1
|
Stefanova D, Olszewski D, Glitscher M, Bauer M, Ferrarese L, Wüst D, Hildt E, Greber UF, Werner S. FGF receptor kinase inhibitors exhibit broad antiviral activity by targeting Src family kinases. Cell Mol Life Sci 2024; 81:471. [PMID: 39621133 PMCID: PMC11612106 DOI: 10.1007/s00018-024-05502-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/04/2024] [Accepted: 11/08/2024] [Indexed: 12/06/2024]
Abstract
The development of antiviral strategies is a key task of biomedical research, but broad-spectrum virus inhibitors are scarce. Here we show that fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitors reduce infection of several cell types with DNA and RNA viruses by blocking early stages of infection, but not viral cell association. Unexpectedly, their antiviral activity was largely independent of FGFR kinase inhibition. RNA profiling showed upregulation of interferon response genes by FGFR inhibitors, but their expression did not correlate with the antiviral activity in infected cells. Using bioinformatics analysis of kinome data, targeted kinase assays, siRNA-mediated knock-down and pharmacological inhibition experiments, we show that blockade of Src family kinases, in particular Lyn, is mainly responsible for the antiviral activity of FGFR inhibitors. These results identify FGFR inhibitors as broad-spectrum antiviral agents and suggest the poorly studied Lyn kinase as a promising target for the treatment of viral infections.
Collapse
Affiliation(s)
- Debora Stefanova
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland.
| | - Dominik Olszewski
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Mirco Glitscher
- Paul-Ehrlich-Institute, Department of Virology, D-63225, Langen, Germany
| | - Michael Bauer
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Luca Ferrarese
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Daria Wüst
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Eberhard Hildt
- Paul-Ehrlich-Institute, Department of Virology, D-63225, Langen, Germany
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland.
| |
Collapse
|
2
|
Li M, Wang Y, Lin X, Yang H, Zhang X, Bai Y, Li X, Zhang L, Cheng F, Cao C, Zhou Q. Evaluation of antitumor potential of an anti-glypican-1 monoclonal antibody in preclinical lung cancer models reveals a distinct mechanism of action. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:600-626. [PMID: 38966167 PMCID: PMC11220310 DOI: 10.37349/etat.2024.00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/26/2024] [Indexed: 07/06/2024] Open
Abstract
Aim The main objective of this study was to investigate the antitumor effect of a mouse anti-human glypican-1 (GPC1) monoclonal antibody (mAb) on non-small cell lung carcinoma (NSCLC) and associated molecular mechanisms. Methods The anti-proliferative and anti-migratory activities of anti-GPC1 mAb were examined in A549 and H460 NSCLC cells and LL97A lung fibroblasts. The inhibitory effect of anti-GPC1 mAb on tumor growth was evaluated in an orthotopic lung tumor model. Results The in vitro study showed that anti-GPC1 mAb profoundly inhibited the anchorage-independent growth of A549 and H460 NSCLC cells and exhibited relatively high cytotoxic activities towards LL97A lung fibroblasts, A549/LL97A and H460/LL97A coculture spheroids. Moreover, anti-GPC1 mAb significantly decreased the expression of phospho-Src (p-Src; Tyr416), p-Akt (Ser473) and β-catenin in the co-cultured LL97A lung fibroblasts, and the expression of phospho-mitogen-activated protein kinase kinase (p-MEK; Ser217/221) and phospho-90 kDa ribosomal s6 kinase (p-p90RSK; Ser380) in co-cultured A549 cells. When anti-GPC1 mAb was administered to tumor-bearing mice, the inhibitory effect of anti-GPC1 mAb on the orthotopic lung tumor growth was not statistically significant. Nonetheless, results of Western blot analysis showed significant decrease in the phosphorylation of fibroblast growth factor receptor 1 (FGFR1) at Tyr766, Src at Tyr416, extracellular signal-regulated kinase (ERK) at Thr202/Tyr204, 90 kDa ribosomal S6 kinase (RSK) at Ser380, glycogen synthase kinases 3α (GSK3α) at Ser21 and GSK3β at Ser9 in tumor tissues. These data implicate that anti-GPC1 mAb treatment impairs the interaction between tumor cells and tumor associated fibroblasts by attenuating the paracrine FGFR signal transduction. Conclusions The relatively potent cytotoxicity of anti-GPC1 mAb in lung fibroblasts and its potential inhibitory effect on the paracrine FGFR signal transduction warrant further studies on the combined use of this mAb with targeted therapeutics to improve therapeutic outcomes in lung cancer.
