1
|
Bertuccini L, Boussadia Z, Salzano AM, Vanni I, Passerò I, Nocita E, Scaloni A, Sanchez M, Sargiacomo M, Fiani ML, Tosini F. Unveiling Cryptosporidium parvum sporozoite-derived extracellular vesicles: profiling, origin, and protein composition. Front Cell Infect Microbiol 2024; 14:1367359. [PMID: 38660488 PMCID: PMC11039866 DOI: 10.3389/fcimb.2024.1367359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Cryptosporidium parvum is a common cause of a zoonotic disease and a main cause of diarrhea in newborns. Effective drugs or vaccines are still lacking. Oocyst is the infective form of the parasite; after its ingestion, the oocyst excysts and releases four sporozoites into the host intestine that rapidly attack the enterocytes. The membrane protein CpRom1 is a large rhomboid protease that is expressed by sporozoites and recognized as antigen by the host immune system. In this study, we observed the release of CpRom1 with extracellular vesicles (EVs) that was not previously described. To investigate this phenomenon, we isolated and resolved EVs from the excystation medium by differential ultracentrifugation. Fluorescence flow cytometry and transmission electron microscopy (TEM) experiments identified two types of sporozoite-derived vesicles: large extracellular vesicles (LEVs) and small extracellular vesicles (SEVs). Nanoparticle tracking analysis (NTA) revealed mode diameter of 181 nm for LEVs and 105 nm for SEVs, respectively. Immunodetection experiments proved the presence of CpRom1 and the Golgi protein CpGRASP in LEVs, while immune-electron microscopy trials demonstrated the localization of CpRom1 on the LEVs surface. TEM and scanning electron microscopy (SEM) showed that LEVs were generated by means of the budding of the outer membrane of sporozoites; conversely, the origin of SEVs remained uncertain. Distinct protein compositions were observed between LEVs and SEVs as evidenced by their corresponding electrophoretic profiles. Indeed, a dedicated proteomic analysis identified 5 and 16 proteins unique for LEVs and SEVs, respectively. Overall, 60 proteins were identified in the proteome of both types of vesicles and most of these proteins (48 in number) were already identified in the molecular cargo of extracellular vesicles from other organisms. Noteworthy, we identified 12 proteins unique to Cryptosporidium spp. and this last group included the immunodominant parasite antigen glycoprotein GP60, which is one of the most abundant proteins in both LEVs and SEVs.
Collapse
Affiliation(s)
| | - Zaira Boussadia
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Maria Salzano
- Proteomics, Metabolomics and Mass Spectrometry laboratory, ISPAAM, Consiglio Nazionale delle Ricerche, Portici, Italy
| | - Ilaria Vanni
- Department of Food Safety, Nutrition and Veterinary Public Health, SANV, Istituto Superiore di Sanità, Rome, Italy
| | - Ilaria Passerò
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Emanuela Nocita
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics and Mass Spectrometry laboratory, ISPAAM, Consiglio Nazionale delle Ricerche, Portici, Italy
| | | | - Massimo Sargiacomo
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Luisa Fiani
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Fabio Tosini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
2
|
Romano PS, Akematsu T, Besteiro S, Bindschedler A, Carruthers VB, Chahine Z, Coppens I, Descoteaux A, Alberto Duque TL, He CY, Heussler V, Le Roch KG, Li FJ, de Menezes JPB, Menna-Barreto RFS, Mottram JC, Schmuckli-Maurer J, Turk B, Tavares Veras PS, Salassa BN, Vanrell MC. Autophagy in protists and their hosts: When, how and why? AUTOPHAGY REPORTS 2023; 2:2149211. [PMID: 37064813 PMCID: PMC10104450 DOI: 10.1080/27694127.2022.2149211] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/15/2022] [Indexed: 03/12/2023]
Abstract
Pathogenic protists are a group of organisms responsible for causing a variety of human diseases including malaria, sleeping sickness, Chagas disease, leishmaniasis, and toxoplasmosis, among others. These diseases, which affect more than one billion people globally, mainly the poorest populations, are characterized by severe chronic stages and the lack of effective antiparasitic treatment. Parasitic protists display complex life-cycles and go through different cellular transformations in order to adapt to the different hosts they live in. Autophagy, a highly conserved cellular degradation process, has emerged as a key mechanism required for these differentiation processes, as well as other functions that are crucial to parasite fitness. In contrast to yeasts and mammals, protist autophagy is characterized by a modest number of conserved autophagy-related proteins (ATGs) that, even though, can drive the autophagosome formation and degradation. In addition, during their intracellular cycle, the interaction of these pathogens with the host autophagy system plays a crucial role resulting in a beneficial or harmful effect that is important for the outcome of the infection. In this review, we summarize the current state of knowledge on autophagy and other related mechanisms in pathogenic protists and their hosts. We sought to emphasize when, how, and why this process takes place, and the effects it may have on the parasitic cycle. A better understanding of the significance of autophagy for the protist life-cycle will potentially be helpful to design novel anti-parasitic strategies.
Collapse
Affiliation(s)
- Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - Takahiko Akematsu
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | | | | | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology. Department of Molecular Microbiology and Immunology. Johns Hopkins Malaria Research Institute. Johns Hopkins University Bloomberg School of Public Health. Baltimore 21205, MD, USA
| | - Albert Descoteaux
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC
| | - Thabata Lopes Alberto Duque
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Cynthia Y He
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Volker Heussler
- Institute of Cell Biology.University of Bern. Baltzerstr. 4 3012 Bern
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Feng-Jun Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | | | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Patricia Sampaio Tavares Veras
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia
- National Institute of Science and Technology of Tropical Diseases - National Council for Scientific Research and Development (CNPq)
| | - Betiana Nebai Salassa
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - María Cristina Vanrell
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| |
Collapse
|
3
|
Cruz Camacho A, Alfandari D, Kozela E, Regev-Rudzki N. Biogenesis of extracellular vesicles in protozoan parasites: The ESCRT complex in the trafficking fast lane? PLoS Pathog 2023; 19:e1011140. [PMID: 36821560 PMCID: PMC9949670 DOI: 10.1371/journal.ppat.1011140] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Extracellular vesicles (EVs) provide a central mechanism of cell-cell communication. While EVs are found in most organisms, their pathogenesis-promoting roles in parasites are of particular interest given the potential for medical insight and consequential therapeutic intervention. Yet, a key feature of EVs in human parasitic protozoa remains elusive: their mechanisms of biogenesis. Here, we survey the current knowledge on the biogenesis pathways of EVs secreted by the four main clades of human parasitic protozoa: apicomplexans, trypanosomatids, flagellates, and amoebae. In particular, we shine a light on findings pertaining to the Endosomal Sorting Complex Required for Transport (ESCRT) machinery, as in mammals it plays important roles in EV biogenesis. This review highlights the diversity in EV biogenesis in protozoa, as well as the related involvement of the ESCRT system in these unique organisms.
Collapse
Affiliation(s)
- Abel Cruz Camacho
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Alfandari
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ewa Kozela
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Bennink S, Pradel G. Vesicle dynamics during the egress of malaria gametocytes from the red blood cell. Mol Biochem Parasitol 2021; 243:111372. [PMID: 33961918 DOI: 10.1016/j.molbiopara.2021.111372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 01/09/2023]
Abstract
Malaria parasites are obligate intracellular pathogens that live in human red blood cells harbored by a parasitophorous vacuole. The parasites need to exit from the red blood cell to continue life-cycle progression and ensure human-to-mosquito transmission. Two types of blood stages are able to lyse the enveloping red blood cell to mediate egress, the merozoites and the gametocytes. The intraerythrocytic parasites exit the red blood cell via an inside-out mode during which the membrane of the parasitophorous vacuole ruptures prior to the red blood cell membrane. Membrane rupture is initiated by the exocytosis of specialized secretory vesicles following the perception of egress triggers. The molecular mechanisms of red blood cell egress have particularly been studied in malaria gametocytes. Upon activation by external factors, gametocytes successively discharge at least two types of vesicles, the osmiophilic bodies needed to rupture the parasitophorous vacuole membrane and recently identified egress vesicles that are important for the perforation of the erythrocyte membrane. In recent years, important components of the signaling cascades leading to red blood cell egress have been investigated and several proteins of the osmiophilic bodies have been identified. We here report on the newest findings on the egress of gametocytes from the red blood cell. We further focus on the content and function of the egress-related vesicles and discuss the molecular machinery that might drive vesicle discharge.
