1
|
Cossu G, Tonlorenzi R, Brunelli S, Sampaolesi M, Messina G, Azzoni E, Benedetti S, Biressi S, Bonfanti C, Bragg L, Camps J, Cappellari O, Cassano M, Ciceri F, Coletta M, Covarello D, Crippa S, Cusella-De Angelis MG, De Angelis L, Dellavalle A, Diaz-Manera J, Galli D, Galli F, Gargioli C, Gerli MFM, Giacomazzi G, Galvez BG, Hoshiya H, Guttinger M, Innocenzi A, Minasi MG, Perani L, Previtali SC, Quattrocelli M, Ragazzi M, Roostalu U, Rossi G, Scardigli R, Sirabella D, Tedesco FS, Torrente Y, Ugarte G. Mesoangioblasts at 20: From the embryonic aorta to the patient bed. Front Genet 2022; 13:1056114. [PMID: 36685855 PMCID: PMC9845585 DOI: 10.3389/fgene.2022.1056114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/31/2022] [Indexed: 01/06/2023] Open
Abstract
In 2002 we published an article describing a population of vessel-associated progenitors that we termed mesoangioblasts (MABs). During the past decade evidence had accumulated that during muscle development and regeneration things may be more complex than a simple sequence of binary choices (e.g., dorsal vs. ventral somite). LacZ expressing fibroblasts could fuse with unlabelled myoblasts but not among themselves or with other cell types. Bone marrow derived, circulating progenitors were able to participate in muscle regeneration, though in very small percentage. Searching for the embryonic origin of these progenitors, we identified them as originating at least in part from the embryonic aorta and, at later stages, from the microvasculature of skeletal muscle. While continuing to investigate origin and fate of MABs, the fact that they could be expanded in vitro (also from human muscle) and cross the vessel wall, suggested a protocol for the cell therapy of muscular dystrophies. We tested this protocol in mice and dogs before proceeding to the first clinical trial on Duchenne Muscular Dystrophy patients that showed safety but minimal efficacy. In the last years, we have worked to overcome the problem of low engraftment and tried to understand their role as auxiliary myogenic progenitors during development and regeneration.
Collapse
Affiliation(s)
- Giulio Cossu
- Division of Cell Matrix Biology and Regenerative Medicine. University of Manchester, Manchester, United Kingdom
- Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
- Muscle Research Unit, Charité Medical Faculty and Max Delbrück Center, Berlin, Germany
- *Correspondence: Giulio Cossu, ; Rossana Tonlorenzi, ; Silvia Brunelli, ; Maurilio Sampaolesi, ; Graziella Messina,
| | - Rossana Tonlorenzi
- Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
- *Correspondence: Giulio Cossu, ; Rossana Tonlorenzi, ; Silvia Brunelli, ; Maurilio Sampaolesi, ; Graziella Messina,
| | - Silvia Brunelli
- School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
- *Correspondence: Giulio Cossu, ; Rossana Tonlorenzi, ; Silvia Brunelli, ; Maurilio Sampaolesi, ; Graziella Messina,
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology Unit, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Histology and Medical Embryology Unit, Department of Anatomy, Forensic Medicine and Orthopaedics, Sapienza University, Rome, Italy
- *Correspondence: Giulio Cossu, ; Rossana Tonlorenzi, ; Silvia Brunelli, ; Maurilio Sampaolesi, ; Graziella Messina,
| | - Graziella Messina
- Department of Biosciences, University of Milan, Milan, Italy
- *Correspondence: Giulio Cossu, ; Rossana Tonlorenzi, ; Silvia Brunelli, ; Maurilio Sampaolesi, ; Graziella Messina,
| | - Emanuele Azzoni
- School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Sara Benedetti
- UCL Great Ormond Street Institute of Child Health and NIHR GOSH Biomedical Research Centre, London, United Kingdom
| | - Stefano Biressi
- Department of Cellular, Computational and Integrative Biology (CIBIO) and Dulbecco Telethon Institute, University of Trento, Trento, Italy
| | - Chiara Bonfanti
- Department of Biosciences, University of Milan, Milan, Italy
| | - Laricia Bragg
- Division of Cell Matrix Biology and Regenerative Medicine. University of Manchester, Manchester, United Kingdom
| | - Jordi Camps
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany
| | - Ornella Cappellari
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | | | - Fabio Ciceri
- Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marcello Coletta
- Histology and Medical Embryology Unit, Department of Anatomy, Forensic Medicine and Orthopaedics, Sapienza University, Rome, Italy
| | | | - Stefania Crippa
- San Raffaele-Telethon Institute of Gene Theray, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Luciana De Angelis
- Histology and Medical Embryology Unit, Department of Anatomy, Forensic Medicine and Orthopaedics, Sapienza University, Rome, Italy
| | | | - Jordi Diaz-Manera
- John Walton Muscular Dystrophy Research Centre, Newcastle University, United Kingdom
| | - Daniela Galli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesco Galli
- Division of Cell Matrix Biology and Regenerative Medicine. University of Manchester, Manchester, United Kingdom
| | - Cesare Gargioli
- Department of Biology, University of Tor Vergata, Rome, Italy
| | - Mattia F. M. Gerli
- UCL Department of Surgical Biotechnology and Great Ormond Street Institute of Child Health, London, United Kingdom
| | | | - Beatriz G. Galvez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | - Anna Innocenzi
- Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - M. Giulia Minasi
- Lavitaminasi, Clinical Nutrition and Reproductive Medicine, Rome, Italy
| | - Laura Perani
- Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Mattia Quattrocelli
- Division of Molecular Cardiovascular Biology, University of Cincinnati, Cincinnati, OH, United States
| | | | - Urmas Roostalu
- Roche Institute for Translational Bioengineering (ITB), pRED Basel, Basel, Switzerland
| | - Giuliana Rossi
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Raffaella Scardigli
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, United States
| | - Dario Sirabella
- University College London, Great Ormond Street Hospital for Children and the Francis Crick Institute, London, United Kingdom
| | - Francesco Saverio Tedesco
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Yvan Torrente
- UCL Great Ormond Street Institute of Child Health and NIHR GOSH Biomedical Research Centre, London, United Kingdom
| | - Gonzalo Ugarte
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| |
Collapse
|
2
|
Van Looveren D, Giacomazzi G, Thiry I, Sampaolesi M, Gijsbers R. Improved functionality and potency of next generation BinMLV viral vectors toward safer gene therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:51-67. [PMID: 34553002 PMCID: PMC8433069 DOI: 10.1016/j.omtm.2021.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/16/2021] [Indexed: 10/27/2022]
Abstract
To develop safer retroviral murine leukemia virus (MLV)-based vectors, we previously mutated and re-engineered the MLV integrase: the W390A mutation abolished the interaction with its cellular tethering factors, BET proteins, and a retargeting peptide (the chromodomain of the CBX1 protein) was fused C-terminally. The resulting BET-independent MLVW390A-CBX was shown to integrate efficiently and more randomly, away from typical retroviral markers. In this study, we assessed the functionality and stability of expression of the redistributed MLVW390A-CBX vector in more depth, and evaluated safety using a clinically more relevant vector design encompassing a self-inactivated (SIN) LTR and a weak internal elongation factor 1α short (EFS) promoter. MLVW390A-CBX-EFS produced like MLVWT and efficiently transduced laboratory cells and primary human CD34+ hematopoetic stem cells (HSC) without transgene silencing over time, while displaying a more preferred, redistributed, and safer integration pattern. In a human mesoangioblast (MAB) stem cell model, the myogenic fusion capacity was hindered following MLVWT transduction, while this remained unaffected when applying MLVW390A-CBX. Likewise, smooth muscle cell differentiation of MABs was unaltered by MLVW390A-CBX-EFS. Taken together, our results underscore the potential of MLVW390A-CBX-EFS as a clinically relevant viral vector for ex-vivo gene therapy, combining efficient production with a preferable integration site distribution profile and stable expression over time.
Collapse
Affiliation(s)
- Dominique Van Looveren
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Giorgia Giacomazzi
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Research Institute, KU Leuven, 3000 Leuven, Belgium
| | - Irina Thiry
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Maurilio Sampaolesi
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Research Institute, KU Leuven, 3000 Leuven, Belgium
| | - Rik Gijsbers
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Choi S, Ferrari G, Tedesco FS. Cellular dynamics of myogenic cell migration: molecular mechanisms and implications for skeletal muscle cell therapies. EMBO Mol Med 2020; 12:e12357. [PMID: 33210465 PMCID: PMC7721365 DOI: 10.15252/emmm.202012357] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/02/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Directional cell migration is a critical process underlying morphogenesis and post-natal tissue regeneration. During embryonic myogenesis, migration of skeletal myogenic progenitors is essential to generate the anlagen of limbs, diaphragm and tongue, whereas in post-natal skeletal muscles, migration of muscle satellite (stem) cells towards regions of injury is necessary for repair and regeneration of muscle fibres. Additionally, safe and efficient migration of transplanted cells is critical in cell therapies, both allogeneic and autologous. Although various myogenic cell types have been administered intramuscularly or intravascularly, functional restoration has not been achieved yet in patients with degenerative diseases affecting multiple large muscles. One of the key reasons for this negative outcome is the limited migration of donor cells, which hinders the overall cell engraftment potential. Here, we review mechanisms of myogenic stem/progenitor cell migration during skeletal muscle development and post-natal regeneration. Furthermore, strategies utilised to improve migratory capacity of myogenic cells are examined in order to identify potential treatments that may be applied to future transplantation protocols.
Collapse
Affiliation(s)
- SungWoo Choi
- Department of Cell and Developmental Biology, University College London, London, UK.,The Francis Crick Institute, London, UK
| | - Giulia Ferrari
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, London, UK.,The Francis Crick Institute, London, UK.,Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
4
|
Casas-Fraile L, Cornelis FM, Costamagna D, Rico A, Duelen R, Sampaolesi MM, López de Munain A, Lories RJ, Sáenz A. Frizzled related protein deficiency impairs muscle strength, gait and calpain 3 levels. Orphanet J Rare Dis 2020; 15:119. [PMID: 32448375 PMCID: PMC7245871 DOI: 10.1186/s13023-020-01372-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/31/2020] [Indexed: 01/24/2023] Open
Abstract
Background Limb-girdle muscular dystrophy recessive 1 calpain3-related (LGMDR1), previously known as LGMD2A, is a disease caused by mutations in the CAPN3 gene. It is characterized by progressive weakness and muscle degeneration. Frizzled related protein (FRZB), upregulated in LGMDR1, was identified as a key regulator of the crosstalk between Wnt and integrin signalling pathways. FRZB gene silencing showed a recovery in the expression of some of the costamere protein levels in myotubes. Results Here, we performed a comprehensive characterization of Frzb−/− mice muscles to study the absence of Frzb in skeletal muscle and eventual links with the molecular characteristics of LGMDR1 patient muscles. Frzb−/− mice showed reduced muscle size and strength. Gait analysis showed that Frzb−/− mice moved more slowly but no impaired regeneration capacity was observed after muscle injury. Additionally, Frzb−/− mice muscle showed an increased number of mesoangioblasts. Lack of Frzb gene in Frzb−/− mice and its increased expression in LGMDR1 patients, showed contrary regulation of Rora, Slc16a1, Tfrc and Capn3 genes. The reciprocal regulation of Frzb and Capn3 genes further supports this axis as a potential target for LGMDR1 patients. Conclusions Our data confirm a role for Frzb in the regulation of Rora, Slc16a1, Tfrc, and Capn3 genes in muscle cells. In vivo, reduced muscle strength and gait in the Frzb−/− mice are intriguing features. The reciprocal relationship between FRZB and CAPN3 further supports a key role for this axis in patients with LGMDR1.