Collapse
Affiliation(s)
- Minghua Li
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Yanhong Wang
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Xiaoyang Lin
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Haiqiang Yang
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Xiaolin Zhang
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Yun Bai
- MegaNano Biotech Inc., Tampa, FL 33612, USA
| | - Xiankun Li
- Zhengzhou Molecular Diagnosis Engineering Technology Research Center, Zhengzhou 450001, Henan Province, China
| | - Lulu Zhang
- Zhengzhou Molecular Diagnosis Engineering Technology Research Center, Zhengzhou 450001, Henan Province, China
| | - Feng Cheng
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Chuanhai Cao
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Qingyu Zhou
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Clark JF, Soriano P. Diverse Fgfr1 signaling pathways and endocytic trafficking regulate early mesoderm development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580629. [PMID: 38405698 PMCID: PMC10888970 DOI: 10.1101/2024.02.16.580629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The Fibroblast growth factor (FGF) pathway is a conserved signaling pathway required for embryonic development. Activated FGF receptor 1 (FGFR1) drives multiple intracellular signaling cascade pathways, including ERK/MAPK and PI3K/AKT, collectively termed canonical signaling. However, unlike Fgfr1 null embryos, embryos containing hypomorphic mutations in Fgfr1 lacking the ability to activate canonical downstream signals are still able to develop to birth, but exhibit severe defects in all mesodermal-derived tissues. The introduction of an additional signaling mutation further reduces the activity of Fgfr1, leading to earlier lethality, reduced somitogenesis, and more severe changes in transcriptional outputs. Genes involved in migration, ECM-interaction, and phosphoinositol signaling were significantly downregulated, proteomic analysis identified changes in interactions with endocytic pathway components, and cells expressing mutant receptors show changes in endocytic trafficking. Together, we identify processes regulating early mesoderm development by mechanisms involving both canonical and non-canonical Fgfr1 pathways, including direct interaction with cell adhesion components and endocytic regulation.
Collapse
Affiliation(s)
- James F. Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
4
|
Baldrighi M, Doreth C, Li Y, Zhao X, Warner E, Chenoweth H, Kishore K, Umrania Y, Minde DP, Thome S, Yu X, Lu Y, Knapton A, Harrison J, Clarke M, Latz E, de Cárcer G, Malumbres M, Ryffel B, Bryant C, Liu J, Lilley KS, Mallat Z, Li X. PLK1 inhibition dampens NLRP3 inflammasome-elicited response in inflammatory disease models. J Clin Invest 2023; 133:e162129. [PMID: 37698938 PMCID: PMC10617773 DOI: 10.1172/jci162129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
Unabated activation of the NLR family pyrin domain-containing 3 (NLRP3) inflammasome is linked with the pathogenesis of various inflammatory disorders. Polo-like kinase 1 (PLK1) has been widely studied for its role in mitosis. Here, using both pharmacological and genetic approaches, we demonstrate that PLK1 promoted NLRP3 inflammasome activation at cell interphase. Using an unbiased proximity-dependent biotin identification (Bio-ID) screen for the PLK1 interactome in macrophages, we show an enhanced proximal association of NLRP3 with PLK1 upon NLRP3 inflammasome activation. We further confirmed the interaction between PLK1 and NLRP3 and identified the interacting domains. Mechanistically, we show that PLK1 orchestrated the microtubule-organizing center (MTOC) structure and NLRP3 subcellular positioning upon inflammasome activation. Treatment with a selective PLK1 kinase inhibitor suppressed IL-1β production in in vivo inflammatory models, including LPS-induced endotoxemia and monosodium urate-induced peritonitis in mice. Our results uncover a role of PLK1 in regulating NLRP3 inflammasome activation during interphase and identify pharmacological inhibition of PLK1 as a potential therapeutic strategy for inflammatory diseases with excessive NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Marta Baldrighi
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christian Doreth
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yang Li
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaohui Zhao
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Emily Warner
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Hannah Chenoweth
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Yagnesh Umrania
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - David-Paul Minde
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Thome
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Xian Yu
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yuning Lu
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alice Knapton
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - James Harrison
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Murray Clarke
