1
|
Wenta T, Nastaly P, Lipinska B, Manninen A. Remodeling of the extracellular matrix by serine proteases as a prerequisite for cancer initiation and progression. Matrix Biol 2024; 134:197-219. [PMID: 39500383 DOI: 10.1016/j.matbio.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024]
Abstract
The extracellular matrix (ECM) serves as a physical scaffold for tissues that is composed of structural proteins such as laminins, collagens, proteoglycans and fibronectin, forming a three dimensional network, and a wide variety of other matrix proteins with ECM-remodeling and signaling functions. The activity of ECM-associated signaling proteins is tightly regulated. Thus, the ECM serves as a reservoir for water and growth regulatory signals. The ECM architecture is dynamically modulated by multiple serine proteases that process both structural and signaling proteins to regulate physiological processes such as organogenesis and tissue homeostasis but they also contribute to pathological events, especially cancer progression. Here, we review the current literature regarding the role of ECM remodeling by serine proteases (KLKs, uPA, furin, HtrAs, granzymes, matriptase, hepsin) in tumorigenesis.
Collapse
Affiliation(s)
- Tomasz Wenta
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland.
| | - Paulina Nastaly
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Barbara Lipinska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland
| | - Aki Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
2
|
Cai J, Wang J, Jiang C, Ye L, He X, Huang J, Sun X, Ren Z, Lai X, Qiu Y, Wang H, Lv G, Zheng J, Lu T, Chen H, Liu Y, Chen H, Guan Y, Wang Y, Wang T, Yao J, Sui X, Kang Y, Zhang Y, Li H, Wang J, Li W, Chen G, Yang Y, Xiang AP. Combined inhibition of surface CD51 and γ-secretase-mediated CD51 cleavage improves therapeutic efficacy in experimental metastatic hepatocellular carcinoma. J Hepatol 2023; 79:1418-1434. [PMID: 37604269 DOI: 10.1016/j.jhep.2023.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 08/06/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND & AIMS Integrin αv (ITGAV, CD51) is regarded as a key component in multiple stages of tumor progression. However, the clinical failure of cilengitide, a specific inhibitor targeting surface CD51, suggests the importance of yet-unknown mechanisms by which CD51 promotes tumor progression. METHODS In this study, we used several hepatocellular carcinoma (HCC) cell lines and murine hepatoma cell lines. To investigate the role of CD51 on HCC progression, we used a 3D invasion assay and in vivo bioluminescence imaging. We used periostin-knockout transgenic mice to uncover the role of the tumor microenvironment on CD51 cleavage. Moreover, we used several clinically relevant HCC models, including patient-derived organoids and patient-derived xenografts, to evaluate the therapeutic efficacy of cilengitide in combination with the γ-secretase inhibitor LY3039478. RESULTS We found that CD51 could undergo transmembrane cleavage by γ-secretase to produce a functional intracellular domain (CD51-ICD). The cleaved CD51-ICD facilitated HCC invasion and metastasis by promoting the transcription of oxidative phosphorylation-related genes. Furthermore, we identified cancer-associated fibroblast-derived periostin as the major driver of CD51 cleavage. Lastly, we showed that cilengitide-based therapy led to a dramatic therapeutic effect when supplemented with LY3039478 in both patient-derived organoid and xenograft models. CONCLUSIONS In summary, we revealed previously unrecognized mechanisms by which CD51 is involved in HCC progression and uncovered the underlying cause of cilengitide treatment failure, as well as providing evidence supporting the translational prospects of combined CD51-targeted therapy in the clinic. IMPACT AND IMPLICATIONS Integrin αv (CD51) is a widely recognized pro-tumoral molecule that plays a crucial role in various stages of tumor progression, making it a promising therapeutic target. However, despite early promising results, cilengitide, a specific antagonist of CD51, failed in a phase III clinical trial. This prompted further investigation into the underlying mechanisms of CD51's effects. This study reveals that the γ-secretase complex directly cleaves CD51 to produce an intracellular domain (CD51-ICD), which functions as a pro-tumoral transcriptional regulator and can bypass the inhibitory effects of cilengitide by entering the nucleus. Furthermore, the localization of CD51 in the nucleus is significantly associated with the prognosis of patients with HCC. These findings provide a theoretical basis for re-evaluating cilengitide in clinical settings and highlight the importance of identifying a more precise patient subpopulation for future clinical trials targeting CD51.
Collapse
Affiliation(s)
- Jianye Cai
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, China; Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jiancheng Wang
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Chenhao Jiang
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, China; Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Linsen Ye
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, China
| | - Xinyi He
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jianyang Huang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xiang Sun
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Zhijun Ren
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xiaofan Lai
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuan Qiu
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Hongmiao Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Guo Lv
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, China
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, China
| | - Tongyu Lu
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, China
| | - Haitian Chen
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, China
| | - Yasong Liu
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, China
| | - Huaxin Chen
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuanjun Guan
- Core Facility Centre, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yi Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Tao Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jia Yao
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, China
| | - Xin Sui
- Surgical ICU, The Third Affiliated Hospital of Sun Yat-sen University, China
| | - Yinqian Kang
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yingcai Zhang
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, China
| | - Hua Li
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, China
| | - Jinkai Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Weiqiang Li
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China; Department of Histoembryology and Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, China.
| | - Andy Peng Xiang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China; Department of Histoembryology and Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
3
|
Hey S, Ratt A, Linder S. There and back again: Intracellular trafficking, release and recycling of matrix metalloproteinases. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119189. [PMID: 34973301 DOI: 10.1016/j.bbamcr.2021.119189] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022]
Abstract
Matrix metalloproteinases are a family of zinc-dependent endopeptidases that are involved in a large variety of proteolytic processes in physiological and pathological scenarios, including immune cell surveillance, tissue homeostasis, or tumor cell metastasis. This is based on their ability to cleave a plethora of substrates that include components of the extracellular matrix, but also cell surface-associated and intracellular proteins. Accordingly, a tight regulatory web has evolved that closely regulates spatiotemporal activity of specific MMPs. An often underappreciated mechanism of MMP regulation involves their trafficking to and from specific subcellular sites that require MMP activity only for a certain period. In this review, we focus on the current knowledge of MMP intracellular trafficking, their secretion or surface exposure, as well as their recycling back from the cell surface. We discuss molecular mechanisms that enable these steps, in particular microtubule-dependent motility of vesicles that is driven by molecular motors and directed by vesicle regulatory proteins. Finally, we also point out open questions in the field of MMP motility that may become important in the future.
Collapse
Affiliation(s)
- Sven Hey
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Artur Ratt
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
4
|
Klaver EJ, Dukes-Rimsky L, Kumar B, Xia ZJ, Dang T, Lehrman MA, Angel P, Drake RR, Freeze HH, Steet R, Flanagan-Steet H. Protease-dependent defects in N-cadherin processing drive PMM2-CDG pathogenesis. JCI Insight 2021; 6:153474. [PMID: 34784297 PMCID: PMC8783681 DOI: 10.1172/jci.insight.153474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
The genetic bases for the congenital disorders of glycosylation (CDG) continue to expand, but how glycosylation defects cause patient phenotypes remains largely unknown. Here, we combined developmental phenotyping and biochemical studies in a potentially new zebrafish model (pmm2sa10150) of PMM2-CDG to uncover a protease-mediated pathogenic mechanism relevant to craniofacial and motility phenotypes in mutant embryos. Mutant embryos had reduced phosphomannomutase activity and modest decreases in N-glycan occupancy as detected by matrix-assisted laser desorption ionization mass spectrometry imaging. Cellular analyses of cartilage defects in pmm2sa10150 embryos revealed a block in chondrogenesis that was associated with defective proteolytic processing, but seemingly normal N-glycosylation, of the cell adhesion molecule N-cadherin. The activities of the proconvertases and matrix metalloproteinases responsible for N-cadherin maturation were significantly altered in pmm2sa10150 mutant embryos. Importantly, pharmacologic and genetic manipulation of proconvertase activity restored matrix metalloproteinase activity, N-cadherin processing, and cartilage pathology in pmm2sa10150 embryos. Collectively, these studies demonstrate in CDG that targeted alterations in protease activity create a pathogenic cascade that affects the maturation of cell adhesion proteins critical for tissue development.
Collapse
Affiliation(s)
- Elsenoor J Klaver
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States of America
| | - Lynn Dukes-Rimsky
- Research Department, Greenwood Genetic Center, Greenwood, United States of America
| | - Brijesh Kumar
- Research Department, Greenwood Genetic Center, Greenwood, United States of America
| | - Zhi-Jie Xia
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States of America
| | - Tammie Dang
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, United States of America
| | - Mark A Lehrman
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, United States of America
| | - Peggi Angel
- Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, United States of America
| | - Richard R Drake
- Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, United States of America
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States of America
| | - Richard Steet
- Research Department, Greenwood Genetic Center, Greenwood, United States of America
| | | |
Collapse
|
5
|
Akerman AW, Collins EN, Peterson AR, Collins LB, Harrison JK, DeVaughn A, Townsend JM, Vanbuskirk RL, Riopedre‐Maqueira J, Reyes A, Oh JE, Raybuck CM, Jones JA, Ikonomidis JS. miR-133a Replacement Attenuates Thoracic Aortic Aneurysm in Mice. J Am Heart Assoc 2021; 10:e019862. [PMID: 34387094 PMCID: PMC8475064 DOI: 10.1161/jaha.120.019862] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/01/2021] [Indexed: 11/22/2022]
Abstract
Background Thoracic aortic aneurysms (TAAs) occur because of abnormal remodeling of aortic extracellular matrix and are accompanied by the emergence of proteolytically active myofibroblasts. The microRNA miR-133a regulates cellular phenotypes and is reduced in clinical TAA specimens. This study tested the hypothesis that miR-133a modulates aortic fibroblast phenotype, and overexpression by lentivirus attenuates the development of TAA in a murine model. Methods and Results TAA was induced in mice. Copy number of miR-133a was reduced in TAA tissue and linear regression analysis confirmed an inverse correlation between aortic diameter and miR-133a. Analyses of phenotypic markers revealed an mRNA expression profile consistent with myofibroblasts in TAA tissue. Fibroblasts were isolated from the thoracic aortae of mice with/without TAA. When compared with controls, miR-133a was reduced, migration was increased, adhesion was reduced, and the ability to contract a collagen disk was increased. Overexpression/knockdown of miR-133a controlled these phenotypes. After TAA induction in mice, a single tail-vein injection of either miR-133a overexpression or scrambled sequence (control) lentivirus was performed. Overexpression of miR-133a attenuated TAA development. The pro-protein convertase furin was confirmed to be a target of miR-133a by luciferase reporter assay. Furin was elevated in this murine model of TAA and repressed by miR-133a replacement in vivo resulting in reduced proteolytic activation. Conclusions miR-133a regulates aortic fibroblast phenotype and over-expression prevented the development of TAA in a murine model. These findings suggest that stable alterations in aortic fibroblasts are associated with development of TAA and regulation by miR-133a may lead to a novel therapeutic strategy.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aortic Aneurysm, Thoracic/chemically induced
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/prevention & control
- Calcium Chloride
- Cell Adhesion
- Cell Movement
- Cells, Cultured
- Dilatation, Pathologic
- Disease Models, Animal
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Furin/genetics
- Furin/metabolism
- Genetic Therapy
- Genetic Vectors
- Lentivirus/genetics
- Mice, Inbred C57BL
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Phenotype
- Vascular Remodeling
- Mice
Collapse
Affiliation(s)
- Adam W. Akerman
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | - Elizabeth N. Collins
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | - Andrew R. Peterson
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | - Lauren B. Collins
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | - Jessica K. Harrison
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | - Amari DeVaughn
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | - Jaleel M. Townsend
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | - Rebecca L. Vanbuskirk
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | | | - Ailet Reyes
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | - Joyce E. Oh
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | - Charles M. Raybuck
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | - Jeffrey A. Jones
- Division of Cardiothoracic SurgeryDepartment of SurgeryMedical University of South CarolinaCharlestonSC
- Research ServiceRalph H. Johnson VA Medical CenterCharlestonSC
| | - John S. Ikonomidis
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| |
Collapse
|
6
|
Zhang Y, Xu C, Tang Z, Guo D, Yao R, Zhao H, Chen Z, Ni X. Furin is involved in uterine activation for labor. FASEB J 2021; 35:e21565. [PMID: 33864414 DOI: 10.1096/fj.202002128rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/21/2022]
Abstract
The uterus undergoes distinct molecular and functional changes during pregnancy and parturition. These processes are associated with the dramatic changes in various proteins. Given that the maturation and activation of many proteins require proteolytic processing by proprotein convertases (PCs), we sought to explore the role of PCs in uterine activation for labor. First, we found that furin was the most dramatically increased PC member in myometrial tissues from the pregnant women after onset of labor at term. Using the model of cultured human myometrial smooth muscle cells (HMSMCs), we showed that furin inhibitor CMK, D6R treatment and furin siRNA transfection suppressed contractility. Inhibition of furin activity or interfering furin expression decreased connexin 43 (CX43), prostaglandin (PG) endoperoxide synthase-2 (COX-2) and PGF2α receptor (FP) expression and NF-κB activation. In mouse model, administration of furin inhibitors prolonged gestational length. However, D6R treatment did not affect RU38486- and lipopolysaccharides (LPS)-induced preterm birth. Furthermore, D6R and furin siRNA treatment reduced the release of soluble form of tumor necrosis factor (TNF)-related weak inducer of apoptosis (TWEAK), while furin overexpression led to an increase in soluble TWEAK release in cultured HMSMCs. D6R treatment decreased TWEAK level in blood of pregnant mice. TWEAK treatment promoted contractility and NF-κB activation, while TWEAK receptor fibroblast growth factor-inducible 14 (FN14) antagonist treatment inhibited contractility and NF-κB activation in HMSMCs. In pregnant mice, administration of FN14 antagonist prolonged gestational length. Our data suggest that furin can act as a stimulator for uterine activation for labor at term. TWEAK is one of the potential substrates which mediate furin regulation of parturition initiation.
