1
|
Liu H, Li H, Bai X, Zhao Y, Cai Y, Pan H, Guo L, Liu K, Liu Q, Huang X, Zampetaki A, Margariti A, Zeng L, Cai T. Histone Deacetylase 7-Derived 7-Amino Acid Peptide Increases Skin Wound Healing via Regulating Epidermal Fibroblast Proliferation and Migration. J Cell Mol Med 2024; 28:e70209. [PMID: 39601342 PMCID: PMC11600263 DOI: 10.1111/jcmm.70209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Due to the complexity of wound healing, how to achieve successful healing is a significant clinical challenge. In this study, we found that the histone deacetylase-7-derived 7-amino acid peptide (7A, MHSPGAD), especially its phosphorylated version 7Ap (MH[pSer]PGAD), increased dermal fibroblast cell HDFα proliferation and migration via elevated delta-catenin (CTNND1) serine phosphorylation-mediated beta-catenin (CTNNB) nuclear translocation and subsequent upregulation of c-Myc and cyclin D1 expression. 7Ap physically interacted with platelet-derived growth factor receptor (PDGFR) and increased PDGFR interaction with cyclin-dependent kinase 6 (CDK6). The PDGFR siRNA or CDK6 siRNA knockdown ablated 7AP-induced CTNND1 phosphorylation and subsequent c-Myc/cyclin D1 expression, indicating a novel 7Ap-PDGFR-CDK6-CTNND1/CTNNB signal pathway in regulating fibroblast proliferation and migration. Furthermore, 7Ap increased human umbilic vein endothelial cell proliferation and tube formation, suggesting an angiogenic effect. In a full-thickness excision wound rat model, the local administration of 50 ng/mL of 7Ap in hydrogel exerted a similar effect as 1 μg/mL vascular endothelial growth factor on accelerating wound healing, featured by enhanced fibroblast proliferation and migration, collagen deposition, and increased new vessel formation during the early phase of wound healing. Taken together, this study not only elicited a novel signal pathway in fibroblast proliferation but also paved an avenue to develop 7Ap as a treatment option for skin wound healing.
Collapse
Affiliation(s)
- Huina Liu
- Ningbo No.2 HospitalNingboChina
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
| | - Hua Li
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
| | - Xuefeng Bai
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Science and MedicineKing's College LondonLondonUK
| | - Yue Zhao
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Science and MedicineKing's College LondonLondonUK
| | - Yannan Cai
- Ningbo Women and Children's HospitalNingboChina
| | - Huiqing Pan
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
| | - Linyan Guo
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
| | - Kun Liu
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Qian Liu
- Department of GeriatricChengdu Fifth People's HospitalChengduChina
| | | | - Anna Zampetaki
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Science and MedicineKing's College LondonLondonUK
| | - Andriana Margariti
- School of Medicine, Dentistry and Biomedical SciencesThe Wellcome‐Wolfson Institute of Experimental MedicineBelfastUK
| | - Lingfang Zeng
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Science and MedicineKing's College LondonLondonUK
| | - Ting Cai
- Ningbo No.2 HospitalNingboChina
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
| |
Collapse
|
2
|
Shao H, Wells A. Deciphering the molecular mechanism of enhanced tumor activity of the EGFR variant T790M/L858R using melanoma cell lines. Front Oncol 2023; 13:1163504. [PMID: 37333807 PMCID: PMC10272518 DOI: 10.3389/fonc.2023.1163504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction The abnormal expression and mutagenesis of EGFR drives both the development and progression of a multitude of human cancers. Further mutations within the tyrosine kinase region of the EGFR subsequently contribute to resistance to targeted drugs. What is not known is how these mutations affect progression-related behaviors of cancer cells. Methods The mutagenesis of EGFR T790M, L858R, and T790M/L858R was performed via oligo primer-guided polymerase chain reaction (PCR). GFP-tagged mammalian expression vectors were constructed and confirmed. Stable melanoma cell lines WM983A and WM983B expressing WT or mutant EGFRs were generated for determining the functions of WT and mutant EGFRs in migration, invasion, and resistance to doxorubicin. Immunoblotting and immunofluorescence were performed to detect the transphosphorylation and autophosphorylation of WT and mutant EGFRs and other molecules. Results The EGFR mutant T790M/L858R showed significantly higher basal autophosphorylation in melanoma cell lines WM983A and WM983B. Overexpression of WT EGFR significantly enhanced the protein level of E-cadherin (E-cad) via upregulating its mRNA. In contrast, L858R significantly downregulated E-cad. Biological activity assays show that T790M/L858R presented significant enhancement in vitro in invasion and migration, while WT and T790M moderately inhibited invasion and migration. In WM983A cells, enhanced invasion and migration by T790M/L858R required the downstream signaling pathways through Akt and p38. T790M/L858R dramatically triggers phosphorylation of actin cross-linking protein alpha-actinin-4 in the absence of EGF. This double mutant also conferred resistance to a general chemotherapy doxorubicin through Akt but not the p38 signaling pathway. Conclusion These findings suggest that T790M/L858R not only confers enhanced therapeutic resistance in cancer cell lines but also may promote tumor metastasis via its boosted downstream signaling pathways and/or direct phosphorylation of other key proteins.
Collapse
Affiliation(s)
- Hanshuang Shao
- Department of Pathology, University of Pittsburgh, Pittsburgh, United States
- Pittsburgh VA Health System, Pittsburgh, PA, United States
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, United States
- Pittsburgh VA Health System, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Kingsley C, Kourtidis A. Critical roles of adherens junctions in diseases of the oral mucosa. Tissue Barriers 2023; 11:2084320. [PMID: 35659464 PMCID: PMC10161952 DOI: 10.1080/21688370.2022.2084320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022] Open
Abstract
The oral cavity is directly exposed to a variety of environmental stimuli and contains a diverse microbiome that continuously interacts with the oral epithelium. Therefore, establishment and maintenance of the barrier function of the oral mucosa is of paramount importance for its function and for the body's overall health. The adherens junction is a cell-cell adhesion complex that is essential for epithelial barrier function. Although a considerable body of work has associated barrier disruption with oral diseases, the molecular underpinnings of these associations have not been equally investigated. This is critical, since adherens junction components also possess significant signaling roles in the cell, in addition to their architectural ones. Here, we summarize current knowledge involving adherens junction components in oral pathologies, such as cancer and oral pathogen-related diseases, while we also discuss gaps in the knowledge and opportunities for future investigation of the relationship between adherens junctions and oral diseases.
Collapse
Affiliation(s)
- Christina Kingsley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
4
|
Shan B, Horton EC, Xu SC, Huntington KE, Kawano DK, Mendoza CL, Lin L, Stafford CM, Allen ED, Huang J, Nakahara H, Greenstein LE, Hille MB. Dephosphorylation of Y228 and Y217 and phosphorylation of Y335 in p120 catenin activate convergent extension during zebrafish gastrulation. Dev Dyn 2022; 251:1934-1951. [PMID: 35996230 DOI: 10.1002/dvdy.524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/15/2022] [Accepted: 05/26/2022] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The cadherin-associated protein p120 catenin regulates convergent extension through interactions with cadherin proteins, Cdc42, and Rac1, as we previously showed in zebrafish (Danio rerio). Phosphorylation of p120 catenin changes the nature of its activity in vitro but is virtually unexplored in embryos. We used our previously developed antisense RNA splice-site morpholino targeted to endogenous p120 catenin-δ1 to cause defects in axis elongation probing the functions of three p120 catenin tyrosine-phosphorylation sites in gastrulating zebrafish embryos. RESULTS The morpholino-induced defects were rescued by co-injections with mouse p120 catenin-δ1-3A mRNAs mutated at residues Y228 and Y217 to a non-phosphorylatable phenylalanine (F) or mutated at residue Y335 to a phosphomimetic glutamic acid (E). Co-injection of the complementary mutations Y228E, Y217E, or Y335F mRNAs partially rescued embryos whereas dual mutation to Y228E-Y217E blocked rescue. Immunopurification showed Y228F mutant proteins preferentially interacted with Rac1, potentially promoting cell migration. In contrast, the phosphomimetic Y228E preferentially interacted with E-cadherin increasing adhesion. Both Y228F and Y335F strongly bind VAV2. CONCLUSIONS p120 catenin serves dual roles during gastrulation of zebrafish. Phosphorylation and dephosphorylation of tyrosine residues Y217, Y228, and Y335 precisely balance cell adhesion and cell migration to facilitate somite compaction and axis elongation.
Collapse
Affiliation(s)
- Botao Shan
- Department of Biology, University of Washington, Seattle, Washington, USA.,Tulane University School of Medicine, New Orleans, LA, USA
| | - Emma C Horton
- Department of Biology, University of Washington, Seattle, Washington, USA.,Developmental and Stem Cell Biology Program, University of California San Francisco, San Francisco, CA, USA
| | - Shan C Xu
- Department of Biology, University of Washington, Seattle, Washington, USA.,New York University Stern Business School, New York, NY, USA
| | - Kelsey E Huntington
- Department of Biology, University of Washington, Seattle, Washington, USA.,Pathobiology Graduate Program, Division of Biology and Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Dane K Kawano
- Department of Biology, University of Washington, Seattle, Washington, USA.,Department of Biology, Stanford University, Stanford, CA, USA
| | - Clemence L Mendoza
- Department of Biology, University of Washington, Seattle, Washington, USA.,VA Portland Health Care System, Portland, OR, USA
| | - Laura Lin
- Department of Biology, University of Washington, Seattle, Washington, USA.,Touro University California College of Osteopathic Medicine, Vallejo, CA, USA
| | | | - Emili D Allen
- Department of Biology, University of Washington, Seattle, Washington, USA.,Adaptive Biotechnologies Corp, Seattle, WA, USA
| | - Joyce Huang
- Department of Biology, University of Washington, Seattle, Washington, USA.,Department of Bioengineering, University of California at Los Angeles, Los Angeles, CA, USA
| | - Hiroko Nakahara
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Lewis E Greenstein
- Department of Biology, University of Washington, Seattle, Washington, USA.,Department of Medical Entomology, Champaign, IL, USA
| | - Merrill B Hille
- Department of Biology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Sullivan B, Light T, Vu V, Kapustka A, Hristova K, Leckband D. Mechanical disruption of E-cadherin complexes with epidermal growth factor receptor actuates growth factor-dependent signaling. Proc Natl Acad Sci U S A 2022; 119:e2100679119. [PMID: 35074920 PMCID: PMC8794882 DOI: 10.1073/pnas.2100679119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Increased intercellular tension is associated with enhanced cell proliferation and tissue growth. Here, we present evidence for a force-transduction mechanism that links mechanical perturbations of epithelial (E)-cadherin (CDH1) receptors to the force-dependent activation of epidermal growth factor receptor (EGFR, ERBB1)-a key regulator of cell proliferation. Here, coimmunoprecipitation studies first show that E-cadherin and EGFR form complexes at the plasma membrane that are disrupted by either epidermal growth factor (EGF) or increased tension on homophilic E-cadherin bonds. Although force on E-cadherin bonds disrupts the complex in the absence of EGF, soluble EGF is required to mechanically activate EGFR at cadherin adhesions. Fully quantified spectral imaging fluorescence resonance energy transfer further revealed that E-cadherin and EGFR directly associate to form a heterotrimeric complex of two cadherins and one EGFR protein. Together, these results support a model in which the tugging forces on homophilic E-cadherin bonds trigger force-activated signaling by releasing EGFR monomers to dimerize, bind EGF ligand, and signal. These findings reveal the initial steps in E-cadherin-mediated force transduction that directly link intercellular force fluctuations to the activation of growth regulatory signaling cascades.
