1
|
Yang M, Boye-Doe A, Ali M, Abosabie SAS, Barr AM, Mendez LM, Sharda AV. RalB uncoupling from exocyst is required for endothelial Weibel-Palade body exocytosis. Mol Biol Cell 2025; 36:ar62. [PMID: 40172988 DOI: 10.1091/mbc.e24-11-0493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
Ras-like (Ral) GTPases play essential regulatory roles in many cellular processes, including exocytosis. Cycling between GDP- and GTP-bound states, Ral GTPases function as molecular switches and regulate effectors, specifically the multisubunit tethering complex exocyst. Here, we show that Ral isoform RalB, but not RalA, is necessary for regulated exocytosis of Weibel-Palade bodies (WPBs), the specialized endothelial secretory granules that store hemostatic protein von Willebrand factor. Remarkably, unlike typical small GTPase-effector interactions, RalB binds exocyst in GDP-bound state. Upon endothelial cell stimulation, exocyst is uncoupled from RalB-GTP resulting in WPB tethering and exocytosis. Furthermore, we report that protein kinase C (PKC)-dependent phosphorylation of the C-terminal hypervariable region (HVR) of RalB modulates its interaction with exocyst. Exocyst preferentially interacts with phosphorylated RalB in resting endothelium. Dephosphorylation of RalB either by endothelial cell stimulation, or PKC inhibition, or expression of nonphosphorylatable mutant at a specific serine residue of RalB HVR, disengages exocyst and augments WPB exocytosis, resembling a RalB exocyst-binding site mutant. In summary, uncoupling of exocyst from RalB promotes endothelial WPB exocytosis. Our data show that RalB may be more dynamically regulated by phosphorylation and may confer distinct functionality given the high degree of homology and the shared set of effector protein between the two Ral isoforms.
Collapse
Affiliation(s)
- Moua Yang
- Bloodworks Northwest Research Institute, Seattle, WA 98102
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98102
| | - Alexandra Boye-Doe
- Section of Hematology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06511
| | - Mohammed Ali
- Section of Hematology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06511
| | - Salma A S Abosabie
- Section of Hematology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06511
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, 97080 Würzburg, Germany
| | - Alexandra M Barr
- Section of Hematology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06511
| | - Lourdes M Mendez
- Section of Hematology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06511
| | - Anish V Sharda
- Section of Hematology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06511
| |
Collapse
|
2
|
Terglane J, Mertes N, Weischer S, Zobel T, Johnsson K, Gerke V. Chemigenetic Ca2+ indicators report elevated Ca2+ levels in endothelial Weibel-Palade bodies. PLoS One 2025; 20:e0316854. [PMID: 39869616 PMCID: PMC11771901 DOI: 10.1371/journal.pone.0316854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
Weibel-Palade bodies (WPB) are secretory organelles exclusively found in endothelial cells and among other cargo proteins, contain the hemostatic von-Willebrand factor (VWF). Stimulation of endothelial cells results in exocytosis of WPB and release of their cargo into the vascular lumen, where VWF unfurls into long strings of up to 1000 µm and recruits platelets to sites of vascular injury, thereby mediating a crucial step in the hemostatic response. The function of VWF is strongly correlated to its structure; in order to fulfill its task in the vascular lumen, VWF has to undergo a complex packing/processing after translation into the ER. ER, Golgi and WPB themselves provide a unique milieu for the maturation of VWF, which at the level of the Golgi consists of a low pH and elevated Ca2+ concentrations. WPB are also characterized by low luminal pH, but their Ca2+ content has not been addressed so far. Here, we employed a chemigenetic approach to circumvent the problems of Ca2+ imaging in an acidic environment and show that WPB indeed also harbor elevated Ca2+ concentrations. We also show that depletion of the Golgi resident Ca2+ pump ATP2C1 resulted in only a minor decrease of luminal Ca2+ in WPB suggesting additional mechanisms for Ca2+ uptake into the organelle.
Collapse
Affiliation(s)
- Julian Terglane
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany
| | - Nicole Mertes
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Sarah Weischer
- Münster Imaging Network, Cells in Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Thomas Zobel
- Münster Imaging Network, Cells in Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany
| |
Collapse
|
3
|
Yang M, Boye-Doe A, Abosabie SAS, Barr AM, Mendez LM, Sharda AV. RalB uncoupled exocyst mediates endothelial Weibel-Palade body exocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613344. [PMID: 39345530 PMCID: PMC11429928 DOI: 10.1101/2024.09.16.613344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Ras-like (Ral) GTPases play essential regulatory roles in many cellular processes, including exocytosis. Cycling between GDP- and GTP-bound states, Ral GTPases function as molecular switches and regulate effectors, specifically the multi-subunit tethering complex exocyst. Here, we show that Ral isoform RalB controls regulated exocytosis of Weibel-Palade bodies (WPBs), the specialized endothelial secretory granules that store hemostatic protein von Willebrand factor. Remarkably, unlike typical small GTPase-effector interactions, RalB binds exocyst in its GDP-bound state in resting endothelium. Upon endothelial cell stimulation, exocyst is uncoupled from RalB-GTP resulting in WPB tethering and exocytosis. Furthermore, we report that PKC-dependent phosphorylation of the C-terminal hypervariable region (HVR) of RalB modulates its dynamic interaction with exocyst in endothelium. Exocyst preferentially interacts with phosphorylated RalB in resting endothelium. Dephosphorylation of RalB either by endothelial cell stimulation, or PKC inhibition, or expression of nonphosphorylatable mutant at a specific serine residue of RalB HVR, disengages exocyst and augments WPB exocytosis, resembling RalB exocyst-binding site mutant. In summary, it is the uncoupling of exocyst from RalB that mediates endothelial Weibel-Palade body exocytosis. Our data shows that Ral function may be more dynamically regulated by phosphorylation and may confer distinct functionality given high degree of homology and the shared set of effector protein between the two Ral isoforms.
Collapse
Affiliation(s)
- Moua Yang
- Bloodworks Northwest Research Institute, Seattle, WA 98102, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Alexandra Boye-Doe
- Section of Hematology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Salma A S Abosabie
- Section of Hematology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Alexandra M Barr
- Section of Hematology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Lourdes M Mendez
- Section of Hematology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Anish V Sharda
- Section of Hematology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Zhang Q, Yaoita N, Tabuchi A, Liu S, Chen SH, Li Q, Hegemann N, Li C, Rodor J, Timm S, Laban H, Finkel T, Stevens T, Alvarez DF, Erfinanda L, de Perrot M, Kucherenko MM, Knosalla C, Ochs M, Dimmeler S, Korff T, Verma S, Baker AH, Kuebler WM. Endothelial Heterogeneity in the Response to Autophagy Drives Small Vessel Muscularization in Pulmonary Hypertension. Circulation 2024; 150:466-487. [PMID: 38873770 DOI: 10.1161/circulationaha.124.068726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/18/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Endothelial cell (EC) apoptosis and proliferation of apoptosis-resistant cells is a hallmark of pulmonary hypertension (PH). Yet, why some ECs die and others proliferate and how this contributes to vascular remodeling is unclear. We hypothesized that this differential response may: (1) relate to different EC subsets, namely pulmonary artery (PAECs) versus microvascular ECs (MVECs); (2) be attributable to autophagic activation in both EC subtypes; and (3) cause replacement of MVECs by PAECs with subsequent distal vessel muscularization. METHODS EC subset responses to chronic hypoxia were assessed by single-cell RNA sequencing of murine lungs. Proliferative versus apoptotic responses, activation, and role of autophagy were assessed in human and rat PAECs and MVECs, and in precision-cut lung slices of wild-type mice or mice with endothelial deficiency in the autophagy-related gene 7 (Atg7EN-KO). Abundance of PAECs versus MVECs in precapillary microvessels was assessed in lung tissue from patients with PH and animal models on the basis of structural or surface markers. RESULTS In vitro and in vivo, PAECs proliferated in response to hypoxia, whereas MVECs underwent apoptosis. Single-cell RNA sequencing analyses support these findings in that hypoxia induced an antiapoptotic, proliferative phenotype in arterial ECs, whereas capillary ECs showed a propensity for cell death. These distinct responses were prevented in hypoxic Atg7EN-KO mice or after ATG7 silencing, yet replicated by autophagy stimulation. In lung tissue from mice, rats, or patients with PH, the abundance of PAECs in precapillary arterioles was increased, and that of MVECs reduced relative to controls, indicating replacement of microvascular by macrovascular ECs. EC replacement was prevented by genetic or pharmacological inhibition of autophagy in vivo. Conditioned medium from hypoxic PAECs yet not MVECs promoted pulmonary artery smooth muscle cell proliferation and migration in a platelet-derived growth factor-dependent manner. Autophagy inhibition attenuated PH development and distal vessel muscularization in preclinical models. CONCLUSIONS Autophagic activation by hypoxia induces in parallel PAEC proliferation and MVEC apoptosis. These differential responses cause a progressive replacement of MVECs by PAECs in precapillary pulmonary arterioles, thus providing a macrovascular context that in turn promotes pulmonary artery smooth muscle cell proliferation and migration, ultimately driving distal vessel muscularization and the development of PH.
Collapse
Affiliation(s)
- Qi Zhang
- Institute of Physiology (Q.Z., N.Y., A.T., S.L., Q.L., N.H., C.L., L.E., M.M.K., W.M.K.), Charité-Universitätsmedizin, Berlin, Germany
- Department of Cardiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (Q.Z.)
| | - Nobuhiro Yaoita
- Institute of Physiology (Q.Z., N.Y., A.T., S.L., Q.L., N.H., C.L., L.E., M.M.K., W.M.K.), Charité-Universitätsmedizin, Berlin, Germany
| | - Arata Tabuchi
- Institute of Physiology (Q.Z., N.Y., A.T., S.L., Q.L., N.H., C.L., L.E., M.M.K., W.M.K.), Charité-Universitätsmedizin, Berlin, Germany
| | - Shaofei Liu
- Institute of Physiology (Q.Z., N.Y., A.T., S.L., Q.L., N.H., C.L., L.E., M.M.K., W.M.K.), Charité-Universitätsmedizin, Berlin, Germany
- German Center for Cardiovascular Research, Partner Site Berlin (S.L., N.H., M.M.K., C.K., W.M.K.)
| | - Shiau-Haln Chen
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (S.-H.C., J.R., A.H.B.)
| | - Qiuhua Li
- Institute of Physiology (Q.Z., N.Y., A.T., S.L., Q.L., N.H., C.L., L.E., M.M.K., W.M.K.), Charité-Universitätsmedizin, Berlin, Germany
| | - Niklas Hegemann
- Institute of Physiology (Q.Z., N.Y., A.T., S.L., Q.L., N.H., C.L., L.E., M.M.K., W.M.K.), Charité-Universitätsmedizin, Berlin, Germany
- German Center for Cardiovascular Research, Partner Site Berlin (S.L., N.H., M.M.K., C.K., W.M.K.)
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany (N.H., M.M.K., C.K.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Germany (N.H., M.M.K., C.K.)
| | - Caihong Li
- Institute of Physiology (Q.Z., N.Y., A.T., S.L., Q.L., N.H., C.L., L.E., M.M.K., W.M.K.), Charité-Universitätsmedizin, Berlin, Germany
| | - Julie Rodor
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (S.-H.C., J.R., A.H.B.)
| | - Sara Timm
- Core Facility Electron Microscopy (S.T., M.O.), Charité-Universitätsmedizin, Berlin, Germany
| | - Hebatullah Laban
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology (H.L.), Heidelberg University, Germany
- German Center for Cardiovascular Research, Partner Site Heidelberg/Mannheim, Heidelberg (H.L.)
| | - Toren Finkel
- Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (T.F.)
| | - Troy Stevens
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile (T.S.)
| | - Diego F Alvarez
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX (D.F.A.)
| | - Lasti Erfinanda
- Institute of Physiology (Q.Z., N.Y., A.T., S.L., Q.L., N.H., C.L., L.E., M.M.K., W.M.K.), Charité-Universitätsmedizin, Berlin, Germany
| | - Marc de Perrot
- Division of Thoracic Surgery, Toronto General Hospital, Canada (M.d.P.)
- Department of Surgery (M.d.P., W.M.K.), University of Toronto, Canada
| | - Mariya M Kucherenko
- Institute of Physiology (Q.Z., N.Y., A.T., S.L., Q.L., N.H., C.L., L.E., M.M.K., W.M.K.), Charité-Universitätsmedizin, Berlin, Germany
- German Center for Cardiovascular Research, Partner Site Berlin (S.L., N.H., M.M.K., C.K., W.M.K.)
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany (N.H., M.M.K., C.K.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Germany (N.H., M.M.K., C.K.)
| | - Christoph Knosalla
- German Center for Cardiovascular Research, Partner Site Berlin (S.L., N.H., M.M.K., C.K., W.M.K.)