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Guillermo de Cárcer
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Cell Cycle and Cancer Biomarkers Group, “Alberto Sols” Biomedical Research Institute (IIBM-CSIC), Madrid, Spain
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Bernhard Ryffel
- UMR7355 INEM, Experimental and Molecular Immunology and Neurogenetics CNRS and Université d’Orleans, Orleans, France
| | - Clare Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jinping Liu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kathryn S. Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - Ziad Mallat
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Université Paris Cité, PARCC, INSERM, Paris, France
| | - Xuan Li
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Ferguson HR, Smith MP, Francavilla C. Fibroblast Growth Factor Receptors (FGFRs) and Noncanonical Partners in Cancer Signaling. Cells 2021; 10:1201. [PMID: 34068954 PMCID: PMC8156822 DOI: 10.3390/cells10051201] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence indicates that success of targeted therapies in the treatment of cancer is context-dependent and is influenced by a complex crosstalk between signaling pathways and between cell types in the tumor. The Fibroblast Growth Factor (FGF)/FGF receptor (FGFR) signaling axis highlights the importance of such context-dependent signaling in cancer. Aberrant FGFR signaling has been characterized in almost all cancer types, most commonly non-small cell lung cancer (NSCLC), breast cancer, glioblastoma, prostate cancer and gastrointestinal cancer. This occurs primarily through amplification and over-expression of FGFR1 and FGFR2 resulting in ligand-independent activation. Mutations and translocations of FGFR1-4 are also identified in cancer. Canonical FGF-FGFR signaling is tightly regulated by ligand-receptor combinations as well as direct interactions with the FGFR coreceptors heparan sulfate proteoglycans (HSPGs) and Klotho. Noncanonical FGFR signaling partners have been implicated in differential regulation of FGFR signaling. FGFR directly interacts with cell adhesion molecules (CAMs) and extracellular matrix (ECM) proteins, contributing to invasive and migratory properties of cancer cells, whereas interactions with other receptor tyrosine kinases (RTKs) regulate angiogenic, resistance to therapy, and metastatic potential of cancer cells. The diversity in FGFR signaling partners supports a role for FGFR signaling in cancer, independent of genetic aberration.
Collapse
Affiliation(s)
- Harriet R. Ferguson
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Michael P. Smith
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
- Manchester Breast Centre, Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
| |
Collapse
|
6
|
Fernández-Nogueira P, Mancino M, Fuster G, López-Plana A, Jauregui P, Almendro V, Enreig E, Menéndez S, Rojo F, Noguera-Castells A, Bill A, Gaither LA, Serrano L, Recalde-Percaz L, Moragas N, Alonso R, Ametller E, Rovira A, Lluch A, Albanell J, Gascon P, Bragado P. Tumor-Associated Fibroblasts Promote HER2-Targeted Therapy Resistance through FGFR2 Activation. Clin Cancer Res 2019; 26:1432-1448. [DOI: 10.1158/1078-0432.ccr-19-0353] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/15/2019] [Accepted: 11/04/2019] [Indexed: 11/16/2022]
|
7
|
Gu X, Su X, Jia C, Lin L, Liu S, Zhang P, Wang X, Jiang X. Sprouty1 regulates neuritogenesis and survival of cortical neurons. J Cell Physiol 2018; 234:12847-12864. [PMID: 30569452 DOI: 10.1002/jcp.27949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022]
Abstract
In multicellular organisms, receptor tyrosine kinases (RTKs) control a variety of cellular processes, including cell proliferation, differentiation, migration, and survival. Sprouty (SPRY) proteins represent an important class of ligand-inducible inhibitors of RTK-dependent signaling pathways. Here, we investigated the role of SPRY1 in cells of the central nervous system (CNS). Expression of SPRY1 was substantially higher in neural stem cells than in cortical neurons and was increased during neuronal differentiation of cortical neurons. We found that SPRY1 was a direct target gene of the CNS-specific microRNA, miR-124 and miR-132. In primary cultures of cortical neurons, the neurotrophic factors brain-derived neurotrophic factor (BDNF) and Basic fibroblast growth factor (FGF2) downregulated SPRY1 expression to positively regulate their own functions. In immature cortical neurons and mouse N2 A cells, we found that overexpression of SPRY1 inhibited neurite development, whereas knockdown of SPRY1 expression promoted neurite development. In mature neurons, overexpression of SPRY1 inhibited the prosurvival effects of both BDNF and FGF2 on glutamate-mediated neuronal cell death. SPRY1 was also upregulated upon glutamate treatment in mature neurons and partially contributed to the cytotoxic effect of glutamate. Together, our results indicate that SPRY1 contributes to the regulation of CNS functions by influencing both neuronal differentiation under normal physiological processes and neuronal survival under pathological conditions.