Collapse
Affiliation(s)
- Brendan Sullivan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Taylor Light
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Vinh Vu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Adrian Kapustka
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218;
| | - Deborah Leckband
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Center for Quantitative Biology and Biophysics, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
6
|
Ramírez Moreno M, Bulgakova NA. The Cross-Talk Between EGFR and E-Cadherin. Front Cell Dev Biol 2022; 9:828673. [PMID: 35127732 PMCID: PMC8811214 DOI: 10.3389/fcell.2021.828673] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/31/2021] [Indexed: 12/18/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) and adhesion protein E-cadherin are major regulators of proliferation and differentiation in epithelial cells. Consistently, defects in both EGFR and E-cadherin-mediated intercellular adhesion are linked to various malignancies. These defects in either are further exacerbated by the reciprocal interactions between the two transmembrane proteins. On the one hand, EGFR can destabilize E-cadherin adhesion by increasing E-cadherin endocytosis, modifying its interactions with cytoskeleton and decreasing its expression, thus promoting tumorigenesis. On the other hand, E-cadherin regulates EGFR localization and tunes its activity. As a result, loss and mutations of E-cadherin promote cancer cell invasion due to uncontrolled activation of EGFR, which displays enhanced surface motility and changes in endocytosis. In this minireview, we discuss the molecular and cellular mechanisms of the cross-talk between E-cadherin and EGFR, highlighting emerging evidence for the role of endocytosis in this feedback, as well as its relevance to tissue morphogenesis, homeostasis and cancer progression.
Collapse
Affiliation(s)
| | - Natalia A. Bulgakova
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
7
|
Jain AP, Radhakrishnan A, Pinto S, Patel K, Kumar M, Nanjappa V, Raja R, Keshava Prasad TS, Mathur PP, Sidransky D, Chatterjee A, Gowda H. How to Achieve Therapeutic Response in Erlotinib-Resistant Head and Neck Squamous Cell Carcinoma? New Insights from Stable Isotope Labeling with Amino Acids in Cell Culture-Based Quantitative Tyrosine Phosphoproteomics. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:605-616. [PMID: 34432535 DOI: 10.1089/omi.2021.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Resistance to cancer chemotherapy is a major global health burden. Epidermal growth factor receptor (EGFR) is a proven therapeutic target for multiple cancers of epithelial origin. Despite its overexpression in >90% of head and neck squamous cell carcinoma (HNSCC) patients, tyrosine kinase inhibitors such as erlotinib have shown a modest response in clinical trials. Cellular heterogeneity is thought to play an important role in HNSCC therapeutic resistance. Genomic alterations alone cannot explain all resistance mechanisms at play in a heterogeneous system. It is thus important to understand the biochemical mechanisms associated with drug resistance to determine potential strategies to achieve clinical response. We investigated tyrosine kinase signaling networks in erlotinib-resistant cells using quantitative tyrosine phosphoproteomics approach. We observed altered phosphorylation of proteins involved in cell adhesion and motility in erlotinib-resistant cells. Bioinformatics analysis revealed enrichment of pathways related to regulation of the actin cytoskeleton, extracellular matrix (ECM)-receptor interaction, and endothelial migration. Of importance, enrichment of the focal adhesion kinase (PTK2) signaling pathway downstream of EGFR was also observed in erlotinib-resistant cells. To the best of our knowledge, we present the first report of tyrosine phosphoproteome profiling in erlotinib-resistant HNSCC, with an eye to inform new ways to achieve clinical response. Our findings suggest that common signaling networks are at play in driving resistance to EGFR-targeted therapies in HNSCC and other cancers. Most notably, our data suggest that the PTK2 pathway genes may potentially play a significant role in determining clinical response to erlotinib in HNSCC tumors.
Collapse
Affiliation(s)
- Ankit P Jain
- Institute of Bioinformatics, International Tech Park, Bangalore, India.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | | | - Sneha Pinto
- Institute of Bioinformatics, International Tech Park, Bangalore, India.,Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Krishna Patel
- Institute of Bioinformatics, International Tech Park, Bangalore, India.,School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Manish Kumar
- Institute of Bioinformatics, International Tech Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | | | - Remya Raja
- Institute of Bioinformatics, International Tech Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Thottethodi Subrahmanya Keshava Prasad
- Institute of Bioinformatics, International Tech Park, Bangalore, India.,Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India.,Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Premendu P Mathur
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India.,Department of Biochemistry & Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Tech Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India.,Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Tech Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India.,Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
8
|
Alharatani R, Ververi A, Beleza-Meireles A, Ji W, Mis E, Patterson QT, Griffin JN, Bhujel N, Chang CA, Dixit A, Konstantino M, Healy C, Hannan S, Neo N, Cash A, Li D, Bhoj E, Zackai EH, Cleaver R, Baralle D, McEntagart M, Newbury-Ecob R, Scott R, Hurst JA, Au PYB, Hosey MT, Khokha M, Marciano DK, Lakhani SA, Liu KJ. Novel truncating mutations in CTNND1 cause a dominant craniofacial and cardiac syndrome. Hum Mol Genet 2021; 29:1900-1921. [PMID: 32196547 PMCID: PMC7372553 DOI: 10.1093/hmg/ddaa050] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
CTNND1 encodes the p120-catenin (p120) protein, which has a wide range of functions, including the maintenance of cell–cell junctions, regulation of the epithelial-mesenchymal transition and transcriptional signalling. Due to advances in next-generation sequencing, CTNND1 has been implicated in human diseases including cleft palate and blepharocheilodontic (BCD) syndrome albeit only recently. In this study, we identify eight novel protein-truncating variants, six de novo, in 13 participants from nine families presenting with craniofacial dysmorphisms including cleft palate and hypodontia, as well as congenital cardiac anomalies, limb dysmorphologies and neurodevelopmental disorders. Using conditional deletions in mice as well as CRISPR/Cas9 approaches to target CTNND1 in Xenopus, we identified a subset of phenotypes that can be linked to p120-catenin in epithelial integrity and turnover, and additional phenotypes that suggest mesenchymal roles of CTNND1. We propose that CTNND1 variants have a wider developmental role than previously described and that variations in this gene underlie not only cleft palate and BCD but may be expanded to a broader velocardiofacial-like syndrome.
Collapse
Affiliation(s)
- Reham Alharatani
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK.,Paediatric Dentistry, Centre of Oral, Clinical and Translational Science, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE5 9RS, UK
| | - Athina Ververi
- Department of Clinical Genetics, Great Ormond Street Hospital Trust, London WC1N 3JH, UK
| | - Ana Beleza-Meireles
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK.,Department of Clinical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Weizhen Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Emily Mis
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Quinten T Patterson
- Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8856, USA
| | - John N Griffin
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK.,Pediatric Genomics Discovery Program, Departments of Genetics and Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nabina Bhujel
- South Thames Cleft Service, Guy's and St. Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Caitlin A Chang
- Department of Medical Genetics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, AB, Canada
| | - Abhijit Dixit
- Nottingham University Hospitals NHS Trust, Nottingham NG5 1PB, UK
| | - Monica Konstantino
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Christopher Healy
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Sumayyah Hannan
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Natsuko Neo
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK.,Tokyo Medical and Dental University, Tokyo, Japan
| | - Alex Cash
- South Thames Cleft Service, Guy's and St. Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Dong Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elizabeth Bhoj
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elaine H Zackai
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ruth Cleaver
- Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Diana Baralle
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Meriel McEntagart
- Department of Clinical Genetics, St George's Hospital, London SW17 0RE, UK
| | - Ruth Newbury-Ecob
- Clinical Genetics, University Hospital Bristol NHS Foundation Trust, Bristol BS2 8EG, UK
| | - Richard Scott
- Department of Clinical Genetics, Great Ormond Street Hospital Trust, London WC1N 3JH, UK
| | - Jane A Hurst
- Department of Clinical Genetics, Great Ormond Street Hospital Trust, London WC1N 3JH, UK
| | - Ping Yee Billie Au
- Department of Medical Genetics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, AB, Canada
| | - Marie Therese Hosey
- Paediatric Dentistry, Centre of Oral, Clinical and Translational Science, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE5 9RS, UK
| | - Mustafa Khokha
- Pediatric Genomics Discovery Program, Departments of Genetics and Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Denise K Marciano
- Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8856, USA
| | - Saquib A Lakhani
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Karen J Liu
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| |
Collapse
|
9
|
Kurley SJ, Tischler V, Bierie B, Novitskiy SV, Noske A, Varga Z, Zürrer-Härdi U, Brandt S, Carnahan RH, Cook RS, Muller WJ, Richmond A, Reynolds AB. A requirement for p120-catenin in the metastasis of invasive ductal breast cancer. J Cell Sci 2021; 134:jcs250639. [PMID: 33097605 PMCID: PMC7990862 DOI: 10.1242/jcs.250639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022] Open
Abstract
We report here the effects of targeted p120-catenin (encoded by CTNND1; hereafter denoted p120) knockout (KO) in a PyMT mouse model of invasive ductal (mammary) cancer (IDC). Mosaic p120 ablation had little effect on primary tumor growth but caused significant pro-metastatic alterations in the tumor microenvironment, ultimately leading to a marked increase in the number and size of pulmonary metastases. Surprisingly, although early effects of p120-ablation included decreased cell-cell adhesion and increased invasiveness, cells lacking p120 were almost entirely unable to colonized distant metastatic sites in vivo The relevance of this observation to human IDC was established by analysis of a large clinical dataset of 1126 IDCs. As reported by others, p120 downregulation in primary IDC predicted worse overall survival. However, as in the mice, distant metastases were almost invariably p120 positive, even in matched cases where the primary tumors were p120 negative. Collectively, our results demonstrate a strong positive role for p120 (and presumably E-cadherin) during metastatic colonization of distant sites. On the other hand, downregulation of p120 in the primary tumor enhanced metastatic dissemination indirectly via pro-metastatic conditioning of the tumor microenvironment.
Collapse
Affiliation(s)
- Sarah J Kurley
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Verena Tischler
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Brian Bierie
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Sergey V Novitskiy
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Aurelia Noske
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Zsuzsanna Varga
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Ursina Zürrer-Härdi
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Simone Brandt
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Robert H Carnahan
- Department of Pediatrics, Vanderbilt University, Nashville, TN 37232, USA
- Goodman Cancer Centre, Montreal, Quebec, H3A 1A3, Canada
| | - Rebecca S Cook
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - William J Muller
- Goodman Cancer Centre, Montreal, Quebec, H3A 1A3, Canada
- Departments of Biochemistry and Medicine, McGill University, Montreal, Quebec, H3A OG4, Canada
| | - Ann Richmond
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
| | - Albert B Reynolds
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
| |
Collapse
|
10
|
Young KA, Biggins L, Sharpe HJ. Protein tyrosine phosphatases in cell adhesion. Biochem J 2021; 478:1061-1083. [PMID: 33710332 PMCID: PMC7959691 DOI: 10.1042/bcj20200511] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
Adhesive structures between cells and with the surrounding matrix are essential for the development of multicellular organisms. In addition to providing mechanical integrity, they are key signalling centres providing feedback on the extracellular environment to the cell interior, and vice versa. During development, mitosis and repair, cell adhesions must undergo extensive remodelling. Post-translational modifications of proteins within these complexes serve as switches for activity. Tyrosine phosphorylation is an important modification in cell adhesion that is dynamically regulated by the protein tyrosine phosphatases (PTPs) and protein tyrosine kinases. Several PTPs are implicated in the assembly and maintenance of cell adhesions, however, their signalling functions remain poorly defined. The PTPs can act by directly dephosphorylating adhesive complex components or function as scaffolds. In this review, we will focus on human PTPs and discuss their individual roles in major adhesion complexes, as well as Hippo signalling. We have collated PTP interactome and cell adhesome datasets, which reveal extensive connections between PTPs and cell adhesions that are relatively unexplored. Finally, we reflect on the dysregulation of PTPs and cell adhesions in disease.