Collapse
Affiliation(s)
- Youyi Zhang
- Department of Gynecology and Obstetrics, Research Center for Molecular Metabolomics, Xiangya Hospital Central South University, Changsha, China.,Department of Physiology, Second Military Medical University, Shanghai, China.,Department of Gynecology and Obstetrics, General Hospital of Western Theater Command of PLA, Chengdu, China
| | - Chen Xu
- Department of Physiology and Pathophysiology, Shanghai Medical School of Fundan University, Shanghai, China
| | - Zhengshan Tang
- Department of Gynecology and Obstetrics, Research Center for Molecular Metabolomics, Xiangya Hospital Central South University, Changsha, China
| | - Dewei Guo
- Department of Gynecology and Obstetrics, Research Center for Molecular Metabolomics, Xiangya Hospital Central South University, Changsha, China
| | - Ruojin Yao
- Department of Gynecology and Obstetrics, Research Center for Molecular Metabolomics, Xiangya Hospital Central South University, Changsha, China
| | - Huina Zhao
- Department of Gynecology and Obstetrics, Changhai Hospital, Shanghai, China.,Department of Gynecology and Obstetrics, Shanghai Seventh People's Hospital, Shanghai, China
| | - Zixi Chen
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Xin Ni
- Department of Gynecology and Obstetrics, Research Center for Molecular Metabolomics, Xiangya Hospital Central South University, Changsha, China.,Department of Physiology, Second Military Medical University, Shanghai, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| |
Collapse
|
7
|
Ginefra P, Filippi BGH, Donovan P, Bessonnard S, Constam DB. Compartment-Specific Biosensors Reveal a Complementary Subcellular Distribution of Bioactive Furin and PC7. Cell Rep 2019; 22:2176-2189. [PMID: 29466742 DOI: 10.1016/j.celrep.2018.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/13/2017] [Accepted: 01/31/2018] [Indexed: 12/21/2022] Open
Abstract
Furin trafficking, and that of related proprotein convertases (PCs), may regulate which substrates are accessible for endoproteolysis, but tools to directly test this hypothesis have been lacking. Here, we develop targeted biosensors that indicate Furin activity in endosomes is 10-fold less inhibited by decanoyl-RVKR-chloromethylketone and enriched >3-fold in endosomes compared to the trans-Golgi network (TGN). Endogenous PC7, which resists this inhibitor, was active in distinct vesicles. Only overexpressed PC7 activity reached the cell surface, endosomes, and the TGN. A PLC motif in the cytosolic tail of PC7 was dispensable for endosomal activity, but it was specifically required for TGN recycling and to rescue proActivin-A cleavage in Furin-depleted B16F1 melanoma cells. In sharp contrast, PC7 complemented Furin in cleaving Notch1 independently of PLC-mediated TGN access. Our study provides a proof in principle that compartment-specific biosensors can be used to gain insight into the regulation of PC trafficking and to map the tropism of PC-specific inhibitors.
Collapse
Affiliation(s)
- Pierpaolo Ginefra
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Bruno G H Filippi
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Prudence Donovan
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Sylvain Bessonnard
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Daniel B Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland.
| |
Collapse
|
8
|
Shin K, Landsman M, Pelletier S, Alamri BN, Anini Y, Rainey JK. Proapelin is processed extracellularly in a cell line-dependent manner with clear modulation by proprotein convertases. Amino Acids 2018; 51:395-405. [PMID: 30430332 PMCID: PMC7101949 DOI: 10.1007/s00726-018-2674-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/28/2018] [Indexed: 12/15/2022]
Abstract
Apelin is a peptide hormone that binds to a class A GPCR (the apelin receptor/APJ) to regulate various bodily systems. Upon signal peptide removal, the resulting 55-residue isoform, proapelin/apelin-55, can be further processed to 36-, 17-, or 13-residue isoforms with length-dependent pharmacological properties. Processing was initially proposed to occur intracellularly. However, detection of apelin-55 in extracellular fluids indicates that extracellular processing may also occur. To test for this, apelin-55 was applied exogenously to HEK293A cells overexpressing proprotein convertase subtilisin kexin 3 (PCSK3), the only apelin processing enzyme identified thus far, and to differentiated 3T3-L1 adipocytes, which endogenously express apelin, PCSK3 and other proprotein convertases. Analysis of culture media constituents from each cell type by high performance liquid chromatography–mass spectrometry and western blot demonstrated a time-dependent decrease in apelin-55 levels. This decrease was partially, but not fully, attenuated by PCSK inhibitor treatment in both cell lines. Comparison of the resulting apelin-55-derived peptide profile between the two cell lines demonstrated distinct processing patterns, with apelin-36 production apparent in 3T3-L1 adipocytes vs. detection of the prodomain of a shorter isoform (likely the apelin-13 prodomain, observed after additional proteolytic processing) in PCSK3-transfected HEK293A cells. Extracellular processing of apelin, with distinct cell type dependence, provides an alternative mechanism to regulate isoform-mediated physiological effects of apelin.
Collapse
Affiliation(s)
- Kyungsoo Shin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Michael Landsman
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Stephanie Pelletier
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Bader N Alamri
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Department of Obstetrics and Gynaecology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Department of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Younes Anini
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, B3H 4R2, Canada. .,Department of Obstetrics and Gynaecology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada. .,Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
9
|
Carcinogenesis is consequence of failure of tissue development. Med Hypotheses 2018; 119:84-87. [DOI: 10.1016/j.mehy.2018.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/06/2018] [Accepted: 07/27/2018] [Indexed: 11/20/2022]
|
10
|
Sakamoto T, Seiki M. Integrated functions of membrane-type 1 matrix metalloproteinase in regulating cancer malignancy: Beyond a proteinase. Cancer Sci 2017; 108:1095-1100. [PMID: 28267240 PMCID: PMC5480062 DOI: 10.1111/cas.13231] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/19/2022] Open
Abstract
Membrane‐type 1 matrix metalloproteinase (MT1‐MMP) is expressed in different types of invasive and proliferative cells, including cancer cells and stromal cells. MT1‐MMP cleaves extracellular matrix proteins, membrane proteins and other pericellular proteins, thereby changing the cellular microenvironment and regulating signal activation. Critical roles of protease activity in cancer cell proliferation, invasion and metastasis have been demonstrated by many groups. MT1‐MMP also has a non‐protease activity in that it inhibits the oxygen‐dependent suppression of hypoxia‐inducible factors (HIFs) via Munc18‐1‐interacting protein 3 (Mint3) and thereby enhances the expression of HIF target genes. Elevated HIF activity in MT1‐MMP‐expressing cancer cells is a fundamental mechanism underlying the Warburg effect, a well‐known phenomenon where malignant cancer cells exhibit a higher rate of glucose metabolism. Because specific intervention of HIF activation by MT1‐MMP suppresses tumor formation by cancer cells in mice, both the proteolytic and non‐proteolytic activities of MT1‐MMP are important for tumor malignancy and function in an integrated manner. In this review, we summarize recent findings relating to how MT1‐MMP activates HIF and its effects on cancer cells and stromal cells.
Collapse
Affiliation(s)
- Takeharu Sakamoto
- Division of Molecular PathologyThe Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Motoharu Seiki
- Faculty of MedicineInstitute of Medical, Pharmaceutical and Health Sciences, Kanazawa UniversityKanazawaJapan
| |
Collapse
|
11
|
Murata K, Kinoshita M. Establishment of proprotein convertase, furinA knocked-out lines in medaka, Oryzias latipes, and unique form of medaka furin-like prorprotein convertase (mflPC). Comp Biochem Physiol C Toxicol Pharmacol 2015; 178:169-180. [PMID: 26475985 DOI: 10.1016/j.cbpc.2015.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/09/2015] [Accepted: 10/09/2015] [Indexed: 10/22/2022]
Abstract
Furin is a member of the subtilisin-like proprotein convertase family. Medaka furin-like proprotein convertase (mflPC), a unique form of medaka FurinA (mFurinA) (GenBank accession no. AB092685.1) was cloned from the ovary cDNA library. Compared to human furin (GenBank accession no. NM_002569.3) and mFurinA in the structural motif of mflPC, only the catalytic domain and the N-terminal region of the P domain are highly conserved, but more C-terminal domains are truncated. Based on our research, there three forms of furin, mFurinA, mflPC and mFurinB that exist in medaka. These three genes are expressed in the developing embryos and ubiquitously in adult tissues. To investigate the function of mFurinA and mflPC, as a first step, mFurinA KO lines were established. The mFurinA KO larvae with abnormal phenotypes exhibit edema, abnormal body fluid accumulation in the pericardial and yolk sacs, enlarged hearts, clogged blood vessels, structurally weak eyes, and a very short life. The data suggests that abnormal processing of TGF-β may be one of the causes of these disorders. FurinA KO medaka is a good model for the study of human diseases such as Fraser Syndrome and Marfan syndrome. The creation of human genomic disorder models using recently advanced genome editing procedures informs us of the function of key molecules and their role in causing equivalent human disorders and will be useful as a tool to identify the mechanisms involved.
Collapse
Affiliation(s)
- Kenji Murata
- Center for Health and the Environment, University of CA, Davis, Old Davis Road, Davis, CA 95616, USA.