Collapse
Affiliation(s)
- Xi Gu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Xiaohong Su
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Chunhong Jia
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Lifang Lin
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Shuhu Liu
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Peidong Zhang
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Xuemin Wang
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Xiaodan Jiang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| |
Collapse
|
8
|
Ueda Y, Kedashiro S, Maruoka M, Mizutani K, Takai Y. Roles of the third Ig-like domain of Necl-5/PVR and the fifth Ig-like domain of the PDGF receptor in its signaling. Genes Cells 2018; 23:214-224. [DOI: 10.1111/gtc.12564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 01/11/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Yuki Ueda
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Japan
| | - Shin Kedashiro
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Japan
| | - Masahiro Maruoka
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Japan
| | - Kiyohito Mizutani
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Japan
| |
Collapse
|
9
|
Montone R, Romanelli MG, Baruzzi A, Ferrarini F, Liboi E, Lievens PMJ. Mutant FGFR3 associated with SADDAN disease causes cytoskeleton disorganization through PLCγ1/Src-mediated paxillin hyperphosphorylation. Int J Biochem Cell Biol 2017; 95:17-26. [PMID: 29242050 DOI: 10.1016/j.biocel.2017.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 11/15/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
K650M/E substitutions in the Fibroblast growth factor receptor 3 (FGFR3) are associated with Severe Achondroplasia with Developmental Delay and Acanthosis Nigricans (SADDAN) and Thanatophoric Dysplasia type II (TDII), respectively. Both SADDAN and TDII present with affected endochondral ossification marked by impaired chondrocyte functions and growth plate disorganization. In vitro, K650M/E substitutions confer FGFR3 constitutive kinase activity leading to impaired biosynthesis and accumulation of immature receptors in endoplasmic reticulum (ER)/Golgi. From those compartments, both SADDAN-FGFR3 and TDII-FGFR3 receptors engender uncontrolled signalling, activating PLCγ1, signal transducer and activator of transcription 1, 3 and 5 (STAT1/3/5) and ERK1/2 effectors. Here, we investigated the impact of SADDAN-FGFR3 and TDII-FGFR3 signalling on cytoskeletal organization. We report that SADDAN-FGFR3, but not TDII-FGFR3, affects F-actin organization by inducing tyrosine hyperphosphorylation of paxillin, a key regulator of focal adhesions and actin dynamics. Paxillin phosphorylation was upregulated at tyrosine 118, a functional target of Src and FAK kinases. By using Src-deficient cells and a Src kinase inhibitor, we established a role played by Src activation in paxillin hyperphosphorylation. Moreover, we found that SADDAN-FGFR3 induced FAK phosphorylation at tyrosines 576/577, suggesting its involvement as a Src co-activator in paxillin phosphorylation. Interestingly, paxillin hyperphosphorylation by SADDAN-FGFR3 caused paxillin mislocalization and partial co-localization with the mutant receptor. Finally, the SADDAN-FGFR3 double mutant unable to bind PLCγ1 failed to promote paxillin hyperphosphorylation, pointing to PLCγ1 as an early player in mediating paxillin alterations. Overall, our findings contribute to elucidate the molecular mechanism leading to cell dysfunctions caused by SADDAN-FGFR3 signalling.
Collapse
Affiliation(s)
- R Montone
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona Medical School, Verona, Italy
| | - M G Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona Medical School, Verona, Italy
| | - A Baruzzi
- Department of Pathology and Diagnostics, University of Verona Medical School, Verona, Italy
| | - F Ferrarini
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona Medical School, Verona, Italy
| | - E Liboi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona Medical School, Verona, Italy
| | - P M-J Lievens
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona Medical School, Verona, Italy.
| |
Collapse
|
10
|
Globa AK, Bamji SX. Protein palmitoylation in the development and plasticity of neuronal connections. Curr Opin Neurobiol 2017; 45:210-220. [PMID: 28366531 DOI: 10.1016/j.conb.2017.02.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/19/2017] [Accepted: 02/28/2017] [Indexed: 01/01/2023]
Abstract
Protein palmitoylation, or the reversible addition of the fatty acid, palmitate, onto substrate proteins, can impact the structure and stability of proteins as well as regulate protein-protein interactions and the trafficking and localization of proteins to cell membranes. This posttranslational modification is mediated by palmitoyl-acyltransferases, consisting of a family of 23 zDHHC proteins in mammals. This review focuses on the subcellular distribution of zDHHC proteins within the neuron and the regulation of zDHHC trafficking and function by synaptic activity. We review recent studies identifying actin binding proteins, cell adhesion molecules and synaptic scaffolding proteins as targets of palmitoylation, and examine the implications of activity-mediated palmitoylation in the establishment and plasticity of neuronal connections.