Collapse
Affiliation(s)
- Katherine A. Young
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Laura Biggins
- Bioinformatics, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Hayley J. Sharpe
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| |
Collapse
|
11
|
Mendonsa AM, Bandyopadhyay C, Gumbiner BM. p120-catenin phosphorylation status alters E-cadherin mediated cell adhesion and ability of tumor cells to metastasize. PLoS One 2020; 15:e0235337. [PMID: 32589661 PMCID: PMC7319294 DOI: 10.1371/journal.pone.0235337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/12/2020] [Indexed: 01/06/2023] Open
Abstract
p120-catenin is considered to be a tumor suppressor because it stabilizes E-cadherin levels at the cell surface. p120-catenin phosphorylation is increased in several types of cancer, but the role of phosphorylation in cancer is unknown. The phosphorylation state of p120-catenin is important in controlling E-cadherin homophilic binding strength which maintains epithelial junctions. Because decreased cell-cell adhesion is associated with increased cancer metastasis we hypothesize that p120-catenin phosphorylation at specific Serine and Threonine residues alters the E-cadherin binding strength between tumor cells and thereby affect the ability of tumor cells to leave the primary tumor and metastasize to distant sites. In this study we show that expression of the p120-catenin phosphorylation dead mutant, by converting six Serine and Threonine sites to Alanine, leads to enhanced E-cadherin adhesive binding strength in tumor cells. We observed a decrease in the ability of tumor cells expressing the p120-catenin phosphorylation mutant to migrate and invade using in-vitro models of cancer progression. Further, tumor cells expressing the phosphorylation mutant form of p120-catenin demonstrated a decrease in ability to metastasize to the lungs using an in-vivo orthotopic mammary fat pad injection model of breast cancer development and metastasis. This suggests that regulation of p120-catenin phosphorylation at the cell surface is important in mediating cell-adhesion, thereby impacting cancer progression and metastasis.
Collapse
Affiliation(s)
- Alisha M. Mendonsa
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Chirosree Bandyopadhyay
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Barry M. Gumbiner
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
12
|
DDIAS promotes STAT3 activation by preventing STAT3 recruitment to PTPRM in lung cancer cells. Oncogenesis 2020; 9:1. [PMID: 31900385 PMCID: PMC6949220 DOI: 10.1038/s41389-019-0187-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
DNA damage-induced apoptosis suppressor (DDIAS) regulates cancer cell survival. Here we investigated the involvement of DDIAS in IL-6-mediated signaling to understand the mechanism underlying the role of DDIAS in lung cancer malignancy. We showed that DDIAS promotes tyrosine phosphorylation of signal transducer and activator of transcription 3 (STAT3), which is constitutively activated in malignant cancers. Interestingly, siRNA protein tyrosine phosphatase (PTP) library screening revealed protein tyrosine phosphatase receptor mu (PTPRM) as a novel STAT3 PTP. PTPRM knockdown rescued the DDIAS-knockdown-mediated decrease in STAT3 Y705 phosphorylation in the presence of IL-6. However, PTPRM overexpression decreased STAT3 Y705 phosphorylation. Moreover, endogenous PTPRM interacted with endogenous STAT3 for dephosphorylation at Y705 following IL-6 treatment. As expected, PTPRM bound to wild-type STAT3 but not the STAT3 Y705F mutant. PTPRM dephosphorylated STAT3 in the absence of DDIAS, suggesting that DDIAS hampers PTPRM/STAT3 interaction. In fact, DDIAS bound to the STAT3 transactivation domain (TAD), which competes with PTPRM to recruit STAT3 for dephosphorylation. Thus we show that DDIAS prevents PTPRM/STAT3 binding and blocks STAT3 Y705 dephosphorylation, thereby sustaining STAT3 activation in lung cancer. DDIAS expression strongly correlates with STAT3 phosphorylation in human lung cancer cell lines and tissues. Thus DDIAS may be considered as a potential biomarker and therapeutic target in malignant lung cancer cells with aberrant STAT3 activation.
Collapse
|
13
|
Nguyen T, Duchesne L, Sankara Narayana GHN, Boggetto N, Fernig DD, Uttamrao Murade C, Ladoux B, Mège RM. Enhanced cell-cell contact stability and decreased N-cadherin-mediated migration upon fibroblast growth factor receptor-N-cadherin cross talk. Oncogene 2019; 38:6283-6300. [PMID: 31312021 DOI: 10.1038/s41388-019-0875-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
N-cadherin adhesion has been reported to enhance cancer and neuronal cell migration either by mediating actomyosin-based force transduction or initiating fibroblast growth factor receptor (FGFR)-dependent biochemical signalling. Here we show that FGFR1 reduces N-cadherin-mediated cell migration. Both proteins are co-stabilised at cell-cell contacts through direct interaction. As a consequence, cell adhesion is strengthened, limiting the migration of cells on N-cadherin. Both the inhibition of migration and the stabilisation of cell adhesions require the FGFR activity stimulated by N-cadherin engagement. FGFR1 stabilises N-cadherin at the cell membrane through a pathway involving Src and p120. Moreover, FGFR1 stimulates the anchoring of N-cadherin to actin. We found that the migratory behaviour of cells depends on an optimum balance between FGFR-regulated N-cadherin adhesion and actin dynamics. Based on these findings we propose a positive feed-back loop between N-cadherin and FGFR at adhesion sites limiting N-cadherin-based single-cell migration.
Collapse
Affiliation(s)
- Thao Nguyen
- Institut Jacques Monod, CNRS, Université Paris Diderot, 15 Rue Hélène Brion, 75205, Paris Cedex 13, France
| | - Laurence Duchesne
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes) - UMR 6290, F-35000, Rennes, France
| | | | - Nicole Boggetto
- Institut Jacques Monod, CNRS, Université Paris Diderot, 15 Rue Hélène Brion, 75205, Paris Cedex 13, France
| | - David D Fernig
- Department of Biochemistry, Institute of Integrated Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | | | - Benoit Ladoux
- Institut Jacques Monod, CNRS, Université Paris Diderot, 15 Rue Hélène Brion, 75205, Paris Cedex 13, France
| | - René-Marc Mège
- Institut Jacques Monod, CNRS, Université Paris Diderot, 15 Rue Hélène Brion, 75205, Paris Cedex 13, France.
| |
Collapse
|
14
|
Daulagala AC, Bridges MC, Kourtidis A. E-cadherin Beyond Structure: A Signaling Hub in Colon Homeostasis and Disease. Int J Mol Sci 2019; 20:E2756. [PMID: 31195621 PMCID: PMC6600153 DOI: 10.3390/ijms20112756] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/27/2019] [Accepted: 06/01/2019] [Indexed: 12/17/2022] Open
Abstract
E-cadherin is the core component of epithelial adherens junctions, essential for tissue development, differentiation, and maintenance. It is also fundamental for tissue barrier formation, a critical function of epithelial tissues. The colon or large intestine is lined by an epithelial monolayer that encompasses an E-cadherin-dependent barrier, critical for the homeostasis of the organ. Compromised barriers of the colonic epithelium lead to inflammation, fibrosis, and are commonly observed in colorectal cancer. In addition to its architectural role, E-cadherin is also considered a tumor suppressor in the colon, primarily a result of its opposing function to Wnt signaling, the predominant driver of colon tumorigenesis. Beyond these well-established traditional roles, several studies have portrayed an evolving role of E-cadherin as a signaling epicenter that regulates cell behavior in response to intra- and extra-cellular cues. Intriguingly, these recent findings also reveal tumor-promoting functions of E-cadherin in colon tumorigenesis and new interacting partners, opening future avenues of investigation. In this Review, we focus on these emerging aspects of E-cadherin signaling, and we discuss their implications in colon biology and disease.
Collapse
Affiliation(s)
- Amanda C Daulagala
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Mary Catherine Bridges
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| |
Collapse
|
15
|
Fearnley GW, Young KA, Edgar JR, Antrobus R, Hay IM, Liang WC, Martinez-Martin N, Lin W, Deane JE, Sharpe HJ. The homophilic receptor PTPRK selectively dephosphorylates multiple junctional regulators to promote cell-cell adhesion. eLife 2019; 8:44597. [PMID: 30924770 PMCID: PMC6440744 DOI: 10.7554/elife.44597] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/23/2019] [Indexed: 12/20/2022] Open
Abstract
Cell-cell communication in multicellular organisms depends on the dynamic and reversible phosphorylation of protein tyrosine residues. The receptor-linked protein tyrosine phosphatases (RPTPs) receive cues from the extracellular environment and are well placed to influence cell signaling. However, the direct events downstream of these receptors have been challenging to resolve. We report here that the homophilic receptor PTPRK is stabilized at cell-cell contacts in epithelial cells. By combining interaction studies, quantitative tyrosine phosphoproteomics, proximity labeling and dephosphorylation assays we identify high confidence PTPRK substrates. PTPRK directly and selectively dephosphorylates at least five substrates, including Afadin, PARD3 and δ-catenin family members, which are all important cell-cell adhesion regulators. In line with this, loss of PTPRK phosphatase activity leads to disrupted cell junctions and increased invasive characteristics. Thus, identifying PTPRK substrates provides insight into its downstream signaling and a potential molecular explanation for its proposed tumor suppressor function.
Collapse
Affiliation(s)
- Gareth W Fearnley
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Katherine A Young
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom.,Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Iain M Hay
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Wei-Ching Liang
- Antibody Engineering Department, Genentech, South San Francisco, United States
| | - Nadia Martinez-Martin
- Microchemistry, Proteomics and Lipidomics Department, Genentech, South San Francisco, United States
| | - WeiYu Lin
- Antibody Engineering Department, Genentech, South San Francisco, United States
| | - Janet E Deane
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Hayley J Sharpe
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
16
|
The Expression Pattern of p120-Catenin is Associated With Acquired Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. Appl Immunohistochem Mol Morphol 2018; 26:64-70. [PMID: 27299185 DOI: 10.1097/pai.0000000000000381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Previous research connects p120-catenin (p120ctn) with epidermal growth factor receptor (EGFR) signaling pathways, which presents a potential role for p120ctn in EGFR tyrosine kinase inhibitor (EGFR-TKIs) resistance. However, a direct correlation between the expression pattern of p120ctn in solid tumors and the therapeutic effect of EGFR-TKIs has not yet been demonstrated. METHODS AND RESULTS In this study, the expression pattern of p120ctn was examined in patients with the EGFR gene mutation in lung adenocarcinoma, and p120ctn was found to have different patterns of expression even in the same mutation type. The therapeutic effect of EGFR-TKIs was investigated in these patients, and patients with an abnormal expression of p120ctn were found to be more likely to have drug resistance. A gefitinib-resistant lung cancer cell line was established and alterations in the p120ctn expression pattern were also observed in vitro. CONCLUSIONS Therefore, this study demonstrates that the expression pattern of p120ctn is associated with acquired resistance to EGFR-TKIs in lung cancer, providing information toward addressing the problem of drug resistance in patients with non-small cell lung cancer.