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|
12
|
Enhanced UV-induced skin carcinogenesis in transgenic mice overexpressing proprotein convertases. Neoplasia 2013; 15:169-79. [PMID: 23441131 DOI: 10.1593/neo.121846] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/03/2012] [Accepted: 12/07/2012] [Indexed: 02/01/2023] Open
Abstract
The proprotein convertases (PCs) furin and PACE4 process numerous substrates involved in tumor growth, invasion, and metastasis. We have previously shown that PCs increase the susceptibility to chemical skin carcinogenesis. Because of the human relevancy of UV radiation in the etiopathogenesis of human skin cancer, we investigated whether or not transgenic mice overexpressing either furin alone or both furin and PACE4 show increased susceptibility to UV carcinogenesis. After backcrossing our previously described furin and PACE4 transgenic lines, targeted to the epidermis, into a SKH-1 background, we exposed both single and double transgenic mice to UV radiation for 34 weeks. The results showed an increase in squamous cell carcinoma (SCC) multiplicity of approximately 70% in the single furin transgenic mouse line SF47 (P < .002) and a 30% increase in the other single transgenic line SF49 when compared to wild-type (WT) SKH-1 mice. Interestingly, there was also an increase in the percentage of high histologic grade SCCs in the transgenic lines compared to the WT mice, i.e., WT = 9%, SF47 = 15%, and SF49 = 26% (P < .02). Targeting both furin and PACE4 to the epidermis in double transgenic mice did not have an additive effect on tumor incidence/multiplicity but did enhance the tumor histopathologic grade, i.e., a significant increase in higher grade SCCs was seen in the bigenic mouse line SPF47 (P < .02). Thus, we observed an increased susceptibility to UV in single furin transgenic mice that was not substantially enhanced in the double furin/PACE4 transgenic mice.
Collapse
|
13
|
Kato S, Zhang R, Roberts JD. Proprotein convertases play an important role in regulating PKGI endoproteolytic cleavage and nuclear transport. Am J Physiol Lung Cell Mol Physiol 2013; 305:L130-40. [PMID: 23686857 PMCID: PMC3726948 DOI: 10.1152/ajplung.00391.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 05/15/2013] [Indexed: 12/27/2022] Open
Abstract
Nitric oxide and cGMP modulate vascular smooth muscle cell (SMC) phenotype by regulating cell differentiation and proliferation. Recent studies suggest that cGMP-dependent protein kinase I (PKGI) cleavage and the nuclear translocation of a constitutively active kinase fragment, PKGIγ, are required for nuclear cGMP signaling in SMC. However, the mechanisms that control PKGI proteolysis are unknown. Inspection of the amino acid sequence of a PKGI cleavage site that yields PKGIγ and a protease database revealed a putative minimum consensus sequence for proprotein convertases (PCs). Therefore we investigated the role of PCs in regulating PKGI proteolysis. We observed that overexpression of PCs, furin and PC5, but not PC7, which are all expressed in SMC, increase PKGI cleavage in a dose-dependent manner in human embryonic kidney (HEK) 293 cells. Moreover, furin-induced proteolysis of mutant PKGI, in which alanines were substituted into the putative PC consensus sequence, was decreased in these cells. In addition, overexpression of furin increased PKGI proteolysis in LoVo cells, which is an adenocarcinoma cell line expressing defective furin without PC activity. Also, expression of α1-PDX, an engineered serpin-like PC inhibitor, reduced PC activity and decreased PKGI proteolysis in HEK293 cells. Last, treatment of low-passage rat aortic SMC with membrane-permeable PC inhibitor peptides decreased cGMP-stimulated nuclear PKGIγ translocation. These data indicate for the first time that PCs have a role in regulating PKGI proteolysis and the nuclear localization of its active cleavage product, which are important for cGMP-mediated SMC phenotype.
Collapse
Affiliation(s)
- Shin Kato
- Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, MA, USA
| | | | | |
Collapse
|
14
|
Maas RJH, Deegens JKJ, Wetzels JFM. Serum suPAR in patients with FSGS: trash or treasure? Pediatr Nephrol 2013; 28:1041-8. [PMID: 23515666 DOI: 10.1007/s00467-013-2452-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/20/2013] [Accepted: 02/26/2013] [Indexed: 12/12/2022]
Abstract
The urokinase-type plasminogen activator receptor (uPAR) has important functions in cell migration. uPAR can be shed from the cell membrane resulting in soluble uPAR (suPAR). Further cleavage gives rise to shorter fragments with largely unknown functions. Recent studies have demonstrated that both overexpression of uPAR on podocytes and the administration of suPAR cause proteinuria in mice. The common pathogenic mechanism involves the activation of podocyte β3-integrin. Increased activation of β3-integrin is also observed in patients with focal and segmental glomerulosclerosis (FSGS). These observations form the basis for the hypothesis that suPAR may be the circulating factor causing FSGS. A recent study fosters this idea by demonstrating increased suPAR levels in the serum of patients with FSGS and reporting an association with recurrence after transplantation and response to plasmapheresis. However, this study was heavily biased, and subsequent studies have given conflicting results. Although the experimental work is very suggestive, at present there is no proof that any known human suPAR fragment causes FSGS in humans. We therefore suggest that the measurement of suPAR using currently available assays has absolutely no value at the present time in decision-making in routine clinical practice.
Collapse
Affiliation(s)
- Rutger J H Maas
- Department of Nephrology 464, Radboud University Nijmegen Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
15
|
Abstract
Glomerular hypertension (ie, increased glomerular capillary pressure), has been shown to cause podocyte damage progressing to glomerulosclerosis in animal models. Increased glomerular capillary pressure results in an increase in wall tension that acts primarily as circumferential tensile stress on the capillary wall. The elastic properties of the glomerular basement membrane (GBM) and the elastic as well as contractile properties of the cytoskeleton of the endothelium and of podocyte foot processes resist circumferential tensile stress. Whether the contractile forces generated by podocytes are able to equal circumferential tensile stress to effectively counteract wall tension is an open question. Mechanical stress is transmitted from the GBM to the actin cytoskeleton of podocyte foot processes via cell-matrix contacts that contain mainly integrin α3β1 and a variety of linker, scaffolding, and signaling proteins, which are not well characterized in podocytes. We know from in vitro studies that podocytes are sensitive to stretch, however, the crucial mechanosensor in podocytes remains unclear. On the other hand, in vitro studies have shown that in stretched podocytes specific signaling cascades are activated, the synthesis and secretion of various hormones and their receptors are increased, cell-cycle arrest is reinforced, cell adhesion is altered through secretion of matricellular proteins and changes in integrin expression, and the actin cytoskeleton is reorganized in a way that stress fibers are lost. In summary, current evidence suggests that in glomerular hypertension podocytes primarily aim to maintain the delicate architecture of interdigitating foot processes in the face of an expanding GBM area.
Collapse
Affiliation(s)
- Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
16
|
Studies in mice reveal a role for anthrax toxin receptors in matrix metalloproteinase function and extracellular matrix homeostasis. Toxins (Basel) 2013; 5:315-26. [PMID: 23389402 PMCID: PMC3640537 DOI: 10.3390/toxins5020315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/31/2013] [Indexed: 02/07/2023] Open
Abstract
The genes encoding Anthrax Toxin Receptors (ANTXRs) were originally identified based on expression in endothelial cells suggesting a role in angiogenesis. The focus of this review is to discuss what has been learned about the physiological roles of these receptors through evaluation of the Antxr knockout mouse phenotypes. Mice mutant in Antxr genes have defects in extracellular matrix homeostasis. We discuss how knowledge of physiological ANTXR function relates to what is already known about anthrax intoxication.
Collapse
|
17
|
Sachs N, Sonnenberg A. Cell-matrix adhesion of podocytes in physiology and disease. Nat Rev Nephrol 2013; 9:200-10. [PMID: 23338211 DOI: 10.1038/nrneph.2012.291] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cell-matrix adhesion is crucial for maintaining the mechanical integrity of epithelial tissues. Podocytes--a key component of the glomerular filtration barrier--are exposed to permanent transcapillary filtration pressure and must therefore adhere tightly to the underlying glomerular basement membrane (GBM). The major cell-matrix adhesion receptor in podocytes is the integrin α3β1, which connects laminin 521 in the GBM through various adaptor proteins to the intracellular actin cytoskeleton. Other cell-matrix adhesion receptors expressed by podocytes include the integrins α2β1 and αvβ3, α-dystroglycan, syndecan-4 and type XVII collagen. Mutations in genes encoding any of the components critical for podocyte adhesion cause glomerular disease. This Review highlights recent advances in our understanding of the cell biology and genetics of podocyte adhesion with special emphasis on glomerular disease.
Collapse
Affiliation(s)
- Norman Sachs
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
18
|
Sun M, Watanabe T, Bochimoto H, Sakai Y, Torii S, Takeuchi T, Hosaka M. Multiple sorting systems for secretory granules ensure the regulated secretion of peptide hormones. Traffic 2012; 14:205-18. [PMID: 23171199 DOI: 10.1111/tra.12029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 11/19/2012] [Accepted: 11/21/2012] [Indexed: 01/13/2023]
Abstract
Prior to secretion, regulated peptide hormones are selectively sorted to secretory granules (SGs) at the trans-Golgi network (TGN) in endocrine cells. Secretogranin III (SgIII) appears to facilitate SG sorting process by tethering of protein aggregates containing chromogranin A (CgA) and peptide hormones to the cholesterol-rich SG membrane (SGM). Here, we evaluated the role of SgIII in SG sorting in AtT-20 cells transfected with small interfering RNA targeting SgIII. In the SgIII-knockdown cells, the intracellular retention of CgA was greatly impaired, and only a trace amount of CgA was localized within the vacuoles formed in the TGN, confirming the significance of SgIII in both the tethering of CgA-containing aggregates and the establishment of the proper SG morphology. Although the intracellular retention of proopiomelanocortin (POMC) was considerably impaired in SgIII-knockdown cells, residual adrenocorticotropic hormone (ACTH)/POMC was still localized to some few remaining SGs together with another granin protein, secretogranin II (SgII), and was secreted in a regulated manner. Biochemical analyses indicated that SgII bound directly to the SGM in a cholesterol-dependent manner and was able to retain the aggregated form of POMC, revealing a latent redundancy in the SG sorting and retention mechanisms, that ensures the regulated secretion of bioactive peptides.
Collapse
Affiliation(s)
- Meng Sun
- Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, 371-8512, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Transgenic overexpression of the proprotein convertase furin enhances skin tumor growth. Neoplasia 2012; 14:271-82. [PMID: 22577343 DOI: 10.1593/neo.12166] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 04/02/2012] [Accepted: 04/02/2012] [Indexed: 02/04/2023] Open
Abstract
Furin, one of the members of the family of proprotein convertases (PCs), ubiquitously expressed as a type I membrane-bound proteinase, activates several proteins that contribute to tumor progression. In vitro studies using cancer cell lines and clinical specimens demonstrated that furin processes important substrates such as insulin-like growth factor 1 receptor (IGF-1R) and transforming growth factor β, leading to increased tumor growth and progression. Despite the numerous studies associating furin with tumor development, its effects in preclinical models has not been comprehensively studied. In this study, we sought to determine the protumorigenic role of furin in vivo after a two-stage chemical carcinogenesis protocol in transgenic mice in which furin expression was targeted to the epidermal basal layer. We found that processing of the PC substrate IGF-1R and the proliferation rate of mouse epidermis was enhanced in transgenic mice when compared with their WT counterparts. Histopathologic diagnoses of the tumors demonstrated that furin transgenic mice (line F47) developed twice as many squamous carcinomas as the control, WT mice (P < .002). Similarly, tumors cells from transgenic mice were able to process PC substrates more efficiently than tumor cells from WT mice. Furthermore, furin expression resulted in a higher SCC volume in transgenic mice as well as an increase in the percentage of high-grade SCC, including poorly differentiated and spindle cell carcinomas. In conclusion, expression of furin in the basal layer of the epidermis increased tumor development and enhanced tumor growth, supporting the consideration of furin as a potential target for cancer treatment.
