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Calcium (Ca2+), a critical secondary messenger, is also known as the molecule of life and death. The cell responds to a minute change in Ca2+ concentration and tightly maintains Ca2+ homeostasis. Therefore, determining the cell Ca2+ level is critical to understand Ca2+ distribution in the cell and various cell processes. Many techniques have been developed to measure Ca2+ in the cell. We review here different methods used to detect and measure Ca2+ in filamentous fungi. Ca2+-sensitive fluorescent chlortetracycline hydrochloride (CTC), Ca2+-selective microelectrode, Ca2+ isotopes, aequorins, and RGECOs are commonly used to measure the Ca2+ level in filamentous fungi. The use of CTC was one of the earliest methods, developed in 1988, to measure the Ca2+ gradient in the filamentous fungus Neurospora crassa. Subsequently, Ca2+-specific microelectrodes were developed later in the 1990s to identify Ca2+ ion flux variations, and to measure Ca2+ concentration. Another method for quantifying Ca2+ is by using radio-labeled Ca2+ as a tracer. The usage of 45Ca to measure Ca2+ in Saccharomyces cerevisiae was reported previously and the same methodology was also used to detect Ca2+ in N. crassa recently. Subsequently, genetically engineered Ca2+ indicators (GECIs) like aequorins and RGECOs have been developed as Ca2+ indicators to detect and visualize Ca2+ inside the cell. In this review, we summarize various methodologies used to detect and measure Ca2+ in filamentous fungi with their advantages and limitations. •Chlortetracycline (CTC) fluorescence assay is used for visualizing Ca2+ level, whereas microelectrodes technique is used to determine Ca2+ flux in the cell.•Radioactive 45Ca is useful for quantification of Ca2+ in the cellular compartments.•Genetically modified calcium indicators (GECIs) are used to study Ca2+ dynamics in the cell.
Collapse
Affiliation(s)
- Megha Rasaily
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, India
| | - Serena Ngiimei D
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, India
| | - Rahul Kumar Thaosen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, India
| | - Surabhi Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, India
| | - Sangeeta Deka
- Centre for the Environment, Indian Institute of Technology Guwahati, India
| | - Ranjan Tamuli
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, India
- Centre for the Environment, Indian Institute of Technology Guwahati, India
| |
Collapse
|
2
|
Pajić T, Stevanović K, Todorović NV, Krmpot AJ, Živić M, Savić-Šević S, Lević SM, Stanić M, Pantelić D, Jelenković B, Rabasović MD. In vivo femtosecond laser nanosurgery of the cell wall enabling patch-clamp measurements on filamentous fungi. MICROSYSTEMS & NANOENGINEERING 2024; 10:47. [PMID: 38590818 PMCID: PMC10999429 DOI: 10.1038/s41378-024-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 04/10/2024]
Abstract
Studying the membrane physiology of filamentous fungi is key to understanding their interactions with the environment and crucial for developing new therapeutic strategies for disease-causing pathogens. However, their plasma membrane has been inaccessible for a micron-sized patch-clamp pipette for pA current recordings due to the rigid chitinous cell wall. Here, we report the first femtosecond IR laser nanosurgery of the cell wall of the filamentous fungi, which enabled patch-clamp measurements on protoplasts released from hyphae. A reproducible and highly precise (diffraction-limited, submicron resolution) method for obtaining viable released protoplasts was developed. Protoplast release from the nanosurgery-generated incisions in the cell wall was achieved from different regions of the hyphae. The plasma membrane of the obtained protoplasts formed tight and high-resistance (GΩ) contacts with the recording pipette. The entire nanosurgical procedure followed by the patch-clamp technique could be completed in less than 1 hour. Compared to previous studies using heterologously expressed channels, this technique provides the opportunity to identify new ionic currents and to study the properties of the ion channels in the protoplasts of filamentous fungi in their native environment.
Collapse
Grants
- Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja (Ministry of Education, Science and Technological Development of the Republic of Serbia)
- This work was supported by the Ministry of Science, Technological Development and Innovations, Republic of Serbia [contract number: 451-03-47/2023-01/200178]; The Project Advanced Biophysical Methods for Soil Targeted Fungi-Based Biocontrol Agents - BioPhysFUN [Grant number 4545] from Program DEVELOPMENT – Green program of cooperation between science and industry, Science Fund of the Republic of Serbia
- This work was supported by the Ministry of Science, Technological Development and Innovations, Republic of Serbia [contract number: 451-03-47/2023-01/200007]; The Project Advanced Biophysical Methods for Soil Targeted Fungi-Based Biocontrol Agents - BioPhysFUN [Grant number 4545] from Program DEVELOPMENT – Green program of cooperation between science and industry, Science Fund of the Republic of Serbia
- The Project Advanced Biophysical Methods for Soil Targeted Fungi-Based Biocontrol Agents - BioPhysFUN [Grant number 4545] from Program DEVELOPMENT – Green program of cooperation between science and industry, Science Fund of the Republic of Serbia; the Project HEMMAGINERO [Grant number 6066079] from Program PROMIS, Science Fund of the Republic of Serbia; and the Institute of Physics Belgrade, through the grant by the Ministry of Science, Technological Development and Innovations of the Republic of Serbia.
- The Institute of Physics Belgrade, through the grant by the Ministry of Science, Technological Development and Innovations of the Republic of Serbia
Collapse
Affiliation(s)
- Tanja Pajić
- Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
| | - Katarina Stevanović
- Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
| | - Nataša V. Todorović
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, National Institute of the Republic of Serbia, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Aleksandar J. Krmpot
- Institute of Physics Belgrade, University of Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia
| | - Miroslav Živić
- Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
| | - Svetlana Savić-Šević
- Institute of Physics Belgrade, University of Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia
| | - Steva M. Lević
- University of Belgrade, Faculty of Agriculture, Nemanjina Street 6, 11080 Belgrade, Serbia
| | - Marina Stanić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Dejan Pantelić
- Institute of Physics Belgrade, University of Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia
| | - Brana Jelenković
- Institute of Physics Belgrade, University of Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia
| | - Mihailo D. Rabasović
- Institute of Physics Belgrade, University of Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia
| |
Collapse
|
3
|
Stevanović KS, Čepkenović B, Križak S, Živić MŽ, Todorović NV. Osmotically Activated Anion Current of Phycomyces Blakesleeanus-Filamentous Fungi Counterpart to Vertebrate Volume Regulated Anion Current. J Fungi (Basel) 2023; 9:637. [PMID: 37367573 DOI: 10.3390/jof9060637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Studies of ion currents in filamentous fungi are a prerequisite for forming a complete understanding of their physiology. Cytoplasmic droplets (CDs), obtained from sporangiophores of Phycomyces blakesleeanus, are a model system that enables the characterization of ion currents in the native membrane, including the currents mediated by the channels not yet molecularly identified. Osmotically activated anionic current with outward rectification (ORIC) is a dominant current in the membrane of cytoplasmic droplets under the conditions of hypoosmotic stimulation. We have previously reported remarkable functional similarities of ORIC with the vertebrate volume regulated anionic current (VRAC), such as dose-dependent activation by osmotic difference, ion selectivity sequence, and time and voltage dependent profile of the current. Using the patch clamp method on the CD membrane, we further resolve VRAC-like ORIC characteristics in this paper. We examine the inhibition by extracellular ATP and carbenoxolone, the permeation of glutamate in presence of chloride, selectivity for nitrates, and activation by GTP, and we show its single channel behavior in excised membrane. We propose that ORIC is a functional counterpart of vertebrate VRAC in filamentous fungi, possibly with a similar essential role in anion efflux during cell volume regulation.
Collapse
Affiliation(s)
- Katarina S Stevanović
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Bogdana Čepkenović
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Strahinja Križak
- Institute of Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Miroslav Ž Živić
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Nataša V Todorović
- Institute of Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Mackrill JJ. Non-inositol 1,4,5-trisphosphate (IP3) receptor IP3-binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - MOLECULAR CELL RESEARCH 2023; 1870:119470. [PMID: 37011730 DOI: 10.1016/j.bbamcr.2023.119470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
Conventionally, myo-D-inositol 1, 4,5-trisphosphate (IP3) is thought to exert its second messenger effects through the gating of IP3R Ca2+ release channels, located in Ca2+-storage organelles like the endoplasmic reticulum. However, there is considerable indirect evidence to support the concept that IP3 might interact with other, non-IP3R proteins within cells. To explore this possibility further, the Protein Data Bank was searched using the term "IP3". This resulted in the retrieval of 203 protein structures, the majority of which were members of the IP3R/ryanodine receptor superfamily of channels. Only 49 of these structures were complexed with IP3. These were inspected for their ability to interact with the carbon-1 phosphate of IP3, since this is the least accessible phosphate group of its precursor, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). This reduced the number of structures retrieved to 35, of which 9 were IP3Rs. The remaining 26 structures represent a diverse range of proteins, including inositol-lipid metabolizing enzymes, signal transducers, PH domain containing proteins, cytoskeletal anchor proteins, the TRPV4 ion channel, a retroviral Gag protein and fibroblast growth factor 2. Such proteins may impact on IP3 signalling and its effects on cell-biology. This represents an area open for exploration in the field of IP3 signalling.
Collapse
Affiliation(s)
- John James Mackrill
- Department of Physiology, University College Cork, Western Gateway Building, Western Road, Cork T12 XF62, Ireland.
| |
Collapse
|
5
|
Wang LY, Zhang YF, Yang DY, Zhang SJ, Han DD, Luo YP. Aureoverticillactam, a Potent Antifungal Macrocyclic Lactam from Streptomyces aureoverticillatus HN6, Generates Calcium Dyshomeostasis-Induced Cell Apoptosis via the Phospholipase C Pathway in Fusarium oxysporum f. sp. cubense Race 4. PHYTOPATHOLOGY 2021; 111:2010-2022. [PMID: 33900117 DOI: 10.1094/phyto-12-20-0543-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Extensive efforts have been made to discover new biofungicides of high efficiency for control of Fusarium oxysporum f. sp. cubense race 4, a catastrophic soilborne phytopathogen causing banana Fusarium wilt worldwide. We confirmed for the first time that aureoverticillactam (YY3) has potent antifungal activity against F. oxysporum f. sp. cubense race 4, with effective dose for 50% inhibition (EC50) of 20.80 μg/ml against hyphal growth and 12.62 μg/ml against spore germination. To investigate its mechanism of action, we observed the cellular ultrastructures of F. oxysporum f. sp. cubense race 4 with YY3 treatment and found that YY3 led to cell wall thinning, mitochondrial deformities, apoptotic degradation of the subcellular fractions, and entocyte leakage. Consistent with these variations, increased permeability of cell membrane and mitochondrial membrane also occurred after YY3 treatment. On the enzymatic level, the activity of mitochondrial complex III, as well as the ATP synthase, was significantly suppressed by YY3 at a concentration >12.50 μg/ml. Moreover, YY3 elevated the cytosolic Ca2+ level to promote mitochondrial reactive oxygen species (ROS) production. Cell apoptosis also occurred as expected. On the transcriptome level, key genes involved in the phosphatidylinositol signaling pathway were significantly affected, with the expression level of Plc1 increased approximately fourfold. The expression levels of two apoptotic genes, casA1 and casA2, were also significantly increased by YY3. Of note, phospholipase C activation was observed with YY3 treatment in F. oxysporum f. sp. cubense race 4. These findings indicate that YY3 exerts its antifungal activity by activating the phospholipase C calcium-dependent ROS signaling pathway, which makes it a promising biofungicide.