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany (N.H., M.M.K., C.K.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Germany (N.H., M.M.K., C.K.)
| | - Matthias Ochs
- Core Facility Electron Microscopy (S.T., M.O.), Charité-Universitätsmedizin, Berlin, Germany
- Institute of Functional Anatomy (M.O.), Charité-Universitätsmedizin, Berlin, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany (S.D.)
| | - Thomas Korff
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology (T.K.), Heidelberg University, Germany
- European Center for Angioscience, Medical Faculty Mannheim (T.K.), Heidelberg University, Germany
| | - Subodh Verma
- Division of Cardiac Surgery (S.V.), University of Toronto, Canada
| | - Andrew H Baker
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (S.-H.C., J.R., A.H.B.)
- Department of Pathology, Cardiovascular Research Institute Maastricht School for Cardiovascular Diseases, Maastricht University, The Netherlands (A.H.B.)
| | - Wolfgang M Kuebler
- Institute of Physiology (Q.Z., N.Y., A.T., S.L., Q.L., N.H., C.L., L.E., M.M.K., W.M.K.), Charité-Universitätsmedizin, Berlin, Germany
- German Center for Cardiovascular Research, Partner Site Berlin (S.L., N.H., M.M.K., C.K., W.M.K.)
- Department of Surgery (M.d.P., W.M.K.), University of Toronto, Canada
- Department of Physiology (W.M.K.), University of Toronto, Canada
- Keenan Research Centre, St Michael's Hospital, Canada (W.M.K.)
| |
Collapse
|
5
|
Duranova H, Kuzelova L, Borotova P, Simora V, Fialkova V. Human Umbilical Vein Endothelial Cells as a Versatile Cellular Model System in Diverse Experimental Paradigms: An Ultrastructural Perspective. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:419-439. [PMID: 38817111 DOI: 10.1093/mam/ozae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
Human umbilical vein endothelial cells (HUVECs) are primary cells isolated from the vein of an umbilical cord, extensively used in cardiovascular studies and medical research. These cells, retaining the characteristics of endothelial cells in vivo, serve as a valuable cellular model system for understanding vascular biology, endothelial dysfunction, pathophysiology of diseases such as atherosclerosis, and responses to different drugs or treatments. Transmission electron microscopy (TEM) has been a cornerstone in revealing the detailed architecture of multiple cellular model systems including HUVECs, allowing researchers to visualize subcellular organelles, membrane structures, and cytoskeletal elements. Among them, the endoplasmic reticulum, Golgi apparatus, mitochondria, and nucleus can be meticulously examined to recognize alterations indicative of cellular responses to various stimuli. Importantly, Weibel-Palade bodies are characteristic secretory organelles found in HUVECs, which can be easily distinguished in the TEM. These distinctive structures also dynamically react to different factors through regulated exocytosis, resulting in complete or selective release of their contents. This detailed review summarizes the ultrastructural features of HUVECs and highlights the utility of TEM as a pivotal tool for analyzing HUVECs in diverse research frameworks, contributing valuable insights into the comprehension of HUVEC behavior and enriching our knowledge into the complexity of vascular biology.
Collapse
Affiliation(s)
- Hana Duranova
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Lenka Kuzelova
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
- Faculty of Biotechnology and Food Sciences, Institute of Biotechnology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Petra Borotova
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Veronika Simora
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Veronika Fialkova
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| |
Collapse
|
6
|
Culley S, Caballero AC, Burden JJ, Uhlmann V. Made to measure: An introduction to quantifying microscopy data in the life sciences. J Microsc 2024; 295:61-82. [PMID: 37269048 DOI: 10.1111/jmi.13208] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
Images are at the core of most modern biological experiments and are used as a major source of quantitative information. Numerous algorithms are available to process images and make them more amenable to be measured. Yet the nature of the quantitative output that is useful for a given biological experiment is uniquely dependent upon the question being investigated. Here, we discuss the 3 main types of information that can be extracted from microscopy data: intensity, morphology, and object counts or categorical labels. For each, we describe where they come from, how they can be measured, and what may affect the relevance of these measurements in downstream data analysis. Acknowledging that what makes a measurement 'good' is ultimately down to the biological question being investigated, this review aims at providing readers with a toolkit to challenge how they quantify their own data and be critical of conclusions drawn from quantitative bioimage analysis experiments.
Collapse
Affiliation(s)
- Siân Culley
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | | | | | - Virginie Uhlmann
- European Bioinformatics Institute (EMBL-EBI), EMBL, Cambridge, UK
| |
Collapse
|
7
|
Hordijk S, Carter T, Bierings R. A new look at an old body: molecular determinants of Weibel-Palade body composition and von Willebrand factor exocytosis. J Thromb Haemost 2024; 22:1290-1303. [PMID: 38307391 DOI: 10.1016/j.jtha.2024.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/04/2024]
Abstract
Endothelial cells, forming a monolayer along blood vessels, intricately regulate vascular hemostasis, inflammatory responses, and angiogenesis. A key determinant of these functions is the controlled secretion of Weibel-Palade bodies (WPBs), which are specialized endothelial storage organelles housing a presynthesized pool of the hemostatic protein von Willebrand factor and various other hemostatic, inflammatory, angiogenic, and vasoactive mediators. This review delves into recent mechanistic insights into WPB biology, including the biogenesis that results in their unique morphology, the acquisition of intraluminal vesicles and other cargo, and the contribution of proton pumps to organelle acidification. Additionally, in light of a number of proteomic approaches to unravel the regulatory networks that control WPB formation and secretion, we provide a comprehensive overview of the WPB exocytotic machinery, including their molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Sophie Hordijk
- Hematology, Erasmus MC University Medical Center, Rotterdam, The Netherlands. https://twitter.com/SophieHordijk
| | - Tom Carter
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Ruben Bierings
- Hematology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Ma J, Hao Z, Zhang Y, Li L, Huang X, Wang Y, Chen L, Yang G, Li W. Physical Contacts Between Mitochondria and WPBs Participate in WPB Maturation. Arterioscler Thromb Vasc Biol 2024; 44:108-123. [PMID: 37942609 DOI: 10.1161/atvbaha.123.319939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Weibel-Palade bodies (WPBs) are endothelial cell-specific cigar-shaped secretory organelles containing various biologically active molecules. WPBs play crucial roles in thrombosis, hemostasis, angiogenesis, and inflammation. The main content of WPBs is the procoagulant protein vWF (von Willebrand factor). Physical contacts and functional cross talk between mitochondria and other organelles have been demonstrated. Whether an interorganellar connection exists between mitochondria and WPBs is unknown. METHODS We observed physical contacts between mitochondria and WPBs in human umbilical vein endothelial cells by electron microscopy and living cell confocal microscopy. We developed an artificial intelligence-assisted method to quantify the duration and length of organelle contact sites in live cells. RESULTS We found there existed physical contacts between mitochondria and WPBs. Disruption of mitochondrial function affected the morphology of WPBs. Furthermore, we found that Rab3b, a small GTPase on the WPBs, was enriched at the mitochondrion-WPB contact sites. Rab3b deficiency reduced interaction between the two organelles and impaired the maturation of WPBs and vWF multimer secretion. CONCLUSIONS Our results reveal that Rab3b plays a crucial role in mediating the mitochondrion-WPB contacts, and that mitochondrion-WPB coupling is critical for the maturation of WPBs in vascular endothelial cells.
Collapse
Affiliation(s)
- Jing Ma
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, China (J.M., Z.H., W.L.)
- MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China (J.M., Z.H., W.L.)
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China (J.M., Z.H., W.L.)
| | - Zhenhua Hao
- MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China (J.M., Z.H., W.L.)
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China (J.M., Z.H., W.L.)
| | - Yudong Zhang
- National Laboratory of Pattern Recognition, Institute of Automation (Y.Z., G.Y.), Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China (Y.Z., G.Y.)
| | - Liuju Li
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, School of Future Technology (L.L., L.C.), Peking University, Beijing, China
| | - Xiaoshuai Huang
- Biomedical Engineering Department (X.H.), Peking University, Beijing, China
| | - Yu Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology (Y.W.), Chinese Academy of Sciences, Beijing, China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, School of Future Technology (L.L., L.C.), Peking University, Beijing, China
| | - Ge Yang
- National Laboratory of Pattern Recognition, Institute of Automation (Y.Z., G.Y.), Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China (Y.Z., G.Y.)
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, China (J.M., Z.H., W.L.)
- MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Beijing, China (J.M., Z.H., W.L.)
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China (J.M., Z.H., W.L.)
| |
Collapse
|
9
|
Wang H, Li D, Chen Y, Liu Z, Liu Y, Meng X, Fan H, Hou S. Shear-induced acquired von Willebrand syndrome: an accomplice of bleeding events in adults on extracorporeal membrane oxygenation support. Front Cardiovasc Med 2023; 10:1159894. [PMID: 37485275 PMCID: PMC10357042 DOI: 10.3389/fcvm.2023.1159894] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is an increasingly acceptable life-saving mechanical assistance system that provides cardiac and/or respiratory support for several reversible or treatable diseases. Despite important advances in technology and clinical management, bleeding remains a significant and common complication associated with increased morbidity and mortality. Some studies suggest that acquired von Willebrand syndrome (AVWS) is one of the etiologies of bleeding. It is caused by shear-induced deficiency of von Willebrand factor (VWF). VWF is an important glycoprotein for hemostasis that acts as a linker at sites of vascular injury for platelet adhesion and aggregation under high shear stress. AVWS can usually be diagnosed within 24 h after initiation of ECMO and is always reversible after explantation. Nonetheless, the main mechanism for the defect in the VWF multimers under ECMO support and the association between AVWS and bleeding complications remains unknown. In this review, we specifically discuss the loss of VWF caused by shear induction in the context of ECMO support as well as the current diagnostic and management strategies for AVWS.
Collapse
Affiliation(s)
- Haiwang Wang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Duo Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yuansen Chen
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Ziquan Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yanqing Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Xiangyan Meng
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| |
Collapse
|
10
|
Meli A, McCormack A, Conte I, Chen Q, Streetley J, Rose ML, Bierings R, Hannah MJ, Molloy JE, Rosenthal PB, Carter T. Altered Storage and Function of von Willebrand Factor in Human Cardiac Microvascular Endothelial Cells Isolated from Recipient Transplant Hearts. Int J Mol Sci 2023; 24:ijms24054553. [PMID: 36901985 PMCID: PMC10003102 DOI: 10.3390/ijms24054553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The assembly of von Willebrand factor (VWF) into ordered helical tubules within endothelial Weibel-Palade bodies (WPBs) is required for the efficient deployment of the protein at sites of vascular injury. VWF trafficking and storage are sensitive to cellular and environmental stresses that are associated with heart disease and heart failure. Altered storage of VWF manifests as a change in WPB morphology from a rod shape to a rounded shape and is associated with impaired VWF deployment during secretion. In this study, we examined the morphology, ultrastructure, molecular composition and kinetics of exocytosis of WPBs in cardiac microvascular endothelial cells isolated from explanted hearts of patients with a common form of heart failure, dilated cardiomyopathy (DCM; HCMECD), or from nominally healthy donors (controls; HCMECC). Using fluorescence microscopy, WPBs in HCMECC (n = 3 donors) showed the typical rod-shaped morphology containing VWF, P-selectin and tPA. In contrast, WPBs in primary cultures of HCMECD (n = 6 donors) were predominantly rounded in shape and lacked tissue plasminogen activator (t-PA). Ultrastructural analysis of HCMECD revealed a disordered arrangement of VWF tubules in nascent WPBs emerging from the trans-Golgi network. HCMECD WPBs still recruited Rab27A, Rab3B, Myosin-Rab Interacting Protein (MyRIP) and Synaptotagmin-like protein 4a (Slp4-a) and underwent regulated exocytosis with kinetics similar to that seen in HCMECc. However, secreted extracellular VWF strings from HCMECD were significantly shorter than for endothelial cells with rod-shaped WPBs, although VWF platelet binding was similar. Our observations suggest that VWF trafficking, storage and haemostatic potential are perturbed in HCMEC from DCM hearts.
