1
|
Gari MK, Lee HJ, Inman DR, Burkel BM, Highland MA, Kwon GS, Gupta N, Ponik SM. Inhibiting fibronectin assembly in the breast tumor microenvironment increases cell death and improves response to doxorubicin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637963. [PMID: 40161788 PMCID: PMC11952368 DOI: 10.1101/2025.02.12.637963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Purpose Effective therapies for solid tumors, including breast cancers, are hindered by several roadblocks that can be largely attributed to the fibrotic extracellular matrix (ECM). Fibronectin (FN) is a highly upregulated ECM component in the fibrotic tumor stroma and is associated with poor patient prognosis. This study aimed to investigate the therapeutic potential of an anti-fibrotic peptide that specifically targets FN and blocks the fibrillar assembly of FN. Methods To target FN, we used PEGylated Functional Upstream Domain (PEG-FUD), which binds to the 70 kDa N-terminal region of FN with high affinity, localizes to mammary tumors, and potently inhibits FN assembly in vitro and in vivo. Here, we used the 4T1 tumor model to investigate the efficacy and mechanisms of PEG-FUD to inhibit tumor growth. Results Our data demonstrates that PEG-FUD monotherapy reduces tumor growth without systemic toxicity. Analysis of the tumor microenvironment revealed that PEG-FUD effectively inhibited FN matrix assembly within tumors and reduced adhesion-mediated signaling through α5 integrin and FAK leading to enhanced tumor cell death. Notably, signaling through FAK has been associated with resistance mechanisms to doxorubicin (DOX). Therefore, we tested the combination of PEG-FUD and Dox, which significantly reduced tumor growth by 60% compared to vehicle control and 30% compared to Dox monotherapy. Conclusions Our findings demonstrate that PEG-FUD significantly modifies the peritumoral ECM of breast cancer, leading to increased tumor cell death, and potentiates the efficacy of conventional breast cancer therapy.
Collapse
Affiliation(s)
- Metti K. Gari
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Hye Jin Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - David R. Inman
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian M. Burkel
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Margaret A. Highland
- Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin - Madison, WI, USA
| | - Glen S. Kwon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin - Madison, WI, USA
| | - Nikesh Gupta
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin - Madison, WI, USA
| | - Suzanne M. Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
2
|
Li J, Ma L, Mao S, Wang J, Luo Y. Adsorption Force of Fibronectin Regulates Protein Reorganization, Desorption, and Endocytosis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2156-2166. [PMID: 39828993 DOI: 10.1021/acs.langmuir.4c02526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Protein adsorption on biomaterials occurs before cell adhesion. To adapt the properties of biomaterials, adhered cells may utilize and modify adsorbed proteins for survival and function. In this process, the protein-material interfacial force (Fad) is supposed to play vital roles, which, however, has received little attention. Here, we found that rat mesenchymal stem cells (rMSCs) can utilize the adsorbed fibronectin (FN) via reorganization, desorption, or endocytosis, and these utilization processes are regulated by Fad through regulating cell adhesion and force balance between the cell traction force and Fad. Furthermore, protein utilization has an Fad-dependent temporal sequence. On low Fad surface, FN endocytosis might happen prior to FN desorption and aggregation. This work confirms the importance of Fad in protein utilization and provides new insight into the mechanism by which cells process their surrounding ECM proteins, which may help to guide the design of better biomaterials.
Collapse
Affiliation(s)
- Junyao Li
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Lin Ma
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Shilong Mao
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Jinfeng Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing 400030, China
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yanfeng Luo
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
3
|
Pu C, Shi D, Ingrassia M, Gedeon H, Chu T, Zhang J, Wang C. Skincare Benefits of a Postbiotic Ferment Produced Through Djon Djon Mushroom Fermentation by Saccharomyces. J Cosmet Dermatol 2025; 24:e70067. [PMID: 39968713 PMCID: PMC11836922 DOI: 10.1111/jocd.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Djon Djon is a particularly special black mushroom indigenous to Haiti that has a long history in both their cuisine and in traditional medicine. Centuries of folkloric utilization of theses "medicinal" botanicals tend to indicate the presence of a potentially efficacious western medicine entity. OBJECTIVES With the advantages afforded by both traditional medicines and fermentation, we endeavored to investigate if fermentation of Djon Djon mushrooms can provide skin care benefits. METHODS In this study, active Djon Djon fermentation broth (DDF) was obtained using Saccharomyces, and anti-inflammatory efficacy was assessed in cultured systems using human keratinocytes and fibroblasts, exposed to either UVB or H2O2 respectively. In addition, RNA-Seq technology was employed to further characterize the mechanisms of DDF following ultraviolet irradiation. RESULTS Characterization of the DDF displayed a high number of polysaccharides and peptides present following fermentation, that function to scavenge intracellular ROS, decrease MDA content, while increasing the levels of CAT, COL-I, and HA in HSF induced by H2O2. In addition, levels of pro-inflammatory factors (IL-6, IL-1β, and TNF-α) were decreased in UVB irradiated HaCaT cells that had been treated with DDF. Analysis of cellular RNA indicated that DDF altered the DEGs involved in the AGE-RAGE signaling pathway suggesting that this signaling cascade is inhibited by DDF. Additionally, DDF also influenced the metabolism of arachidonic acid, histidine, and phenylalanine, which are involved in inflammatory processes. CONCLUSION DDF can alleviate oxidative stress damage caused by hydrogen peroxide and photodamage caused by UVB, and the mechanism by which DDF protects skin cells is revealed, displaying the potential benefits of fermented DjonDjon in skincare.
Collapse
Affiliation(s)
- Chunhong Pu
- Beijing Key Lab of Plant Resource Research and DevelopmentBeijing Technology and Business UniversityBeijingP. R. China
- Institute of Cosmetic Regulatory ScienceBeijing Technology and Business UniversityBeijingP. R. China
| | - Doudou Shi
- Beishang Jiamei (Beijing) Technology Co. Ltd.BeijingP. R. China
| | | | | | - Tye Chu
- Dermegen Inc.HauppaugeNew YorkUSA
| | - Jiachan Zhang
- Beijing Key Lab of Plant Resource Research and DevelopmentBeijing Technology and Business UniversityBeijingP. R. China
- Institute of Cosmetic Regulatory ScienceBeijing Technology and Business UniversityBeijingP. R. China
| | - Changtao Wang
- Beijing Key Lab of Plant Resource Research and DevelopmentBeijing Technology and Business UniversityBeijingP. R. China
- Institute of Cosmetic Regulatory ScienceBeijing Technology and Business UniversityBeijingP. R. China
| |
Collapse
|
4
|
Nguyen A, Heim JB, Cordara G, Chan MC, Johannesen H, Charlesworth C, Li M, Azumaya CM, Madden B, Krengel U, Meves A, Campbell MG. Structural and functional characterization of integrin α5-targeting antibodies for anti-angiogenic therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631572. [PMID: 39829743 PMCID: PMC11741253 DOI: 10.1101/2025.01.08.631572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Integrins are a large family of heterodimeric receptors important for cell adhesion and signaling. Integrin α5β1, also known as the fibronectin receptor, is a key mediator of angiogenesis and its dysregulation is associated with tumor proliferation, progression, and metastasis. Despite numerous efforts, α5β1-targeting therapeutics have been unsuccessful in large part due to efficacy and off-target effects. To mediate activation and signaling, integrins undergo drastic conformational changes. However, how therapeutics influence or are affected by integrin conformation remains incompletely characterized. Using cell biology, biophysics, and electron microscopy, we shed light on these relationships by characterizing two potentially therapeutic anti-α5β1 antibodies, BIIG2 and MINT1526A. We show that both antibodies bind α5β1 with nanomolar affinity and reduce angiogenesis in vitro. We demonstrate BIIG2 reduces tumor growth in two human xenograft mouse models and exhibits a strong specificity for connective tissue-resident fibroblasts and melanoma cells. Using electron microscopy, we map out the molecular interfaces mediating the integrin-antibody interactions and reveal that although both antibodies have overlapping epitopes and block fibronectin binding via steric hindrance, the effect on the conformational equilibrium is drastically different. While MINT1526A constricts α5β1's range of flexibility, BIIG2 binds without restricting the available conformational states. These mechanistic insights, coupled with the functional analysis, guide which aspects should be prioritized to avoid off-target effects or partial agonism in the design of future integrin-targeted therapeutics.
Collapse
Affiliation(s)
- Adam Nguyen
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Biological Physics Structure and Design Program, University of Washington, Seattle, Washington 98195, USA
| | - Joel B. Heim
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway
- Current Address: Nykode Therapeutics, Oslo Science Park, 0349 Oslo, Norway
| | - Gabriele Cordara
- Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway
| | - Matthew C. Chan
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Hedda Johannesen
- Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway
| | - Cristine Charlesworth
- Medical Genome Facility, Proteomics Core, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Ming Li
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Caleigh M. Azumaya
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Current Address: Genentech, South San Francisco, California 94080, USA
| | - Benjamin Madden
- Medical Genome Facility, Proteomics Core, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Ute Krengel
- Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway
| | - Alexander Meves
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Melody G. Campbell
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Biological Physics Structure and Design Program, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
5
|
Benita BA, Koss KM. Peptide discovery across the spectrum of neuroinflammation; microglia and astrocyte phenotypical targeting, mediation, and mechanistic understanding. Front Mol Neurosci 2024; 17:1443985. [PMID: 39634607 PMCID: PMC11616451 DOI: 10.3389/fnmol.2024.1443985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/24/2024] [Indexed: 12/07/2024] Open
Abstract
Uncontrolled and chronic inflammatory states in the Central Nervous System (CNS) are the hallmark of neurodegenerative pathology and every injury or stroke-related insult. The key mediators of these neuroinflammatory states are glial cells known as microglia, the resident immune cell at the core of the inflammatory event, and astroglia, which encapsulate inflammatory insults in proteoglycan-rich scar tissue. Since the majority of neuroinflammation is exclusively based on the responses of said glia, their phenotypes have been identified to be on an inflammatory spectrum encompassing developmental, homeostatic, and reparative behaviors as opposed to their ability to affect devastating cell death cascades and scar tissue formation. Recently, research groups have focused on peptide discovery to identify these phenotypes, find novel mechanisms, and mediate or re-engineer their actions. Peptides retain the diverse function of proteins but significantly reduce the activity dependence on delicate 3D structures. Several peptides targeting unique phenotypes of microglia and astroglia have been identified, along with several capable of mediating deleterious behaviors or promoting beneficial outcomes in the context of neuroinflammation. A comprehensive review of the peptides unique to microglia and astroglia will be provided along with their primary discovery methodologies, including top-down approaches using known biomolecules and naïve strategies using peptide and phage libraries.
Collapse
Affiliation(s)
| | - Kyle M. Koss
- Department of Surgery, University of Arizona, Tucson, AZ, United States
- Department of Neurobiology, University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
- Sealy Institute for Drug Discovery (SIDD), University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
| |
Collapse
|
6
|
Marvin JC, Liu EJ, Chen HH, Shiovitz DA, Andarawis-Puri N. Proteins Derived From MRL/MpJ Tendon Provisional Extracellular Matrix and Secretome Promote Pro-Regenerative Tenocyte Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602500. [PMID: 39026846 PMCID: PMC11257490 DOI: 10.1101/2024.07.08.602500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Tendinopathies are prevalent musculoskeletal conditions that have no effective therapies to attenuate scar formation. In contrast to other adult mammals, the tendons of Murphy Roths Large (MRL/MpJ) mice possess a superior healing capacity following acute and overuse injuries. Here, we hypothesized that the application of biological cues derived from the local MRL/MpJ tendon environment would direct otherwise scar-mediated tenocytes towards a pro-regenerative MRL/MpJ-like phenotype. We identified soluble factors enriched in the secretome of MRL/MpJ tenocytes using bioreactor systems and quantitative proteomics. We then demonstrated that the combined administration of structural and soluble constituents isolated from decellularized MRL/MpJ tendon provisional ECM (dPECM) and the secretome stimulate scar-mediated rodent tenocytes towards enhanced mechanosensitivity, proliferation, intercellular communication, and ECM deposition associated with MRL/MpJ cell behavior. Our findings highlight key biological mechanisms that drive MRL/MpJ tenocyte activity and their interspecies utility to be harnessed for therapeutic strategies that promote pro-regenerative healing outcomes. Teaser Proteins enriched in a super-healer mouse strain elicit interspecies utility in promoting pro-regenerative tenocyte behavior.