Collapse
Affiliation(s)
- Lan-Ying Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Yun-Fei Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - De-You Yang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Shu-Jing Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Dan-Dan Han
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Yan-Ping Luo
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| |
Collapse
|
6
|
Plouviez M, Fernández E, Grossman AR, Sanz-Luque E, Sells M, Wheeler D, Guieysse B. Responses of Chlamydomonas reinhardtii during the transition from P-deficient to P-sufficient growth (the P-overplus response): The roles of the vacuolar transport chaperones and polyphosphate synthesis. JOURNAL OF PHYCOLOGY 2021; 57:988-1003. [PMID: 33778959 DOI: 10.1111/jpy.13145] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus (P) assimilation and polyphosphate (polyP) synthesis were investigated in Chlamydomonas reinhardtii by supplying phosphate (PO43- ; 10 mg P·L-1 ) to P-depleted cultures of wildtypes, mutants with defects in genes involved in the vacuolar transporter chaperone (VTC) complex, and VTC-complemented strains. Wildtype C. reinhardtii assimilated PO43- and stored polyP within minutes of adding PO43- to cultures that were P-deprived, demonstrating that these cells were metabolically primed to assimilate and store PO43- . In contrast, vtc1 and vtc4 mutant lines assayed under the same conditions never accumulated polyP, and PO43- assimilation was considerably decreased in comparison with the wildtypes. In addition, to confirm the bioinformatics inferences and previous experimental work that the VTC complex of C. reinhardtii has a polyP polymerase function, these results evidence the influence of polyP synthesis on PO43- assimilation in C. reinhardtii. RNA-sequencing was carried out on C. reinhardtii cells that were either P-depleted (control) or supplied with PO43- following P depletion (treatment) in order to identify changes in the levels of mRNAs correlated with the P status of the cells. This analysis showed that the levels of VTC1 and VTC4 transcripts were strongly reduced at 5 and 24 h after the addition of PO43- to the cells, although polyP granules were continuously synthesized during this 24 h period. These results suggest that the VTC complex remains active for at least 24 h after supplying the cells with PO43- . Further bioassays and sequence analyses suggest that inositol phosphates may control polyP synthesis via binding to the VTC SPX domain.
Collapse
Affiliation(s)
- Maxence Plouviez
- School of Food and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Emilio Fernández
- Department of Biochemistry and Molecular Biology, University of Cordoba, Cordoba, 14071, Spain
| | - Arthur Robert Grossman
- Department of Plant Biology, The Carnegie Institution for Science, 260 Panama Street, Stanford, California, 94305, USA
- Department of Biology, Stanford University, Stanford, California, 94305, USA
| | - Emanuel Sanz-Luque
- Department of Biochemistry and Molecular Biology, University of Cordoba, Cordoba, 14071, Spain
- Department of Plant Biology, The Carnegie Institution for Science, 260 Panama Street, Stanford, California, 94305, USA
| | - Matthew Sells
- School of Food and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - David Wheeler
- New South Wales Department of Primary Industries, 161 Kite St, Orange, New South Wales, 2800, Australia
| | - Benoit Guieysse
- School of Food and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| |
Collapse
|
7
|
Estevez-Fregoso E, Farfán-García ED, García-Coronel IH, Martínez-Herrera E, Alatorre A, Scorei RI, Soriano-Ursúa MA. Effects of boron-containing compounds in the fungal kingdom. J Trace Elem Med Biol 2021; 65:126714. [PMID: 33453473 DOI: 10.1016/j.jtemb.2021.126714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The number of known boron-containing compounds (BCCs) is increasing due to their identification in nature and innovative synthesis procedures. Their effects on the fungal kingdom are interesting, and some of their mechanisms of action have recently been elucidated. METHODS In this review, scientific reports from relevant chemistry and biomedical databases were collected and analyzed. RESULTS It is notable that several BCC actions in fungi induce social and economic benefits for humans. In fact, boric acid was traditionally used for multiple purposes, but some novel synthetic BCCs are effective antifungal agents, particularly in their action against pathogen species, and some were recently approved for use in humans. Moreover, most reports testing BCCs in fungal species suggest a limiting effect of these compounds on some vital reactions. CONCLUSIONS New BCCs have been synthesized and tested for innovative technological and biomedical emerging applications, and new interest is developing for discovering new strategic compounds that can act as environmental or wood protectors, as well as antimycotic agents that let us improve food acquisition and control some human infections.
Collapse
Affiliation(s)
- Elizabeth Estevez-Fregoso
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico
| | - Eunice D Farfán-García
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico.
| | - Itzel H García-Coronel
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico; Unidad de Investigación, Hospital Regional de Alta Especialidad Ixtapaluca, Carretera Federal México-Puebla km 34.5, C.P. 56530, Ixtapaluca, State of Mexico, Mexico
| | - Erick Martínez-Herrera
- Unidad de Investigación, Hospital Regional de Alta Especialidad Ixtapaluca, Carretera Federal México-Puebla km 34.5, C.P. 56530, Ixtapaluca, State of Mexico, Mexico
| | - Alberto Alatorre
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico
| | - Romulus I Scorei
- BioBoron Research Institute, Dunarii 31B Street, 207465, Podari, Romania
| | - Marvin A Soriano-Ursúa
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico.
| |
Collapse
|
8
|
Ayala-Usma DA, Danies G, Myers K, Bond MO, Romero-Navarro JA, Judelson HS, Restrepo S, Fry WE. Genome-Wide Association Study Identifies Single Nucleotide Polymorphism Markers Associated with Mycelial Growth (at 15, 20, and 25°C), Mefenoxam Resistance, and Mating Type in Phytophthora infestans. PHYTOPATHOLOGY 2020; 110:822-833. [PMID: 31829117 DOI: 10.1094/phyto-06-19-0206-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phenotypic diversity among individuals defines the potential for evolutionary selection in a species. Phytophthora infestans epidemics are generally thought to be favored by moderate to low temperatures, but temperatures in many locations worldwide are expected to rise as a result of global climate change. Thus, we investigated variation among individuals of P. infestans for relative growth at different temperatures. Isolates of P. infestans came from three collections: (i) individual genotypes recently dominant in the United States, (ii) recently collected individuals from Central Mexico, and (iii) progeny of a recent sexual recombination event in the northeastern United States. In general, these isolates had optimal mycelial growth rates at 15 or 20°C. However, two individuals from Central Mexico grew better at higher temperatures than did most others and two individuals grew relatively less at higher temperatures than did most others. The isolates were also assessed for mefenoxam sensitivity and mating type. Each collection contained individuals of diverse sensitivities to mefenoxam and individuals of the A1 and A2 mating type. We then searched for genomic regions associated with phenotypic diversity using genotyping-by-sequencing. We found one single nucleotide polymorphism (SNP) associated with variability in mycelial growth at 20°C, two associated with variability in mycelial growth at 25°C, two associated with sensitivity to mefenoxam, and one associated with mating type. Interestingly, the SNPs associated with mefenoxam sensitivity were found in a gene-sparse region, whereas the SNPs associated with growth at the two temperatures and mating type were found both at more gene-dense regions.
Collapse
Affiliation(s)
- D A Ayala-Usma
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Universidad de los Andes, Bogotá, Colombia
| | - G Danies
- Department of Design, Universidad de los Andes, Bogotá, Colombia
| | - K Myers
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - M O Bond
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
- Department of Botany, University of Hawaii, Mānoa, HI, U.S.A
| | - J A Romero-Navarro
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - H S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, U.S.A
| | - S Restrepo
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - W E Fry
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| |
Collapse
|
9
|
Rabillé H, Billoud B, Tesson B, Le Panse S, Rolland É, Charrier B. The brown algal mode of tip growth: Keeping stress under control. PLoS Biol 2019; 17:e2005258. [PMID: 30640903 PMCID: PMC6347293 DOI: 10.1371/journal.pbio.2005258] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/25/2019] [Accepted: 12/20/2018] [Indexed: 01/09/2023] Open
Abstract
Tip growth has been studied in pollen tubes, root hairs, and fungal and oomycete hyphae and is the most widely distributed unidirectional growth process on the planet. It ensures spatial colonization, nutrient predation, fertilization, and symbiosis with growth speeds of up to 800 μm h-1. Although turgor-driven growth is intuitively conceivable, a closer examination of the physical processes at work in tip growth raises a paradox: growth occurs where biophysical forces are low, because of the increase in curvature in the tip. All tip-growing cells studied so far rely on the modulation of cell wall extensibility via the polarized excretion of cell wall-loosening compounds at the tip. Here, we used a series of quantitative measurements at the cellular level and a biophysical simulation approach to show that the brown alga Ectocarpus has an original tip-growth mechanism. In this alga, the establishment of a steep gradient in cell wall thickness can compensate for the variation in tip curvature, thereby modulating wall stress within the tip cell. Bootstrap analyses support the robustness of the process, and experiments with fluorescence recovery after photobleaching (FRAP) confirmed the active vesicle trafficking in the shanks of the apical cell, as inferred from the model. In response to auxin, biophysical measurements change in agreement with the model. Although we cannot strictly exclude the involvement of a gradient in mechanical properties in Ectocarpus morphogenesis, the viscoplastic model of cell wall mechanics strongly suggests that brown algae have evolved an alternative strategy of tip growth. This strategy is largely based on the control of cell wall thickness rather than fluctuations in cell wall mechanical properties.
