1
|
Chen TY, Wen MH, Chen H, Yan G, Zhang Y, Chen W, Dokholyan M, Wang J, Dokholyan N. Human transporter de-oligomerization regulates copper uptake into cells. RESEARCH SQUARE 2024:rs.3.rs-5456520. [PMID: 39711524 PMCID: PMC11661305 DOI: 10.21203/rs.3.rs-5456520/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Copper is an essential element involved in various biochemical processes, such as mitochondrial energy production and antioxidant defense, but improper regulation can lead to cellular toxicity and disease. Copper Transporter 1 (CTR1) plays a key role in copper uptake and maintaining cellular copper homeostasis. Although CTR1 endocytosis was previously thought to reduce copper uptake when levels are high, it was unclear how rapid regulation is achieved. Using single-molecule localization microscopy and single-molecule neighbor density assays, we discovered that excess copper induces monomerization of the wild-type trimeric CTR1 prior to endocytosis, a response blocked in the endocytosis-deficient CTR1 (M150L) mutant. This monomerization rapidly halts copper uptake and prevents copper overload. These findings reveal changes in protein oligomerization as a new paradigm of metal transport regulation, linking CTR1's structural changes to its endocytosis and copper homeostasis.
Collapse
|
2
|
Wang H, Lakshmana MK, Fields GB. Identification of binding partners that facilitate membrane-type 5 matrix metalloproteinase (MT5-MMP) processing of amyloid precursor protein. J Cell Physiol 2024; 239:e31218. [PMID: 38345408 DOI: 10.1002/jcp.31218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 06/14/2024]
Abstract
One of the pathological hallmarks of Alzheimer's disease (AD) is the presence of extracellular deposits of amyloid beta (Aβ) peptide. In addition to Aβ as the core component of the amyloid plaque, the amyloid precursor protein (APP) processing fragment Aβ was also found accumulated around the plaque. The APPη pathway, mainly mediated by membrane-type 5 matrix metalloproteinase (MT5-MMP), represents an important factor in AD pathogenesis. The proamyloidogenic features of MT5-MMP could result from interactions with APP when trafficking between organelles, so determination of the location within the cell of APPη cleavage and interacting proteins of MT5-MMP affecting this process will be of priority in understanding the role of MT5-MMP in AD. In the present study, MT5-MMP was found to be located in the nucleus, cytosol, and cytosolic subcellular granules of CHO cells that stably expressed wild-type human APP751. MT5-MMP fusion proteins were constructed that could localize enzyme production in the Golgi apparatus, endosome, ER, mitochondria, or plasma membrane. The fusion proteins significantly increased sAPPη when directed to the endosome, Golgi apparatus, plasma membrane, or mitochondria. Since the C-terminal region of MT5-MMP is responsible for its intracellular location and trafficking, this domain was used as the bait in a yeast two-hybrid screen to identify MT5-MMP protein partners in a human brain cDNA library. Identified binding partners included N4BP2L1, TMX3, EIG121, bridging Integrator 1 (BIN1), RUFY4, HTRA1, and TMEM199. The binding of N4BP2L1, EIG121, BIN1, or TMX3 to MT5-MMP resulted in the most significant increase in sAPPη production. Thus, the action of MT5-MMP on APP occurs in multiple locations within the cell and is facilitated by site-specific binding partners.
Collapse
Affiliation(s)
- Hongjie Wang
- Department of Chemistry & Biochemistry, Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, Florida, USA
| | - Madepalli K Lakshmana
- Department of Immunology and Nano-Medicine, Florida International University, Miami, Florida, USA
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
3
|
Wang D, Ye Z, Wei W, Yu J, Huang L, Zhang H, Yue J. Capping protein regulates endosomal trafficking by controlling F-actin density around endocytic vesicles and recruiting RAB5 effectors. eLife 2021; 10:e65910. [PMID: 34796874 PMCID: PMC8654373 DOI: 10.7554/elife.65910] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 11/18/2021] [Indexed: 12/30/2022] Open
Abstract
Actin filaments (F-actin) have been implicated in various steps of endosomal trafficking, and the length of F-actin is controlled by actin capping proteins, such as CapZ, which is a stable heterodimeric protein complex consisting of α and β subunits. However, the role of these capping proteins in endosomal trafficking remains elusive. Here, we found that CapZ docks to endocytic vesicles via its C-terminal actin-binding motif. CapZ knockout significantly increases the F-actin density around immature early endosomes, and this impedes fusion between these vesicles, manifested by the accumulation of small endocytic vesicles in CapZ-knockout cells. CapZ also recruits several RAB5 effectors, such as Rabaptin-5 and Rabex-5, to RAB5-positive early endosomes via its N-terminal domain, and this further activates RAB5. Collectively, our results indicate that CapZ regulates endosomal trafficking by controlling actin density around early endosomes and recruiting RAB5 effectors.
Collapse
Affiliation(s)
- Dawei Wang
- City University of Hong Kong Shenzhen Research InstituteShenzhenChina
- Department of Biomedical Sciences, City University of Hong KongHong KongChina
| | - Zuodong Ye
- City University of Hong Kong Shenzhen Research InstituteShenzhenChina
- Department of Biomedical Sciences, City University of Hong KongHong KongChina
| | - Wenjie Wei
- Core Research Facilities, Southern University of Science and TechnologyShenzhenChina
| | - Jingting Yu
- City University of Hong Kong Shenzhen Research InstituteShenzhenChina
| | - Lihong Huang
- City University of Hong Kong Shenzhen Research InstituteShenzhenChina
- Department of Biomedical Sciences, City University of Hong KongHong KongChina
| | - Hongmin Zhang
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and TechnologyShenzhenChina
| | - Jianbo Yue
- City University of Hong Kong Shenzhen Research InstituteShenzhenChina
- Department of Biomedical Sciences, City University of Hong KongHong KongChina
- City University of Hong Kong Chengdu Research InstituteChengduChina
| |
Collapse
|
4
|
Cao GJ, Wang D, Zeng ZP, Wang GX, Hu CJ, Xing ZF. Direct interaction between Rab5a and Rab4a enhanced epidermal growth factor-stimulated proliferation of gastric cancer cells. World J Gastrointest Oncol 2021; 13:1492-1505. [PMID: 34721780 PMCID: PMC8529933 DOI: 10.4251/wjgo.v13.i10.1492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/16/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the leading causes of cancer-related death worldwide. Although targeted therapies such as antibodies against human epidermal growth factor receptor 2 or vascular endothelial growth factor receptor 2 have been widely used in the treatment of metastatic cancer, the overall outcomes are poor. Therefore, elucidation of the mechanism underlying cancer progression is important to improve prognosis. Overexpression of the Rab5a gene has been confirmed to correlate with tumorigenesis of many cancers, but the mechanism underling, especially of GC, is still unclear. AIM To investigate the effects of Rab5a overexpression on the tumorigenesis of GC. METHODS First, the expression levels of Rab5a and Rab4a in primary tumorous tissues of GC patients diagnosed between 2015 and 2018 were analyzed. Then we constructed HGC-27 cell lines overexpressing green fluorescent protein-Rab5a or red fluorescent protein-Rab4a and investigated the interaction between Rab5a or Rab4a using Western blotting, co-immunoprecipitation, confocal microscopy, and colocalization analysis. Finally, epidermal growth factor-stimulated proliferation of these cell lines was analyzed using cell counting kit-8 cell viability assay. RESULTS Compared with normal gastric tissues, the expression levels of Rab5a and Rab4a increased progressively both in paracancerous tissues and in advanced cancerous tissues. Epidermal growth factor could promote the proliferation of HGC-27 cells, especially Rab5a-overexpressing HGC-27 cells. Notably, Rab5a and Rab4a co-overexpression promoted the proliferation of HGC-27 cells to the greatest extent. Further analysis identified a direct interaction between Rab5a and Rab4a in HGC-27 cells. CONCLUSION Co-overexpression of Rab5a and Rab4a in GC may promote the endosomal recycling of epidermal growth factor receptor, which in turn contributes to poor prognosis and tumor progression in GC patients. Inhibition of Rab5a or Rab4a expression might be a promising therapy for refractory GC.
Collapse
Affiliation(s)
- Guo-Jun Cao
- Department of Laboratory Medicine, Huashan Hospital North, Shanghai Medical College, Fudan University, Shanghai 201907, China
| | - Di Wang
- Department of Laboratory Medicine, Huashan Hospital North, Shanghai Medical College, Fudan University, Shanghai 201907, China
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Zhao-Pei Zeng
- Department of Laboratory Medicine, Diniu (Shanghai) Health Technology Co., Shanghai 201703, China
| | - Guo-Xiang Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chun-Jiu Hu
- Department of Gastroenterology, Ningbo First Hospital, Ningbo 315000, Zhejiang Province, China
| | - Zhi-Fang Xing
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| |
Collapse
|
5
|
Maxson ME, Sarantis H, Volchuk A, Brumell JH, Grinstein S. Rab5 regulates macropinocytosis by recruiting the inositol 5-phosphatases OCRL and Inpp5b that hydrolyse PtdIns(4,5)P2. J Cell Sci 2021; 134:237783. [PMID: 33722976 DOI: 10.1242/jcs.252411] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/25/2021] [Indexed: 01/09/2023] Open
Abstract
Rab5 is required for macropinosome formation, but its site and mode of action remain unknown. We report that Rab5 acts at the plasma membrane, downstream of ruffling, to promote macropinosome sealing and scission. Dominant-negative Rab5, which obliterates macropinocytosis, had no effect on the development of membrane ruffles. However, Rab5-containing vesicles were recruited to circular membrane ruffles, and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-dependent endomembrane fusion was necessary for the completion of macropinocytosis. This fusion event coincided with the disappearance of PtdIns(4,5)P2 that accompanies macropinosome closure. Counteracting the depletion of PtdIns(4,5)P2 by expression of phosphatidylinositol-4-phosphate 5-kinase impaired macropinosome formation. Importantly, we found that the removal of PtdIns(4,5)P2 is dependent on Rab5, through the Rab5-mediated recruitment of the inositol 5-phosphatases OCRL and Inpp5b, via APPL1. Knockdown of OCRL and Inpp5b, or APPL1, prevented macropinosome closure without affecting ruffling. We therefore propose that Rab5 is essential for the clearance of PtdIns(4,5)P2 needed to complete the scission of macropinosomes or to prevent their back-fusion with the plasmalemma.