Collapse
|
7
|
Jimenez L, Stolzenbach V, Ozawa PMM, Ramirez-Solano M, Liu Q, Sage J, Weaver AM. Extracellular vesicles from non-neuroendocrine SCLC cells promote adhesion and survival of neuroendocrine SCLC cells. Proteomics 2024; 24:e2300030. [PMID: 37926756 PMCID: PMC11648350 DOI: 10.1002/pmic.202300030] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
Small cell lung cancer (SCLC) tumors are made up of distinct cell subpopulations, including neuroendocrine (NE) and non-neuroendocrine (non-NE) cells. While secreted factors from non-NE SCLC cells have been shown to support the growth of the NE cells, the underlying molecular factors are not well understood. Here, we show that exosome-type small extracellular vesicles (SEVs) secreted from non-NE SCLC cells promote adhesion and survival of NE SCLC cells. Proteomic analysis of purified SEVs revealed that extracellular matrix (ECM) proteins and integrins are highly enriched in SEVs of non-NE cells whereas nucleic acid-binding proteins are enriched in SEVs purified from NE cells. Addition of select purified ECM proteins identified in purified extracellular vesicles (EVs), specifically fibronectin, laminin 411, and laminin 511, were able to substitute for the role of non-NE-derived SEVs in promoting adhesion and survival of NE SCLC cells. Those same proteins were differentially expressed by human SCLC subtypes. These data suggest that ECM-carrying SEVs secreted by non-NE cells play a key role in supporting the growth and survival of NE SCLC cells.
Collapse
Affiliation(s)
- Lizandra Jimenez
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Center for Extracellular Vesicle Research, Vanderbilt University, Nashville, Tennessee
| | - Victor Stolzenbach
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Center for Extracellular Vesicle Research, Vanderbilt University, Nashville, Tennessee
| | - Patricia M. M. Ozawa
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Center for Extracellular Vesicle Research, Vanderbilt University, Nashville, Tennessee
| | | | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Julien Sage
- Department of Pediatrics, Stanford Medicine, Stanford, California
- Department of Genetics, Stanford Medicine, Stanford, California
| | - Alissa M. Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Center for Extracellular Vesicle Research, Vanderbilt University, Nashville, Tennessee
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
8
|
Ortega JA, Soares de Aguiar GP, Chandravanshi P, Levy N, Engel E, Álvarez Z. Exploring the properties and potential of the neural extracellular matrix for next-generation regenerative therapies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1962. [PMID: 38723788 DOI: 10.1002/wnan.1962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024]
Abstract
The extracellular matrix (ECM) is a dynamic and complex network of proteins and molecules that surrounds cells and tissues in the nervous system and orchestrates a myriad of biological functions. This review carefully examines the diverse interactions between cells and the ECM, as well as the transformative chemical and physical changes that the ECM undergoes during neural development, aging, and disease. These transformations play a pivotal role in shaping tissue morphogenesis and neural activity, thereby influencing the functionality of the central nervous system (CNS). In our comprehensive review, we describe the diverse behaviors of the CNS ECM in different physiological and pathological scenarios and explore the unique properties that make ECM-based strategies attractive for CNS repair and regeneration. Addressing the challenges of scalability, variability, and integration with host tissues, we review how advanced natural, synthetic, and combinatorial matrix approaches enhance biocompatibility, mechanical properties, and functional recovery. Overall, this review highlights the potential of decellularized ECM as a powerful tool for CNS modeling and regenerative purposes and sets the stage for future research in this exciting field. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- J Alberto Ortega
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Gisele P Soares de Aguiar
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Palash Chandravanshi
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Natacha Levy
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Elisabeth Engel
- IMEM-BRT Group, Department of Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), Barcelona, Spain
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Zaida Álvarez
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
9
|
Platt CI, Stewart-McGuinness C, Eckersley A, Wilkins L, Sherratt MJ. Acute exposure to ultraviolet radiation targets proteins involved in collagen fibrillogenesis. Front Physiol 2024; 15:1352161. [PMID: 38559576 PMCID: PMC10978599 DOI: 10.3389/fphys.2024.1352161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction: Exposure to chronic, low-dose UV irradiation (UVR) can lead to premature ageing of the skin. Understanding which proteins are affected by acute UVR and photo-dynamically produced reactive oxygen species (ROS) could help to inform strategies to delay photoageing. Conventional biochemical analyses can be used to characterize UVR/ROS-induced damage on a protein-by-protein basis and we have previously shown using SDS-PAGE that collagen I and plasma fibronectin are respectively resistant and susceptible to physiological doses of UVR. The aim of this study was to screen a complex proteome for UVR-affected proteins. Methods: This study employed a sensitive mass spectrometry technique (peptide location fingerprinting: PLF) which can identify structure associated differences following trypsin digestion to characterize the impact of UVR exposure on purified collagen I and tissue fibronectin and to identify UVR-susceptible proteins in an ECM-enriched proteome. Results: Using LC/MS-MS and PLF we show that purified mature type-I collagen is resistant to UVR, whereas purified tissue fibronectin is susceptible. UV irradiation of a human dermal fibroblast-deposited ECM-enriched proteome in vitro, followed by LC/MS-MS and PLF analysis revealed two protein cluster groups of UV susceptible proteins involved in i) matrix collagen fibril assembly and ii) protein translation and motor activity. Furthermore, PLF highlighted UV susceptible domains within targeted matrix proteins, suggesting that UV damage of matrix proteins is localized. Discussion: Here we show that PLF can be used to identify protein targets of UVR and that collagen accessory proteins may be key targets in UVR exposed tissues.
Collapse
Affiliation(s)
- Christopher I. Platt
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Callum Stewart-McGuinness
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Alexander Eckersley
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Loren Wilkins
- School of Medical Sciences, The University of Manchester, Manchester, United Kingdom
| | - Michael J. Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
10
|
Xu T, Xu X, Liu D, Chang D, Li S, Sun Y, Xie J, Ju S. Visual Investigation of Tumor-Promoting Fibronectin Potentiated by Obesity in Pancreatic Ductal Adenocarcinoma Using an MR/NIRF Dual-Modality Dendrimer Nanoprobe. Adv Healthc Mater 2023; 12:e2300787. [PMID: 37057680 DOI: 10.1002/adhm.202300787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Indexed: 04/15/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease characterized by dense stroma. Obesity is an important metabolic factor that greatly increases PDAC risk and mortality, worsens progression and leads to poor chemotherapeutic outcomes. With omics analysis, magnetic resonance and near-infrared fluorescence (MR/NIRF) dual-modality imaging and molecular functional verification, obesity as an important risk factor is proved to modulate the extracellular matrix (ECM) components and enhance Fibronectin (FN) infiltration in the PDAC stroma, that promotes tumor progression and worsens response to chemotherapy by reducing drug delivery. In the study, to visually evaluate FN in vivo and guide PDAC therapy, an FN-targeted nanoprobe, NP-CREKA, is synthesized by conjugating gadolinium chelates, NIR797 and fluorescein isothiocyanate to a polyamidoamine dendrimer functionalized with targeting peptides. A dual-modality strategy combining MR and NIRF imaging is applied, allowing effective visualization of FN in orthotopic PDAC with high spatial resolution, ideal sensitivity and excellent penetrability, especially in obese mice. In conclusion, the findings provide new insights into the potential of FN as an ideal target for therapeutic evaluation and improving treatment efficacy in PDAC, hopefully improving the specific management of PDAC in lean and obese hosts.
Collapse
Affiliation(s)
- Tingting Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Xiaoxuan Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Dongfang Liu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Di Chang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Siqi Li
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Yeyao Sun
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Jinbing Xie
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| |
Collapse
|
11
|
He J, Chuang CY, Hawkins CL, Davies MJ, Hägglund P. Exposure to peroxynitrite impacts the ability of anastellin to modulate the structure of extracellular matrix. Free Radic Biol Med 2023; 206:83-93. [PMID: 37385567 DOI: 10.1016/j.freeradbiomed.2023.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/14/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
The extracellular matrix (ECM) of tissues consists of multiple proteins, proteoglycans and glycosaminoglycans that form a 3-dimensional meshwork structure. This ECM is exposed to oxidants including peroxynitrite (ONOO-/ONOOH) generated by activated leukocytes at sites of inflammation. Fibronectin, a major ECM protein targeted by peroxynitrite, self-assembles into fibrils in a cell-dependent process. Fibrillation of fibronectin can also be initiated in a cell-independent process in vitro by anastellin, a recombinant fragment of the first type-III module in fibronectin. Previous studies demonstrated that modification of anastellin by peroxynitrite impairs its fibronectin polymerization activity. We hypothesized that exposure of anastellin to peroxynitrite would also impact on the structure of ECM from cells co-incubated with anastellin, and influence interactions with cell surface receptors. Fibronectin fibrils in the ECM of primary human coronary artery smooth muscle cells exposed to native anastellin are diminished, an effect which is reversed to a significant extent by pre-incubation of anastellin with high (200-fold molar excess) concentrations of peroxynitrite. Treatment with low or moderate levels of peroxynitrite (2-20 fold molar excess) influences interactions between anastellin and heparin polysaccharides, as a model of cell-surface proteoglycan receptors, and modulates anastellin-mediated alterations in fibronectin cell adhesiveness. Based on these observations it is concluded that peroxynitrite has a dose-dependent influence on the ability of anastellin to modulate ECM structure via interactions with fibronectin and other cellular components. These observations may have pathological implications since alterations in fibronectin processing and deposition have been associated with several pathologies, including atherosclerosis.
Collapse
Affiliation(s)
- Jianfei He
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christine Y Chuang
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Per Hägglund
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Lungu CN, Mehedinti MC. Molecular Motifs in Vascular Morphogenesis: Vascular Endothelial Growth Factor A (VEGFA) as the Leading Promoter of Angiogenesis. Int J Mol Sci 2023; 24:12169. [PMID: 37569543 PMCID: PMC10418718 DOI: 10.3390/ijms241512169] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Tissular hypoxia stimulates vascular morphogenesis. Vascular morphogenesis shapes the cell and, consecutively, tissue growth. The development of new blood vessels is intermediated substantially through the tyrosine kinase pathway. There are several types of receptors inferred to be located in the blood vessel structures. Vascular endothelial growth factor A (VEGF-A) is the leading protagonist of angiogenesis. VEGF-A's interactions with its receptors VEGFR1, VEGFR2, and VEGFR3, together with disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1), connective tissue growth factor (CTGF), and neuropilin-1 (NRP1), independently, are studied computationally. Peripheral artery disease (PAD), which results in tissue ischemia, is more prevalent in the senior population. Presently, medical curatives used to treat cases of PAD-antiplatelet and antithrombotic agents, statins, antihypertensive remedies with ACE (angiotensin-converting enzyme) impediments, angiotensin receptor blockers (ARB) or β- blockers, blood glucose control, and smoking cessation-are not effective. These curatives were largely established from the treatment of complaint cases of coronary disease. However, these medical curatives do not ameliorate lower limb perfusion in cases of PAD. Likewise, surgical or endovascular procedures may be ineffective in relieving symptoms. Eventually, after successful large vessel revascularization, the residual microvascular circulation may well limit the effectiveness of curatives in cases of PAD. It would thus feel rational to attempt to ameliorate perfusion in PAD by enhancing vascular rejuvenescence and function. Likewise, stimulating specific angiogenesis in these cases (PAD) can ameliorate the patient's symptomatology. Also, the quality of life of PAD patients can be improved by developing new vasodilative and angiogenetic molecules that stimulate the tyrosine kinase pathway. In this respect, the VEGFA angiogenetic pathway was explored computationally. Docking methodologies, molecular dynamics, and computational molecular design methodologies were used. VEGFA's interaction with its target was primarily studied. Common motifs in the vascular morphogenesis pathway are suggested using conformational energy and Riemann spaces. The results show that interaction with VEGFR2 and ADAMTS1 is pivotal in the angiogenetic process. Also, the informational content of two VEGFA complexes, VEGFR2 and ADAMTS1, is crucial in the angiogenesis process.