Collapse
Affiliation(s)
- Athinoula Meli
- Transplant Immunology, Heart Science Centre, Harefield Hospital, Hill End Road, Harefield UB9 6JH, UK
| | - Ann McCormack
- Transplant Immunology, Heart Science Centre, Harefield Hospital, Hill End Road, Harefield UB9 6JH, UK
| | - Ianina Conte
- Molecular and Clinical Sciences Research Institute, St Georges University of London, London SW17 0RE, UK
| | - Qu Chen
- Structural Biology Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - James Streetley
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Marlene L. Rose
- Transplant Immunology, Heart Science Centre, Harefield Hospital, Hill End Road, Harefield UB9 6JH, UK
| | - Ruben Bierings
- Hematology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Matthew J. Hannah
- High Containment Microbiology, UK Health Security Agency, London NW9 5EQ, UK
| | - Justin E. Molloy
- Single Molecule Enzymology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Peter B. Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Tom Carter
- Molecular and Clinical Sciences Research Institute, St Georges University of London, London SW17 0RE, UK
- Correspondence: ; Tel.: +44-(208)-7255961
| |
Collapse
|
11
|
Acidification of endothelial Weibel-Palade bodies is mediated by the vacuolar-type H+-ATPase. PLoS One 2022; 17:e0270299. [PMID: 35767558 PMCID: PMC9242466 DOI: 10.1371/journal.pone.0270299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Weibel-Palade bodies (WPB) are unique secretory granules of endothelial cells that store the procoagulant von-Willebrand factor (VWF) in a highly compacted form. Upon exocytosis the densely packed VWF unfurls into long strands that expose binding sites for circulating platelets and thereby initiate the formation of a platelet plug at sites of blood vessel injury. Dense packing of VWF requires the establishment of an acidic pH in the lumen of maturing WPB but the mechanism responsible for this acidification has not yet been fully established. We show here that subunits of the vacuolar-type H+-ATPase are present on mature WPB and that interference with the proton pump activity of the ATPase employing inhibitors of different chemical nature blocks a reduction in the relative internal pH of WPB. Furthermore, depletion of the V-ATPase subunit V0d1 from primary endothelial cells prevents WPB pH reduction and the establishment of an elongated morphology of WPB that is dictated by the densely packed VWF tubules. Thus, the vacuolar-type H+-ATPase present on WPB is required for proper acidification and maturation of the organelle.
Collapse
|
12
|
Page KM, McCormack JJ, Lopes-da-Silva M, Patella F, Harrison-Lavoie K, Burden JJ, Quah YYB, Scaglioni D, Ferraro F, Cutler DF. Structure modeling hints at a granular organization of the Golgi ribbon. BMC Biol 2022; 20:111. [PMID: 35549945 PMCID: PMC9102599 DOI: 10.1186/s12915-022-01305-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/21/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND In vertebrate cells, the Golgi functional subunits, mini-stacks, are linked into a tri-dimensional network. How this "ribbon" architecture relates to Golgi functions remains unclear. Are all connections between mini-stacks equal? Is the local structure of the ribbon of functional importance? These are difficult questions to address, without a quantifiable readout of the output of ribbon-embedded mini-stacks. Endothelial cells produce secretory granules, the Weibel-Palade bodies (WPB), whose von Willebrand Factor (VWF) cargo is central to hemostasis. The Golgi apparatus controls WPB size at both mini-stack and ribbon levels. Mini-stack dimensions delimit the size of VWF "boluses" whilst the ribbon architecture allows their linear co-packaging, thereby generating WPBs of different lengths. This Golgi/WPB size relationship suits mathematical analysis. RESULTS WPB lengths were quantized as multiples of the bolus size and mathematical modeling simulated the effects of different Golgi ribbon organizations on WPB size, to be compared with the ground truth of experimental data. An initial simple model, with the Golgi as a single long ribbon composed of linearly interlinked mini-stacks, was refined to a collection of mini-ribbons and then to a mixture of mini-stack dimers plus long ribbon segments. Complementing these models with cell culture experiments led to novel findings. Firstly, one-bolus sized WPBs are secreted faster than larger secretory granules. Secondly, microtubule depolymerization unlinks the Golgi into equal proportions of mini-stack monomers and dimers. Kinetics of binding/unbinding of mini-stack monomers underpinning the presence of stable dimers was then simulated. Assuming that stable mini-stack dimers and monomers persist within the ribbon resulted in a final model that predicts a "breathing" arrangement of the Golgi, where monomer and dimer mini-stacks within longer structures undergo continuous linking/unlinking, consistent with experimentally observed WPB size distributions. CONCLUSIONS Hypothetical Golgi organizations were validated against a quantifiable secretory output. The best-fitting Golgi model, accounting for stable mini-stack dimers, is consistent with a highly dynamic ribbon structure, capable of rapid rearrangement. Our modeling exercise therefore predicts that at the fine-grained level the Golgi ribbon is more complex than generally thought. Future experiments will confirm whether such a ribbon organization is endothelial-specific or a general feature of vertebrate cells.
Collapse
Affiliation(s)
- Karen M. Page
- Department of Mathematics, University College London, Gower Street, London, WC1E 6BT UK
| | - Jessica J. McCormack
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - Mafalda Lopes-da-Silva
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
- Current address: iNOVA4Health, CEDOC-Chronic Diseases Research Center, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Francesca Patella
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
- Current address: Kinomica, Alderley Park, Alderley Edge, Macclesfield, SK10 4TG UK
| | - Kimberly Harrison-Lavoie
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - Jemima J. Burden
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - Ying-Yi Bernadette Quah
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - Dominic Scaglioni
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - Francesco Ferraro
- Department of Biology and Evolution of Marine Organisms, BEOM, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Daniel F. Cutler
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
13
|
Naß J, Terglane J, Gerke V. Weibel Palade Bodies: Unique Secretory Organelles of Endothelial Cells that Control Blood Vessel Homeostasis. Front Cell Dev Biol 2022; 9:813995. [PMID: 34977047 PMCID: PMC8717947 DOI: 10.3389/fcell.2021.813995] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
Vascular endothelial cells produce and release compounds regulating vascular tone, blood vessel growth and differentiation, plasma composition, coagulation and fibrinolysis, and also engage in interactions with blood cells thereby controlling hemostasis and acute inflammatory reactions. These interactions have to be tightly regulated to guarantee smooth blood flow in normal physiology, but also allow specific and often local responses to blood vessel injury and infectious or inflammatory insults. To cope with these challenges, endothelial cells have the remarkable capability of rapidly changing their surface properties from non-adhesive (supporting unrestricted blood flow) to adhesive (capturing circulating blood cells). This is brought about by the evoked secretion of major adhesion receptors for platelets (von-Willebrand factor, VWF) and leukocytes (P-selectin) which are stored in a ready-to-be-used form in specialized secretory granules, the Weibel-Palade bodies (WPB). WPB are unique, lysosome related organelles that form at the trans-Golgi network and further mature by receiving material from the endolysosomal system. Failure to produce correctly matured VWF and release it through regulated WPB exocytosis results in pathologies, most importantly von-Willebrand disease, the most common inherited blood clotting disorder. The biogenesis of WPB, their intracellular motility and their fusion with the plasma membrane are regulated by a complex interplay of proteins and lipids, involving Rab proteins and their effectors, cytoskeletal components as well as membrane tethering and fusion machineries. This review will discuss aspects of WPB biogenesis, trafficking and exocytosis focussing on recent findings describing factors contributing to WPB maturation, WPB-actin interactions and WPB-plasma membrane tethering and fusion.
Collapse
Affiliation(s)
- Johannes Naß
- Centre for Molecular Biology of Inflammation, Institute of Medical Biochemistry, University of Muenster, Muenster, Germany
| | - Julian Terglane
- Centre for Molecular Biology of Inflammation, Institute of Medical Biochemistry, University of Muenster, Muenster, Germany
| | - Volker Gerke
- Centre for Molecular Biology of Inflammation, Institute of Medical Biochemistry, University of Muenster, Muenster, Germany
| |
Collapse
|
14
|
Yamazaki Y, Eura Y, Kokame K. V-ATPase V0a1 promotes Weibel-Palade body biogenesis through the regulation of membrane fission. eLife 2021; 10:71526. [PMID: 34904569 PMCID: PMC8718113 DOI: 10.7554/elife.71526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/13/2021] [Indexed: 01/09/2023] Open
Abstract
Membrane fission, the division of a membrane-bound structure into two discrete compartments, is essential for diverse cellular events, such as endocytosis and vesicle/granule biogenesis; however, the process remains unclear. The hemostatic protein von Willebrand factor is produced in vascular endothelial cells and packaged into specialized secretory granules, Weibel–Palade bodies (WPBs) at the trans-Golgi network (TGN). Here, we reported that V0a1, a V-ATPase component, is required for the membrane fission of WPBs. We identified two V0a isoforms in distinct populations of WPBs in cultured endothelial cells, V0a1 and V0a2, on mature and nascent WPBs, respectively. Although WPB buds were formed, WPBs could not separate from the TGN in the absence of V0a1. Screening using dominant–negative forms of known membrane fission regulators revealed protein kinase D (PKD) as an essential factor in biogenesis of WPBs. Further, we showed that the induction of wild-type PKDs in V0a1-depleted cells does not support the segregation of WPBs from the TGN; suggesting a primary role of V0a1 in the membrane fission of WPBs. The identification of V0a1 as a new membrane fission regulator should facilitate the understanding of molecular events that enable membrane fission.
Collapse
Affiliation(s)
- Yasuo Yamazaki
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yuka Eura
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Koichi Kokame
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
15
|
Figon F, Hurbain I, Heiligenstein X, Trépout S, Lanoue A, Medjoubi K, Somogyi A, Delevoye C, Raposo G, Casas J. Catabolism of lysosome-related organelles in color-changing spiders supports intracellular turnover of pigments. Proc Natl Acad Sci U S A 2021; 118:e2103020118. [PMID: 34433668 PMCID: PMC8536372 DOI: 10.1073/pnas.2103020118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pigment organelles of vertebrates belong to the lysosome-related organelle (LRO) family, of which melanin-producing melanosomes are the prototypes. While their anabolism has been extensively unraveled through the study of melanosomes in skin melanocytes, their catabolism remains poorly known. Here, we tap into the unique ability of crab spiders to reversibly change body coloration to examine the catabolism of their pigment organelles. By combining ultrastructural and metal analyses on high-pressure frozen integuments, we first assess whether pigment organelles of crab spiders belong to the LRO family and second, how their catabolism is intracellularly processed. Using scanning transmission electron microscopy, electron tomography, and nanoscale Synchrotron-based scanning X-ray fluorescence, we show that pigment organelles possess ultrastructural and chemical hallmarks of LROs, including intraluminal vesicles and metal deposits, similar to melanosomes. Monitoring ultrastructural changes during bleaching suggests that the catabolism of pigment organelles involves the degradation and removal of their intraluminal content, possibly through lysosomal mechanisms. In contrast to skin melanosomes, anabolism and catabolism of pigments proceed within the same cell without requiring either cell death or secretion/phagocytosis. Our work hence provides support for the hypothesis that the endolysosomal system is fully functionalized for within-cell turnover of pigments, leading to functional maintenance under adverse conditions and phenotypic plasticity. First formulated for eye melanosomes in the context of human vision, the hypothesis of intracellular turnover of pigments gets unprecedented strong support from pigment organelles of spiders.
Collapse
Affiliation(s)
- Florent Figon
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université de Tours, 37200 Tours, France;
| | - Ilse Hurbain
- Institut Curie, CNRS UMR 144, Structure and Membrane Compartments, Paris Sciences & Lettres (PSL) Research University, 75005 Paris, France
- Institut Curie, CNRS UMR 144, Cell and Tissue Imaging Facility (Plateforme d'Imagerie Cellulaire et Tissulaire, Infrastructures en Biologie, Santé et Agronomie [PICT-IBiSA]), PSL Research University, 75005 Paris, France
| | | | - Sylvain Trépout
- Institut Curie, INSERM U1196, CNRS UMR 9187, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Arnaud Lanoue
- Biomolécules et Biotechnologies Végétales, Équipe d'Accueil 2106, Université de Tours, 37200 Tours, France
| | | | | | - Cédric Delevoye
- Institut Curie, CNRS UMR 144, Structure and Membrane Compartments, Paris Sciences & Lettres (PSL) Research University, 75005 Paris, France
- Institut Curie, CNRS UMR 144, Cell and Tissue Imaging Facility (Plateforme d'Imagerie Cellulaire et Tissulaire, Infrastructures en Biologie, Santé et Agronomie [PICT-IBiSA]), PSL Research University, 75005 Paris, France
| | - Graça Raposo
- Institut Curie, CNRS UMR 144, Structure and Membrane Compartments, Paris Sciences & Lettres (PSL) Research University, 75005 Paris, France
- Institut Curie, CNRS UMR 144, Cell and Tissue Imaging Facility (Plateforme d'Imagerie Cellulaire et Tissulaire, Infrastructures en Biologie, Santé et Agronomie [PICT-IBiSA]), PSL Research University, 75005 Paris, France
| | - Jérôme Casas
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université de Tours, 37200 Tours, France;
| |
Collapse
|
16
|
Avdonin PP, Tsvetaeva NV, Goncharov NV, Rybakova EY, Trufanov SK, Tsitrina AA, Avdonin PV. Von Willebrand Factor in Health and Disease. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2021. [DOI: 10.1134/s1990747821040036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abstract—
Von Willebrand factor (vWF), the key component of hemostasis, is synthesized in endothelial cells and megakaryocytes and released into the blood as high molecular weight multimeric glycoproteins weighing up to 20 million Daltons. Blood plasma metalloprotease ADAMTS13 cleaves ultra-large vWF multimers to smaller multimeric and oligomeric molecules. The vWF molecules attach to the sites of damage at the surface of arterioles and capillaries and unfold under conditions of shear stress. On the unfolded vWF molecule, the regions interacting with receptors on the platelet membrane are exposed. After binding to the vWF filaments, platelets are activated; platelets circulating in the vessels are additionally attached to them, leading to thrombus formation, blocking of microvessels, and cessation of bleeding. This review describes the history of the discovery of vWF, presents data on the mechanisms of vWF secretion and its structure, and characterizes the processes of vWF metabolism in the body under normal and pathological conditions.