Collapse
Affiliation(s)
- Leire Casas-Fraile
- Biodonostia Health Research Institute, Neurosciences Area, San Sebastian, Spain.,Spanish Ministry of Economy & Competitiveness, Carlos III Health Institute, CIBER, Madrid, Spain.,Department of Development and Regeneration, Skeletal Biology and Engineering Research Centre, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium
| | - Frederique M Cornelis
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Centre, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium
| | - Domiziana Costamagna
- Department of Development and Regeneration, Stem Cell Institute, Laboratory of Translational Cardiomyology, KU Leuven, Leuven, Belgium
| | - Anabel Rico
- Biodonostia Health Research Institute, Neurosciences Area, San Sebastian, Spain
| | - Robin Duelen
- Department of Development and Regeneration, Stem Cell Institute, Laboratory of Translational Cardiomyology, KU Leuven, Leuven, Belgium
| | - Maurilio M Sampaolesi
- Department of Development and Regeneration, Stem Cell Institute, Laboratory of Translational Cardiomyology, KU Leuven, Leuven, Belgium.,Department of Public Health, Experimental and Forensic Medicine, Human Anatomy Unit, University of Pavia, Pavia, Italy
| | - Adolfo López de Munain
- Biodonostia Health Research Institute, Neurosciences Area, San Sebastian, Spain.,Spanish Ministry of Economy & Competitiveness, Carlos III Health Institute, CIBER, Madrid, Spain.,Department of Neurology, Donostia University Hospital, Donostia, Spain.,Department of Neurosciences, University of the Basque Country, Leioa, Spain
| | - Rik J Lories
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Centre, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium.,Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Amets Sáenz
- Biodonostia Health Research Institute, Neurosciences Area, San Sebastian, Spain. .,Spanish Ministry of Economy & Competitiveness, Carlos III Health Institute, CIBER, Madrid, Spain.
| |
Collapse
|
5
|
Crowley C, Butler CR, Camilli C, Hynds RE, Kolluri KK, Janes SM, De Coppi P, Urbani L. Non-Invasive Longitudinal Bioluminescence Imaging of Human Mesoangioblasts in Bioengineered Esophagi. Tissue Eng Part C Methods 2020; 25:103-113. [PMID: 30648471 PMCID: PMC6389770 DOI: 10.1089/ten.tec.2018.0351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Esophageal engineering aims to create replacement solutions by generating hollow organs using a combination of cells, scaffolds, and regeneration-stimulating factors. Currently, the fate of cells on tissue-engineered grafts is generally determined retrospectively by histological analyses. Unfortunately, quality-controlled cell seeding protocols for application in human patients are not standard practice. As such, the field requires simple, fast, and reliable techniques for non-invasive, highly specific cell tracking. Here, we show that bioluminescence imaging (BLI) is a suitable method to track human mesoangioblast seeding of an esophageal tubular construct at every stage of the preclinical bioengineering pipeline. In particular, validation of BLI as longitudinal quantitative assessment of cell density, proliferation, seeding efficiency, bioreactor culture, and cell survival upon implantation in vivo was performed against standard methods in 2D cultures and in 3D decellularized esophageal scaffolds. The technique is simple, non-invasive, and provides information on mesoangioblast distribution over entire scaffolds. Bioluminescence is an invaluable tool in the development of complex bioartificial organs and can assist in the development of standardized cell seeding protocols, with the ability to track cells from bioreactor through to implantation.
Collapse
Affiliation(s)
- Claire Crowley
- 1 Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Children's Hospital, University College London, London, United Kingdom
| | - Colin R Butler
- 1 Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Children's Hospital, University College London, London, United Kingdom.,2 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Carlotta Camilli
- 1 Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Children's Hospital, University College London, London, United Kingdom
| | - Robert E Hynds
- 2 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Krishna K Kolluri
- 2 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Sam M Janes
- 2 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Paolo De Coppi
- 1 Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Children's Hospital, University College London, London, United Kingdom
| | - Luca Urbani
- 1 Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Children's Hospital, University College London, London, United Kingdom.,3 Institute of Hepatology London, Foundation for Liver Research, London, United Kingdom
| |
Collapse
|
6
|
Mavoungou LO, Neuenschwander S, Pham U, Iyer PS, Mermod N. Characterization of mesoangioblast cell fate and improved promyogenic potential of a satellite cell-like subpopulation upon transplantation in dystrophic murine muscles. Stem Cell Res 2019; 41:101619. [PMID: 31683098 DOI: 10.1016/j.scr.2019.101619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/20/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal muscle-wasting disease caused by the lack of dystrophin in muscle fibers that is currently without curative treatment. Mesoangioblasts (MABs) are multipotent progenitor cells that can differentiate to a myogenic lineage and that can be used to express Dystrophin upon transplantation into muscles, in autologous gene therapy approaches. However, their fate in the muscle environment remains poorly characterized. Here, we investigated the differentiation fate of MABs following their transplantation in DMD murine muscles using a mass cytometry strategy. This allowed the identification and isolation of a fraction of MAB-derived cells presenting common properties with satellite muscle stem cells. This analysis also indicated that most cells did not undergo a myogenic differentiation path once in the muscle environment, limiting their capacity to restore dystrophin expression in transplanted muscles. We therefore assessed whether MAB treatment with cytokines and growth factors prior to engraftment may improve their myogenic fate. We identified a combination of such signals that ameliorates MABs capacity to undergo myogenic differentiation in vivo and to restore dystrophin expression upon engraftment in myopathic murine muscles.
Collapse
Affiliation(s)
- Lionel O Mavoungou
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Uyen Pham
- Grand Valley State University, MI, USA
| | - Pavithra S Iyer
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland; Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zürich, Switzerland
| | - Nicolas Mermod
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
7
|
Rosina M, Langone F, Giuliani G, Cerquone Perpetuini A, Reggio A, Calderone A, Fuoco C, Castagnoli L, Gargioli C, Cesareni G. Osteogenic differentiation of skeletal muscle progenitor cells is activated by the DNA damage response. Sci Rep 2019; 9:5447. [PMID: 30931986 PMCID: PMC6443689 DOI: 10.1038/s41598-019-41926-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/19/2019] [Indexed: 12/27/2022] Open
Abstract
Heterotopic ossification (HO) is a pathological condition characterized by the deposition of mineralized tissue in ectopic locations such as the skeletal muscle. The precise cellular origin and molecular mechanisms underlying HO are still debated. In our study we focus on the differentiation of mesoangioblasts (MABs), a population of multipotent skeletal muscle precursors. High-content screening for small molecules that perturb MAB differentiation decisions identified Idoxuridine (IdU), an antiviral and radiotherapy adjuvant, as a molecule that promotes MAB osteogenic differentiation while inhibiting myogenesis. IdU-dependent osteogenesis does not rely on the canonical BMP-2/SMADs osteogenic pathway. At pro-osteogenic conditions IdU induces a mild DNA Damage Response (DDR) that activates ATM and p38 eventually promoting the phosphorylation of the osteogenesis master regulator RUNX2. By interfering with this pathway IdU-induced osteogenesis is severely impaired. Overall, our study suggests that induction of the DDR promotes osteogenesis in muscle resident MABs thereby offering a new mechanism that may be involved in the ectopic deposition of mineralized tissue in the muscle.
Collapse
Affiliation(s)
- M Rosina
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - F Langone
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - G Giuliani
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | | | - A Reggio
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - A Calderone
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - C Fuoco
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - L Castagnoli
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - C Gargioli
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy.
| | - G Cesareni
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy.
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.
| |
Collapse
|
8
|
Moyle LA, Tedesco FS, Benedetti S. Pericytes in Muscular Dystrophies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:319-344. [PMID: 31147885 DOI: 10.1007/978-3-030-16908-4_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The muscular dystrophies are an heterogeneous group of inherited myopathies characterised by the progressive wasting of skeletal muscle tissue. Pericytes have been shown to make muscle in vitro and to contribute to skeletal muscle regeneration in several animal models, although recent data has shown this to be controversial. In fact, some pericyte subpopulations have been shown to contribute to fibrosis and adipose deposition in muscle. In this chapter, we explore the identity and the multifaceted role of pericytes in dystrophic muscle, potential therapeutic applications and the current need to overcome the hurdles of characterisation (both to identify pericyte subpopulations and track cell fate), to prevent deleterious differentiation towards myogenic-inhibiting subpopulations, and to improve cell proliferation and engraftment efficacy.
Collapse
Affiliation(s)
- Louise Anne Moyle
- Institute of Biomaterials and Biomedical Engineering, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, London, UK.
- Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Sara Benedetti
- Great Ormond Street Institute of Child Health, University College London, London, UK.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|
9
|
Multi-stage bioengineering of a layered oesophagus with in vitro expanded muscle and epithelial adult progenitors. Nat Commun 2018; 9:4286. [PMID: 30327457 PMCID: PMC6191423 DOI: 10.1038/s41467-018-06385-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022] Open
Abstract
A tissue engineered oesophagus could overcome limitations associated with oesophageal substitution. Combining decellularized scaffolds with patient-derived cells shows promise for regeneration of tissue defects. In this proof-of-principle study, a two-stage approach for generation of a bio-artificial oesophageal graft addresses some major challenges in organ engineering, namely: (i) development of multi-strata tubular structures, (ii) appropriate re-population/maturation of constructs before transplantation, (iii) cryopreservation of bio-engineered organs and (iv) in vivo pre-vascularization. The graft comprises decellularized rat oesophagus homogeneously re-populated with mesoangioblasts and fibroblasts for the muscle layer. The oesophageal muscle reaches organised maturation after dynamic culture in a bioreactor and functional integration with neural crest stem cells. Grafts are pre-vascularised in vivo in the omentum prior to mucosa reconstitution with expanded epithelial progenitors. Overall, our optimised two-stage approach produces a fully re-populated, structurally organized and pre-vascularized oesophageal substitute, which could become an alternative to current oesophageal substitutes. Combining decellularised scaffolds with patient-derived cells holds promise for bioengineering of functional tissues. Here the authors develop a two-stage approach to engineer an oesophageal graft that retains the structural organisation of native oesophagus.
Collapse
|
10
|
Pellegata AF, Tedeschi AM, De Coppi P. Whole Organ Tissue Vascularization: Engineering the Tree to Develop the Fruits. Front Bioeng Biotechnol 2018; 6:56. [PMID: 29868573 PMCID: PMC5960678 DOI: 10.3389/fbioe.2018.00056] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/23/2018] [Indexed: 12/15/2022] Open
Abstract
Tissue engineering aims to regenerate and recapitulate a tissue or organ that has lost its function. So far successful clinical translation has been limited to hollow organs in which rudimental vascularization can be achieved by inserting the graft into flaps of the omentum or muscle fascia. This technique used to stimulate vascularization of the graft takes advantage of angiogenesis from existing vascular networks. Vascularization of the engineered graft is a fundamental requirement in the process of engineering more complex organs, as it is crucial for the efficient delivery of nutrients and oxygen following in-vivo implantation. To achieve vascularization of the organ many different techniques have been investigated and exploited. The most promising results have been obtained by seeding endothelial cells directly into decellularized scaffolds, taking advantage of the channels remaining from the pre-existing vascular network. Currently, the main hurdle we need to overcome is achieving a fully functional vascular endothelium, stable over a long time period of time, which is engineered using a cell source that is clinically suitable and can generate, in vitro, a yield of cells suitable for the engineering of human sized organs. This review will give an overview of the approaches that have recently been investigated to address the issue of vascularization in the field of tissue engineering of whole organs, and will highlight the current caveats and hurdles that should be addressed in the future.