Collapse
Affiliation(s)
- Hervé Rabillé
- CNRS, Sorbonne Université, Morphogenesis of Macro Algae, UMR8227, Station Biologique, Roscoff, France
| | - Bernard Billoud
- CNRS, Sorbonne Université, Morphogenesis of Macro Algae, UMR8227, Station Biologique, Roscoff, France
| | - Benoit Tesson
- SCRIPPS Institution of Oceanography, University of California, San Diego, San Diego, California, United States of America
| | - Sophie Le Panse
- MerImage platform, FR2424, CNRS, Sorbonne Université, Station Biologique, Roscoff, France
| | - Élodie Rolland
- CNRS, Sorbonne Université, Morphogenesis of Macro Algae, UMR8227, Station Biologique, Roscoff, France
| | - Bénédicte Charrier
- CNRS, Sorbonne Université, Morphogenesis of Macro Algae, UMR8227, Station Biologique, Roscoff, France
| |
Collapse
|
10
|
Barberini ML, Sigaut L, Huang W, Mangano S, Juarez SPD, Marzol E, Estevez J, Obertello M, Pietrasanta L, Tang W, Muschietti J. Calcium dynamics in tomato pollen tubes using the Yellow Cameleon 3.6 sensor. PLANT REPRODUCTION 2018; 31:159-169. [PMID: 29236154 DOI: 10.1007/s00497-017-0317-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
In vitro tomato pollen tubes show a cytoplasmic calcium gradient that oscillates with the same period as growth. Pollen tube growth requires coordination between the tip-focused cytoplasmic calcium concentration ([Ca2+]cyt) gradient and the actin cytoskeleton. This [Ca2+]cyt gradient is necessary for exocytosis of small vesicles, which contributes to the delivery of new membrane and cell wall at the pollen tube tip. The mechanisms that generate and maintain this [Ca2+]cyt gradient are not completely understood. Here, we studied calcium dynamics in tomato (Solanum lycopersicum) pollen tubes using transgenic tomato plants expressing the Yellow Cameleon 3.6 gene under the pollen-specific promoter LAT52. We use tomato as an experimental model because tomato is a Solanaceous plant that is easy to transform, and has an excellent genomic database and genetic stock center, and unlike Arabidopsis, tomato pollen is a good system to do biochemistry. We found that tomato pollen tubes showed an oscillating tip-focused [Ca2+]cyt gradient with the same period as growth. Then, we used a pharmacological approach to disturb the intracellular Ca2+ homeostasis, evaluating how the [Ca2+]cyt gradient, pollen germination and in vitro pollen tube growth were affected. We found that cyclopiazonic acid (CPA), a drug that inhibits plant PIIA-type Ca2+-ATPases, increased [Ca2+]cyt in the subapical zone, leading to the disappearance of the Ca2+ oscillations and inhibition of pollen tube growth. In contrast, 2-aminoethoxydiphenyl borate (2-APB), an inhibitor of Ca2+ released from the endoplasmic reticulum to the cytoplasm in animals cells, completely reduced [Ca2+]cyt at the tip of the tube, blocked the gradient and arrested pollen tube growth. Although both drugs have antagonistic effects on [Ca2+]cyt, both inhibited pollen tube growth triggering the disappearance of the [Ca2+]cyt gradient. When CPA and 2-APB were combined, their individual inhibitory effects on pollen tube growth were partially compensated. Finally, we found that GsMTx-4, a peptide from spider venom that blocks stretch-activated Ca2+ channels, inhibited tomato pollen germination and had a heterogeneous effect on pollen tube growth, suggesting that these channels are also involved in the maintenance of the [Ca2+]cyt gradient. All these results indicate that tomato pollen tube is an excellent model to study calcium dynamics.
Collapse
Affiliation(s)
- María Laura Barberini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Lorena Sigaut
- Instituto de Física de Buenos Aires (IFIBA-CONICET), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón I, C1428EHA, Buenos Aires, Argentina
| | - Weijie Huang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Silvina Mangano
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Av. Patricias Argentinas 435, CP C1405BWE, Buenos Aires, Argentina
| | - Silvina Paola Denita Juarez
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Av. Patricias Argentinas 435, CP C1405BWE, Buenos Aires, Argentina
| | - Eliana Marzol
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Av. Patricias Argentinas 435, CP C1405BWE, Buenos Aires, Argentina
| | - José Estevez
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Av. Patricias Argentinas 435, CP C1405BWE, Buenos Aires, Argentina
| | - Mariana Obertello
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Lía Pietrasanta
- Instituto de Física de Buenos Aires (IFIBA-CONICET), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón I, C1428EHA, Buenos Aires, Argentina
- Centro de Microscopías Avanzadas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón I, C1428EHA, Buenos Aires, Argentina
| | - Weihua Tang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Jorge Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
11
|
Zhu Q, Sun L, Lian J, Gao X, Zhao L, Ding M, Li J, Liang Y. The phospholipase C (FgPLC1) is involved in regulation of development, pathogenicity, and stress responses in Fusarium graminearum. Fungal Genet Biol 2016; 97:1-9. [PMID: 27777035 DOI: 10.1016/j.fgb.2016.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 09/09/2016] [Accepted: 10/07/2016] [Indexed: 02/08/2023]
Abstract
Phospholipase C (PLC) is an important phospholipid hydrolase that plays critical roles in various biological processes in eukaryotic cells. To elucidate the functions of PLC in morphogenesis and pathogenesis in Fusarium graminearum, deletion mutants were constructed of all six FgPLC genes identified in this study. Deletion of FgPLC1, but not the other five FgPLC genes, affected hyphal growth and conidiation. The FgPLC1 deletion mutant (Δplc1) also was defective in conidium germination and germ tube growth. It was sterile in selfing crosses and had increased sensitivities to hyperosmotic and cell wall stresses. The Δplc1 mutant showed reduced DON production and virulence during infection in flowering wheat heads. Deletion of FgPLC1 decreased the phosphorylation levels of both Gpmk1 and Mgv1 MAP kinases. qRT-PCR analysis showed that several genes related to defective phenotypes were down-regulated in the Δplc1 mutant. Taken together, these results indicated that FgPLC1 is important for hyphal growth, plant infection, and sexual or asexual reproduction, and it may be functionally related to MAP kinases in F. graminearum.
Collapse
Affiliation(s)
- Qili Zhu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Ling Sun
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Jiajie Lian
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Xuli Gao
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
| | - Lei Zhao
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250014, China
| | - Mingyu Ding
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Jing Li
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Yuancun Liang
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
12
|
Li C, Lev S, Saiardi A, Desmarini D, Sorrell TC, Djordjevic JT. Inositol Polyphosphate Kinases, Fungal Virulence and Drug Discovery. J Fungi (Basel) 2016; 2:jof2030024. [PMID: 29376941 PMCID: PMC5753137 DOI: 10.3390/jof2030024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/23/2016] [Accepted: 08/30/2016] [Indexed: 12/31/2022] Open
Abstract
Opportunistic fungi are a major cause of morbidity and mortality world-wide, particularly in immunocompromised individuals. Developing new treatments to combat invasive fungal disease is challenging given that fungal and mammalian host cells are eukaryotic, with similar organization and physiology. Even therapies targeting unique fungal cell features have limitations and drug resistance is emerging. New approaches to the development of antifungal drugs are therefore needed urgently. Cryptococcus neoformans, the commonest cause of fungal meningitis worldwide, is an accepted model for studying fungal pathogenicity and driving drug discovery. We recently characterized a phospholipase C (Plc1)-dependent pathway in C. neoformans comprising of sequentially-acting inositol polyphosphate kinases (IPK), which are involved in synthesizing inositol polyphosphates (IP). We also showed that the pathway is essential for fungal cellular function and pathogenicity. The IP products of the pathway are structurally diverse, each consisting of an inositol ring, with phosphate (P) and pyrophosphate (PP) groups covalently attached at different positions. This review focuses on (1) the characterization of the Plc1/IPK pathway in C. neoformans; (2) the identification of PP-IP₅ (IP₇) as the most crucial IP species for fungal fitness and virulence in a mouse model of fungal infection; and (3) why IPK enzymes represent suitable candidates for drug development.
Collapse
Affiliation(s)
- Cecilia Li
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| | - Sophie Lev
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| | - Desmarini Desmarini
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| | - Tania C Sorrell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead, NSW 2145, Australia.
- Westmead Hospital, Westmead, NSW 2145, Australia.
| | - Julianne T Djordjevic
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead, NSW 2145, Australia.
- Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
13
|
Lange M, Weihmann F, Schliebner I, Horbach R, Deising HB, Wirsel SGR, Peiter E. The Transient Receptor Potential (TRP) Channel Family in Colletotrichum graminicola: A Molecular and Physiological Analysis. PLoS One 2016; 11:e0158561. [PMID: 27359114 PMCID: PMC4928787 DOI: 10.1371/journal.pone.0158561] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/19/2016] [Indexed: 12/02/2022] Open
Abstract
Calcium (Ca2+) is a universal second messenger in all higher organisms and centrally involved in the launch of responses to environmental stimuli. Ca2+ signals in the cytosol are initiated by the activation of Ca2+ channels in the plasma membrane and/or in endomembranes. Yeast (Saccharomyces cerevisiae) contains a Ca2+-permeable channel of the TRP family, TRPY1, which is localized in the vacuolar membrane and contributes to cytosolic free Ca2+ ([Ca2+]cyt) elevations, for example in response to osmotic upshock. A TRPY1 homologue in the rice blast fungus is known to be important for growth and pathogenicity. To determine the role of the TRP channel family in the maize pathogen Colletotrichum graminicola, proteins homologous to TRPY1 were searched. This identified not one, but four genes in the C. graminicola genome, which had putative orthologs in other fungi, and which we named CgTRPF1 through 4. The topology of the CgTRPF proteins resembled that of TRPY1, albeit with a variable number of transmembrane (TM) domains additional to the six-TM-domain core and a diverse arrangement of putatively Ca2+-binding acidic motifs. All CgTRPF genes were expressed in axenic culture and throughout the infection of maize. Like TRPY1, all TRPF proteins of C. graminicola were localized intracellularly, albeit three of them were found not in large vacuoles, but co-localized in vesicular structures. Deletion strains for the CgTRPF genes were not altered in processes thought to involve Ca2+ release from internal stores, i.e. spore germination, the utilization of complex carbon sources, and the generation of tip-focussed [Ca2+]cyt spikes. Heterologous expression of CgTRPF1 through 4 in a tryp1Δ yeast mutant revealed that none of the channels mediated the release of Ca2+ in response to osmotic upshock. Accordingly, aequorin-based [Ca2+]cyt measurements of C. graminicola showed that in this fungus, osmotic upshock-triggered [Ca2+]cyt elevations were generated entirely by influx of Ca2+ from the extracellular space. Cgtrpf mutants did not show pathogenicity defects in leaf infection assays. In summary, our study reveals major differences between different fungi in the contribution of TRP channels to Ca2+-mediated signal transduction.