Collapse
|
17
|
Karampini E, Bürgisser PE, Olins J, Mulder AA, Jost CR, Geerts D, Voorberg J, Bierings R. Sec22b determines Weibel-Palade body length by controlling anterograde ER-Golgi transport. Haematologica 2021; 106:1138-1147. [PMID: 32336681 PMCID: PMC8018124 DOI: 10.3324/haematol.2019.242727] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 01/07/2023] Open
Abstract
Von Willebrand factor (VWF) is a multimeric hemostatic protein that is synthesized in endothelial cells, where it is stored for secretion in elongated secretory organelles called Weibel-Palade bodies (WPB). The hemostatic activity of VWF is strongly related to the length of these bodies, but how endothelial cells control the dimensions of their WPB is unclear. In this study, using a targeted short hairpin RNA screen, we identified longin-SNARE Sec22b as a novel determinant of WPB size and VWF trafficking. We found that Sec22b depletion resulted in loss of the typically elongated WPB morphology together with disintegration of the Golgi and dilation of rough endoplasmic reticulum cisternae. This was accompanied by reduced proteolytic processing of VWF, accumulation of VWF in the dilated rough endoplasmic reticulum and reduced basal and stimulated VWF secretion. Our data demonstrate that the elongation of WPB, and thus adhesive activity of their cargo VWF, is determined by the rate of anterograde transport between endoplasmic reticulum and Golgi, which depends on Sec22b-containing SNARE complexes.
Collapse
Affiliation(s)
- Ellie Karampini
- Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, The Netherlands
| | - Petra E Bürgisser
- Dept. of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jenny Olins
- Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, The Netherlands
| | - Aat A Mulder
- Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Carolina R Jost
- Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dirk Geerts
- Medical Biology, Amsterdam University Medical Center, University of Amsterdam, The Netherlands
| | - Jan Voorberg
- Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, The Netherlands
| | - Ruben Bierings
- Dept. of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Streetley J, Fonseca AV, Turner J, Kiskin NI, Knipe L, Rosenthal PB, Carter T. Stimulated release of intraluminal vesicles from Weibel-Palade bodies. Blood 2019; 133:2707-2717. [PMID: 30760452 PMCID: PMC6624784 DOI: 10.1182/blood-2018-09-874552] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/06/2019] [Indexed: 12/16/2022] Open
Abstract
Weibel-Palade bodies (WPBs) are secretory granules that contain von Willebrand factor and P-selectin, molecules that regulate hemostasis and inflammation, respectively. The presence of CD63/LAMP3 in the limiting membrane of WPBs has led to their classification as lysosome-related organelles. Many lysosome-related organelles contain intraluminal vesicles (ILVs) enriched in CD63 that are secreted into the extracellular environment during cell activation to mediate intercellular communication. To date, there are no reports that WPBs contain or release ILVs. By light microscopy and live-cell imaging, we show that CD63 is enriched in microdomains within WPBs. Extracellular antibody recycling studies showed that CD63 in WPB microdomains can originate from the plasma membrane. By cryo-electron tomography of frozen-hydrated endothelial cells, we identify internal vesicles as novel structural features of the WPB lumen. By live-cell fluorescence microscopy, we directly observe the exocytotic release of EGFP-CD63 ILVs as discrete particles from individual WPBs. WPB exocytosis provides a novel route for release of ILVs during endothelial cell stimulation.
Collapse
Affiliation(s)
- James Streetley
- MRC National Institute for Medical Research, The Ridgeway, London, United Kingdom
| | - Ana-Violeta Fonseca
- MRC National Institute for Medical Research, The Ridgeway, London, United Kingdom
| | - Jack Turner
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, United Kingdom; and
| | - Nikolai I Kiskin
- MRC National Institute for Medical Research, The Ridgeway, London, United Kingdom
| | - Laura Knipe
- MRC National Institute for Medical Research, The Ridgeway, London, United Kingdom
| | - Peter B Rosenthal
- MRC National Institute for Medical Research, The Ridgeway, London, United Kingdom
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, United Kingdom; and
| | - Tom Carter
- MRC National Institute for Medical Research, The Ridgeway, London, United Kingdom
- Molecular and Clinical Sciences Research Institute, St George's University, London, United Kingdom
| |
Collapse
|
19
|
Schillemans M, Karampini E, Kat M, Bierings R. Exocytosis of Weibel-Palade bodies: how to unpack a vascular emergency kit. J Thromb Haemost 2019; 17:6-18. [PMID: 30375718 PMCID: PMC7379738 DOI: 10.1111/jth.14322] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Indexed: 01/17/2023]
Abstract
The blood vessel wall has a number of self-healing properties, enabling it to minimize blood loss and prevent or overcome infections in the event of vascular trauma. Endothelial cells prepackage a cocktail of hemostatic, inflammatory and angiogenic mediators in their unique secretory organelles, the Weibel-Palade bodies (WPBs), which can be immediately released on demand. Secretion of their contents into the vascular lumen through a process called exocytosis enables the endothelium to actively participate in the arrest of bleeding and to slow down and direct leukocytes to areas of inflammation. Owing to their remarkable elongated morphology and their secretory contents, which span the entire size spectrum of small chemokines all the way up to ultralarge von Willebrand factor multimers, WPBs constitute an ideal model system for studying the molecular mechanisms of secretory organelle biogenesis, exocytosis, and content expulsion. Recent studies have now shown that, during exocytosis, WPBs can undergo several distinct modes of fusion, and can utilize fundamentally different mechanisms to expel their contents. In this article, we discuss recent advances in our understanding of the composition of the WPB exocytotic machinery and how, because of its configuration, it is able to support WPB release in its various forms.
Collapse
Affiliation(s)
- M. Schillemans
- Molecular and Cellular HemostasisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - E. Karampini
- Molecular and Cellular HemostasisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - M. Kat
- Molecular and Cellular HemostasisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - R. Bierings
- Molecular and Cellular HemostasisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
- HematologyErasmus University Medical CenterRotterdamthe Netherlands
| |
Collapse
|
20
|
Critical review: Cardiac telocytes vs cardiac lymphatic endothelial cells. Ann Anat 2018; 222:40-54. [PMID: 30439414 DOI: 10.1016/j.aanat.2018.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/18/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
Abstract
The study of cardiac interstitial Cajal-like cells (ICLCs) began in 2005 and continued until 2010, when these cells were renamed as telocytes (TCs). Since then, numerous papers on cardiac ICLCs and TCs have been published. However, in the initial descriptions upon which further research was based, lymphatic endothelial cells (LECs) and initial lymphatics were not considered. No specific antibodies for LECs (such as podoplanin or LYVE-1) were used in cardiac TC studies, although ultrastructurally, LECs and TCs have similar morphological traits, including the lack of a basal lamina. When tissues are longitudinally cut, migrating LECs involved in adult lymphangiogenesis have an ICLC or TC morphology, both in light and transmission electron microscopy. In this paper, we present evidence that at least some cardiac TCs are actually LECs. Therefore, a clear-cut distinction should be made between TCs and LECs, at both the molecular and the ultrastructural levels, in order to avoid obtaining invalid data.
Collapse
|
21
|
Schillemans M, Karampini E, van den Eshof BL, Gangaev A, Hofman M, van Breevoort D, Meems H, Janssen H, Mulder AA, Jost CR, Escher JC, Adam R, Carter T, Koster AJ, van den Biggelaar M, Voorberg J, Bierings R. Weibel-Palade Body Localized Syntaxin-3 Modulates Von Willebrand Factor Secretion From Endothelial Cells. Arterioscler Thromb Vasc Biol 2018; 38:1549-1561. [PMID: 29880488 PMCID: PMC6039413 DOI: 10.1161/atvbaha.117.310701] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/17/2018] [Indexed: 01/08/2023]
Abstract
Supplemental Digital Content is available in the text. Objective— Endothelial cells store VWF (von Willebrand factor) in rod-shaped secretory organelles, called Weibel-Palade bodies (WPBs). WPB exocytosis is coordinated by a complex network of Rab GTPases, Rab effectors, and SNARE (soluble NSF attachment protein receptor) proteins. We have previously identified STXBP1 as the link between the Rab27A-Slp4-a complex on WPBs and the SNARE proteins syntaxin-2 and -3. In this study, we investigate the function of syntaxin-3 in VWF secretion. Approach and Results— In human umbilical vein endothelial cells and in blood outgrowth endothelial cells (BOECs) from healthy controls, endogenous syntaxin-3 immunolocalized to WPBs. A detailed analysis of BOECs isolated from a patient with variant microvillus inclusion disease, carrying a homozygous mutation in STX3(STX3−/−), showed a loss of syntaxin-3 protein and absence of WPB-associated syntaxin-3 immunoreactivity. Ultrastructural analysis revealed no detectable differences in morphology or prevalence of immature or mature WPBs in control versus STX3−/− BOECs. VWF multimer analysis showed normal patterns in plasma of the microvillus inclusion disease patient, and media from STX3−/− BOECs, together indicating WPB formation and maturation are unaffected by absence of syntaxin-3. However, a defect in basal as well as Ca2+- and cAMP-mediated VWF secretion was found in the STX3−/− BOECs. We also show that syntaxin-3 interacts with the WPB-associated SNARE protein VAMP8 (vesicle-associated membrane protein-8). Conclusions— Our data reveal syntaxin-3 as a novel WPB-associated SNARE protein that controls WPB exocytosis.
Collapse
Affiliation(s)
- Maaike Schillemans
- From the Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands (M.S., E.K., B.L.v.d.E., A.G., M.H., D.v.B., H.M., M.v.d.B., J.V., R.B.)
| | - Ellie Karampini
- From the Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands (M.S., E.K., B.L.v.d.E., A.G., M.H., D.v.B., H.M., M.v.d.B., J.V., R.B.)
| | - Bart L van den Eshof
- From the Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands (M.S., E.K., B.L.v.d.E., A.G., M.H., D.v.B., H.M., M.v.d.B., J.V., R.B.)
| | - Anastasia Gangaev
- From the Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands (M.S., E.K., B.L.v.d.E., A.G., M.H., D.v.B., H.M., M.v.d.B., J.V., R.B.)
| | - Menno Hofman
- From the Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands (M.S., E.K., B.L.v.d.E., A.G., M.H., D.v.B., H.M., M.v.d.B., J.V., R.B.)
| | - Dorothee van Breevoort
- From the Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands (M.S., E.K., B.L.v.d.E., A.G., M.H., D.v.B., H.M., M.v.d.B., J.V., R.B.)
| | - Henriët Meems
- From the Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands (M.S., E.K., B.L.v.d.E., A.G., M.H., D.v.B., H.M., M.v.d.B., J.V., R.B.)
| | - Hans Janssen
- Cell Biology, The Netherlands Cancer Institute, Amsterdam (H.J.)
| | - Aat A Mulder
- Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Center, The Netherlands (A.A.M., C.R.J., A.J.K.)
| | - Carolina R Jost
- Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Center, The Netherlands (A.A.M., C.R.J., A.J.K.)
| | - Johanna C Escher
- Pediatric Gastroenterology, Sophia Children's Hospital, Erasmus MC, Rotterdam, The Netherlands (J.C.E.)
| | - Rüdiger Adam
- Pediatric Gastroenterology, University Medical Centre, Mannheim, Germany (R.A.)
| | - Tom Carter
- St George's, University of London, United Kingdom (T.C.)
| | - Abraham J Koster
- Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Center, The Netherlands (A.A.M., C.R.J., A.J.K.)
| | - Maartje van den Biggelaar
- From the Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands (M.S., E.K., B.L.v.d.E., A.G., M.H., D.v.B., H.M., M.v.d.B., J.V., R.B.)