Collapse
Affiliation(s)
- Alessandro F Pellegata
- Stem Cells and Regenerative Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Alfonso M Tedeschi
- Stem Cells and Regenerative Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,SNAPS, Great Ormond Street Hospital for Children NHS Foundation Trust, University College London, London, United Kingdom
| |
Collapse
|
11
|
Giovannelli G, Giacomazzi G, Grosemans H, Sampaolesi M. Morphological and functional analyses of skeletal muscles from an immunodeficient animal model of limb-girdle muscular dystrophy type 2E. Muscle Nerve 2018; 58:133-144. [PMID: 29476695 PMCID: PMC6099247 DOI: 10.1002/mus.26112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Limb-girdle muscular dystrophy type 2E (LGMD2E) is caused by mutations in the β-sarcoglycan gene, which is expressed in skeletal, cardiac, and smooth muscles. β-Sarcoglycan-deficient (Sgcb-null) mice develop severe muscular dystrophy and cardiomyopathy with focal areas of necrosis. METHODS In this study we performed morphological (histological and cellular characterization) and functional (isometric tetanic force and fatigue) analyses in dystrophic mice. Comparison studies were carried out in 1-month-old (clinical onset of the disease) and 7-month-old control mice (C57Bl/6J, Rag2/γc-null) and immunocompetent and immunodeficient dystrophic mice (Sgcb-null and Sgcb/Rag2/γc-null, respectively). RESULTS We found that the lack of an immunological system resulted in an increase of calcification in striated muscles without impairing extensor digitorum longus muscle performance. Sgcb/Rag2/γc-null muscles showed a significant reduction of alkaline phosphate-positive mesoangioblasts. DISCUSSION The immunological system counteracts skeletal muscle degeneration in the murine model of LGMD2E. Muscle Nerve, 2018.
Collapse
Affiliation(s)
- Gaia Giovannelli
- Department of Neurosciences and Imaging“G. d'Annunzio” UniversityChietiItaly
- Translational Cardiomyology, Stem Cell Research InstituteCatholic University of LeuvenHerestraat 49 O&N4–Bus 814LeuvenB‐3000Belgium
| | - Giorgia Giacomazzi
- Translational Cardiomyology, Stem Cell Research InstituteCatholic University of LeuvenHerestraat 49 O&N4–Bus 814LeuvenB‐3000Belgium
| | - Hanne Grosemans
- Translational Cardiomyology, Stem Cell Research InstituteCatholic University of LeuvenHerestraat 49 O&N4–Bus 814LeuvenB‐3000Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology, Stem Cell Research InstituteCatholic University of LeuvenHerestraat 49 O&N4–Bus 814LeuvenB‐3000Belgium
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic MedicineUniversity of PaviaPaviaItaly
| |
Collapse
|
12
|
Becker C, Laeufer T, Arikkat J, Jakse G. TGFβ-1 and epithelial-mesenchymal interactions promote smooth muscle gene expression in bone marrow stromal cells: Possible application in therapies for urological defects. Int J Artif Organs 2018; 31:951-9. [DOI: 10.1177/039139880803101105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Purpose For regenerative and cellular therapies of the urinary tract system, autologous bladder smooth muscle cells (SMCs) have several limitations, including constricted in vitro proliferation capacity and, more importantly, inability to be used in malignant conditions. The use of in vitro (pre-)differentiated multipotential adult progenitor cells may help to overcome the shortcomings associated with primary cells. Methods By mimicking environmental conditions of the bladder wall, we investigated in vitro effects of growth factor applications and epithelial-mesenchymal interactions on smooth muscle gene expression and on the morphological appearance of adherent bone marrow stromal cells (BMSCs). Results Transcription growth factor beta-1 (TGFβ-1) upregulated the transcription of myogenic gene desmin and smooth muscle actin-γ2 in cultured BMSCs. Stimulatory effects were significantly increased by coculture with urothelial cells. Prolonged stimulation times and epigenetic modifications further enhanced transcription levels, indicating a dose-response relationship. Immunocytochemical staining of in vitro-differentiated BMSCs revealed expression of myogenic protein α-smooth muscle actin and desmin, and changes in morphological appearance from a fusiform convex shape to a laminar flattened shape with filamentous inclusions similar to the appearance of bladder SMCs. In contrast to the TGFβ-1 action, application of vascular endothelial growth factor (VEGF) did not affect the cells. Conclusions The combined application of TGFβ-1 and epithelial-mesenchymal interactions promoted in vitro outgrowth of cells with a smooth muscle-like phenotype from a selected adherent murine bone marrow-derived cell population.
Collapse
Affiliation(s)
- C. Becker
- Department of Urology, University Hospital and Medical Faculty, RWTH Aachen University, Aachen - Germany
| | - T. Laeufer
- Department of Urology, University Hospital and Medical Faculty, RWTH Aachen University, Aachen - Germany
| | - J. Arikkat
- Department of Urology, University Hospital and Medical Faculty, RWTH Aachen University, Aachen - Germany
| | - G. Jakse
- Department of Urology, University Hospital and Medical Faculty, RWTH Aachen University, Aachen - Germany
| |
Collapse
|
13
|
Drummond CJ, Hanna JA, Garcia MR, Devine DJ, Heyrana AJ, Finkelstein D, Rehg JE, Hatley ME. Hedgehog Pathway Drives Fusion-Negative Rhabdomyosarcoma Initiated From Non-myogenic Endothelial Progenitors. Cancer Cell 2018; 33:108-124.e5. [PMID: 29316425 PMCID: PMC5790179 DOI: 10.1016/j.ccell.2017.12.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/30/2017] [Accepted: 11/30/2017] [Indexed: 12/19/2022]
Abstract
Rhabdomyosarcoma (RMS) is a pediatric soft tissue sarcoma that histologically resembles embryonic skeletal muscle. RMS occurs throughout the body and an exclusively myogenic origin does not account for RMS occurring in sites devoid of skeletal muscle. We previously described an RMS model activating a conditional constitutively active Smoothened mutant (SmoM2) with aP2-Cre. Using genetic fate mapping, we show SmoM2 expression in Cre-expressing endothelial progenitors results in myogenic transdifferentiation and RMS. We show that endothelium and skeletal muscle within the head and neck arise from Kdr-expressing progenitors, and that hedgehog pathway activation results in aberrant expression of myogenic specification factors as a potential mechanism driving RMS genesis. These findings suggest that RMS can originate from aberrant development of non-myogenic cells.
Collapse
Affiliation(s)
- Catherine J Drummond
- Department of Oncology, MS-352, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jason A Hanna
- Department of Oncology, MS-352, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Matthew R Garcia
- Department of Oncology, MS-352, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Daniel J Devine
- Department of Oncology, MS-352, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Alana J Heyrana
- Department of Oncology, MS-352, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jerold E Rehg
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mark E Hatley
- Department of Oncology, MS-352, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
14
|
Tedesco FS, Moyle LA, Perdiguero E. Muscle Interstitial Cells: A Brief Field Guide to Non-satellite Cell Populations in Skeletal Muscle. Methods Mol Biol 2017; 1556:129-147. [PMID: 28247348 DOI: 10.1007/978-1-4939-6771-1_7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Skeletal muscle regeneration is mainly enabled by a population of adult stem cells known as satellite cells. Satellite cells have been shown to be indispensable for adult skeletal muscle repair and regeneration. In the last two decades, other stem/progenitor cell populations resident in the skeletal muscle interstitium have been identified as "collaborators" of satellite cells during regeneration. They also appear to have a key role in replacing skeletal muscle with adipose, fibrous, or bone tissue in pathological conditions. Here, we review the role and known functions of these different interstitial skeletal muscle cell types and discuss their role in skeletal muscle tissue homeostasis, regeneration, and disease, including their therapeutic potential for cell transplantation protocols.
Collapse
Affiliation(s)
- Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, Gower Street, WC1E 6DE, London, UK.
| | - Louise A Moyle
- Department of Cell and Developmental Biology, University College London, Gower Street, WC1E 6DE, London, UK
| | - Eusebio Perdiguero
- Cell Biology Group, Department of Experimental and Health Sciences (DCEXS), Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), 08003, Barcelona, Spain.
| |
Collapse
|
15
|
Herring BP, Hoggatt AM, Griffith SL, McClintick JN, Gallagher PJ. Inflammation and vascular smooth muscle cell dedifferentiation following carotid artery ligation. Physiol Genomics 2016; 49:115-126. [PMID: 28039430 PMCID: PMC5374455 DOI: 10.1152/physiolgenomics.00095.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 11/22/2022] Open
Abstract
Following vascular injury medial smooth muscle cells dedifferentiate and migrate through the internal elastic lamina where they form a neointima. The goal of the current study was to identify changes in gene expression that occur before the development of neointima and are associated with the early response to injury. Vascular injury was induced in C57BL/6 mice and in Myh11-creER(T2) mTmG reporter mice by complete ligation of the left carotid artery. Reporter mice were used to visualize cellular changes in the injured vessels. Total RNA was isolated from control carotid arteries or from carotid arteries 3 days following ligation of C57BL/6 mice and analyzed by Affymetrix microarray and quantitative RT-PCR. This analysis revealed decreased expression of mRNAs encoding smooth muscle-specific contractile proteins that was accompanied by a marked increase in a host of mRNAs encoding inflammatory cytokines following injury. There was also marked decrease in molecules associated with BMP, Wnt, and Hedgehog signaling and an increase in those associated with B cell, T cell, and macrophage signaling. Expression of a number of noncoding RNAs were also altered following injury with microRNAs 143/145 being dramatically downregulated and microRNAs 1949 and 142 upregulated. Several long noncoding RNAs showed altered expression that mirrored the expression of their nearest coding genes. These data demonstrate that following carotid artery ligation an inflammatory cascade is initiated that is associated with the downregulation of coding and noncoding RNAs that are normally required to maintain smooth muscle cells in a differentiated state.