Collapse
Affiliation(s)
- Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Biology 2, RWTH Aachen University, Aachen, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Biology 2, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
5
|
Avalos-Padilla Y, Georgiev VN, Lantero E, Pujals S, Verhoef R, N. Borgheti-Cardoso L, Albertazzi L, Dimova R, Fernàndez-Busquets X. The ESCRT-III machinery participates in the production of extracellular vesicles and protein export during Plasmodium falciparum infection. PLoS Pathog 2021; 17:e1009455. [PMID: 33798247 PMCID: PMC9159051 DOI: 10.1371/journal.ppat.1009455] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/14/2021] [Accepted: 03/08/2021] [Indexed: 01/08/2023] Open
Abstract
Infection with Plasmodium falciparum enhances extracellular
vesicle (EV) production in parasitized red blood cells (pRBCs), an important
mechanism for parasite-to-parasite communication during the asexual
intraerythrocytic life cycle. The endosomal
sorting complex
required for transport
(ESCRT), and in particular the ESCRT-III sub-complex, participates in the
formation of EVs in higher eukaryotes. However, RBCs have lost the majority of
their organelles through the maturation process, including an important
reduction in their vesicular network. Therefore, the mechanism of EV production
in P. falciparum-infected RBCs remains to be
elucidated. Here we demonstrate that P.
falciparum possesses a functional ESCRT-III machinery
activated by an alternative recruitment pathway involving the action of PfBro1
and PfVps32/PfVps60 proteins. Additionally, multivesicular body formation and
membrane shedding, both reported mechanisms of EV production, were reconstituted
in the membrane model of giant unilamellar vesicles using the purified
recombinant proteins. Moreover, the presence of PfVps32, PfVps60 and PfBro1 in
EVs purified from a pRBC culture was confirmed by super-resolution microscopy
and dot blot assays. Finally, disruption of the PfVps60 gene
led to a reduction in the number of the produced EVs in the KO strain and
affected the distribution of other ESCRT-III components. Overall, our results
increase the knowledge on the underlying molecular mechanisms during malaria
pathogenesis and demonstrate that ESCRT-III P.
falciparum proteins participate in EV production. Malaria is a disease caused by Plasmodium parasites that is
still a leading cause of death in many low-income countries, and for which
currently available therapeutic strategies are not succeeding in its control,
let alone eradication. An interesting feature observed after
Plasmodium invasion is the increase of extracellular
vesicles (EVs) generated by parasitized red blood cells (pRBCs), which lack a
vesicular trafficking that would explain EV production. Here, by combining
different approaches, we demonstrated the participation of the
endosomal sorting
complex required for
transport (ESCRT) machinery from Plasmodium
falciparum in the production of EVs in pRBCs. Moreover, we were
able to detect ESCRT-III proteins adjacent to the membrane of the host and in
EVs purified from a pRBC culture, which shows the export of these proteins and
their participation in EV production. Finally, the disruption of an ESCRT-III
associated gene, Pfvps60, led to a significant reduction in the
amount of EVs. Altogether, these results confirm ESCRT-III participation in EV
production and provide novel information on the P.
falciparum protein export mechanisms, which can be used for
the development of new therapeutic strategies against malaria, based on the
disruption of EV formation and trafficking.
Collapse
Affiliation(s)
- Yunuen Avalos-Padilla
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute
of Science and Technology (BIST), Barcelona, Spain
- Barcelona Institute for Global Health (ISGlobal, Hospital
Clínic-Universitat de Barcelona), Barcelona, Spain
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids
and Interfaces, Science Park Golm, Potsdam, Germany
- * E-mail: (YA-P); (XF-B)
| | - Vasil N. Georgiev
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids
and Interfaces, Science Park Golm, Potsdam, Germany
| | - Elena Lantero
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute
of Science and Technology (BIST), Barcelona, Spain
- Barcelona Institute for Global Health (ISGlobal, Hospital
Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Silvia Pujals
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute
of Science and Technology (BIST), Barcelona, Spain
- Department of Electronics and Biomedical Engineering, Faculty of Physics,
Universitat de Barcelona, Barcelona, Spain
| | - René Verhoef
- Computational Biology Group, Eindhoven University of Technology,
Eindhoven, The Netherlands
| | - Livia N. Borgheti-Cardoso
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute
of Science and Technology (BIST), Barcelona, Spain
| | - Lorenzo Albertazzi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute
of Science and Technology (BIST), Barcelona, Spain
- Department of Biomedical Engineering and the Institute for Complex
Molecular Systems, Eindhoven University of Technology, Eindhoven, The
Netherlands
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids
and Interfaces, Science Park Golm, Potsdam, Germany
| | - Xavier Fernàndez-Busquets
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute
of Science and Technology (BIST), Barcelona, Spain
- Barcelona Institute for Global Health (ISGlobal, Hospital
Clínic-Universitat de Barcelona), Barcelona, Spain
- * E-mail: (YA-P); (XF-B)
| |
Collapse
|
6
|
Lecordier L, Uzureau S, Vanwalleghem G, Deleu M, Crowet JM, Barry P, Moran B, Voorheis P, Dumitru AC, Yamaryo-Botté Y, Dieu M, Tebabi P, Vanhollebeke B, Lins L, Botté CY, Alsteens D, Dufrêne Y, Pérez-Morga D, Nolan DP, Pays E. The Trypanosoma Brucei KIFC1 Kinesin Ensures the Fast Antibody Clearance Required for Parasite Infectivity. iScience 2020; 23:101476. [PMID: 32889430 PMCID: PMC7479354 DOI: 10.1016/j.isci.2020.101476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 07/30/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022] Open
Abstract
Human innate immunity to Trypanosoma brucei involves the trypanosome C-terminal kinesin TbKIFC1, which transports internalized trypanolytic factor apolipoprotein L1 (APOL1) within the parasite. We show that TbKIFC1 preferentially associates with cholesterol-containing membranes and is indispensable for mammalian infectivity. Knockdown of TbKIFC1 did not affect trypanosome growth in vitro but rendered the parasites unable to infect mice unless antibody synthesis was compromised. Surface clearance of Variant Surface Glycoprotein (VSG)-antibody complexes was far slower in these cells, which were more susceptible to capture by macrophages. This phenotype was not due to defects in VSG expression or trafficking but to decreased VSG mobility in a less fluid, stiffer surface membrane. This change can be attributed to increased cholesterol level in the surface membrane in TbKIFC1 knockdown cells. Clearance of surface-bound antibodies by T. brucei is therefore essential for infectivity and depends on high membrane fluidity maintained by the cholesterol-trafficking activity of TbKIFC1.
Collapse
Affiliation(s)
- Laurence Lecordier
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Sophie Uzureau
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Gilles Vanwalleghem
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Magali Deleu
- Laboratory of Molecular Biophysics at Interface (LBMI), University of Liège-Gembloux Agro Bio Tech, 2, Passage des Déportés, 5030 Gembloux, Belgium
| | - Jean-Marc Crowet
- Laboratory of Molecular Biophysics at Interface (LBMI), University of Liège-Gembloux Agro Bio Tech, 2, Passage des Déportés, 5030 Gembloux, Belgium
| | - Paul Barry
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Barry Moran
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Paul Voorheis
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Andra-Cristina Dumitru
- Louvain Institute of Biomolecular Science and Technology, Catholic University of Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Yoshiki Yamaryo-Botté
- Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, 38700 La Tronche, France
| | - Marc Dieu
- MaSUN, Mass Spectrometry Facility, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| | - Patricia Tebabi
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Benoit Vanhollebeke
- Laboratory of Neurovascular Signaling, Université Libre de Bruxelles, 12, Rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Laurence Lins
- Laboratory of Molecular Biophysics at Interface (LBMI), University of Liège-Gembloux Agro Bio Tech, 2, Passage des Déportés, 5030 Gembloux, Belgium
| | - Cyrille Y. Botté
- Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, 38700 La Tronche, France
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Catholic University of Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Yves Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Catholic University of Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - David Pérez-Morga
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des professeurs Jeener et Brachet, 6041 Gosselies, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, 12, Rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Derek P. Nolan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Etienne Pays
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| |
Collapse
|
7
|
Exosome Biogenesis in the Protozoa Parasite Giardia lamblia: A Model of Reduced Interorganellar Crosstalk. Cells 2019; 8:cells8121600. [PMID: 31835439 PMCID: PMC6953089 DOI: 10.3390/cells8121600] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 11/17/2022] Open
Abstract
: Extracellular vesicles (EVs) facilitate intercellular communication and are considered a promising therapeutic tool for the treatment of infectious diseases. These vesicles involve microvesicles (MVs) and exosomes and selectively transfer proteins, lipids, mRNAs, and microRNAs from one cell to another. While MVs are formed by extrusion of the plasma membrane, exosomes are a population of vesicles of endosomal origin that are stored inside the multivesicular bodies (MVBs) as intraluminal vesicles (ILVs) and are released when the MVBs fuse with the plasma membrane. Biogenesis of exosomes may be driven by the endosomal sorting complex required for transport (ESCRT) machinery or may be ESCRT independent, and it is still debated whether these are entirely separate pathways. In this manuscript, we report that the protozoan parasite, Giardia lamblia, although lacking a classical endo-lysosomal pathway, is able to produce and release exosome-like vesicles (ElV). By using a combination of biochemical and cell biology analyses, we found that the ElVs have the same size, shape, and protein and lipid composition as exosomes described for other eukaryotic cells. Moreover, we established that some endosome/lysosome peripheral vacuoles (PVs) contain ILV during the stationary phase. Our results indicate that ILV formation and ElV release depend on the ESCRT-associated AAA+-ATPase Vps4a, Rab11, and ceramide in this parasite. Interestingly, EIV biogenesis and release seems to occur in Giardia despite the fact that this parasite has lost most of the ESCRT machinery components during evolution and is unable to produce ceramide de novo. The differences in protozoa parasite EV composition, origin, and release may reveal functional and structural properties of EVs and, thus, may provide information on cell-to-cell communication and on survival mechanisms.