Collapse
Affiliation(s)
- Claudiu N. Lungu
- Departament of Functional and Morphological Science, Faculty of Medicine and Pharamacy, Dunarea de Jos University, 800010 Galati, Romania
| | | |
Collapse
|
13
|
Yang ML, Huang YJ, Lin YC, Lin YH, Hung TT, Shiau AL, Cheng HC, Wu CL. Multivalent dipeptidyl peptidase IV fragment-nanogold complex inhibits cancer metastasis by blocking pericellular fibronectin. BIOMATERIALS ADVANCES 2023; 148:213357. [PMID: 36871348 DOI: 10.1016/j.bioadv.2023.213357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
Inhibition of cancer metastasis is a fundamental challenge in cancer treatment. We have previously shown that metastasis of cancer cells in the lung is critically promoted by the interaction between the superficial dipeptidyl peptidase IV (DPP IV) expressed on lung endothelial cells and the pericellular polymeric fibronectin (polyFN) of circulating cancer cells. In the present study, we aimed to search for DPP IV fragments with high avidity to polyFN and develop FN-targeted gold nanoparticles (AuNPs) conjugated with DPP IV fragments for treating cancer metastasis. We first identified a DPP IV fragment encompassing amino acids 29-130 of DPP IV, designated DP4A, which contained FN-binding sites and could specifically bind to FN immobilized on gelatin agarose beads. Furthermore, we conjugated maltose binding protein (MBP)-fused DP4A proteins to AuNPs for fabricating a DP4A-AuNP complex and evaluated its FN-targeted activity in vitro and anti-metastatic efficacy in vivo. Our results show that DP4A-AuNP exhibited higher binding avidity to polyFN than DP4A by 9 folds. Furthermore, DP4A-AuNP was more potent than DP4A in inhibiting DPP IV binding to polyFN. In terms of polyFN-targeted effect, DP4A-AuNP interacted with FN-overexpressing cancer cells and was endocytosed into cells 10 to 100 times more efficiently than untargeted MBP-AuNP or PEG-AuNP with no noticeable cytotoxicity. Furthermore, DP4A-AuNP was superior to DP4A in competitive inhibition of cancer cell adhesion to DPP IV. Confocal microscopy analysis revealed that binding of DP4A-AuNP to pericellular FN induced FN clustering without altering its surface expression on cancer cells. Notably, intravenous treatment with DP4A-AuNP significantly reduced metastatic lung tumor nodules and prolonged the survival in the experimental metastatic 4T1 tumor model. Collectively, our findings suggest that the DP4A-AuNP complex with potent FN-targeted effects may have therapeutic potential for prevention and treatment of tumor metastasis to the lung.
Collapse
Affiliation(s)
- Mei-Lin Yang
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Jang Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chuan Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Hsiu Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Ting Hung
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ai-Li Shiau
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Hung-Chi Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Chao-Liang Wu
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
14
|
Schmidt A, da Silva Brito WA, Singer D, Mühl M, Berner J, Saadati F, Wolff C, Miebach L, Wende K, Bekeschus S. Short- and long-term polystyrene nano- and microplastic exposure promotes oxidative stress and divergently affects skin cell architecture and Wnt/beta-catenin signaling. Part Fibre Toxicol 2023; 20:3. [PMID: 36647127 PMCID: PMC9844005 DOI: 10.1186/s12989-023-00513-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
Nano- and microplastic particles (NMP) are strong environmental contaminants affecting marine ecosystems and human health. The negligible use of biodegradable plastics and the lack of knowledge about plastic uptake, accumulation, and functional consequences led us to investigate the short- and long-term effects in freshly isolated skin cells from mice. Using fluorescent NMP of several sizes (200 nm to 6 µm), efficient cellular uptake was observed, causing, however, only minor acute toxicity as metabolic activity and apoptosis data suggested, albeit changes in intracellular reactive species and thiol levels were observed. The internalized NMP induced an altered expression of various targets of the nuclear factor-2-related transcription factor 2 pathway and were accompanied by changed antioxidant and oxidative stress signaling responses, as suggested by altered heme oxygenase 1 and glutathione peroxide 2 levels. A highly increased beta-catenin expression under acute but not chronic NMP exposure was concomitant with a strong translocation from membrane to the nucleus and subsequent transcription activation of Wnt signaling target genes after both single-dose and chronic long-term NMP exposure. Moreover, fibroblast-to-myofibroblast transdifferentiation accompanied by an increase of α smooth muscle actin and collagen expression was observed. Together with several NMP-induced changes in junctional and adherence protein expression, our study for the first time elucidates the acute and chronic effects of NMP of different sizes in primary skin cells' signaling and functional biology, contributing to a better understanding of nano- and microplastic to health risks in higher vertebrates.
Collapse
Affiliation(s)
- Anke Schmidt
- grid.461720.60000 0000 9263 3446ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Walison Augusto da Silva Brito
- grid.461720.60000 0000 9263 3446ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany ,grid.411400.00000 0001 2193 3537Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina, Brazil
| | - Debora Singer
- grid.461720.60000 0000 9263 3446ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Melissa Mühl
- grid.461720.60000 0000 9263 3446ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Julia Berner
- grid.461720.60000 0000 9263 3446ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany ,grid.5603.0Department Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., Greifswald, Germany
| | - Fariba Saadati
- grid.461720.60000 0000 9263 3446ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Christina Wolff
- grid.461720.60000 0000 9263 3446ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Lea Miebach
- grid.461720.60000 0000 9263 3446ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany ,grid.5603.0Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., Greifswald, Germany
| | - Kristian Wende
- grid.461720.60000 0000 9263 3446ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| |
Collapse
|
15
|
Wang Z, Chen C, Su Y, Ke N. Function and characteristics of TIM‑4 in immune regulation and disease (Review). Int J Mol Med 2022; 51:10. [PMID: 36524355 PMCID: PMC9848438 DOI: 10.3892/ijmm.2022.5213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
T‑cell/transmembrane immunoglobulin and mucin domain containing 4 (TIM‑4) is a phosphatidylserine receptor that is mainly expressed on antigen‑presenting cells and is involved in the recognition and efferocytosis of apoptotic cells. TIM‑4 has been found to be expressed in immune cells such as natural killer T, B and mast cells and to participate in multiple aspects of immune regulation, suggesting that TIM‑4 may be involved in a variety of immune‑related diseases. Recent studies have confirmed that TIM‑4 is also abnormally expressed in a variety of malignant tumor cells and is closely associated with the occurrence and development of tumors and the tumor immune microenvironment. The present study aimed to describe the expression and functional characteristics of TIM‑4 in detail and to comprehensively discuss its role in pathophysiological processes such as infection, allergy, metabolism, autoimmunity and tumor immunity. The current review provided a comprehensive understanding of the functions and characteristics of TIM‑4, as well as novel ideas for the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Ziyao Wang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chen Chen
- Department of Radiology, The First People's Hospital of Chengdu, Chengdu, Sichuan 610095, P.R. China
| | - Yingzhen Su
- Kunming University School of Medicine, Kunming University School, Kunming, Yunnan 650124, P.R. China
| | - Nengwen Ke
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China,Correspondence to: Professor Nengwen Ke, Department of Pancreatic Surgery, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041, P.R. China, E-mail:
| |
Collapse
|
16
|
Maiti G, Monteiro de Barros MR, Hu N, Dolgalev I, Roshan M, Foster JW, Tsirigos A, Wahlin KJ, Chakravarti S. Single cell RNA-seq of human cornea organoids identifies cell fates of a developing immature cornea. PNAS NEXUS 2022; 1:pgac246. [PMID: 36712326 PMCID: PMC9802453 DOI: 10.1093/pnasnexus/pgac246] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 10/26/2022] [Indexed: 11/27/2022]
Abstract
The cornea is a protective and refractive barrier in the eye crucial for vision. Understanding the human cornea in health, disease, and cell-based treatments can be greatly advanced with cornea organoids developed in culture from induced pluripotent stem cells. While a limited number of studies have investigated the single-cell transcriptomic composition of the human cornea, its organoids have not been examined similarly. Here, we elucidated the transcriptomic cell fate map of 4-month-old human cornea organoids and human donor corneas. The organoids harbor cell clusters that resemble cells of the corneal epithelium, stroma, and endothelium, with subpopulations that capture signatures of early developmental states. Unlike the adult cornea where the largest cell population is stromal, the organoids contain large proportions of epithelial and endothelial-like cells. These corneal organoids offer a 3D model to study corneal diseases and integrated responses of different cell types.
Collapse
Affiliation(s)
- George Maiti
- Department of Ophthalmology, NYU Grossman School of Medicine, Science Building, Fifth Floor 435 E 30th, New York, NY 10016, USA
| | - Maithê Rocha Monteiro de Barros
- Department of Ophthalmology, NYU Grossman School of Medicine, Science Building, Fifth Floor 435 E 30th, New York, NY 10016, USA
| | - Nan Hu
- Department of Ophthalmology, NYU Grossman School of Medicine, Science Building, Fifth Floor 435 E 30th, New York, NY 10016, USA
| | - Igor Dolgalev
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, Science Building, Eighth Floor, 435 E 30th, New York, NY 10016, USA
| | - Mona Roshan
- University of California San Diego, ACTRI Building Rm Lower level 3E419, 9452 Medical Center Drive, La Jolla, CA 92037, USA
| | - James W Foster
- Wilmer Eye Institute, Johns Hopkins school of Medicine, Smith M037, 400 Broadway, Baltimore, MD 21287, USA
| | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, Science Building, Eighth Floor, 435 E 30th, New York, NY 10016, USA,Department of Pathology, NYU Grossman School of Medicine, Science Building, Fifth Floor 435 E 30th, New York, NY 10016, USA
| | - Karl J Wahlin
- University of California San Diego, ACTRI Building Rm Lower level 3E419, 9452 Medical Center Drive, La Jolla, CA 92037, USA
| | | |
Collapse
|
17
|
Noghani AE, Asadpour R, Saberivand A, Mazaheri Z, Rodriguez-Wallberg KA, Hamidian G. Differentiation of neonate mouse spermatogonia on two-dimensional and three-dimensional culture systems supplemented with d-Serine and Dizocilpine (MK-801). Theriogenology 2022; 191:168-178. [PMID: 35998400 DOI: 10.1016/j.theriogenology.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022]
Abstract
N-methyl-d-aspartate (NMDA) modulates the spermatogenesis process through stimulating the steroid hormone biosynthesis. The aim of this study was to evaluate the effects of NMDA receptors agonists (d-Serine) and antagonists (MK801) on spermatogonia differentiation on decellularization testicular matrix (DTM) hydrogel scaffold. Four treatment groups were planned: 2D + D-Serine, 3D + D-Serine, 2D + MK801, and 3D + MK801. Results showed that cell viability was significantly decreased after 48 h in the 3D + D-Serine group and after 24 and 48 h in the 3D + MK801 group compared to the controls. The spermatogonia proliferation after two, four, and eight weeks was significantly increased in the 3D + D-Serine culture, while it was significantly reduced in the 2D + MK801 and 3D + MK801 groups after four and eight weeks. Real-time PCR results demonstrated that pre-meiotic gene (Plzf) expression was significantly increased only in the 3D + D-Serine culture compared to the control groups after four weeks of culture. The meiotic gene (Sycp3) expression was significantly increased in the 2D + D-Serine and 3D + D-Serine compared to the 2D controls after four and eight weeks. The post-meiotic gene (Tnp1) level in the 3D + D-Serine was significantly higher than the other groups. Flow-cytometry results indicated that the protein expression of Plzf (after four and eight weeks), Sycp3 (after eight weeks), and Tnp1 (after eight weeks) in the d-Serine-treated groups was significantly increased compared with the 2D control groups. There were not any significant changes in the gene expression of spermatogenic-related markers in MK801 culture media. However, a significant decrease in the protein levels of Plzf after eight weeks and Sycp3 after four and eight weeks was observed. In conclusion, the addition of NMDARs agonists (d-Serine) could be used to regulate the differentiation of spermatogonia in the 3D culture system.
Collapse
Affiliation(s)
- Amirhessam Eskafi Noghani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Reza Asadpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Adel Saberivand
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Zohreh Mazaheri
- Basic Medical Science Research Center, Histogenotech Company, Tehran, Iran.
| | - Kenny A Rodriguez-Wallberg
- Department of Oncology-Pathology, Karolinska Institutet, Department of Reproductive Medicine, Division of Gynecology and Reproduction, Karolinska University Hospital, Novumhuset Plan 4, SE-141 86, Stockholm, Sweden.
| | - Gholamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
18
|
van Schaik PEM, Zuhorn IS, Baron W. Targeting Fibronectin to Overcome Remyelination Failure in Multiple Sclerosis: The Need for Brain- and Lesion-Targeted Drug Delivery. Int J Mol Sci 2022; 23:8418. [PMID: 35955549 PMCID: PMC9368816 DOI: 10.3390/ijms23158418] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease with unknown etiology that can be characterized by the presence of demyelinated lesions. Prevailing treatment protocols in MS rely on the modulation of the inflammatory process but do not impact disease progression. Remyelination is an essential factor for both axonal survival and functional neurological recovery but is often insufficient. The extracellular matrix protein fibronectin contributes to the inhibitory environment created in MS lesions and likely plays a causative role in remyelination failure. The presence of the blood-brain barrier (BBB) hinders the delivery of remyelination therapeutics to lesions. Therefore, therapeutic interventions to normalize the pathogenic MS lesion environment need to be able to cross the BBB. In this review, we outline the multifaceted roles of fibronectin in MS pathogenesis and discuss promising therapeutic targets and agents to overcome fibronectin-mediated inhibition of remyelination. In addition, to pave the way for clinical use, we reflect on opportunities to deliver MS therapeutics to lesions through the utilization of nanomedicine and discuss strategies to deliver fibronectin-directed therapeutics across the BBB. The use of well-designed nanocarriers with appropriate surface functionalization to cross the BBB and target the lesion sites is recommended.