Collapse
Affiliation(s)
- Michelle E Maxson
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Helen Sarantis
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Allen Volchuk
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - John H Brumell
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,SickKids IBD Centre, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
6
|
Saric A, Freeman SA. Endomembrane Tension and Trafficking. Front Cell Dev Biol 2021; 8:611326. [PMID: 33490077 PMCID: PMC7820182 DOI: 10.3389/fcell.2020.611326] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Eukaryotic cells employ diverse uptake mechanisms depending on their specialized functions. While such mechanisms vary widely in their defining criteria: scale, molecular machinery utilized, cargo selection, and cargo destination, to name a few, they all result in the internalization of extracellular solutes and fluid into membrane-bound endosomes. Upon scission from the plasma membrane, this compartment is immediately subjected to extensive remodeling which involves tubulation and vesiculation/budding of the limiting endomembrane. This is followed by a maturation process involving concomitant retrograde transport by microtubule-based motors and graded fusion with late endosomes and lysosomes, organelles that support the degradation of the internalized content. Here we review an important determinant for sorting and trafficking in early endosomes and in lysosomes; the control of tension on the endomembrane. Remodeling of endomembranes is opposed by high tension (caused by high hydrostatic pressure) and supported by the relief of tension. We describe how the timely and coordinated efflux of major solutes along the endocytic pathway affords the cell control over such tension. The channels and transporters that expel the smallest components of the ingested medium from the early endocytic fluid are described in detail as these systems are thought to enable endomembrane deformation by curvature-sensing/generating coat proteins. We also review similar considerations for the lysosome where resident hydrolases liberate building blocks from luminal macromolecules and transporters flux these organic solutes to orchestrate trafficking events. How the cell directs organellar trafficking based on the luminal contents of organelles of the endocytic pathway is not well-understood, however, we propose that the control over membrane tension by solute transport constitutes one means for this to ensue.
Collapse
Affiliation(s)
- Amra Saric
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Center for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Liput DJ, Nguyen TA, Augustin SM, Lee JO, Vogel SS. A Guide to Fluorescence Lifetime Microscopy and Förster's Resonance Energy Transfer in Neuroscience. CURRENT PROTOCOLS IN NEUROSCIENCE 2020; 94:e108. [PMID: 33232577 PMCID: PMC8274369 DOI: 10.1002/cpns.108] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fluorescence lifetime microscopy (FLIM) and Förster's resonance energy transfer (FRET) are advanced optical tools that neuroscientists can employ to interrogate the structure and function of complex biological systems in vitro and in vivo using light. In neurobiology they are primarily used to study protein-protein interactions, to study conformational changes in protein complexes, and to monitor genetically encoded FRET-based biosensors. These methods are ideally suited to optically monitor changes in neurons that are triggered optogenetically. Utilization of this technique by neuroscientists has been limited, since a broad understanding of FLIM and FRET requires familiarity with the interactions of light and matter on a quantum mechanical level, and because the ultra-fast instrumentation used to measure fluorescent lifetimes and resonance energy transfer are more at home in a physics lab than in a biology lab. In this overview, we aim to help neuroscientists overcome these obstacles and thus feel more comfortable with the FLIM-FRET method. Our goal is to aid researchers in the neuroscience community to achieve a better understanding of the fundamentals of FLIM-FRET and encourage them to fully leverage its powerful ability as a research tool. Published 2020. U.S. Government.
Collapse
Affiliation(s)
- Daniel J. Liput
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Tuan A. Nguyen
- Laboratory of Biophotonics and Quantum Biology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Shana M. Augustin
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Jeong Oen Lee
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Steven S. Vogel
- Laboratory of Biophotonics and Quantum Biology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
- Corresponding author:
| |
Collapse
|
8
|
Lv W, Champion JA. Demonstration of intracellular trafficking, cytosolic bioavailability, and target manipulation of an antibody delivery platform. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 32:102315. [PMID: 33065253 DOI: 10.1016/j.nano.2020.102315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
Intracellular antibody delivery into live cells has significant implications for research and therapeutic applications. However, many delivery systems lack potency due to low uptake and/or endosomal entrapment and understanding of intracellular delivery processes is lacking. Herein, we studied the cellular uptake, intracellular trafficking and targeting of antibodies using our previously developed Hex antibody nanocarrier. We demonstrated Hex-antibodies were internalized through multiple endocytic routes into lysosomes and provide evidence of endo/lysosomal disruption and Hex-antibody release to the cytosol. Cytosolic antibodies retained their bioactivity for at least 24 h. Functional effect of Hex delivered anti-STAT3 antibodies was evidenced by inhibition of nuclear translocation of cytosolic transcription factor STAT3. This study has generated understanding of key steps in the Hex intracellular antibody delivery system and will facilitate the development of effective cytosolic antibody delivery and applications in both the therapeutic and research domains.
Collapse
Affiliation(s)
- Wei Lv
- School of Chemical & Biomolecular Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Julie A Champion
- School of Chemical & Biomolecular Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
9
|
Single-domain antibodies for functional targeting of the signaling scaffold Shoc2. Mol Immunol 2019; 118:110-116. [PMID: 31869742 DOI: 10.1016/j.molimm.2019.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/22/2019] [Accepted: 12/14/2019] [Indexed: 12/20/2022]
Abstract
The accurate transmission of signals by the canonical ERK1/2 kinase pathway critically relies on the proper assembly of an intricate multiprotein complex by the scaffold protein Shoc2. However, the details of the mechanism by which Shoc2 guides ERK1/2 signals are not clear, in part, due to the lack of research tools targeting specific protein binding moieties of Shoc2. We report generation and characterization of single domain antibodies against human Shoc2 using a universal synthetic library of humanized nanobodies. Our results identify eight synthetic single-domain antibodies and show that two evaluated antibodies have binding affinities to Shoc2 in the nanomolar range. High affinity antibodies were uniquely suited for the analysis of the Shoc2 complex assembly. Selected single-domain antibodies were also functional in intracellular assays. This study illustrates that Shoc2 single-domain antibodies can be used to understand functional mechanisms governing complex multiprotein signaling modules and have promise in application for therapies that require modulation of the ERK1/2-associated diseases.
Collapse
|
10
|
Kumar H, Pushpa K, Kumari A, Verma K, Pergu R, Mylavarapu SVS. The exocyst complex and Rab5 are required for abscission by localizing ESCRT III subunits to the cytokinetic bridge. J Cell Sci 2019; 132:jcs226001. [PMID: 31221728 PMCID: PMC6679584 DOI: 10.1242/jcs.226001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 06/14/2019] [Indexed: 01/26/2023] Open
Abstract
Cytokinesis is the final step of cell division following chromosome segregation that generates two daughter cells. The conserved exocyst complex is required for scission of the intercellular cytokinetic bridge, although the molecular mechanisms it employs in this process are unclear. We identify and validate the early endocytic GTPase Rab5 as interacting with the exocyst complex in mammalian cells. Rab5 localizes in the cytokinetic bridge and on the midbody ring in a manner similar to the exocyst complex. Depletion of Rab5 led to delayed abscission. Caenorhabditis elegans orthologs of both exocyst complex subunits and Rab5 localize along the cleavage furrow and are required for cytokinesis in early embryos. Cytokinetic cells depleted of either Rab5 or the exocyst subunits Exoc3 and Exoc4 showed impaired deposition of the endosomal sorting complexes required for transport (ESCRT) III subunits CHMP2B and/or CHMP4B near the midbody ring. The study reveals an evolutionarily conserved role for the early endocytic marker Rab5 in cytokinetic abscission. In addition, it uncovers a key requirement of the exocyst and Rab5 for the delivery of components of the membrane-severing ESCRT III machinery to complete cytokinesis.
Collapse
Affiliation(s)
- Harsh Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Kumari Pushpa
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Amrita Kumari
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Kuldeep Verma
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Rajaiah Pergu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
11
|
Sorkina T, Ma S, Larsen MB, Watkins SC, Sorkin A. Small molecule induced oligomerization, clustering and clathrin-independent endocytosis of the dopamine transporter. eLife 2018; 7:32293. [PMID: 29630493 PMCID: PMC5896956 DOI: 10.7554/elife.32293] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/22/2018] [Indexed: 12/14/2022] Open
Abstract
Clathrin-independent endocytosis (CIE) mediates internalization of many transmembrane proteins but the mechanisms of cargo recruitment during CIE are poorly understood. We found that the cell-permeable furopyrimidine AIM-100 promotes dramatic oligomerization, clustering and CIE of human and mouse dopamine transporters (DAT), but not of their close homologues, norepinephrine and serotonin transporters. All effects of AIM-100 on DAT and the occupancy of substrate binding sites in the transporter were mutually exclusive, suggesting that AIM-100 may act by binding to DAT. Surprisingly, AIM-100-induced DAT endocytosis was independent of dynamin, cholesterol-rich microdomains and actin cytoskeleton, implying that a novel endocytic mechanism is involved. AIM-100 stimulated trafficking of internalized DAT was also unusual: DAT accumulated in early endosomes without significant recycling or degradation. We propose that AIM-100 augments DAT oligomerization through an allosteric mechanism associated with the DAT conformational state, and that oligomerization-triggered clustering leads to a coat-independent endocytosis and subsequent endosomal retention of DAT.