Collapse
Affiliation(s)
- Mario Lange
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Fabian Weihmann
- Phytopathology and Plant Protection, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ivo Schliebner
- Phytopathology and Plant Protection, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ralf Horbach
- Phytopathology and Plant Protection, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Holger B. Deising
- Phytopathology and Plant Protection, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Stefan G. R. Wirsel
- Phytopathology and Plant Protection, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
14
|
Lange M, Peiter E. Cytosolic free calcium dynamics as related to hyphal and colony growth in the filamentous fungal pathogen Colletotrichum graminicola. Fungal Genet Biol 2016; 91:55-65. [PMID: 27063059 DOI: 10.1016/j.fgb.2016.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 01/23/2023]
Abstract
Tip growth of pollen tubes and root hairs of plants is oscillatory and orchestrated by tip-focussed variations of cytosolic free calcium ([Ca(2+)]cyt). Hyphae of filamentous fungi are also tubular tip-growing cells, and components of the Ca(2+) signalling machinery, such as Ca(2+) channels and Ca(2+) sensors, are known to be important for fungal growth. In this study, we addressed the questions if tip-focussed [Ca(2+)]cyt transients govern hyphal and whole-colony growth in the maize pathogen Colletotrichum graminicola, and whether colony-wide [Ca(2+)]cyt dynamics rely on external Ca(2+) or internal Ca(2+) stores. Ratiometric fluorescence microscopy of individual hyphae expressing the Ca(2+) reporter Yellow Cameleon 3.6 revealed that Ca(2+) spikes in hyphal tips precede the re-initiation of growth after wounding. Tip-focussed [Ca(2+)]cyt spikes were also observed in undisturbed growing hyphae. They occurred not regularly and at a higher rate in hyphae growing at a medium-glass interface than in those growing on an agar surface. Hyphal tip growth was non-pulsatile, and growth speed was not correlated with the rate of spike occurrence. A possible relationship of [Ca(2+)]cyt spike generation and growth of whole colonies was assessed by using a codon-optimized version of the luminescent Ca(2+) reporter Aequorin. Depletion of extracellular free Ca(2+) abolished [Ca(2+)]cyt spikes nearly completely, but had only a modest effect on colony growth. In a pharmacological survey, some inhibitors targeting Ca(2+) influx or release from internal stores repressed growth strongly. However, although some of those inhibitors also affected [Ca(2+)]cyt spike generation, the effects on both parameters were not correlated. Collectively, the results indicate that tip growth of C. graminicola is non-pulsatile and not mechanistically linked to tip-focused or global [Ca(2+)]cyt spikes, which are likely a response to micro-environmental parameters, such as the physical properties of the growth surface.
Collapse
Affiliation(s)
- Mario Lange
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany.
| |
Collapse
|
15
|
Muralidhar A, Swadel E, Spiekerman M, Suei S, Fraser M, Ingerfeld M, Tayagui AB, Garrill A. A pressure gradient facilitates mass flow in the oomycete Achlya bisexualis. Microbiology (Reading) 2016; 162:206-213. [DOI: 10.1099/mic.0.000216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Abishek Muralidhar
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Emma Swadel
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Marjolein Spiekerman
- Plant Cell Biology, Wageningen University, PO Box 633 6700 AP Wageningen, The Netherlands
| | - Sandy Suei
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Miranda Fraser
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Manfred Ingerfeld
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Ayelen B. Tayagui
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Ashley Garrill
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| |
Collapse
|
16
|
Abd-El-Haliem AM, Vossen JH, van Zeijl A, Dezhsetan S, Testerink C, Seidl MF, Beck M, Strutt J, Robatzek S, Joosten MHAJ. Biochemical characterization of the tomato phosphatidylinositol-specific phospholipase C (PI-PLC) family and its role in plant immunity. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1365-1378. [PMID: 26825689 DOI: 10.1016/j.bbalip.2016.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/18/2016] [Accepted: 01/23/2016] [Indexed: 10/22/2022]
Abstract
Plants possess effective mechanisms to quickly respond to biotic and abiotic stresses. The rapid activation of phosphatidylinositol-specific phospholipase C (PLC) enzymes occurs early after the stimulation of plant immune-receptors. Genomes of different plant species encode multiple PLC homologs belonging to one class, PLCζ. Here we determined whether all tomato homologs encode active enzymes and whether they can generate signals that are distinct from one another. We searched the recently completed tomato (Solanum lycopersicum) genome sequence and identified a total of seven PLCs. Recombinant proteins were produced for all tomato PLCs, except for SlPLC7. The purified proteins showed typical PLC activity, as different PLC substrates were hydrolysed to produce diacylglycerol. We studied SlPLC2, SlPLC4 and SlPLC5 enzymes in more detail and observed distinct requirements for Ca(2+) ions and pH, for both their optimum activity and substrate preference. This indicates that each enzyme could be differentially and specifically regulated in vivo, leading to the generation of PLC homolog-specific signals in response to different stimuli. PLC overexpression and specific inhibition of PLC activity revealed that PLC is required for both specific effector- and more general "pattern"-triggered immunity. For the latter, we found that both the flagellin-triggered response and the internalization of the corresponding receptor, Flagellin Sensing 2 (FLS2) of Arabidopsis thaliana, are suppressed by inhibition of PLC activity. Altogether, our data support an important role for PLC enzymes in plant defence signalling downstream of immune receptors. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Ahmed M Abd-El-Haliem
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jack H Vossen
- Laboratory of Plant Breeding, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Arjan van Zeijl
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Sara Dezhsetan
- Laboratory of Plant Breeding, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Christa Testerink
- Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Martina Beck
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - James Strutt
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Silke Robatzek
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
17
|
Lew RR, Giblon RE, Lorenti MSH. The phenotype of a phospholipase C (plc-1) mutant in a filamentous fungus, Neurospora crassa. Fungal Genet Biol 2015. [PMID: 26212074 DOI: 10.1016/j.fgb.2015.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the filamentous fungus Neurospora crassa, phospholipase C may play a role in hyphal extension at the growing tips as part of a growth-sensing mechanism that activates calcium release from internal stores to mediate continued expansion of the hyphal tip. One candidate for a tip-localized phospholipase C is PLC-1. We characterized morphology and growth characteristics of a knockout mutant (KO plc-1) and a RIP mutated strain (RIP plc-1) (missense mutations and a nonsense mutation render the gene product non-functional). Growth and hyphal cytology of wildtype and KO plc-1 were similar, but the RIP plc-1 mutant grew slower and exhibited abnormal membrane structures at the hyphal tip, imaged using the fluorescence dye FM4-64. To test for causes of the slower growth of the RIP plc-1 mutant, we examined its physiological poise compared to wildtype and the KO plc-1 mutant. The electrical properties of all three strains and the electrogenic contribution of the plasma membrane H(+)-ATPase (identified by cyanide inhibition) were the same. Responses to high osmolarity were also similar. However, the RIP plc-1 mutant had a significantly lower turgor, a possible cause of its slower growth. While growth of all three strains was inhibited by the phospholipase C inhibitor 3-nitrocoumarin, the RIP plc-1 mutant did not exhibit hyphal bursting after addition of the inhibitor, observed in both wildtype and the KO plc-1 mutant. Although the plc-1 gene is not obligatory for tip growth, the phenotype of the RIP plc-1 mutant - abnormal tip cytology, lower turgor and resistance to inhibitor-induced hyphal bursting - suggest it does play a role in tip growth. The expression of a dysfunctional plc-1 gene may cause a shift to alternative mechanism(s) of growth sensing in hyphal extension.
Collapse
Affiliation(s)
- Roger R Lew
- York University, Biology Department, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Rachel E Giblon
- York University, Biology Department, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Miranda S H Lorenti
- York University, Biology Department, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
18
|
Rigamonti M, Groppi S, Belotti F, Ambrosini R, Filippi G, Martegani E, Tisi R. Hypotonic stress-induced calcium signaling in Saccharomyces cerevisiae involves TRP-like transporters on the endoplasmic reticulum membrane. Cell Calcium 2015; 57:57-68. [DOI: 10.1016/j.ceca.2014.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 11/28/2022]
|
19
|
Troskie AM, de Beer A, Vosloo JA, Jacobs K, Rautenbach M. Inhibition of agronomically relevant fungal phytopathogens by tyrocidines, cyclic antimicrobial peptides isolated from Bacillus aneurinolyticus. Microbiology (Reading) 2014; 160:2089-2101. [DOI: 10.1099/mic.0.078840-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The tyrocidines, a complex of analogous cyclic decapeptides produced by Bacillus aneurinolyticus, exhibited noteworthy activity against a range of phytopathogenic fungi, including Fusarium verticillioides, Fusarium solani and Botrytis cinerea. The activity of the tyrocidine peptide complex (Trc mixture) and purified tyrocidines exhibited minimum inhibition concentrations below 13 µg ml−1 (~10 µM) and was significantly more potent than that of the commercial imidazole fungicide, bifonazole. Although the tyrocidines’ activity was negatively influenced by the presence of Ca2+, it remained unaffected by the presence of Mg2+, Na+ and K+. Microscopic analysis revealed significant impact on the morphology of F. solani and Bot. cinerea including retarded germination and hyperbranching of hyphae. Studies with membrane-impermeable dyes, SYTOX green and propidium iodide suggested that the main mode of action of tyrocidines involves the disruption of fungal membrane integrity. Because of the tyrocidines’ broad spectrum and potent antifungal activity, possible multiple targets reducing the risk of overt resistance and general salt tolerance, they are promising candidates that warrant further investigation as bio-fungicides.