Collapse
Affiliation(s)
- Pauline E. M. van Schaik
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| | - Inge S. Zuhorn
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wia Baron
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| |
Collapse
|
19
|
Identification of Prognostic Genes in Gliomas Based on Increased Microenvironment Stiffness. Cancers (Basel) 2022; 14:cancers14153659. [PMID: 35954323 PMCID: PMC9367320 DOI: 10.3390/cancers14153659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
With a median survival time of 15 months, glioblastoma multiforme is one of the most aggressive primary brain cancers. The crucial roles played by the extracellular matrix (ECM) stiffness in glioma progression and treatment resistance have been reported in numerous studies. However, the association between ECM-stiffness-regulated genes and the prognosis of glioma patients remains to be explored. Thus, using bioinformatics analysis, we first identified 180 stiffness-dependent genes from an RNA-Seq dataset, and then evaluated their prognosis in The Cancer Genome Atlas (TCGA) glioma dataset. Our results showed that 11 stiffness-dependent genes common between low- and high-grade gliomas were prognostic. After validation using the Chinese Glioma Genome Atlas (CGGA) database, we further identified four stiffness-dependent prognostic genes: FN1, ITGA5, OSMR, and NGFR. In addition to high-grade glioma, overexpression of the four-gene signature also showed poor prognosis in low-grade glioma patients. Moreover, our analysis confirmed that the expression levels of stiffness-dependent prognostic genes in high-grade glioma were significantly higher than in low-grade glioma, suggesting that these genes were associated with glioma progression. Based on a pathophysiology-inspired approach, our findings illuminate the link between ECM stiffness and the prognosis of glioma patients and suggest a signature of four stiffness-dependent genes as potential therapeutic targets.
Collapse
|
20
|
Song J, Zhang Q, Li G, Zhang Y. Constructing ECM-like Structure on the Plasma Membrane via Peptide Assembly to Regulate the Cellular Response. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8733-8747. [PMID: 35839338 DOI: 10.1021/acs.langmuir.2c00711] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This feature article introduces the design of self-assembling peptides that serve as the basic building blocks for the construction of extracellular matrix (ECM)-like structure in the vicinity of the plasma membrane. By covalently conjugating a bioactive motif, such as membrane protein binding ligand or enzymatic responsive building block, with a self-assembling motif, especially the aromatic peptide, a self-assembling peptide that retains bioactivity is obtained. Instructed by the target membrane protein or enzyme, the bioactive peptides self-assemble into ECM-like structure exerting various stimuli to regulate the cellular response via intracellular signaling, especially mechanotransduction. By briefly summarizing the properties and applications (e.g., wound healing, controlling cell motility and cell fate) of these peptides, we intend to illustrate the basic requirements and promises of the peptide assembly as a true bottom-up approach in the construction of artificial ECM.
Collapse
Affiliation(s)
- Jiaqi Song
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Shaanxi 710061, P. R. China
| | - Qizheng Zhang
- Active Soft Matter Group, CAS Songshan Lake Materials Laboratory, Dongguan 523808, China
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Guanying Li
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Shaanxi 710061, P. R. China
| | - Ye Zhang
- Active Soft Matter Group, CAS Songshan Lake Materials Laboratory, Dongguan 523808, China
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
21
|
Li S, Pritchard DM, Yu LG. Regulation and Function of Matrix Metalloproteinase-13 in Cancer Progression and Metastasis. Cancers (Basel) 2022; 14:3263. [PMID: 35805035 PMCID: PMC9265061 DOI: 10.3390/cancers14133263] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Matrix metalloproteinase-13 (MMP-13) is a member of the Matrix metalloproteinases (MMPs) family of endopeptidases. MMP-13 is produced in low amounts and is well-regulated during normal physiological conditions. Its expression and secretion are, however, increased in various cancers, where it plays multiple roles in tumour progression and metastasis. As an interstitial collagenase, MMP-13 can proteolytically cleave not only collagens I, II and III, but also a range of extracellular matrix proteins (ECMs). Its action causes ECM remodelling and often leads to the release of various sequestered growth and angiogenetic factors that promote tumour cell growth, invasion and angiogenesis. This review summarizes our current understanding of the regulation of MMP-13 expression and secretion and discusses the actions of MMP-13 in cancer progression and metastasis.
Collapse
Affiliation(s)
- Shun Li
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK;
| | - David Mark Pritchard
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK;
| | - Lu-Gang Yu
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK;
| |
Collapse
|
22
|
Zhang C, Tam TW, Chau MK, García Córdoba CA, Yung S, Chan TM. Effect of Combined Mycophenolate and Rapamycin Treatment on Kidney Fibrosis in Murine Lupus Nephritis. Front Pharmacol 2022; 13:866077. [PMID: 35571122 PMCID: PMC9095843 DOI: 10.3389/fphar.2022.866077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Background: A significant proportion of lupus nephritis patients develop chronic kidney disease (CKD) and progressive kidney fibrosis, for which there is no specific treatment. We previously reported that mycophenolate or rapamycin monotherapy showed comparable efficacy in suppressing kidney fibrosis in a murine model of lupus nephritis through their direct action on mesangial cells. We extended our study to investigate the effect of combined mycophenolate and rapamycin treatment (MR) on kidney fibrosis in NZBWF1/J mice. Methods: Female NZBWF1/J mice with active nephritis were randomized to receive vehicle or treatment with mycophenolate (50 mg/kg/day) and rapamycin (1.5 mg/kg/day) (MR) for up to 12 weeks, and the effect of treatment on clinical parameters, kidney histology, and fibrotic processes was investigated. Results: Progression of nephritis in untreated mice was accompanied by mesangial proliferation, glomerulosclerosis, tubular atrophy, protein cast formation, increased mTOR and ERK phosphorylation, and induction of TGF-β1, IL-6, α-smooth muscle actin, fibronectin, and collagen expression. Combined MR treatment prolonged survival, improved kidney function, decreased anti-dsDNA antibody level, and ameliorated histopathological changes. The effect of combined MR treatment on kidney histology and function was comparable to that of mycophenolate or rapamycin monotherapy. In vitro studies in human mesangial cells showed that exogenous TGF-β1 and IL-6 both induced mTOR and ERK phosphorylation and downstream fibrotic processes. Both mycophenolic acid and rapamycin inhibited inflammatory and fibrotic processes induced by TGF-β1 or IL-6 by downregulating mTOR and ERK phosphorylation. Conclusions: Our findings indicate that combined mycophenolate and rapamycin, at reduced dose, improves kidney fibrosis in murine lupus nephritis through their distinct effect on mTOR and ERK signaling in mesangial cells.
Collapse
Affiliation(s)
- Chenzhu Zhang
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tsz Wai Tam
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mel Km Chau
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | | | - Susan Yung
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tak Mao Chan
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
23
|
Solarte David VA, Güiza-Argüello VR, Arango-Rodríguez ML, Sossa CL, Becerra-Bayona SM. Decellularized Tissues for Wound Healing: Towards Closing the Gap Between Scaffold Design and Effective Extracellular Matrix Remodeling. Front Bioeng Biotechnol 2022; 10:821852. [PMID: 35252131 PMCID: PMC8896438 DOI: 10.3389/fbioe.2022.821852] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/28/2022] [Indexed: 12/27/2022] Open
Abstract
The absence or damage of a tissue is the main cause of most acute or chronic diseases and are one of the appealing challenges that novel therapeutic alternatives have, in order to recover lost functions through tissue regeneration. Chronic cutaneous lesions are the most frequent cause of wounds, being a massive area of regenerative medicine and tissue engineering to have efforts to develop new bioactive medical products that not only allow an appropriate and rapid healing, but also avoid severe complications such as bacterial infections. In tissue repair and regeneration processes, there are several overlapping stages that involve the synergy of cells, the extracellular matrix (ECM) and biomolecules, which coordinate processes of ECM remodeling as well as cell proliferation and differentiation. Although these three components play a crucial role in the wound healing process, the ECM has the function of acting as a biological platform to permit the correct interaction between them. In particular, ECM is a mixture of crosslinked proteins that contain bioactive domains that cells recognize in order to promote migration, proliferation and differentiation. Currently, tissue engineering has employed several synthetic polymers to design bioactive scaffolds to mimic the native ECM, by combining biopolymers with growth factors including collagen and fibrinogen. Among these, decellularized tissues have been proposed as an alternative for reconstructing cutaneous lesions since they maintain the complex protein conformation, providing the required functional domains for cell differentiation. In this review, we present an in-depth discussion of different natural matrixes recently employed for designing novel therapeutic alternatives for treating cutaneous injuries, and overview some future perspectives in this area.
Collapse
Affiliation(s)
- Víctor Alfonso Solarte David
- Program of Medicine, Faculty of Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
- Program of Biomedical Engineering, Faculty of Engineering, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
| | - Viviana Raquel Güiza-Argüello
- Metallurgical Engineering and Materials Science Department, Faculty of Physicochemical Engineering, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Martha L. Arango-Rodríguez
- Multi-tissue Bank and Advanced Therapy Center, Fundación Oftalmológica de Santander, Clínica Carlos Ardila Lulle, Floridablanca, Colombia
| | - Claudia L. Sossa
- Program of Medicine, Faculty of Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
- Multi-tissue Bank and Advanced Therapy Center, Fundación Oftalmológica de Santander, Clínica Carlos Ardila Lulle, Floridablanca, Colombia
| | - Silvia M. Becerra-Bayona
- Program of Medicine, Faculty of Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
- *Correspondence: Silvia M. Becerra-Bayona,
| |
Collapse
|
24
|
Niemann S, Nguyen MT, Eble JA, Chasan AI, Mrakovcic M, Böttcher RT, Preissner KT, Roßlenbroich S, Peters G, Herrmann M. More Is Not Always Better-the Double-Headed Role of Fibronectin in Staphylococcus aureus Host Cell Invasion. mBio 2021; 12:e0106221. [PMID: 34663090 PMCID: PMC8524341 DOI: 10.1128/mbio.01062-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/17/2021] [Indexed: 12/30/2022] Open
Abstract
While Staphylococcus aureus has classically been considered an extracellular pathogen, these bacteria are also capable of being taken up by host cells, including nonprofessional phagocytes such as endothelial cells, epithelial cells, or osteoblasts. The intracellular S. aureus lifestyle contributes to infection development. The predominant recognition and internalization pathway appears to be the binding of the bacteria via a fibronectin bridge to the α5β1-integrin on the host cell membrane, followed by phagocytosis. Although osteoblasts showed high expression of α5β1-integrin and fibronectin, and bacteria adhered to osteoblasts to a high proportion, here we demonstrate by internalization assays and immunofluorescence microscopy that S. aureus was less engulfed in osteoblasts than in epithelial cells. The addition of exogenous fibronectin during the infection of cells with S. aureus resulted in an increased uptake by epithelial cells but not by osteoblasts. This contrasts with the previous conception of the uptake mechanism, where high expression of integrin and fibronectin would promote the bacterial uptake into host cells. Extracellular fibronectin surrounding osteoblasts, but not epithelial cells, is organized in a fibrillary network. The inhibition of fibril formation, the short interfering RNA-mediated reduction of fibronectin expression, and the disruption of the fibronectin-fibril meshwork all resulted in a significant increase in S. aureus uptake by osteoblasts. Thus, the network of fibronectin fibrils appears to strongly reduce the uptake of S. aureus into a given host cell, indicating that the supramolecular structure of fibronectin determines the capacity of particular host cells to internalize the pathogen. IMPORTANCE Traditionally, Staphylococcus aureus has been considered an extracellular pathogen. However, among other factors, the frequent failure of antimicrobial therapy and the ability of the pathogen to cause recurrent disease have established the concept of eukaryotic invasion of the pathogen, thereby evading the host's immune system. In the current model of host cell invasion, bacteria initially bind to α5β1 integrin on the host cell side via a fibronectin bridge, which eventually leads to phagocytosis of S. aureus by host cells. However, in this study, we demonstrate that not the crude amount but the supramolecular structure of fibronectin molecules deposited on the eukaryotic cell surface plays an essential role in bacterial uptake by host cells. Our findings explain the large differences of S. aureus uptake efficacy in different host cell types as well as in vivo differences between courses of bacterial infections and the localization of bacteria in different clinical settings.