Collapse
Affiliation(s)
- Tatiana Sorkina
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Shiqi Ma
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Mads Breum Larsen
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| |
Collapse
|
12
|
Miszczuk GS, Barosso IR, Larocca MC, Marrone J, Marinelli RA, Boaglio AC, Sánchez Pozzi EJ, Roma MG, Crocenzi FA. Mechanisms of canalicular transporter endocytosis in the cholestatic rat liver. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1072-1085. [DOI: 10.1016/j.bbadis.2018.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 01/03/2023]
|
13
|
Gorvin CM, Rogers A, Hastoy B, Tarasov AI, Frost M, Sposini S, Inoue A, Whyte MP, Rorsman P, Hanyaloglu AC, Breitwieser GE, Thakker RV. AP2σ Mutations Impair Calcium-Sensing Receptor Trafficking and Signaling, and Show an Endosomal Pathway to Spatially Direct G-Protein Selectivity. Cell Rep 2018; 22:1054-1066. [PMID: 29420171 PMCID: PMC5792449 DOI: 10.1016/j.celrep.2017.12.089] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/30/2017] [Accepted: 12/22/2017] [Indexed: 12/29/2022] Open
Abstract
Spatial control of G-protein-coupled receptor (GPCR) signaling, which is used by cells to translate complex information into distinct downstream responses, is achieved by using plasma membrane (PM) and endocytic-derived signaling pathways. The roles of the endomembrane in regulating such pleiotropic signaling via multiple G-protein pathways remain unknown. Here, we investigated the effects of disease-causing mutations of the adaptor protein-2 σ subunit (AP2σ) on signaling by the class C GPCR calcium-sensing receptor (CaSR). These AP2σ mutations increase CaSR PM expression yet paradoxically reduce CaSR signaling. Hypercalcemia-associated AP2σ mutations reduced CaSR signaling via Gαq/11 and Gαi/o pathways. The mutations also delayed CaSR internalization due to prolonged residency time of CaSR in clathrin structures that impaired or abolished endosomal signaling, which was predominantly mediated by Gαq/11. Thus, compartmental bias for CaSR-mediated Gαq/11 endomembrane signaling provides a mechanistic basis for multidimensional GPCR signaling. Disease-causing AP2σ mutants impair Gαq/11 and Gαi/o signaling by CaSR, a class C GPCR AP2σ mutants impair trafficking of the CaSR The CaSR can signal by a sustained endosomal pathway CaSR differentially uses Gαq/11 and Gαi/o for cell-surface and endosomal signaling
Collapse
Affiliation(s)
- Caroline M Gorvin
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| | - Angela Rogers
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Benoit Hastoy
- Diabetes Research Laboratory, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrei I Tarasov
- Diabetes Research Laboratory, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Morten Frost
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Silvia Sposini
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London, UK
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Tohoku University, Sendai, Japan; Japan Science and Technology (JST) Agency, Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi, Japan
| | - Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children, St. Louis, MO, USA
| | - Patrik Rorsman
- Diabetes Research Laboratory, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Aylin C Hanyaloglu
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London, UK
| | - Gerda E Breitwieser
- Geisinger Clinic, Weis Center for Research, Department of Functional and Molecular Genomics, Danville, PA, USA
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
14
|
Yap CC, Digilio L, McMahon L, Winckler B. The endosomal neuronal proteins Nsg1/NEEP21 and Nsg2/P19 are itinerant, not resident proteins of dendritic endosomes. Sci Rep 2017; 7:10481. [PMID: 28874679 PMCID: PMC5585371 DOI: 10.1038/s41598-017-07667-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/29/2017] [Indexed: 12/28/2022] Open
Abstract
Membrane traffic critically regulates most aspects of neuronal function. Neurons express many neuronal-specific proteins that regulate membrane traffic, including the poorly understood small transmembrane proteins neural-specific gene 1 and 2 (Nsg1/NEEP21 and Nsg2/P19). Nsg1 has been implicated in regulating endosomal recycling and sorting of several important neuronal receptors. Nsg2 is largely unstudied. At steady-state, Nsg1 and Nsg2 only partially co-localize with known endosomal compartments, and it was suggested that they mark a neuronal-specific endosome. Since Nsg1 localizes to and functions in the dendritic endosome, we set out to discover how Nsg1 and Nsg2 localization to endosomes is regulated in primary rat hippocampal neurons, using quadruple immunolocalization against endogenous proteins, live imaging of dendritic endosomes, and interference approaches against the endosomal regulators Rab5 and Rab7. In contrast to previous conclusions, we now show that Nsg1 and Nsg2 are not resident endosomal proteins, but traffic rapidly from the cell surface to lysosomes and have a half-life of less than two hours. Their partial co-localization with canonical endosomal markers thus reflects their rapid flux towards degradation rather than specific targeting to a singular compartment. These findings will require rethinking of how this class of endosomal proteins regulates trafficking of much longer-lived receptors.
Collapse
Affiliation(s)
- Chan Choo Yap
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Laura Digilio
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Lloyd McMahon
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
15
|
Horiguchi M, Fujioka M, Kondo T, Fujioka Y, Li X, Horiuchi K, O. Satoh A, Nepal P, Nishide S, Nanbo A, Teshima T, Ohba Y. Improved FRET Biosensor for the Measurement of BCR-ABL Activity in Chronic Myeloid Leukemia Cells. Cell Struct Funct 2017; 42:15-26. [DOI: 10.1247/csf.16019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Mika Horiguchi
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| | - Mari Fujioka
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| | - Takeshi Kondo
- Department of Hematology, Hokkaido University Graduate School of Medicine
| | - Yoichiro Fujioka
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| | - Xinxin Li
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| | - Kosui Horiuchi
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| | - Aya O. Satoh
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| | - Prabha Nepal
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| | - Shinya Nishide
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| | - Asuka Nanbo
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Graduate School of Medicine
| | - Yusuke Ohba
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| |
Collapse
|
16
|
Pendin D, Greotti E, Lefkimmiatis K, Pozzan T. Exploring cells with targeted biosensors. J Gen Physiol 2016; 149:1-36. [PMID: 28028123 PMCID: PMC5217087 DOI: 10.1085/jgp.201611654] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/26/2016] [Accepted: 12/01/2016] [Indexed: 01/10/2023] Open
Abstract
Cellular signaling networks are composed of multiple pathways, often interconnected, that form complex networks with great potential for cross-talk. Signal decoding depends on the nature of the message as well as its amplitude, temporal pattern, and spatial distribution. In addition, the existence of membrane-bound organelles, which are both targets and generators of messages, add further complexity to the system. The availability of sensors that can localize to specific compartments in live cells and monitor their targets with high spatial and temporal resolution is thus crucial for a better understanding of cell pathophysiology. For this reason, over the last four decades, a variety of strategies have been developed, not only to generate novel and more sensitive probes for ions, metabolites, and enzymatic activity, but also to selectively deliver these sensors to specific intracellular compartments. In this review, we summarize the principles that have been used to target organic or protein sensors to different cellular compartments and their application to cellular signaling.
Collapse
Affiliation(s)
- Diana Pendin
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Elisa Greotti
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Konstantinos Lefkimmiatis
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Venetian Institute of Molecular Medicine, 35129 Padua, Italy
| | - Tullio Pozzan
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Venetian Institute of Molecular Medicine, 35129 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| |
Collapse
|
17
|
Husebye H, Doyle SL. Using Confocal Microscopy to Investigate Intracellular Trafficking of Toll-Like Receptors. Methods Mol Biol 2016; 1390:65-77. [PMID: 26803622 DOI: 10.1007/978-1-4939-3335-8_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Toll-like receptors (TLR) survey the extracellular space, cytoplasm, and endosomal compartments for signs of infection or tissue injury. Over the past decade, it has become evident that TLR activation and signal transduction can be regulated by subcellular compartmentalization of both the receptors and their downstream signaling components. Immunofluorescence and/or overexpression of fluorescently "tagged"' proteins teamed with confocal microscopy presents a powerful technique for studying the spatial organization of TLRs, their signaling mediators, and the dynamic processes they activate. This chapter details the common methods for determining the subcellular location of TLRs in both live and fixed cells.
Collapse
Affiliation(s)
- Harald Husebye
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sarah L Doyle
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin 2, Ireland. .,The National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin 12, Ireland.
| |
Collapse
|
18
|
Mrozowska PS, Fukuda M. Regulation of podocalyxin trafficking by Rab small GTPases in epithelial cells. Small GTPases 2016; 7:231-238. [PMID: 27463697 DOI: 10.1080/21541248.2016.1211068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The characteristic feature of polarity establishment in MDCK II cells is transcytosis of apical glycoprotein podocalyxin (PCX) from the outer plasma membrane to the newly formed apical domain. This transcytotic event consists of multiple steps, including internalization from the plasma membrane, transport through early endosomes and Rab11-positive recycling endosomes, and delivery to the apical membrane. These steps are known to be tightly coordinated by Rab small GTPases, which act as molecular switches cycling between active GTP-bound and inactive GDP-bound states. However, our knowledge regarding which sets of Rabs regulate particular steps of PCX trafficking was rather limited. Recently, we have performed a comprehensive analysis of Rab GTPase engagement in the transcytotic pathway of PCX during polarity establishment in 2-dimensional (2D) and 3-dimensional (3D) MDCK II cell cultures. In this Commentary we summarize our findings and set them in the context of previous reports.
Collapse
Affiliation(s)
- Paulina S Mrozowska
- a Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences , Graduate School of Life Sciences, Tohoku University , Sendai, Miyagi , Japan
| | - Mitsunori Fukuda
- a Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences , Graduate School of Life Sciences, Tohoku University , Sendai, Miyagi , Japan
| |
Collapse
|
19
|
Perez Ruiz de Garibay A. Endocytosis in gene therapy with non-viral vectors. Wien Med Wochenschr 2016; 166:227-35. [DOI: 10.1007/s10354-016-0450-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/01/2016] [Indexed: 01/06/2023]
|
20
|
Shao X, Liu Y, Yu Q, Ding Z, Qian W, Zhang L, Zhang J, Jiang N, Gui L, Xu Z, Hong Y, Ma Y, Wei Y, Liu X, Jiang C, Zhu M, Li H, Li H. Numb regulates vesicular docking for homotypic fusion of early endosomes via membrane recruitment of Mon1b. Cell Res 2016; 26:593-612. [PMID: 26987402 PMCID: PMC4856763 DOI: 10.1038/cr.2016.34] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/17/2015] [Accepted: 01/17/2015] [Indexed: 02/05/2023] Open
Abstract
Numb is an endocytic protein that plays crucial roles in diverse cellular processes such as asymmetric cell division, cell migration and differentiation. However, the molecular mechanism by which Numb regulates endocytic trafficking is poorly understood. Here, we demonstrate that Numb is a docking regulator for homotypic fusion of early endosomes (EEs). Numb depletion causes clustered but unfused EEs, which can be rescued by overexpressing cytosolic Numb 65 and Numb 71 but not plasma membrane-attached Numb 66 or Numb 72. Time-lapse analysis reveals that paired vesicles tend to tether but not fuse with each other in the absence of Numb. We further show that Numb binds to another docking regulator, Mon1b, and is required for the recruitment of cytosolic Mon1b to the EE membrane. Consistent with this, deletion of Mon1b causes similar defects in EE fusion. Our study thus identifies a novel mechanism by which Numb regulates endocytic sorting by mediating EE fusion.
Collapse
Affiliation(s)
- Ximing Shao
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yi Liu
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- West China Developmental & Stem Cell Biology Institute, West China Second University Hospital, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Current address: Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Qian Yu
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- West China Developmental & Stem Cell Biology Institute, West China Second University Hospital, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhihao Ding
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Wenyu Qian
- West China Developmental & Stem Cell Biology Institute, West China Second University Hospital, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- SARITEX Center for Stem Cell Engineering Translational Medicine, Shanghai East Hospital, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Lei Zhang
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jianchao Zhang
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Nan Jiang
- West China Developmental & Stem Cell Biology Institute, West China Second University Hospital, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Current address: Department of Biology, University of Washington, Seattle, Washington, USA
| | - Linfei Gui
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Hong
- Department of Cell Biology & Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yifan Ma
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yanjie Wei
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Xiaoqing Liu
- SARITEX Center for Stem Cell Engineering Translational Medicine, Shanghai East Hospital, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Changan Jiang
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- West China Developmental & Stem Cell Biology Institute, West China Second University Hospital, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Minyan Zhu
- SARITEX Center for Stem Cell Engineering Translational Medicine, Shanghai East Hospital, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Hongchang Li
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Huashun Li
- SARITEX Center for Stem Cell Engineering Translational Medicine, Shanghai East Hospital, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200123, China
- ATCG Corp, BioBay, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| |
Collapse
|
21
|
Rowland CE, Brown CW, Medintz IL, Delehanty JB. Intracellular FRET-based probes: a review. Methods Appl Fluoresc 2015; 3:042006. [PMID: 29148511 DOI: 10.1088/2050-6120/3/4/042006] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Probes that exploit Förster resonance energy transfer (FRET) in their feedback mechanism are touted for their sensitivity, robustness, and low background, and thanks to the exceptional distance dependence of the energy transfer process, they provide a means of probing lengthscales well below the resolution of light. These attributes make FRET-based probes superbly suited to an intracellular environment, and recent developments in biofunctionalization and expansion of imaging capabilities have put them at the forefront of intracellular studies. Here, we present an overview of the engineering and execution of a variety of recent intracellular FRET probes, highlighting the diversity of this class of materials and the breadth of application they have found in the intracellular environment.