Collapse
Affiliation(s)
- Anscha M. Troskie
- BIOPEP Peptide Group, Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7600, South Africa
| | - Abré de Beer
- BIOPEP Peptide Group, Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7600, South Africa
| | - Johan A. Vosloo
- BIOPEP Peptide Group, Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7600, South Africa
| | - Karin Jacobs
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland 7600, South Africa
| | - Marina Rautenbach
- BIOPEP Peptide Group, Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7600, South Africa
| |
Collapse
|
20
|
Potapova TV. Structural and functional organization of growing tips of Neurospora crassa Hyphae. BIOCHEMISTRY (MOSCOW) 2014; 79:593-607. [PMID: 25108323 DOI: 10.1134/s0006297914070025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Data are presented on a variety of intracellular structures of the vegetative hyphae of the filamentous fungus Neurospora crassa and the involvement of these structures in the tip growth of the hyphae. Current ideas on the molecular and genetic mechanisms of tip growth and regulation of this process are considered. On the basis of comparison of data on behaviors of mitochondria and microtubules and data on the electrical heterogeneity of the hyphal apex, a hypothesis is proposed about a possible supervisory role of the longitudinal electric field in the structural and functional organization of growing tips of the N. crassa hyphae.
Collapse
Affiliation(s)
- T V Potapova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
21
|
Gonçalves AP, Cordeiro JM, Monteiro J, Muñoz A, Correia-de-Sá P, Read ND, Videira A. Activation of a TRP-like channel and intracellular Ca2+ dynamics during phospholipase-C-mediated cell death. J Cell Sci 2014; 127:3817-29. [PMID: 25037570 PMCID: PMC4150065 DOI: 10.1242/jcs.152058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The model organism Neurospora crassa undergoes programmed cell death when exposed to staurosporine. Here, we show that staurosporine causes defined changes in cytosolic free Ca2+ ([Ca2+]c) dynamics and a distinct Ca2+ signature that involves Ca2+ influx from the external medium and internal Ca2+ stores. We investigated the molecular basis of this Ca2+ response by using [Ca2+]c measurements combined with pharmacological and genetic approaches. Phospholipase C was identified as a pivotal player during cell death, because modulation of the phospholipase C signaling pathway and deletion of PLC-2, which we show to be involved in hyphal development, results in an inability to trigger the characteristic staurosporine-induced Ca2+ signature. Using Δcch-1, Δfig-1 and Δyvc-1 mutants and a range of inhibitors, we show that extracellular Ca2+ entry does not occur through the hitherto described high- and low-affinity Ca2+ uptake systems, but through the opening of plasma membrane channels with properties resembling the transient receptor potential (TRP) family. Partial blockage of the response to staurosporine after inhibition of a putative inositol-1,4,5-trisphosphate (IP3) receptor suggests that Ca2+ release from internal stores following IP3 formation combines with the extracellular Ca2+ influx.
Collapse
Affiliation(s)
- A Pedro Gonçalves
- IBMC-Instituto de Biologia Molecular e Celular - Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - J Miguel Cordeiro
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - João Monteiro
- IBMC-Instituto de Biologia Molecular e Celular - Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Alberto Muñoz
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, CTF Building, Grafton Street, University of Manchester, Manchester M13 9NT, UK
| | - Paulo Correia-de-Sá
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Nick D Read
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, CTF Building, Grafton Street, University of Manchester, Manchester M13 9NT, UK
| | - Arnaldo Videira
- IBMC-Instituto de Biologia Molecular e Celular - Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
22
|
Yu Q, Ding X, Zhang B, Xu N, Jia C, Mao J, Zhang B, Xing L, Li M. Inhibitory effect of verapamil on Candida albicans hyphal development, adhesion and gastrointestinal colonization. FEMS Yeast Res 2014; 14:633-41. [PMID: 24650198 DOI: 10.1111/1567-1364.12150] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/11/2014] [Accepted: 03/04/2014] [Indexed: 11/27/2022] Open
Abstract
Candida albicans morphogenesis and gastrointestinal colonization are closely associated with the pathogenicity of this pathogen. This study investigated the in vitro and in vivo effect of verapamil, a calcium channel blocker, on these processes. Exposure to ≥ 10 μg mL(-1) verapamil led to a significant decrease of C. albicans hyphal cells. The ability to adhere to a polystyrene surface and buccal epithelial cells was inhibited by exposure to ≥ 20 μg mL(-1) verapamil. Detection of the Hwp1-green fluorescent protein fusion protein showed that verapamil inhibited expression and transport of Hwp1, indicating its activity against both the regulation network of morphogenesis-associated proteins and the secretory pathway in C. albicans. Moreover, treatment with verapamil at 10 mg (kg day)(-1) led to a remarkable decrease in gastrointestinal-colonizing fungal cells. This study revealed the inhibitory effect of verapamil on C. albicans hyphal development, adhesion and gastrointestinal colonization, which is relevant to decreased expression and abnormal transport of the proteins required for morphogenesis. Therefore, verapamil may be taken into account when choosing an antifungal therapy against C. albicans colonization and infection.
Collapse
Affiliation(s)
- Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Stephenson KS, Gow NAR, Davidson FA, Gadd GM. Regulation of vectorial supply of vesicles to the hyphal tip determines thigmotropism in Neurospora crassa. Fungal Biol 2014; 118:287-94. [PMID: 24607352 DOI: 10.1016/j.funbio.2013.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/19/2013] [Accepted: 12/22/2013] [Indexed: 01/03/2023]
Abstract
Thigmotropism is the ability of an organism to respond to a topographical stimulus by altering its axis of growth. The thigmotropic response of the model fungus Neurospora crassa was quantified using microfabricated glass slides with ridges of defined height. We show that the polarity machinery at the hyphal tip plays a role in the thigmotropic response of N. crassa. Deletion of N. crassa genes encoding the formin, BNI-1, and the Rho-GTPase, CDC-42, an activator of BNI-1 in yeast, CDC-24, its guanine nucleotide exchange factor (GEF), and BEM-1, a scaffold protein in the same pathway, were all shown to significantly decrease the thigmotropic response. In contrast, deletion of genes encoding the cell end-marker protein, TEA-1, and KIP-1, the kinesin responsible for the localisation of TEA-1, significantly increased the thigmotropic response. These results suggest a mechanism of thigmotropism involving vesicle delivery to the hyphal tip via the actin cytoskeleton and microtubules. Neurospora crassa thigmotropic response differed subtly from that of Candida albicans where the stretch-activated calcium channel, Mid1, has been linked with thigmotropic behaviour. The MID-1 deficient mutant of N. crassa (Δmid-1) and the effects of calcium depletion were examined here but no change in the thigmotropic response was observed. However, SPRAY, a putative calcium channel protein, was shown to be required for N. crassa thigmotropism. We propose that the thigmotropic response is a result of changes in the polarity machinery at the hyphal tip which are thought to be downstream effects of calcium signalling pathways triggered by mechanical stress at the tip.
Collapse
Affiliation(s)
- Karen S Stephenson
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, DD1 5EH Scotland, United Kingdom
| | - Neil A R Gow
- The Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical, Sciences, University of Aberdeen, Aberdeen, AB25 2ZD Scotland, United Kingdom
| | - Fordyce A Davidson
- Division of Mathematics, University of Dundee, Dundee, DD14HN Scotland, United Kingdom
| | - Geoffrey M Gadd
- Geomicrobiology Group, College of Life Sciences, University of Dundee, Dundee, DD1 5EH Scotland, United Kingdom.
| |
Collapse
|
24
|
A novel role of the vacuolar calcium channel Yvc1 in stress response, morphogenesis and pathogenicity of Candida albicans. Int J Med Microbiol 2013; 304:339-50. [PMID: 24368068 DOI: 10.1016/j.ijmm.2013.11.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 11/13/2013] [Accepted: 11/30/2013] [Indexed: 11/23/2022] Open
Abstract
C. albicans is a common opportunistic pathogen, causing both superficial and life-threatening systemic infections. Calcium signaling is an intriguing aspect in its physiology, attributing to the roles in stress response and morphogenesis. Until recently, little was known about the mechanisms by which the calcium signaling-associated elements affect its pathogenicity. In this study, we found that Yvc1, a member of the transient receptor potential (TRP) family, localized on the vacuolar membrane. The yvc1Δ/Δ mutant displayed decreased ability of stress response, morphogenesis and attenuated virulence. The Spitzenkörper required for polarized growth were not detected in the hyphal tip of this mutant, suggesting a key role of Yvc1 in hyphal polarized growth and re-orientation to host signals. This study demonstrates, for the first time, that the putative vacuolar calcium channel Yvc1 plays an important role in C. albicans infection and survival in host tissues, which is associated with its pleiotropic effects in several fungal physiological processes, including stress response, morphogenesis, and polarized growth.
Collapse
|
25
|
Hu L, Wang D, Liu L, Chen J, Xue Y, Shi Z. Ca(2+) efflux is involved in cinnamaldehyde-induced growth inhibition of Phytophthora capsici. PLoS One 2013; 8:e76264. [PMID: 24098458 PMCID: PMC3788004 DOI: 10.1371/journal.pone.0076264] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/22/2013] [Indexed: 01/06/2023] Open
Abstract
As a destructive fungus-like plant pathogen, the oomycete Phytophthoracapsici is unable to synthesize its own ergosterol as the potential target of fungicide cinnamaldehyde (CA). In this study, CA exerted efficient inhibitory effects on both mycelial growth (EC50=0.75 mM) and zoospore germination (MIC=0.4 mM) of P. capsici. CA-induced immediate Ca(2+) efflux from zoospores could be confirmed by the rapid decrease in intracellular Ca(2+) content determined by using Fluo-3 AM and the increase in extracellular Ca(2+) concentration determined by using ICP-AES (inductively coupled plasma atomic emission spectrometry). Blocking Ca(2+) influx with ruthenium red and verapamil led to a higher level of CA-induced Ca(2+) efflux, suggesting the simultaneous occurrence of Ca(2+) influx along with the Ca(2+) efflux under CA exposure. Further results showed that EGTA-induced decrease in intracellular Ca(2+) gave rise to the impaired vitality of P. capsici while the addition of exogenous Ca(2+) could suppress the growth inhibitory effect of CA. These results suggested that Ca(2+) efflux played an important role in CA-induced growth inhibition of P. capsici. The application of 3-phenyl-1-propanal, a CA analog without α,β- unsaturated bond, resulted in a marked Ca(2+) influx in zoospores but did not show any growth inhibitory effects. In addition, exogenous cysteine, an antagonist against the Michael addition (the nucleophilic addition of a carbanion or another nucleophile) between CA and its targets, could attenuate CA-induced growth inhibition of P. capsici by suppressing Ca(2+) efflux. Our results suggest that CA inhibits the growth of P. capsici by stimulating a transient Ca(2+) efflux via Michael addition, which provides important new insights into the antimicrobial action of CA.