Collapse
Affiliation(s)
- Silke Niemann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Minh-Thu Nguyen
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Johannes A. Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Achmet I. Chasan
- Institute of Immunology, University of Münster, Münster, Germany
| | - Maria Mrakovcic
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
- Institute of Infectiology, University of Münster, Münster, Germany
| | - Ralph T. Böttcher
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Klaus T. Preissner
- Kerckhoff-Herzforschungsinstitut, Department of Cardiology, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Steffen Roßlenbroich
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Münster, Münster, Germany
| | - Georg Peters
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Mathias Herrmann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
25
|
Leppiniemi J, Mutahir Z, Dulebo A, Mikkonen P, Nuopponen M, Turkki P, Hytönen VP. Avidin-Conjugated Nanofibrillar Cellulose Hydrogel Functionalized with Biotinylated Fibronectin and Vitronectin Promotes 3D Culture of Fibroblasts. Biomacromolecules 2021; 22:4122-4137. [PMID: 34542997 DOI: 10.1021/acs.biomac.1c00579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The future success of physiologically relevant three-dimensional (3D) cell/tissue models is dependent on the development of functional biomaterials, which can provide a well-defined 3D environment instructing cellular behavior. To establish a platform to produce tailored hydrogels, we conjugated avidin (Avd) to anionic nanofibrillar cellulose (aNFC) and demonstrated the use of the resulting Avd-NFC hydrogel for 3D cell culture, where Avd-NFC allows easy functionalization via biotinylated molecules. Avidin was successfully conjugated to nanocellulose and remained functional, as demonstrated by electrophoresis and titration with fluorescent biotin. Rheological analysis indicated that Avd-NFC retained shear-thinning and gel-forming properties. Topological characterization using AFM revealed the preserved fiber structure and confirmed the binding of biotinylated vitronectin (B-VN) on the fiber surface. The 3D cell culture experiments with mouse embryonic fibroblasts demonstrated the performance of Avd-NFC hydrogels functionalized with biotinylated fibronectin (B-FN) and B-VN. Cells cultured in Avd-NFC hydrogels functionalized with B-FN or B-VN formed matured integrin-mediated adhesions, indicated by phosphorylated focal adhesion kinase. We observed significantly higher cell proliferation rates when biotinylated proteins were bound to the Avd-NFC hydrogel compared to cells cultured in Avd-NFC alone, indicating the importance of the presence of adhesive sites for fibroblasts. The versatile Avd-NFC allows the easy functionalization of hydrogels with virtually any biotinylated molecule and may become widely utilized in 3D cell/tissue culture applications.
Collapse
Affiliation(s)
- Jenni Leppiniemi
- Faculty of Medicine and Health Technology and BioMediTech, Tampere University, FI-33014 Tampere, Finland
| | - Zeeshan Mutahir
- Faculty of Medicine and Health Technology and BioMediTech, Tampere University, FI-33014 Tampere, Finland.,School of Biochemistry and Biotechnology, University of the Punjab, 54590 Lahore, Pakistan
| | - Alexander Dulebo
- JPK BioAFM Business, Bruker Nano GmbH, Am Studio 2D, 12489 Berlin, Germany
| | - Piia Mikkonen
- UPM-Kymmene Corporation, Alvar Aallon Katu 1, 00101 Helsinki, Finland
| | - Markus Nuopponen
- UPM-Kymmene Corporation, Alvar Aallon Katu 1, 00101 Helsinki, Finland
| | - Paula Turkki
- Faculty of Medicine and Health Technology and BioMediTech, Tampere University, FI-33014 Tampere, Finland.,Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology and BioMediTech, Tampere University, FI-33014 Tampere, Finland.,Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| |
Collapse
|
26
|
Phillips AT, Boumil EF, Castro N, Venkatesan A, Gallo E, Adams JJ, Sidhu SS, Bernstein AM. USP10 Promotes Fibronectin Recycling, Secretion, and Organization. Invest Ophthalmol Vis Sci 2021; 62:15. [PMID: 34665194 PMCID: PMC8543399 DOI: 10.1167/iovs.62.13.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose Integrins play a central role in myofibroblast pathological adhesion, over-contraction, and TGFβ activation. Previously, we demonstrated that after corneal wounding, αv integrins are protected from intracellular degradation by upregulation of the deubiquitinase USP10, leading to cell-surface integrin accumulation. Because integrins bind to and internalize extracellular matrix (ECM), we tested whether extracellular fibronectin (FN) accumulation can result from an increase in integrin and matrix recycling in primary human corneal fibroblasts (HCFs). Methods Primary HCFs were isolated from cadaver eyes. HCFs were transfected with either USP10 cDNA or control cDNA by nucleofection. Internalized FN was quantified with a FN ELISA. Recycled extracellular integrin and FN were detected with streptavidin-488 by live cell confocal microscopy (Zeiss LSM 780). Endogenous FN extra domain A was detected by immunocytochemistry. Cell size and removal of FN from the cell surface was determined by flow cytometry. Results USP10 overexpression increased α5β1 (1.9-fold; P < 0.001) and αv (1.7-fold; P < 0.05) integrin recycling, with a concomitant increase in biotinylated FN internalization (2.1-fold; P < 0.05) and recycling over 4 days (1.7–2.2-fold; P < 0.05). The dependence of FN recycling on integrins was demonstrated by α5β1 and αv integrin blocking antibodies, which, compared with control IgG, decreased biotinylated FN recycling (62% and 84%, respectively; P < 0.05). Overall, we established that extracellular FN was composed of approximately 1/3 recycled biotinylated FN and 2/3 endogenously secreted FN. Conclusions Our data suggest that reduced integrin degradation with a subsequent increase in integrin/FN recycling after wounding may be a newly identified mechanism for the characteristic accumulation of ECM in corneal scar tissue.
Collapse
Affiliation(s)
- Andrew T Phillips
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Edward F Boumil
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Nileyma Castro
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States.,Syracuse VA Medical Center, New York VA Health Care, Syracuse, New York, United States
| | - Arunkumar Venkatesan
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Eugenio Gallo
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jarrett J Adams
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sachdev S Sidhu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Audrey M Bernstein
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States.,Syracuse VA Medical Center, New York VA Health Care, Syracuse, New York, United States
| |
Collapse
|
27
|
Integrin Adhesion Complex Organization in Sheep Myometrium Reflects Changing Mechanical Forces during Pregnancy and Postpartum. BIOLOGY 2021; 10:biology10060508. [PMID: 34201059 PMCID: PMC8227588 DOI: 10.3390/biology10060508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/20/2021] [Accepted: 06/03/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary IACs assemble within the sheep myometrium during early-to-mid gestation in response to increased stretch of the uterine wall and continue to increase as pregnancy progresses. Fibronectin (FN1) is important in its ability to attach to IACs in myometrial cells to generate force to sustain powerful contractions during labor. After parturition, IACs are disassembled but the integrin subunits ITGA5 and ITGB1 remain expressed at the protein level at least two weeks postpartum. Abstract Cells respond to extracellular mechanical forces through the assembly of integrin adhesion complexes (IACs) that provide a scaffold through which cells sense and transduce responses to those forces. IACs are composed of transmembrane integrin receptors that bind to extracellular matrix (ECM) proteins externally and connect with the actomyosin cytoskeleton internally. Myometrial smooth muscle cells respond to forces that arise due to increases in fetal growth/weight, placental fluid volumes, and blood flow. As a result, the uterus transforms into an organ that can forcefully expel the fetus and placental membranes during parturition. While earlier studies focused on IAC expression in the myometrial compartment of rodents and humans to explore pregnancy-associated responses, the present study examines IAC assembly in ovine myometrium where mechanical forces are expected to be amplified in a manner similar to humans. Results indicate that the ITGA5 and ITGB1 heterodimers associate with the ECM protein FN1 externally, and with VCL and TLN1 internally, to form IACs in myometrial cells during the first trimester of pregnancy. These IACs become increasingly ordered until parturition. This ordered structure is lost by one day postpartum; however, the abundance of the integrin proteins remains elevated for at least two weeks postpartum. Implications of the present study are that sheep are similar to humans regarding the assembly of IACs in the pregnant myometrium and suggest that IACs may form much earlier in human gestation than was previously implied by the rat model. Results highlight the continued value of the sheep model as a flagship gynecological model for understanding parturition in humans.
Collapse
|
28
|
ECM Remodeling in Squamous Cell Carcinoma of the Aerodigestive Tract: Pathways for Cancer Dissemination and Emerging Biomarkers. Cancers (Basel) 2021. [DOI: 10.3390/cancers13112759
expr 955442319 + 839973387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Squamous cell carcinomas (SCC) include a number of different types of tumors developing in the skin, in hollow organs, as well as the upper aerodigestive tract (UADT) including the head and neck region and the esophagus which will be dealt with in this review. These tumors are often refractory to current therapeutic approaches with poor patient outcome. The most important prognostic determinant of SCC tumors is the presence of distant metastasis, significantly correlating with low patient survival rates. Rapidly emerging evidence indicate that the extracellular matrix (ECM) composition and remodeling profoundly affect SSC metastatic dissemination. In this review, we will summarize the current knowledge on the role of ECM and its remodeling enzymes in affecting the growth and dissemination of UADT SCC. Taken together, these published evidence suggest that a thorough analysis of the ECM composition in the UADT SCC microenvironment may help disclosing the mechanism of resistance to the treatments and help defining possible targets for clinical intervention.
Collapse
|
29
|
ECM Remodeling in Squamous Cell Carcinoma of the Aerodigestive Tract: Pathways for Cancer Dissemination and Emerging Biomarkers. Cancers (Basel) 2021; 13:cancers13112759. [PMID: 34199373 PMCID: PMC8199582 DOI: 10.3390/cancers13112759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Local and distant metastasis of patients affected by squamous cell carcinoma of the upper aerodigestive tract predicts poor prognosis. In the latest years, the introduction of new therapeutic approaches, including targeted and immune therapies, has improved the overall survival. However, a large number of these patients do not benefit from these treatments. Thus, the identification of suitable prognostic and predictive biomarkers, as well as the discovery of new therapeutic targets have emerged as a crucial clinical need. In this context, the extracellular matrix represents a suitable target for the development of such therapeutic tools. In fact, the extracellular matrix is composed by complex molecules able to interact with a plethora of receptors and growth factors, thus modulating the dynamic crosstalk between cancer cells and the tumor microenvironment. In this review, we summarize the current knowledge of the role of the extracellular matrix in affecting squamous cell carcinoma growth and dissemination. Despite extracellular matrix is known to affect the development of many cancer types, only a restricted number of these molecules have been recognized to impact on squamous cell carcinoma progression. Thus, we consider that a thorough analysis of these molecules may be key to develop new potential therapeutic targets/biomarkers. Abstract Squamous cell carcinomas (SCC) include a number of different types of tumors developing in the skin, in hollow organs, as well as the upper aerodigestive tract (UADT) including the head and neck region and the esophagus which will be dealt with in this review. These tumors are often refractory to current therapeutic approaches with poor patient outcome. The most important prognostic determinant of SCC tumors is the presence of distant metastasis, significantly correlating with low patient survival rates. Rapidly emerging evidence indicate that the extracellular matrix (ECM) composition and remodeling profoundly affect SSC metastatic dissemination. In this review, we will summarize the current knowledge on the role of ECM and its remodeling enzymes in affecting the growth and dissemination of UADT SCC. Taken together, these published evidence suggest that a thorough analysis of the ECM composition in the UADT SCC microenvironment may help disclosing the mechanism of resistance to the treatments and help defining possible targets for clinical intervention.
Collapse
|
30
|
Alahari S, Farrell A, Ermini L, Park C, Sallais J, Roberts S, Gillmore T, Litvack M, Post M, Caniggia I. JMJD6 Dysfunction Due to Iron Deficiency in Preeclampsia Disrupts Fibronectin Homeostasis Resulting in Diminished Trophoblast Migration. Front Cell Dev Biol 2021; 9:652607. [PMID: 34055782 PMCID: PMC8149756 DOI: 10.3389/fcell.2021.652607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
The mechanisms contributing to excessive fibronectin in preeclampsia, a pregnancy-related disorder, remain unknown. Herein, we investigated the role of JMJD6, an O2- and Fe2+-dependent enzyme, in mediating placental fibronectin processing and function. MALDI-TOF identified fibronectin as a novel target of JMJD6-mediated lysyl hydroxylation, preceding fibronectin glycosylation, deposition, and degradation. In preeclamptic placentae, fibronectin accumulated primarily in lysosomes of the mesenchyme. Using primary placental mesenchymal cells (pMSCs), we found that fibronectin fibril formation and turnover were markedly impeded in preeclamptic pMSCs, partly due to impaired lysosomal degradation. JMJD6 knockdown in control pMSCs recapitulated the preeclamptic FN phenotype. Importantly, preeclamptic pMSCs had less total and labile Fe2+ and Hinokitiol treatment rescued fibronectin assembly and promoted lysosomal degradation. Time-lapse imaging demonstrated that defective ECM deposition by preeclamptic pMSCs impeded HTR-8/SVneo cell migration, which was rescued upon Hinokitiol exposure. Our findings reveal new Fe2+-dependent mechanisms controlling fibronectin homeostasis/function in the placenta that go awry in preeclampsia.