Collapse
Affiliation(s)
- Clare E Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, Washington, DC 20375, USA. National Research Council, Washington, DC 20036, USA
| | | | | | | |
Collapse
|
22
|
Chance RK, Bashaw GJ. Slit-Dependent Endocytic Trafficking of the Robo Receptor Is Required for Son of Sevenless Recruitment and Midline Axon Repulsion. PLoS Genet 2015; 11:e1005402. [PMID: 26335920 PMCID: PMC4559387 DOI: 10.1371/journal.pgen.1005402] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/26/2015] [Indexed: 01/07/2023] Open
Abstract
Understanding how axon guidance receptors are activated by their extracellular ligands to regulate growth cone motility is critical to learning how proper wiring is established during development. Roundabout (Robo) is one such guidance receptor that mediates repulsion from its ligand Slit in both invertebrates and vertebrates. Here we show that endocytic trafficking of the Robo receptor in response to Slit-binding is necessary for its repulsive signaling output. Dose-dependent genetic interactions and in vitro Robo activation assays support a role for Clathrin-dependent endocytosis, and entry into both the early and late endosomes as positive regulators of Slit-Robo signaling. We identify two conserved motifs in Robo's cytoplasmic domain that are required for its Clathrin-dependent endocytosis and activation in vitro; gain of function and genetic rescue experiments provide strong evidence that these trafficking events are required for Robo repulsive guidance activity in vivo. Our data support a model in which Robo's ligand-dependent internalization from the cell surface to the late endosome is essential for receptor activation and proper repulsive guidance at the midline by allowing recruitment of the downstream effector Son of Sevenless in a spatially constrained endocytic trafficking compartment.
Collapse
Affiliation(s)
- Rebecca K. Chance
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Greg J. Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
23
|
Sinha C, Ren A, Arora K, Moon CS, Yarlagadda S, Woodrooffe K, Lin S, Schuetz JD, Ziady AG, Naren AP. PKA and actin play critical roles as downstream effectors in MRP4-mediated regulation of fibroblast migration. Cell Signal 2015; 27:1345-55. [PMID: 25841995 DOI: 10.1016/j.cellsig.2015.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/23/2015] [Indexed: 12/23/2022]
Abstract
Multidrug resistance protein 4 (MRP4), a member of the ATP binding cassette transporter family, functions as a plasma membrane exporter of cyclic nucleotides. Recently, we demonstrated that fibroblasts lacking the Mrp4 gene migrate faster and contain higher cyclic-nucleotide levels. Here, we show that cAMP accumulation and protein kinase A (PKA) activity are higher and polarized in Mrp4(-/-) fibroblasts, versus Mrp4(+/+) cells. MRP4-containing macromolecular complexes isolated from these fibroblasts contained several proteins, including actin, which play important roles in cell migration. We found that actin interacts with MRP4, predominantly at the plasma membrane, and an intact actin cytoskeleton is required to restrict MRP4 to specific microdomains of the plasma membrane. Our data further indicated that the enhanced accumulation of cAMP in Mrp4(-/-) fibroblasts facilitates cortical actin polymerization in a PKA-dependent manner at the leading edge, which in turn increases the overall rate of cell migration to accelerate the process of wound healing. Disruption of actin polymerization or inhibition of PKA activity abolished the effect of MRP4 on cell migration. Together, our findings suggest a novel cAMP-dependent mechanism for MRP4-mediated regulation of fibroblast migration whereby PKA and actin play critical roles as downstream effectors.
Collapse
Affiliation(s)
- Chandrima Sinha
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Aixia Ren
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kavisha Arora
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Chang Suk Moon
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sunitha Yarlagadda
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Koryse Woodrooffe
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Songbai Lin
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Assem G Ziady
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
| | - Anjaparavanda P Naren
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
24
|
Sohn YS, Shin HC, Park WS, Ge J, Kim CH, Lee BL, Do Heo W, Jung JU, Rigden DJ, Oh BH. Lpg0393 of Legionella pneumophila is a guanine-nucleotide exchange factor for Rab5, Rab21 and Rab22. PLoS One 2015; 10:e0118683. [PMID: 25821953 PMCID: PMC4379102 DOI: 10.1371/journal.pone.0118683] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/22/2015] [Indexed: 11/18/2022] Open
Abstract
Legionella pneumophila, a human intracellular pathogen, encodes about 290 effector proteins that are translocated into host cells through a secretion machinery. Some of these proteins have been shown to manipulate or subvert cellular processes during infection, but functional roles of a majority of them remain unknown. Lpg0393 is a newly identified Legionella effector classified as a hypothetical protein. Through X-ray crystallographic analysis, we show that Lpg0393 contains a Vps9-like domain, which is structurally most similar to the catalytic core of human Rabex-5 that activates the endosomal Rab proteins Rab5, Rab21 and Rab22. Consistently, Lpg0393 exhibited a guanine-nucleotide exchange factor activity toward the endosomal Rabs. This work identifies the first example of a bacterial guanine-nucleotide exchange factor that is active towards the Rab5 sub-cluster members, implying that the activation of these Rab proteins might be advantageous for the intracellular survival of Legionella.
Collapse
Affiliation(s)
- Young-Sik Sohn
- Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea
| | - Ho-Chul Shin
- Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-600, Korea
| | - Wei Sun Park
- Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea
| | - Jianning Ge
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Chan-Hee Kim
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Jangjeon Dong, Kumjeong Ku, Busan, 609-735, Korea
| | - Bok Luel Lee
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Jangjeon Dong, Kumjeong Ku, Busan, 609-735, Korea
| | - Won Do Heo
- Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea
| | - Jae U. Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Daniel John Rigden
- Institute of Integrative Biology, University of Liverpool, Crown St., Liverpool, L69 7ZB, United Kingdom
- * E-mail: (BHO); (DJR)
| | - Byung-Ha Oh
- Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea
- * E-mail: (BHO); (DJR)
| |
Collapse
|
25
|
Sinha C, Arora K, Moon CS, Yarlagadda S, Woodrooffe K, Naren AP. Förster resonance energy transfer - an approach to visualize the spatiotemporal regulation of macromolecular complex formation and compartmentalized cell signaling. Biochim Biophys Acta Gen Subj 2014; 1840:3067-72. [PMID: 25086255 DOI: 10.1016/j.bbagen.2014.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Signaling messengers and effector proteins provide an orchestrated molecular machinery to relay extracellular signals to the inside of cells and thereby facilitate distinct cellular behaviors. Formations of intracellular macromolecular complexes and segregation of signaling cascades dynamically regulate the flow of a biological process. SCOPE OF REVIEW In this review, we provide an overview of the development and application of FRET technology in monitoring cyclic nucleotide-dependent signalings and protein complexes associated with these signalings in real time and space with brief mention of other important signaling messengers and effector proteins involved in compartmentalized signaling. MAJOR CONCLUSIONS The preciseness, rapidity and specificity of cellular responses indicate restricted alterations of signaling messengers, particularly in subcellular compartments rather than globally. Not only the physical confinement and selective depletion, but also the intra- and inter-molecular interactions of signaling effectors modulate the direction of signal transduction in a compartmentalized fashion. To understand the finer details of various intracellular signaling cascades and crosstalk between proteins and other effectors, it is important to visualize these processes in live cells. Förster Resonance Energy Transfer (FRET) has been established as a useful tool to do this, even with its inherent limitations. GENERAL SIGNIFICANCE FRET technology remains as an effective tool for unraveling the complex organization and distribution of various endogenous signaling proteins, as well as the spatiotemporal dynamics of second messengers inside a single cell to distinguish the heterogeneity of cell signaling under normal physiological conditions and during pathological events.
Collapse
Affiliation(s)
- Chandrima Sinha
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, MLC2120 3333 Burnet Avenue Cincinnati, OH 45229, USA; Department of Physiology, University of Tennessee Health Science Center, 426 Nash Research Building, 894 Union Avenue, Memphis, TN 38163, USA
| | - Kavisha Arora
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, MLC2120 3333 Burnet Avenue Cincinnati, OH 45229, USA
| | - Chang Suk Moon
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, MLC2120 3333 Burnet Avenue Cincinnati, OH 45229, USA
| | - Sunitha Yarlagadda
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, MLC2120 3333 Burnet Avenue Cincinnati, OH 45229, USA
| | - Koryse Woodrooffe
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, MLC2120 3333 Burnet Avenue Cincinnati, OH 45229, USA
| | - Anjaparavanda P Naren
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, MLC2120 3333 Burnet Avenue Cincinnati, OH 45229, USA; Department of Physiology, University of Tennessee Health Science Center, 426 Nash Research Building, 894 Union Avenue, Memphis, TN 38163, USA.
| |
Collapse
|
26
|
Köhnke M, Schmitt S, Ariotti N, Piggott AM, Parton RG, Lacey E, Capon RJ, Alexandrov K, Abankwa D. Design and application of in vivo FRET biosensors to identify protein prenylation and nanoclustering inhibitors. ACTA ACUST UNITED AC 2014; 19:866-74. [PMID: 22840774 DOI: 10.1016/j.chembiol.2012.05.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 05/25/2012] [Accepted: 05/30/2012] [Indexed: 12/24/2022]
Abstract
Protein prenylation is required for membrane anchorage of small GTPases. Correct membrane targeting is essential for their biological activity. Signal output of the prenylated proto-oncogene Ras in addition critically depends on its organization into nanoscale proteolipid assemblies of the plasma membrane, so called nanoclusters. While protein prenylation is an established drug target, only a handful of nanoclustering inhibitors are known, partially due to the lack of appropriate assays to screen for such compounds. Here, we describe three cell-based high-throughput screening amenable Förster resonance energy transfer NANOclustering and Prenylation Sensors (NANOPS) that are specific for Ras, Rho, and Rab proteins. Rab-NANOPS provides the first evidence for nanoclustering of Rab proteins. Using NANOPS in a cell-based chemical screen, we now identify macrotetrolides, known ionophoric antibiotics, as submicromolar disruptors of Ras nanoclustering and MAPK signaling.