Collapse
|
8
|
Saha N, Dutta S, Datta SP, Sarkar S. The minimal ESCRT machinery of Giardia lamblia has altered inter-subunit interactions within the ESCRT-II and ESCRT-III complexes. Eur J Cell Biol 2017; 97:44-62. [PMID: 29224850 DOI: 10.1016/j.ejcb.2017.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 11/19/2022] Open
Abstract
The ESCRT pathway functions at different subcellular membranes to induce their negative curvature, and it has been largely characterized in model eukaryotes belonging to Opisthokonta. But searches of the genomes of many nonopisthokonts belonging to various supergroups indicate that some of them may harbour fewer ESCRT components. Of the genomes explored thus far, one of the most minimal set of ESCRT components was identified in the human pathogen Giardia lamblia, which belongs to Excavata. Here we report that an ESCRT-mediated pathway most likely operates at the peripheral vesicles, which are located at the cell periphery and the bare zone of this protist. Functional comparison of all the identified putative giardial ESCRT components, with the corresponding well-characterized orthologues from Saccharomyces cerevisiae, indicated that only some of the ESCRT components could functionally substitute for the corresponding yeast proteins. While GlVps25, GlVps2, and all three paralogues of GlVps4, tested positive in functional complementation assays, GlVps22, GlVps20, and GlVps24 did not. Binary interactions of either GlVps22 or GlVps25, with other ESCRT-II components from Giardia or yeast indicate that the giardial Vps36 orthologue is either completely missing or highly diverged. Interactions within the giardial ESCRT-III components also differ from those in yeast; while GlVps46a interacts preferentially with Vps24 compared to Vps2, GlVps46b, like the yeast orthologue, interacts with both.
Collapse
Affiliation(s)
- Nabanita Saha
- Department of Biochemistry, Bose Institute, P 1/12 CIT Road Scheme VII M, Kolkata 700054, West Bengal, India.
| | - Somnath Dutta
- Department of Biochemistry, Bose Institute, P 1/12 CIT Road Scheme VII M, Kolkata 700054, West Bengal, India.
| | - Shankari P Datta
- Department of Biochemistry, Bose Institute, P 1/12 CIT Road Scheme VII M, Kolkata 700054, West Bengal, India.
| | - Srimonti Sarkar
- Department of Biochemistry, Bose Institute, P 1/12 CIT Road Scheme VII M, Kolkata 700054, West Bengal, India.
| |
Collapse
|
9
|
Abdi A, Yu L, Goulding D, Rono MK, Bejon P, Choudhary J, Rayner J. Proteomic analysis of extracellular vesicles from a Plasmodium falciparum Kenyan clinical isolate defines a core parasite secretome. Wellcome Open Res 2017; 2:50. [PMID: 28944300 PMCID: PMC5583745 DOI: 10.12688/wellcomeopenres.11910.2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Many pathogens secrete effector molecules to subvert host immune responses, to acquire nutrients, and/or to prepare host cells for invasion. One of the ways that effector molecules are secreted is through extracellular vesicles (EVs) such as exosomes. Recently, the malaria parasite P. falciparum has been shown to produce EVs that can mediate transfer of genetic material between parasites and induce sexual commitment. Characterizing the content of these vesicles may improve our understanding of P. falciparum pathogenesis and virulence. METHODS Previous studies of P. falciparum EVs have been limited to long-term adapted laboratory isolates. In this study, we isolated EVs from a Kenyan P. falciparum clinical isolate adapted to in vitro culture for a short period and characterized their protein content by mass spectrometry (data are available via ProteomeXchange, with identifier PXD006925). RESULTS We show that P. falciparum extracellular vesicles ( PfEVs) are enriched in proteins found within the exomembrane compartments of infected erythrocytes such as Maurer's clefts (MCs), as well as the secretory endomembrane compartments in the apical end of the merozoites, suggesting that these proteins play a role in parasite-host interactions. Comparison of this novel clinically relevant dataset with previously published datasets helps to define a core secretome present in Plasmodium EVs. CONCLUSIONS P. falciparum extracellular vesicles contain virulence-associated parasite proteins. Therefore, analysis of PfEVs contents from a range of clinical isolates, and their functional validation may improve our understanding of the virulence mechanisms of the parasite, and potentially identify targets for interventions or diagnostics.
Collapse
Affiliation(s)
- Abdirahman Abdi
- Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya.,KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Lu Yu
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - David Goulding
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Martin K Rono
- Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya.,KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Jyoti Choudhary
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Julian Rayner
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
10
|
Abdi A, Yu L, Goulding D, Rono MK, Bejon P, Choudhary J, Rayner J. Proteomic analysis of extracellular vesicles from a Plasmodium falciparum Kenyan clinical isolate defines a core parasite secretome. Wellcome Open Res 2017. [PMID: 28944300 DOI: 10.12688/wellcomeopenres.11910.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Many pathogens secrete effector molecules to subvert host immune responses, to acquire nutrients, and/or to prepare host cells for invasion. One of the ways that effector molecules are secreted is through extracellular vesicles (EVs) such as exosomes. Recently, the malaria parasite P. falciparum has been shown to produce EVs that can mediate transfer of genetic material between parasites and induce sexual commitment. Characterizing the content of these vesicles may improve our understanding of P. falciparum pathogenesis and virulence. METHODS Previous studies of P. falciparum EVs have been limited to long-term adapted laboratory isolates. In this study, we isolated EVs from a Kenyan P. falciparum clinical isolate adapted to in vitro culture for a short period and characterized their protein content by mass spectrometry (data are available via ProteomeXchange, with identifier PXD006925). RESULTS We show that P. falciparum extracellular vesicles ( PfEVs) are enriched in proteins found within the exomembrane compartments of infected erythrocytes such as Maurer's clefts (MCs), as well as the secretory endomembrane compartments in the apical end of the merozoites, suggesting that these proteins play a role in parasite-host interactions. Comparison of this novel clinically relevant dataset with previously published datasets helps to define a core secretome present in Plasmodium EVs. CONCLUSIONS P. falciparum extracellular vesicles contain virulence-associated parasite proteins. Therefore, analysis of PfEVs contents from a range of clinical isolates, and their functional validation may improve our understanding of the virulence mechanisms of the parasite, and potentially identify targets for interventions or diagnostics.
Collapse
Affiliation(s)
- Abdirahman Abdi
- Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya.,KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Lu Yu
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - David Goulding
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Martin K Rono
- Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya.,KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Jyoti Choudhary
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Julian Rayner
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
11
|
Ashano E, Isewon I, Oyelade J, Adebiyi E. Cluster analysis of Plasmodium RNA-seq time-course data identifies stage-specific co-regulated biological processes and regulatory elements. F1000Res 2016; 5. [PMID: 27990252 PMCID: PMC5155496 DOI: 10.12688/f1000research.9093.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2016] [Indexed: 12/26/2022] Open
Abstract
In this study, we interpreted RNA-seq time-course data of three developmental stages of Plasmodium species by clustering genes based on similarities in their expression profile without prior knowledge of the gene function. Functional enrichment of clusters of upregulated genes at specific time-points reveals potential targetable biological processes with information on their timings. We identified common consensus sequences that these clusters shared as potential points of coordinated transcriptional control. Five cluster groups showed upregulated profile patterns of biological interest. This included two clusters from the Intraerythrocytic Developmental Cycle (cluster 4 = 16 genes, and cluster 9 = 32 genes), one from the sexual development stage (cluster 2 = 851 genes), and two from the gamete-fertilization stage in the mosquito host (cluster 4 = 153 genes, and cluster 9 = 258 genes). The IDC expressed the least numbers of genes with only 1448 genes showing any significant activity of the 5020 genes (~29%) in the experiment. Gene ontology (GO) enrichment analysis of these clusters revealed a total of 671 uncharacterized genes implicated in 14 biological processes and components associated with these stages, some of which are currently being investigated as drug targets in on-going research. Five putative transcription regulatory binding motifs shared by members of each cluster were also identified, one of which was also identified in a previous study by separate researchers. Our study shows stage-specific genes and biological processes that may be important in antimalarial drug research efforts. In addition, timed-coordinated control of separate processes may explain the paucity of factors in parasites.