Collapse
Affiliation(s)
- Sruthi Alahari
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Abby Farrell
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Leonardo Ermini
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Chanho Park
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Julien Sallais
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Sarah Roberts
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Taylor Gillmore
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michael Litvack
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada
| | - Martin Post
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada
| | - Isabella Caniggia
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Maniou E, Staddon MF, Marshall AR, Greene NDE, Copp AJ, Banerjee S, Galea GL. Hindbrain neuropore tissue geometry determines asymmetric cell-mediated closure dynamics in mouse embryos. Proc Natl Acad Sci U S A 2021; 118:e2023163118. [PMID: 33941697 PMCID: PMC8126771 DOI: 10.1073/pnas.2023163118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gap closure is a common morphogenetic process. In mammals, failure to close the embryonic hindbrain neuropore (HNP) gap causes fatal anencephaly. We observed that surface ectoderm cells surrounding the mouse HNP assemble high-tension actomyosin purse strings at their leading edge and establish the initial contacts across the embryonic midline. Fibronectin and laminin are present, and tensin 1 accumulates in focal adhesion-like puncta at this leading edge. The HNP gap closes asymmetrically, faster from its rostral than caudal end, while maintaining an elongated aspect ratio. Cell-based physical modeling identifies two closure mechanisms sufficient to account for tissue-level HNP closure dynamics: purse-string contraction and directional cell motion implemented through active crawling. Combining both closure mechanisms hastens gap closure and produces a constant rate of gap shortening. Purse-string contraction reduces, whereas crawling increases gap aspect ratio, and their combination maintains it. Closure rate asymmetry can be explained by asymmetric embryo tissue geometry, namely a narrower rostral gap apex, whereas biomechanical tension inferred from laser ablation is equivalent at the gaps' rostral and caudal closure points. At the cellular level, the physical model predicts rearrangements of cells at the HNP rostral and caudal extremes as the gap shortens. These behaviors are reproducibly live imaged in mouse embryos. Thus, mammalian embryos coordinate cellular- and tissue-level mechanics to achieve this critical gap closure event.
Collapse
Affiliation(s)
- Eirini Maniou
- Department of Developmental Biology and Cancer Researching and Teaching, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom
| | - Michael F Staddon
- Department of Physics and Astronomy, University College London, WC1E 6BT London, United Kingdom
| | - Abigail R Marshall
- Department of Developmental Biology and Cancer Researching and Teaching, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom
| | - Nicholas D E Greene
- Department of Developmental Biology and Cancer Researching and Teaching, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom
| | - Andrew J Copp
- Department of Developmental Biology and Cancer Researching and Teaching, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom
| | | | - Gabriel L Galea
- Department of Developmental Biology and Cancer Researching and Teaching, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom;
- Department of Comparative Bioveterinary Sciences, Royal Veterinary College, NW1 0TU London, United Kingdom
| |
Collapse
|
32
|
Schumacher S, Dedden D, Nunez RV, Matoba K, Takagi J, Biertümpfel C, Mizuno N. Structural insights into integrin α 5β 1 opening by fibronectin ligand. SCIENCE ADVANCES 2021; 7:7/19/eabe9716. [PMID: 33962943 PMCID: PMC8104898 DOI: 10.1126/sciadv.abe9716] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/19/2021] [Indexed: 05/08/2023]
Abstract
Integrin α5β1 is a major fibronectin receptor critical for cell migration. Upon complex formation, fibronectin and α5β1 undergo conformational changes. While this is key for cell-tissue connections, its mechanism is unknown. Here, we report cryo-electron microscopy structures of native human α5β1 with fibronectin to 3.1-angstrom resolution, and in its resting state to 4.6-angstrom resolution. The α5β1-fibronectin complex revealed simultaneous interactions at the arginine-glycine-aspartate loop, the synergy site, and a newly identified binding site proximal to adjacent to metal ion-dependent adhesion site, inducing the translocation of helix α1 to secure integrin opening. Resting α5β1 adopts an incompletely bent conformation, challenging the model of integrin sharp bending inhibiting ligand binding. Our biochemical and structural analyses showed that affinity of α5β1 for fibronectin is increased with manganese ions (Mn2+) while adopting the half-bent conformation, indicating that ligand-binding affinity does not depend on conformation, and α5β1 opening is induced by ligand-binding.
Collapse
Affiliation(s)
- Stephanie Schumacher
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Dirk Dedden
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Roberto Vazquez Nunez
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Dr., Bethesda, MD 20892, USA
| | - Kyoko Matoba
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Junichi Takagi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Christian Biertümpfel
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Dr., Bethesda, MD 20892, USA.
| | - Naoko Mizuno
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany.
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Dr., Bethesda, MD 20892, USA
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr., Bethesda, MD 20892, USA
| |
Collapse
|
33
|
Park JE, JebaMercy G, Pazhanchamy K, Guo X, Ngan SC, Liou KCK, Lynn SE, Ng SS, Meng W, Lim SC, Leow MKS, Richards AM, Pennington DJ, de Kleijn DPV, Sorokin V, Ho HH, McCarthy NE, Sze SK. Aging-induced isoDGR-modified fibronectin activates monocytic and endothelial cells to promote atherosclerosis. Atherosclerosis 2021; 324:58-68. [PMID: 33831670 DOI: 10.1016/j.atherosclerosis.2021.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/24/2021] [Accepted: 03/18/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND AIMS Aging is the primary risk factor for cardiovascular disease (CVD), but the mechanisms underlying age-linked atherosclerosis remain unclear. We previously observed that long-lived vascular matrix proteins can acquire 'gain-of-function' isoDGR motifs that might play a role in atherosclerotic pathology. METHODS IsoDGR-specific mAb were generated and used for ELISA-based measurement of motif levels in plasma samples from patients with coronary artery diseases (CAD) and non-CAD controls. Functional consequences of isoDGR accumulation in age-damaged fibronectin were determined by bioassay for capacity to activate monocytes, macrophages, and endothelial cells (signalling activity, pro-inflammatory cytokine expression, and recruitment/adhesion potential). Mice deficient in the isoDGR repair enzyme PCMT1 were used to assess motif distribution and macrophage localisation in vivo. RESULTS IsoDGR-modified fibronectin and fibrinogen levels in patient plasma were significantly enhanced in CAD and further associated with smoking status. Functional assays demonstrated that isoDGR-modified fibronectin activated both monocytes and macrophages via integrin receptor 'outside in' signalling, triggering an ERK:AP-1 cascade and expression of pro-inflammatory cytokines MCP-1 and TNFα to drive additional recruitment of circulating leukocytes. IsoDGR-modified fibronectin also induced endothelial cell expression of integrin β1 to further enhance cellular adhesion and matrix deposition. Analysis of murine aortic tissues confirmed accumulation of isoDGR-modified proteins co-localised with CD68+ macrophages in vivo. CONCLUSIONS Age-damaged fibronectin features isoDGR motifs that increase binding to integrins on the surface of monocytes, macrophages, and endothelial cells. Subsequent activation of 'outside-in' signalling elicits a range of potent cytokines and chemokines that drive additional leukocyte recruitment to the developing atherosclerotic matrix.
Collapse
Affiliation(s)
- Jung Eun Park
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Gnanasekaran JebaMercy
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Kalailingam Pazhanchamy
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Xue Guo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - SoFong Cam Ngan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Ken Cheng Kang Liou
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Soe EinSi Lynn
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Ser Sue Ng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Wei Meng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Su Chi Lim
- Diabetes Center, Khoo Teck Puat Hospital, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Melvin Khee-Shing Leow
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore; Lee Kong Chian School of Medicine, NTU, Singapore; Department of Endocrinology, Tan Tock Seng Hospital, Singapore
| | - A Mark Richards
- Cardiovascular Research Institute, National University of Singapore, Singapore, 119228; Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, 8140, New Zealand
| | - Daniel J Pennington
- Centre for Immunobiology, The Blizard Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Dominique P V de Kleijn
- Department of Vascular Surgery, UMC Utrecht, Utrecht University, Utrecht, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands
| | - Vitaly Sorokin
- Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, National University Health System, Singapore, 119228
| | - Hee Hwa Ho
- Department of Cardiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433
| | - Neil E McCarthy
- Centre for Immunobiology, The Blizard Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551.
| |
Collapse
|
34
|
Weng J, Chen B, Xie M, Wan X, Wang P, Zhou X, Zhou Z, Mei J, Wang L, Huang D, Wang Z, Wang Z, Chen C. Rabbit thyroid extracellular matrix as a 3D bioscaffold for thyroid bioengineering: a preliminary in vitro study. Biomed Eng Online 2021; 20:18. [PMID: 33563294 PMCID: PMC7871622 DOI: 10.1186/s12938-021-00856-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Advances in regenerative medicine technologies have been strongly proposed in the management of thyroid diseases. Mechanistically, the adoption of thyroid bioengineering requires a scaffold that shares a similar three-dimensional (3D) space structure, biomechanical properties, protein component, and cytokines to the native extracellular matrix (ECM). METHODS 24 male New Zealand white rabbits were used in this experimental study. The rabbit thyroid glands were decellularized by immersion/agitation decellularization protocol. The 3D thyroid decellularization scaffolds were tested with histological and immunostaining analyses, scanning electron microscopy, DNA quantification, mechanical properties test, cytokine assay and cytotoxicity assays. Meanwhile, the decellularization scaffold were seeded with human thyroid follicular cells, cell proliferation and thyroid peroxidase were determined to explore the biocompatibility in vitro. RESULTS Notably, through the imaging studies, it was distinctly evident that our protocol intervention minimized cellular materials and maintained the 3D spatial structure, biomechanical properties, ECM composition, and biologic cytokine. Consequently, the decellularization scaffold was seeded with human thyroid follicular cells, thus strongly revealing its potential in reinforcing cell adhesion, proliferation, and preserve important protein expression. CONCLUSIONS The adoption of our protocol to generate a decellularized thyroid scaffold can potentially be utilized in transplantation to manage thyroid diseases through thyroid bioengineering.
Collapse
Affiliation(s)
- Jie Weng
- Department of Emergency Medicine and General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Bi Chen
- Department of Surgical Oncology, Wenzhou People's Hospital, The Wenzhou Third Clinical Institute Affiliated With Wenzhou Medical University, Wenzhou, 325000, China
| | - Mengying Xie
- Department of Emergency Medicine and General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xinlong Wan
- Institute of Bioscaffold Transplantation and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Peng Wang
- Department of Emergency Medicine and General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoming Zhou
- Department of Emergency Medicine and General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhiliang Zhou
- Department of Emergency Medicine and General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jin Mei
- Institute of Bioscaffold Transplantation and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Liang Wang
- Department of Public Health, Robbins College of Health and Human Sciences, Baylor University, Waco, TX, USA
| | - Duping Huang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhibin Wang
- Institute of Bioscaffold Transplantation and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhiyi Wang
- Department of Emergency Medicine and General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Institute of Bioscaffold Transplantation and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- Center for Health Assessment, Wenzhou Medical University, Wenzhou, China.
| | - Chan Chen
- Department of Geriatric Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
35
|
Witherel CE, Sao K, Brisson BK, Han B, Volk SW, Petrie RJ, Han L, Spiller KL. Regulation of extracellular matrix assembly and structure by hybrid M1/M2 macrophages. Biomaterials 2021; 269:120667. [PMID: 33450585 PMCID: PMC7870567 DOI: 10.1016/j.biomaterials.2021.120667] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022]
Abstract
Aberrant extracellular matrix (ECM) assembly surrounding implanted biomaterials is the hallmark of the foreign body response, in which implants become encapsulated in thick fibrous tissue that prevents their proper function. While macrophages are known regulators of fibroblast behavior, how their phenotype influences ECM assembly and the progression of the foreign body response is poorly understood. In this study, we used in vitro models with physiologically relevant macrophage phenotypes, as well as controlled release of macrophage-modulating cytokines from gelatin hydrogels implanted subcutaneously in vivo to investigate the role of macrophages in ECM assembly. Primary human macrophages were polarized to four distinct phenotypes, which have each been associated with fibrosis, including pro-inflammatory M1, pro-healing M2, and a hybrid M1/M2, generated by exposing macrophages to M1-and M2-promoting stimuli simultaneously. Additionally, macrophages were first polarized to M1 and then to M2 (M1→M2) to generate a phenotype typically observed during normal wound healing. Human dermal fibroblasts that were cultured in macrophage-conditioned media upregulated numerous genes involved in regulation of ECM assembly, especially in M2-conditioned media. Hybrid M1/M2 macrophage-conditioned media caused fibroblasts to produce a matrix with thicker and less aligned fibers, while M2 macrophage-conditioned media caused the formation of a more aligned matrix with thinner fibers. Gelatin methacrylate hydrogels containing interleukin-4 (IL4) and IL13-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles were designed to promote the M2 phenotype in a murine subcutaneous in vivo model. NanoString multiplex gene expression analysis of hydrogel explants showed that hydrogels without cytokines caused mostly M1 phenotype markers to be highly expressed at an early time point (3 days), but the release of IL4+IL13 promoted upregulation of M2 markers and genes associated with regulation of ECM assembly, such as Col5a1 and Col6a1. Biochemical analysis and second harmonic generation microscopy showed that the release of IL4+IL13 increased total sulfated glycosaminoglycan content and decreased fibril alignment, which is typically associated with less fibrotic tissue. Together, these results show that hybrid M1/M2 macrophages regulate ECM assembly, and that shifting the balance towards M2 may promote architectural and compositional changes in ECM with enhanced potential for downstream remodeling.