Collapse
|
17
|
Kourtidis A, Lu R, Pence LJ, Anastasiadis PZ. A central role for cadherin signaling in cancer. Exp Cell Res 2017; 358:78-85. [PMID: 28412244 PMCID: PMC5544584 DOI: 10.1016/j.yexcr.2017.04.006] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/18/2022]
Abstract
Cadherins are homophilic adhesion molecules with important functions in cell-cell adhesion, tissue morphogenesis, and cancer. In epithelial cells, E-cadherin accumulates at areas of cell-cell contact, coalesces into macromolecular complexes to form the adherens junctions (AJs), and associates via accessory partners with a subcortical ring of actin to form the apical zonula adherens (ZA). As a master regulator of the epithelial phenotype, E-cadherin is essential for the overall maintenance and homeostasis of polarized epithelial monolayers. Its expression is regulated by a host of genetic and epigenetic mechanisms related to cancer, and its function is modulated by mechanical forces at the junctions, by direct binding and phosphorylation of accessory proteins collectively termed catenins, by endocytosis, recycling and degradation, as well as, by multiple signaling pathways and developmental processes, like the epithelial to mesenchymal transition (EMT). Nuclear signaling mediated by the cadherin associated proteins β-catenin and p120 promotes growth, migration and pluripotency. Receptor tyrosine kinase, PI3K/AKT, Rho GTPase, and HIPPO signaling, are all regulated by E-cadherin mediated cell-cell adhesion. Finally, the recruitment of the microprocessor complex to the ZA by PLEKHA7, and the subsequent regulation of a small subset of miRNAs provide an additional mechanism by which the state of epithelial cell-cell adhesion affects translation of target genes to maintain the homeostasis of polarized epithelial monolayers. Collectively, the data indicate that loss of E-cadherin function, especially at the ZA, is a common and crucial step in cancer progression.
Collapse
Affiliation(s)
- Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Ruifeng Lu
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Lindy J Pence
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Panos Z Anastasiadis
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
18
|
Schaberg KE, Shirure VS, Worley EA, George SC, Naegle KM. Ensemble clustering of phosphoproteomic data identifies differences in protein interactions and cell-cell junction integrity of HER2-overexpressing cells. Integr Biol (Camb) 2017; 9:539-547. [PMID: 28492659 DOI: 10.1039/c7ib00054e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Overexpression of HER2, a receptor tyrosine kinase of the ERBB family, in breast cancer is related to increased cancer progression and aggressiveness. A breast epithelial cell model with the single perturbation of HER2 overexpression is capable of replicating the increased aggressiveness of HER2 overexpressing cancers. In previous work, Wolf-Yadlin and colleagues (Wolf-Yadlin et al., Mol. Syst. Biol., 2006, 2) measured the proximal tyrosine phosphorylation dynamics of the parental and HER2 overexpressing cells (24H) in response to EGF. Here, we apply an ensemble clustering approach to dynamic phosphorylation measurements of the two cell models in order to identify signaling events that explain the increased migratory potential of HER2 overexpressing cells. The use of an ensemble approach for identifying relationships within a dataset and how these relationships change across datasets uncovers relationships that cannot be found by the direct comparison of dynamic responses in the two conditions. Of particular note is a drastic change in the clustering of SHC1 phosphorylation (on site Y349) from an EGFR-MAPK module in parental cells to a module consisting of an E-cadherin junction protein phosphorylation site, catenin delta-1 Y228, in HER2 overexpressing (24H) cells. Given the importance of E-cadherin junctions in healthy epithelial wound healing and migration, we chose to test the computationally-derived identification of altered cell junctions and CTNND1:SHC1 relationships. Our cell and molecular biology experiments demonstrate that SHC and CTNND1 interact in an EGF- and HER2-dependent manner and that the cell junctions are phenotypically affected by HER2, breaking down in response to EGF and yet avoiding apoptosis as a result of cell junction loss. The results suggest a mechanism by which HER2 alters the localization of the SHC-MAPK signaling axis and a phenotypic effect on cell junction integrity.
Collapse
Affiliation(s)
- Katherine E Schaberg
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA.
| | | | | | | | | |
Collapse
|
19
|
Hong R, Roberts E, Bieniarz C. In Situ Detection of Protein Complexes and Modifications by Chemical Ligation Proximity Assay. Bioconjug Chem 2016; 27:1690-6. [DOI: 10.1021/acs.bioconjchem.6b00230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Rui Hong
- Technology and Applied Research, Ventana Medical Systems, Inc., Tucson, Arizona 85755, United States
| | - Esteban Roberts
- Technology and Applied Research, Ventana Medical Systems, Inc., Tucson, Arizona 85755, United States
| | - Christopher Bieniarz
- Technology and Applied Research, Ventana Medical Systems, Inc., Tucson, Arizona 85755, United States
| |
Collapse
|
20
|
Huang CH, Hsu CC, Chen CPC, Chow SE, Wang JS, Shyu YC, Lu MJ. Negative pressure induces p120-catenin-dependent adherens junction disassembly in keratinocytes during wound healing. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2212-20. [PMID: 27220534 DOI: 10.1016/j.bbamcr.2016.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 01/08/2023]
Abstract
A negative-pressure of 125mmHg (NP) has been widely used to treat chronic wounds in modern medicine. Keratinocytes under NP treatment have shown accelerated cell movement and decreased E-cadherin expression. However, the molecular mechanism of E-cadherin regulation under NP remains incompletely understood. Therefore, we investigated the E-cadherin regulation in keratinocytes (HaCaT cells) under NP. HaCaT cells were treated at ambient pressure (AP) and NP for 12h. Cell movement was measured by traditional and electric wound healing assays at the 2 different pressures. Mutants with overexpression of p120-catenin (p120(ctn)) were used to observe the effect of NP on p120(ctn) and E-cadherin expression during wound healing. Cell fractionation and immunoblotting data showed that NP increased Y228-phosphorylated p120(ctn) level and resulted in the translocation of p120(ctn) from the plasma membrane to cytoplasm. Immunofluorescence images revealed that NP decreased the co-localization of p120(ctn) and E-cadherin on the plasma membrane. Knockdown of p120(ctn) reduced E-cadherin expression and accelerated cell movement under AP. Overexpression of the Y228-phosphorylation-mimic p120(ctn) decreased E-cadherin membrane expression under both AP and NP. Phosphorylation-deficient mutants conferred restored adherens junctions (AJs) under NP. The Src inhibitor blocked the phosphorylation of p120(ctn) and impeded cell migration under NP. In conclusion, Src-dependent phosphorylation of p120(ctn) can respond rapidly to NP and contribute to E-cadherin downregulation. The NP-induced disassembly of the AJ further accelerates wound healing.
Collapse
Affiliation(s)
- Ching-Hui Huang
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Chin Hsu
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Keelung, Taiwan; School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Carl Pai-Chu Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Shu-Er Chow
- Center of General Studies, Chang Gung University, Taoyuan, Taiwan
| | - Jong-Shyan Wang
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chiau Shyu
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan; Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Mu-Jie Lu
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| |
Collapse
|
21
|
Muhamed I, Wu J, Sehgal P, Kong X, Tajik A, Wang N, Leckband DE. E-cadherin-mediated force transduction signals regulate global cell mechanics. J Cell Sci 2016; 129:1843-54. [PMID: 26966187 DOI: 10.1242/jcs.185447] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/03/2016] [Indexed: 12/22/2022] Open
Abstract
This report elucidates an E-cadherin-based force-transduction pathway that triggers changes in cell mechanics through a mechanism requiring epidermal growth factor receptor (EGFR), phosphoinositide 3-kinase (PI3K), and the downstream formation of new integrin adhesions. This mechanism operates in addition to local cytoskeletal remodeling triggered by conformational changes in the E-cadherin-associated protein α-catenin, at sites of mechanical perturbation. Studies using magnetic twisting cytometry (MTC), together with traction force microscopy (TFM) and confocal imaging identified force-activated E-cadherin-specific signals that integrate cadherin force transduction, integrin activation and cell contractility. EGFR is required for the downstream activation of PI3K and myosin-II-dependent cell stiffening. Our findings also demonstrated that α-catenin-dependent cytoskeletal remodeling at perturbed E-cadherin adhesions does not require cell stiffening. These results broaden the repertoire of E-cadherin-based force transduction mechanisms, and define the force-sensitive signaling network underlying the mechano-chemical integration of spatially segregated adhesion receptors.
Collapse
Affiliation(s)
- Ismaeel Muhamed
- Department of Biochemistry, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
| | - Jun Wu
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
| | - Poonam Sehgal
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
| | - Xinyu Kong
- Department of Biochemistry, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
| | - Arash Tajik
- Department of Mechanical Science and Engineering, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
| | - Ning Wang
- Department of Mechanical Science and Engineering, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
| | - Deborah E Leckband
- Department of Biochemistry, University of Illinois Urbana Champaign, Urbana, IL 61801, USA Department of Chemical and Biomolecular Engineering, University of Illinois Urbana Champaign, Urbana, IL 61801, USA Department of Chemistry, University of Illinois Urbana Champaign, Urbana, IL 61801, USA Carl W. Woese Institute of Genomic Biology, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
| |
Collapse
|
22
|
Interaction of EGFR to δ-catenin leads to δ-catenin phosphorylation and enhances EGFR signaling. Sci Rep 2016; 6:21207. [PMID: 26883159 PMCID: PMC4756308 DOI: 10.1038/srep21207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/19/2016] [Indexed: 11/21/2022] Open
Abstract
Expression of δ-catenin reportedly increases during late stage prostate cancer. Furthermore, it has been demonstrated that expression of EGFR is enhanced in hormone refractory prostate cancer. In this study, we investigated the possible correlation between EGFR and δ-catenin in prostate cancer cells. We found that EGFR interacted with δ-catenin and the interaction decreased in the presence of EGF. We also demonstrated that, on one hand, EGFR phosphorylated δ-catenin in a Src independent manner in the presence of EGF and on the other hand, δ-catenin enhanced protein stability of EGFR and strengthened the EGFR/Erk1/2 signaling pathway. Our findings added a new perspective to the interaction of EGFR to the E-cadherin complex. They also provided novel insights to the roles of δ-catenin in prostate cancer cells.
Collapse
|
23
|
Sempou E, Biasini E, Pinzón-Olejua A, Harris DA, Málaga-Trillo E. Activation of zebrafish Src family kinases by the prion protein is an amyloid-β-sensitive signal that prevents the endocytosis and degradation of E-cadherin/β-catenin complexes in vivo. Mol Neurodegener 2016; 11:18. [PMID: 26860872 PMCID: PMC4748561 DOI: 10.1186/s13024-016-0076-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/18/2016] [Indexed: 11/25/2022] Open
Abstract
Background Prions and amyloid-β (Aβ) oligomers trigger neurodegeneration by hijacking a poorly understood cellular signal mediated by the prion protein (PrP) at the plasma membrane. In early zebrafish embryos, PrP-1-dependent signals control cell-cell adhesion via a tyrosine phosphorylation-dependent mechanism. Results Here we report that the Src family kinases (SFKs) Fyn and Yes act downstream of PrP-1 to prevent the endocytosis and degradation of E-cadherin/β-catenin adhesion complexes in vivo. Accordingly, knockdown of PrP-1 or Fyn/Yes cause similar zebrafish gastrulation phenotypes, whereas Fyn/Yes expression rescues the PrP-1 knockdown phenotype. We also show that zebrafish and mouse PrPs positively regulate the activity of Src kinases and that these have an unexpected positive effect on E-cadherin-mediated cell adhesion. Interestingly, while PrP knockdown impairs β-catenin adhesive function, PrP overexpression enhances it, thereby antagonizing its nuclear, wnt-related signaling activity and disturbing embryonic dorsoventral specification. The ability of mouse PrP to influence these events in zebrafish embryos requires its neuroprotective, polybasic N-terminus but not its neurotoxicity-associated central region. Remarkably, human Aβ oligomers up-regulate the PrP-1/SFK/E-cadherin/β-catenin pathway in zebrafish embryonic cells, mimicking a PrP gain-of-function scenario. Conclusions Our gain- and loss-of-function experiments in zebrafish suggest that PrP and SFKs enhance the cell surface stability of embryonic adherens junctions via the same complex mechanism through which they over-activate neuroreceptors that trigger synaptic damage. The profound impact of this pathway on early zebrafish development makes these embryos an ideal model to study the cellular and molecular events affected by neurotoxic PrP mutations and ligands in vivo. In particular, our finding that human Aβ oligomers activate the zebrafish PrP/SFK/E-cadherin pathway opens the possibility of using fish embryos to rapidly screen for novel therapeutic targets and compounds against prion- and Alzheimer's-related neurodegeneration. Altogether, our data illustrate PrP-dependent signals relevant to embryonic development, neuronal physiology and neurological disease. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0076-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily Sempou
- Department of Biology, University of Konstanz, Constance, 78457, Germany. .,Present address: Department of Pediatrics, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Emiliano Biasini
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA. .,Present address: Dulbecco Telethon Institute, Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
| | - Alejandro Pinzón-Olejua
- Department of Biology, University of Konstanz, Constance, 78457, Germany. .,Present address: Max PIanck Institute for Brain Research, Department of Synaptic Plasticity, 60438, Frankfurt/Main, Germany.