Collapse
Affiliation(s)
- Efejiro Ashano
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, 110001, Nigeria
| | - Itunuoluwa Isewon
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, 110001, Nigeria.,Department of Computer and Information Sciences, Covenant University, Ota, Ogun State, 110001, Nigeria
| | - Jelili Oyelade
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, 110001, Nigeria.,Department of Computer and Information Sciences, Covenant University, Ota, Ogun State, 110001, Nigeria
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, 110001, Nigeria.,Department of Computer and Information Sciences, Covenant University, Ota, Ogun State, 110001, Nigeria.,Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg,, 69120, Germany
| |
Collapse
|
12
|
Jimenez-Ruiz E, Morlon-Guyot J, Daher W, Meissner M. Vacuolar protein sorting mechanisms in apicomplexan parasites. Mol Biochem Parasitol 2016; 209:18-25. [PMID: 26844642 PMCID: PMC5154328 DOI: 10.1016/j.molbiopara.2016.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 01/14/2016] [Accepted: 01/28/2016] [Indexed: 12/26/2022]
Abstract
The phylum Apicomplexa comprises more than 5000 species including pathogens of clinical and economical importance. These obligate intracellular parasites possess a highly complex endomembrane system to build amongst others three morphologically distinct secretory organelles: rhoptries, micronemes and dense granules. Proteins released by these organelles are essential for invasion and hijacking of the host cell. Due to the complexity of the internal organization of these parasites, a wide panoply of trafficking factors was expected to be required for the correct sorting of proteins towards the various organelles. However, Toxoplasma gondii and other apicomplexan parasites contain only a core set of these factors and several of the vacuolar protein sorting (VPS) homologues found in most eukaryotes have been lost in this phylum. In this review, we will summarise our current knowledge about the role of trafficking complexes in T. gondii, highlighting recent studies focused on complexes formed by VPS proteins. We also present a novel, hypothetical model, suggesting the recycling of parasite membrane and micronemal proteins.
Collapse
|
13
|
Klinger CM, Ramirez-Macias I, Herman EK, Turkewitz AP, Field MC, Dacks JB. Resolving the homology-function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology. Mol Biochem Parasitol 2016; 209:88-103. [PMID: 27444378 PMCID: PMC5140719 DOI: 10.1016/j.molbiopara.2016.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 10/21/2022]
Abstract
With advances in DNA sequencing technology, it is increasingly common and tractable to informatically look for genes of interest in the genomic databases of parasitic organisms and infer cellular states. Assignment of a putative gene function based on homology to functionally characterized genes in other organisms, though powerful, relies on the implicit assumption of functional homology, i.e. that orthology indicates conserved function. Eukaryotes reveal a dazzling array of cellular features and structural organization, suggesting a concomitant diversity in their underlying molecular machinery. Significantly, examples of novel functions for pre-existing or new paralogues are not uncommon. Do these examples undermine the basic assumption of functional homology, especially in parasitic protists, which are often highly derived? Here we examine the extent to which functional homology exists between organisms spanning the eukaryotic lineage. By comparing membrane trafficking proteins between parasitic protists and traditional model organisms, where direct functional evidence is available, we find that function is indeed largely conserved between orthologues, albeit with significant adaptation arising from the unique biological features within each lineage.
Collapse
Affiliation(s)
- Christen M Klinger
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Emily K Herman
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
14
|
Overexpression of Plasmodium berghei ATG8 by Liver Forms Leads to Cumulative Defects in Organelle Dynamics and to Generation of Noninfectious Merozoites. mBio 2016; 7:mBio.00682-16. [PMID: 27353755 PMCID: PMC4937212 DOI: 10.1128/mbio.00682-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Plasmodium parasites undergo continuous cellular renovation to adapt to various environments in the vertebrate host and insect vector. In hepatocytes, Plasmodium berghei discards unneeded organelles for replication, such as micronemes involved in invasion. Concomitantly, intrahepatic parasites expand organelles such as the apicoplast that produce essential metabolites. We previously showed that the ATG8 conjugation system is upregulated in P. berghei liver forms and that P. berghei ATG8 (PbATG8) localizes to the membranes of the apicoplast and cytoplasmic vesicles. Here, we focus on the contribution of PbATG8 to the organellar changes that occur in intrahepatic parasites. We illustrated that micronemes colocalize with PbATG8-containing structures before expulsion from the parasite. Interference with PbATG8 function by overexpression results in poor development into late liver stages and production of small merosomes that contain immature merozoites unable to initiate a blood infection. At the cellular level, PbATG8-overexpressing P. berghei exhibits a delay in microneme compartmentalization into PbATG8-containing autophagosomes and elimination compared to parasites from the parental strain. The apicoplast, identifiable by immunostaining of the acyl carrier protein (ACP), undergoes an abnormally fast proliferation in mutant parasites. Over time, the ACP staining becomes diffuse in merosomes, indicating a collapse of the apicoplast. PbATG8 is not incorporated into the progeny of mutant parasites, in contrast to parental merozoites in which PbATG8 and ACP localize to the apicoplast. These observations reveal that Plasmodium ATG8 is a key effector in the development of merozoites by controlling microneme clearance and apicoplast proliferation and that dysregulation in ATG8 levels is detrimental for malaria infectivity. IMPORTANCE Malaria is responsible for more mortality than any other parasitic disease. Resistance to antimalarial medicines is a recurring problem; new drugs are urgently needed. A key to the parasite's successful intracellular development in the liver is the metabolic changes necessary to convert the parasite from a sporozoite to a replication-competent, metabolically active trophozoite form. Our study reinforces the burgeoning concept that organellar changes during parasite differentiation are mediated by an autophagy-like process. We have identified ATG8 in Plasmodium liver forms as an important effector that controls the development and fate of organelles, e.g., the clearance of micronemes that are required for hepatocyte invasion and the expansion of the apicoplast that produces many metabolites indispensable for parasite replication. Given the unconventional properties and the importance of ATG8 for parasite development in hepatocytes, targeting the parasite's autophagic pathway may represent a novel approach to control malarial infections.
Collapse
|
15
|
Ebine K, Hirai M, Sakaguchi M, Yahata K, Kaneko O, Saito-Nakano Y. Plasmodium Rab5b is secreted to the cytoplasmic face of the tubovesicular network in infected red blood cells together with N-acylated adenylate kinase 2. Malar J 2016; 15:323. [PMID: 27316546 PMCID: PMC4912828 DOI: 10.1186/s12936-016-1377-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rab5 GTPase regulates membrane trafficking between the plasma membrane and endosomes and harbours a conserved C-terminal isoprenyl modification that is necessary for membrane recruitment. Plasmodium falciparum encodes three Rab5 isotypes, and one of these, Rab5b (PfRab5b), lacks the C-terminal modification but possesses the N-terminal myristoylation motif. PfRab5b was reported to localize to the parasite periphery. However, the trafficking pathway regulated by PfRab5b is unknown. METHODS A complementation analysis of Rab5 isotypes was performed in Plasmodium berghei. A constitutively active PfRab5b mutant was expressed under the regulation of a ligand-dependent destabilization domain (DD)-tag system in P. falciparum. The localization of PfRab5b was evaluated after removing the ligand followed by selective permeabilization of the membrane with different detergents. Furthermore, P. falciparum N-terminally myristoylated adenylate kinase 2 (PfAK2) was co-expressed with PfRab5b, and trafficking of PfAK2 to the parasitophorous vacuole membrane was examined by confocal microscopy. RESULTS PfRab5b complemented the function of PbRab5b, however, the conventional C-terminally isoprenylated Rab5, PbRab5a or PbRab5c, did not. The constitutively active PfRab5b mutant localized to the cytosol of the parasite and the tubovesicular network (TVN), a region that extends from the parasitophorous vacuole membrane (PVM) in infected red blood cells (iRBCs). By removing the DD-ligand, parasite cytosolic PfRab5b signal disappeared and a punctate structure adjacent to the endoplasmic reticulum (ER) and parasite periphery accumulated. The peripheral PfRab5b was sensitive to extracellular proteolysis after treatment with streptolysin O, which selectively permeabilizes the red blood cell plasma membrane, indicating that PfRab5b localized on the iRBC cytoplasmic face of the TVN. Transport of PfAK2 to the PVM was abrogated by overexpression of PfRab5b, and PfAK2 accumulated in the punctate structure together with PfRab5b. CONCLUSION N-myristoylated Plasmodium Rab5b plays a role that is distinct from that of conventional mammalian Rab5 isotypes. PfRab5b localizes to a compartment close to the ER, translocated to the lumen of the organelle, and co-localizes with PfAK2. PfRab5b and PfAK2 are then transported to the TVN, and PfRab5b localizes on the iRBC cytoplasmic face of TVN. These data demonstrate that PfRab5b is transported from the parasite cytosol to TVN together with N-myristoylated PfAK2 via an uncharacterized membrane-trafficking pathway.