Collapse
Affiliation(s)
- Claire E Witherel
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Kimheak Sao
- Department of Biology, College of Arts and Sciences, Drexel University, Philadelphia, PA, USA
| | - Becky K Brisson
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Biao Han
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Susan W Volk
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Ryan J Petrie
- Department of Biology, College of Arts and Sciences, Drexel University, Philadelphia, PA, USA
| | - Lin Han
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
36
|
Schmidt A, Liebelt G, Nießner F, von Woedtke T, Bekeschus S. Gas plasma-spurred wound healing is accompanied by regulation of focal adhesion, matrix remodeling, and tissue oxygenation. Redox Biol 2021; 38:101809. [PMID: 33271456 PMCID: PMC7710641 DOI: 10.1016/j.redox.2020.101809] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/05/2022] Open
Abstract
In response to injury, efficient migration of skin cells to rapidly close the wound and restore barrier function requires a range of coordinated processes in cell spreading and migration. Gas plasma technology produces therapeutic reactive species that promote skin regeneration by driving proliferation and angiogenesis. However, the underlying molecular mechanisms regulating gas plasma-aided cell adhesion and matrix remodeling essential for wound closure remain elusive. Here, we combined in vitro analyses in primary dermal fibroblasts isolated from murine skin with in vivo studies in a murine wound model to demonstrate that gas plasma treatment changed phosphorylation of signaling molecules such as focal adhesion kinase and paxillin α in adhesion-associated complexes. In addition to cell spreading and migration, gas plasma exposure affected cell surface adhesion receptors (e.g., integrinα5β1, syndecan 4), structural proteins (e.g., vinculin, talin, actin), and transcription of genes associated with differentiation markers of fibroblasts-to-myofibroblasts and epithelial-to-mesenchymal transition, cellular protrusions, fibronectin fibrillogenesis, matrix metabolism, and matrix metalloproteinase activity. Finally, we documented that gas plasma exposure increased tissue oxygenation and skin perfusion during ROS-driven wound healing. Altogether, these results provide critical insights into the molecular machinery of gas plasma-assisted wound healing mechanisms.
Collapse
Affiliation(s)
- Anke Schmidt
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| | - Grit Liebelt
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Felix Nießner
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Thomas von Woedtke
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Department of Hygiene and Environmental Medicine, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| |
Collapse
|
37
|
Isolation, identification and differentiation of human spermatogonial cells on three-dimensional decellularized sheep testis. Acta Histochem 2020; 122:151623. [PMID: 32992121 DOI: 10.1016/j.acthis.2020.151623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022]
Abstract
Improvement of in vitro culture methods of Spermatogonial Stem Cells (SSCs) is known to be an effective procedure for further study of the process of spermatogenesis and can offer effective therapeutic modality for male infertility. Tissue decellularization by providing natural 3D and extracellular matrix (ECM) conditions for cell growth can be an alternative procedure to enhance in vitro culture conditions. In the present study, the testicular tissues were taken from brain death donors. After enzymatic digestion, the tissue cells were isolated and cultured for four weeks. Then the identity of the SSCs was confirmed using anti-GFRα1 and anti-PLZF antibodies via immunocytochemistry (ICC). The differentiation capacity of SSCs were evaluated by culture of them on a layer of decellularized testicular matrix (DTM) prepared from sheep testis, as well as under two-dimensional (2D) culture with differentiation medium. After four and six weeks of the initiation of differentiation culture, the pre-meiotic, meiotic and post- meiotic genes at the mRNA and protein levels was examined via qPCR and ICC methods, respectively. The results showed that pre-meiotic, meiotic and post-meiotic genes expressions were significantly higher in the cells cultured in DTM substrate (P ≤ 0.01).The present study indicated that, the natural structure of ECM prepare the suitable conditions for further study of the spermatogenesis process in the in vitro and contributes to the maintenance and treatment of male infertility.
Collapse
|
38
|
Shiwarski DJ, Tashman JW, Tsamis A, Bliley JM, Blundon MA, Aranda-Michel E, Jallerat Q, Szymanski JM, McCartney BM, Feinberg AW. Fibronectin-based nanomechanical biosensors to map 3D surface strains in live cells and tissue. Nat Commun 2020; 11:5883. [PMID: 33208732 PMCID: PMC7675982 DOI: 10.1038/s41467-020-19659-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 10/19/2020] [Indexed: 01/07/2023] Open
Abstract
Mechanical forces are integral to cellular migration, differentiation and tissue morphogenesis; however, it has proved challenging to directly measure strain at high spatial resolution with minimal perturbation in living sytems. Here, we fabricate, calibrate, and test a fibronectin (FN)-based nanomechanical biosensor (NMBS) that can be applied to the surface of cells and tissues to measure the magnitude, direction, and strain dynamics from subcellular to tissue length-scales. The NMBS is a fluorescently-labeled, ultra-thin FN lattice-mesh with spatial resolution tailored by adjusting the width and spacing of the lattice from 2-100 µm. Time-lapse 3D confocal imaging of the NMBS demonstrates 2D and 3D surface strain tracking during mechanical deformation of known materials and is validated with finite element modeling. Analysis of the NMBS applied to single cells, cell monolayers, and Drosophila ovarioles highlights the NMBS's ability to dynamically track microscopic tensile and compressive strains across diverse biological systems where forces guide structure and function.
Collapse
Affiliation(s)
- Daniel J Shiwarski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Joshua W Tashman
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Alkiviadis Tsamis
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Jaci M Bliley
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Malachi A Blundon
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Edgar Aranda-Michel
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Quentin Jallerat
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - John M Szymanski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Brooke M McCartney
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
39
|
Luo X, Lin SW, Xu QY, Ke WJ, Gao ZX, Tong ML, Liu LL, Lin LR, Zhang HL, Yang TC. Tp0136 targets fibronectin (RGD)/Integrin β1 interactions promoting human microvascular endothelial cell migration. Exp Cell Res 2020; 396:112289. [DOI: 10.1016/j.yexcr.2020.112289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022]
|
40
|
Deng L, Han Y, Tang C, Liao Q, Li Z. Label-Free Mass Spectrometry-Based Quantitative Proteomics Analysis of Serum Proteins During Early Pregnancy in Jennies ( Equus asinus). Front Vet Sci 2020; 7:569587. [PMID: 33195553 PMCID: PMC7642908 DOI: 10.3389/fvets.2020.569587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/18/2020] [Indexed: 11/17/2022] Open
Abstract
Early pregnancy in jennies is routinely determined by palpation per rectum or ultrasonography and also by detecting steroid hormone and chorionic gonadotropin levels in the blood, plasma, and serum. Herein we applied label-free mass spectrometry-based quantitative proteomics to identify serum proteins that were differentially expressed between early pregnant (day 45 after ovulation) and non-pregnant jennies. Bioinformatics analysis allowed illustration of pathways potentially involved in early pregnancy. We identified 295 proteins from a total of 2,569 peptides. Twenty-five proteins (22 upregulated and three downregulated) were significantly differentially expressed between the early pregnant and non-pregnant groups. The majority of the differentially expressed proteins were involved in defense response, early embryonic development, and hormone signaling pathways. Furthermore, functional protein analyses suggested that proteins were involved in binding, enzyme inhibitor activity, and enzyme regulator activity. Five serum proteins—granulin precursor/acrogranin, transgelin-2, fibronectin, fibrinogen-like 1, and thrombospondin 1—can be considered as novel, reliable candidates to detect pregnancy in jennies. To the best of our knowledge, this is the first study to use label-free mass spectrometry-based quantitative proteomics to analyze serum proteins during early pregnancy in jennies. Our results should facilitate the identification of valuable pregnancy diagnostic markers in early pregnant jennies.
Collapse
Affiliation(s)
- Liang Deng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuwei Han
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chi Tang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Qingchao Liao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zheng Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
41
|
Cui J, Dean D, Hornicek FJ, Chen Z, Duan Z. The role of extracelluar matrix in osteosarcoma progression and metastasis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:178. [PMID: 32887645 PMCID: PMC7650219 DOI: 10.1186/s13046-020-01685-w] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy and responsible for considerable morbidity and mortality due to its high rates of pulmonary metastasis. Although neoadjuvant chemotherapy has improved 5-year survival rates for patients with localized OS from 20% to over 65%, outcomes for those with metastasis remain dismal. In addition, therapeutic regimens have not significantly improved patient outcomes over the past four decades, and metastases remains a primary cause of death and obstacle in curative therapy. These limitations in care have given rise to numerous works focused on mechanisms and novel targets of OS pathogenesis, including tumor niche factors. OS is notable for its hallmark production of rich extracellular matrix (ECM) of osteoid that goes beyond simple physiological growth support. The aberrant signaling and structural components of the ECM are rich promoters of OS development, and very recent works have shown the specific pathogenic phenotypes induced by these macromolecules. Here we summarize the current developments outlining how the ECM contributes to OS progression and metastasis with supporting mechanisms. We also illustrate the potential of tumorigenic ECM elements as prognostic biomarkers and therapeutic targets in the evolving clinical management of OS.
Collapse
Affiliation(s)
- Juncheng Cui
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, 69 Chuanshan Road, Hengyang, 421001, Hunan, China.,Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA
| | - Dylan Dean
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA
| | - Zhiwei Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, 69 Chuanshan Road, Hengyang, 421001, Hunan, China.
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA.
| |
Collapse
|
42
|
Abstract
Fibronectin (FN) circulating in the blood and produced by cells provides the basis of the extracellular matrix (ECM) formed in healing acute wounds. The time-dependent deposition of FN by macrophages, its synthesis by fibroblasts and myofibroblasts, and later degradation in the remodeled granulation tissue are a prerequisite for successful healing of wounds. However, the pattern of FN expression and deposition in skin lesions is disturbed. The degradation of the ECM components including FN in varicose veins prevails over ECM synthesis and deposition. FN is inconspicuous in the fibrotic lesions in lipodermatosclerosis, while tenascin-C containing FN-like peptide sequences are prominent. FN is produced in large amounts by fibroblasts at the edge of venous ulcers but FN deposition at the wound bed is impaired. Both the proteolytic environment in the wounds and the changed function of the ulcer fibroblasts may be responsible for the poor healing of venous ulcers. The aim of this review is to describe the current knowledge of FN pathophysiology in chronic venous diseases. In view of the fact that FN plays a crucial role in organizing the ECM, further research focused on FN metabolism in venous diseases may bring results applicable to the treatment of the diseases.