Collapse
|
20
|
Seidah NG, Poirier S, Denis M, Parker R, Miao B, Mapelli C, Prat A, Wassef H, Davignon J, Hajjar KA, Mayer G. Annexin A2 is a natural extrahepatic inhibitor of the PCSK9-induced LDL receptor degradation. PLoS One 2012; 7:e41865. [PMID: 22848640 PMCID: PMC3407131 DOI: 10.1371/journal.pone.0041865] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/26/2012] [Indexed: 12/29/2022] Open
Abstract
Proprotein convertase subtilisin/kexin-9 (PCSK9) enhances the degradation of hepatic low-density lipoprotein receptor (LDLR). Deletion of PCSK9, and loss-of-function mutants in humans result in lower levels of circulating LDL-cholesterol and a strong protection against coronary heart disease. Accordingly, the quest for PCSK9 inhibitors has major clinical implications. We have previously identified annexin A2 (AnxA2) as an endogenous binding partner and functional inhibitor of PCSK9. Herein, we studied the relevance of AnxA2 in PCSK9 inhibition and lipid metabolism in vivo. Plasma analyses of AnxA2(-/-) mice revealed: i) a ∼1.4-fold increase in LDL-cholesterol without significant changes in VLDLs or HDLs, and ii) a ∼2-fold increase in circulating PCSK9 levels. Western blotting and immunohistochemistry of AnxA2(-/-) tissues revealed that the LDLR was decreased by ∼50% in extrahepatic tissues, such as adrenals and colon. We also show that AnxA2-derived synthetic peptides block the PCSK9≡LDLR interaction in vitro, and adenoviral overexpression of AnxA2 in mouse liver increases LDLR protein levels in vivo. These results suggest that AnxA2 acts as an endogenous regulator of LDLR degradation, mostly in extrahepatic tissues. Finally, we identified an AnxA2 coding polymorphism, V98L, that correlates with lower circulating levels of PCSK9 thereby extending our results on the physiological role of AnxA2 in humans.
Collapse
Affiliation(s)
- Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Affiliated to the Université de Montréal, Montréal, Québec, Canada
| | - Steve Poirier
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Affiliated to the Université de Montréal, Montréal, Québec, Canada
| | - Maxime Denis
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Affiliated to the Université de Montréal, Montréal, Québec, Canada
| | - Rex Parker
- Bristol-Myers Squibb Pharmaceutical R & D, Princeton, New Jersey, United States of America
| | - Bowman Miao
- Bristol-Myers Squibb Pharmaceutical R & D, Princeton, New Jersey, United States of America
| | - Claudio Mapelli
- Bristol-Myers Squibb Pharmaceutical R & D, Princeton, New Jersey, United States of America
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Affiliated to the Université de Montréal, Montréal, Québec, Canada
| | - Hanny Wassef
- Hyperlipidemia and Atherosclerosis, Clinical Research Institute of Montreal, Affiliated to the Université de Montréal, Montréal, Québec, Canada
| | - Jean Davignon
- Hyperlipidemia and Atherosclerosis, Clinical Research Institute of Montreal, Affiliated to the Université de Montréal, Montréal, Québec, Canada
| | - Katherine A. Hajjar
- Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York, New York, United States of America
| | - Gaétan Mayer
- Laboratory of Molecular Cell Biology, Montreal Heart Institute, Département de Médecine and Département de Pharmacologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
21
|
Li J, Zucker S, Pulkoski-Gross A, Kuscu C, Karaayvaz M, Ju J, Yao H, Song E, Cao J. Conversion of stationary to invasive tumor initiating cells (TICs): role of hypoxia in membrane type 1-matrix metalloproteinase (MT1-MMP) trafficking. PLoS One 2012; 7:e38403. [PMID: 22679501 PMCID: PMC3367975 DOI: 10.1371/journal.pone.0038403] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 05/04/2012] [Indexed: 01/11/2023] Open
Abstract
Emerging evidence has implicated the role of tumor initiating cells (TICs) in the process of cancer metastasis. The mechanism underlying the conversion of TICs from stationary to invasive remains to be characterized. In this report, we employed less invasive breast cancer TICs, SK-3rd, that displays CD44high/CD24low with high mammosphere-forming and tumorigenic capacities, to investigate the mechanism by which stationary TICs are converted to invasive TICs. Invasive ability of SK-3rd TICs was markedly enhanced when the cells were cultured under hypoxic conditions. Given the role of membrane type 1-matrix metalloproteinase (MT1-MMP) in cancer invasion/metastasis, we explored a possible involvement of MT1-MMP in hypoxia-induced TIC invasion. Silencing of MT1-MMP by a shRNA approach resulted in diminution of hypoxia-induced cell invasion in vitro and metastasis in vivo. Under hypoxic conditions, MT1-MMP redistributed from cytoplasmic storage pools to the cell surface of TICs, which coincides with the increased cell invasion. In addition, CD44, a cancer stem-like cell marker, inversely correlated with increased cell surface MT1-MMP. Interestingly, cell surface MT1-MMP gradually disappeared when the hypoxia-treated cells were switched to normoxia, suggesting the plasticity of TICs in response to oxygen content. Furthermore, we dissected the pathways leading to upregulated MT1-MMP in cytoplasmic storage pools under normoxic conditions, by demonstrating a cascade involving Twist1-miR10b-HoxD10 leading to enhanced MT1-MMP expression in SK-3rd TICs. These observations suggest that MT1-MMP is a key molecule capable of executing conversion of stationary TICs to invasive TICs under hypoxic conditions and thereby controlling metastasis.
Collapse
Affiliation(s)
- Jian Li
- Department of Medicine/Cancer Prevention, Stony Brook University, Stony Brook, New York, United States of America
| | - Stanley Zucker
- Department of Research, Veterans Affair Medical Center, Northport, New York, United States of America
- * E-mail: (JC); (SZ)
| | - Ashleigh Pulkoski-Gross
- Department of Medicine/Cancer Prevention, Stony Brook University, Stony Brook, New York, United States of America
| | - Cem Kuscu
- Department of Medicine/Cancer Prevention, Stony Brook University, Stony Brook, New York, United States of America
| | - Mihriban Karaayvaz
- Department of Pathology, Stony Brook University, Stony Brook, New York, United States of America
| | - Jingfang Ju
- Department of Pathology, Stony Brook University, Stony Brook, New York, United States of America
| | - Herui Yao
- Department of Breast Surgery, the Memorial Hospital of Sun-Yat-Sen University, Guangzhou, China
| | - Erwei Song
- Department of Breast Surgery, the Memorial Hospital of Sun-Yat-Sen University, Guangzhou, China
| | - Jian Cao
- Department of Medicine/Cancer Prevention, Stony Brook University, Stony Brook, New York, United States of America
- Department of Pathology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail: (JC); (SZ)
| |
Collapse
|
22
|
Arsenault D, Lucien F, Dubois CM. Hypoxia enhances cancer cell invasion through relocalization of the proprotein convertase furin from the trans-Golgi network to the cell surface. J Cell Physiol 2012; 227:789-800. [PMID: 21503879 DOI: 10.1002/jcp.22792] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tumor hypoxia is strongly associated with malignant progression such as increased cell invasion and metastasis. Although the invasion-related genes affected by hypoxia have been well described, the contribution of post-transcriptional mechanisms such as protein trafficking and proprotein processing associated with the hypoxic response remains poorly understood. The proprotein convertase furin, the major processing enzyme of the secretory pathway, resides in the trans-Golgi network and most studies support a model where endogenous substrates are processed by furin within this compartment. Here, we report that hypoxia triggered an unexpected relocalization of furin from the trans-Golgi network to endosomomal compartments and the cell surface in cancer cells. Exposing these cells back to normoxic conditions reversed furin redistribution, suggesting that the tumor microenvironment modulates furin trafficking in a highly regulated manner. Assessment of the mechanisms involved revealed that both Rab4GTPase-dependent recycling and interaction of furin with the cytoskeletal anchoring protein, filamin-A, are essential for the cell surface relocalization of furin. Interference with the association of furin with filamin-A, prevented cell surface relocalization of furin and abolished the ability of cancer cells to migrate in response to hypoxia. Our observations support the notion that hypoxia promotes the formation of a peripheral processing compartment where furin translocates for enhanced processing of proproteins involved in tumorigenesis.
Collapse
Affiliation(s)
- Dominique Arsenault
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
23
|
Genetic dissection of proteolytic and non-proteolytic contributions of MT1-MMP to macrophage invasion. Biochem Biophys Res Commun 2011; 413:277-81. [DOI: 10.1016/j.bbrc.2011.08.085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 08/17/2011] [Indexed: 11/24/2022]
|
24
|
Pathogenic old world hantaviruses infect renal glomerular and tubular cells and induce disassembling of cell-to-cell contacts. J Virol 2011; 85:9811-23. [PMID: 21775443 DOI: 10.1128/jvi.00568-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Viral hemorrhagic fevers are characterized by enhanced permeability. One of the most affected target organs of hantavirus-induced hemorrhagic fever with renal syndrome is the kidney, and an infection often results in acute renal failure. To study the underlying cellular effects leading to kidney dysfunction, we infected human renal cell types in vitro that are critical for the barrier functions of the kidney, and we examined kidney biopsy specimens obtained from hantavirus-infected patients. We analyzed the infection and pathogenic effects in tubular epithelial and glomerular endothelial renal cells and in podocytes. Both epithelial and endothelial cells and podocytes were susceptible to hantavirus infection in vitro. The infection disturbed the structure and integrity of cell-to-cell contacts, as demonstrated by redistribution and reduction of the tight junction protein ZO-1 and the decrease in the transepithelial resistance in infected epithelial monolayers. An analysis of renal biopsy specimens from hantavirus-infected patients revealed that the expression and the localization of the tight junction protein ZO-1 were altered compared to renal biopsy specimens from noninfected individuals. Both tubular and glomerular cells were affected by the infection. Furthermore, the decrease in glomerular ZO-1 correlates with disease severity induced by glomerular dysfunction. The finding that different renal cell types are susceptible to hantaviral infection and the fact that infection results in the breakdown of cell-to-cell contacts provide useful insights in hantaviral pathogenesis.
Collapse
|
25
|
Furin Functions as a Nonproteolytic Chaperone for Matrix Metalloproteinase-28: MMP-28 Propeptide Sequence Requirement. Biochem Res Int 2010; 2011:630319. [PMID: 21152186 PMCID: PMC2989691 DOI: 10.1155/2011/630319] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 09/16/2010] [Accepted: 09/27/2010] [Indexed: 01/16/2023] Open
Abstract
Although MMP-28 is involved in numerous important physiologic and pathologic conditions, the mechanisms of action of this secreted proteinase is not well understood. We now have demonstrated that furin serves as an intermolecular chaperone for MMP-28 secretion by interacting with the propeptide domain of MMP-28. Employing COS-1 cells transfected with MMP-28 cDNA, protein levels of MMP-28 were quite low in conditioned media as compared to cell lysates. Coexpression of MMP-28 with furin cDNA resulted in markedly enhanced MMP-28 secretion. Contrary to expectation, cleavage of MMP-28 at the furin consensus sequence did not occur and proteolytic inactive furin was equally effective in enhancing MMP-28 secretion. Furin and MMP-28 coimmunoprecipitated and were partially coimmunolocalized in the cytoplasm of transfected cells. Cotransfection with furin cDNA also enhanced MMP-28 induced cell migration. In conclusion, our data provide a novel mechanism for MMP-28 function in cells in which furin serves as an intermolecular chaperone.
Collapse
|
26
|
Sakamoto T, Seiki M. A membrane protease regulates energy production in macrophages by activating hypoxia-inducible factor-1 via a non-proteolytic mechanism. J Biol Chem 2010; 285:29951-64. [PMID: 20663879 DOI: 10.1074/jbc.m110.132704] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most cells produce ATP in the mitochondria by oxidative phosphorylation. However, macrophages, which are major players in the innate immune system, use aerobic glycolysis to produce ATP. HIF-1 (hypoxia-inducible factor-1) regulates expression of glycolysis-related genes and maintains macrophage glycolytic activity. However, it is unclear how HIF-1 activity is maintained in macrophages during normoxia. In this study, we found that macrophages lacking membrane type 1 matrix metalloproteinase (MT1-MMP/MMP-14), a potent invasion-promoting protease, exhibited considerably lower ATP levels than wild-type cells. HIF-1 was activated by an unanticipated function of MT1-MMP, which led to the stimulation of ATP production via glycolysis. The cytoplasmic tail of MT1-MMP bound to FIH-1 (factor inhibiting HIF-1), which led to the inhibition of the latter by its recently identified inhibitor, Mint3/APBA3. We have thus identified a new function of MT1-MMP to mediate production of ATP so as to support energy-dependent macrophage functions by a previously unknown non-proteolytic mechanism.