Collapse
Affiliation(s)
- Kazuo Ebine
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-Ku, Tokyo, Japan. .,Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi, Japan.
| | - Makoto Hirai
- Department of Molecular and Cellular Parasitology, Graduate School of Medicine, Juntendo University, Bunkyo-Ku, Tokyo, Japan.,Department of Parasitology, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Miako Sakaguchi
- Central Laboratory, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Nagasaki, Japan
| | - Kazuhide Yahata
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Nagasaki, Japan
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Nagasaki, Japan
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-Ku, Tokyo, Japan.
| |
Collapse
|
16
|
Wideman JG, Leung KF, Field MC, Dacks JB. The cell biology of the endocytic system from an evolutionary perspective. Cold Spring Harb Perspect Biol 2014; 6:a016998. [PMID: 24478384 DOI: 10.1101/cshperspect.a016998] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Evolutionary cell biology can afford an interdisciplinary comparative view that gives insights into both the functioning of modern cells and the origins of cellular systems, including the endocytic organelles. Here, we explore several recent evolutionary cell biology studies, highlighting investigations into the origin and diversity of endocytic systems in eukaryotes. Beginning with a brief overview of the eukaryote tree of life, we show how understanding the endocytic machinery in a select, but diverse, array of organisms provides insights into endocytic system origins and predicts the likely configuration in the last eukaryotic common ancestor (LECA). Next, we consider three examples in which a comparative approach yielded insight into the function of modern cellular systems. First, using ESCRT-0 as an example, we show how comparative cell biology can discover both lineage-specific novelties (ESCRT-0) as well as previously ignored ancient proteins (Tom1), likely of both evolutionary and functional importance. Second, we highlight the power of comparative cell biology for discovery of previously ignored but potentially ancient complexes (AP5). Finally, using examples from ciliates and trypanosomes, we show that not all organisms possess canonical endocytic pathways, but instead likely evolved lineage-specific mechanisms. Drawing from these case studies, we conclude that a comparative approach is a powerful strategy for advancing knowledge about the general mechanisms and functions of endocytic systems.
Collapse
Affiliation(s)
- Jeremy G Wideman
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
17
|
Krai P, Dalal S, Klemba M. Evidence for a Golgi-to-endosome protein sorting pathway in Plasmodium falciparum. PLoS One 2014; 9:e89771. [PMID: 24587025 PMCID: PMC3934947 DOI: 10.1371/journal.pone.0089771] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 01/24/2014] [Indexed: 12/20/2022] Open
Abstract
During the asexual intraerythrocytic stage, the malaria parasite Plasmodium falciparum must traffic newly-synthesized proteins to a broad array of destinations within and beyond the parasite's plasma membrane. In this study, we have localized two well-conserved protein components of eukaryotic endosomes, the retromer complex and the small GTPase Rab7, to define a previously-undescribed endosomal compartment in P. falciparum. Retromer and Rab7 co-localized to a small number of punctate structures within parasites. These structures, which we refer to as endosomes, lie in close proximity to the Golgi apparatus and, like the Golgi apparatus, are inherited by daughter merozoites. However, the endosome is clearly distinct from the Golgi apparatus as neither retromer nor Rab7 redistributed to the endoplasmic reticulum upon brefeldin A treatment. Nascent rhoptries (specialized secretory organelles required for invasion) developed adjacent to endosomes, an observation that suggests a role for the endosome in rhoptry biogenesis. A P. falciparum homolog of the sortilin family of protein sorting receptors (PfSortilin) was localized to the Golgi apparatus. Together, these results elaborate a putative Golgi-to-endosome protein sorting pathway in asexual blood stage parasites and suggest that one role of retromer is to mediate the retrograde transport of PfSortilin from the endosome to the Golgi apparatus.
Collapse
Affiliation(s)
- Priscilla Krai
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Seema Dalal
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Michael Klemba
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
18
|
Evolutionary repurposing of endosomal systems for apical organelle biogenesis in Toxoplasma gondii. Int J Parasitol 2014; 44:133-8. [DOI: 10.1016/j.ijpara.2013.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 12/20/2022]
|
19
|
Tomavo S, Slomianny C, Meissner M, Carruthers VB. Protein trafficking through the endosomal system prepares intracellular parasites for a home invasion. PLoS Pathog 2013; 9:e1003629. [PMID: 24204248 PMCID: PMC3812028 DOI: 10.1371/journal.ppat.1003629] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Toxoplasma (toxoplasmosis) and Plasmodium (malaria) use unique secretory organelles for migration, cell invasion, manipulation of host cell functions, and cell egress. In particular, the apical secretory micronemes and rhoptries of apicomplexan parasites are essential for successful host infection. New findings reveal that the contents of these organelles, which are transported through the endoplasmic reticulum (ER) and Golgi, also require the parasite endosome-like system to access their respective organelles. In this review, we discuss recent findings that demonstrate that these parasites reduced their endosomal system and modified classical regulators of this pathway for the biogenesis of apical organelles.
Collapse
Affiliation(s)
- Stanislas Tomavo
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
- * E-mail:
| | - Christian Slomianny
- Laboratory of Cell Physiology, INSERM U 1003, Université Lille Nord de France, Villeneuve d'Ascq, Lille, France
| | - Markus Meissner
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
20
|
Babst M. MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between. Curr Opin Cell Biol 2011; 23:452-7. [PMID: 21570275 PMCID: PMC3148405 DOI: 10.1016/j.ceb.2011.04.008] [Citation(s) in RCA: 292] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/18/2011] [Accepted: 04/18/2011] [Indexed: 01/28/2023]
Abstract
Multivesicular bodies (MVBs) are endosomes that have internalized portions of the limiting membrane into the compartment, thereby forming intralumenal vesicles. This vesicle formation is unusual in that it is directed away from the cytoplasm, which requires a unique mechanism unlike any mechanism described for other vesicle formation events. The best contenders for the machinery that drives MVB vesicle formation are the ESCRT protein complexes. However, increasing evidence suggests that lipids may play a key role in this membrane-deformation process. This review attempts to combine the seemingly contradictory findings into a MVB vesicle formation model that is based on a lipid-driven and ESCRT-regulated mechanism.
Collapse
Affiliation(s)
- Markus Babst
- University of Utah, Department of Biology, 257 South 1400 East, Salt Lake City, UT 84112, USA.
| |
Collapse
|
21
|
Herman EK, Walker G, van der Giezen M, Dacks JB. Multivesicular bodies in the enigmatic amoeboflagellate Breviata anathema and the evolution of ESCRT 0. J Cell Sci 2011; 124:613-21. [PMID: 21266469 DOI: 10.1242/jcs.078436] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Endosomal sorting complexes required for transport (ESCRTs) are heteromeric protein complexes required for multivesicular body (MVB) morphogenesis. ESCRTs I, II, III and III-associated are ubiquitous in eukaryotes and presumably ancient in origin. ESCRT 0 recruits cargo to the MVB and appears to be opisthokont-specific, bringing into question aspects of the current model of ESCRT mechanism. One caveat to the restricted distribution of ESCRT 0 was the previous limited availability of amoebozoan genomes, the supergroup closest to opisthokonts. Here, we significantly expand the sampling of ESCRTs in Amoebozoa. Our electron micrographic and bioinformatics evidence confirm the presence of MVBs in the amoeboflagellate Breviata anathema. Searches of genomic databases of amoebozoans confirm the ubiquitous nature of ESCRTs I-III-associated and the restriction of ESCRT 0 to opisthokonts. Recently, an alternate ESCRT 0 complex, centering on Tom1 proteins, has been proposed. We determine the distribution of Tom1 family proteins across eukaryotes and show that the Tom1, Tom1L1 and Tom1L2 proteins are a vertebrate-specific expansion of the single Tom1 family ancestor, which has indeed been identified in at least one member of each of the major eukaryotic supergroups. This implies a more widely conserved and ancient role for the Tom1 family in endocytosis than previously suspected.