Collapse
Affiliation(s)
- Monika Köhnke
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Oh H, Kim H, Chung KH, Hong NH, Shin B, Park WJ, Jun Y, Rhee S, Song WK. SPIN90 knockdown attenuates the formation and movement of endosomal vesicles in the early stages of epidermal growth factor receptor endocytosis. PLoS One 2013; 8:e82610. [PMID: 24340049 PMCID: PMC3858329 DOI: 10.1371/journal.pone.0082610] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/03/2013] [Indexed: 12/16/2022] Open
Abstract
The finding that SPIN90 colocalizes with epidermal growth factor (EGF) in EEA1-positive endosomes prompted us to investigate the role of SPIN90 in endocytosis of the EGF receptor (EGFR). In the present study, we demonstrated that SPIN90 participates in the early stages of endocytosis, including vesicle formation and trafficking. Stable HeLa cells with knockdown of SPIN90 displayed significantly higher levels of surface EGFR than control cells. Analysis of the abundance and cellular distribution of EGFR via electron microscopy revealed that SPIN90 knockdown cells contain residual EGFR at cell membranes and fewer EGFR-containing endosomes, both features that reflect reduced endosome formation. The delayed early endosomal targeting capacity of SPIN90 knockdown cells led to increased EGFR stability, consistent with the observed accumulation of EGFR at the membrane. Small endosome sizes and reduced endosome formation in SPIN90 knockdown cells, observed using fluorescent confocal microscopy, strongly supported the involvement of SPIN90 in endocytosis of EGFR. Overexpression of SPIN90 variants, particularly the SH3, PRD, and CC (positions 643 - 722) domains, resulted in aberrant morphology of Rab5-positive endosomes (detected as small spots located near the cell membrane) and defects in endosomal movement. These findings clearly suggest that SPIN90 participates in the formation and movement of endosomes. Consistent with this, SPIN90 knockdown enhanced cell proliferation. The delay in EGFR endocytosis effectively increased the levels of endosomal EGFR, which triggered activation of ERK1/2 and cell proliferation via upregulation of cyclin D1. Collectively, our findings suggest that SPIN90 contributes to the formation and movement of endosomal vesicles, and modulates the stability of EGFR protein, which affects cell cycle progression via regulation of the activities of downstream proteins, such as ERK1/2, after EGF stimulation.
Collapse
Affiliation(s)
- Hyejin Oh
- Bio Imaging and Cell Dynamics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Cheomdan Gwagi-ro 261, Gwangju Metrocity, Korea
| | - Hwan Kim
- Bio Imaging and Cell Dynamics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Cheomdan Gwagi-ro 261, Gwangju Metrocity, Korea
| | - Kyung-Hwun Chung
- Bio Imaging and Cell Dynamics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Cheomdan Gwagi-ro 261, Gwangju Metrocity, Korea
| | - Nan Hyung Hong
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Baehyun Shin
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Woo Jin Park
- Bio Remodeling and Gene Therapy Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Cheomdan Gwagi-ro 261, Gwangju Metrocity, Korea
| | - Youngsoo Jun
- Cell Biology and Membrane Biochemistry Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Cheomdan Gwagi-ro 261, Gwangju Metrocity, Korea
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Woo Keun Song
- Bio Imaging and Cell Dynamics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Cheomdan Gwagi-ro 261, Gwangju Metrocity, Korea
- * E-mail:
| |
Collapse
|
28
|
Lanahan A, Zhang X, Fantin A, Zhuang Z, Rivera-Molina F, Speichinger K, Prahst C, Zhang J, Wang Y, Davis G, Toomre D, Ruhrberg C, Simons M. The neuropilin 1 cytoplasmic domain is required for VEGF-A-dependent arteriogenesis. Dev Cell 2013; 25:156-68. [PMID: 23639442 PMCID: PMC3774154 DOI: 10.1016/j.devcel.2013.03.019] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 01/25/2013] [Accepted: 03/27/2013] [Indexed: 12/19/2022]
Abstract
Neuropilin 1 (NRP1) plays an important but ill-defined role in VEGF-A signaling and vascular morphogenesis. We show that mice with a knockin mutation that ablates the NRP1 cytoplasmic tail (Nrp1cyto) have normal angiogenesis but impaired developmental and adult arteriogenesis. The arteriogenic defect was traced to the absence of a PDZ-dependent interaction between NRP1 and VEGF receptor 2 (VEGFR2) complex and synectin, which delayed trafficking of endocytosed VEGFR2 from Rab5+ to EAA1+ endosomes. This led to increased PTPN1 (PTP1b)-mediated dephosphorylation of VEGFR2 at Y1175, the site involved in activating ERK signaling. The Nrp1cyto mutation also impaired endothelial tubulogenesis in vitro, which could be rescued by expressing full-length NRP1 or constitutively active ERK. These results demonstrate that the NRP1 cytoplasmic domain promotes VEGFR2 trafficking in a PDZ-dependent manner to regulate arteriogenic ERK signaling and establish a role for NRP1 in VEGF-A signaling during vascular morphogenesis. The NRP1 cytoplasmic domain promotes VEGF receptor (VEGFR) 2 endocytic trafficking In its absence, VEGR2 trafficking is delayed in sorting endosomes PTP1b binds to Rab5+ sorting endosomes and dephosphorylates the Y1175 site of VEGFR2 Loss of the NRP1 cytoplasmic domain impairs developmental and adult arteriogenesis
Collapse
Affiliation(s)
- Anthony Lanahan
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wang T, Cheng Y, Dou Y, Goonesekara C, David JP, Steele DF, Huang C, Fedida D. Trafficking of an endogenous potassium channel in adult ventricular myocytes. Am J Physiol Cell Physiol 2012; 303:C963-76. [PMID: 22914645 DOI: 10.1152/ajpcell.00217.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The roles of several small GTPases in the expression of an endogenous potassium current, I(to,f), in adult rat ventricular myocytes have been investigated. The results indicate that forward trafficking of newly synthesized Kv4.2, which underlies I(to,f) in these cells, requires both Rab1 and Sar1 function. Expression of a Rab1 dominant negative (DN) reduced I(to,f) current density by roughly one-half relative to control, mCherry-transfected myocytes. Similarly, expression of a Sar1DN nearly halved I(to,f) current density. Rab11 is not essential to trafficking of Kv4.2, as expression of a Rab11DN had no effect on I(to,f) over the time frames investigated here. In a process dependent on intact endoplasmic reticulum (ER)-to-Golgi transport, however, overexpression of wild-type Rab11 resulted in a doubling of I(to,f) density; block of ER-to-Golgi traffic by Brefeldin A completely abrogated the effect. Also implicated in the trafficking of Kv4.2 are Rab5 and Rab4. Rab5DN expression increased endogenous I(to,f) by two- to threefold, nonadditively with inhibition of dynamin-dependent endocytosis. And, in a phenomenon similar to that previously reported for myoblast-expressed Kv1.5, Rab4DN expression roughly doubled endogenous peak transient currents. Colocalization experiments confirmed the involvement of Rab4 in postinternalization trafficking of Kv4.2. There was little role evident for the lysosome in the degradation of internalized Kv4.2, as overexpression of neither wild-type nor DN isoforms of Rab7 had any effect on I(to,f). Instead, degradation may depend largely on the proteasome; the proteasome inhibitor MG132 significantly increased I(to,f) density.
Collapse
Affiliation(s)
- Tiantian Wang
- Dept. of Anesthesiology, Pharmacology and Therapeutics, Univ. of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Feliciano WD, Yoshida S, Straight SW, Swanson JA. Coordination of the Rab5 cycle on macropinosomes. Traffic 2011; 12:1911-22. [PMID: 21910808 DOI: 10.1111/j.1600-0854.2011.01280.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The GTPase Rab5a regulates the homotypic and heterotypic fusion of membranous organelles during the early stages of endocytosis. Many of the molecules which regulate the Rab5a cycle of association with membranes, activation, deactivation and dissociation are known. However, the extent to which these molecular scale activities are coordinated on membranes to affect the behavior of individual organelles has not been determined. This study used novel Förster resonance energy transfer (FRET) microscopic methods to analyze the Rab5a cycle on macropinosomes, which are large endocytic vesicles that form in ruffled regions of cell membranes. In Cos-7 cells and mouse macrophages stimulated with growth factors, Rab5a activation followed immediately after its recruitment to newly formed macropinosomes. Rab5a activity increased continuously and uniformly over macropinosome membranes then decreased continuously, with Rab5a deactivation preceding dissociation by 1-12 min. Although the maximal levels of Rab5a activity were independent of organelle size, Rab5a cycles were longer on larger macropinosomes, consistent with an integrative activity governing Rab5a dynamics on individual organelles. The Rab5a cycle was destabilized by microtubule depolymerization and by bafilomycin A1. Overexpression of activating and inhibitory proteins indicated that active Rab5a stabilized macropinosomes. Thus, overall Rab5a activity on macropinosomes is coordinated by macropinosome structure and physiology.
Collapse
Affiliation(s)
- William D Feliciano
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
| | | | | | | |
Collapse
|
31
|
Ardura JA, Wang B, Watkins SC, Vilardaga JP, Friedman PA. Dynamic Na+-H+ exchanger regulatory factor-1 association and dissociation regulate parathyroid hormone receptor trafficking at membrane microdomains. J Biol Chem 2011; 286:35020-9. [PMID: 21832055 PMCID: PMC3186428 DOI: 10.1074/jbc.m111.264978] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/05/2011] [Indexed: 12/21/2022] Open
Abstract
Na/H exchanger regulatory factor-1 (NHERF1) is a cytoplasmic PDZ (postsynaptic density 95/disc large/zona occludens) protein that assembles macromolecular complexes and determines the localization, trafficking, and signaling of select G protein-coupled receptors and other membrane-delimited proteins. The parathyroid hormone receptor (PTHR), which regulates mineral ion homeostasis and bone turnover, is a G protein-coupled receptor harboring a PDZ-binding motif that enables association with NHERF1 and tethering to the actin cytoskeleton. NHERF1 interactions with the PTHR modify its trafficking and signaling. Here, we characterized by live cell imaging the mechanism whereby NHERF1 coordinates the interactions of multiple proteins, as well as the fate of NHERF1 itself upon receptor activation. Upon PTHR stimulation, NHERF1 rapidly dissociates from the receptor and induces receptor aggregation in long lasting clusters that are enriched with the actin-binding protein ezrin and with clathrin. After NHERF1 dissociates from the PTHR, ezrin then directly interacts with the PTHR to stabilize the PTHR at the cell membrane. Recruitment of β-arrestins to the PTHR is delayed until NHERF1 dissociates from the receptor, which is then trafficked to clathrin for internalization. The ability of NHERF to interact dynamically with the PTHR and cognate adapter proteins regulates receptor trafficking and signaling in a spatially and temporally coordinated manner.