Collapse
Affiliation(s)
- B Paul Herring
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - April M Hoggatt
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Sarah L Griffith
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Jeanette N McClintick
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Patricia J Gallagher
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; and
| |
Collapse
|
16
|
Vezzani B, Pierantozzi E, Sorrentino V. Not All Pericytes Are Born Equal: Pericytes from Human Adult Tissues Present Different Differentiation Properties. Stem Cells Dev 2016; 25:1549-1558. [PMID: 27549576 DOI: 10.1089/scd.2016.0177] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pericytes (PCs) have been recognized for a long time only as structural cells of the blood vessels. The identification of tight contacts with endothelial cells and the ability to interact with surrounding cells through paracrine signaling revealed additional functions of PCs in maintaining the homeostasis of the perivascular environment. PCs got the front page, in the late 1990s, after the identification and characterization of a new embryonic cell population, the mesoangioblasts, from which PCs present in the adult organism are thought to derive. From these studies, it was clear that PCs were also endowed with multipotent mesodermal abilities. Furthermore, their ability to cross the vascular wall and to reconstitute skeletal muscle tissue after systemic injection opened the way to a number of studies aimed to develop therapeutic protocols for a cell therapy of muscular dystrophy. This has resulted in a major effort to characterize pericytic cell populations from skeletal muscle and other adult tissues. Additional studies also addressed their relationship with other cells of the perivascular compartment and with mesenchymal stem cells. These data have provided initial evidence that PCs from different adult tissues might be endowed with distinctive differentiation abilities. This would suggest that the multipotent mesenchymal ability of PCs might be restrained within different tissues, likely depending on the specific cell renewal and repair requirements of each tissue. This review presents current knowledge on human PCs and highlights recent data on the differentiation properties of PCs isolated from different adult tissues.
Collapse
Affiliation(s)
- Bianca Vezzani
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena , Siena, Italy
| | - Enrico Pierantozzi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena , Siena, Italy
| | - Vincenzo Sorrentino
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena , Siena, Italy
| |
Collapse
|
17
|
Pierantozzi E, Vezzani B, Badin M, Curina C, Severi FM, Petraglia F, Randazzo D, Rossi D, Sorrentino V. Tissue-Specific Cultured Human Pericytes: Perivascular Cells from Smooth Muscle Tissue Have Restricted Mesodermal Differentiation Ability. Stem Cells Dev 2016; 25:674-86. [PMID: 26956507 DOI: 10.1089/scd.2015.0336] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Microvascular pericytes (PCs) are considered the adult counterpart of the embryonic mesoangioblasts, which represent a multipotent cell population that resides in the dorsal aorta of the developing embryo. Although PCs have been isolated from several adult organs and tissues, it is still controversial whether PCs from different tissues exhibit distinct differentiation potentials. To address this point, we investigated the differentiation potentials of isogenic human cultured PCs isolated from skeletal (sk-hPCs) and smooth muscle tissues (sm-hPCs). We found that both sk-hPCs and sm-hPCs expressed known pericytic markers and did not express endothelial, hematopoietic, and myogenic markers. Both sk-hPCs and sm-hPCs were able to differentiate into smooth muscle cells. In contrast, sk-hPCs, but not sm-hPCs, differentiated in skeletal muscle cells and osteocytes. Given the reported ability of the Notch pathway to regulate skeletal muscle and osteogenic differentiation, sk-hPCs and sm-hPCs were treated with N-[N-(3,5- difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), a known inhibitor of Notch signaling. DAPT treatment, as assessed by histological and molecular analysis, enhanced myogenic differentiation and abolished osteogenic potential of sk-hPCs. In contrast, DAPT treatment did not affect either myogenic or osteogenic differentiation of sm-hPCs. In summary, these results indicate that, despite being isolated from the same anatomical niche, cultured PCs from skeletal muscle and smooth muscle tissues display distinct differentiation abilities.
Collapse
Affiliation(s)
| | - Bianca Vezzani
- 1 Molecular Medicine Section, University of Siena , Siena, Italy
| | - Margherita Badin
- 1 Molecular Medicine Section, University of Siena , Siena, Italy
| | - Carlo Curina
- 1 Molecular Medicine Section, University of Siena , Siena, Italy
| | - Filiberto Maria Severi
- 2 Division of Obstetrics and Gynecology, Department of Molecular and Developmental Medicine, University of Siena , Siena, Italy
| | - Felice Petraglia
- 2 Division of Obstetrics and Gynecology, Department of Molecular and Developmental Medicine, University of Siena , Siena, Italy
| | - Davide Randazzo
- 1 Molecular Medicine Section, University of Siena , Siena, Italy
| | - Daniela Rossi
- 1 Molecular Medicine Section, University of Siena , Siena, Italy
| | | |
Collapse
|
18
|
Abstract
There have been significant breakthroughs over the past decade in the development and use of pluripotent stem cells as a potential source of cells for applications in regenerative medicine. It is likely that this methodology will begin to play an important role in human clinical medicine in the years to come. This review describes the plasticity of one type of pluripotent cell, spermatogonial stem cells (SSCs), and their potential therapeutic applications in regenerative medicine and male infertility. Normally, SSCs give rise to sperm when in the testis. However, both human and murine SSCs can give rise to cells with embryonic stem (ES) cell-like characteristics that can be directed to differentiate into tissues of all three embryonic germ layers when placed in an appropriate inductive microenvironment, which is in contrast to other postnatal stem cells. Previous studies have reported that SSCs expressed an intermediate pluripotent phenotype before differentiating into a specific cell type and that extended culture was necessary for this to occur. However, recent studies from our group using a tissue recombination model demonstrated that SSCs differentiated rapidly into another tissue, in this case, prostatic epithelium, without expression of pluripotent ES cell markers before differentiation. These results suggest that SSCs are capable of directly differentiating into other cell types without going through an intermediate ES cell-like stage. Because SSCs do not require reprogramming to achieve a pluripotent state, they are an attractive source of pluripotent cells for use in regenerative medicine.
Collapse
Affiliation(s)
- Paul S Cooke
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | | | | | | | | |
Collapse
|
19
|
Costamagna D, Quattrocelli M, van Tienen F, Umans L, de Coo IFM, Zwijsen A, Huylebroeck D, Sampaolesi M. Smad1/5/8 are myogenic regulators of murine and human mesoangioblasts. J Mol Cell Biol 2015; 8:73-87. [PMID: 26450990 PMCID: PMC4710210 DOI: 10.1093/jmcb/mjv059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 06/29/2015] [Indexed: 01/22/2023] Open
Abstract
Mesoangioblasts (MABs) are vessel-associated stem cells that express pericyte marker genes and participate in skeletal muscle regeneration. Molecular circuits that regulate the myogenic commitment of MABs are still poorly characterized. The critical role of bone morphogenetic protein (BMP) signalling during proliferation and differentiation of adult myogenic precursors, such as satellite cells, has recently been established. We evaluated whether BMP signalling impacts on the myogenic potential of embryonic and adult MABs both in vitro and in vivo. Addition of BMP inhibited MAB myogenic differentiation, whereas interference with the interactions between BMPs and receptor complexes induced differentiation. Similarly, siRNA-mediated knockdown of Smad8 in Smad1/5-null MABs or inhibition of SMAD1/5/8 phosphorylation with Dorsomorphin (DM) also improved myogenic differentiation, demonstrating a novel role of SMAD8. Moreover, using a transgenic mouse model of Smad8 deletion, we demonstrated that the absence of SMAD8 protein improved MAB myogenic differentiation. Furthermore, once injected into α-Sarcoglycan (Sgca)-null muscles, DM-treated MABs were more efficacious to restore α-sarcoglycan (αSG) protein levels and re-establish functional muscle properties. Similarly, in acute muscle damage, DM-treated MABs displayed a better myogenic potential compared with BMP-treated and untreated cells. Finally, SMADs also control the myogenic commitment of human MABs (hMABs). BMP signalling antagonists are therefore novel candidates to improve the therapeutic effects of hMABs.
Collapse
Affiliation(s)
- Domiziana Costamagna
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium Laboratory of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Mattia Quattrocelli
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Florence van Tienen
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lieve Umans
- Laboratory for Developmental Signalling, VIB Center for the Biology of Disease, Department of Human Genetics, KU Leuven, Leuven, Belgium Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Irineus F M de Coo
- Department of Neurology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - An Zwijsen
- Laboratory for Developmental Signalling, VIB Center for the Biology of Disease, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Danny Huylebroeck
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven, Belgium Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium Division of Human Anatomy, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
20
|
PW1/Peg3 expression regulates key properties that determine mesoangioblast stem cell competence. Nat Commun 2015; 6:6364. [PMID: 25751651 PMCID: PMC4366533 DOI: 10.1038/ncomms7364] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 01/22/2015] [Indexed: 12/14/2022] Open
Abstract
Mesoangioblasts are vessel-associated progenitor cells that show therapeutic promise for the treatment of muscular dystrophy. Mesoangioblasts have the ability to undergo skeletal muscle differentiation and cross the blood vessel wall regardless of the developmental stage at which they are isolated. Here we show that PW1/Peg3 is expressed at high levels in mesoangioblasts obtained from mouse, dog and human tissues and its level of expression correlates with their myogenic competence. Silencing PW1/Peg3 markedly inhibits myogenic potential of mesoangioblasts in vitro through MyoD degradation. Moreover, lack of PW1/Peg3 abrogates mesoangioblast ability to cross the vessel wall and to engraft into damaged myofibres through the modulation of the junctional adhesion molecule-A. We conclude that PW1/Peg3 function is essential for conferring proper mesoangioblast competence and that the determination of PW1/Peg3 levels in human mesoangioblasts may serve as a biomarker to identify the best donor populations for therapeutic application in muscular dystrophies. Mesoangioblasts are mesodermal stem cells with a therapeutic potential for treatment of muscular dystrophy due to their ability to differentiate into skeletal muscle. This study shows that the PW1/Peg3 protein is crucial for mesoangioblast myogenic and migratory potency and is a therapeutically relevant biomarker.
Collapse
|
21
|
Baskir R, Majka S. Pulmonary Vascular Remodeling by Resident Lung Stem and Progenitor Cells. LUNG STEM CELLS IN THE EPITHELIUM AND VASCULATURE 2015. [DOI: 10.1007/978-3-319-16232-4_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
22
|
Kawaguchi N. Stem cells for cardiac regeneration and possible roles of the transforming growth factor-β superfamily. Biomol Concepts 2014; 3:99-106. [PMID: 25436527 DOI: 10.1515/bmc.2011.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 10/25/2011] [Indexed: 11/15/2022] Open
Abstract
Abstract Heart failure is a leading cause of death worldwide. Studies of stem cell biology are essential for developing efficient treatments. Recently, we established and characterized c-kit-positive cardiac stem cells from the adult rat heart. Using a MethoCult culture system with a methyl-cellulose-based medium, stem-like left-atrium-derived pluripotent cells could be regulated to differentiate into skeletal/cardiac myocytes or adipocytes with almost 100% purity. Microarray and pathway analyses of these cells showed that transforming growth factor-β1 (TGF-β1) and noggin were significantly involved in the differentiation switch. Furthermore, TGF-β1 may act as a regulator for this switch because it simultaneously inhibits adipogenesis and activates myogenesis in a dose-dependent manner. However, the effect of TGF-β varies with developmental stage, dosage, and timing of treatment. In the present review, the findings of recent studies, in particular the use of c-kit-positive cardiac stem cells, are discussed. The effects of the TGF-β superfamily on differentiation, especially on adipogenesis and/or myogenesis, have important implications for future regenerative medicine.