Collapse
Affiliation(s)
- Emily K Herman
- Department of Cell Biology, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | | | | |
Collapse
|
22
|
NISHIKAWA Y, IBRAHIM HM, KAMEYAMA K, SHIGA I, HIASA J, XUAN X. Host Cholesterol Synthesis Contributes to Growth of Intracellular Toxoplasma gondii in Macrophages. J Vet Med Sci 2011; 73:633-9. [DOI: 10.1292/jvms.10-0496] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Yoshifumi NISHIKAWA
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine
| | - Hany M. IBRAHIM
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine
- Zoology Department, Faculty of Science, Minufiya University
| | - Kyohko KAMEYAMA
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine
| | - Ikumi SHIGA
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine
| | - Jun HIASA
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine
| | - Xuenan XUAN
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine
| |
Collapse
|
23
|
Phosphatidylinositol 3-phosphate, an essential lipid in Plasmodium, localizes to the food vacuole membrane and the apicoplast. EUKARYOTIC CELL 2010; 9:1519-30. [PMID: 20709789 DOI: 10.1128/ec.00124-10] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phosphoinositides are important regulators of diverse cellular functions, and phosphatidylinositol 3-monophosphate (PI3P) is a key element in vesicular trafficking processes. During its intraerythrocytic development, the malaria parasite Plasmodium falciparum establishes a sophisticated but poorly characterized protein and lipid trafficking system. Here we established the detailed phosphoinositide profile of P. falciparum-infected erythrocytes and found abundant amounts of PI3P, while phosphatidylinositol 3,5-bisphosphate was not detected. PI3P production was parasite dependent, sensitive to a phosphatidylinositol-3-kinase (PI3-kinase) inhibitor, and predominant in late parasite stages. The Plasmodium genome encodes a class III PI3-kinase of unusual size, containing large insertions and several repetitive sequence motifs. The gene could not be deleted in Plasmodium berghei, and in vitro growth of P. falciparum was sensitive to a PI3-kinase inhibitor, indicating that PI3-kinase is essential in Plasmodium blood stages. For intraparasitic PI3P localization, transgenic P. falciparum that expressed a PI3P-specific fluorescent probe was generated. Fluorescence was associated mainly with the membrane of the food vacuole and with the apicoplast, a four-membrane bounded plastid-like organelle derived from an ancestral secondary endosymbiosis event. Electron microscopy analysis confirmed these findings and revealed, in addition, the presence of PI3P-positive single-membrane vesicles. We hypothesize that these vesicles might be involved in transport processes, likely of proteins and lipids, toward the essential and peculiar parasite compartment, which is the apicoplast. The fact that PI3P metabolism and function in Plasmodium appear to be substantially different from those in its human host could offer new possibilities for antimalarial chemotherapy.
Collapse
|
24
|
Parussini F, Coppens I, Shah PP, Diamond SL, Carruthers VB. Cathepsin L occupies a vacuolar compartment and is a protein maturase within the endo/exocytic system of Toxoplasma gondii. Mol Microbiol 2010; 76:1340-57. [PMID: 20444089 PMCID: PMC2909120 DOI: 10.1111/j.1365-2958.2010.07181.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Regulated exocytosis allows the timely delivery of proteins and other macromolecules precisely when they are needed to fulfil their functions. The intracellular parasite Toxoplasma gondii has one of the most extensive regulated exocytic systems among all unicellular organisms, yet the basis of protein trafficking and proteolytic modification in this system is poorly understood. We demonstrate that a parasite cathepsin protease, TgCPL, occupies a newly recognized vacuolar compartment (VAC) that undergoes dynamic fragmentation during T. gondii replication. We also provide evidence that within the VAC or late endosome this protease mediates the proteolytic maturation of proproteins targeted to micronemes, regulated secretory organelles that deliver adhesive proteins to the parasite surface during cell invasion. Our findings suggest that processing of microneme precursors occurs within intermediate endocytic compartments within the exocytic system, indicating an extensive convergence of the endocytic and exocytic pathways in this human parasite.
Collapse
Affiliation(s)
- Fabiola Parussini
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405 U.S.A
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology Johns Hopkins University School of Public Health , Baltimore, Maryland 21205 U.S.A
| | - Parag P. Shah
- Institute for Medicine and Engineering, Penn Center for Molecular Discovery, University of Pennsylvania, Philadelphia, Pennsylvania 19104 U.S.A
| | - Scott L. Diamond
- Institute for Medicine and Engineering, Penn Center for Molecular Discovery, University of Pennsylvania, Philadelphia, Pennsylvania 19104 U.S.A
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109 U.S.A
| |
Collapse
|
25
|
Detection of the Endosomal Sorting Complex Required for Transport in Entamoeba histolytica and Characterization of the EhVps4 Protein. J Biomed Biotechnol 2010; 2010:890674. [PMID: 20508821 PMCID: PMC2875786 DOI: 10.1155/2010/890674] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 03/01/2010] [Accepted: 03/01/2010] [Indexed: 01/01/2023] Open
Abstract
Eukaryotic endocytosis involves multivesicular bodies formation, which is driven by endosomal sorting complexes required for transport (ESCRT). Here, we showed the presence and expression of homologous ESCRT genes in Entamoeba histolytica. We cloned and expressed the Ehvps4 gene, an ESCRT member, to obtain the recombinant EhVps4 and generate specific antibodies, which immunodetected EhVps4 in cytoplasm of trophozoites. Bioinformatics and biochemical studies evidenced that rEhVps4 is an ATPase, whose activity depends on the conserved E211 residue. Next, we generated trophozoites overexpressing EhVps4 and mutant EhVps4-E211Q FLAG-tagged proteins. The EhVps4-FLAG was located in cytosol and at plasma membrane, whereas the EhVps4-E211Q-FLAG was detected as abundant cytoplasmic dots in trophozoites. Erythrophagocytosis, cytopathic activity, and hepatic damage in hamsters were not improved in trophozoites overexpressing EhVps4-FLAG. In contrast, EhVps4-E211Q-FLAG protein overexpression impaired these properties. The localization of EhVps4-FLAG around ingested erythrocytes, together with our previous results, strengthens the role for EhVps4 in E. histolytica phagocytosis and virulence.
Collapse
|
26
|
Field MC, Dacks JB. First and last ancestors: reconstructing evolution of the endomembrane system with ESCRTs, vesicle coat proteins, and nuclear pore complexes. Curr Opin Cell Biol 2009; 21:4-13. [PMID: 19201590 DOI: 10.1016/j.ceb.2008.12.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 12/10/2008] [Accepted: 12/19/2008] [Indexed: 11/17/2022]
Abstract
The eukaryotic endomembrane system is responsible for the biosynthesis and transport of proteins and lipids, and for the definition of the major subcellular compartments. Recent work indicates that the endomembrane system is ancient, with near modern complexity predating the radiation of the major eukaryotic lineages. The challenge is to look beyond the last eukaryotic common ancestor and to attempt to deduce the evolutionary steps in the rise of membrane-trafficking complexity. Relationships between the endomembrane coatomer complexes and their evolutionary connection to the nuclear pore complex are emerging. These studies, plus the realization of a role for the ESCRT complex as an alternate, but equally ancient, system for membrane deformation are providing insight into the earliest stages of endomembrane evolution.
Collapse
Affiliation(s)
- Mark C Field
- University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| | | |
Collapse
|
27
|
Dacks JB, Peden AA, Field MC. Evolution of specificity in the eukaryotic endomembrane system. Int J Biochem Cell Biol 2009; 41:330-40. [PMID: 18835459 DOI: 10.1016/j.biocel.2008.08.041] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 08/26/2008] [Accepted: 08/31/2008] [Indexed: 11/25/2022]
Abstract
Two hundred years after Darwin's birth, our understanding of genetic mechanisms and cell biology has advanced to a level unimaginable in the 19th century. We now know that eukaryotic cells contain a huge variety of internal compartments, each with their own function, identity and history. For the compartments that together form the membrane-trafficking system, one of the central questions is how that identity is encoded and how it evolved. Here we review the key components involved in membrane-trafficking events, including SNAREs, Rabs, vesicle coats, and tethers and what is known about their evolutionary history. Our current understanding suggests a possible common mechanism by which the membrane-trafficking organelles might have evolved. This model of increased organellar complexity by gene duplication and co-evolution of multiple, interacting, specificity-encoding proteins could well be applicable to other non-endosymbiotic organelles as well. The application of basic evolutionary principles well beyond their original scope has been exceedingly powerful not only in reconstructing the history of cellular compartments, but for medical and applied research as well, and underlines the contributions of Darwin's ideas in modern biology.