Collapse
Affiliation(s)
- Takeharu Sakamoto
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | |
Collapse
|
27
|
Hauser PV, Pippin JW, Kaiser C, Krofft RD, Brinkkoetter PT, Hudkins KL, Kerjaschki D, Reiser J, Alpers CE, Shankland SJ. Novel siRNA delivery system to target podocytes in vivo. PLoS One 2010; 5:e9463. [PMID: 20209128 PMCID: PMC2830889 DOI: 10.1371/journal.pone.0009463] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 02/05/2010] [Indexed: 12/25/2022] Open
Abstract
Podocytes are injured in several glomerular diseases. To alter gene expression specifically in podocytes in vivo, we took advantage of their active endocytotic machinery and developed a method for the targeted delivery of small interfering ribonucleic acids (siRNA). We generated an anti-mouse podocyte antibody that binds to rat and mouse podocytes in vivo. The polyclonal IgG antibody was cleaved into monovalent fragments, while preserving the antigen recognition sites. One Neutravidin molecule was linked to each monovalent IgG via the available sulfohydryl group. Protamine, a polycationic nuclear protein and universal adaptor for anionic siRNA, was linked to the neutravidin via biotin. The delivery system was named shamporter (sheep anti mouse podocyte transporter). Injection of shamporter coupled with either nephrin siRNA or TRPC6 siRNA via tail vein into normal rats substantially reduced the protein levels of nephrin or TRPC6 respectively, measured by western blot analysis and immunostaining. The effect was target specific because other podocyte-specific genes remained unchanged. Shamporter + nephrin siRNA induced transient proteinuria in rats. Control rats injected with shamporter coupled to control-siRNA showed no changes. These results show for the first time that siRNA can be delivered efficiently and specifically to podocytes in vivo using an antibody-delivery system.
Collapse
Affiliation(s)
- Peter V. Hauser
- Division of Nephrology, University of Washington, Seattle, Washington, United States of America
| | - Jeffrey W. Pippin
- Division of Nephrology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Cora Kaiser
- Division of Nephrology, University of Washington, Seattle, Washington, United States of America
| | - Ronald D. Krofft
- Division of Nephrology, University of Washington, Seattle, Washington, United States of America
| | - Paul T. Brinkkoetter
- Division of Nephrology, University of Washington, Seattle, Washington, United States of America
| | - Kelly L. Hudkins
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Dontscho Kerjaschki
- Department of Clinical Pathology, Vienna Medical University, Vienna, Austria
| | - Jochen Reiser
- Division of Nephrology & Hypertension, University of Miami, Miami, Florida, United States of America
| | - Charles E. Alpers
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Stuart J. Shankland
- Division of Nephrology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
28
|
Abstract
Most kidney diseases that ultimately lead to end-stage renal failure originate within the glomerulus and are associated with proteinuria. Treatment options are unspecific and offer partial cures at best because available therapies do not primarily treat glomerular cells but rather act systemically and thus cause many side effects. Most glomerulopathies directly stem from injury to podocytes, cells that have a key role in the maintenance of the glomerular filter. Thus, these cells constitute an obvious and promising target for the development of novel kidney-protective drugs. During the last decade, enormous advances have been made in the understanding of podocyte structure and function. A number of pathways that are altered during glomerular diseases may be targeted by novel small- and large-molecule drugs as well as biologicals that have been identified in nephrology and other areas of drug development. Cultured podocytes provide a valuable model for high-throughput drug screening assays. Furthermore, podocytes have been shown to possess many features that make them particularly good target cells for renal protection. This mini-review discusses some of the most recent promising data related to potential drug therapy for proteinuria and kidney disease through direct podocyte targeting.
Collapse
|
29
|
Rowe RG, Weiss SJ. Navigating ECM barriers at the invasive front: the cancer cell-stroma interface. Annu Rev Cell Dev Biol 2010; 25:567-95. [PMID: 19575644 DOI: 10.1146/annurev.cellbio.24.110707.175315] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A seminal event in cancer progression is the ability of the neoplastic cell to mobilize the necessary machinery to breach surrounding extracellular matrix barriers while orchestrating a host stromal response that ultimately supports tissue-invasive and metastatic processes. With over 500 proteolytic enzymes identified in the human genome, interconnecting webs of protease-dependent and protease-independent processes have been postulated to drive the cancer cell invasion program via schemes of daunting complexity. Increasingly, however, a body of evidence has begun to emerge that supports a unifying model wherein a small group of membrane-tethered enzymes, termed the membrane-type matrix metalloproteinases (MT-MMPs), plays a dominant role in regulating cancer cell, as well as stromal cell, traffic through the extracellular matrix barriers assembled by host tissues in vivo. Understanding the mechanisms that underlie the regulation and function of these metalloenzymes as host cell populations traverse the dynamic extracellular matrix assembled during neoplastic states should provide new and testable theories regarding cancer invasion and metastasis.
Collapse
Affiliation(s)
- R Grant Rowe
- The Division of Molecular Medicine & Genetics, Department of Internal Medicine, The Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA.
| | | |
Collapse
|
30
|
Koo BH, Apte SS. Cell-surface processing of the metalloprotease pro-ADAMTS9 is influenced by the chaperone GRP94/gp96. J Biol Chem 2009; 285:197-205. [PMID: 19875450 DOI: 10.1074/jbc.m109.039677] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A disintegrin-like and metalloprotease domain with thrombospondin type 1 motifs 9 (ADAMTS9) is a highly conserved metalloprotease that has been identified as a tumor suppressor gene and is required for normal mouse development. The secreted ADAMTS9 zymogen undergoes proteolytic excision of its N-terminal propeptide by the proprotein convertase furin. However, in contrast to other metalloproteases, propeptide excision occurs at the cell surface and leads to decreased activity of the zymogen. Here, we investigated the potential cellular mechanisms regulating ADAMTS9 biosynthesis and cell-surface processing by analysis of molecular complexes formed by a construct containing the propeptide and catalytic domain of pro-ADAMTS9 (Pro-Cat) in HEK293F cells. Cross-linking of cellular proteins bound to Pro-Cat followed by mass spectrometric analysis identified UDP-glucose:glycoprotein glucosyltransferase I, heat shock protein gp96 (GRP94), BiP (GRP78), and ERdj3 (Hsp40 homolog) as associated proteins. gp96 and BiP were present at the cell surface in an immunoprecipitable complex with pro-ADAMTS9 and furin. Treatment with geldanamycin, an inhibitor of the HSP90alpha family (including gp96), led to decreased furin processing of pro-ADAMTS9 and accumulation of the unprocessed pro-ADAMTS9 at the cell surface. gp96 siRNA down-regulated the levels of cell-surface pro-ADAMTS9 and furin, whereas the levels of cell-surface pro-ADAMTS9, but not of cell-surface furin, were decreased upon treatment with BiP siRNA. These data identify for the first time the cellular chaperones associated with secretion of an ADAMTS protease and suggest a role for gp96 in modulating pro-ADAMTS9 processing.
Collapse
Affiliation(s)
- Bon-Hun Koo
- Department of Biochemistry, College of Science, Yonsei University, Seoul 120-749, Korea
| | | |
Collapse
|
31
|
Koo BH, Kim HH, Park MY, Jeon OH, Kim DS. Membrane type-1 matrix metalloprotease-independent activation of pro-matrix metalloprotease-2 by proprotein convertases. FEBS J 2009; 276:6271-84. [PMID: 19780834 DOI: 10.1111/j.1742-4658.2009.07335.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Matrix metalloprotease-2 is implicated in many biological processes and degrades extracellular and non-extracellular matrix molecules. Matrix metalloprotease-2 maintains a latent state through a cysteine-zinc ion pairing which, when disrupted, results in full enzyme activation. This pairing can be disrupted by a conformational change or cleavage within the propeptide. The best known activation mechanism for pro-matrix metalloprotease-2 occurs via cleavage of the propeptide by membrane type-1 matrix metalloprotease. However, significant residual activation of pro-matrix metalloprotease-2 is seen in membrane type-1 matrix metalloprotease knockout mice and in fibroblasts treated with metalloprotease inhibitors. These findings indicate the presence of a membrane type-1 matrix metalloprotease-independent activation mechanism for pro-matrix metalloprotease-2 in vivo, which prompted us to explore an alternative activation mechanism for pro-matrix metalloprotese-2. In this study, we demonstrate membrane type-1 matrix metalloprotease-independent propeptide processing of matrix metalloprotease-2 in HEK293F and various tumor cell lines, and show that proprotein convertases can mediate the processing intracellularly as well as extracellularly. Furthermore, processed matrix metalloprotease-2 exhibits enzymatic activity that is enhanced by intermolecular autolytic cleavage. Thus, our experimental data, taken together with the broad expression of proprotein convertases, suggest that the proprotein convertase-mediated processing may be a general activation mechanism for pro-matrix metalloprotease-2 in vivo.
Collapse
Affiliation(s)
- Bon-Hun Koo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, 134 Sinchon-Dong Seodaemun-Gu, Seoul 120-749, South Korea.
| | | | | | | | | |
Collapse
|
32
|
Kappert K, Meyborg H, Baumann B, Furundzija V, Kaufmann J, Graf K, Stibenz D, Fleck E, Stawowy P. Integrin cleavage facilitates cell surface-associated proteolysis required for vascular smooth muscle cell invasion. Int J Biochem Cell Biol 2009; 41:1511-7. [DOI: 10.1016/j.biocel.2009.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 12/22/2008] [Accepted: 01/05/2009] [Indexed: 11/16/2022]
|
33
|
Longpré JM, McCulloch DR, Koo BH, Alexander JP, Apte SS, Leduc R. Characterization of proADAMTS5 processing by proprotein convertases. Int J Biochem Cell Biol 2008; 41:1116-26. [PMID: 18992360 DOI: 10.1016/j.biocel.2008.10.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 09/23/2008] [Accepted: 10/10/2008] [Indexed: 11/16/2022]
Abstract
ADAMTS5 (aggrecanase-2), a key metalloprotease mediating cartilage destruction in arthritis, is synthesized as a zymogen, proADAMTS5. We report a detailed characterization of the propeptide excision mechanism and demonstrate that it is a major regulatory step with unusual characteristics. Using furin-deficient cells and a furin inhibitor, we found that proADAMTS5 was processed by proprotein convertases, specifically furin and PC7, but not PC6B. Mutagenesis of three sites containing basic residues within the ADAMTS5 propeptide (RRR(46), RRR(69) and RRRRR(261)) suggested that proADAMTS5 processing occurs after Arg(261). That furin processing was essential for ADAMTS5 activity was illustrated using the known ADAMTS5 substrate aggrecan, as well as a new substrate, versican, an important regulatory proteoglycan during mammalian development. When compared to other ADAMTS proteases, proADAMTS5 processing has several distinct features. In contrast to ADAMTS1, whose furin processing products were clearly present intracellularly, cleaved ADAMTS5 propeptide and mature ADAMTS5 were found exclusively in the conditioned medium. Despite attempts to enhance detection of intracellular proADAMTS5 processing, such as by immunoprecipitation of total ADAMTS5, overexpression of furin, and secretion blockade by monensin, neither processed ADAMTS5 propeptide nor the mature enzyme were found intracellularly, which was strongly suggestive of extracellular processing. Extracellular ADAMTS5 processing was further supported by activation of proADAMTS5 added exogenously to HEK293 cells stably expressing furin. Unlike proADAMTS9, which is processed by furin at the cell-surface, to which it is bound, ADAMTS5 does not bind the cell-surface. Thus, the propeptide processing mechanism of ADAMTS5 has several points of distinction from those of other ADAMTS proteases, which may have considerable significance in the context of osteoarthritis.