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Edward Málaga-Trillo
- Department of Biology, University of Konstanz, Constance, 78457, Germany. .,Department of Biology, Universidad Peruana Cayetano Heredia, Lima 31, Perú.
| |
Collapse
|
24
|
Hong JY, Oh IH, McCrea PD. Phosphorylation and isoform use in p120-catenin during development and tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:102-14. [PMID: 26477567 DOI: 10.1016/j.bbamcr.2015.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 12/12/2022]
Abstract
P120-catenin is essential to vertebrate development, modulating cadherin and small-GTPase functions, and growing evidence points also to roles in the nucleus. A complexity in addressing p120-catenin's functions is its many isoforms, including optional splicing events, alternative points of translational initiation, and secondary modifications. In this review, we focus upon how choices in the initiation of protein translation, or the earlier splicing of the RNA transcript, relates to primary sequences that harbor established or putative regulatory phosphorylation sites. While certain p120 phosphorylation events arise via known kinases/phosphatases and have defined outcomes, in most cases the functional consequences are still to be established. In this review, we provide examples of p120-isoforms as they relate to phosphorylation events, and thereby to isoform dependent protein-protein associations and downstream functions. We also provide a view of upstream pathways that determine p120's phosphorylation state, and that have an impact upon development and disease. Because other members of the p120 subfamily undergo similar processing and phosphorylation, as well as related catenins of the plakophilin subfamily, what is learned regarding p120 will by extension have wide relevance in vertebrates.
Collapse
Affiliation(s)
- Ji Yeon Hong
- Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea.
| | - Il-Hoan Oh
- The Catholic University of Korea, Catholic High Performance Cell Therapy Center, 505 Banpo-dong, Seocho-Ku, Seoul 137-701, Republic of Korea
| | - Pierre D McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center, University of Texas Graduate School of Biomedical Science, Houston, TX 77030, USA.
| |
Collapse
|
25
|
Kourtidis A, Ngok SP, Pulimeno P, Feathers RW, Carpio LR, Baker TR, Carr JM, Yan IK, Borges S, Perez EA, Storz P, Copland JA, Patel T, Thompson EA, Citi S, Anastasiadis PZ. Distinct E-cadherin-based complexes regulate cell behaviour through miRNA processing or Src and p120 catenin activity. Nat Cell Biol 2015; 17:1145-57. [PMID: 26302406 PMCID: PMC4975377 DOI: 10.1038/ncb3227] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/20/2015] [Indexed: 12/11/2022]
Abstract
E-cadherin and p120 catenin (p120) are essential for epithelial homeostasis, but can also exert pro-tumorigenic activities. Here, we resolve this apparent paradox by identifying two spatially and functionally distinct junctional complexes in non-transformed polarized epithelial cells: one growth suppressing at the apical zonula adherens (ZA), defined by the p120 partner PLEKHA7 and a non-nuclear subset of the core microprocessor components DROSHA and DGCR8, and one growth promoting at basolateral areas of cell-cell contact containing tyrosine-phosphorylated p120 and active Src. Recruitment of DROSHA and DGCR8 to the ZA is PLEKHA7 dependent. The PLEKHA7-microprocessor complex co-precipitates with primary microRNAs (pri-miRNAs) and possesses pri-miRNA processing activity. PLEKHA7 regulates the levels of select miRNAs, in particular processing of miR-30b, to suppress expression of cell transforming markers promoted by the basolateral complex, including SNAI1, MYC and CCND1. Our work identifies a mechanism through which adhesion complexes regulate cellular behaviour and reveals their surprising association with the microprocessor.
Collapse
Affiliation(s)
- Antonis Kourtidis
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | - Siu P. Ngok
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | - Pamela Pulimeno
- Department of Molecular Biology, University of Geneva, 30 quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland
| | - Ryan W. Feathers
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | - Lomeli R. Carpio
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | - Tiffany R. Baker
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | - Jennifer M. Carr
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | - Irene K. Yan
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | - Sahra Borges
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | - Edith A. Perez
- Division of Hematology/Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | - John A. Copland
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | - Tushar Patel
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | - E. Aubrey Thompson
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | - Sandra Citi
- Department of Cell Biology and Institute of Genetics and Genomics of Geneva, University of Geneva, 30 quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland
| | - Panos Z. Anastasiadis
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| |
Collapse
|
26
|
Kourtidis A, Yanagisawa M, Huveldt D, Copland JA, Anastasiadis PZ. Pro-Tumorigenic Phosphorylation of p120 Catenin in Renal and Breast Cancer. PLoS One 2015; 10:e0129964. [PMID: 26067913 PMCID: PMC4466266 DOI: 10.1371/journal.pone.0129964] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/27/2015] [Indexed: 11/18/2022] Open
Abstract
Altered protein expression and phosphorylation are common events during malignant transformation. These perturbations have been widely explored in the context of E-cadherin cell-cell adhesion complexes, which are central in the maintenance of the normal epithelial phenotype. A major component of these complexes is p120 catenin (p120), which binds and stabilizes E-cadherin to promote its adhesive and tumor suppressing function. However, p120 is also an essential mediator of pro-tumorigenic signals driven by oncogenes, such as Src, and can be phosphorylated at multiple sites. Although alterations in p120 expression have been extensively studied by immunohistochemistry (IHC) in the context of tumor progression, little is known about the status and role of p120 phosphorylation in cancer. Here we show that tyrosine and threonine phosphorylation of p120 in two sites, Y228 and T916, is elevated in renal and breast tumor tissue samples. We also show that tyrosine phosphorylation of p120 at its N-terminus, including at the Y228 site is required for its pro-tumorigenic potential. In contrast, phosphorylation of p120 at T916 does not affect this p120 function. However, phosphorylation of p120 at T916 interferes with epitope recognition of the most commonly used p120 antibody, namely pp120. As a result, this antibody selectively underrepresents p120 levels in tumor tissues, where p120 is phosphorylated. Overall, our data support a role of p120 phosphorylation as a marker and mediator of tumor transformation. Importantly, they also argue that the level and localization of p120 in human cancer tissues immunostained with pp120 needs to be re-evaluated.
Collapse
Affiliation(s)
- Antonis Kourtidis
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Masahiro Yanagisawa
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Deborah Huveldt
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - John A. Copland
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Panos Z. Anastasiadis
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
- * E-mail:
| |
Collapse
|
27
|
Fenton SE, Denning MF. FYNagling divergent adhesive functions for Fyn in keratinocytes. Exp Dermatol 2014; 24:81-5. [PMID: 24980626 DOI: 10.1111/exd.12485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2014] [Indexed: 12/29/2022]
Abstract
Fyn, a member of the Src family kinases (SFKs), has been shown to play important yet contradictory roles in keratinocyte (KC) adhesion. During KC differentiation, physiological activation of Fyn results in the formation of adherens junctions, recruiting junctional components and inducing signaling pathways that control the differentiation program. However, in KC transformation and oncogenesis, increased Fyn activity has been implicated in the dissolution of adhesion structures and an increased migratory phenotype. Fyn activity is also associated with both the formation and dissolution of focal adhesions, and to a lesser extent hemidesmosomes and desmosomes. This viewpoint article aims to reconcile these disparate bodies of literature regarding Fyn's role in cell-cell and cell-matrix adhesion by proposing several alternative, testable hypotheses that unify Fyn's fractured functions.
Collapse
Affiliation(s)
- Sarah E Fenton
- Molecular Biology Program, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
| | | |
Collapse
|
28
|
p120 catenin: an essential regulator of cadherin stability, adhesion-induced signaling, and cancer progression. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:409-32. [PMID: 23481205 DOI: 10.1016/b978-0-12-394311-8.00018-2] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
p120 catenin is the best studied member of a subfamily of proteins that associate with the cadherin juxtamembrane domain to suppress cadherin endocytosis. p120 also recruits the minus ends of microtubules to the cadherin complex, leading to junction maturation. In addition, p120 regulates the activity of Rho family GTPases through multiple interactions with Rho GEFs, GAPs, Rho GTPases, and their effectors. Nuclear signaling is affected by the interaction of p120 with Kaiso, a transcription factor regulating Wnt-responsive genes as well as transcriptionally repressing methylated promoters. Multiple alternatively spliced p120 isoforms and complex phosphorylation events affect these p120 functions. In cancer, reduced p120 expression correlates with reduced E-cadherin function and with tumor progression. In contrast, in tumor cells that have lost E-cadherin expression, p120 promotes cell invasion and anchorage-independent growth. Furthermore, p120 is required for Src-induced oncogenic transformation and provides a potential target for future therapeutic interventions.
Collapse
|
29
|
Song S, Eckerle S, Onichtchouk D, Marrs JA, Nitschke R, Driever W. Pou5f1-dependent EGF expression controls E-cadherin endocytosis, cell adhesion, and zebrafish epiboly movements. Dev Cell 2013; 24:486-501. [PMID: 23484854 DOI: 10.1016/j.devcel.2013.01.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/31/2012] [Accepted: 01/19/2013] [Indexed: 01/05/2023]
Abstract
Initiation of motile cell behavior in embryonic development occurs during late blastula stages when gastrulation begins. At this stage, the strong adhesion of blastomeres has to be modulated to enable dynamic behavior, similar to epithelial-to-mesenchymal transitions. We show that, in zebrafish maternal and zygotic (MZ)spg embryos mutant for the stem cell transcription factor Pou5f1/Oct4, which are severely delayed in the epiboly gastrulation movement, all blastomeres are defective in E-cadherin (E-cad) endosomal trafficking, and E-cad accumulates at the plasma membrane. We find that Pou5f1-dependent control of EGF expression regulates endosomal E-cad trafficking. EGF receptor may act via modulation of p120 activity. Loss of E-cad dynamics reduces cohesion of cells in reaggregation assays. Quantitative analysis of cell behavior indicates that dynamic E-cad endosomal trafficking is required for epiboly cell movements. We hypothesize that dynamic control of E-cad trafficking is essential to effectively generate new adhesion sites when cells move relative to each other.
Collapse
Affiliation(s)
- Sungmin Song
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Contribution of cells undergoing epithelial–mesenchymal transition to the tumour microenvironment. J Proteomics 2013; 78:545-57. [DOI: 10.1016/j.jprot.2012.10.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/28/2012] [Accepted: 10/15/2012] [Indexed: 02/07/2023]
|
31
|
Gonzalez D, Rojas A, Herrera MB, Conlan RS. iNOS activation regulates β-catenin association with its partners in endothelial cells. PLoS One 2012; 7:e52964. [PMID: 23285236 PMCID: PMC3532412 DOI: 10.1371/journal.pone.0052964] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 11/26/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Signals that disrupt β-catenin association to cadherins may influence the translocation of β-catenin to the nucleus to regulate transcription. Post-translational modification of proteins is a signalling event that may lead to changes in structural conformation, association or function of the target proteins. NO and its derivatives induce nitration of proteins during inflammation. It has been described that animals treated with NO donors showed increased permeability due to modulation of VE-cadherin/catenin complex. We, therefore, aim to evaluate the effect of iNOS activation on the expression, nuclear localisation and function of β-catenin in endothelial cells. METHODOLOGY/PRINCIPAL FINDINGS Expression, nuclear localisation, post-translational modifications and function of β-catenin was analysed by cell fractionation, immunoprecipitation, immunoblots, QRT-PCR and permeability assays in murine endothelial cells (H5V). Influence of macrophage activation on expression of VE-cadherin/p120-catenin/β-catenin complex in co-cultured H5V cells was also assessed. Activation of macrophages to produce NO provoked a decrease in VE-cadherin/p120-catenin/β-catenin expression in H5V cells. Phosphorylation of β-catenin, p120-catenin and VE-cadherin, and reduction in the barrier properties of the cell monolayer was associated with iNOS induction. Moreover, high NO levels provoked nitration of β-catenin, and induced its translocation to the nucleus. In the nucleus of NOS activated cells, nitration levels of β-catenin influenced its association with TCF4 and p65 proteins. High levels of NO altered β-catenin mediated gene expression of NFκB and Wnt target genes without affecting cell viability. CONCLUSIONS NOS activity modulates β-catenin post-translational modifications, function and its association with different partners to promote endothelial cell survival. Therapeutic manipulation of iNOS levels may remove a critical cytoprotective mechanism of importance in tumour angiogenesis.