Collapse
Affiliation(s)
- Juan A. Ardura
- From the Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology & Chemical Biology and
| | - Bin Wang
- From the Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology & Chemical Biology and
| | - Simon C. Watkins
- the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Jean-Pierre Vilardaga
- From the Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology & Chemical Biology and
| | - Peter A. Friedman
- From the Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology & Chemical Biology and
| |
Collapse
|
32
|
Kang BH, Nielsen E, Preuss ML, Mastronarde D, Staehelin LA. Electron Tomography of RabA4b- and PI-4Kβ1-Labeled Trans Golgi Network Compartments in Arabidopsis. Traffic 2011; 12:313-29. [DOI: 10.1111/j.1600-0854.2010.01146.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
33
|
Bernard E, Solignat M, Gay B, Chazal N, Higgs S, Devaux C, Briant L. Endocytosis of chikungunya virus into mammalian cells: role of clathrin and early endosomal compartments. PLoS One 2010; 5:e11479. [PMID: 20628602 PMCID: PMC2900206 DOI: 10.1371/journal.pone.0011479] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 06/08/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The replicative cycle of chikungunya virus (CHIKV), an alphavirus that recently re-emerged in India and in Indian Ocean area, remains mostly unknown. The aim of the present study was to investigate the intracellular trafficking pathway(s) hijacked by CHIKV to enter mammalian cells. METHODOLOGY/PRINCIPAL FINDINGS Entry pathways were investigated using a variety of pharmacological inhibitors or overexpression of dominant negative forms of proteins perturbating cellular endocytosis. We found that CHIKV infection of HEK293T mammalian cells is independent of clathrin heavy chain and- dependent of functional Eps15, and requires integrity of Rab5-, but not Rab7-positive endosomal compartment. Cytoskeleton integrity is crucial as cytochalasin D and nocodazole significantly reduced infection of the cells. Finally, both methyl beta-cyclodextrin and lysomotropic agents impaired CHIKV infection, supporting that a cholesterol-, pH-dependent step is required to achieve productive infection. Interestingly, differential sensitivity to lysomotropic agents was observed between the prototypal 37997 African strain of CHIKV and the LR-OPY1 virus isolated from the recent outbreak in Reunion Island. CONCLUSIONS Together our data indicate that CHIKV entry in its target cells is essentially mediated by clathrin-independent, Eps15-dependent endocytosis. Despite that this property is shared by the prototypal 37997 African strain of CHIKV and the LR-OPY1 virus isolated from the recent outbreak in La Réunion Island, differential sensitivity to lysomotropic agents may support that the LR-OPY1 strain has acquired specific entry mechanisms.
Collapse
Affiliation(s)
- Eric Bernard
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), CNRS-UMR5236, Université Montpellier 1,2, Montpellier, France
| | - Maxime Solignat
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), CNRS-UMR5236, Université Montpellier 1,2, Montpellier, France
| | - Bernard Gay
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), CNRS-UMR5236, Université Montpellier 1,2, Montpellier, France
| | - Nathalie Chazal
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), CNRS-UMR5236, Université Montpellier 1,2, Montpellier, France
| | - Stephen Higgs
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Christian Devaux
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), CNRS-UMR5236, Université Montpellier 1,2, Montpellier, France
| | - Laurence Briant
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), CNRS-UMR5236, Université Montpellier 1,2, Montpellier, France
| |
Collapse
|
34
|
Penmatsa H, Zhang W, Yarlagadda S, Li C, Conoley VG, Yue J, Bahouth SW, Buddington RK, Zhang G, Nelson DJ, Sonecha MD, Manganiello V, Wine JJ, Naren AP. Compartmentalized cyclic adenosine 3',5'-monophosphate at the plasma membrane clusters PDE3A and cystic fibrosis transmembrane conductance regulator into microdomains. Mol Biol Cell 2010; 21:1097-1110. [PMID: 20089840 PMCID: PMC2836961 DOI: 10.1091/mbc.e09-08-0655] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 01/06/2010] [Accepted: 01/11/2010] [Indexed: 12/21/2022] Open
Abstract
Formation of multiple-protein macromolecular complexes at specialized subcellular microdomains increases the specificity and efficiency of signaling in cells. In this study, we demonstrate that phosphodiesterase type 3A (PDE3A) physically and functionally interacts with cystic fibrosis transmembrane conductance regulator (CFTR) channel. PDE3A inhibition generates compartmentalized cyclic adenosine 3',5'-monophosphate (cAMP), which further clusters PDE3A and CFTR into microdomains at the plasma membrane and potentiates CFTR channel function. Actin skeleton disruption reduces PDE3A-CFTR interaction and segregates PDE3A from its interacting partners, thus compromising the integrity of the CFTR-PDE3A-containing macromolecular complex. Consequently, compartmentalized cAMP signaling is lost. PDE3A inhibition no longer activates CFTR channel function in a compartmentalized manner. The physiological relevance of PDE3A-CFTR interaction was investigated using pig trachea submucosal gland secretion model. Our data show that PDE3A inhibition augments CFTR-dependent submucosal gland secretion and actin skeleton disruption decreases secretion.
Collapse
Affiliation(s)
- Himabindu Penmatsa
- *Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Weiqiang Zhang
- *Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Sunitha Yarlagadda
- *Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Chunying Li
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Veronica G. Conoley
- *Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Junming Yue
- *Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Suleiman W. Bahouth
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Randal K. Buddington
- Department of Health and Sports Sciences, University of Memphis, Memphis, TN 38152
| | - Guangping Zhang
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, IL 60637
| | - Deborah J. Nelson
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, IL 60637
| | - Monal D. Sonecha
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, CA 94305; and
| | - Vincent Manganiello
- Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jeffrey J. Wine
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, CA 94305; and
| | - Anjaparavanda P. Naren
- *Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| |
Collapse
|
35
|
Lin WJ, Yang CY, Lin YC, Tsai MC, Yang CW, Tung CY, Ho PY, Kao FJ, Lin CH. Phafin2 modulates the structure and function of endosomes by a Rab5-dependent mechanism. Biochem Biophys Res Commun 2009; 391:1043-8. [PMID: 19995552 DOI: 10.1016/j.bbrc.2009.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Accepted: 12/03/2009] [Indexed: 12/20/2022]
Abstract
By regulating the amount of protein receptors on the cell membrane and the metabolisms of receptor-bound ligands, endocytosis represents one of the fundamental biological activities that regulate how cells respond to the environment. We report here that a Fab1-YotB-Vac1p-EEA1 (FYVE) domain-containing lipid associated protein, called Phafin2, is preferentially expressed in the human hepatocellular carcinoma (HCC) and is involved in the biogenesis of endosomes. Over-expression of Phafin2 or its FYVE domain results in the formation of enlarged endosomes that are still functional for endocytosis; the biogenesis of such abnormal organelles is mediated by phosphoinositide 3-kinases (PI3K) and Rab5 signaling. Using fluorescence resonance energy transfer measured by fluorescence lifetime imaging microscopy (FLIM-FRET), we further demonstrate in live cells that Phafin2 can directly activate Rab5. By modulating the receptor internalization/recycling and Rab5 activation, Phafin2 affects the density of membranous insulin receptors, and regulates the transcriptional activity of AP-1 that is downstream of the insulin signaling pathway. These results provide a vivid example that an endosome modulator, such as Phafin2, may control the cells' responses to the extracellular cues.
Collapse
Affiliation(s)
- Wen-Jie Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Balla T. Green light to illuminate signal transduction events. Trends Cell Biol 2009; 19:575-86. [PMID: 19818623 DOI: 10.1016/j.tcb.2009.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/03/2009] [Accepted: 08/11/2009] [Indexed: 11/17/2022]
Abstract
When cells are exposed to hormones that act on cell surface receptors, information is processed through the plasma membrane into the cell interior via second messengers generated in the inner leaflet of the plasma membrane. Individual biochemical steps along this cascade have been characterized from ligand binding to receptors through to activation of guanine nucleotide binding proteins and their downstream effectors such as adenylate cyclase or phospholipase C. However, the complexity of temporal and spatial integration of these molecular events requires that they are studied in intact cells. The great expansion of fluorescent techniques and improved imaging technologies such as confocal and TIRF microscopy combined with genetically-engineered protein modules has provided a completely new approach to signal transduction research. Spatial definition of biochemical events followed with real-time temporal resolution has become a standard goal, and several new techniques are now breaking the resolution barrier of light microscopy.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
37
|
Eckels PC, Banerjee A, Moore EE, McLaughlin NJD, Gries LM, Kelher MR, England KM, Gamboni-Robertson F, Khan SY, Silliman CC. Amantadine inhibits platelet-activating factor induced clathrin-mediated endocytosis in human neutrophils. Am J Physiol Cell Physiol 2009; 297:C886-97. [PMID: 19295175 PMCID: PMC2770739 DOI: 10.1152/ajpcell.00416.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 03/11/2009] [Indexed: 11/22/2022]
Abstract
Receptor signaling is integral for adhesion, emigration, phagocytosis, and reactive oxygen species production in polymorphonuclear neutrophils (PMNs). Priming is an important part of PMN emigration, but it can also lead to PMN-mediated organ injury in the host. Platelet-activating factor (PAF) primes PMNs through activation of a specific G protein-coupled receptor. We hypothesize that PAF priming of PMNs requires clathrin-mediated endocytosis (CME) of the PAF receptor (PAFr), and, therefore, amantadine, known to inhibit CME, significantly antagonizes PAF signaling. PMNs were isolated by standard techniques to >98% purity and tested for viability. Amantadine (1 mM) significantly inhibited the PAF-mediated changes in the cellular distribution of clathrin and the physical colocalization [fluorescence resonance energy transfer positive (FRET+)] of early endosome antigen-1 and Rab5a, known components of CME and similar to hypertonic saline, a known inhibitor of CME. Furthermore, amantadine had no effect on the PAF-induced cytosolic calcium flux; however, phosphorylation of p38 MAPK was significantly decreased. Amantadine inhibited PAF-mediated changes in PMN physiology, including priming of the NADPH oxidase and shape change with lesser inhibition of increases in CD11b surface expression and elastase release. Furthermore, rimantadine, an amantadine analog, was a more potent inhibitor of PAF priming of the N-formyl-methionyl-leucyl-phenylalanine-activated oxidase. PAF priming of PMNs requires clathrin-mediated endocytosis that is inhibited when PMNs are pretreated with either amantadine or rimantadine. Thus, amantadine and rimantadine have the potential to ameliorate PMN-mediated tissue damage in humans.