Collapse
|
23
|
Azzoni E, Conti V, Campana L, Dellavalle A, Adams RH, Cossu G, Brunelli S. Hemogenic endothelium generates mesoangioblasts that contribute to several mesodermal lineages in vivo. Development 2014; 141:1821-34. [DOI: 10.1242/dev.103242] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The embryonic endothelium is a known source of hematopoietic stem cells. Moreover, vessel-associated progenitors/stem cells with multilineage mesodermal differentiation potential, such as the ‘embryonic mesoangioblasts’, originate in vitro from the endothelium. Using a genetic lineage tracing approach, we show that early extra-embryonic endothelium generates, in a narrow time-window and prior to the hemogenic endothelium in the major embryonic arteries, hematopoietic cells that migrate to the embryo proper, and are subsequently found within the mesenchyme. A subpopulation of these cells, distinct from embryonic macrophages, co-expresses mesenchymal and hematopoietic markers. In addition, hemogenic endothelium-derived cells contribute to skeletal and smooth muscle, and to other mesodermal cells in vivo, and display features of embryonic mesoangioblasts in vitro. Therefore, we provide new insights on the distinctive characteristics of the extra-embryonic and embryonic hemogenic endothelium, and we identify the putative in vivo counterpart of embryonic mesoangioblasts, suggesting their identity and developmental ontogeny.
Collapse
Affiliation(s)
- Emanuele Azzoni
- Department of Health Sciences, University of Milano-Bicocca, Monza 20900, Italy
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Via Olgettina 58, Milan 20132, Italy
| | - Valentina Conti
- Department of Health Sciences, University of Milano-Bicocca, Monza 20900, Italy
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Via Olgettina 58, Milan 20132, Italy
| | - Lara Campana
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Via Olgettina 58, Milan 20132, Italy
| | - Arianna Dellavalle
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Via Olgettina 58, Milan 20132, Italy
| | - Ralf H. Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster D-48149, Germany
- University of Münster, Faculty of Medicine, Münster D-48149, Germany
| | - Giulio Cossu
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Via Olgettina 58, Milan 20132, Italy
- Institute of Inflammation and Repair, University of Manchester, Manchester M13 9PL, UK
| | - Silvia Brunelli
- Department of Health Sciences, University of Milano-Bicocca, Monza 20900, Italy
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Via Olgettina 58, Milan 20132, Italy
| |
Collapse
|
24
|
Meregalli M, Farini A, Sitzia C, Torrente Y. Advancements in stem cells treatment of skeletal muscle wasting. Front Physiol 2014; 5:48. [PMID: 24575052 PMCID: PMC3921573 DOI: 10.3389/fphys.2014.00048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/25/2014] [Indexed: 01/01/2023] Open
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of inherited disorders, in which progressive muscle wasting and weakness is often associated with exhaustion of muscle regeneration potential. Although physiological properties of skeletal muscle tissue are now well known, no treatments are effective for these diseases. Muscle regeneration was attempted by means transplantation of myogenic cells (from myoblast to embryonic stem cells) and also by interfering with the malignant processes that originate in pathological tissues, such as uncontrolled fibrosis and inflammation. Taking into account the advances in the isolation of new subpopulation of stem cells and in the creation of artificial stem cell niches, we discuss how these emerging technologies offer great promises for therapeutic approaches to muscle diseases and muscle wasting associated with aging.
Collapse
Affiliation(s)
- Mirella Meregalli
- Stem Cell Laboratory, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Centro Dino Ferrari, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano Milano, Italy
| | - Andrea Farini
- Stem Cell Laboratory, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Centro Dino Ferrari, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano Milano, Italy
| | - Clementina Sitzia
- Stem Cell Laboratory, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Centro Dino Ferrari, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano Milano, Italy
| | - Yvan Torrente
- Stem Cell Laboratory, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Centro Dino Ferrari, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano Milano, Italy
| |
Collapse
|
25
|
Simon L, Cooke PS, Berry SE. Aorta-derived mesoangioblasts can be differentiated into functional uterine epithelium, but not prostatic epithelium or epidermis, by instructive mesenchymes. Cells Tissues Organs 2013; 198:169-78. [PMID: 24192012 DOI: 10.1159/000354900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2013] [Indexed: 11/19/2022] Open
Abstract
Mesoangiobasts are blood vessel-derived stem cells that differentiate into smooth, skeletal, and cardiac muscle cells. We have reported that postnatal aorta-derived mesoangioblasts (ADM) regenerate skeletal muscle and prevent onset of dilated cardiomyopathy in animal models of Duchenne muscular dystrophy. ADM also differentiate into myelinating glial cells, suggesting they are multipotent and capable of generating mesodermal or ectodermal derivatives. Mesenchyme of some fetal organs is a potent instructive inducer. Here we examined whether ADM can differentiate into prostatic, uterine, and skin epithelium by recombining ADM with fetal or neonatal mesenchyme from these organs and grafting them under the renal capsule of syngeneic hosts. In tissue recombinants of uterine mesenchyme (UtM) and ADM, ADM formed histologically normal simple columnar uterine epithelium that expressed estrogen receptor 1 and in response to estrogen showed increased mitogenesis and downregulation of progesterone receptor. In contrast, ADM did not differentiate into prostatic epithelium or epidermis when recombined with urogenital sinus mesenchyme or fetal dermis, respectively. These results indicate that ADM can respond to cues from neonatal UtM and differentiate into morphologically and functionally normal uterine epithelial cells, and support previous reports that ADM can differentiate into a variety of tissues of the mesodermal lineage. However, these data indicate that ADM are restricted in their capacity to differentiate into endodermal and ectodermal derivatives such as prostatic and skin epithelial cells, respectively.
Collapse
Affiliation(s)
- Liz Simon
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, La., USA
| | | | | |
Collapse
|
26
|
Rodino-Klapac LR, Mendell JR, Sahenk Z. Update on the treatment of Duchenne muscular dystrophy. Curr Neurol Neurosci Rep 2013; 13:332. [PMID: 23328943 DOI: 10.1007/s11910-012-0332-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Duchenne muscular dystrophy is the most severe childhood form of muscular dystrophy caused by mutations in the gene responsible for dystrophin production. There is no cure, and treatment is limited to glucocorticoids that prolong ambulation and drugs to treat the cardiomyopathy. Multiple treatment strategies are under investigation and have shown promise for Duchenne muscular dystrophy. Use of molecular-based therapies that replace or correct the missing or nonfunctional dystrophin protein has gained momentum. These strategies include gene replacement with adeno-associated virus, exon skipping with antisense oligonucleotides, and mutation suppression with compounds that "read through" stop codon mutations. Other strategies include cell therapy and surrogate gene products to compensate for the loss of dystrophin. All of these approaches are discussed in this review, with particular emphasis on the most recent advances made in each therapeutic discipline. The advantages of each approach and challenges in translation are outlined in detail. Individually or in combination, all of these therapeutic strategies hold great promise for treatment of this devastating childhood disease.
Collapse
Affiliation(s)
- Louise R Rodino-Klapac
- Department of Pediatrics, The Ohio State University, and Nationwide Children's Hospital, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
27
|
Meregalli M, Farini A, Belicchi M, Parolini D, Cassinelli L, Razini P, Sitzia C, Torrente Y. Perspectives of stem cell therapy in Duchenne muscular dystrophy. FEBS J 2013. [DOI: 10.1111/febs.12083] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mirella Meregalli
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Andrea Farini
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Marzia Belicchi
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Daniele Parolini
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Letizia Cassinelli
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Paola Razini
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Clementina Sitzia
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Yvan Torrente
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| |
Collapse
|
28
|
Su T, Scardigli R, Fasulo L, Paradiso B, Barbieri M, Binaschi A, Bovolenta R, Zucchini S, Cossu G, Cattaneo A, Simonato M. Bystander effect on brain tissue of mesoangioblasts producing neurotrophins. Cell Transplant 2012; 21:1613-27. [PMID: 22525962 DOI: 10.3727/096368912x640475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neurotrophic factors (NTFs) are involved in the regulation of neuronal survival and function and, thus, may be used to treat neurological diseases associated with neuronal death. A major hurdle for their clinical application is the delivery mode. We describe here a new strategy based on the use of progenitor cells called mesoangioblasts (MABs). MABs can be isolated from postnatal mesoderm tissues and, because of a high adhesin-dependent migratory capacity, can reach perivascular targets especially in damaged areas. We generated genetically modified MABs producing nerve growth factor (MABs-NGF) or brain-derived neurotrophic factor (MABs-BDNF) and assessed their bystander effects in vitro using PC12 cells, primary cultures, and organotypic cultures of adult hippocampal slices. MABs-NGF-conditioned medium induced differentiation of PC12 cells, while MABs-BDNF-conditioned medium increased viability of cultured neurons and slices. Slices cultured with MABs-BDNF medium also better retained their morphology and functional connections, and all these effects were abolished by the TrkB kinase blocker K252a or the BDNF scavenger TrkB-IgG. Interestingly, the amount of BDNF released by MABs-BDNF produced greater effects than an identical amount of recombinant BDNF, suggesting that other NTFs produced by MABs synergize with BDNF. Thus, MABs can be an effective vehicle for NTF delivery, promoting differentiation, survival, and functionality of neurons. In summary, MABs hold distinct advantages over other currently evaluated approaches for NTF delivery in the CNS, including synergy of MAB-produced NTF with the neurotrophins. Since MABs may be capable of homing into damaged brain areas, they represent a conceptually novel, promising therapeutic approach to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Tao Su
- Department of Clinical and Experimental Medicine, Section of Pharmacology, Neuroscience Center, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pessina P, Conti V, Tonlorenzi R, Touvier T, Meneveri R, Cossu G, Brunelli S. Necdin enhances muscle reconstitution of dystrophic muscle by vessel-associated progenitors, by promoting cell survival and myogenic differentiation. Cell Death Differ 2011; 19:827-38. [PMID: 22095287 DOI: 10.1038/cdd.2011.160] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Improving stem cell therapy is a major goal for the treatment of muscle diseases, where physiological muscle regeneration is progressively exhausted. Vessel-associated stem cells, such as mesoangioblasts (MABs), appear to be the most promising cell type for the cell therapy for muscular dystrophies and have been shown to significantly contribute to restoration of muscle structure and function in different muscular dystrophy models. Here, we report that melanoma antigen-encoding gene (MAGE) protein necdin enhances muscle differentiation and regeneration by MABs. When necdin is constitutively overexpressed, it accelerates their differentiation and fusion in vitro and it increases their efficacy in reconstituting regenerating myofibres in the α-sarcoglycan dystrophic mouse. Moreover, necdin enhances survival when MABs are exposed to cytotoxic stimuli that mimic the inflammatory dystrophic environment. Taken together, these data demonstrate that overexpression of necdin may be a crucial tool to boost therapeutic applications of MABs in dystrophic muscle.