Collapse
Affiliation(s)
- Deyarina Gonzalez
- Centre for NanoHealth, College of Medicine, Swansea University, Swansea, United Kingdom.
| | | | | | | |
Collapse
|
32
|
Boscher C, Zheng YZ, Lakshminarayan R, Johannes L, Dennis JW, Foster LJ, Nabi IR. Galectin-3 protein regulates mobility of N-cadherin and GM1 ganglioside at cell-cell junctions of mammary carcinoma cells. J Biol Chem 2012; 287:32940-52. [PMID: 22846995 DOI: 10.1074/jbc.m112.353334] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Galectin-3 binding to cell surface glycoproteins, including branched N-glycans generated by N-acetylglucosaminyltransferase V (Mgat5) activity, forms a multivalent, heterogeneous, and dynamic lattice. This lattice has been shown to regulate integrin and receptor tyrosine kinase signaling promoting tumor cell migration. N-cadherin is a homotypic cell-cell adhesion receptor commonly overexpressed in tumor cells that contributes to cell motility. Here we show that galectin-3 and N-cadherin interact and colocalize with the lipid raft marker GM1 ganglioside in cell-cell junctions of mammary epithelial cancer cells. Disruption of the lattice by deletion of Mgat5, siRNA depletion of galectin-3, or competitive inhibition with lactose stabilizes cell-cell junctions. It also reduces, in a p120-catenin-dependent manner, the dynamic pool of junctional N-cadherin. Proteomic analysis of detergent-resistant membranes (DRMs) revealed that the galectin lattice opposes entry of many proteins into DRM rafts. N-cadherin and catenins are present in DRMs; however, their DRM distribution is not significantly affected by lattice disruption. Galectin lattice integrity increases the mobile fraction of the raft marker, GM1 ganglioside binding cholera toxin B subunit Ctb, at cell-cell contacts in a p120-catenin-independent manner, but does not affect the mobility of either Ctb-labeled GM1 or GFP-coupled N-cadherin in nonjunctional regions. Our results suggest that the galectin lattice independently enhances lateral molecular diffusion by direct interaction with specific glycoconjugates within the adherens junction. By promoting exchange between raft and non-raft microdomains as well as molecular dynamics within junction-specific raft microdomains, the lattice may enhance turnover of N-cadherin and other glycoconjugates that determine junctional stability and rates of cell migration.
Collapse
Affiliation(s)
- Cécile Boscher
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Nuclear Kaiso expression is associated with high grade and triple-negative invasive breast cancer. PLoS One 2012; 7:e37864. [PMID: 22662240 PMCID: PMC3360634 DOI: 10.1371/journal.pone.0037864] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/26/2012] [Indexed: 12/27/2022] Open
Abstract
Kaiso is a BTB/POZ transcription factor that is ubiquitously expressed in multiple cell types and functions as a transcriptional repressor and activator. Little is known about Kaiso expression and localization in breast cancer. Here, we have related pathological features and molecular subtypes to Kaiso expression in 477 cases of human invasive breast cancer. Nuclear Kaiso was predominantly found in invasive ductal carcinoma (IDC) (p = 0.007), while cytoplasmic Kaiso expression was linked to invasive lobular carcinoma (ILC) (p = 0.006). Although cytoplasmic Kaiso did not correlate to clinicopathological features, we found a significant correlation between nuclear Kaiso, high histological grade (p = 0.023), ERα negativity (p = 0.001), and the HER2-driven and basal/triple-negative breast cancers (p = 0.018). Interestingly, nuclear Kaiso was also abundant in BRCA1-associated breast cancer (p<0.001) and invasive breast cancer overexpressing EGFR (p = 0.019). We observed a correlation between nuclear Kaiso and membrane-localized E-cadherin and p120-catenin (p120) (p<0.01). In contrast, cytoplasmic p120 strongly correlated with loss of E-cadherin and low nuclear Kaiso (p = 0.005). We could confirm these findings in human ILC cells and cell lines derived from conditional mouse models of ILC. Moreover, we present functional data that substantiate a mechanism whereby E-cadherin controls p120-mediated relief of Kaiso-dependent gene repression. In conclusion, our data indicate that nuclear Kaiso is common in clinically aggressive ductal breast cancer, while cytoplasmic Kaiso and a p120-mediated relief of Kaiso-dependent transcriptional repression characterize ILC.
Collapse
|
34
|
Kurley SJ, Bierie B, Carnahan RH, Lobdell NA, Davis MA, Hofmann I, Moses HL, Muller WJ, Reynolds AB. p120-catenin is essential for terminal end bud function and mammary morphogenesis. Development 2012; 139:1754-64. [PMID: 22461563 DOI: 10.1242/dev.072769] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although p120-catenin (p120) is crucial for E-cadherin function, ablation experiments in epithelial tissues from different organ systems reveal markedly different effects. Here, we examine for the first time the consequences of p120 knockout during mouse mammary gland development. An MMTV-Cre driver was used to target knockout to the epithelium at the onset of puberty. p120 ablation was detected in approximately one-quarter of the nascent epithelium at the forth week post-partum. However, p120 null cells were essentially nonadherent, excluded from the process of terminal end bud (TEB) morphogenesis and lost altogether by week six. This elimination process caused a delay in TEB outgrowth, after which the gland developed normally from cells that had retained p120. Mechanistic studies in vitro indicate that TEB dysfunction is likely to stem from striking E-cadherin loss, failure of cell-cell adhesion and near total exclusion from the collective migration process. Our findings reveal an essential role for p120 in mammary morphogenesis.
Collapse
Affiliation(s)
- Sarah J Kurley
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chavez MG, Buhr CA, Petrie WK, Wandinger-Ness A, Kusewitt DF, Hudson LG. Differential downregulation of e-cadherin and desmoglein by epidermal growth factor. Dermatol Res Pract 2012; 2012:309587. [PMID: 22312325 PMCID: PMC3270554 DOI: 10.1155/2012/309587] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 10/01/2011] [Accepted: 10/02/2011] [Indexed: 12/03/2022] Open
Abstract
Modulation of cell : cell junctions is a key event in cutaneous wound repair. In this study we report that activation of the epidermal growth factor (EGF) receptor disrupts cell : cell adhesion, but with different kinetics and fates for the desmosomal cadherin desmoglein and for E-cadherin. Downregulation of desmoglein preceded that of E-cadherin in vivo and in an EGF-stimulated in vitro wound reepithelialization model. Dual immunofluorescence staining revealed that neither E-cadherin nor desmoglein-2 internalized with the EGF receptor, or with one another. In response to EGF, desmoglein-2 entered a recycling compartment based on predominant colocalization with the recycling marker Rab11. In contrast, E-cadherin downregulation was accompanied by cleavage of the extracellular domain. A broad-spectrum matrix metalloproteinase inhibitor protected E-cadherin but not the desmosomal cadherin, desmoglein-2, from EGF-stimulated disruption. These findings demonstrate that although activation of the EGF receptor regulates adherens junction and desmosomal components, this stimulus downregulates associated cadherins through different mechanisms.
Collapse
Affiliation(s)
- Miquella G. Chavez
- Division of Bioengineering, Department of Physiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Christian A. Buhr
- College of Pharmacy, University of New Mexico, MSC 09 5360, Albuquerque, NM 87131, USA
| | - Whitney K. Petrie
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Angela Wandinger-Ness
- Department of Pathology, School of Medicine, University of New Mexico, MSC 08 4640, Albuquerque, NM 87131, USA
| | - Donna F. Kusewitt
- Science Park Research Division, Department of Carcinogenesis, University of Texas, M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Laurie G. Hudson
- College of Pharmacy, University of New Mexico, MSC 09 5360, Albuquerque, NM 87131, USA
- Science Park Research Division, Department of Carcinogenesis, University of Texas, M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| |
Collapse
|
36
|
Myers MV, Manning HC, Coffey RJ, Liebler DC. Protein expression signatures for inhibition of epidermal growth factor receptor-mediated signaling. Mol Cell Proteomics 2011; 11:M111.015222. [PMID: 22147731 PMCID: PMC3277773 DOI: 10.1074/mcp.m111.015222] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Analysis of cellular signaling networks typically involves targeted measurements of phosphorylated protein intermediates. However, phosphoproteomic analyses usually require affinity enrichment of phosphopeptides and can be complicated by artifactual changes in phosphorylation caused by uncontrolled preanalytical variables, particularly in the analysis of tissue specimens. We asked whether changes in protein expression, which are more stable and easily analyzed, could reflect network stimulation and inhibition. We employed this approach to analyze stimulation and inhibition of the epidermal growth factor receptor (EGFR) by EGF and selective EGFR inhibitors. Shotgun analysis of proteomes from proliferating A431 cells, EGF-stimulated cells, and cells co-treated with the EGFR inhibitors cetuximab or gefitinib identified groups of differentially expressed proteins. Comparisons of these protein groups identified 13 proteins whose EGF-induced expression changes were reversed by both EGFR inhibitors. Targeted multiple reaction monitoring analysis verified differential expression of 12 of these proteins, which comprise a candidate EGFR inhibition signature. We then tested these 12 proteins by multiple reaction monitoring analysis in three other models: 1) a comparison of DiFi (EGFR inhibitor-sensitive) and HCT116 (EGFR-insensitive) cell lines, 2) in formalin-fixed, paraffin-embedded mouse xenograft DiFi and HCT116 tumors, and 3) in tissue biopsies from a patient with the gastric hyperproliferative disorder Ménétrier's disease who was treated with cetuximab. Of the proteins in the candidate signature, a core group, including c-Jun, Jagged-1, and Claudin 4, were decreased by EGFR inhibitors in all three models. Although the goal of these studies was not to validate a clinically useful EGFR inhibition signature, the results confirm the hypothesis that clinically used EGFR inhibitors generate characteristic protein expression changes. This work further outlines a prototypical approach to derive and test protein expression signatures for drug action on signaling networks.