| | - Jan Voorberg
- From the Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands (M.S., E.K., B.L.v.d.E., A.G., M.H., D.v.B., H.M., M.v.d.B., J.V., R.B.).,Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, The Netherlands (J.V.)
| | - Ruben Bierings
- From the Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands (M.S., E.K., B.L.v.d.E., A.G., M.H., D.v.B., H.M., M.v.d.B., J.V., R.B.)
| |
Collapse
|
22
|
Berntorp E, Ågren A, Aledort L, Blombäck M, Cnossen MH, Croteau SE, von Depka M, Federici AB, Goodeve A, Goudemand J, Mannucci PM, Mourik M, Önundarson PT, Rodeghiero F, Szántó T, Windyga J. Fifth Åland Island conference on von Willebrand disease. Haemophilia 2018; 24 Suppl 4:5-19. [DOI: 10.1111/hae.13475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2018] [Indexed: 12/11/2022]
Affiliation(s)
- E. Berntorp
- Centre for Thrombosis and Haemostasis; Skåne University Hospital; Lund University; Malmö Sweden
| | - A. Ågren
- Coagulation Unit; Department of Medicine; Division of Haematology; Karolinska University Hospital; Stockholm Sweden
| | - L. Aledort
- Department of Hematology and Medical Oncology; Mount Sinai Hospital; New York NY USA
| | - M. Blombäck
- Department of Molecular Medicine and Surgery; Karolinska University Hospital; Stockholm Sweden
| | - M. H. Cnossen
- Erasmus University Medical Center - Sophia Children's Hospital Rotterdam; Rotterdam The Netherlands
| | - S. E. Croteau
- Boston Children's Hospital; Boston Hemophilia Center; Harvard Medical School; Boston MA USA
| | | | - A. B. Federici
- Department of Oncology and Oncologic Hematology, Haematology and Transfusion Medicine; L. Sacco University Hospital; University of Milan; Milan Italy
| | - A. Goodeve
- Haemostasis Research Group; University of Sheffield; Sheffield UK
- Sheffield Diagnostic Genetics Service; Sheffield Children's NHS Foundation Trust; Sheffield UK
| | - J. Goudemand
- Department of Haematology; Lille University Hospital; Lille France
| | - P. M. Mannucci
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center; IRCCS Cà Grande Maggiore Policlinico Hospital Foundation; Milan Italy
| | - M. Mourik
- Department of Molecular Cell Biology; Leiden University Medical Center; Leiden The Netherlands
| | - P. T. Önundarson
- Landspitali University Hospital; University of Iceland School of Medicine; Reykjavik Iceland
| | - F. Rodeghiero
- Department of Cell Therapy and Hematology; San Bortolo Hospital; Vicenza Italy
| | - T. Szántó
- Coagulation Disorders Unit; Departments of Hematology and Clinical Chemistry (HUSLAB Laboratory Services); Helsinki University Central Hospital; Helsinki Finland
| | - J. Windyga
- Department of Disorders of Hemostasis and Internal Medicine; Institute of Hematology and Transfusion Medicine; Warsaw Poland
| |
Collapse
|
23
|
Rusu MC, Mănoiu VS, Creţoiu D, Creţoiu SM, Vrapciu AD. Stromal cells/telocytes and endothelial progenitors in the perivascular niches of the trigeminal ganglion. Ann Anat 2018; 218:141-155. [PMID: 29680777 DOI: 10.1016/j.aanat.2017.12.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/10/2017] [Accepted: 12/15/2017] [Indexed: 12/15/2022]
Abstract
Stromal cells/telocytes (SCs/TCs) were recently described in the human adult trigeminal ganglion (TG). As some markers are equally expressed in SCs/TCs and endothelial cells, we hypothesized that a subset of the TG SCs/TCs is in fact represented by endothelial progenitor cells of a myelomonocytic origin. This study aimed to evaluate whether the interstitial cells of the human adult TG correlate with the myelomonocytic lineage. We used primary antibodies for c-erbB2/HER-2, CD31, nestin, CD10, CD117/c-kit, von Willebrand factor (vWF), CD34, Stro-1, CD146, α-smooth muscle actin (α-SMA), CD68, VEGFR-2 and cytokeratin 7 (CK7). The TG pial mesothelium and subpial vascular microstroma expressed c-erbB2/HER-2, CK7 and VEGFR-2. SCs/TCs neighbouring the neuronoglial units (NGUs) also expressed HER-2, which suggests a pial origin. These cells were also positive for CD10, CD31, CD34, CD68 and nestin. Endothelial cells expressed CD10, CD31, CD34, CD146, nestin and vWF. We also found vasculogenic networks with spindle-shaped and stellate endothelial progenitors expressing CD10, CD31, CD34, CD68, CD146 and VEGFR-2. Isolated mesenchymal stromal cells expressed Stro-1, CD146, CK7, c-kit and nestin. Pericytes expressed α-SMA and CD146. Using transmission electron microscopy (TEM), we found endothelial-specific Weibel-Palade bodies in spindle-shaped stromal progenitors. Our study supports the hypothesis that an intrinsic vasculogenic niche potentially involved in microvascular maintenance and repair might be present in the human adult trigeminal ganglion and that it might be supplied by either the pial mesothelium or the bone marrow niche.
Collapse
Affiliation(s)
- M C Rusu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; MEDCENTER - Center of Excellence in Laboratory Medicine and Pathology, Romania.
| | - V S Mănoiu
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - D Creţoiu
- Division of Cellular and Molecular Biology and Histology, Department 2 Morphological Sciences, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - S M Creţoiu
- Division of Cellular and Molecular Biology and Histology, Department 2 Morphological Sciences, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - A D Vrapciu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
24
|
McCormack JJ, Lopes da Silva M, Ferraro F, Patella F, Cutler DF. Weibel-Palade bodies at a glance. J Cell Sci 2017; 130:3611-3617. [PMID: 29093059 DOI: 10.1242/jcs.208033] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The vascular environment can rapidly alter, and the speed with which responses to both physiological and pathological changes are required necessitates the existence of a highly responsive system. The endothelium can quickly deliver bioactive molecules by regulated exocytosis of its secretory granules, the Weibel-Palade bodies (WPBs). WPBs include proteins that initiate both haemostasis and inflammation, as well those that modulate blood pressure and angiogenesis. WPB formation is driven by von Willebrand factor, their most abundant protein, which controls both shape and size of WPBs. WPB are generated in a range of sizes, with the largest granules over ten times the size of the smallest. In this Cell Science at a Glance and the accompanying poster, we discuss the emerging mechanisms by which WPB size is controlled and how this affects the ability of this organelle to modulate haemostasis. We will also outline the different modes of exocytosis and their polarity that are currently being explored, and illustrate that these large secretory organelles provide a model for how elements of secretory granule biogenesis and exocytosis cooperate to support a complex and diverse set of functions.
Collapse
Affiliation(s)
- Jessica J McCormack
- MRC Laboratory of Molecular Cell Biology, University College London, Gower Street, London, WC1E6BT, UK
| | - Mafalda Lopes da Silva
- MRC Laboratory of Molecular Cell Biology, University College London, Gower Street, London, WC1E6BT, UK
| | - Francesco Ferraro
- MRC Laboratory of Molecular Cell Biology, University College London, Gower Street, London, WC1E6BT, UK
| | - Francesca Patella
- MRC Laboratory of Molecular Cell Biology, University College London, Gower Street, London, WC1E6BT, UK
| | - Daniel F Cutler
- MRC Laboratory of Molecular Cell Biology, University College London, Gower Street, London, WC1E6BT, UK
| |
Collapse
|
25
|
Stevenson NL, White IJ, McCormack JJ, Robinson C, Cutler DF, Nightingale TD. Clathrin-mediated post-fusion membrane retrieval influences the exocytic mode of endothelial Weibel-Palade bodies. J Cell Sci 2017; 130:2591-2605. [PMID: 28674075 PMCID: PMC5558267 DOI: 10.1242/jcs.200840] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/10/2017] [Indexed: 01/15/2023] Open
Abstract
Weibel-Palade bodies (WPBs), the storage organelles of endothelial cells, are essential to normal haemostatic and inflammatory responses. Their major constituent protein is von Willebrand factor (VWF) which, following stimulation with secretagogues, is released into the blood vessel lumen as large platelet-catching strings. This exocytosis changes the protein composition of the cell surface and also results in a net increase in the amount of plasma membrane. Compensatory endocytosis is thought to limit changes in cell size and retrieve fusion machinery and other misplaced integral membrane proteins following exocytosis; however, little is known about the extent, timing, mechanism and precise function of compensatory endocytosis in endothelial cells. Using biochemical assays, live-cell imaging and correlative spinning-disk microscopy and transmission electron microscopy assays we provide the first in-depth high-resolution characterisation of this process. We provide a model of compensatory endocytosis based on rapid clathrin- and dynamin-mediated retrieval. Inhibition of this process results in a change of exocytic mode: WPBs then fuse with previously fused WPBs rather than the plasma membrane, leading, in turn, to the formation of structurally impaired tangled VWF strings. This article has an associated First Person interview with the first authors of the paper. Summary: Compensatory endocytosis plays key roles in Weibel-Palade body exocytosis. Inhibition of this process results in a change of exocytic mode and the release of von Willebrand factor as tangled strings.
Collapse
Affiliation(s)
- Nicola L Stevenson
- MRC Cell Biology Unit, Laboratory of Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ian J White
- MRC Cell Biology Unit, Laboratory of Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jessica J McCormack
- MRC Cell Biology Unit, Laboratory of Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Christopher Robinson
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Daniel F Cutler
- MRC Cell Biology Unit, Laboratory of Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Thomas D Nightingale
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
26
|
Galli F, Artico M, Taurone S, Manni I, Bianchi E, Piaggio G, Weintraub BD, Szkudlinski MW, Agostinelli E, Dierckx RAJO, Signore A. Radiolabeling of VEGF165 with 99mTc to evaluate VEGFR expression in tumor angiogenesis. Int J Oncol 2017; 50:2171-2179. [PMID: 28498441 DOI: 10.3892/ijo.2017.3989] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 03/27/2017] [Indexed: 01/21/2023] Open
Abstract
Angiogenesis is the main process responsible for tumor growth and metastatization. The principal effector of such mechanism is the vascular endothelial growth factor (VEGF) secreted by cancer cells and other components of tumor microenvironment. Radiolabeled VEGF analogues may provide a useful tool to noninvasively image tumor lesions and evaluate the efficacy of anti-angiogenic drugs that block the VEGFR pathway. Aim of the present study was to radiolabel the human VEGF165 analogue with 99mTechnetium (99mTc) and to evaluate the expression of VEGFR in both cancer and endothelial cells in the tumor microenvironment. 99mTc-VEGF showed in vitro binding to HUVEC cells and in vivo to xenograft tumors in mice (ARO, K1 and HT29). By comparing in vivo data with immunohistochemical analysis of excised tumors we found an inverse correlation between 99mTc-VEGF165 uptake and VEGF histologically detected, but a positive correlation with VEGF receptor expression (VEGFR1). Results of our studies indicate that endogenous VEGF production by cancer cells and other cells of tumor microenvironment should be taken in consideration when performing scintigraphy with radiolabeled VEGF, because of possible false negative results due to saturation of VEGFRs.
Collapse
Affiliation(s)
- Filippo Galli
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, 'Sapienza' University of Rome, Rome, Italy
| | - Marco Artico
- Department of Sensory Organs, 'Sapienza' University of Rome, Rome, Italy
| | - Samanta Taurone
- Department of Sensory Organs, 'Sapienza' University of Rome, Rome, Italy
| | - Isabella Manni
- SAFU UOSD, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Enrica Bianchi
- Department of Sensory Organs, 'Sapienza' University of Rome, Rome, Italy
| | - Giulia Piaggio
- SAFU UOSD, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | | | | | - Enzo Agostinelli
- Department of Biochemical Sciences 'A. Rossi Fanelli', 'Sapienza' University of Rome, Rome, Italy
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, 'Sapienza' University of Rome, Rome, Italy
| |
Collapse
|
27
|
Mourik M, Eikenboom J. Lifecycle of Weibel-Palade bodies. Hamostaseologie 2016; 37:13-24. [PMID: 28004844 DOI: 10.5482/hamo-16-07-0021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/18/2016] [Indexed: 11/05/2022] Open
Abstract
Weibel-Palade bodies (WPBs) are rod or cigar-shaped secretory organelles that are formed by the vascular endothelium. They contain a diverse set of proteins that either function in haemostasis, inflammation, or angiogenesis. Biogenesis of the WPB occurs at the Golgi apparatus in a process that is dependent on the main component of the WPB, the haemostatic protein von Willebrand Factor (VWF). During this process the organelle is directed towards the regulated secretion pathway by recruiting the machinery that responds to exocytosis stimulating agonists. Upon maturation in the periphery of the cell the WPB recruits Rab27A which regulates WPB secretion. To date several signaling pathways have been found to stimulate WPB release. These signaling pathways can trigger several secretion modes including single WPB release and multigranular exocytosis. In this review we will give an overview of the WPB lifecycle from biogenesis to secretion and we will discuss several deficiencies that affect the WPB lifecycle.