Collapse
Affiliation(s)
- Joel B Dacks
- The Molteno Building, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | | | | |
Collapse
|
28
|
Heterologous expression of plasmodial proteins for structural studies and functional annotation. Malar J 2008; 7:197. [PMID: 18828893 PMCID: PMC2567985 DOI: 10.1186/1475-2875-7-197] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 10/01/2008] [Indexed: 11/10/2022] Open
Abstract
Malaria remains the world's most devastating tropical infectious disease with as many as 40% of the world population living in risk areas. The widespread resistance of Plasmodium parasites to the cost-effective chloroquine and antifolates has forced the introduction of more costly drug combinations, such as Coartem®. In the absence of a vaccine in the foreseeable future, one strategy to address the growing malaria problem is to identify and characterize new and durable antimalarial drug targets, the majority of which are parasite proteins. Biochemical and structure-activity analysis of these proteins is ultimately essential in the characterization of such targets but requires large amounts of functional protein. Even though heterologous protein production has now become a relatively routine endeavour for most proteins of diverse origins, the functional expression of soluble plasmodial proteins is highly problematic and slows the progress of antimalarial drug target discovery. Here the status quo of heterologous production of plasmodial proteins is presented, constraints are highlighted and alternative strategies and hosts for functional expression and annotation of plasmodial proteins are reviewed.
Collapse
|
29
|
Leung KF, Dacks JB, Field MC. Evolution of the multivesicular body ESCRT machinery; retention across the eukaryotic lineage. Traffic 2008; 9:1698-716. [PMID: 18637903 DOI: 10.1111/j.1600-0854.2008.00797.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lysosomal targeting of ubiquitylated endocytic cargo is mediated in part by the endosomal sorting complex required for transport (ESCRT) complexes, a system conserved between animals and fungi (Opisthokonta). Extensive comparative genomic analysis demonstrates that ESCRT factors are well conserved across the eukaryotic lineage and complexes I, II, III and III-associated are almost completely retained, indicating an early evolutionary origin. The conspicuous exception is ESCRT 0, which functions in recognition of ubiquitylated cargo, and is restricted to the Opisthokonta, suggesting that a distinct mechanism likely operates in the vast majority of eukaryotic organisms. Additional analysis suggests that ESCRT III and ESCRT III-associated components evolved through a concerted model. Functional conservation of the ESCRT system is confirmed by direct study in trypanosomes. Despite extreme sequence divergence, epitope-tagged ESCRT factors TbVps23 and TbVps28 localize to the endosomal pathway, placing the trypanosome multivesicular body (MVB) in juxtaposition to the early endosome and lysosome. Knockdown of TbVps23 partially prevents degradation of an ubiquitylated endocytosed transmembrane domain protein. Therefore, despite the absence of an ESCRT 0 complex, the trypanosome ESCRT/MVB system functions similarly to that of opisthokonts. Thus the ESCRT system is an ancient and well-conserved feature of eukaryotic cells but with key differences between diverse lineages.
Collapse
Affiliation(s)
- Ka Fai Leung
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK
| | | | | |
Collapse
|
30
|
Kats LM, Cooke BM, Coppel RL, Black CG. Protein Trafficking to Apical Organelles of Malaria Parasites - Building an Invasion Machine. Traffic 2007; 9:176-86. [PMID: 18047549 DOI: 10.1111/j.1600-0854.2007.00681.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lev M Kats
- NHMRC Program in Malaria, Department of Microbiology, Monash University, Victoria 3800, Australia
| | | | | | | |
Collapse
|
31
|
Smythe WA, Joiner KA, Hoppe HC. Actin is required for endocytic trafficking in the malaria parasite Plasmodium falciparum. Cell Microbiol 2007; 10:452-64. [PMID: 17944961 DOI: 10.1111/j.1462-5822.2007.01058.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The intra-erythrocytic stages of the malaria parasite endocytose large quantities of the surrounding erythrocyte cytoplasm and deliver it to a digestive food vacuole via endocytic vesicles. Digestion provides amino acids for parasite protein synthesis and is required to maintain the osmotic integrity of the host cell. The parasite endocytic pathway has been described morphologically by electron microscopy, but the molecular mechanisms that mediate and regulate it remain elusive. Given the involvement of actin in endocytosis in other eukaryotes, we have used actin inhibitors to assess the requirement for this protein in the endocytic pathway of the human malaria parasite, Plasmodium falciparum. Treatment of cultures with cytochalasin D did not affect haemoglobin levels in the parasites when co-administered with protease inhibitors, and neither did it affect the uptake of the endocytic tracer horseradish peroxidase, suggesting the absence of actin in the mechanism of endocytosis. However, in the absence of protease inhibitors, treated parasites contained increased levels of haemoglobin due to an accumulation of enlarged endocytic vesicles, as determined by immunofluorescence and electron microscopy, suggesting a role for actin in vesicle trafficking, possibly by mediating vesicle maturation and/or fusion to the digestive vacuole. In contrast to cytochalasin D, treatment with jasplakinolide led to an inhibition of endocytosis, an accumulation of vesicles closer to the plasma membrane and a marked concentration of actin in the parasite cortex. We propose that the stabilization of cortical actin filaments by jasplakinolide interferes with normal endocytic vesicle formation and migration from the cell periphery.
Collapse
Affiliation(s)
- Wynand A Smythe
- Division of Pharmacology and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Medical School, Cape Town, 7925, South Africa
| | | | | |
Collapse
|
32
|
Abstract
The past two years have seen an explosion in the structural understanding of the endosomal sorting complex required for transport (ESCRT) machinery that facilitates the trafficking of ubiquitylated proteins from endosomes to lysosomes via multivesicular bodies (MVBs). A common organization of all ESCRTs is a rigid core attached to flexibly connected modules that recognize other components of the MVB pathway. Several previously unsuspected key links between multiple ESCRT subunits, phospholipids and ubiquitin have now been elucidated, which, together with the detailed morphological analyses of ESCRT-depletion phenotypes, provide new insights into the mechanism of MVB biogenesis.
Collapse
Affiliation(s)
- Roger L Williams
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | |
Collapse
|
33
|
Abstract
The two major cellular sites for membrane protein degradation are the proteasome and the lysosome. Ubiquitin attachment is a sorting signal for both degradation routes. For lysosomal degradation, ubiquitination triggers the sorting of cargo proteins into the lumen of late endosomal multivesicular bodies (MVBs)/endosomes. MVB formation occurs when a portion of the limiting membrane of an endosome invaginates and buds into its own lumen. Intralumenal vesicles are degraded when MVBs fuse to lysosomes. The proper delivery of proteins to the MVB interior relies on specific ubiquitination of cargo, recognition and sorting of ubiquitinated cargo to endosomal subdomains, and the formation and scission of cargo-filled intralumenal vesicles. Over the past five years, a number of proteins that may directly participate in these aspects of MVB function and biogenesis have been identified. However, major questions remain as to exactly what these proteins do at the molecular level and how they may accomplish these tasks.
Collapse
Affiliation(s)
- Robert C. Piper
- Department of Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242
| | - David J. Katzmann
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55095
| |
Collapse
|
34
|
Reeves DC, Liebelt DA, Lakshmanan V, Roepe PD, Fidock DA, Akabas MH. Chloroquine-resistant isoforms of the Plasmodium falciparum chloroquine resistance transporter acidify lysosomal pH in HEK293 cells more than chloroquine-sensitive isoforms. Mol Biochem Parasitol 2006; 150:288-99. [PMID: 17014918 PMCID: PMC1687154 DOI: 10.1016/j.molbiopara.2006.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 08/31/2006] [Accepted: 09/03/2006] [Indexed: 01/04/2023]
Abstract
The emergence of chloroquine-resistant Plasmodium falciparum malaria imperils the lives of millions of people in Africa, Southeast Asia and South America. Chloroquine resistance is associated with mutations in the P. falciparum chloroquine resistance transporter (PfCRT). We expressed chloroquine-sensitive (HB3) and resistant (Dd2) pfcrt alleles in HEK293 human embryonic kidney cells. PfCRT localized to the lysosomal limiting membrane and was not detected in the plasma membrane. We observed significant acidification of lysosomes containing PfCRT HB3 and Dd2, with Dd2 acidifying significantly more than HB3. A mutant HB3 allele expressing the K76T mutation (earlier found to be key for chloroquine resistance) acidified to the same extent as Dd2, whereas the acidification by a Dd2 allele expressing the T76K "back mutation" was significantly less than Dd2. Thus, the amino acid at position 76 is both an important determinant of chloroquine resistance in parasites and of lysosomal acidification following heterologous expression. PfCRT may be capable of modulating the pH of the parasite digestive vacuole, and thus chloroquine availability. Chloroquine accumulation and glycyl-phenylalanine-2-naphthylamide-induced release of lysosomal Ca(2+) stores were unaffected by PfCRT expression. Cytoplasmic domain mutations did not alter PfCRT sorting to the lysosomal membrane. This heterologous expression system will be useful to characterize PfCRT protein structure and function, and elucidate its molecular role in chloroquine resistance.