Collapse
Affiliation(s)
- Jean-Michel Longpré
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Que. J1H 5N4, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Munkert A, Helmchen U, Kemper MJ, Bubenheim M, Stahl RAK, Harendza S. Characterization of the transcriptional regulation of the human MT1-MMP gene and association of risk reduction for focal-segmental glomerulosclerosis with two functional promoter SNPs. Nephrol Dial Transplant 2008; 24:735-42. [PMID: 18927121 DOI: 10.1093/ndt/gfn576] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The matrix metalloproteinase MT1-MMP (MMP-14) is an important player in wound healing, bone development, angiogenesis, inflammation and tumour invasion. MT1-MMP also plays an important role in the development and resolution of experimental kidney diseases. The role of MT1-MMP was investigated for distinction between minimal-change glomerulonephritis (MCGN) and focal-segmental glomerulosclerosis (FSGS) that can sometimes be difficult due to sampling error in renal biopsy. METHODS We defined the transcriptional regulation of the human MT1-MMP and the influence of single nucleotide polymorphisms (SNPs) within its promoter region in renal mesangial cells with reporter gene constructs and gel sift analysis. Genomic DNA from healthy blood donors (n = 500) and from kidney biopsies with defined renal diseases (MCGN: n = 189, FSGS: n = 311) was screened for MT1-MMP promoter SNPs. RESULTS Transcription of MT1-MMP is regulated by two enhancers, an Sp1 binding site and a regulatory region 1 (RR1). RR1 contains an Ets site binding the transcription factors Elf-1 and E1AF but not NFAT. The MT1-MMP promoter contains two SNPs (-378 T/C and -364 G/T) in close vicinity to the RR1. Occurrence of the SNP variant -378 C leads to strong inhibition of nuclear protein binding to the RR1 reducing its enhancer function. Appearance of either variant -378 C or variant -364 T in at least one copy of the MT1-MMP promoter was associated with a significant risk reduction for the development of FSGS (P < 0.048). CONCLUSION Genetic testing for MT1-MMP promoter SNPs could put renal biopsy results into new perspective. An independent study will be required to verify these findings and their possible diagnostic value for differentiation between certain renal diseases.
Collapse
Affiliation(s)
- Astrid Munkert
- III Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
35
|
Wu Y, Munshi H, Snipas S, Salvesen G, Fridman R, Stack M. Activation-coupled membrane-type 1 matrix metalloproteinase membrane trafficking. Biochem J 2008; 407:171-7. [PMID: 17650075 PMCID: PMC2049019 DOI: 10.1042/bj20070552] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The transmembrane collagenase MT1-MMP (membrane-type 1 matrix metalloproteinase), also known as MMP-14, has a critical function both in normal development and in cancer progression, and is subject to extensive controls at the post-translational level which affect proteinase activity. As zymogen activation is crucial for MT1-MMP activity, an alpha1-PI (alpha1-proteinase inhibitor)-based inhibitor was designed by incorporating the MT1-MMP propeptide cleavage sequence into the alpha1-PI reactive-site loop (designated alpha1-PI(MT1)) and this was compared with wild-type alpha1-PI (alpha1-PI(WT)) and the furin inhibitory mutant alpha1-PI(PDX). Alpha1-PI(MT1) formed an SDS-stable complex with furin and inhibited proMT1-MMP activation. A consequence of the loss of MT1-MMP activity was the activation of proMMP-2 and the inhibition of MT1-MMP-mediated collagen invasion. alpha1-PI(MT1) expression also resulted in the intracellular accumulation of a glycosylated species of proMT1-MMP that was retained in the perinuclear region, leading to significantly decreased cell-surface accumulation of proMT1-MMP. These observations suggest that both the subcellular localization and the activity of MT1-MMP are regulated in a coordinated fashion, such that proMT1-MMP is retained intracellularly until activation of its zymogen, then proMT1-MMP traffics to the cell surface in order to cleave extracellular substrates.
Collapse
Affiliation(s)
- Yi I. Wu
- *Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, U.S.A
- †Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, U.S.A
| | - Hidayatullah G. Munshi
- †Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, U.S.A
- ‡Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, U.S.A
| | - Scott J. Snipas
- §Program in Apoptosis and Cell Death Research, Burnham Institute, La Jolla, CA 92037, U.S.A
| | - Guy S. Salvesen
- §Program in Apoptosis and Cell Death Research, Burnham Institute, La Jolla, CA 92037, U.S.A
| | - Rafael Fridman
- ∥Department of Pathology, Wayne State University, Detroit, MI 48202, U.S.A
| | - M. Sharon Stack
- *Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, U.S.A
- †Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, U.S.A
- ¶Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
36
|
Modification of kidney barrier function by the urokinase receptor. Nat Med 2007; 14:55-63. [PMID: 18084301 DOI: 10.1038/nm1696] [Citation(s) in RCA: 418] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 11/20/2007] [Indexed: 12/12/2022]
Abstract
Podocyte dysfunction, represented by foot process effacement and proteinuria, is often the starting point for progressive kidney disease. Therapies aimed at the cellular level of the disease are currently not available. Here we show that induction of urokinase receptor (uPAR) signaling in podocytes leads to foot process effacement and urinary protein loss via a mechanism that includes lipid-dependent activation of alphavbeta3 integrin. Mice lacking uPAR (Plaur-/-) are protected from lipopolysaccharide (LPS)-mediated proteinuria but develop disease after expression of a constitutively active beta3 integrin. Gene transfer studies reveal a prerequisite for uPAR expression in podocytes, but not in endothelial cells, for the development of LPS-mediated proteinuria. Mechanistically, uPAR is required to activate alphavbeta3 integrin in podocytes, promoting cell motility and activation of the small GTPases Cdc42 and Rac1. Blockade of alphavbeta3 integrin reduces podocyte motility in vitro and lowers proteinuria in mice. Our findings show a physiological role for uPAR signaling in the regulation of kidney permeability.
Collapse
|
37
|
Mayer G, Hamelin J, Asselin MC, Pasquato A, Marcinkiewicz E, Tang M, Tabibzadeh S, Seidah NG. The regulated cell surface zymogen activation of the proprotein convertase PC5A directs the processing of its secretory substrates. J Biol Chem 2007; 283:2373-84. [PMID: 18039650 DOI: 10.1074/jbc.m708763200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proprotein convertases are synthesized as zymogens that acquire activity upon autocatalytic removal of their NH(2)-terminal prosegment. Based on the convertase furin, to fold properly and gain activity, the convertases PC5A, PACE4, and PC7 are presumed to undergo two sequential prosegment cleavages in the endoplasmic reticulum and then in the trans-Golgi network. However, biochemical and immunocytochemical experiments revealed that mouse PC5A is complexed to its prosegment at the plasma membrane. This labeling is lost upon treatment with heparin and is increased by overexpressing members of the syndecan family and CD44, suggesting attachment of secreted PC5A-prosegment complex to heparan sulfate proteoglycans. Following stimulation of Y1 cells with adrenocorticotropic hormone or 8-bromo-cyclic AMP, the cell surface labeling of the prosegment of PC5A is greatly diminished, whereas the signal for mature PC5A is increased. Moreover, after stimulation, the protease activity of PC5A is enhanced, as evidenced by the cleavage of the PC5A substrates Lefty, ADAMTS-4, endothelial lipase, and PCSK9. Our data suggest a novel mechanism for PC5A activation and substrate cleavage at the cell surface, through a regulated removal of its prosegment. A similar mechanism may also apply to the convertase PACE4, thereby extending our knowledge of the molecular details of the zymogen activation and functions of these heparan sulfate proteoglycan-bound convertases.
Collapse
Affiliation(s)
- Gaétan Mayer
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montréal, Quebec H2W 1R7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Sever S, Altintas MM, Nankoe SR, Möller CC, Ko D, Wei C, Henderson J, del Re EC, Hsing L, Erickson A, Cohen CD, Kretzler M, Kerjaschki D, Rudensky A, Nikolic B, Reiser J. Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease. J Clin Invest 2007. [PMID: 17671649 DOI: 10.1172/jci32022.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Kidney podocytes and their foot processes maintain the ultrafiltration barrier and prevent urinary protein loss (proteinuria). Here we show that the GTPase dynamin is essential for podocyte function. During proteinuric kidney disease, induction of cytoplasmic cathepsin L leads to cleavage of dynamin at an evolutionary conserved site, resulting in reorganization of the podocyte actin cytoskeleton and proteinuria. Dynamin mutants that lack the cathepsin L site, or render the cathepsin L site inaccessible through dynamin self-assembly, are resistant to cathepsin L cleavage. When delivered into mice, these mutants restored podocyte function and resolve proteinuria. Our study identifies dynamin as a critical regulator of renal permselectivity that is specifically targeted by proteolysis under pathological conditions.
Collapse
Affiliation(s)
- Sanja Sever
- Department of Medicine, Nephrology Division and Program in Glomerular Disease, Massachusetts General Hospital (MGH) and Harvard Medical School, Boston, Massachusetts 02129, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sever S, Altintas MM, Nankoe SR, Möller CC, Ko D, Wei C, Henderson J, del Re EC, Hsing L, Erickson A, Cohen CD, Kretzler M, Kerjaschki D, Rudensky A, Nikolic B, Reiser J. Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease. J Clin Invest 2007; 117:2095-104. [PMID: 17671649 PMCID: PMC1934589 DOI: 10.1172/jci32022] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 05/09/2007] [Indexed: 12/11/2022] Open
Abstract
Kidney podocytes and their foot processes maintain the ultrafiltration barrier and prevent urinary protein loss (proteinuria). Here we show that the GTPase dynamin is essential for podocyte function. During proteinuric kidney disease, induction of cytoplasmic cathepsin L leads to cleavage of dynamin at an evolutionary conserved site, resulting in reorganization of the podocyte actin cytoskeleton and proteinuria. Dynamin mutants that lack the cathepsin L site, or render the cathepsin L site inaccessible through dynamin self-assembly, are resistant to cathepsin L cleavage. When delivered into mice, these mutants restored podocyte function and resolve proteinuria. Our study identifies dynamin as a critical regulator of renal permselectivity that is specifically targeted by proteolysis under pathological conditions.
Collapse
Affiliation(s)
- Sanja Sever
- Department of Medicine, Nephrology Division and Program in Glomerular Disease, Massachusetts General Hospital (MGH) and Harvard Medical School, Boston, Massachusetts, USA.
Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Immunology, University of Washington, Seattle, Washington, USA.
Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina, USA.
Medizinische Poliklinik, University of Munich, Munich, Germany.
Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Clinical Institute of Pathology, Vienna Medical University, Vienna, Austria.
Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mehmet M. Altintas
- Department of Medicine, Nephrology Division and Program in Glomerular Disease, Massachusetts General Hospital (MGH) and Harvard Medical School, Boston, Massachusetts, USA.
Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Immunology, University of Washington, Seattle, Washington, USA.
Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina, USA.
Medizinische Poliklinik, University of Munich, Munich, Germany.
Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Clinical Institute of Pathology, Vienna Medical University, Vienna, Austria.
Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, Washington, USA
| | - Sharif R. Nankoe
- Department of Medicine, Nephrology Division and Program in Glomerular Disease, Massachusetts General Hospital (MGH) and Harvard Medical School, Boston, Massachusetts, USA.
Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Immunology, University of Washington, Seattle, Washington, USA.
Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina, USA.
Medizinische Poliklinik, University of Munich, Munich, Germany.
Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Clinical Institute of Pathology, Vienna Medical University, Vienna, Austria.
Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, Washington, USA
| | - Clemens C. Möller
- Department of Medicine, Nephrology Division and Program in Glomerular Disease, Massachusetts General Hospital (MGH) and Harvard Medical School, Boston, Massachusetts, USA.
Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Immunology, University of Washington, Seattle, Washington, USA.
Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina, USA.
Medizinische Poliklinik, University of Munich, Munich, Germany.
Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Clinical Institute of Pathology, Vienna Medical University, Vienna, Austria.
Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, Washington, USA
| | - David Ko
- Department of Medicine, Nephrology Division and Program in Glomerular Disease, Massachusetts General Hospital (MGH) and Harvard Medical School, Boston, Massachusetts, USA.
Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Immunology, University of Washington, Seattle, Washington, USA.
Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina, USA.
Medizinische Poliklinik, University of Munich, Munich, Germany.
Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Clinical Institute of Pathology, Vienna Medical University, Vienna, Austria.
Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, Washington, USA
| | - Changli Wei
- Department of Medicine, Nephrology Division and Program in Glomerular Disease, Massachusetts General Hospital (MGH) and Harvard Medical School, Boston, Massachusetts, USA.
Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Immunology, University of Washington, Seattle, Washington, USA.
Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina, USA.
Medizinische Poliklinik, University of Munich, Munich, Germany.
Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Clinical Institute of Pathology, Vienna Medical University, Vienna, Austria.
Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, Washington, USA
| | - Joel Henderson
- Department of Medicine, Nephrology Division and Program in Glomerular Disease, Massachusetts General Hospital (MGH) and Harvard Medical School, Boston, Massachusetts, USA.
Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Immunology, University of Washington, Seattle, Washington, USA.
Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina, USA.
Medizinische Poliklinik, University of Munich, Munich, Germany.
Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Clinical Institute of Pathology, Vienna Medical University, Vienna, Austria.
Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, Washington, USA
| | - Elizabetta C. del Re
- Department of Medicine, Nephrology Division and Program in Glomerular Disease, Massachusetts General Hospital (MGH) and Harvard Medical School, Boston, Massachusetts, USA.
Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Immunology, University of Washington, Seattle, Washington, USA.
Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina, USA.
Medizinische Poliklinik, University of Munich, Munich, Germany.
Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Clinical Institute of Pathology, Vienna Medical University, Vienna, Austria.
Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, Washington, USA
| | - Lianne Hsing
- Department of Medicine, Nephrology Division and Program in Glomerular Disease, Massachusetts General Hospital (MGH) and Harvard Medical School, Boston, Massachusetts, USA.
Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Immunology, University of Washington, Seattle, Washington, USA.
Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina, USA.
Medizinische Poliklinik, University of Munich, Munich, Germany.
Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Clinical Institute of Pathology, Vienna Medical University, Vienna, Austria.
Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, Washington, USA
| | - Ann Erickson
- Department of Medicine, Nephrology Division and Program in Glomerular Disease, Massachusetts General Hospital (MGH) and Harvard Medical School, Boston, Massachusetts, USA.
Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Immunology, University of Washington, Seattle, Washington, USA.
Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina, USA.
Medizinische Poliklinik, University of Munich, Munich, Germany.
Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Clinical Institute of Pathology, Vienna Medical University, Vienna, Austria.
Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, Washington, USA
| | - Clemens D. Cohen
- Department of Medicine, Nephrology Division and Program in Glomerular Disease, Massachusetts General Hospital (MGH) and Harvard Medical School, Boston, Massachusetts, USA.
Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Immunology, University of Washington, Seattle, Washington, USA.
Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina, USA.
Medizinische Poliklinik, University of Munich, Munich, Germany.
Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Clinical Institute of Pathology, Vienna Medical University, Vienna, Austria.
Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, Washington, USA
| | - Matthias Kretzler
- Department of Medicine, Nephrology Division and Program in Glomerular Disease, Massachusetts General Hospital (MGH) and Harvard Medical School, Boston, Massachusetts, USA.
Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Immunology, University of Washington, Seattle, Washington, USA.
Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina, USA.
Medizinische Poliklinik, University of Munich, Munich, Germany.
Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Clinical Institute of Pathology, Vienna Medical University, Vienna, Austria.
Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, Washington, USA
| | - Dontscho Kerjaschki
- Department of Medicine, Nephrology Division and Program in Glomerular Disease, Massachusetts General Hospital (MGH) and Harvard Medical School, Boston, Massachusetts, USA.
Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Immunology, University of Washington, Seattle, Washington, USA.
Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina, USA.
Medizinische Poliklinik, University of Munich, Munich, Germany.
Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Clinical Institute of Pathology, Vienna Medical University, Vienna, Austria.
Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, Washington, USA
| | - Alexander Rudensky
- Department of Medicine, Nephrology Division and Program in Glomerular Disease, Massachusetts General Hospital (MGH) and Harvard Medical School, Boston, Massachusetts, USA.
Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Immunology, University of Washington, Seattle, Washington, USA.
Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina, USA.
Medizinische Poliklinik, University of Munich, Munich, Germany.
Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Clinical Institute of Pathology, Vienna Medical University, Vienna, Austria.
Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, Washington, USA
| | - Boris Nikolic
- Department of Medicine, Nephrology Division and Program in Glomerular Disease, Massachusetts General Hospital (MGH) and Harvard Medical School, Boston, Massachusetts, USA.
Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Immunology, University of Washington, Seattle, Washington, USA.
Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina, USA.
Medizinische Poliklinik, University of Munich, Munich, Germany.
Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Clinical Institute of Pathology, Vienna Medical University, Vienna, Austria.
Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jochen Reiser
- Department of Medicine, Nephrology Division and Program in Glomerular Disease, Massachusetts General Hospital (MGH) and Harvard Medical School, Boston, Massachusetts, USA.
Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Immunology, University of Washington, Seattle, Washington, USA.
Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina, USA.
Medizinische Poliklinik, University of Munich, Munich, Germany.
Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Clinical Institute of Pathology, Vienna Medical University, Vienna, Austria.
Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
40
|
Yanagida-Asanuma E, Asanuma K, Kim K, Donnelly M, Young Choi H, Hyung Chang J, Suetsugu S, Tomino Y, Takenawa T, Faul C, Mundel P. Synaptopodin protects against proteinuria by disrupting Cdc42:IRSp53:Mena signaling complexes in kidney podocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:415-27. [PMID: 17569780 PMCID: PMC1934530 DOI: 10.2353/ajpath.2007.070075] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The actin-based foot processes of kidney podocytes and the interposed slit diaphragm form the final barrier to proteinuria. Mutations affecting several podocyte proteins cause disruption of the filtration barrier and rearrangement of the highly dynamic podocyte actin cytoskeleton. Proteins regulating the plasticity of the podocyte actin cytoskeleton are therefore of critical importance for sustained kidney barrier function. Synaptopodin is an actin-associated protein essential for the integrity of the podocyte actin cytoskeleton because synaptopodin-deficient mice display impaired recovery from protamine sulfate-induced foot process effacement and lipopolysaccharide-induced nephrotic syndrome. Moreover, bigenic heterozygosity for synaptopodin and CD2AP is sufficient to induce spontaneous proteinuria and focal segmental glomerulosclerosis-like glomerular damage in mice. Mechanistically, synaptopodin induces stress fibers by blocking the proteasomal degradation of RhoA. Here we show that synaptopodin directly binds to IRSp53 and suppresses Cdc42:IRSp53:Mena-initiated filopodia formation by blocking the binding of Cdc42 and Mena to IRSp53. The Mena inhibitor FP(4)-Mito suppresses aberrant filopodia formation in synaptopodin knockdown podocytes, and when delivered into mice protects against lipopolysaccharide-induced proteinuria. The identification of synaptopodin as an inhibitor of Cdc42:IRSp53:Mena signaling defines a novel antiproteinuric signaling pathway and offers new targets for the development of antiproteinuric therapeutic modalities.
Collapse
|
41
|
Dandapani SV, Sugimoto H, Matthews BD, Kolb RJ, Sinha S, Gerszten RE, Zhou J, Ingber DE, Kalluri R, Pollak MR. α-Actinin-4 Is Required for Normal Podocyte Adhesion. J Biol Chem 2007; 282:467-77. [PMID: 17082197 DOI: 10.1074/jbc.m605024200] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the alpha-actinin-4 gene ACTN4 cause an autosomal dominant human kidney disease. Mice deficient in alpha-actinin-4 develop a recessive phenotype characterized by kidney failure, proteinuria, glomerulosclerosis, and retraction of glomerular podocyte foot processes. However, the mechanism by which alpha-actinin-4 deficiency leads to glomerular disease has not been defined. Here, we examined the effect of alpha-actinin-4 deficiency on the adhesive properties of podocytes in vivo and in a cell culture system. In alpha-actinin-4-deficient mice, we observed a decrease in the number of podocytes per glomerulus compared with wild-type mice as well as the presence of podocyte markers in the urine. Podocyte cell lines generated from alpha-actinin-4-deficient mice were less adherent than wild-type cells to glomerular basement membrane (GBM) components collagen IV and laminin 10 and 11. We also observed markedly reduced adhesion of alpha-actinin-4-deficient podocytes under increasing shear stresses. This adhesion deficit was restored by transfecting cells with alpha-actinin-4-GFP. We tested the strength of the integrin receptor-mediated linkages to the cytoskeleton by applying force to microbeads bound to integrin using magnetic pulling cytometry. Beads bound to alpha-actinin-4-deficient podocytes showed greater displacement in response to an applied force than those bound to wild-type cells. Consistent with integrin-dependent alpha-actinin-4-mediated adhesion, phosphorylation of beta1-integrins on alpha-actinin-4-deficient podocytes is reduced. We rescued the phosphorylation deficit by transfecting alpha-actinin-4 into alpha-actinin-4-deficient podocytes. These results suggest that alpha-actinin-4 interacts with integrins and strengthens the podocyte-GBM interaction thereby stabilizing glomerular architecture and preventing disease.
Collapse
Affiliation(s)
- Savita V Dandapani
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Möller CC, Wei C, Altintas MM, Li J, Greka A, Ohse T, Pippin JW, Rastaldi MP, Wawersik S, Schiavi S, Henger A, Kretzler M, Shankland SJ, Reiser J. Induction of TRPC6 channel in acquired forms of proteinuric kidney disease. J Am Soc Nephrol 2006; 18:29-36. [PMID: 17167110 DOI: 10.1681/asn.2006091010] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Injury to podocytes and their slit diaphragms typically leads to marked proteinuria. Mutations in the TRPC6 gene that codes for a slit diaphragm-associated, cation-permeable ion channel have been shown recently to co-segregate with hereditary forms of progressive kidney failure. Herein is shown that induced expression of wild-type TRPC6 is a common feature of human proteinuric kidney diseases, with highest induction observed in membranous nephropathy. Cultured podocytes that are exposed to complement upregulate TRPC6 protein. Stimulation of receptor-operated channels in puromycin aminonucleoside-treated podocytes leads to increased calcium influx in a time- and dosage-dependent manner. Mechanistically, it is shown that TRPC6 is functionally connected to the podocyte actin cytoskeleton, which is rearranged upon overexpression of TRPC6. Transient in vivo gene delivery of TRPC6 into mice leads to expression of TRPC6 protein at the slit diaphragm and causes proteinuria. These studies suggest the involvement of TRPC6 in the pathology of nongenetic forms of proteinuric disease.
Collapse
Affiliation(s)
- Clemens C Möller
- Department of Medicine, Nephrology Division, Massachusetts General Hospital and Harvard Medical School, MGH-East, 149 13th Street, Boston, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Boucher E, Mayer G, Londono I, Bendayan M. Expression and localization of MT1-MMP and furin in the glomerular wall of short- and long-term diabetic rats. Kidney Int 2006; 69:1570-7. [PMID: 16541018 DOI: 10.1038/sj.ki.5000316] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diabetic glomerulopathy has been linked to shifts in balance between the synthetic and degradative pathways of the glomerular basement membrane (GBM), a key player in the permselectivity properties of the glomerular wall. The goal of this study was to trace the expression and localization of membrane type-1 metalloprotease (MT1-MMP) and its activating enzyme furin, key proteins involved in basement membrane turnover, in short- and long-term diabetic rat renal tissues. Quantitative immunogold was carried out for MT1-MMP and furin and their expression was evaluated in renal tissues of young and old, control and diabetic rats. To corroborate immunocytochemical findings, Western blots were performed on glomerular lysates. Electron microscopy revealed that the overall expression of MT1-MMP and furin is reduced in plasma membranes of all glomerular cell types of old normoglycemic animals, a phenomenon that is exacerbated in long-term diabetic animals. This observation supports the prevailing theory that diabetes fosters acceleration in the aging process. Interestingly, while biochemical results confirmed a decrease in MT1-MMP expression, an increase in furin was observed. Immunocytochemical studies resolved this discrepancy by tracing the increased furin expression in endoplasmic reticulum and Golgi membranes of podocytes, indicating that furin is retained in the secretory pathway in a diabetic environment. Disturbances at the molecular level of the otherwise tightly regulated MT1-MMP/furin interactions found at the cell surface must account for a lack in extracellular matrix remodeling, increased deposition of GBM material, and loss of glomerular filtration integrity.