Collapse
Affiliation(s)
| | - Jeroen Eikenboom
- Jeroen Eikenboom, Leiden University Medical Center, Department of Thrombosis and Haemostasis, C7-61, P.O. Box 9600, 2300 RC Leiden, The Netherlands, Tel: +31 71 526 4906, E-Mail:
| |
Collapse
|
28
|
Brehm MA. Von Willebrand factor processing. Hamostaseologie 2016; 37:59-72. [PMID: 28139814 DOI: 10.5482/hamo-16-06-0018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/03/2016] [Indexed: 11/05/2022] Open
Abstract
Von Willebrand factor (VWF) is a multimeric glycoprotein essential for primary haemostasis that is produced only in endothelial cells and megakaryocytes. Key to VWF's function in recruitment of platelets to the site of vascular injury is its multimeric structure. The individual steps of VWF multimer biosynthesis rely on distinct posttranslational modifications at specific pH conditions, which are realized by spatial separation of the involved processes to different cell organelles. Production of multimers starts with translocation and modification of the VWF prepropolypeptide in the endoplasmic reticulum to produce dimers primed for glycosylation. In the Golgi apparatus they are further processed to multimers that carry more than 300 complex glycan structures functionalized by sialylation, sulfation and blood group determinants. Of special importance is the sequential formation of disulfide bonds with different functions in structural support of VWF multimers, which are packaged, stored and further processed after secretion. Here, all these processes are being reviewed in detail including background information on the occurring biochemical reactions.
Collapse
Affiliation(s)
- Maria A Brehm
- PD Dr. Maria A. Brehm, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 22399 Hamburg, Germany, Tel.: +49 40 7410 58523, Fax: +49 40 7410 54601, E-Mail:
| |
Collapse
|
29
|
Ma J, Zhang Z, Yang L, Kriston-Vizi J, Cutler DF, Li W. BLOC-2 subunit HPS6 deficiency affects the tubulation and secretion of von Willebrand factor from mouse endothelial cells. J Genet Genomics 2016; 43:686-693. [PMID: 27889498 PMCID: PMC5199771 DOI: 10.1016/j.jgg.2016.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/20/2016] [Accepted: 09/02/2016] [Indexed: 12/03/2022]
Abstract
Hermansky-Pudlak syndrome (HPS) is a recessive disorder with bleeding diathesis, which has been linked to platelet granule defects. Both platelet granules and endothelial Weibel-Palade bodies (WPBs) are members of lysosome-related organelles (LROs) whose formation is regulated by HPS protein associated complexes such as BLOC (biogenesis of lysosome-related organelles complex) -1, -2, -3, AP-3 (adaptor protein complex-3) and HOPS (homotypic fusion and protein sorting complex). Von Willebrand factor (VWF) is critical to hemostasis, which is stored in a highly-multimerized form as tubules in the WPBs. In this study, we found the defective, but varying, release of VWF into plasma after desmopressin (DDAVP) stimulation in HPS1 (BLOC-3 subunit), HPS6 (BLOC-2 subunit), and HPS9 (BLOC-1 subunit) deficient mice. In particular, VWF tubulation, a critical step in VWF maturation, was impaired in HPS6 deficient WPBs. This likely reflects a defective endothelium, contributing to the bleeding tendency in HPS mice or patients. The differentially defective regulated release of VWF in these HPS mouse models suggests the need for precise HPS genotyping before DDAVP administration to HPS patients.
Collapse
Affiliation(s)
- Jing Ma
- Center for Medical Genetics, Beijing Children's Hospital, Capital Medical University, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Pediatric Disease Research, Beijing 100045, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhe Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, University College of London, London WC1E 6BT, UK
| | - Daniel F Cutler
- MRC Laboratory for Molecular Cell Biology, University College of London, London WC1E 6BT, UK.
| | - Wei Li
- Center for Medical Genetics, Beijing Children's Hospital, Capital Medical University, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Pediatric Disease Research, Beijing 100045, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing 100069, China.
| |
Collapse
|
30
|
Ferraro F, Mafalda Lopes da S, Grimes W, Lee HK, Ketteler R, Kriston-Vizi J, Cutler DF. Weibel-Palade body size modulates the adhesive activity of its von Willebrand Factor cargo in cultured endothelial cells. Sci Rep 2016; 6:32473. [PMID: 27576551 PMCID: PMC5006059 DOI: 10.1038/srep32473] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/09/2016] [Indexed: 01/14/2023] Open
Abstract
Changes in the size of cellular organelles are often linked to modifications in their function. Endothelial cells store von Willebrand Factor (vWF), a glycoprotein essential to haemostasis in Weibel-Palade bodies (WPBs), cigar-shaped secretory granules that are generated in a wide range of sizes. We recently showed that forcing changes in the size of WPBs modifies the activity of this cargo. We now find that endothelial cells treated with statins produce shorter WPBs and that the vWF they release at exocytosis displays a reduced capability to recruit platelets to the endothelial cell surface. Investigating other functional consequences of size changes of WPBs, we also report that the endothelial surface-associated vWF formed at exocytosis recruits soluble plasma vWF and that this process is reduced by treatments that shorten WPBs, statins included. These results indicate that the post-exocytic adhesive activity of vWF towards platelets and plasma vWF at the endothelial surface reflects the size of their storage organelle. Our findings therefore show that changes in WPB size, by influencing the adhesive activity of its vWF cargo, may represent a novel mode of regulation of platelet aggregation at the vascular wall.
Collapse
Affiliation(s)
- Francesco Ferraro
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London, WC1E 6BT, United Kingdom
| | - Silva Mafalda Lopes da
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London, WC1E 6BT, United Kingdom
| | - William Grimes
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London, WC1E 6BT, United Kingdom
- Imaging Informatics Division, Bioinformatics Institute, A*STAR 30 Biopolis Street #07-01, Matrix, Singapore 138671
| | - Hwee Kuan Lee
- Imaging Informatics Division, Bioinformatics Institute, A*STAR 30 Biopolis Street #07-01, Matrix, Singapore 138671
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London, WC1E 6BT, United Kingdom
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London, WC1E 6BT, United Kingdom
| | - Daniel F. Cutler
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
31
|
Content delivery to newly forming Weibel-Palade bodies is facilitated by multiple connections with the Golgi apparatus. Blood 2015; 125:3509-16. [DOI: 10.1182/blood-2014-10-608596] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 02/21/2015] [Indexed: 11/20/2022] Open
Abstract
Key Points
WPBs stay connected to the Golgi apparatus until vesicle formation is completed. During biogenesis at the Golgi, WPBs increase in size through the addition of nontubular VWF.
Collapse
|
32
|
Abstract
To understand the placement of a certain protein in a physiological system and the pathogenesis of related disorders, it is not only of interest to determine its function but also important to describe the sequential steps in its life cycle, from synthesis to secretion and ultimately its clearance. von Willebrand factor (VWF) is a particularly intriguing case in this regard because of its important auxiliary roles (both intra- and extracellular) that implicate a wide range of other proteins: its presence is required for the formation and regulated release of endothelial storage organelles, the Weibel-Palade bodies (WPBs), whereas VWF is also a key determinant in the clearance of coagulation factor VIII. Thus, understanding the molecular and cellular basis of the VWF life cycle will help us gain insight into the pathogenesis of von Willebrand disease, design alternative treatment options to prolong the factor VIII half-life, and delineate the role of VWF and coresidents of the WPBs in the prothrombotic and proinflammatory response of endothelial cells. In this review, an update on our current knowledge on VWF biosynthesis, secretion, and clearance is provided and we will discuss how they can be affected by the presence of protein defects.
Collapse
|
33
|
Mourik MJ, Faas FGA, Zimmermann H, Eikenboom J, Koster AJ. Towards the imaging of Weibel-Palade body biogenesis by serial block face-scanning electron microscopy. J Microsc 2015; 259:97-104. [PMID: 25644989 PMCID: PMC4670698 DOI: 10.1111/jmi.12222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/23/2014] [Indexed: 12/25/2022]
Abstract
Electron microscopy is used in biological research to study the ultrastructure at high resolution to obtain information on specific cellular processes. Serial block face-scanning electron microscopy is a relatively novel electron microscopy imaging technique that allows three-dimensional characterization of the ultrastructure in both tissues and cells by measuring volumes of thousands of cubic micrometres yet at nanometre-scale resolution. In the scanning electron microscope, repeatedly an image is acquired followed by the removal of a thin layer resin embedded biological material by either a microtome or a focused ion beam. In this way, each recorded image contains novel structural information which can be used for three-dimensional analysis. Here, we explore focused ion beam facilitated serial block face-scanning electron microscopy to study the endothelial cell–specific storage organelles, the Weibel–Palade bodies, during their biogenesis at the Golgi apparatus. Weibel–Palade bodies predominantly contain the coagulation protein Von Willebrand factor which is secreted by the cell upon vascular damage. Using focused ion beam facilitated serial block face-scanning electron microscopy we show that the technique has the sensitivity to clearly reveal subcellular details like mitochondrial cristae and small vesicles with a diameter of about 50 nm. Also, we reveal numerous associations between Weibel–Palade bodies and Golgi stacks which became conceivable in large-scale three-dimensional data. We demonstrate that serial block face-scanning electron microscopy is a promising tool that offers an alternative for electron tomography to study subcellular organelle interactions in the context of a complete cell.
Collapse
Affiliation(s)
- M J Mourik
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - F G A Faas
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - J Eikenboom
- Department of Thrombosis and Hemostasis, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - A J Koster
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
34
|
Daidone V, Barbon G, Pontara E, Cattini GM, Gallinaro L, Zampese E, Pizzo P, Casonato A. Loss of cysteine 584 impairs the storage and release, but not the synthesis of von Willebrand factor. Thromb Haemost 2014; 112:1159-66. [PMID: 25230768 DOI: 10.1160/th14-04-0391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/22/2014] [Indexed: 11/05/2022]
Abstract
Cysteines play a key part in von Willebrand factor (VWF) dimerisation and polymerisation, and their loss may severely affect VWF structure and function. We report on three patients with type 3 von Willebrand disease carrying the new c.1751G>T missense mutation that induces the substitution of cysteine 584 by phenylalanine (C584F), and the deletion of seven nucleotides in exon 7 (c.729_735del), producing a premature stop codon at position 454 (E244Lfs*211). VWF was almost undetectable in the patients' plasma and platelets, while a single, poorly represented, oligomer emerged on plasma VWF multimer analysis. No post-DDAVP increase in VWF and factor VIII was observed. Expressing human recombinant C584F-VWF in HEK293T cells showed that C584F-VWF was synthesised and multimerised but not secreted - apart from the first oligomer, which was slightly represented in the conditioned medium, with a pattern similar to the patients' plasma VWF. The in vitro expression of the E244Lfs*211-VWF revealed a defective synthesis of the mutated VWF, with a behavior typical of loss of function mutations. Cellular trafficking, investigated in HEK293 cells, indicated a normal C584F-VWF content in the endoplasmic reticulum and Golgi apparatus, confirming the synthesis and multimerisation of C584F-VWF. No pseudo-Weibel Palade bodies were demonstrable, however, suggesting that C584F mutation impairs the storage of C584F-VWF. These findings point to cysteine 584 having a role in the release of VWF and its targeting to pseudo-Weibel Palade bodies in vitro, as well as in its storage and release by endothelial cells in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - A Casonato
- A. Casonato, Via Ospedale Civile 105, 35128 Padova, Italy, Tel.: +39 049 821 7177, Fax: +39 049 657391, E-mail:
| |
Collapse
|
35
|
Kiskin NI, Babich V, Knipe L, Hannah MJ, Carter T. Differential cargo mobilisation within Weibel-Palade bodies after transient fusion with the plasma membrane. PLoS One 2014; 9:e108093. [PMID: 25233365 PMCID: PMC4169479 DOI: 10.1371/journal.pone.0108093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/19/2014] [Indexed: 01/13/2023] Open
Abstract
Inflammatory chemokines can be selectively released from Weibel-Palade bodies (WPBs) during kiss-and-run exocytosis. Such selectivity may arise from molecular size filtering by the fusion pore, however differential intra-WPB cargo re-mobilisation following fusion-induced structural changes within the WPB may also contribute to this process. To determine whether WPB cargo molecules are differentially re-mobilised, we applied FRAP to residual post-fusion WPB structures formed after transient exocytosis in which some or all of the fluorescent cargo was retained. Transient fusion resulted in WPB collapse from a rod to a spheroid shape accompanied by substantial swelling (>2 times by surface area) and membrane mixing between the WPB and plasma membranes. Post-fusion WPBs supported cumulative WPB exocytosis. To quantify diffusion inside rounded organelles we developed a method of FRAP analysis based on image moments. FRAP analysis showed that von Willebrand factor-EGFP (VWF-EGFP) and the VWF-propolypeptide-EGFP (Pro-EGFP) were immobile in post-fusion WPBs. Because Eotaxin-3-EGFP and ssEGFP (small soluble cargo proteins) were largely depleted from post-fusion WPBs, we studied these molecules in cells preincubated in the weak base NH4Cl which caused WPB alkalinisation and rounding similar to that produced by plasma membrane fusion. In these cells we found a dramatic increase in mobilities of Eotaxin-3-EGFP and ssEGFP that exceeded the resolution of our method (∼ 2.4 µm2/s mean). In contrast, the membrane mobilities of EGFP-CD63 and EGFP-Rab27A in post-fusion WPBs were unchanged, while P-selectin-EGFP acquired mobility. Our data suggest that selective re-mobilisation of chemokines during transient fusion contributes to selective chemokine secretion during transient WPB exocytosis. Selective secretion provides a mechanism to regulate intravascular inflammatory processes with reduced risk of thrombosis.