Collapse
Affiliation(s)
- P Pessina
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Wang L, Kamath A, Frye J, Iwamoto GA, Chun JL, Berry SE. Aorta-derived mesoangioblasts differentiate into the oligodendrocytes by inhibition of the Rho kinase signaling pathway. Stem Cells Dev 2011; 21:1069-89. [PMID: 21793703 DOI: 10.1089/scd.2011.0124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mesoangioblasts are vessel-derived stem cells that differentiate into mesodermal derivatives. We have isolated postnatal aorta-derived mesoangioblasts (ADMs) that differentiate into smooth, skeletal, and cardiac muscle, and adipocytes, and regenerate damaged skeletal muscle in a murine model for Duchenne muscular dystrophy. We report that the marker profile of ADM is similar to that of mesoangioblasts isolated from embryonic dorsal aorta, postnatal bone marrow, and heart, but distinct from mesoangioblasts derived from skeletal muscle. We also demonstrate that ADM differentiate into myelinating glial cells. ADM localize to peripheral nerve bundles in regenerating muscles and exhibit morphology and marker expression of mature Schwann cells, and myelinate axons. In vitro, ADM spontaneously express markers of oligodendrocyte progenitors, including the chondroitin sulphate proteoglycan NG2, nestin, platelet-derived growth factor (PDGF) receptor α, the A2B5 antigen, thyroid hormone nuclear receptor α, and O4. Pharmacological inhibition of Rho kinase (ROCK) initiated process extension by ADM, and when combined with insulin-like growth factor 1, PDGF, and thyroid hormone, enhanced ADM expression of oligodendrocyte precursor markers and maturation into the oligodendrocyte lineage. ADM injected into the right lateral ventricle of the brain migrate to the corpus callosum, and cerebellar white matter, where they express components of myelin. Because ADM differentiate or mature into cell types of both mesodermal and ectodermal origin, they may be useful for treatment of a variety of degenerative diseases, or repair and regeneration of multiple cell types in severely damaged tissue.
Collapse
Affiliation(s)
- Lei Wang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | | | | | | | | | | |
Collapse
|
31
|
Donati C, Marseglia G, Magi A, Serratì S, Cencetti F, Bernacchioni C, Nannetti G, Benelli M, Brunelli S, Torricelli F, Cossu G, Bruni P. Sphingosine 1-phosphate induces differentiation of mesoangioblasts towards smooth muscle. A role for GATA6. PLoS One 2011; 6:e20389. [PMID: 21629665 PMCID: PMC3101247 DOI: 10.1371/journal.pone.0020389] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 05/02/2011] [Indexed: 11/18/2022] Open
Abstract
Different cells can contribute to repair following vascular injury by differentiating into smooth muscle (SM) cells; however the extracellular signals involved are presently poorly characterized. Mesoangioblasts are progenitor cells capable of differentiating into various mesoderm cell types including SM cells. In this study the biological action exerted by the pleiotropic sphingolipid sphingosine 1-phosphate (S1P) in human mesoangioblasts has been initially investigated by cDNA microarray analysis. Obtained data confirmed the anti-apoptotic action of this sphingolipid and identified for the first time a strong differentiating action toward SM cells. Quantitative mRNA and protein analysis corroborated the microarray results demonstrating enhanced expression of myogenic marker proteins and regulation of the expression of transcription factor GATA6 and its co-regulator, LMCD1. Importantly, GATA6 up-regulation induced by S1P was responsible for the enhanced expression of SM-specific contractile proteins. Moreover, by specific gene silencing experiments GATA6 was critical in the pro-differentiating activity of the cytokine TGFβ. Finally, the pharmacological inhibition of endogenous S1P formation in response to TGFβ abrogated GATA6 up-regulation, supporting the view that the S1P pathway plays a physiological role in mediating the pro-myogenic effect of TGFβ. This study individuates GATA6 as novel player in the complex transcriptional regulation of mesoangioblast differentiation into SM cells and highlights a role for S1P to favour vascular regeneration.
Collapse
Affiliation(s)
- Chiara Donati
- Dipartimento di Scienze Biochimiche, Università di Firenze, Firenze, Italia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Meregalli M, Farini A, Parolini D, Maciotta S, Torrente Y. Stem cell therapies to treat muscular dystrophy: progress to date. BioDrugs 2010; 24:237-47. [PMID: 20623990 DOI: 10.2165/11534300-000000000-00000] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Muscular dystrophies are heritable, heterogeneous neuromuscular disorders and include Duchenne and Becker muscular dystrophies (DMD and BMD, respectively). DMD patients exhibit progressive muscle weakness and atrophy followed by exhaustion of muscular regenerative capacity, fibrosis, and eventually disruption of the muscle tissue architecture. In-frame mutations in the dystrophin gene lead to expression of a partially functional protein, resulting in the milder BMD. No effective therapies are available at present. Cell-based therapies have been attempted in an effort to promote muscle regeneration, with the hope that the host cells would repopulate the muscle and improve muscle function and pathology. Injection of adult myoblasts has led to the development of new muscle fibers, but several limitations have been identified, such as poor cell survival and limited migratory ability. As an alternative to myoblasts, stem cells were considered preferable for therapeutic applications because of their capacity for self-renewal and differentiation potential. In recent years, encouraging results have been obtained with adult stem cells to treat human diseases such as leukemia, Parkinson's disease, stroke, and muscular dystrophies. Embryonic stem cells (ESCs) can be derived from mammalian embryos in the blastocyst stage, and because they can differentiate into a wide range of specialized cells, they hold potential for use in treating almost all human diseases. Several ongoing studies focus on this possibility, evaluating differentiation of specific cell lines from human ESCs (hESCs) as well as the potential tumorigenicity of hESCs. The most important limitation with using hESCs is that it requires destruction of human blastocysts or embryos. Conversely, adult stem cells have been identified in various tissues, where they serve to maintain, generate, and replace terminally differentiated cells within their specific tissue as the need arises for cell turnover or from tissue injury. Moreover, these cells can participate in regeneration of more than just their specific tissue type. Here we describe multiple types of muscle- and fetal-derived myogenic stem cells, their characterization, and their possible use in treating muscular dystrophies such as DMD and BMD. We also emphasize that the most promising possibility for the management and therapy of DMD and BMD is a combination of different approaches, such as gene and stem cell therapy.
Collapse
Affiliation(s)
- Mirella Meregalli
- Stem Cell Laboratory, Dipartimento di Scienze Neurologiche, Centro Dino Ferrari, Università di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | | |
Collapse
|
33
|
Biological implications of growth factors in bone remodeling following fracture, surgical resection and bonegrafting. Part 1: Transforming growth factors, bone morphogenetic proteins and related factors. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.ajoms.2010.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Sancricca C, Mirabella M, Gliubizzi C, Broccolini A, Gidaro T, Morosetti R. Vessel-associated stem cells from skeletal muscle: From biology to future uses in cell therapy. World J Stem Cells 2010; 2:39-49. [PMID: 21607121 PMCID: PMC3097924 DOI: 10.4252/wjsc.v2.i3.39] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/18/2010] [Accepted: 05/25/2010] [Indexed: 02/06/2023] Open
Abstract
Over the last years, the existence of different stem cells with myogenic potential has been widely investigated. Besides the classical skeletal muscle progenitors represented by satellite cells, numerous multipotent and embryologically unrelated progenitors with a potential role in muscle differentiation and repair have been identified. In order to conceive a therapeutic approach for degenerative muscle disorders, it is of primary importance to identify an ideal stem cell endowed with all the features for a possible use in vivo. Among all emerging populations, vessel-associated stem cells are a novel and promising class of multipotent progenitors of mesodermal origin and with high myogenic potential which seem to best fit all the requirements for a possible cell therapy. In vitro and in vivostudies have already tested the effectiveness and safety of vessel-associated stem cells in animal models. This leads to the concrete possibility in the future to start pilot human clinical trials, hopefully opening the way to a turning point in the treatment of genetic and acquired muscle disorders.
Collapse
Affiliation(s)
- Cristina Sancricca
- Cristina Sancricca, Massimiliano Mirabella, Carla Gliubizzi, Aldobrando Broccolini, Teresa Gidaro, Roberta Morosetti, Department of Neurosciences, Catholic University School of Medicine, Largo A. Gemelli 8, 00168 Rome, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Orlandi A, Bennett M. Progenitor cell-derived smooth muscle cells in vascular disease. Biochem Pharmacol 2010; 79:1706-13. [DOI: 10.1016/j.bcp.2010.01.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 01/18/2010] [Accepted: 01/22/2010] [Indexed: 10/19/2022]
|
36
|
Farini A, Razini P, Erratico S, Torrente Y, Meregalli M. Cell based therapy for Duchenne muscular dystrophy. J Cell Physiol 2009; 221:526-34. [PMID: 19688776 DOI: 10.1002/jcp.21895] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mutations in the dystrophin gene cause an X-linked genetic disorder: Duchenne muscular dystrophy (DMD). Stem cell therapy is an attractive method to treat DMD because a small number of cells are required to obtain a therapeutic effect. Here, we discussed about multiple types of myogenic stem cells and their possible use to treat DMD. The identification of a stem cell population providing efficient muscle regeneration is critical for the progression of cell therapy for DMD. We speculated that the most promising possibility for the treatment of DMD is a combination of different approaches, such as gene and stem cell therapy.
Collapse
Affiliation(s)
- Andrea Farini
- Stem Cell Laboratory, Department of Neurological Science, Centro Dino Ferrari, University of Milan, Fondazione IRCCS Policlinico Mangiagalli Regina Elena, Italy
| | | | | | | | | |
Collapse
|
37
|
Seuntjens E, Umans L, Zwijsen A, Sampaolesi M, Verfaillie CM, Huylebroeck D. Transforming Growth Factor type beta and Smad family signaling in stem cell function. Cytokine Growth Factor Rev 2009; 20:449-58. [PMID: 19892581 DOI: 10.1016/j.cytogfr.2009.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ligands of the Transforming Growth Factor type beta (TGFbeta) family exert multiple and sometimes opposite effects on most cell types in vivo depending on cellular context, which mainly includes the stage of the target cell, the local environment of this cell or niche, and the identity and the dosage of the ligand. Significant progress has been made in the molecular dissection of the regulation of the activity of the ligands and their intracellular signal transduction pathways, including via the canonical Smad pathway where Smads interact with many transcription factors. This knowledge together with results from functional studies within the embryology and stem cell research fields is giving us insight in the role of individual ligands and other components of this signaling system and where and how it regulates many properties of embryonic and adult stem/progenitor cells, which is anticipated to contribute to successful cell-based therapy in the future. We review and discuss recent progress on the effects of Nodal/Activin and Bone Morphogenetic Proteins (BMPs) and their canonical signaling in cells with stem cell properties. We focus on embryonic stem cells and their maintenance and pluripotency, and conversion into selected cell types of neuroectoderm, mesoderm and endoderm, on induced pluripotent cells and on neurogenic cells in the adult brain.
Collapse
Affiliation(s)
- Eve Seuntjens
- Laboratory of Molecular Biology (Celgen) of the Center for Human Genetics, University of Leuven, Flanders Institute of Biotechnology (VIB), Campus Gasthuisberg, B-3000 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
38
|
Lin L, Chow KL, Leng Y. Study of hydroxyapatite osteoinductivity with an osteogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A 2009; 89:326-35. [PMID: 18431794 DOI: 10.1002/jbm.a.31994] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Osteoinductivity of hydroxyapatite (HA) was investigated using uncommitted pluripotent mouse stem cells, C3H10T1/2 in an in vitro differentiation assay. For comparative analysis, the cells were cultured on substrates made of osteoinductive HA, with biocompatible titanium and plastics as the negative control. HA exhibited the ability to induce expression of osteo-specific genes in C3H10T1/2, including alkaline phosphatase (ALP), type I collagen, and osteocalcin; compared with its insignificant up-regulation of the same genes in osteoblast-like cells, Saos-2. HA osteoinductivity exhibited in C3H10T1/2 was comparable to that of a bone morphogenetic protein (BMP) with reference to the up-regulation of osteo-specific genes except the core binding factor 1 (Cbfa1, Runx). This result implies a difference in osteogenic induction pathway initiated by HA and BMP. Using this mesenchymal stem cells (MSC) culture assay, osteoinductivity was also demonstrated to be present in the conditioned medium derived from MSC cultured on HA substrates. This conditioned medium exhibited excellent ability to up-regulate ALP in the absence of HA and BMP. The results suggest that the HA can interact with the cells and generate potent inductive substance released into the medium. Such substance in turn is able to induce uncommitted cells to differentiate into the osteolineage.