Collapse
Affiliation(s)
- David C Reeves
- Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
35
|
Langelier C, von Schwedler UK, Fisher RD, De Domenico I, White PL, Hill CP, Kaplan J, Ward D, Sundquist WI. Human ESCRT-II complex and its role in human immunodeficiency virus type 1 release. J Virol 2006; 80:9465-80. [PMID: 16973552 PMCID: PMC1617254 DOI: 10.1128/jvi.01049-06] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The budding of many enveloped RNA viruses, including human immunodeficiency virus type 1 (HIV-1), requires some of the same cellular machinery as vesicle formation at the multivesicular body (MVB). In Saccharomyces cerevisiae, the ESCRT-II complex performs a central role in MVB protein sorting and vesicle formation, as it is recruited by the upstream ESCRT-I complex and nucleates assembly of the downstream ESCRT-III complex. Here, we report that the three subunits of human ESCRT-II, EAP20, EAP30, and EAP45, have a number of properties in common with their yeast orthologs. Specifically, EAP45 bound ubiquitin via its N-terminal GRAM-like ubiquitin-binding in EAP45 (GLUE) domain, both EAP45 and EAP30 bound the C-terminal domain of TSG101/ESCRT-I, and EAP20 bound the N-terminal half of CHMP6/ESCRT-III. Consistent with its expected role in MVB vesicle formation, (i) human ESCRT-II localized to endosomal membranes in a VPS4-dependent fashion and (ii) depletion of EAP20/ESCRT-II and CHMP6/ESCRT-III inhibited lysosomal targeting and downregulation of the epidermal growth factor receptor, albeit to a lesser extent than depletion of TSG101/ESCRT-I. Nevertheless, HIV-1 release and infectivity were not reduced by efficient small interfering RNA depletion of EAP20/ESCRT-II or CHMP6/ESCRT-III. These observations indicate that there are probably multiple pathways for protein sorting/MVB vesicle formation in human cells and that HIV-1 does not utilize an ESCRT-II-dependent pathway to leave the cell.
Collapse
Affiliation(s)
- Charles Langelier
- Department of Biochemistry, 15 N. Medical Drive East, Room 4100, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Besteiro S, Williams RAM, Morrison LS, Coombs GH, Mottram JC. Endosome sorting and autophagy are essential for differentiation and virulence of Leishmania major. J Biol Chem 2006; 281:11384-96. [PMID: 16497676 DOI: 10.1074/jbc.m512307200] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cellular remodeling during differentiation is essential for life-cycle progression of many unicellular eukaryotic pathogens such as Leishmania, but the mechanisms involved are largely uncharacterized. The role of endosomal sorting in differentiation was analyzed in Leishmania major by overexpression of a dominant-negative ATPase, VPS4. VPS4(E235Q) accumulated in vesicles from the endocytic pathway, and the mutant L. major was deficient in endosome sorting. Mutant parasites failed to differentiate to the obligate infective metacyclic promastigote form. Furthermore, the autophagy pathway, monitored via the expression of autophagosome marker GFP-ATG8, and shown to normally peak during initiation of metacyclogenesis, was disrupted in the mutants. The defect in late endosome-autophagosome function in the VPS4(E235Q) parasites made them less able to withstand starvation than wild-type L. major. In addition, a L. major ATG4-deficient mutant was found also to be defective in the ability to differentiate. This finding, that transformation to the infective metacyclic form is dependent on late endosome function and, more directly, autophagy, makes L. major a good model for studying the roles of these processes in differentiation.
Collapse
Affiliation(s)
- Sébastien Besteiro
- Wellcome Centre for Molecular Parasitology, University of Glasgow, 120 University Place, Glasgow G12 8TA, United Kingdom
| | | | | | | | | |
Collapse
|
37
|
Sonda S, Hehl AB. Lipid biology of Apicomplexa: perspectives for new drug targets, particularly for Toxoplasma gondii. Trends Parasitol 2005; 22:41-7. [PMID: 16300997 DOI: 10.1016/j.pt.2005.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 09/20/2005] [Accepted: 11/07/2005] [Indexed: 11/19/2022]
Abstract
Development of effective therapies for intracellular eukaryotic pathogens is a serious challenge, given the protected location of these pathogens and the similarity of their biology to that of the host. Identifying cellular processes that are unique to the parasite is therefore a crucial step towards defining appropriate drug targets. In the case of the apicomplexan parasite Toxoplasma gondii, the need to find alternative treatments is imperative because of the poor tolerability and frequent side-effects associated with existing therapeutic strategies. The discovery that the parasite uses lipid synthetic pathways which are different from, or absent in, the mammalian host is now driving a renewed interest in T. gondii lipid biology. Recent achievements in this field are promising and suggest that the elucidation of lipid pathways will provide new opportunities for designing potent antiparasitic strategies.
Collapse
Affiliation(s)
- Sabrina Sonda
- Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, CH-8057 Zurich, Switzerland.
| | | |
Collapse
|
38
|
Coppens I, Vielemeyer O. Insights into unique physiological features of neutral lipids in Apicomplexa: from storage to potential mediation in parasite metabolic activities. Int J Parasitol 2005; 35:597-615. [PMID: 15862574 DOI: 10.1016/j.ijpara.2005.01.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 01/05/2005] [Accepted: 01/13/2005] [Indexed: 01/18/2023]
Abstract
The fast intracellular multiplication of apicomplexan parasites including Toxoplasma and Plasmodium, requires large amounts of lipids necessary for the membrane biogenesis of new progenies. Hence, the study of lipids is fundamental in order to understand the biology and pathogenesis of these deadly organisms. Much has been reported on the importance of polar lipids, e.g. phospholipids in Plasmodium. Comparatively, little attention has been paid to the metabolism of neutral lipids, including sterols, steryl esters and acylglycerols. In eukaryotic cells, free sterols are membrane components whereas steryl esters and acylglycerols are stored in cytosolic lipid inclusions. The first part of this review describes the recent advances in neutral lipid synthesis and storage in Toxoplasma and Plasmodium. New potential pharmacological targets in the pathways producing neutral lipids are outlined. In addition to lipid bodies, Apicomplexa contain unique secretory organelles involved in parasite invasion named rhoptries. These compartments appear to sequester most of the cholesterol found in the exocytic pathway. The second part of the review focuses on rhoptry cholesterol and its potential roles in the biogenesis, structural organisation and function of these unique organelles among eukaryotes.
Collapse
Affiliation(s)
- Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205-2223, USA.
| | | |
Collapse
|
39
|
Binder EM, Kim K. Location, Location, Location: Trafficking and Function of Secreted Proteases of Toxoplasma and Plasmodium. Traffic 2004; 5:914-24. [PMID: 15522094 DOI: 10.1111/j.1600-0854.2004.00244.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Apicomplexan parasites Toxoplasma gondii and Plasmodium species are obligate intracellular parasites that rely upon unique secretory organelles for invasion and other specialized functions. Data is emerging that proteases are critical for the biogenesis of micronemes and rhoptries, regulated secretory organelles reminiscent of dense core granules and secretory lysosomes of higher eukaryotes. Proteases targeted to the Plasmodium food vacuole, a unique organelle dedicated to hemoglobin degradation, are also critical to parasite survival. Thus study of the targeting and function of the proteases of the Apicomplexa provides a fascinating model system to understand regulated secretion and secretory organelle biogenesis.
Collapse
Affiliation(s)
- Emily M Binder
- Departments of Medicine and of Microbiology and Immunology, Albert Einstein College of Medicine, Ullmann 1225, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
40
|
Ngô HM, Yang M, Joiner KA. Are rhoptries in Apicomplexan parasites secretory granules or secretory lysosomal granules? Mol Microbiol 2004; 52:1531-41. [PMID: 15186406 DOI: 10.1111/j.1365-2958.2004.04056.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The club-shaped rhoptries in Apicomplexan parasites are one of the most unusual secretory organelles among the eukaryotes, containing unusual lipid and protein cargo that is specialized for intracellular parasitism. Rhoptries have traditionally been viewed strictly as regulated secretory granules. We discuss in this article recent data on the cargo, function and biogenesis of rhoptries in two parasitic model systems, Toxoplasma and Plasmodium. Current findings suggest that rhoptries receive products from both biosynthetic and endocytic pathways and, therefore, they are most analogous to secretory lysosomal granules found in mammalian cells.
Collapse
Affiliation(s)
- Huân M Ngô
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8022, USA
| | | | | |
Collapse
|