Collapse
Affiliation(s)
- Nikolai I. Kiskin
- Division of Physical Biochemistry, Medical Research Council National Institute for Medical Research, London, United Kingdom
- Division of Neurophysiology, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | - Victor Babich
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Laura Knipe
- Division of Physical Biochemistry, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | - Matthew J. Hannah
- Microbiology Services Colindale, Public Health England, London, United Kingdom
| | - Tom Carter
- Division of Physical Biochemistry, Medical Research Council National Institute for Medical Research, London, United Kingdom
- Cardiovascular and Cell Sciences Research Institute, St George’s University, London, United Kingdom
| |
Collapse
|
36
|
Groeneveld DJ, Wang JW, Mourik MJ, Dirven RJ, Valentijn KM, Voorberg J, Reitsma PH, Eikenboom J. Storage and secretion of naturally occurring von Willebrand factor A domain variants. Br J Haematol 2014; 167:529-40. [PMID: 25103891 DOI: 10.1111/bjh.13074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/04/2014] [Indexed: 01/24/2023]
Abstract
Von Willebrand disease (VWD) is a bleeding disorder characterized by reduced plasma von Willebrand factor (VWF) levels or functionally abnormal VWF. Low VWF plasma levels in VWD patients are the result of mutations in the VWF gene that lead to decreased synthesis, impaired secretion, increased clearance or a combination thereof. However, expression studies of variants located in the A domains of VWF are limited. We therefore characterized the biosynthesis of VWF mutations, located in the VWF A1-A3 domains, that were found in families diagnosed with VWD. Human Embryonic Kidney 293 (HEK293) cells were transiently transfected with plasmids encoding full-length wild-type VWF or mutant VWF. Six mutations in the A1-A3 domains were expressed. We found that all mutants, except one, showed impaired formation of elongated pseudo-Weibel-Palade bodies (WPB). In addition, two mutations also showed reduced numbers of pseudo-WPB, even in the heterozygous state, and increased endoplasmic reticulum retention, which is in accordance with the impaired regulated secretion seen in patients. Regulated secretion upon stimulation of transfected cells reproduced the in vivo situation, indicating that HEK293 cells expressing VWF variants found in patients with VWD can be used to properly assess defects in regulated secretion.
Collapse
Affiliation(s)
- Dafna J Groeneveld
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Thrombosis and Hemostasis, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
When blood vessels are cut, the forces in the bloodstream increase and change character. The dark side of these forces causes hemorrhage and death. However, von Willebrand factor (VWF), with help from our circulatory system and platelets, harnesses the same forces to form a hemostatic plug. Force and VWF function are so closely intertwined that, like members of the Jedi Order in the movie Star Wars who learn to use "the Force" to do good, VWF may be considered the Jedi knight of the bloodstream. The long length of VWF enables responsiveness to flow. The shape of VWF is predicted to alter from irregularly coiled to extended thread-like in the transition from shear to elongational flow at sites of hemostasis and thrombosis. Elongational force propagated through the length of VWF in its thread-like shape exposes its monomers for multimeric binding to platelets and subendothelium and likely also increases affinity of the A1 domain for platelets. Specialized domains concatenate and compact VWF during biosynthesis. A2 domain unfolding by hydrodynamic force enables postsecretion regulation of VWF length. Mutations in VWF in von Willebrand disease contribute to and are illuminated by VWF biology. I attempt to integrate classic studies on the physiology of hemostatic plug formation into modern molecular understanding, and point out what remains to be learned.
Collapse
|
38
|
Ferraro F, Kriston-Vizi J, Metcalf DJ, Martin-Martin B, Freeman J, Burden JJ, Westmoreland D, Dyer CE, Knight AE, Ketteler R, Cutler DF. A two-tier Golgi-based control of organelle size underpins the functional plasticity of endothelial cells. Dev Cell 2014; 29:292-304. [PMID: 24794632 PMCID: PMC4022834 DOI: 10.1016/j.devcel.2014.03.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 02/03/2014] [Accepted: 03/27/2014] [Indexed: 01/10/2023]
Abstract
Weibel-Palade bodies (WPBs), endothelial-specific secretory granules that are central to primary hemostasis and inflammation, occur in dimensions ranging between 0.5 and 5 μm. How their size is determined and whether it has a functional relevance are at present unknown. Here, we provide evidence for a dual role of the Golgi apparatus in controlling the size of these secretory carriers. At the ministack level, cisternae constrain the size of nanostructures (“quanta”) of von Willebrand factor (vWF), the main WPB cargo. The ribbon architecture of the Golgi then allows copackaging of a variable number of vWF quanta within the continuous lumen of the trans-Golgi network, thereby generating organelles of different sizes. Reducing the WPB size abates endothelial cell hemostatic function by drastically diminishing platelet recruitment, but, strikingly, the inflammatory response (the endothelial capacity to engage leukocytes) is unaltered. Size can thus confer functional plasticity to an organelle by differentially affecting its activities. Cisternal length within Golgi ministacks controls the size of vWF cargo nanostructures The Golgi ribbon allows copackaging of vWF nanostructures into WPBs of variable size Endothelial cells with small WPBs display a reduced platelet recruitment capability Control of organelle size may confer hemostatic plasticity to endothelia
Collapse
Affiliation(s)
- Francesco Ferraro
- Endothelial Cell Biology Laboratory, Laboratory for Molecular and Cellular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Janos Kriston-Vizi
- Translational Research Resource Center, Laboratory for Molecular and Cellular Biology, University College London, Gower Street, London WC1E 6BT, UK; Bioinformatics Image Core, Laboratory for Molecular and Cellular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Daniel J Metcalf
- Analytical Science Division, National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, UK
| | - Belen Martin-Martin
- Endothelial Cell Biology Laboratory, Laboratory for Molecular and Cellular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jamie Freeman
- Translational Research Resource Center, Laboratory for Molecular and Cellular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jemima J Burden
- Electron Microscopy Laboratory, Laboratory for Molecular and Cellular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - David Westmoreland
- Endothelial Cell Biology Laboratory, Laboratory for Molecular and Cellular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Clare E Dyer
- Endothelial Cell Biology Laboratory, Laboratory for Molecular and Cellular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Alex E Knight
- Analytical Science Division, National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, UK
| | - Robin Ketteler
- Translational Research Resource Center, Laboratory for Molecular and Cellular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Daniel F Cutler
- Endothelial Cell Biology Laboratory, Laboratory for Molecular and Cellular Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
39
|
Billaud M, Lohman AW, Johnstone SR, Biwer LA, Mutchler S, Isakson BE. Regulation of cellular communication by signaling microdomains in the blood vessel wall. Pharmacol Rev 2014; 66:513-69. [PMID: 24671377 PMCID: PMC3973613 DOI: 10.1124/pr.112.007351] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.
Collapse
Affiliation(s)
- Marie Billaud
- Dept. of Molecular Physiology and Biophysics, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22902.
| | | | | | | | | | | |
Collapse
|
40
|
Mikhail S, Aldin ES, Streiff M, Zeidan A. An update on type 2B von Willebrand disease. Expert Rev Hematol 2014; 7:217-31. [PMID: 24521271 DOI: 10.1586/17474086.2014.868771] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Type 2B von Willebrand disease (VWD) accounts for fewer than 5% of all VWD patients. In this disease, mutations in the A1 domain result in increased von Willebrand factor (VWF) binding to platelet GPIbα receptors, causing increased platelet clearance and preferential loss of high molecular weight VWF multimers. Diagnosis is complicated because of significant clinical variations even among patients with identical mutations. Platelet transfusion often provides suboptimal results since transfused platelets may be aggregated by the patients' abnormal VWF. Desmopressin may cause a transient decrease in platelet count that could lead to an increased risk of bleeding. Replacement therapy with factor VIII/VWF concentrates is the most effective approach to prevention and treatment of bleeding in type 2B VWD.
Collapse
Affiliation(s)
- Sameh Mikhail
- Department of Hematology, Ohio State University Medical Center, Columbus, OH, USA
| | | | | | | |
Collapse
|
41
|
Torisu T, Torisu K, Lee IH, Liu J, Malide D, Combs CA, Wu XS, Rovira II, Fergusson MM, Weigert R, Connelly PS, Daniels MP, Komatsu M, Cao L, Finkel T. Autophagy regulates endothelial cell processing, maturation and secretion of von Willebrand factor. Nat Med 2013; 19:1281-7. [PMID: 24056772 PMCID: PMC3795899 DOI: 10.1038/nm.3288] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/28/2013] [Indexed: 02/06/2023]
Abstract
Endothelial secretion of von Willebrand factor (VWF) from intracellular organelles known as Weibel-Palade bodies (WPBs) is required for platelet adhesion to the injured vessel wall. Here we demonstrate that WPBs are often found near or within autophagosomes and that endothelial autophagosomes contain abundant VWF protein. Pharmacological inhibitors of autophagy or knockdown of the essential autophagy genes Atg5 or Atg7 inhibits the in vitro secretion of VWF. Furthermore, although mice with endothelial-specific deletion of Atg7 have normal vessel architecture and capillary density, they exhibit impaired epinephrine-stimulated VWF release, reduced levels of high-molecular weight VWF multimers and a corresponding prolongation of bleeding times. Endothelial-specific deletion of Atg5 or pharmacological inhibition of autophagic flux results in a similar in vivo alteration of hemostasis. Thus, autophagy regulates endothelial VWF secretion, and transient pharmacological inhibition of autophagic flux may be a useful strategy to prevent thrombotic events.