Collapse
Affiliation(s)
- Liangbin Hu
- Institute of Food Safety and Monitoring Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Dede Wang
- Institute of Food Safety and Monitoring Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Plant Protect College, Nanjing Agricultural University, Nanjing, China
| | - Li Liu
- Institute of Food Safety and Monitoring Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Science, Nanjing Normal University, Nanjing, China
| | - Jian Chen
- Institute of Food Safety and Monitoring Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanfeng Xue
- Institute of Food Safety and Monitoring Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhiqi Shi
- Institute of Food Safety and Monitoring Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
26
|
Gomaa OM, Selim NS, Linz JE. A Possible Role of Aspergillus niger Mitochondrial Cytochrome c in Malachite Green Reduction Under Calcium Chloride Stress. Cell Biochem Biophys 2013; 67:1291-9. [DOI: 10.1007/s12013-013-9661-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Phospholipase C of Cryptococcus neoformans regulates homeostasis and virulence by providing inositol trisphosphate as a substrate for Arg1 kinase. Infect Immun 2013; 81:1245-55. [PMID: 23381992 DOI: 10.1128/iai.01421-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipase C (PLC) of Cryptococcus neoformans (CnPlc1) is crucial for virulence of this fungal pathogen. To investigate the mechanism of CnPlc1-mediated signaling, we established that phosphatidylinositol 4,5-bisphosphate (PIP(2)) is a major CnPlc1 substrate, which is hydrolyzed to produce inositol trisphosphate (IP(3)). In Saccharomyces cerevisiae, Plc1-derived IP(3) is a substrate for the inositol polyphosphate kinase Arg82, which converts IP(3) to more complex inositol polyphosphates. In this study, we show that in C. neoformans, the enzyme encoded by ARG1 is the major IP(3) kinase, and we further demonstrate that catalytic activity of Arg1 is essential for cellular homeostasis and virulence in the Galleria mellonella infection model. IP(3) content was reduced in the CnΔplc1 mutant and markedly increased in the CnΔarg1 mutant, while PIP(2) was increased in both mutants. The CnΔplc1 and CnΔarg1 mutants shared significant phenotypic similarity, including impaired thermotolerance, compromised cell walls, reduced capsule production and melanization, defective cell separation, and the inability to form mating filaments. In contrast to the S. cerevisiae ARG82 deletion mutant (ScΔarg82) strain, the CnΔarg1 mutant exhibited dramatically enlarged vacuoles indicative of excessive vacuolar fusion. In mammalian cells, PLC-derived IP(3) causes Ca(2+) release and calcineurin activation. Our data show that, unlike mammalian PLCs, CnPlc1 does not contribute significantly to calcineurin activation. Collectively, our findings provide the first evidence that the inositol polyphosphate anabolic pathway is essential for virulence of C. neoformans and further show that production of IP(3) as a precursor for synthesis of more complex inositol polyphosphates is the key biochemical function of CnPlc1.
Collapse
|
28
|
Intrinsically disordered proteins aggregate at fungal cell-to-cell channels and regulate intercellular connectivity. Proc Natl Acad Sci U S A 2012; 109:15781-6. [PMID: 22955885 DOI: 10.1073/pnas.1207467109] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Like animals and plants, multicellular fungi possess cell-to-cell channels (septal pores) that allow intercellular communication and transport. Here, using a combination of MS of Woronin body-associated proteins and a bioinformatics approach that identifies related proteins based on composition and character, we identify 17 septal pore-associated (SPA) proteins that localize to the septal pore in rings and pore-centered foci. SPA proteins are not homologous at the primary sequence level but share overall physical properties with intrinsically disordered proteins. Some SPA proteins form aggregates at the septal pore, and in vitro assembly assays suggest aggregation through a nonamyloidal mechanism involving mainly α-helical and disordered structures. SPA loss-of-function phenotypes include excessive septation, septal pore degeneration, and uncontrolled Woronin body activation. Together, our data identify the septal pore as a complex subcellular compartment and focal point for the assembly of unstructured proteins controlling diverse aspects of intercellular connectivity.
Collapse
|
29
|
Prole DL, Taylor CW. Identification and analysis of cation channel homologues in human pathogenic fungi. PLoS One 2012; 7:e42404. [PMID: 22876320 PMCID: PMC3410928 DOI: 10.1371/journal.pone.0042404] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/05/2012] [Indexed: 01/08/2023] Open
Abstract
Fungi are major causes of human, animal and plant disease. Human fungal infections can be fatal, but there are limited options for therapy, and resistance to commonly used anti-fungal drugs is widespread. The genomes of many fungi have recently been sequenced, allowing identification of proteins that may become targets for novel therapies. We examined the genomes of human fungal pathogens for genes encoding homologues of cation channels, which are prominent drug targets. Many of the fungal genomes examined contain genes encoding homologues of potassium (K+), calcium (Ca2+) and transient receptor potential (Trp) channels, but not sodium (Na+) channels or ligand-gated channels. Some fungal genomes contain multiple genes encoding homologues of K+ and Trp channel subunits, and genes encoding novel homologues of voltage-gated Kv channel subunits are found in Cryptococcus spp. Only a single gene encoding a homologue of a plasma membrane Ca2+ channel was identified in the genome of each pathogenic fungus examined. These homologues are similar to the Cch1 Ca2+ channel of Saccharomyces cerevisiae. The genomes of Aspergillus spp. and Cryptococcus spp., but not those of S. cerevisiae or the other pathogenic fungi examined, also encode homologues of the mitochondrial Ca2+ uniporter (MCU). In contrast to humans, which express many K+, Ca2+ and Trp channels, the genomes of pathogenic fungi encode only very small numbers of K+, Ca2+ and Trp channel homologues. Furthermore, the sequences of fungal K+, Ca2+, Trp and MCU channels differ from those of human channels in regions that suggest differences in regulation and susceptibility to drugs.
Collapse
Affiliation(s)
- David L Prole
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom.
| | | |
Collapse
|
30
|
Kim HS, Czymmek KJ, Patel A, Modla S, Nohe A, Duncan R, Gilroy S, Kang S. Expression of the Cameleon calcium biosensor in fungi reveals distinct Ca(2+) signatures associated with polarized growth, development, and pathogenesis. Fungal Genet Biol 2012; 49:589-601. [PMID: 22683653 DOI: 10.1016/j.fgb.2012.05.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/22/2012] [Accepted: 05/24/2012] [Indexed: 11/19/2022]
Abstract
Calcium is a universal messenger that translates diverse environmental stimuli and developmental cues into specific cellular and developmental responses. While individual fungal species have evolved complex and often unique biochemical and structural mechanisms to exploit specific ecological niches and to adjust growth and development in response to external stimuli, one universal feature to all is that Ca(2+)-mediated signaling is involved. The lack of a robust method for imaging spatial and temporal dynamics of subcellular Ca(2+) (i.e., "Ca(2+) signature"), readily available in the plant and animal systems, has severely limited studies on how this signaling pathway controls fungal growth, development, and pathogenesis. Here, we report the first successful expression of a FRET (Förster Resonance Energy Transfer)-based Ca(2+) biosensor in fungi. Time-lapse imaging of Magnaporthe oryzae, Fusarium oxysporum, and Fusarium graminearum expressing this sensor showed that instead of a continuous gradient, the cytoplasmic Ca(2+) ([Ca(2+)](c)) change occurred in a pulsatile manner with no discernable gradient between pulses, and each species exhibited a distinct Ca(2+) signature. Furthermore, occurrence of pulsatile Ca(2+) signatures was age and development dependent, and major [Ca(2+)](c) transients were observed during hyphal branching, septum formation, differentiation into specialized plant infection structures, cell-cell contact and in planta growth. In combination with the sequenced genomes and ease of targeted gene manipulation of these and many other fungal species, the data, materials and methods developed here will help understand the mechanism underpinning Ca(2+)-mediated control of cellular and developmental changes, its role in polarized growth forms and the evolution of Ca(2+) signaling across eukaryotic kingdoms.
Collapse
Affiliation(s)
- Hye-Seon Kim
- Department of Plant Pathology, The Pennsylvania State University, University Park, PA 16802, United States
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Hamam A, Lew RR. Electrical phenotypes of calcium transport mutant strains of a filamentous fungus, Neurospora crassa. EUKARYOTIC CELL 2012; 11:694-702. [PMID: 22408225 PMCID: PMC3346425 DOI: 10.1128/ec.05329-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 02/28/2012] [Indexed: 12/27/2022]
Abstract
We characterized the electrical phenotypes of mutants with mutations in genes encoding calcium transporters-a mechanosensitive channel homolog (MscS), a Ca(2+)/H(+) exchange protein (cax), and Ca(2+)-ATPases (nca-1, nca-2, nca-3)-as well as those of double mutants (the nca-2 cax, nca-2 nca-3, and nca-3 cax mutants). The electrical characterization used dual impalements to obtain cable-corrected current-voltage measurements. Only two types of mutants (the MscS mutant; the nca-2 mutant and nca-2-containing double mutants) exhibited lower resting potentials. For the nca-2 mutant, on the basis of unchanged conductance and cyanide-induced depolarization of the potential, the cause is attenuated H(+)-ATPase activity. The growth of the nca-2 mutant-containing strains was inhibited by elevated extracellular Ca(2+) levels, indicative of lesions in Ca(2+) homeostasis. However, the net Ca(2+) effluxes of the nca-2 mutant, measured noninvasively with a self-referencing Ca(2+)-selective microelectrode, were similar to those of the wild type. All of the mutants exhibited osmosensitivity similar to that of the wild type (the turgor of the nca-2 mutant was also similar to that of the wild type), suggesting that Ca(2+) signaling does not play a role in osmoregulation. The hyphal tip morphology and tip-localized mitochondria of the nca-2 mutant were similar to those of the wild type, even when the external [Ca(2+)] was elevated. Thus, although Ca(2+) homeostasis is perturbed in the nca-2 mutant (B. J. Bowman et al., Eukaryot. Cell 10:654-661, 2011), the phenotype does not extend to tip growth or to osmoregulation but is revealed by lower H(+)-ATPase activity.