Collapse
Affiliation(s)
- Liwen Lin
- Program of Bioengineering; Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | | | | |
Collapse
|
39
|
|
40
|
Schindeler A, Liu R, Little DG. The contribution of different cell lineages to bone repair: exploring a role for muscle stem cells. Differentiation 2008; 77:12-8. [PMID: 19281760 DOI: 10.1016/j.diff.2008.09.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 07/22/2008] [Indexed: 12/16/2022]
Abstract
An anabolic response driven by osteoblasts is critical for the process of bone healing. Current evidence suggests that these osteoblasts may arise from multiple tissue types and cell lineages. Stem cells present in the bone marrow, periosteum, local soft tissues, vasculature, and/or circulation have been shown to have osteogenic potential. Transplanted cells from these sources have also been shown to incorporate into induced ectopic bone or repaired bone. While these experiments demonstrate the latent capacity of different lineages to assume an osteoblastic phenotype under pro-osteogenic conditions, the actual contribution of the different lineages to various repair situations in vivo remains unclear. This review explores the data arising from different bone formation and repair models. We propose a model suggesting that cells arising from the local tissues, particularly muscle cells, may play an important role in fracture repair under situations where the periosteal and/or bone marrow progenitor populations are depleted.
Collapse
Affiliation(s)
- Aaron Schindeler
- Department of Orthopaedic Research & Biotechnology, Research Building, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW 2145, Australia.
| | | | | |
Collapse
|
41
|
Santoni de Sio FR, Gritti A, Cascio P, Neri M, Sampaolesi M, Galli C, Luban J, Naldini L. Lentiviral vector gene transfer is limited by the proteasome at postentry steps in various types of stem cells. Stem Cells 2008; 26:2142-52. [PMID: 18483423 DOI: 10.1634/stemcells.2007-0705] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The isolation of human embryonic and somatic stem cells of different types has made it possible to design novel gene and cell replacement therapies. Vectors derived from retro/lentiviruses are used to stably introduce genes into stem cells and their progeny. However, the permissivity to retroviral infection varies among cell types. We previously showed that hematopoietic stem cells are poorly permissive to human immunodeficiency virus (HIV)-derived vectors and that pharmacological inhibition of the proteasome strongly enhances gene transfer. Here we report that the proteasome limits lentiviral gene transfer in all stem cell types tested, including embryonic, mesenchymal, and neural, of both human and mouse origin. Remarkably, this inhibitory activity was sharply reduced upon differentiation of the stem cells, suggesting that it represents a novel feature of the stem cell/immature progenitor phenotype. Proteasome-mediated inhibition was specific for lentiviral vectors and occurred at a postentry infection step. It was not mediated by activation of nuclear factor-kappaB, a major signaling pathway modulated by the proteasome, and did not correlate with high proteasome activity. Interaction of the virion core with cyclophilin A was required to maximize the effect of proteasome inhibitor on the infection pathway. These findings are relevant to uncover new mediators of HIV gene transfer and help in designing more effective protocols for the genetic modification of stem cells. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
|
42
|
Crisan M, Deasy B, Gavina M, Zheng B, Huard J, Lazzari L, Péault B. Purification and long-term culture of multipotent progenitor cells affiliated with the walls of human blood vessels: myoendothelial cells and pericytes. Methods Cell Biol 2008; 86:295-309. [PMID: 18442653 DOI: 10.1016/s0091-679x(08)00013-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We have identified with molecular markers and purified by flow cytometry two populations of cells that are developmentally and anatomically related to blood vessel walls in human tissues: myoendothelial cells, found in skeletal muscle and coexpressing markers of endothelial and myogenic cells, and pericytes--aka mural cells--which surround endothelial cells in capillaries and microvessels. Purified myoendothelial cells and pericytes exhibit multilineage developmental potential and differentiate, in culture and in vivo, into skeletal myofibers, bone, cartilage, and adipocytes. Myoendothelial cells and pericytes can be cultured on the long term with sustained marker expression and differentiation potential and clonal populations thereof have been derived. Yet, these blood vessel wall-derived progenitors exhibit no tendency to malignant transformation upon extended culture. Our results suggest that multipotent progenitor cells, such as mesenchymal stem cells, previously isolated retrospectively from diverse cultured adult tissues are derived from a subset of perivascular cells. We present in this chapter the main strategies and tactics used to purify, culture on the long term, and phenotypically characterize these novel multipotent cells.
Collapse
Affiliation(s)
- Mihaela Crisan
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Meregalli M, Farini A, Torrente Y. Combining stem cells and exon skipping strategy to treat muscular dystrophy. Expert Opin Biol Ther 2008; 8:1051-61. [DOI: 10.1517/14712598.8.8.1051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
44
|
Scardigli R, Gargioli C, Tosoni D, Borello U, Sampaolesi M, Sciorati C, Cannata S, Clementi E, Brunelli S, Cossu G. Binding of sFRP-3 to EGF in the extra-cellular space affects proliferation, differentiation and morphogenetic events regulated by the two molecules. PLoS One 2008; 3:e2471. [PMID: 18560570 PMCID: PMC2424011 DOI: 10.1371/journal.pone.0002471] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 05/13/2008] [Indexed: 12/05/2022] Open
Abstract
Background sFRP-3 is a soluble antagonist of Wnts, widely expressed in developing embryos. The Wnt gene family comprises cysteine-rich secreted ligands that regulate cell proliferation, differentiation, organogenesis and oncogenesis of different organisms ranging from worms to mammals. In the canonical signal transduction pathway Wnt proteins bind to the extracellular domain of Frizzled receptors and consequently recruit Dishevelled (Dsh) to the cell membrane. In addition to Wnt membrane receptors belonging to the Frizzled family, several other molecules have been described which share homology in the CRD domain and lack the putative trans-membrane domain, such as sFRP molecules (soluble Frizzled Related Protein). Among them, sFRP-3 was originally isolated from bovine articular cartilage and also as a component of the Spemann organizer. sFRP-3 blocks Wnt-8 induced axis duplication in Xenopus embryos and binds to the surface of cells expressing a membrane-anchored form of Wnt-1. Injection of sFRP-3 mRNA blocks expression of XMyoD mRNA and leads to embryos with enlarged heads and shortened trunks. Methodology/Principal Findings Here we report that sFRP-3 specifically blocks EGF-induced fibroblast proliferation and foci formation. Over-expression of sFRP-3 reverts EGF-mediated inhibition of hair follicle development in the mouse ectoderm while its ablation in Xenopus maintains EGF-mediated inhibition of ectoderm differentiation. Conversely, over-expression of EGF reverts the inhibition of somitic myogenesis and axis truncation in Xenopus and mouse embryos caused by sFRP-3. In vitro experiments demonstrated a direct binding of EGF to sFRP-3 both on heparin and on the surface of CHO cells where the molecule had been membrane anchored. Conclusions/Significance sFRP-3 and EGF reciprocally inhibit their effects on cell proliferation, differentiation and morphogenesis and indeed are expressed in contiguous domains of the embryo, suggesting that in addition to their canonical ligands (Wnt and EGF receptor, respectively) these molecules bind to each other and regulate their activities during embryogenesis.
Collapse
Affiliation(s)
- Raffaella Scardigli
- Department of Developmental Biology, Institute of Cell Biology and Tissue Engineering, San Raffaele Biomedical Science Park of Rome, Rome, Italy
- Department of Histology and Medical Embryology, II° Medical School, University of Rome “La Sapienza”, Rome, Italy
| | - Cesare Gargioli
- Department of Developmental Biology, Institute of Cell Biology and Tissue Engineering, San Raffaele Biomedical Science Park of Rome, Rome, Italy
- Department of Histology and Medical Embryology, II° Medical School, University of Rome “La Sapienza”, Rome, Italy
| | - Daniela Tosoni
- Department of Histology and Medical Embryology, II° Medical School, University of Rome “La Sapienza”, Rome, Italy
| | - Ugo Borello
- Department of Histology and Medical Embryology, II° Medical School, University of Rome “La Sapienza”, Rome, Italy
- Stem Cell Research Institute, H. “S. Raffaele”, Milan, Italy
| | - Maurilio Sampaolesi
- Department of Experimental Medicine, University of Pavia, Pavia, Italy
- Interdepartemental Stem Cell Research Institute, University Hospital Gasthuisberg, Leuven, Belgium
| | - Clara Sciorati
- Stem Cell Research Institute, H. “S. Raffaele”, Milan, Italy
| | - Stefano Cannata
- Department of Biology, University of Tor Vergata, Rome, Italy
| | - Emilio Clementi
- Stem Cell Research Institute, H. “S. Raffaele”, Milan, Italy
- Department of Preclinical Sciences, University of Milan, and E. Medea Scientific Institute, Milan, Italy
| | - Silvia Brunelli
- Stem Cell Research Institute, H. “S. Raffaele”, Milan, Italy
- Department of Experimental Medicine, University of Milan-Bicocca, Monza (Milan), Italy
| | - Giulio Cossu
- Department of Developmental Biology, Institute of Cell Biology and Tissue Engineering, San Raffaele Biomedical Science Park of Rome, Rome, Italy
- Stem Cell Research Institute, H. “S. Raffaele”, Milan, Italy
- Department of Biology, University of Milan, Milan, Italy
- * E-mail:
| |
Collapse
|
45
|
Doss MX, Chen S, Winkler J, Hippler-Altenburg R, Odenthal M, Wickenhauser C, Balaraman S, Schulz H, Hummel O, Hübner N, Ghosh-Choudhury N, Sotiriadou I, Hescheler J, Sachinidis A. Transcriptomic and phenotypic analysis of murine embryonic stem cell derived BMP2+ lineage cells: an insight into mesodermal patterning. Genome Biol 2008; 8:R184. [PMID: 17784959 PMCID: PMC2375022 DOI: 10.1186/gb-2007-8-9-r184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 05/30/2007] [Accepted: 09/04/2007] [Indexed: 01/08/2023] Open
Abstract
Transcriptome analysis of BMP2+ cells in comparison to the undifferentiated BMP2 ES cells and the control population from 7-day old embryoid bodies led to the identification of 479 specifically upregulated and 193 downregulated transcripts. Background Bone morphogenetic protein (BMP)2 is a late mesodermal marker expressed during vertebrate development and plays a crucial role in early embryonic development. The nature of the BMP2-expressing cells during the early stages of embryonic development, their transcriptome and cell phenotypes developed from these cells have not yet been characterized. Results We generated a transgenic BMP2 embryonic stem (ES) cell lineage expressing both puromycin acetyltransferase and enhanced green fluorescent protein (EGFP) driven by the BMP2 promoter. Puromycin resistant and EGFP positive BMP2+ cells with a purity of over 93% were isolated. Complete transcriptome analysis of BMP2+ cells in comparison to the undifferentiated ES cells and the control population from seven-day-old embryoid bodies (EBs; intersection of genes differentially expressed between undifferentiated ES cells and BMP2+ EBs as well as differentially expressed between seven-day-old control EBs and BMP2+ EBs by t-test, p < 0.01, fold change >2) by microarray analysis led to identification of 479 specifically upregulated and 193 downregulated transcripts. Transcription factors, apoptosis promoting factors and other signaling molecules involved in early embryonic development are mainly upregulated in BMP2+ cells. Long-term differentiation of the BMP2+ cells resulted in neural crest stem cells (NCSCs), smooth muscle cells, epithelial-like cells, neuronal-like cells, osteoblasts and monocytes. Interestingly, development of cardiomyocytes from the BMP2+ cells requires secondary EB formation. Conclusion This is the first study to identify the complete transcriptome of BMP2+ cells and cell phenotypes from a mesodermal origin, thus offering an insight into the role of BMP2+ cells during embryonic developmental processes in vivo.