Collapse
Affiliation(s)
- Phillip C Eckels
- Department of Surgery, Denver Health Medical Center, Denver, Colorado, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fattakhova GV, Masilamani M, Nrayanan S, Borrego F, Gilfillan AM, Metcalfe DD, Coligan JE. Endosomal trafficking of the ligated FcvarepsilonRI receptor. Mol Immunol 2009; 46:793-802. [PMID: 18945491 PMCID: PMC2668543 DOI: 10.1016/j.molimm.2008.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 08/29/2008] [Accepted: 09/03/2008] [Indexed: 12/21/2022]
Abstract
In addition to initiating signaling cascades leading to mast cell mediator release, aggregation of the high affinity IgE receptor (FcvarepsilonRI) leads to rapid internalization of the cross-linked receptor. However, little is known about the trafficking of the internalized FcvarepsilonRI. Here we demonstrate that in RBL-2H3 cells, aggregated FcvarepsilonRI appears in the early endosomal antigen 1 (EEA1(+)) domains of the early endosomes within 15min after ligation. Minimal co-localization of FcvarepsilonRI with Rab5 was observed by 30min, followed by its appearance in the Rab7(+) late endosomes and lysosomes at later time points. During endosomal sorting, FcvarepsilonRIalpha and gamma subunits remain associated. In Syk-deficient RBL-2H3 cells, the rate of transport to lysosomes is markedly increased. Taken together, our data demonstrate time-dependent sorting of aggregated FcvarepsilonRI within the endosomal-lysosomal network, and that Syk may play an essential role in regulating the trafficking and retention of FcvarepsilonRI in endosomes.
Collapse
Affiliation(s)
- Gul’nar V. Fattakhova
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Madhan Masilamani
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Sriram Nrayanan
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Francisco Borrego
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Alasdair M. Gilfillan
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Dean D. Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - John E. Coligan
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| |
Collapse
|
39
|
Torres VA, Mielgo A, Barilà D, Anderson DH, Stupack D. Caspase 8 promotes peripheral localization and activation of Rab5. J Biol Chem 2008; 283:36280-9. [PMID: 18974049 PMCID: PMC2605999 DOI: 10.1074/jbc.m805878200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/25/2008] [Indexed: 01/24/2023] Open
Abstract
Caspase 8 is a cysteine protease that initiates apoptotic signaling via the extrinsic pathway in a manner dependent upon association with early endosomes. Previously, we identified caspase 8 as an effector of migration, promoting motility in a manner dependent upon phosphorylation on Tyr-380 by Src family kinases and its subsequent association with Src homology 2 domain-containing proteins. Here we demonstrate the regulation of the small GTPase Rab5, which mediates early endosome formation, homotypic fusion, and maturation by caspase 8. Regulation requires the Tyr-380 phosphorylation site but not caspase proteolytic activity. Tyr-380 is essential for interaction with the Src homology 2 domains of p85alpha, a multifunctional adaptor for phosphatidylinositol 3-kinase, that possesses Rab-GAP activity. Interaction between caspase 8 and p85alpha promotes Rab5 GTP loading, alters endosomal trafficking, and results in the accumulation of Rab5-positive endosomes at the edge of the cell. Conversely, caspase 8-dependent GTP loading of Rab5 is overcome by increased expression of p85alpha in a Rab-GAP-dependent manner. Thus, we demonstrate a novel function for caspase 8 as a modulator of p85alpha Rab-GAP activity and endosomal trafficking.
Collapse
Affiliation(s)
- Vicente A Torres
- Department of Pathology, University of California San Diego School of Medicine and the UCSD Moores Cancer Center, La Jolla, California 92093-0803, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
Pseudomonas aeruginosa ExoS is a bifunctional type III cytotoxin that possesses Rho GTPase-activating protein (RhoGAP) and ADP-ribosyltransferase (ADPr) activities. In the current study, the RhoGAP and ADPr activities of ExoS were tested for the ability to disrupt mammalian epithelial cell physiology. RhoGAP, but not ADPr, inhibited internalization/phagocytosis of bacteria, while ADPr, but not RhoGAP, inhibited vesicle trafficking, both general fluid-phase uptake and EGF-activated EGF receptor (EGFR) degradation. In ADPr-intoxicated cells, upon EGF activation, EGFR co-localized with clathrin-coated vesicles (CCV), which did not mature into Rab5-positive early endosomes. Constitutively, active Rab5 recruited EGFR from CCV to early endosomes. Consistent with the inhibition of Rab5 function by ADPr, several Rab proteins including Rab5 and 9, but not Rab4, were ADP ribosylated by ExoS. Thus, the two enzymatic activities of ExoS have different effects on epithelial cells with RhoGAP inhibiting bacterial internalization and ADPr interfering with CCV maturation. The ability ADPr to inhibit mammalian vesicle trafficking provides a new mechanism for bacterial toxin-mediated virulence.
Collapse
Affiliation(s)
- Qing Deng
- Medical College of Wisconsin, Microbiology and Molecular Genetics, 8701 Watertown Plank Road, Milwaukee WI 53226, USA
| | - Joseph T. Barbieri
- Medical College of Wisconsin, Microbiology and Molecular Genetics, 8701 Watertown Plank Road, Milwaukee WI 53226, USA
| |
Collapse
|
41
|
MUC1 intra-cellular trafficking is clathrin, dynamin, and rab5 dependent. Biochem Biophys Res Commun 2008; 376:688-93. [PMID: 18812166 DOI: 10.1016/j.bbrc.2008.09.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 09/11/2008] [Indexed: 11/22/2022]
Abstract
MUC1, a transmembrane glycoprotein, is abnormally over-expressed in most human adenocarcinomas. MUC1 association with cytoplasmic cell signal regulators and nuclear accumulation are important for its tumor related activities. Little is known about how MUC1 translocates from the cell membrane to the cytoplasm. In this study, live cell imaging was used to study MUC1 intracellular trafficking. The interaction between EGFR and MUC1 was mapped by FRET analysis and EGF stimulated MUC1 endocytosis was observed directly through live cell imaging. MUC1-CT endocytosis was clathrin and dynamin dependent. Rab5 over-expression resulted in decreased cell membrane localization of MUC1, with accumulation of MUC1 endocytic vesicles in the peri-nuclear region. Conversely, over-expression of a Rab5 dominant negative mutant (S34N) resulted in redistribution of MUC1 from the peri-nuclear region to the cytoplasm. Collectively, these results indicated that MUC1 intra-cellular trafficking occurs through a regulated process that was stimulated by direct EGFR and MUC1 interaction, mediated by clathrin coated pits that were dynamin dependent and regulated by Rab5.
Collapse
|
42
|
Abstract
To study spatiotemporal regulation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK1/2) signaling cascade in living cells, a HeLa cell line in which MAPK kinase of ERK kinase (MEK) 2 (MAPK kinase) was knocked down by RNA interference and replaced with the green fluorescent protein (GFP)-tagged MEK2 was generated. In these cells, MEK2-GFP was stably expressed at a level similar to that of the endogenous MEK2 in the parental cells. Upon activation of the EGF receptor (EGFR), a pool of MEK2-GFP was found initially translocated to the plasma membrane and then accumulated in a subset of early and late endosomes. However, activated MEK was detected only at the plasma membrane and not in endosomes. Surprisingly, MEK2-GFP endosomes did not contain active EGFR, suggesting that endosomal MEK2-GFP was separated from the upstream signaling complexes. Knockdown of clathrin by small interfering RNA (siRNA) abolished MEK2 recruitment to endosomes but resulted in increased activation of ERK without affecting the activity of MEK2-GFP. The accumulation of MEK2-GFP in endosomes was also blocked by siRNA depletion of RAF kinases and by the MEK1/2 inhibitor, UO126. We propose that the recruitment of MEK2 to endosomes can be a part of the negative feedback regulation of the EGFR-MAPK signaling pathway by endocytosis.
Collapse
Affiliation(s)
- Emilia Galperin
- Department of Pharmacology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | - Alexander Sorkin
- Department of Pharmacology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| |
Collapse
|
43
|
Abstract
All four of the C-terminal Eps15 homology domain (EHD) proteins have been implicated in the regulation of endocytic trafficking. However, the high level of amino acid sequence identity among these proteins has made it challenging to elucidate the precise function of individual EHD proteins. We demonstrate here with specific peptide antibodies that endogenous EHD4 localizes to Rab5-, early embryonic antigen 1 (EEA1)- and Arf6-containing endosomes and colocalizes with internalized transferrin in the cell periphery. Knock-down of EHD4 expression by both small interfering RNA and short hairpin RNA leads to the generation of enlarged early endosomal structures that contain Rab5 and EEA1 as well as internalized transferrin or major histocompatibility complex class I molecules. In addition, cargo destined for degradation, such as internalized low-density lipoprotein, also accumulates in the enlarged early endosomes in EHD4-depleted cells. Moreover, we have demonstrated that these enlarged early endosomes are enriched in levels of the activated GTP-bound Rab5. Finally, we show that endogenous EHD4 and EHD1 interact in cells, suggesting coordinated involvement in the regulation of receptor transport along the early endosome to endocytic recycling compartment axis. The results presented herein provide evidence that EHD4 is involved in the control of trafficking at the early endosome and regulates exit of cargo toward both the recycling compartment and the late endocytic pathway.
Collapse
Affiliation(s)
- Mahak Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Naava Naslavsky
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| |
Collapse
|
44
|
Lodhi IJ, Bridges D, Chiang SH, Zhang Y, Cheng A, Geletka LM, Weisman LS, Saltiel AR. Insulin stimulates phosphatidylinositol 3-phosphate production via the activation of Rab5. Mol Biol Cell 2008; 19:2718-28. [PMID: 18434594 DOI: 10.1091/mbc.e08-01-0105] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Phosphatidylinositol 3-phosphate (PI(3)P) plays an important role in insulin-stimulated glucose uptake. Insulin promotes the production of PI(3)P at the plasma membrane by a process dependent on TC10 activation. Here, we report that insulin-stimulated PI(3)P production requires the activation of Rab5, a small GTPase that plays a critical role in phosphoinositide synthesis and turnover. This activation occurs at the plasma membrane and is downstream of TC10. TC10 stimulates Rab5 activity via the recruitment of GAPEX-5, a VPS9 domain-containing guanyl nucleotide exchange factor that forms a complex with TC10. Although overexpression of plasma membrane-localized GAPEX-5 or constitutively active Rab5 promotes PI(3)P formation, knockdown of GAPEX-5 or overexpression of a dominant negative Rab5 mutant blocks the effects of insulin or TC10 on this process. Concomitant with its effect on PI(3)P levels, the knockdown of GAPEX-5 blocks insulin-stimulated Glut4 translocation and glucose uptake. Together, these studies suggest that the TC10/GAPEX-5/Rab5 axis mediates insulin-stimulated production of PI(3)P, which regulates trafficking of Glut4 vesicles.