Collapse
Affiliation(s)
- Matthew V Myers
- Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
37
|
Hyun SW, Anglin IE, Liu A, Yang S, Sorkin JD, Lillehoj E, Tonks NK, Passaniti A, Goldblum SE. Diverse injurious stimuli reduce protein tyrosine phosphatase-μ expression and enhance epidermal growth factor receptor signaling in human airway epithelia. Exp Lung Res 2011; 37:327-43. [PMID: 21649524 DOI: 10.3109/01902148.2011.566673] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In response to injury, airway epithelia utilize an epidermal growth factor (EGF) receptor (EGFR) signaling program to institute repair and restitution. Protein tyrosine phosphatases (PTPs) counterregulate EGFR autophosphorylation and downstream signaling. PTPμ is highly expressed in lung epithelia and can be localized to intercellular junctions where its ectodomain homophilically interacts with PTPμ ectodomain expressed on neighboring cells. We asked whether PTPμ expression might be altered in response to epithelial injury and whether altered PTPμ expression might influence EGFR signaling. In A549 cells, diverse injurious stimuli dramatically reduced PTPμ protein expression. Under basal conditions, small interfering RNA (siRNA)-induced silencing of PTPμ increased EGFR Y992 and Y1068 phosphorylation. In the presence of EGF, PTPμ knockdown increased EGFR Y845, Y992, Y1045, Y1068, Y1086, and Y1173 but not Y1148 phosphorylation. Reduced PTPμ expression increased EGF-stimulated phosphorylation of Y992, a docking site for phospholipase C (PLC)γ(1), activation of PLCγ(1) itself, and increased cell migration in both wounding and chemotaxis assays. In contrast, overexpression of PTPμ decreased EGF-stimulated EGFR Y992 and Y1068 phosphorylation. Therefore, airway epithelial injury profoundly reduces PTPμ expression, and PTPμ depletion selectively increases phosphorylation of specific EGFR tyrosine residues, PLCγ(1) activation, and cell migration, providing a novel mechanism through which epithelial integrity may be restored.
Collapse
Affiliation(s)
- Sang W Hyun
- Department of Medicine, Mucosal Biology Research Center, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Preconditioned Endothelial Progenitor Cells Reduce Formation of Melanoma Metastases through SPARC-Driven Cell–Cell Interactions and Endocytosis. Cancer Res 2011; 71:4748-57. [DOI: 10.1158/0008-5472.can-10-2449] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Garg P, Yang S, Liu A, Pallero MA, Buchsbaum DJ, Mosher DF, Murphy-Ullrich JE, Goldblum SE. Thrombospondin-1 opens the paracellular pathway in pulmonary microvascular endothelia through EGFR/ErbB2 activation. Am J Physiol Lung Cell Mol Physiol 2011; 301:L79-90. [PMID: 21531776 DOI: 10.1152/ajplung.00287.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Thrombospondin-1 (TSP1) is a multidomain protein that contains epidermal growth factor (EGF)-like repeats that indirectly activate the EGF receptor (EGFR) and selected downstream signaling pathways. In these studies, we show that TSP1 opens the paracellular pathway in human lung microvascular endothelial cells (HMVEC-Ls) in a dose-, time-, and protein tyrosine kinase (PTK)-dependent manner. TSP1 increased tyrosine phosphorylation of proteins enriched to intercellular boundaries including the zonula adherens (ZA) proteins, vascular endothelial-cadherin, γ-catenin, and p120 catenin. In HMVEC-Ls, EGFR and ErbB2 are expressed at low levels, and both heterodimerize and tyrosine autophosphorylate in response to TSP1. Prior EGFR-selective PTK inhibition with AG1478 or ErbB2-selective PTK inhibition with AG825 protected against TSP1-induced tyrosine phosphorylation of ZA proteins and barrier disruption. Preincubation of HMVEC-Ls with an EGFR ectodomain-blocking antibody also prevented TSP1-induced opening of the paracellular pathway. Therefore, in HMVEC-Ls, TSP1 increases tyrosine phosphorylation of ZA proteins and opens the paracellular pathway, in part, through EGFR/ErbB2 activation. Surprisingly, recombinant TSP1 EGF-like repeats 1-3 and the high-affinity EGFR ligands, EGF, TGF-α, and amphiregulin, each failed to increase paracellular permeability. However, HMVEC-Ls in which EGFR was overexpressed became responsive to the EGF-like repeats of TSP1 as well as to EGF. These studies indicate that TSP1 disrupts the endothelial barrier through EGFR/ErbB2 activation although additional signals are necessary in cells with low receptor expression.
Collapse
Affiliation(s)
- Pallavi Garg
- Mucosal Biology Research Center, and Departments of Medicine and Pathology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Ardawatia VV, Masià-Balagué M, Krakstad BF, Johansson BB, Kreitzburg KM, Spriet E, Lewis AE, Meigs TE, Aragay AM. Gα12 binds to the N-terminal regulatory domain of p120ctn, and downregulates p120ctn tyrosine phosphorylation induced by Src family kinases via a RhoA independent mechanism. Exp Cell Res 2011; 317:293-306. [DOI: 10.1016/j.yexcr.2010.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 10/18/2010] [Accepted: 10/18/2010] [Indexed: 01/23/2023]
|
41
|
Hong JY, Park JI, Cho K, Gu D, Ji H, Artandi SE, McCrea PD. Shared molecular mechanisms regulate multiple catenin proteins: canonical Wnt signals and components modulate p120-catenin isoform-1 and additional p120 subfamily members. J Cell Sci 2010; 123:4351-65. [PMID: 21098636 DOI: 10.1242/jcs.067199] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wnt signaling pathways have fundamental roles in animal development and tumor progression. Here, employing Xenopus embryos and mammalian cell lines, we report that the degradation machinery of the canonical Wnt pathway modulates p120-catenin protein stability through mechanisms shared with those regulating β-catenin. For example, in common with β-catenin, exogenous expression of destruction complex components, such as GSK3β and axin, promotes degradation of p120-catenin. Again in parallel with β-catenin, reduction of canonical Wnt signals upon depletion of LRP5 and LRP6 results in p120-catenin degradation. At the primary sequence level, we resolved conserved GSK3β phosphorylation sites in the amino-terminal region of p120-catenin present exclusively in isoform-1. Point-mutagenesis of these residues inhibited the association of destruction complex components, such as those involved in ubiquitylation, resulting in stabilization of p120-catenin. Functionally, in line with predictions, p120 stabilization increased its signaling activity in the context of the p120-Kaiso pathway. Importantly, we found that two additional p120-catenin family members, ARVCF-catenin and δ-catenin, associate with axin and are degraded in its presence. Thus, as supported using gain- and loss-of-function approaches in embryo and cell line systems, canonical Wnt signals appear poised to have an impact upon a breadth of catenin biology in vertebrate development and, possibly, human cancers.
Collapse
Affiliation(s)
- Ji Yeon Hong
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Zemojtel T, Duchniewicz M, Zhang Z, Paluch T, Luz H, Penzkofer T, Scheele JS, Zwartkruis FJT. Retrotransposition and mutation events yield Rap1 GTPases with differential signalling capacity. BMC Evol Biol 2010; 10:55. [PMID: 20170508 PMCID: PMC2831893 DOI: 10.1186/1471-2148-10-55] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 02/19/2010] [Indexed: 11/21/2022] Open
Abstract
Background Retrotransposition of mRNA transcripts gives occasionally rise to functional retrogenes. Through acquiring tempero-spatial expression patterns distinct from their parental genes and/or functional mutations in their coding sequences, such retrogenes may in principle reshape signalling networks. Results Here we present evidence for such a scenario, involving retrogenes of Rap1 belonging to the Ras family of small GTPases. We identified two murine and one human-specific retrogene of Rap1A and Rap1B, which encode proteins that differ by only a few amino acids from their parental Rap1 proteins. Markedly, human hRap1B-retro and mouse mRap1A-retro1 acquired mutations in the 12th and 59th amino acids, respectively, corresponding to residues mutated in constitutively active oncogenic Ras proteins. Statistical and structural analyses support a functional evolution scenario, where Rap1 isoforms of retrogenic origin are functionally distinct from their parental proteins. Indeed, all retrogene-encoded GTPases have an increased GTP/GDP binding ratio in vivo, indicating that their conformations resemble that of active GTP-bound Rap1. We furthermore demonstrate that these three Rap1 isoforms exhibit distinct affinities for the Ras-binding domain of RalGDS. Finally, when tested for their capacity to induce key cellular processes like integrin-mediated cell adhesion or cell spreading, marked differences are seen. Conclusions Together, these data lend strong support for an evolution scenario, where retrotransposition and subsequent mutation events generated species-specific Rap1 isoforms with differential signaling potential. Expression of the constitutively active human Rap1B-retro in cells like those derived from Ramos Burkitt's lymphoma and bone marrow from a patient with myelodysplastic syndrome (MDS) warrants further investigation into its role in disease development.
Collapse
Affiliation(s)
- Tomasz Zemojtel
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Chan HL, Chou HC, Duran M, Gruenewald J, Waterfield MD, Ridley A, Timms JF. Major role of epidermal growth factor receptor and Src kinases in promoting oxidative stress-dependent loss of adhesion and apoptosis in epithelial cells. J Biol Chem 2009; 285:4307-18. [PMID: 19996095 DOI: 10.1074/jbc.m109.047027] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A growing body of evidence suggests that reactive oxygen species are critical components of cell signaling pathways, in particular regulating protein phosphorylation events. Here, we show that oxidative stress in response to hydrogen peroxide treatment of human epithelial cells induces robust tyrosine phosphorylation on multiple proteins. Using an anti-phosphotyrosine purification and liquid chromatography-tandem mass spectrometry approach, we have identified many of these H(2)O(2)-induced tyrosine-phosphorylated proteins. Importantly, we show that epidermal growth factor receptor (EGFR) and Src are the primary upstream kinases mediating these events through their redox activation. The finding that many of the identified proteins have functions in cell adhesion, cell-cell junctions, and the actin cytoskeleton prompted us to examine stress-induced changes in adhesion. Immunofluorescence analysis showed that H(2)O(2) alters cell adhesion structures and the actin cytoskeleton causing loss of adhesion and apoptosis. Remarkably, these cellular changes could be attenuated by inhibition of EGFR and Src, identifying these kinases as targets to block oxidative damage. In summary, our data demonstrate that EGFR and Src together play a central role in oxidative stress-induced phosphorylation, which in turn results in loss of adhesion, morphological changes, and cell damage in epithelial cells. These data also provide a general model for redox signaling in other cell systems.
Collapse
Affiliation(s)
- Hong-Lin Chan
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, WC1E 6BT London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
44
|
Chen Y, Chen CH, Tung PY, Huang SH, Wang SM. An acidic extracellular pH disrupts adherens junctions in HepG2 cells by Src kinases-dependent modification of E-cadherin. J Cell Biochem 2009; 108:851-9. [DOI: 10.1002/jcb.22313] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Lee M, Choi S, Halldén G, Yo SJ, Schichnes D, Aponte GW. P2Y5 is a G(alpha)i, G(alpha)12/13 G protein-coupled receptor activated by lysophosphatidic acid that reduces intestinal cell adhesion. Am J Physiol Gastrointest Liver Physiol 2009; 297:G641-54. [PMID: 19679818 PMCID: PMC2763810 DOI: 10.1152/ajpgi.00191.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
P2Y5 is a G protein-coupled receptor that binds and is activated by lysophosphatidic acid (LPA). We determined that P2Y5 transcript is expressed along the intestinal mucosa and investigated the intracellular pathways induced by P2Y5 activation, which could contribute to LPA effects on intestinal cell adhesion. P2Y5 heterologously expressed in CHO and small intestinal hBRIE 380i cells was activated by LPA resulting in an increase in intracellular calcium ([Ca(2+)](i)) when the cells concurrently expressed G(alpha)(Delta6qi5myr). P2Y5 activation also increased the phosphorylation of ERK1/2 that was sensitive to pertussis toxin. Together these indicate that P2Y5 activation by LPA induces an increase in [Ca(2+)](i) and ERK1/2 phosphorylation through G(alpha)(i). We discovered that P2Y5 was activated by farnesyl pyrophosphate (FPP) without a detectable change in [Ca(2+)](i). The activation of P2Y5 by LPA or FPP induced the activity of a serum response element (SRE)-linked luciferase reporter that was inhibited by the RGS domain of p115RhoGEF, C3 exotoxin, and Y-27632, suggesting the involvement of G(alpha)(12/13), Rho GTPase, and ROCK, respectively. However, only LPA-mediated induction of SRE reporter activity was sensitive to inhibitors targeting p38 MAPK, PI3K, PLC, and PKC. In addition, only LPA transactivated the epidermal growth factor receptor, leading to an induction of ERK1/2 phosphorylation. These observations correlate with our subsequent finding that P2Y5 activation by LPA, and not FPP, reduced intestinal cell adhesion. This study elucidates a mechanism whereby LPA can act as a luminal and/or serosal cue to alter mucosal integrity.