Collapse
Affiliation(s)
- Ahmed Hamam
- Biology Department, York University, Toronto, Ontario, Canada
| | | |
Collapse
|
32
|
Bouillet L, Cardoso A, Perovano E, Pereira R, Ribeiro E, Trópia M, Fietto L, Tisi R, Martegani E, Castro I, Brandão R. The involvement of calcium carriers and of the vacuole in the glucose-induced calcium signaling and activation of the plasma membrane H+-ATPase in Saccharomyces cerevisiae cells. Cell Calcium 2012; 51:72-81. [DOI: 10.1016/j.ceca.2011.10.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 10/31/2011] [Indexed: 11/30/2022]
|
33
|
Zhao C, Waalwijk C, de Wit PJGM, van der Lee T, Tang D. EBR1, a novel Zn(2)Cys(6) transcription factor, affects virulence and apical dominance of the hyphal tip in Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1407-1418. [PMID: 21830952 DOI: 10.1094/mpmi-06-11-0158] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Zn(2)Cys(6) transcription factors are unique to fungi and have been reported to be involved in different regulatory functions. Here, we characterized EBR1 (enhanced branching 1), a novel Zn(2)Cys(6) transcription factor of Fusarium graminearum. Knocking out EBR1 in F. graminearum PH-1 caused reduction of both radial growth and virulence. The conidia of knock-out strain PH-1?ebr1 germinated faster than those of wild-type PH-1, but the conidiation of the mutant was significantly reduced. Detailed analysis showed that the reduced radial growth might be due to reduced apical dominance of the hyphal tip, leading to increased hyphal branching. Inoculation assays on wheat heads with a green fluorescent protein (GFP)-labeled PH-1?ebr1 mutant showed that it was unable to penetrate the rachis of the spikelets. Protein fusion with GFP showed that EBR1 is localized in the nucleus of both conidia and hyphae. Knocking out the orthologous gene FOXG_05408 in F. oxysporum f. sp. lycopersici caused a much weaker phenotype than the PH-1?ebr1 mutant, which may be due to the presence of multiple orthologous genes in this fungus. Transformation of FOXG_05408 into PH-1?ebr1 restored the mutant phenotype. Similar to EBR1, FOXG_05408 is localized in the nucleus of F. oxysporum f. sp. lycopersici. Possible functions of EBR1 and its relation with other fungal transcription factors are discussed.
Collapse
|
34
|
Lew RR. How does a hypha grow? The biophysics of pressurized growth in fungi. Nat Rev Microbiol 2011; 9:509-18. [DOI: 10.1038/nrmicro2591] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Architecture and development of the Neurospora crassa hypha – a model cell for polarized growth. Fungal Biol 2011; 115:446-74. [PMID: 21640311 DOI: 10.1016/j.funbio.2011.02.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 11/20/2022]
|
36
|
Binder U, Chu M, Read ND, Marx F. The antifungal activity of the Penicillium chrysogenum protein PAF disrupts calcium homeostasis in Neurospora crassa. EUKARYOTIC CELL 2010; 9:1374-82. [PMID: 20622001 PMCID: PMC2937333 DOI: 10.1128/ec.00050-10] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 06/30/2010] [Indexed: 11/20/2022]
Abstract
The antifungal protein PAF from Penicillium chrysogenum exhibits growth-inhibitory activity against a broad range of filamentous fungi. Evidence from this study suggests that disruption of Ca(2+) signaling/homeostasis plays an important role in the mechanistic basis of PAF as a growth inhibitor. Supplementation of the growth medium with high Ca(2+) concentrations counteracted PAF toxicity toward PAF-sensitive molds. By using a transgenic Neurospora crassa strain expressing codon-optimized aequorin, PAF was found to cause a significant increase in the resting level of cytosolic free Ca(2+) ([Ca(2+)](c)). The Ca(2+) signatures in response to stimulation by mechanical perturbation or hypo-osmotic shock were significantly changed in the presence of PAF. BAPTA [bis-(aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid], a Ca(2+) selective chelator, ameliorated the PAF toxicity in growth inhibition assays and counteracted PAF induced perturbation of Ca(2+) homeostasis. These results indicate that extracellular Ca(2+) was the major source of these PAF-induced effects. The L-type Ca(2+) channel blocker diltiazem disrupted Ca(2+) homeostasis in a similar manner to PAF. Diltiazem in combination with PAF acted additively in enhancing growth inhibition and accentuating the change in Ca(2+) signatures in response to external stimuli. Notably, both PAF and diltiazem increased the [Ca(2+)](c) resting level. However, experiments with an aequorin-expressing Deltacch-1 deletion strain of N. crassa indicated that the L-type Ca(2+) channel CCH-1 was not responsible for the observed PAF-induced elevation of the [Ca(2+)](c) resting level. This study is the first demonstration of the perturbation of fungal Ca(2+) homeostasis by an antifungal protein from a filamentous ascomycete and provides important new insights into the mode of action of PAF.
Collapse
Affiliation(s)
- Ulrike Binder
- Biocenter, Division of Molecular Biology, Innsbruck Medical University, Fritz-Pregl Strasse 3, A-6020 Innsbruck, Austria
| | - Meiling Chu
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Rutherford Building, Edinburgh EH9 3JH, United Kingdom
| | - Nick D. Read
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Rutherford Building, Edinburgh EH9 3JH, United Kingdom
| | - Florentine Marx
- Biocenter, Division of Molecular Biology, Innsbruck Medical University, Fritz-Pregl Strasse 3, A-6020 Innsbruck, Austria
| |
Collapse
|
37
|
Properties of cannabinoid-dependent long-term depression in the leech. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:841-51. [PMID: 20803022 DOI: 10.1007/s00359-010-0566-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 12/15/2022]
Abstract
Previously, a cannabinoid-dependent form of long-term depression (LTD) was discovered at the polysynaptic connection between the touch mechanosensory neuron and the S interneuron (Li and Burrell in J Comp Physiol A 195:831-841, 2009). In the present study, the physiological properties of this cannabinoid-dependent LTD were examined. Increases in intracellular calcium in the S interneuron are necessary for this form of LTD in this circuit. Calcium signals contributing to cannabinoid-dependent LTD are mediated by voltage-dependent calcium channel and release of calcium from intracellular stores. Inositol triphosphate receptors, but not ryanodine receptors, appear to mediate this store-released calcium signal. Cannabinoid-dependent LTD also requires activation of metabotropic serotonin receptors, possibly a serotonin type 2-like receptor. Finally, this form of LTD involves the stimulation of nitric oxide synthase and a decrease in cyclic adenosine monophosphate signaling, both of which appeared to be downstream of cannabinoid receptor activation. Based on these findings, the cellular signaling mechanisms of cannabinoid-dependent LTD in the leech are remarkably similar to vertebrate forms of cannabinoid-dependent synaptic plasticity.
Collapse
|
38
|
Extracellular and Intracellular Calcium both Involved in the Jasmonic Acid Induced Calcium Mobilization in Arabidopsis thaliana. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1671-2927(09)60122-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
STIM1 gates the store-operated calcium channel ORAI1 in vitro. Nat Struct Mol Biol 2009; 17:112-6. [PMID: 20037597 DOI: 10.1038/nsmb.1724] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 10/22/2009] [Indexed: 12/20/2022]
Abstract
Store-operated Ca(2+) entry through the plasma membrane Ca(2+) release-activated Ca(2+) (CRAC) channel in mammalian T cells and mast cells depends on the sensor protein stromal interaction molecule 1 (STIM1) and the channel subunit ORAI1. To study STIM1-ORAI1 signaling in vitro, we have expressed human ORAI1 in a sec6-4 strain of the yeast Saccharomyces cerevisiae and isolated sealed membrane vesicles carrying ORAI1 from the Golgi compartment to the plasma membrane. We show by in vitro Ca(2+) flux assays that bacterially expressed recombinant STIM1 opens wild-type ORAI1 channels but not channels assembled from the ORAI1 pore mutant E106Q or the ORAI1 severe combined immunodeficiency (SCID) mutant R91W. These experiments show that the STIM1-ORAI1 interaction is sufficient to gate recombinant human ORAI1 channels in the absence of other proteins of the human ORAI1 channel complex, and they set the stage for further biochemical and biophysical dissection of ORAI1 channel gating.
Collapse
|
40
|
Deletion of Mid1, a putative stretch-activated calcium channel in Claviceps purpurea, affects vegetative growth, cell wall synthesis and virulence. Microbiology (Reading) 2009; 155:3922-3933. [DOI: 10.1099/mic.0.030825-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The putative Claviceps purpurea homologue of the Saccharomyces cerevisiae stretch-activated calcium ion channel Mid1 was investigated for its role in vegetative growth, differentiation and pathogenicity on rye (Secale cereale). Gene replacement mutants of Cl. purpurea mid1 were not affected in polar growth and branching in axenic culture but showed a significantly reduced growth rate. The growth defect could not be complemented by Ca2+ supplementation, in contrast to mid1 mutants in yeast, but the altered sensitivity of the mutants to changes in external and internal Ca2+ concentrations indicates some role of Mid1 in Ca2+ homeostasis. The major effect of mid1 deletion, however, was the complete loss of virulence: infected rye plants showed no disease symptoms at all. Detailed analyses of in vitro-infected rye ovaries demonstrated that the Δmid1 mutants had multiple apical branches and were unable to infect the host tissue, suggesting that Mid1 is essential for generating the necessary mechanical force for penetration. This is believed to be the first report of an essential role for a Mid1 homologue in the virulence of a plant-pathogenic fungus.
Collapse
|
41
|
Hutchison E, Brown S, Tian C, Glass NL. Transcriptional profiling and functional analysis of heterokaryon incompatibility in Neurospora crassa reveals that reactive oxygen species, but not metacaspases, are associated with programmed cell death. MICROBIOLOGY-SGM 2009; 155:3957-3970. [PMID: 19696111 DOI: 10.1099/mic.0.032284-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heterokaryon incompatibility (HI) is a nonself recognition phenomenon occurring in filamentous fungi that is important for limiting resource plundering and restricting viral transfer between strains. Nonself recognition and HI occurs during hyphal fusion between strains that differ at het loci. If two strains undergo hyphal fusion, but differ in allelic specificity at a het locus, the fusion cell is compartmentalized and undergoes a rapid programmed cell death (PCD). Incompatible heterokaryons show a macroscopic phenotype of slow growth and diminished conidiation, and a microscopic phenotype of hyphal compartmentation and cell death. To understand processes associated with HI and PCD, we used whole-genome microarrays for Neurospora crassa to assess transcriptional differences associated with induction of HI mediated by differences in het-c pin-c haplotype. Our data show that HI is a dynamic and transcriptionally active process. The production of reactive oxygen species is implicated in the execution of HI and PCD in N. crassa, as are several genes involved in phosphatidylinositol and calcium signalling pathways. However, genes encoding mammalian homologues of caspases or apoptosis-inducing factor (AIF) are not required for HI or programmed cell death. These data indicate that PCD during HI occurs via a novel and possibly fungal-specific mechanism, making this pathway an attractive drug target for control of fungal infections.