Collapse
Affiliation(s)
- Irfan J Lodhi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Colpitts TM, Moore AC, Kolokoltsov AA, Davey RA. Venezuelan equine encephalitis virus infection of mosquito cells requires acidification as well as mosquito homologs of the endocytic proteins Rab5 and Rab7. Virology 2007; 369:78-91. [PMID: 17707875 PMCID: PMC2464296 DOI: 10.1016/j.virol.2007.07.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 05/07/2007] [Accepted: 07/09/2007] [Indexed: 11/18/2022]
Abstract
Venezuelan equine encephalitis virus (VEEV) is a New World alphavirus that can cause fatal encephalitis in humans. It remains a naturally emerging disease as well as a highly developed biological weapon. VEEV is transmitted to humans in nature by mosquito vectors. Little is known about VEEV entry, especially in mosquito cells. Here, a novel luciferase-based virus entry assay is used to show that the entry of VEEV into mosquito cells requires acidification. Furthermore, mosquito homologs of key human proteins (Rab5 and Rab7) involved in endocytosis were isolated and characterized. Rab5 is found on early endosomes and Rab7 on late endosomes and both are important for VEEV entry in mammalian cells. Each was shown to have analogous function in mosquito cells to that seen in mammalian cells. The wild-type, dominant negative and constitutively active mutants were then used to demonstrate that VEEV requires passage through early and late endosomes before infection can take place. This work indicates that the infection mechanism in mosquitoes and mammals is through a common and ancient evolutionarily conserved pathway.
Collapse
Affiliation(s)
- Tonya M. Colpitts
- Department of Microbiology and Immunology and Center for Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Andrew C. Moore
- Department of Microbiology and Immunology and Center for Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Andrey A. Kolokoltsov
- Department of Microbiology and Immunology and Center for Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Robert A. Davey
- Department of Microbiology and Immunology and Center for Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
46
|
David PS, Tanveer R, Port JD. FRET-detectable interactions between the ARE binding proteins, HuR and p37AUF1. RNA (NEW YORK, N.Y.) 2007; 13:1453-68. [PMID: 17626845 PMCID: PMC1950754 DOI: 10.1261/rna.501707] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A number of highly regulated gene classes are regulated post-transcriptionally at the level of mRNA stability. A central feature in these mRNAs is the presence of A+U-rich elements (ARE) within their 3' UTRs. Two ARE binding proteins, HuR and AUF1, are associated with mRNA stabilization and destabilization, respectively. Previous studies have demonstrated homomultimerization of each protein and the capacity to bind simultaneous or competitively to a single ARE. To investigate this possibility further, cell biological and biophysical approaches were undertaken. Protein-protein interaction was monitored by fluorescence resonance energy transfer (FRET) and by immunocytochemistry in live and fixed cells using fluorescently labeled CFP/YFP fusion proteins of HuR and p37AUF1. Strong nuclear FRET between HuR/HuR and AUF1/AUF1 homodimers as well as HuR/AUF1 heterodimers was observed. Treatment with the MAP kinase activator, anisomycin, which commonly stabilizes ARE-containing mRNAs, caused rapid nuclear to cytoplasmic shuttling of HuR. AUF1 also underwent shuttling, but on a longer time scale. After shuttling, HuR/HuR, AUF1/AUF1, and HuR/AUF1, FRET was also observed in the cytoplasm. In further studies, arsenite rapidly induced the formation of stress granules containing HuR and TIA-1 but not AUF1. The current studies demonstrate that two mRNA binding proteins, HuR and AUF1, are colocalized and are capable of functional interaction in both the nucleus and cytoplasm. FRET-based detection of AUF1/HuR interaction may serve as a basis of opening up new dimensions in delineating the functional interaction of mRNA binding proteins with RNA turnover.
Collapse
Affiliation(s)
- Pamela S David
- Department of Medicine, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | |
Collapse
|
47
|
Mardones GA, Burgos PV, Brooks DA, Parkinson-Lawrence E, Mattera R, Bonifacino JS. The trans-Golgi network accessory protein p56 promotes long-range movement of GGA/clathrin-containing transport carriers and lysosomal enzyme sorting. Mol Biol Cell 2007; 18:3486-501. [PMID: 17596511 PMCID: PMC1951763 DOI: 10.1091/mbc.e07-02-0190] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The sorting of acid hydrolase precursors at the trans-Golgi network (TGN) is mediated by binding to mannose 6-phosphate receptors (MPRs) and subsequent capture of the hydrolase-MPR complexes into clathrin-coated vesicles or transport carriers (TCs) destined for delivery to endosomes. This capture depends on the function of three monomeric clathrin adaptors named GGAs. The GGAs comprise a C-terminal "ear" domain that binds a specific set of accessory proteins. Herein we show that one of these accessory proteins, p56, colocalizes and physically interacts with the three GGAs at the TGN. Moreover, overexpression of the GGAs enhances the association of p56 with the TGN, and RNA interference (RNAi)-mediated depletion of the GGAs decreases the TGN association and total levels of p56. RNAi-mediated depletion of p56 or the GGAs causes various degrees of missorting of the precursor of the acid hydrolase, cathepsin D. In the case of p56 depletion, this missorting correlates with decreased mobility of GGA-containing TCs. Transfection with an RNAi-resistant p56 construct, but not with a p56 construct lacking the GGA-ear-interacting motif, restores the mobility of the TCs. We conclude that p56 tightly cooperates with the GGAs in the sorting of cathepsin D to lysosomes, probably by enabling the movement of GGA-containing TCs.
Collapse
Affiliation(s)
- Gonzalo A. Mardones
- *Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Patricia V. Burgos
- *Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Doug A. Brooks
- Sansom Institute, University of South Australia, Adelaide, SA 5001, Australia; and
- Lysosomal Diseases Research Unit, Department of Genetic Medicine, Children Youth and Women's Health Service, North Adelaide, SA 5006, Australia
| | - Emma Parkinson-Lawrence
- Sansom Institute, University of South Australia, Adelaide, SA 5001, Australia; and
- Lysosomal Diseases Research Unit, Department of Genetic Medicine, Children Youth and Women's Health Service, North Adelaide, SA 5006, Australia
| | - Rafael Mattera
- *Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Juan S. Bonifacino
- *Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
48
|
Shmuel M, Nodel-Berner E, Hyman T, Rouvinski A, Altschuler Y. Caveolin 2 regulates endocytosis and trafficking of the M1 muscarinic receptor in MDCK epithelial cells. Mol Biol Cell 2007; 18:1570-85. [PMID: 17314410 PMCID: PMC1855036 DOI: 10.1091/mbc.e06-07-0618] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Clathrin and caveolins are known for their involvement in the internalization of numerous receptors. Here we show that in polarized epithelial Madin-Darby canine kidney cells, both the clathrin machinery and caveolins are involved in the endocytosis and delivery to the plasma membrane (PM) of the M1 muscarinic acetylcholine receptor (mAChR). We initially localized this receptor to the lateral membrane, where it accumulates proximal to the tight junctions. From there it is internalized through the clathrin-mediated pathway. In addition, the receptor may associate on the PM with caveolin (cav) 2 or in intracellular compartments with either cav 2, or monomeric or oligomeric cav 1. Association of the PM M1 mAChR with cav 2 inhibits receptor endocytosis through the clathrin-mediated pathway or retains the receptor in an intracellular compartment. This intracellular association attenuates receptor trafficking. Expression of cav 1 with cav 2 rescues the latter's inhibitory effect. The caveolins stimulate M1 mAChR oligomerization thus maintaining a constant amount of monomeric receptor. These results provide evidence that caveolins play a role in the attenuation of the M1 muscarinic receptor's intracellular trafficking to and from the PM.
Collapse
Affiliation(s)
- Miriam Shmuel
- Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Efrat Nodel-Berner
- Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Tehila Hyman
- Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Alexander Rouvinski
- Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Yoram Altschuler
- Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
49
|
Derby MC, Gleeson PA. New Insights into Membrane Trafficking and Protein Sorting. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 261:47-116. [PMID: 17560280 DOI: 10.1016/s0074-7696(07)61002-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein transport in the secretory and endocytic pathways is a multistep process involving the generation of transport carriers loaded with defined sets of cargo, the shipment of the cargo-loaded transport carriers between compartments, and the specific fusion of these transport carriers with a target membrane. The regulation of these membrane-mediated processes involves a complex array of protein and lipid interactions. As the machinery and regulatory processes of membrane trafficking have been defined, it is increasingly apparent that membrane transport is intimately connected with a number of other cellular processes, such as quality control in the endoplasmic reticulum (ER), cytoskeletal dynamics, receptor signaling, and mitosis. The fidelity of membrane trafficking relies on the correct assembly of components on organelles. Recruitment of peripheral proteins plays a critical role in defining organelle identity and the establishment of membrane subdomains, essential for the regulation of vesicle transport. The molecular mechanisms for the biogenesis of membrane subdomains are also central to understanding how cargo is sorted and segregated and how different populations of transport carriers are generated. In this review we will focus on the emerging themes of organelle identity, membrane subdomains, regulation of Golgi trafficking, and advances in dissecting pathways in physiological systems.
Collapse
Affiliation(s)
- Merran C Derby
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
50
|
Fu G, Yang HY, Wang C, Zhang F, You ZD, Wang GY, He C, Chen YZ, Xu ZZ. Detection of constitutive heterodimerization of the integrin Mac-1 subunits by fluorescence resonance energy transfer in living cells. Biochem Biophys Res Commun 2006; 346:986-91. [PMID: 16782049 DOI: 10.1016/j.bbrc.2006.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 06/01/2006] [Indexed: 10/24/2022]
Abstract
Macrophage differentiation antigen associated with complement three receptor function (Mac-1) belongs to beta2 subfamily of integrins that mediate important cell-cell and cell-extracellular matrix interactions. Biochemical studies have indicated that Mac-1 is a constitutive heterodimer in vitro. Here, we detected the heterodimerization of Mac-1 subunits in living cells by means of two fluorescence resonance energy transfer (FRET) techniques (fluorescence microscopy and fluorescence spectroscopy) and our results demonstrated that there is constitutive heterodimerization of the Mac-1 subunits and this constitutive heterodimerization of the Mac-1 subunits is cell-type independent. Through FRET imaging, we found that heterodimers of Mac-1 mainly localized in plasma membrane, perinuclear, and Golgi area in living cells. Furthermore, through analysis of the estimated physical distances between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) fused to Mac-1 subunits, we suggested that the conformation of Mac-1 subunits is not affected by the fusion of CFP or YFP and inferred that Mac-1 subunits take different conformation when expressed in Chinese hamster ovary (CHO) and human embryonic kidney (HEK) 293T cells, respectively.
Collapse
Affiliation(s)
- Guo Fu
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | | | | | | | | | | | | | | | | |
Collapse
|