Collapse
Affiliation(s)
- Mike Lee
- 1Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley, California; and
| | - Sungwon Choi
- 1Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley, California; and
| | - Gunnel Halldén
- 1Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley, California; and
| | - Sek Jin Yo
- 1Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley, California; and
| | - Denise Schichnes
- 2College of Natural Resources Biological Imaging Facility, University of California at Berkeley, Berkeley, California
| | - Gregory W. Aponte
- 1Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley, California; and
| |
Collapse
|
46
|
Lugo-Martínez VH, Petit CS, Fouquet S, Le Beyec J, Chambaz J, Pinçon-Raymond M, Cardot P, Thenet S. Epidermal growth factor receptor is involved in enterocyte anoikis through the dismantling of E-cadherin-mediated junctions. Am J Physiol Gastrointest Liver Physiol 2009; 296:G235-44. [PMID: 19056766 DOI: 10.1152/ajpgi.90313.2008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Enterocytes of the intestinal epithelium are continually regenerated. They arise from precursor cells in crypts, migrate along villi, and finally die, 3-4 days later, when they reach the villus apex. Their death is thought to occur by anoikis, a form of apoptosis induced by cell detachment, but the mechanism of this process remains poorly understood. We have previously shown that a key event in the onset of anoikis in normal enterocytes detached from the basal lamina is the disruption of adherens junctions mediated by E-cadherin (Fouquet S, Lugo-Martinez VH, Faussat AM, Renaud F, Cardot P, Chambaz J, Pincon-Raymond M, Thenet S. J Biol Chem 279: 43061-43069, 2004). Here we have further investigated the mechanisms underlying this disassembly of the adherens junctions. We show that disruption of the junctions occurs through endocytosis of E-cadherin and that this process depends on the tyrosine-kinase activity of the epidermal growth factor receptor (EGFR). Activation of EGFR was detected in detached enterocytes before E-cadherin disappearance. Specific inhibition of EGFR by tyrphostin AG-1478 maintained E-cadherin and its cytoplasmic partners beta- and alpha-catenin at cell-cell contacts and decreased anoikis. Finally, EGFR activation was evidenced in the intestinal epithelium in vivo, in rare individual cells, which were shown to lose their interactions with the basal lamina. We conclude that EGFR is activated as enterocytes become detached from the basal lamina, and that this mechanism contributes to the disruption of E-cadherin-dependent junctions leading to anoikis. This suggests that EGFR participates in the physiological elimination of the enterocytes.
Collapse
|
47
|
Liu A, Garg P, Yang S, Gong P, Pallero MA, Annis DS, Liu Y, Passaniti A, Mann D, Mosher DF, Murphy-Ullrich JE, Goldblum SE. Epidermal growth factor-like repeats of thrombospondins activate phospholipase Cgamma and increase epithelial cell migration through indirect epidermal growth factor receptor activation. J Biol Chem 2009; 284:6389-402. [PMID: 19129184 DOI: 10.1074/jbc.m809198200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Thrombospondin (TSP) 1 is a trimeric multidomain protein that contains motifs that recognize distinct host cell receptors coupled to multiple signaling pathways. Selected TSP1-induced cellular responses are tyrosine kinase-dependent, and TSP1 contains epidermal growth factor (EGF)-like repeats. Specific receptor interactions or functions for the EGF-like repeats have not been identified. We asked whether one or more biological responses to TSP1 might be explained through EGF receptor (EGFR) activation. In A431 cells, TSP1 increased autophosphorylation of Tyr-1068 of EGFR in a dose- and time-dependent manner. The ability of TSP1 to activate EGFR was replicated by the tandem EGF-like repeats as a recombinant protein. The three EGF-like repeats alone produced a high level of Tyr-1068 phosphorylation. EGF-like repeats from TSP2 and TSP4 also activated EGFR. Tyr-1068 phosphorylation was less when individual EGF-like repeats were tested or flanking sequences were added to the three EGF-like repeats. TSP1 and its EGF-like repeats also increased phosphorylation of EGFR Tyr-845, Tyr-992, Tyr-1045, Tyr-1086, and Tyr-1173, activated phospholipase Cgamma, and increased cell migration. No evidence was found for binding of the EGF-like repeats to EGFR. Instead, EGFR activation in response to TSP1 or its EGF-like repeats required matrix metalloprotease activity, including activity of matrix metalloprotease 9. Access to the ligand-binding portion of the EGFR ectodomain was also required. These findings suggest release of an endogenous EGFR ligand in response to ligation of a second unknown receptor by the TSPs.
Collapse
Affiliation(s)
- Anguo Liu
- Mucosal Biology Research Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu A, Mosher DF, Murphy-Ullrich JE, Goldblum SE. The counteradhesive proteins, thrombospondin 1 and SPARC/osteonectin, open the tyrosine phosphorylation-responsive paracellular pathway in pulmonary vascular endothelia. Microvasc Res 2009; 77:13-20. [PMID: 18952113 PMCID: PMC3022346 DOI: 10.1016/j.mvr.2008.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 08/28/2008] [Indexed: 11/30/2022]
Abstract
Counteradhesive proteins are a group of genetically and structurally distinct multidomain proteins that have been grouped together for their ability to inhibit cell-substrate interactions. Three counteradhesive proteins that influence endothelial cell behavior include thrombospondin (TSP)1, (SPARC) (Secreted Protein Acidic and Rich in Cysteine), also known as osteonectin, and tenascin. More recently, these proteins have been shown to regulate not only cell-matrix interactions but cell-cell interactions as well. TSP1 increases tyrosine phosphorylation of components of the cell-cell adherens junctions or zonula adherens (ZA) and opens the paracellular pathway in human lung microvascular endothelia. The epidermal growth factor (EGF)-repeats of TSP1 activate the (EGF) receptor (EGFR) and ErbB2, and these two receptor protein tyrosine kinases (PTK)s participate in ZA protein tyrosine phosphorylation and barrier disruption in response to the TSP1 stimulus. For the barrier response to TSP1, EGFR/ErbB2 activation is necessary but insufficient. Protein tyrosine phosphatase (PTP)mu counter-regulates phosphorylation of selected tyrosine residues within the cytoplasmic domain of EGFR. Although tenascin, like TSP1, also contains EGF-like repeats and is known to activate EGFR, whether it also opens the paracellular pathway is unknown. In addition to TSP1, tenascin, and the other TSP family members, there are numerous other proteins that also contain EGF-like repeats and participate in hemostasis, wound healing, and tissue remodeling. EGFR not only responds to direct binding of EGF motif-containing ligands but can also be transactivated by a wide range of diverse stimuli. In fact, several established mediators of increased vascular permeability and/or lung injury, including thrombin, tumor necrosis factor-alpha, platelet-activating factor, bradykinin, angiopoietin, and H(2)O(2), transactivate EGFR. It is conceivable that EGFR serves a pivotal signaling role in a final common pathway for the pulmonary response to selected injurious stimuli. SPARC/Osteonectin also increases tyrosine phosphorylation of ZA proteins and opens the endothelial paracellular pathway in a PTK-dependent manner. The expression of the counteradhesive proteins is increased in response to a wide range of injurious stimuli. It is likely that these same molecules participate in the host response to acute lung injury and are operative during the barrier response within the pulmonary microvasculature.
Collapse
Affiliation(s)
- Anguo Liu
- University of Maryland School of Medicine, Mucosal Biology Research Center, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
49
|
Brown MV, Burnett PE, Denning MF, Reynolds AB. PDGF receptor activation induces p120-catenin phosphorylation at serine 879 via a PKCalpha-dependent pathway. Exp Cell Res 2009; 315:39-49. [PMID: 18950621 PMCID: PMC2925109 DOI: 10.1016/j.yexcr.2008.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/08/2008] [Accepted: 09/15/2008] [Indexed: 12/14/2022]
Abstract
p120-catenin (p120) is required for cadherin stability and is thought to have a central role in modulating cell-cell adhesion. Several lines of evidence suggest that S/T phosphorylation may regulate p120 activity, but the upstream kinases involved have not been established, nor has a discreet measurable function been assigned to an individual site. To approach these issues, we have generated p120 phospho-specific monoclonal antibodies to several individual phosphorylation sites and are using them to pinpoint upstream kinases and signaling pathways that control p120 activity. Protein Kinase C (PKC) has been implicated as a signaling intermediate in several cadherin-associated cellular activities. Signaling events that activate PKC induce rapid phosphorylation at p120 Serine 879 (S879), suggesting that p120 activity is regulated, in part, by one or more PKC isoforms. Here, we find that physiologic activation of a G-protein coupled receptor (i.e., endothelin receptor), as well as several Receptor Tyrosine Kinases, induce rapid and robust p120 phosphorylation at S879, suggesting that these pathways crosstalk to cadherin complexes via p120. Using Va2 cells and PDGF stimulation, we show for the first time that PDGFR-mediated phosphorylation at this site is dependent on PKCalpha, a conventional PKC isoform implicated previously in disruption of adherens junctions.
Collapse
Affiliation(s)
- Meredith V. Brown
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Patrick E. Burnett
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Medicine, Division of Dermatology, Vanderbilt University School of Medicine, Nashville, TN 37232
- VA Tennessee Valley Healthcare System, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Mitchell F. Denning
- Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL 60163
| | - Albert B. Reynolds
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
50
|
Molli PR, Adam L, Kumar R. Therapeutic IMC-C225 antibody inhibits breast cancer cell invasiveness via Vav2-dependent activation of RhoA GTPase. Clin Cancer Res 2008; 14:6161-70. [PMID: 18829495 PMCID: PMC3151536 DOI: 10.1158/1078-0432.ccr-07-5288] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Abnormalities in the expression and signaling pathways downstream of epidermal growth factor receptor (EGFR) contribute to progression, invasion, and maintenance of the malignant phenotype in human cancers. Accordingly, biological agents, such as the EGFR-blocking antibody IMC-C225 have promising anticancer potential and are currently in various stages of clinical development. Because use of IMC-C225 is limited, at present, only for treatment of cancer with high EGFR expression, the goal of the present study was to determine the effect of IMC-C225 on the invasiveness of breast cancer cells with high and low levels of EGFR expression. EXPERIMENTAL DESIGN The effect of IMC-C225 on invasion was studied using breast cancer cell lines with high and low levels of EGFR expression. RESULTS The addition of EGF led to progressive stress fiber dissolution. In contrast, cells treated with IMC-C225 showed reduced invasiveness and increased stress-fiber formation. Interestingly, IMC-C225 pretreatment was accompanied by EGFR phosphorylation, as detected using an anti-phosphorylated tyrosine antibody (PY99), which correlated with phosphorylation of Vav2 guanine nucleotide exchange factor and activation of RhoA GTPase irrespective of EGFR level, and Vav2 interacted with EGFR only in IMC-C225-treated cells. The underlying mechanism involved an enhanced interaction between beta1 integrins and EGFR upon IMC-C225 treatment. CONCLUSION Here, we defined a new mechanism for IMC-C225 that cross-links integrins with EGFR, leading to activation of RhoA and inhibition of breast cancer cell invasion irrespective of the level of EGFR in the cells, thus providing a rationale for using IMC-C225 in the metastatic setting independent of the levels of EGFR.
Collapse
Affiliation(s)
- Poonam R. Molli
- Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Liana Adam
- Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Rakesh Kumar
- Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|