Collapse
Affiliation(s)
- E Boucher
- Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
44
|
Koo BH, Longpré JM, Somerville RPT, Alexander JP, Leduc R, Apte SS. Cell-surface Processing of Pro-ADAMTS9 by Furin. J Biol Chem 2006; 281:12485-94. [PMID: 16537537 DOI: 10.1074/jbc.m511083200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Processing of polypeptide precursors by proprotein convertases (PCs) such as furin typically occurs within the trans-Golgi network. Here, we show in a variety of cell types that the propeptide of ADAMTS9 is not excised intracellularly. Pulse-chase analysis in HEK293F cells indicated that the intact zymogen was secreted to the cell surface and was subsequently processed there before release into the medium. The processing occurred via a furin-dependent mechanism as shown using PC inhibitors, lack of processing in furin-deficient cells, and rescue by furin in these cells. Moreover, down-regulation of furin by small interference RNA reduced ADAMTS9 processing in HEK293F cells. PC5A could also process pro-ADAMTS9, but similarly to furin, processed forms were absent intracellularly. Cell-surface, furin-dependent processing of pro-ADAMTS9 creates a precedent for extracellular maturation of endogenously produced secreted proproteins. It also indicates the existence of a variety of mechanisms for processing of ADAMTS proteases.
Collapse
Affiliation(s)
- Bon-Hun Koo
- Department of Biomedical Engineering and Orthopaedic Research Center, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
45
|
Bassi DE, Fu J, Lopez de Cicco R, Klein-Szanto AJP. Proprotein convertases: "master switches" in the regulation of tumor growth and progression. Mol Carcinog 2005; 44:151-61. [PMID: 16167351 DOI: 10.1002/mc.20134] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Proprotein convertases (PCs) are a group of Ca2+-dependent serine proteases that have homology to the endoproteases subtilisin (bacteria) and kexin (yeast). This group is comprised of less than a dozen members, known as furin/PACE, PC1/PC3, PC2, PC4, PACE4, PC5/PC6, PC7/PC8/LPC, SKI/S1P, and NARC-1/PCSK9. Four PCs (Furin, PACE4, PC5, and PC7) have been localized to several different tissues and epithelial or nervous system tumors. PCs activate their cognate substrates by limited proteolysis at the consensus sequence RXR/KR downward arrow. Many PC substrates are well known cancer-associated proteins such as growth factors, growth factor receptors, integrins, and matrix metalloproteases (MMPs). For example, IGF-1 and its receptor, TGF-beta, VEGF-C, and MT-MMPs have direct roles in tumor progression and metastasis. Furin, a well-studied member of the PC family, has been associated with enhanced invasion and proliferation in head and neck, breast, and lung cancer. Conversely, inhibition of PC activity by PDX or several PC pro-segments, resulted in reduced processing of these key cancer-related substrates in human squamous cell carcinomas (SCC), colon adenocarcinoma, and astrocytoma cell lines. In parallel to these changes in cell proliferation and invasiveness as well as metastatic ability were markedly impaired. By controlling the maturation/activation of key cancer-associated proteins, PCs act as "master switches" at different levels during tumor development and progression. The manifold effects of PCs, influencing tumor cell proliferation, motility, adhesiveness, and invasiveness, should be exploited by further developing competitive/inhibitory therapeutic strategies that would be able to neutralize simultaneously the most salient cancer cell properties.
Collapse
Affiliation(s)
- Daniel E Bassi
- Department of Pathology and Tumor Cell Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | |
Collapse
|
46
|
Jin W, Fuki IV, Seidah NG, Benjannet S, Glick JM, Rader DJ. Proprotein Covertases Are Responsible for Proteolysis and Inactivation of Endothelial Lipase. J Biol Chem 2005; 280:36551-9. [PMID: 16109723 DOI: 10.1074/jbc.m502264200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasma lipoprotein metabolism is tightly regulated by several members of the triglyceride lipase family, including endothelial lipase (EL) and lipoprotein lipase (LPL). Our previous work suggested that EL is proteolytically processed. In this report, we have used a combination of epitope tagging, mutagenesis, and N-terminal sequencing to determine the precise location of the cleavage site within EL. The cleavage occurs immediately after the sequence RNKR, a known recognition sequence for the proprotein convertase (PC) family. We demonstrate that some PCs, but not all, can proteolytically cleave EL at this site and thereby directly regulate EL enzymatic activity through modulating EL cleavage. Furthermore, specific knockdown of individual PCs proves that PCs are the proteases that cleave EL in human endothelial cells. Interestingly, a homologous site in LPL is also cleaved by PCs. This action is unusual for PCs, which are traditionally known as activators of pro-proteins, and highlights a potential role of PCs in lipid metabolism through their proteolytic processing of lipases.
Collapse
Affiliation(s)
- Weijun Jin
- Department of Medicine and Center for Experimental Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, Pennyslvania 19104, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Nour N, Mayer G, Mort JS, Salvas A, Mbikay M, Morrison CJ, Overall CM, Seidah NG. The cysteine-rich domain of the secreted proprotein convertases PC5A and PACE4 functions as a cell surface anchor and interacts with tissue inhibitors of metalloproteinases. Mol Biol Cell 2005; 16:5215-26. [PMID: 16135528 PMCID: PMC1266420 DOI: 10.1091/mbc.e05-06-0504] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The proprotein convertases PC5, PACE4 and furin contain a C-terminal cysteine-rich domain (CRD) of unknown function. We demonstrate that the CRD confers to PC5A and PACE4 properties to bind tissue inhibitors of metalloproteinases (TIMPs) and the cell surface. Confocal microscopy and biochemical analyses revealed that the CRD is essential for cell surface tethering of PC5A and PACE4 and that it colocalizes and coimmunoprecipitates with the full-length and C-terminal domain of TIMP-2. Surface-bound PC5A in TIMP-2 null fibroblasts was only observed upon coexpression with TIMP-2. In COS-1 cells, plasma membrane-associated PC5A can be displaced by heparin, suramin, or heparinases I and III and by competition with excess exogenous TIMP-2. Furthermore, PC5A and TIMP-2 are shown to be colocalized over the surface of enterocytes in the mouse duodenum and jejunum, as well as in liver sinusoids. In conclusion, the CRD of PC5A and PACE4 functions as a cell surface anchor favoring the processing of their cognate surface-anchored substrates, including endothelial lipase.
Collapse
Affiliation(s)
- Nadia Nour
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Gauster M, Hrzenjak A, Schick K, Frank S. Endothelial lipase is inactivated upon cleavage by the members of the proprotein convertase family. J Lipid Res 2005; 46:977-87. [PMID: 15722560 DOI: 10.1194/jlr.m400500-jlr200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mature endothelial lipase (EL) is a 68 kDa glycoprotein. In HepG2 cells infected with adenovirus encoding human EL, the mature EL was detectable in the cell lysates and heparin-releasable fractions. In contrast, cell media of these cells contained two EL fragments: an N-terminal 40 kDa fragment and a C-terminal 28 kDa fragment. N-terminal protein sequencing of the His-tagged 28 kDa fragment revealed that EL is cleaved on the C terminus of the sequence RNKR330, the consensus cleavage sequence for mammalian proprotein convertases (pPCs). Replacement of Arg-330 with Ser by site-directed mutagenesis totally abolished EL processing. EL processing could efficiently be attenuated by specific inhibitors of pPCs, alpha1-antitrypsin Portland (alpha1-PDX) and alpha1-antitrypsin variant AVRR. Coexpression of the pPCs furin, PC6A, and PACE4 with EL resulted in a complete conversion of the full-length EL to a truncated 40 kDa fragment. Exogenously added EL was also processed by cells, and the processing could be attenuated by alpha1-PDX. The expressed N-terminal 40 kDa fragment of EL (EL-40) harboring the catalytic site failed to hydrolyze [14C]NEFA from [14C]dipalmitoyl-PC-labeled HDL. EL-40 was incapable of bridging 125I-labeled HDL to the cells and had no impact on plasma lipid concentration when overexpressed in mice. Thus, our results demonstrate that pPCs are involved in the inactivation process of EL.
Collapse
Affiliation(s)
- Martin Gauster
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University, Graz A-8010, Austria
| | | | | | | |
Collapse
|
49
|
Gerke P, Sellin L, Kretz O, Petraschka D, Zentgraf H, Benzing T, Walz G. NEPH2 Is Located at the Glomerular Slit Diaphragm, Interacts with Nephrin and Is Cleaved from Podocytes by Metalloproteinases. J Am Soc Nephrol 2005; 16:1693-702. [PMID: 15843475 DOI: 10.1681/asn.2004060439] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The NEPH family comprises three transmembrane proteins of the Ig superfamily interacting with the glomerular slit diaphragm proteins podocin and ZO-1. NEPH1 binds to nephrin, another component of the slit diaphragm, and loss of either partner causes heavy proteinuria. NEPH2, which is strongly conserved among a large number of species, is also expressed in the kidney; however, its function is unknown. The authors raised NEPH2 antisera to demonstrate NEPH2 expression in a variety of mouse tissues, including the kidney and a podocyte cell line. The authors localized the expression of NEPH2 to the glomerular slit diaphragm by electron microscopy and show NEPH2 homodimerization and specific interactions with the extracellular domain of nephrin in vitro and in vivo. NEPH1, however, failed to interact with NEPH2. The authors detected immunoreactive NEPH2 in urine of healthy subjects, suggesting that the extracellular domain is cleaved under physiologic conditions. These findings were confirmed in vitro in podocyte cell culture. Shedding is increased by tyrosine phosphatase inhibitors and diminished by GM6001, an inhibitor of metalloproteinases. Overexpression experiments indicate an involvement of the MT1-matrix metalloproteinase. The results suggest a role for NEPH2 in the organization and/or maintenance of the glomerular slit diaphragm that may differ from the functions of NEPH1 and nephrin.
Collapse
Affiliation(s)
- Peter Gerke
- Renal Division, University Hospital Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Mazzone M, Baldassarre M, Beznoussenko G, Giacchetti G, Cao J, Zucker S, Luini A, Buccione R. Intracellular processing and activation of membrane type 1 matrix metalloprotease depends on its partitioning into lipid domains. J Cell Sci 2004; 117:6275-87. [PMID: 15561768 DOI: 10.1242/jcs.01563] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The integral membrane type 1 matrix metalloprotease (MT1-MMP) is a pivotal protease in a number of physiological and pathological processes and confers both non-tumorigenic and tumorigenic cell lines with a specific growth advantage in a three-dimensional matrix. Here we show that, in a melanoma cell line, the majority (80%) of MT1-MMP is sorted to detergent-resistant membrane fractions; however, it is only the detergent-soluble fraction (20%) of MT1-MMP that undergoes intracellular processing to the mature form. Also, this processed MT1-MMP is the sole form responsible for ECM degradation in vitro. Finally, furin-dependent processing of MT1-MMP is shown to occur intracellularly after exit from the Golgi apparatus and prior to its arrival at the plasma membrane. It is thus proposed that the association of MT1-MMP with different membrane subdomains might be crucial in the control of its different activities: for instance in cell migration and invasion and other less defined ones such as MT1-MMP-dependent signaling pathways.
Collapse
Affiliation(s)
- Marco Mazzone
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, S. Maria Imbaro, 66030, Chieti, Italy
| | | | | | | | | | | | | | | |
Collapse
|