Collapse
Affiliation(s)
- Michael Xavier Doss
- Institute of Neurophysiology, University of Cologne, Robert-Koch Str. 39, 50931 Cologne, Germany
| | - Shuhua Chen
- Institute of Neurophysiology, University of Cologne, Robert-Koch Str. 39, 50931 Cologne, Germany
| | - Johannes Winkler
- Institute of Neurophysiology, University of Cologne, Robert-Koch Str. 39, 50931 Cologne, Germany
| | - Rita Hippler-Altenburg
- Institute of Neurophysiology, University of Cologne, Robert-Koch Str. 39, 50931 Cologne, Germany
| | - Margareta Odenthal
- Institute of Pathology, University of Cologne, Joseph-Stelzmann-Str. 9, 50931 Cologne, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, University of Cologne, Joseph-Stelzmann-Str. 9, 50931 Cologne, Germany
| | - Sridevi Balaraman
- Institute of Pathology, University of Cologne, Joseph-Stelzmann-Str. 9, 50931 Cologne, Germany
| | - Herbert Schulz
- Max-Delbrueck-Center for Molecular Medicine - MDC, Robert-Rössle Str. 10, 13092 Berlin, Germany
| | - Oliver Hummel
- Max-Delbrueck-Center for Molecular Medicine - MDC, Robert-Rössle Str. 10, 13092 Berlin, Germany
| | - Norbert Hübner
- Max-Delbrueck-Center for Molecular Medicine - MDC, Robert-Rössle Str. 10, 13092 Berlin, Germany
| | - Nandini Ghosh-Choudhury
- Department of Pathology, The University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Isaia Sotiriadou
- Institute of Neurophysiology, University of Cologne, Robert-Koch Str. 39, 50931 Cologne, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology, University of Cologne, Robert-Koch Str. 39, 50931 Cologne, Germany
| | - Agapios Sachinidis
- Institute of Neurophysiology, University of Cologne, Robert-Koch Str. 39, 50931 Cologne, Germany
| |
Collapse
|
46
|
Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R, Johnstone BH, March KL. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 2007; 102:77-85. [PMID: 17967785 DOI: 10.1161/circresaha.107.159475] [Citation(s) in RCA: 633] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has been shown that stromal-vascular fraction isolated from adipose tissues contains an abundance of CD34+ cells. Histological analysis of adipose tissue revealed that CD34+ cells are widely distributed among adipocytes and are predominantly associated with vascular structures. The majority of CD34+ cells from freshly isolated stromal-vascular fraction were CD31-/CD144- and could be separated from a distinct population of CD34+/CD31+/CD144+ (endothelial) cells by differential attachment on uncoated plastic. The localization of CD34+ cells within adipose tissue suggested that the nonendothelial population of these cells occupied a pericytic position. Analysis of surface and intracellular markers of the freshly isolated CD34+/CD31-/CD144- adipose-derived stromal cells (ASCs) showed that >90% coexpress mesenchymal (CD10, CD13, and CD90), pericytic (chondroitin sulfate proteoglycan, CD140a, and CD140b), and smooth muscle (alpha-actin, caldesmon, and calponin) markers. ASCs demonstrated polygonal self-assembly on Matrigel, as did human microvascular endothelial cells. Coculture of ASCs with human microvascular endothelial cells on Matrigel led to cooperative network assembly, with enhanced stability of endothelial networks and preferential localization of ASCs on the abluminal side of cords. Bidirectional paracrine interaction between these cells was supported by identification of angiogenic factors (vascular endothelial growth factor, hepatocyte growth factor, basic fibroblast growth factor), inflammatory factors (interleukin-6 and -8 and monocyte chemoattractant protein-1 and -2), and mobilization factors (macrophage colony-stimulating factor and granulocyte/macrophage colony-stimulating factor) in media conditioned by CD34+ ASCs, as well a robust mitogenic response of ASCs to basic fibroblast growth factor, epidermal growth factor, and platelet-derived growth factor-BB, factors produced by endothelial cells. These results demonstrate for the first time that the majority of adipose-derived adherent CD34+ cells are resident pericytes that play a role in vascular stabilization by mutual structural and functional interaction with endothelial cells.
Collapse
Affiliation(s)
- Dmitry O Traktuev
- Indiana Center for Vascular Biology & Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
In this issue of the JCI, Wang, Clemens, and colleagues demonstrate that hypoxia-inducible factor alpha (HIF alpha) signaling in bone-building osteoblasts is central to the coupling of angiogenesis and long bone development in mice (see the related article beginning on page 1616). They show that bone formation controlled by osteoblast HIF alpha signaling is not cell autonomous but is coupled to skeletal angiogenesis dependent upon VEGF signaling. Thus, strategies that promote HIF alpha signaling in osteoblasts may augment bone formation and accelerate fracture repair.
Collapse
Affiliation(s)
- Dwight A Towler
- Department of Medicine, Center for Cardiovascular Research, Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
48
|
Pescatori M, Broccolini A, Minetti C, Bertini E, Bruno C, D'amico A, Bernardini C, Mirabella M, Silvestri G, Giglio V, Modoni A, Pedemonte M, Tasca G, Galluzzi G, Mercuri E, Tonali PA, Ricci E. Gene expression profiling in the early phases of DMD: a constant molecular signature characterizes DMD muscle from early postnatal life throughout disease progression. FASEB J 2007; 21:1210-26. [PMID: 17264171 DOI: 10.1096/fj.06-7285com] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Genome-wide gene expression profiling of skeletal muscle from Duchenne muscular dystrophy (DMD) patients has been used to describe muscle tissue alterations in DMD children older than 5 years. By studying the expression profile of 19 patients younger than 2 years, we describe with high resolution the gene expression signature that characterizes DMD muscle during the initial or "presymptomatic" phase of the disease. We show that in the first 2 years of the disease, DMD muscle is already set to express a distinctive gene expression pattern considerably different from the one expressed by normal, age-matched muscle. This "dystrophic" molecular signature is characterized by a coordinate induction of genes involved in the inflammatory response, extracellular matrix (ECM) remodeling and muscle regeneration, and the reduced transcription of those involved in energy metabolism. Despite the lower degree of muscle dysfunction experienced, our younger patients showed abnormal expression of most of the genes reported as differentially expressed in more advanced stages of the disease. By analyzing our patients as a time series, we provide evidence that some genes, including members of three pathways involved in morphogenetic signaling-Wnt, Notch, and BMP-are progressively induced or repressed in the natural history of DMD.
Collapse
Affiliation(s)
- Mario Pescatori
- Institute of Neurology, Catholic University, L.go A. Gemelli 8, 0018, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Imanishi S, Sugimoto M, Morita M, Kume S, Manabe N. Changes in Expression and Localization of GPRC5B and RAR.ALPHA. in the Placenta and Yolk Sac During Middle to Late Gestation in Mice. J Reprod Dev 2007; 53:1131-6. [PMID: 17652913 DOI: 10.1262/jrd.18102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mRNA expression of GPRC5B, an orphan G protein-coupled receptor, is induced by retinoic acid (RA). Because RA plays critical roles in embryonic development, reproductive functions, metabolism and homeostasis, GPRC5B is also considered crucial in these physiological events. We investigated the changes in expression of GPRC5B and RA receptor (RAR) alpha mRNAs and immunohistochemical localization of their proteins in the murine placenta and yolk sac at 13.5, 15.5 and 17.5 days post coitus. Stable levels of GPRC5B and RARalpha mRNAs were detected in the placenta and yolk sac. In the placenta, GPRC5B was present in maternal and fetal vascular endothelial cells, stromal cells, fibroblast-like cells and glycogen cells. A strong reaction to RARalpha was detected in maternal and fetal vascular endothelial cells and stromal cells. The levels of GPRC5B and RARalpha proteins in maternal and fetal vascular endothelial cells decreased with gestation. In the yolk sac, GPRC5B and RARalpha proteins were detected in vascular endothelial cells, but their levels did not change during the gestation period. These findings indicate that GPRC5B is involved in RA-dependent morphogenesis/angiogenesis and regulation of extracellular matrix synthesis in the murine placenta and yolk sac.
Collapse
Affiliation(s)
- Satoshi Imanishi
- Health Risk Research Section, Research Center for Environmental Risk, National Institute for Environmental Studies, Tsukuba, Japan
| | | | | | | | | |
Collapse
|
50
|
Ross JJ, Hong Z, Willenbring B, Zeng L, Isenberg B, Lee EH, Reyes M, Keirstead SA, Weir EK, Tranquillo RT, Verfaillie CM. Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells. J Clin Invest 2006; 116:3139-49. [PMID: 17099777 PMCID: PMC1635164 DOI: 10.1172/jci28184] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 09/19/2006] [Indexed: 12/17/2022] Open
Abstract
Smooth muscle formation and function are critical in development and postnatal life. Hence, studies aimed at better understanding SMC differentiation are of great importance. Here, we report that multipotent adult progenitor cells (MAPCs) isolated from rat, murine, porcine, and human bone marrow demonstrate the potential to differentiate into cells with an SMC-like phenotype and function. TGF-beta1 alone or combined with PDGF-BB in serum-free medium induces a temporally correct expression of transcripts and proteins consistent with smooth muscle development. Furthermore, SMCs derived from MAPCs (MAPC-SMCs) demonstrated functional L-type calcium channels. MAPC-SMCs entrapped in fibrin vascular molds became circumferentially aligned and generated force in response to KCl, the L-type channel opener FPL64176, or the SMC agonists 5-HT and ET-1, and exhibited complete relaxation in response to the Rho-kinase inhibitor Y-27632. Cyclic distention (5% circumferential strain) for 3 weeks increased responses by 2- to 3-fold, consistent with what occurred in neonatal SMCs. These results provide evidence that MAPC-SMCs are phenotypically and functionally similar to neonatal SMCs and that the in vitro MAPC-SMC differentiation system may be an ideal model for the study of SMC development. Moreover, MAPC-SMCs may lend themselves to tissue engineering applications.
Collapse
Affiliation(s)
- Jeffrey J. Ross
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Zhigang Hong
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ben Willenbring
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lepeng Zeng
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brett Isenberg
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eu Han Lee
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Morayma Reyes
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Susan A. Keirstead
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - E. Kenneth Weir
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Robert T. Tranquillo
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Catherine M. Verfaillie
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|