Collapse
Affiliation(s)
- Elizabeth Hutchison
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720-3102, USA
| | - Sarah Brown
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720-3102, USA
| | - Chaoguang Tian
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720-3102, USA
| | - N Louise Glass
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720-3102, USA
| |
Collapse
|
42
|
Carvalho ADO, Gomes VM. Plant defensins--prospects for the biological functions and biotechnological properties. Peptides 2009; 30:1007-20. [PMID: 19428780 DOI: 10.1016/j.peptides.2009.01.018] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 01/22/2009] [Accepted: 01/26/2009] [Indexed: 01/07/2023]
Abstract
Plant defensins are a prominent family of cationic peptides in the plant kingdom. They are structurally and functionally related to defensins that have been previously characterized in mammals and insects. They present molecular masses between 5 and 7kDa and possess a pattern of eight conserved Cys residues. The three-dimensional structure of plant defensins is small and globular. It has three anti-parallel beta-sheets and one alpha-helix that is stabilized by a structural motif composed of disulfide bridges. This motif is found in other peptides with biological activity and is called the Cys stabilized alphabeta motif (CSalphabeta). Based on the growing knowledge on defensin structure, gene expression and regulation, and also their in vitro biological activity, it has become clear that plant defensins are complex and sophisticated peptides whose function extends beyond their role in defense of plants against microbial infection. This review discusses recent data and will present comprehensive information regarding the study of defensins.
Collapse
Affiliation(s)
- André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense-Darcy Ribeiro, Campos dos Goytacazes-RJ, Brazil.
| | | |
Collapse
|
43
|
Novel types of Ca2+ release channels participate in the secretory cycle of Paramecium cells. Mol Cell Biol 2009; 29:3605-22. [PMID: 19380481 DOI: 10.1128/mcb.01592-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A database search of the Paramecium genome reveals 34 genes related to Ca(2+)-release channels of the inositol-1,4,5-trisphosphate (IP(3)) or ryanodine receptor type (IP(3)R, RyR). Phylogenetic analyses show that these Ca(2+) release channels (CRCs) can be subdivided into six groups (Paramecium tetraurelia CRC-I to CRC-VI), each one with features in part reminiscent of IP(3)Rs and RyRs. We characterize here the P. tetraurelia CRC-IV-1 gene family, whose relationship to IP(3)Rs and RyRs is restricted to their C-terminal channel domain. CRC-IV-1 channels localize to cortical Ca(2+) stores (alveolar sacs) and also to the endoplasmic reticulum. This is in contrast to a recently described true IP(3) channel, a group II member (P. tetraurelia IP(3)R(N)-1), found associated with the contractile vacuole system. Silencing of either one of these CRCs results in reduced exocytosis of dense core vesicles (trichocysts), although for different reasons. Knockdown of P. tetraurelia IP(3)R(N) affects trichocyst biogenesis, while CRC-IV-1 channels are involved in signal transduction since silenced cells show an impaired release of Ca(2+) from cortical stores in response to exocytotic stimuli. Our discovery of a range of CRCs in Paramecium indicates that protozoans already have evolved multiple ways for the use of Ca(2+) as signaling molecule.
Collapse
|
44
|
Lew RR, Abbas Z, Anderca MI, Free SJ. Phenotype of a mechanosensitive channel mutant, mid-1, in a filamentous fungus, Neurospora crassa. EUKARYOTIC CELL 2008; 7:647-55. [PMID: 18296620 PMCID: PMC2292622 DOI: 10.1128/ec.00411-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 02/12/2008] [Indexed: 12/21/2022]
Abstract
In the yeast Saccharomyces cerevisiae, the MID1 (mating-induced death) gene encodes a stretch-activated channel which is required for successful mating; the mutant phenotype is rescued by elevated extracellular calcium. Homologs of the MID1 gene are found in fungi that are morphologically complex compared to yeast, both Basidiomycetes and Ascomycetes. We explored the phenotype of a mid-1 knockout mutant in the filamentous ascomycete Neurospora crassa. The mutant exhibits lower growth vigor than the wild type (which is not rescued by replete calcium) and mates successfully. Thus, the role of the MID-1 protein differs from that of the homologous gene product in yeast. Hyphal cytology, growth on diverse carbon sources, turgor regulation, and circadian rhythms of the mid-1 mutant are all similar to those of the wild type. However, basal turgor is lower than wild type, as is the activity of the plasma membrane H(+)-ATPase (measured by cyanide [CN(-)]-induced depolarization of the energy-dependent component of the membrane potential). In addition, the mutant is unable to grow at low extracellular Ca(2+) levels or when cytoplasmic Ca(2+) is elevated with the Ca(2+) ionophore A23187. We conclude that the MID-1 protein plays a role in regulation of ion transport via Ca(2+) homeostasis and signaling. In the absence of normal ion transport activity, the mutant exhibits poorer growth.
Collapse
Affiliation(s)
- Roger R Lew
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.
| | | | | | | |
Collapse
|
45
|
Schumacher J, Viaud M, Simon A, Tudzynski B. The Gα subunit BCG1, the phospholipase C (BcPLC1) and the calcineurin phosphatase co-ordinately regulate gene expression in the grey mould fungus Botrytis cinerea. Mol Microbiol 2008; 67:1027-50. [DOI: 10.1111/j.1365-2958.2008.06105.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
46
|
Chen KM, Wu GL, Wang YH, Tian CT, Samaj J, Baluska F, Lin JX. The block of intracellular calcium release affects the pollen tube development of Picea wilsonii by changing the deposition of cell wall components. PROTOPLASMA 2008; 233:39-49. [PMID: 18726547 DOI: 10.1007/s00709-008-0310-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 02/23/2008] [Indexed: 05/07/2023]
Abstract
Two potent drugs, neomycin and TMB-8, which can block intracellular calcium release, were used to investigate their influence on pollen tube growth and cell wall deposition in Picea wilsonii. Apart from inhibiting pollen germination and pollen tube growth, the two drugs largely influenced tube morphology. The drugs not only obviously disturbed the generation and maintenance of the tip-localized Ca(2+) gradient but also led to a heavy accumulation of callose at the tip region of P. wilsonii pollen tubes. Fourier transform infrared (FTIR) spectroscopy analysis showed that the deposition of cell wall components, such as carboxylic acid, pectins, and other polysaccharides, in pollen tubes was changed by the two drugs. The results obtained from immunolabeling with different pectin and arabinogalactan protein antibodies agreed well with the FTIR results and further demonstrated that the generation and maintenance of the gradient of cross-linked pectins, as well as the proportional distribution of arabinogalactan proteins in tube cell walls, are essential for pollen tube growth. These results strongly suggest that intracellular calcium release mediates the processes of pollen germination and pollen tube growth in P. wilsonii and its inhibition can lead to abnormal growth by disturbing the deposition of cell wall components in pollen tube tips.
Collapse
Affiliation(s)
- Kun-Ming Chen
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou
| | | | | | | | | | | | | |
Collapse
|
47
|
Bowen AD, Gadd GM, Davidson FA, Keatch R. Effect of nutrient availability on hyphal maturation and topographical sensing in Aspergillus niger. MYCOSCIENCE 2007. [DOI: 10.1007/s10267-007-0352-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Gavric O, dos Santos DB, Griffiths A. Mutation and divergence of the phospholipase C gene in Neurospora crassa. Fungal Genet Biol 2007; 44:242-9. [PMID: 17157541 DOI: 10.1016/j.fgb.2006.09.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 08/30/2006] [Accepted: 09/27/2006] [Indexed: 11/24/2022]
Abstract
In the fungus Neurospora crassa we have used RIP to obtain a presumptive null mutation of the phospholipase C-1 gene, thought to be important in intracellular calcium signaling, notably maintenance of the tip-high calcium gradient. The mutant is viable but has slow, aberrant growth and branching. Hence plc-1 is not required for polar growth at the tip, but is necessary to modulate growth to give normal form. The mutant has residual PLC activity suggesting that this enzyme function can be provided from other parts of the genome. Sequencing natural isolates has shown that the plc-1 gene is highly variable in nature. A large proportion of the variable sites are in a region that is unique to Neurospora. A phylogeny for this gene shows that New and Old World strains have diverged the most. Within the Americas, morphs are found throughout the continent suggesting extensive strain dispersal.
Collapse
Affiliation(s)
- Olivera Gavric
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.
| | | | | |
Collapse
|
49
|
Brand A, Shanks S, Duncan VM, Yang M, Mackenzie K, Gow NA. Hyphal orientation of Candida albicans is regulated by a calcium-dependent mechanism. Curr Biol 2007; 17:347-52. [PMID: 17275302 PMCID: PMC1885950 DOI: 10.1016/j.cub.2006.12.043] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 12/08/2006] [Accepted: 12/12/2006] [Indexed: 01/14/2023]
Abstract
Eukaryotic cells from fungal hyphae to neurites that grow by polarized extension must coordinate cell growth and cell orientation to enable them to exhibit growth tropisms and to respond to relevant environmental cues. Such cells generally maintain a tip-high Ca(2+) cytoplasmic gradient, which is correlated with their ability to exhibit polarized tip growth and to respond to growth-directing extracellular signals. In yeast and other fungi, the polarisome, exocyst, Arp2/3, and Spitzenkörper protein complexes collectively orchestrate tip growth and cell polarity, but it is not clear whether these molecular complexes also regulate cell orientation or whether they are influenced by cytoplasmic Ca(2+) gradients. Hyphae of the human pathogenic fungus Candida albicans reorient their growth axis in response to underlying surface topography (thigmotropism) and imposed electric fields (galvanotropism). The establishment and maintenance of directional growth in relation to these environmental cues was Ca(2+) dependent. Tropisms were attenuated in media containing low Ca(2+), or calcium-channel blockers, and in mutants where calcium channels or elements of the calcium signaling pathway were deleted. Therefore galvanotropism and thigmotropism may both be mediated by localized Ca(2+) influx at sites of polarized growth via Ca(2+) channels that are activated by appropriate environmental signals.
Collapse
Affiliation(s)
- Alexandra Brand
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Scott Shanks
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Vanessa M.S. Duncan
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Meng Yang
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Kevin Mackenzie
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Neil A.R. Gow
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| |
Collapse
|
50
|
MS Channels in Tip‐Growing Systems. CURRENT TOPICS IN MEMBRANES 2007. [DOI: 10.1016/s1063-5823(06)58015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
|