Collapse
Affiliation(s)
- Takehiro Torisu
- Center for Molecular Medicine, NHLBI, NIH Bethesda, MD 20892
| | - Kumiko Torisu
- Center for Molecular Medicine, NHLBI, NIH Bethesda, MD 20892
| | - In Hye Lee
- Center for Molecular Medicine, NHLBI, NIH Bethesda, MD 20892
| | - Jie Liu
- Center for Molecular Medicine, NHLBI, NIH Bethesda, MD 20892
| | | | | | - Xufeng S. Wu
- Cell Biology and Physiology Center, NHLBI, NIH Bethesda, MD 20892
| | - Ilsa I. Rovira
- Center for Molecular Medicine, NHLBI, NIH Bethesda, MD 20892
| | | | - Roberto Weigert
- Intracellular Membrane Trafficking Unit, NIDCR, NIH Bethesda, MD 20892
| | | | - Mathew P Daniels
- Electron Microscopy Core Facility, NHLBI, NIH , Bethesda, MD 20892, USA
| | - Masaaki Komatsu
- Laboratory of Frontier Science, Tokyo Metropolitan Institute of Medical Sciences, Tokyo, Japan
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, China Medical University, Shengyang, 110001, China
| | - Toren Finkel
- Center for Molecular Medicine, NHLBI, NIH Bethesda, MD 20892
| |
Collapse
|
42
|
Adams WJ, Zhang Y, Cloutier J, Kuchimanchi P, Newton G, Sehrawat S, Aird WC, Mayadas TN, Luscinskas FW, García-Cardeña G. Functional vascular endothelium derived from human induced pluripotent stem cells. Stem Cell Reports 2013; 1:105-13. [PMID: 24052946 PMCID: PMC3757754 DOI: 10.1016/j.stemcr.2013.06.007] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/23/2013] [Accepted: 06/26/2013] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelium is a dynamic cellular interface that displays a unique phenotypic plasticity. This plasticity is critical for vascular function and when dysregulated is pathogenic in several diseases. Human genotype-phenotype studies of endothelium are limited by the unavailability of patient-specific endothelial cells. To establish a cellular platform for studying endothelial biology, we have generated vascular endothelium from human induced pluripotent stem cells (iPSCs) exhibiting the rich functional phenotypic plasticity of mature primary vascular endothelium. These endothelial cells respond to diverse proinflammatory stimuli, adopting an activated phenotype including leukocyte adhesion molecule expression, cytokine production, and support for leukocyte transmigration. They maintain dynamic barrier properties responsive to multiple vascular permeability factors. Importantly, biomechanical or pharmacological stimuli can induce pathophysiologically relevant atheroprotective or atheroprone phenotypes. Our results demonstrate that iPSC-derived endothelium possesses a repertoire of functional phenotypic plasticity and is amenable to cell-based assays probing endothelial contributions to inflammatory and cardiovascular diseases. Human iPSCs generate vascular ECs with a rich functional repertoire iPSC-ECs can undergo endothelial activation and maintain dynamic permeability Biomechanical forces direct iPSC-ECs to atheroprotective or atheroprone phenotypes iPSC-ECs are directed to an atheroprotective phenotype via pharmacological stimulus
Collapse
Affiliation(s)
- William J Adams
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA ; Program in Developmental and Regenerative Biology, Harvard Medical School, Boston, MA 02115, USA ; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Nightingale T, Cutler D. The secretion of von Willebrand factor from endothelial cells; an increasingly complicated story. J Thromb Haemost 2013; 11 Suppl 1:192-201. [PMID: 23809123 PMCID: PMC4255685 DOI: 10.1111/jth.12225] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
von Willebrand factor (VWF) plays key roles in both primary and secondary hemostasis by capturing platelets and chaperoning clotting factor VIII, respectively. It is stored within the Weibel-Palade bodies (WPBs) of endothelial cells as a highly prothrombotic protein, and its release is thus necessarily under tight control. Regulating the secretion of VWF involves multiple layers of cellular machinery that act together at different stages, leading to the exocytic fusion of WPBs with the plasma membrane and the consequent release of VWF. This review aims to provide a snapshot of the current understanding of those components, in particular the members of the Rab family, acting in the increasingly complex story of VWF secretion.
Collapse
Affiliation(s)
- T Nightingale
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | | |
Collapse
|
44
|
Marks MS, Heijnen HFG, Raposo G. Lysosome-related organelles: unusual compartments become mainstream. Curr Opin Cell Biol 2013; 25:495-505. [PMID: 23726022 DOI: 10.1016/j.ceb.2013.04.008] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/24/2013] [Indexed: 11/16/2022]
Abstract
Lysosome-related organelles (LROs) comprise a group of cell type-specific subcellular compartments with unique composition, morphology and structure that share some features with endosomes and lysosomes and that function in varied processes such as pigmentation, hemostasis, lung plasticity and immunity. In recent years, studies of genetic diseases in which LRO functions are compromised have provided new insights into the mechanisms of LRO biogenesis and the regulated secretion of LRO contents. These insights have revealed previously unappreciated specialized endosomal sorting processes in all cell types, and are expanding our views of the plasticity of the endosomal and secretory systems in adapting to cell type-specific needs.
Collapse
Affiliation(s)
- Michael S Marks
- Department of Pathology & Laboratory Medicine and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
45
|
Abstract
Weibel-Palade bodies (WPBs) are the storage organelles for von Willebrand factor (VWF) in endothelial cells. VWF forms multimers that assemble into tubular structures in WPBs. Upon demand, VWF is secreted into the blood circulation, where it unfolds into strings that capture platelets during the onset of primary hemostasis. Numerous mutations affecting VWF lead to the bleeding disorder von Willebrand disease. This review reports the recent findings on the effects of VWF mutations on the biosynthetic pathway of VWF and its storage in WPBs. These new findings have deepened our understanding of VWF synthesis, storage, secretion, and function.
Collapse
Affiliation(s)
- K M Valentijn
- Department of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
46
|
Weibel ER. Fifty years of Weibel-Palade bodies: the discovery and early history of an enigmatic organelle of endothelial cells. J Thromb Haemost 2012; 10:979-84. [PMID: 22646831 DOI: 10.1111/j.1538-7836.2012.04718.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In 1962, a rod-shaped cytoplasmic organelle of endothelial cells, later called the Weibel-Palade body, was serendipitously discovered by electron microscopy. It contains a set of parallel tubules and is wrapped in a membrane. Subsequent studies in the following decades established the unique localization of this organelle in endothelial cells of all vertebrates studied, meaning that it could serve as a marker of endothelial cells in tissue cultures. However, these studies did not reveal its functional significance, except for an indication that it could be related to an undefined thromboplastic substance. Twenty years after its discovery as a structural entity, it was shown by others that it houses von Willebrand factor and is thus clearly related to the coagulation system. In this review, I provide a personal historical account of the discovery and the subsequent limited work that I carried out on the organelle, putting it in the perspective of the current state of knowledge after half a century of research by many scientists.
Collapse
Affiliation(s)
- E R Weibel
- Institute of Anatomy, University of Bern, Bern, Switzerland.
| |
Collapse
|
47
|
van Breevoort D, van Agtmaal EL, Dragt BS, Gebbinck JK, Dienava-Verdoold I, Kragt A, Bierings R, Horrevoets AJG, Valentijn KM, Eikenboom JC, Fernandez-Borja M, Meijer AB, Voorberg J. Proteomic screen identifies IGFBP7 as a novel component of endothelial cell-specific Weibel-Palade bodies. J Proteome Res 2012; 11:2925-36. [PMID: 22468712 DOI: 10.1021/pr300010r] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vascular endothelial cells contain unique storage organelles, designated Weibel-Palade bodies (WPBs), that deliver inflammatory and hemostatic mediators to the vascular lumen in response to agonists like thrombin and vasopressin. The main component of WPBs is von Willebrand factor (VWF), a multimeric glycoprotein crucial for platelet plug formation. In addition to VWF, several other components are known to be stored in WPBs, like osteoprotegerin, monocyte chemoattractant protein-1 and angiopoetin-2 (Ang-2). Here, we used an unbiased proteomics approach to identify additional residents of WPBs. Mass spectrometry analysis of purified WPBs revealed the presence of several known components such as VWF, Ang-2, and P-selectin. Thirty-five novel candidate WPB residents were identified that included insulin-like growth factor binding protein-7 (IGFBP7), which has been proposed to regulate angiogenesis. Immunocytochemistry revealed that IGFBP7 is a bona fide WPB component. Cotransfection studies showed that IGFBP7 trafficked to pseudo-WPB in HEK293 cells. Using a series of deletion variants of VWF, we showed that targeting of IGFBP7 to pseudo-WPBs was dependent on the carboxy-terminal D4-C1-C2-C3-CK domains of VWF. IGFBP7 remained attached to ultralarge VWF strings released upon exocytosis of WPBs under flow. The presence of IGFBP7 in WPBs highlights the role of this subcellular compartment in regulation of angiogenesis.
Collapse
Affiliation(s)
- Dorothee van Breevoort
- Department of Plasma Proteins, Sanquin-AMC Landsteiner Laboratory, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hayden MR, Habibi J, Joginpally T, Karuparthi PR, Sowers JR. Ultrastructure Study of Transgenic Ren2 Rat Aorta - Part 1: Endothelium and Intima. Cardiorenal Med 2012; 2:66-82. [PMID: 22493605 PMCID: PMC3318941 DOI: 10.1159/000335565] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/05/2011] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND: The renin-angiotensin-aldosterone system plays an important role in the development and progression of hypertension and accelerated atherosclerosis (atheroscleropathy) associated with the cardiorenal metabolic syndrome and type 2 diabetes mellitus. Additionally, the renin-angiotensin-aldosterone system plays an important role in vascular-endothelial-intimal cellular and extracellular remodeling. METHODS: Thoracic aortas of young male transgenic heterozygous (mRen2)27 (Ren2) rats were utilized for this ultrastructural study. This lean model of hypertension, insulin resistance and oxidative stress harbors the mouse renin gene with increased local tissue (aortic) levels of angiotensin II and angiotensin type 1 receptors and elevated plasma aldosterone levels. RESULTS: The ultrastructural observations included marked endothelial cell retraction, separation, terminal nuclear lifting, adjacent duplication, apoptosis and a suggestion of endothelial progenitor cell attachment. The endothelium demonstrated increased caveolae, microparticles, depletion of Weibel-Palade bodies, loss of cell-cell and basal adhesion hemidesmosome-like structures, platelet adhesion and genesis of subendothelial neointima. CONCLUSION: These observational ultrastructural studies of the transgenic Ren2 vasculature provide an in-depth evaluation of early abnormal remodeling changes within conduit-elastic arteries under conditions of increased local levels of angiotensin II, oxidative stress, insulin resistance and hypertension.
Collapse
Affiliation(s)
- Melvin R. Hayden
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Department of Endocrinology Diabetes and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Diabetes and Cardiovascular Disease Center, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
| | - Javad Habibi
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Department of Endocrinology Diabetes and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Diabetes and Cardiovascular Disease Center, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Harry S. Truman VA Medical Center, Columbia, Mo., USA
| | - Tejaswini Joginpally
- Diabetes and Cardiovascular Disease Center, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
| | - Poorna R. Karuparthi
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Department of Cardiovascular Disease, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
| | - James R. Sowers
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Department of Endocrinology Diabetes and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Department of Medical Physiology and Pharmacology, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Diabetes and Cardiovascular Disease Center, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Harry S. Truman VA Medical Center, Columbia, Mo., USA
| |
Collapse
|
49
|
Zhou YF, Eng ET, Nishida N, Lu C, Walz T, Springer TA. A pH-regulated dimeric bouquet in the structure of von Willebrand factor. EMBO J 2011; 30:4098-111. [PMID: 21857647 DOI: 10.1038/emboj.2011.297] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/20/2011] [Indexed: 12/20/2022] Open
Abstract
At the acidic pH of the trans-Golgi and Weibel-Palade bodies (WPBs), but not at the alkaline pH of secretion, the C-terminal ∼1350 residues of von Willebrand factor (VWF) zip up into an elongated, dimeric bouquet. Six small domains visualized here for the first time between the D4 and cystine-knot domains form a stem. The A2, A3, and D4 domains form a raceme with three pairs of opposed, large, flower-like domains. N-terminal VWF domains mediate helical tubule formation in WPBs and template N-terminal disulphide linkage between VWF dimers, to form ultralong VWF concatamers. The dimensions we measure in VWF at pH 6.2 and 7.4, and the distance between tubules in nascent WPB, suggest that dimeric bouquets are essential for correct VWF dimer incorporation into growing tubules and to prevent crosslinking between neighbouring tubules. Further insights into the structure of the domains and flexible segments in VWF provide an overall view of VWF structure important for understanding both the biogenesis of ultralong concatamers at acidic pH and flow-regulated changes in concatamer conformation in plasma at alkaline pH that trigger hemostasis.
Collapse
Affiliation(s)
- Yan-Feng Zhou
- Department of Pathology, Harvard Medical School, Immune Disease Institute, Program in Cellular and Molecular Medicine, Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Structural specialisations enable von Willebrand factor (VWF) to assemble during biosynthesis into helical tubules in Weibel-Palade bodies (WPB). Specialisations include a pH-regulated dimeric bouquet formed by the C-terminal half of VWF and helical assembly guided by the N-terminal half that templates inter-dimer disulphide bridges. Orderly assembly and storage of ultra-long concatamers in helical tubules, without crosslinking of neighboring tubules, enables unfurling during secretion without entanglement. Length regulation occurs post-secretion, by hydrodynamic force-regulated unfolding of the VWF A2 domain, and its cleavage by the plasma protease ADAMTS13 (a disintegrin and metalloprotease with a thrombospondin type 1 motif, member 13). VWF is longest at its site of secretion, where its haemostatic function is most important. Moreover, elongational hydrodynamic forces on VWF are strongest just where needed, when bound to the vessel wall, or in elongational flow in the circulation at sites of vessel rupture or vasoconstriction in haemostasis. Elongational forces regulate haemostasis by activating binding of the A1 domain to platelet GPIbα, and over longer time periods, regulate VWF length by unfolding of the A2 domain for cleavage by ADAMTS13. Recent structures of A2 and single molecule measurements of A2 unfolding and cleavage by ADAMTS13 illuminate the mechanisms of VWF length regulation. Single molecule studies on the A1-GPIb receptor-ligand bond demonstrate a specialised flex-bond that enhances resistance to the strong hydrodynamic forces experienced at sites of haemorrhage.
Collapse
Affiliation(s)
- T A Springer
- Immune Disease Institute, Children's Hospital Boston, Boston, MA, USA.
| |
Collapse
|