Collapse
Affiliation(s)
- Jiri Kanta
- Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| | - Anna Zavadakova
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| |
Collapse
|
43
|
Micropatterning Decellularized ECM as a Bioactive Surface to Guide Cell Alignment, Proliferation, and Migration. Bioengineering (Basel) 2020; 7:bioengineering7030102. [PMID: 32878055 PMCID: PMC7552701 DOI: 10.3390/bioengineering7030102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
Bioactive surfaces and materials have displayed great potential in a variety of tissue engineering applications but often struggle to completely emulate complex bodily systems. The extracellular matrix (ECM) is a crucial, bioactive component in all tissues and has recently been identified as a potential solution to be utilized in combination with biomaterials. In tissue engineering, the ECM can be utilized in a variety of applications by employing the biochemical and biomechanical cues that are crucial to regenerative processes. However, viable solutions for maintaining the dimensionality, spatial orientation, and protein composition of a naturally cell-secreted ECM remain challenging in tissue engineering. Therefore, this work used soft lithography to create micropatterned polydimethylsiloxane (PDMS) substrates of a three-dimensional nature to control cell adhesion and alignment. Cells aligned on the micropatterned PDMS, secreted and assembled an ECM, and were decellularized to produce an aligned matrix biomaterial. The cells seeded onto the decellularized, patterned ECM showed a high degree of alignment and migration along the patterns compared to controls. This work begins to lay the groundwork for elucidating the immense potential of a natural, cell-secreted ECM for directing cell function and offers further guidance for the incorporation of natural, bioactive components for emerging tissue engineering technologies.
Collapse
|
44
|
Sundararaman A, Mellor H. A functional antagonism between RhoJ and Cdc42 regulates fibronectin remodelling during angiogenesis. Small GTPases 2020; 12:241-245. [PMID: 32857689 PMCID: PMC8205010 DOI: 10.1080/21541248.2020.1809927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Angiogenesis is the formation of new blood vessels from pre-existing ones. Angiogenesis requires endothelial cells to change shape and polarity, as well as acquire the ability to directionally migrate ‒ processes that are classically regulated by the Rho family of GTPases. RhoJ (previously TCL) is an endothelium enriched Rho GTPase with a 78% amino acid similarity to the ubiquitously expressed Cdc42. In our recent publication, we demonstrate that α5β1 integrin co-traffics with RhoJ. RhoJ specifically represses the internalization of the active α5β1 conformer, leading to a reduced ability of endothelial cells to form fibronectin fibrils. Surprisingly, this function of RhoJ is in opposition to the role of Cdc42, a known driver of fibrillogenesis. Intriguingly, we discovered that the competition for limiting amounts of the shared effector, PAK3, could explain the ability of these two Rho GTPases to regulate fibrillogenesis in opposing directions. Consequently, RhoJ null mice show excessive fibronectin deposition around retinal vessels, possibly due to the unopposed action of Cdc42. Our work suggests that the functional antagonism between RhoJ and Cdc42 could restrict fibronectin remodelling to sites of active angiogenesis to form a provisional matrix for vessel growth. One correlate of our findings is that RhoJ dependent repression of fibronectin remodelling could be atheroprotective in quiescent vessels.
Collapse
Affiliation(s)
- Ananthalakshmy Sundararaman
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | - Harry Mellor
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, UK
| |
Collapse
|
45
|
Huaman J, Ogunwobi OO. Circulating Tumor Cell Migration Requires Fibronectin Acting through Integrin B1 or SLUG. Cells 2020; 9:cells9071594. [PMID: 32630254 PMCID: PMC7408126 DOI: 10.3390/cells9071594] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 01/16/2023] Open
Abstract
Fibronectin (FN1) is an extracellular matrix protein gaining increasing attention for its multifaceted roles in cancer progression. Using our recently established circulating tumor cell (CTC) lines, we had demonstrated increased FN1 expression and enhanced migration in CTC lines, in comparison to primary tumor cell lines. Whether increased FN1 expression is directly required for CTC migration, and the specific role of FN1’s regulation of integrin B1 (ITGB1) and SLUG (SNAI2) in CTC migration remains unclear. Here, for the first time, we report that the knockdown of FN1, ITGB1, or SLUG expression in CTCs leads to a significant decrease in CTC migration. Knocking down two or all three of these proteins simultaneously did not further inhibit migration. We observed a corresponding increase in CTC migration when recombinant FN1 was added to CTCs. This effect was significantly impeded by prior knockdown of ITGB1 or SLUG. Using knock down experiments and western blotting analysis, we confirmed FN1’s regulation of ITGB1 and SLUG to occur via two separate, independent pathways. Consequently, we can conclude that FN1-dependent enhanced migration of CTCs requires downstream signaling through either ITGB1 or SLUG and that FN1 regulation of ITGB1 and SLUG may have important implications for cancer progression and metastasis.
Collapse
Affiliation(s)
- Jeannette Huaman
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA;
- Department of Biology, The Graduate Center of The City University of New York, New York, NY 10016, USA
| | - Olorunseun O. Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA;
- Department of Biology, The Graduate Center of The City University of New York, New York, NY 10016, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Correspondence:
| |
Collapse
|
46
|
Lieverse RIY, Marcus D, van der Wiel AMA, Van Limbergen EJ, Theys J, Yaromina A, Lambin P, Dubois LJ. Human fibronectin extra domain B as a biomarker for targeted therapy in cancer. Mol Oncol 2020; 14:1555-1568. [PMID: 32386436 PMCID: PMC7332215 DOI: 10.1002/1878-0261.12705] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/15/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix protein fibronectin contains a domain that is rarely found in healthy adults and is almost exclusively expressed by newly formed blood vessels in tumours, particularly in solid tumours, different types of lymphoma and some leukaemias. This domain, called the extra domain B (ED‐B), thus has broad therapeutic potential. The antibody L19 has been developed to specifically target ED‐B and has shown therapeutic potential when combined with cytokines, such as IL‐2. In this review article, we discuss the preclinical research and clinical trials that highlight the potential of ED‐B targeting for the imaging and treatment of various types of cancer. ED‐B‐centred studies also highlight how proper patient stratification is of utmost importance for the successful implementation of novel antibody‐based targeted therapies.
Collapse
Affiliation(s)
- Relinde I Y Lieverse
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands
| | - Damiënne Marcus
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands
| | - Alexander M A van der Wiel
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands
| | - Evert J Van Limbergen
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| | - Jan Theys
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands
| |
Collapse
|
47
|
Schwefel K, Spiegler S, Kirchmaier BC, Dellweg PKE, Much CD, Pané-Farré J, Strom TM, Riedel K, Felbor U, Rath M. Fibronectin rescues aberrant phenotype of endothelial cells lacking either CCM1, CCM2 or CCM3. FASEB J 2020; 34:9018-9033. [PMID: 32515053 DOI: 10.1096/fj.201902888r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022]
Abstract
Loss-of-function variants in CCM1/KRIT1, CCM2, and CCM3/PDCD10 are associated with autosomal dominant cerebral cavernous malformations (CCMs). CRISPR/Cas9-mediated CCM3 inactivation in human endothelial cells (ECs) has been shown to induce profound defects in cell-cell interaction as well as actin cytoskeleton organization. We here show that CCM3 inactivation impairs fibronectin expression and consequently leads to reduced fibers in the extracellular matrix. Despite the complexity and high molecular weight of fibronectin fibrils, our in vitro model allowed us to reveal that fibronectin supplementation restored aberrant spheroid formation as well as altered EC morphology, and suppressed actin stress fiber formation. Yet, fibronectin replacement neither enhanced the stability of tube-like structures nor inhibited the survival advantage of CCM3-/- ECs. Importantly, CRISPR/Cas9-mediated introduction of biallelic loss-of-function variants into either CCM1 or CCM2 demonstrated that the impaired production of a functional fibronectin matrix is a common feature of CCM1-, CCM2-, and CCM3-deficient ECs.
Collapse
Affiliation(s)
- Konrad Schwefel
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Stefanie Spiegler
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Bettina C Kirchmaier
- Institute of Cell Biology and Neuroscience, University of Frankfurt, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences, University of Frankfurt, Frankfurt am Main, Germany
| | - Patricia K E Dellweg
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Christiane D Much
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Jan Pané-Farré
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technische Universität München, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Katharina Riedel
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Ute Felbor
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Matthias Rath
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| |
Collapse
|
48
|
Targeting lysyl oxidase (LOX) overcomes chemotherapy resistance in triple negative breast cancer. Nat Commun 2020; 11:2416. [PMID: 32415208 PMCID: PMC7229173 DOI: 10.1038/s41467-020-16199-4] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 04/20/2020] [Indexed: 12/31/2022] Open
Abstract
Chemoresistance is a major obstacle in triple negative breast cancer (TNBC), the most aggressive breast cancer subtype. Here we identify hypoxia-induced ECM re-modeler, lysyl oxidase (LOX) as a key inducer of chemoresistance by developing chemoresistant TNBC tumors in vivo and characterizing their transcriptomes by RNA-sequencing. Inhibiting LOX reduces collagen cross-linking and fibronectin assembly, increases drug penetration, and downregulates ITGA5/FN1 expression, resulting in inhibition of FAK/Src signaling, induction of apoptosis and re-sensitization to chemotherapy. Similarly, inhibiting FAK/Src results in chemosensitization. These effects are observed in 3D-cultured cell lines, tumor organoids, chemoresistant xenografts, syngeneic tumors and PDX models. Re-expressing the hypoxia-repressed miR-142-3p, which targets HIF1A, LOX and ITGA5, causes further suppression of the HIF-1α/LOX/ITGA5/FN1 axis. Notably, higher LOX, ITGA5, or FN1, or lower miR-142-3p levels are associated with shorter survival in chemotherapy-treated TNBC patients. These results provide strong pre-clinical rationale for developing and testing LOX inhibitors to overcome chemoresistance in TNBC patients. The development of chemoresistance is a major hurdle in triple negative breast cancer (TNBC). Here, the authors show that lysyl oxidase (LOX) is overexpressed in chemoresistant TNBCs, and when inhibited reduces collagen cross-linking, fibronectin fibril assembly, and downstream integrin signalling, overcoming resistance.
Collapse
|
49
|
Fibronectin Adsorption on Electrospun Synthetic Vascular Grafts Attracts Endothelial Progenitor Cells and Promotes Endothelialization in Dynamic In Vitro Culture. Cells 2020; 9:cells9030778. [PMID: 32210018 PMCID: PMC7140838 DOI: 10.3390/cells9030778] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 12/30/2022] Open
Abstract
Appropriate mechanical properties and fast endothelialization of synthetic grafts are key to ensure long-term functionality of implants. We used a newly developed biostable polyurethane elastomer (TPCU) to engineer electrospun vascular scaffolds with promising mechanical properties (E-modulus: 4.8 ± 0.6 MPa, burst pressure: 3326 ± 78 mmHg), which were biofunctionalized with fibronectin (FN) and decorin (DCN). Neither uncoated nor biofunctionalized TPCU scaffolds induced major adverse immune responses except for minor signs of polymorph nuclear cell activation. The in vivo endothelial progenitor cell homing potential of the biofunctionalized scaffolds was simulated in vitro by attracting endothelial colony-forming cells (ECFCs). Although DCN coating did attract ECFCs in combination with FN (FN + DCN), DCN-coated TPCU scaffolds showed a cell-repellent effect in the absence of FN. In a tissue-engineering approach, the electrospun and biofunctionalized tubular grafts were cultured with primary-isolated vascular endothelial cells in a custom-made bioreactor under dynamic conditions with the aim to engineer an advanced therapy medicinal product. Both FN and FN + DCN functionalization supported the formation of a confluent and functional endothelial layer.
Collapse
|
50
|
Barney LE, Hall CL, Schwartz AD, Parks AN, Sparages C, Galarza S, Platt MO, Mercurio AM, Peyton SR. Tumor cell-organized fibronectin maintenance of a dormant breast cancer population. SCIENCE ADVANCES 2020; 6:eaaz4157. [PMID: 32195352 PMCID: PMC7065904 DOI: 10.1126/sciadv.aaz4157] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/17/2019] [Indexed: 05/04/2023]
Abstract
Tumors can undergo long periods of dormancy, with cancer cells entering a largely quiescent, nonproliferative state before reactivation and outgrowth. To understand the role of the extracellular matrix (ECM) in regulating tumor dormancy, we created an in vitro cell culture system with carefully controlled ECM substrates to observe entrance into and exit from dormancy with live imaging. We saw that cell populations capable of surviving entrance into long-term dormancy were heterogeneous, containing quiescent, cell cycle-arrested, and actively proliferating cells. Cell populations capable of entering dormancy formed an organized, fibrillar fibronectin matrix via αvβ3 and α5β1 integrin adhesion, ROCK-generated tension, and TGFβ2 stimulation, and cancer cell outgrowth after dormancy required MMP-2-mediated fibronectin degradation. We propose this approach as a useful, in vitro method to study factors important in regulating dormancy, and we used it here to elucidate a role for fibronectin deposition and MMP activation.
Collapse
Affiliation(s)
- Lauren E. Barney
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Christopher L. Hall
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Alyssa D. Schwartz
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Akia N. Parks
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA 30332, USA
| | - Christopher Sparages
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Sualyneth Galarza
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Manu O. Platt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA 30332, USA
| | - Arthur M. Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shelly R. Peyton
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| |
Collapse
|