Collapse
Affiliation(s)
- Andrea K Globa
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
11
|
ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation. Mol Cell Biol 2016; 36:2208-25. [PMID: 27247265 DOI: 10.1128/mcb.00144-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/17/2016] [Indexed: 01/08/2023] Open
Abstract
The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis.
Collapse
|
12
|
Abstract
The fibroblast growth factor (Fgf) family of ligands and receptor tyrosine kinases is required throughout embryonic and postnatal development and also regulates multiple homeostatic functions in the adult. Aberrant Fgf signaling causes many congenital disorders and underlies multiple forms of cancer. Understanding the mechanisms that govern Fgf signaling is therefore important to appreciate many aspects of Fgf biology and disease. Here we review the mechanisms of Fgf signaling by focusing on genetic strategies that enable in vivo analysis. These studies support an important role for Erk1/2 as a mediator of Fgf signaling in many biological processes but have also provided strong evidence for additional signaling pathways in transmitting Fgf signaling in vivo.
Collapse
Affiliation(s)
- J Richard Brewer
- Department of Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Pierre Mazot
- Department of Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Philippe Soriano
- Department of Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| |
Collapse
|
13
|
Yang X, Liaw L, Prudovsky I, Brooks PC, Vary C, Oxburgh L, Friesel R. Fibroblast growth factor signaling in the vasculature. Curr Atheroscler Rep 2015; 17:509. [PMID: 25813213 DOI: 10.1007/s11883-015-0509-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite their discovery as angiogenic factors and mitogens for endothelial cells more than 30 years ago, much remains to be determined about the role of fibroblast growth factors (FGFs) and their receptors in vascular development, homeostasis, and disease. In vitro studies show that members of the FGF family stimulate growth, migration, and sprouting of endothelial cells, and growth, migration, and phenotypic plasticity of vascular smooth muscle cells. Recent studies have revealed important roles for FGFs and their receptors in the regulation of endothelial cell sprouting and vascular homeostasis in vivo. Furthermore, recent work has revealed roles for FGFs in atherosclerosis, vascular calcification, and vascular dysfunction. The large number of FGFs and their receptors expressed in endothelial and vascular smooth muscle cells complicates these studies. In this review, we summarize recent studies in which new and unanticipated roles for FGFs and their receptors in the vasculature have been revealed.
Collapse
Affiliation(s)
- Xuehui Yang
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Barbáchano A, Fernández-Barral A, Pereira F, Segura MF, Ordóñez-Morán P, Carrillo-de Santa Pau E, González-Sancho JM, Hanniford D, Martínez N, Costales-Carrera A, Real FX, Pálmer HG, Rojas JM, Hernando E, Muñoz A. SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150. Oncogene 2015; 35:2991-3003. [PMID: 26455323 DOI: 10.1038/onc.2015.366] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 08/02/2015] [Accepted: 08/28/2015] [Indexed: 12/29/2022]
Abstract
SPROUTY-2 (SPRY2) is a modulator of tyrosine kinase receptor signaling with receptor- and cell type-dependent inhibitory or enhancing effects. Studies on the action of SPRY2 in major cancers are conflicting and its role remains unclear. Here we have dissected SPRY2 action in human colon cancer. Global transcriptomic analyses show that SPRY2 downregulates genes encoding tight junction proteins such as claudin-7 and occludin and other cell-to-cell and cell-to-matrix adhesion molecules in human SW480-ADH colon carcinoma cells. Moreover, SPRY2 represses LLGL2/HUGL2, PATJ1/INADL and ST14, main regulators of the polarized epithelial phenotype, and ESRP1, an epithelial-to-mesenchymal transition (EMT) inhibitor. A key action of SPRY2 is the upregulation of the major EMT inducer ZEB1, as these effects are reversed by ZEB1 knock-down by means of RNA interference. Consistently, we found an inverse correlation between the expression level of claudin-7 and those of SPRY2 and ZEB1 in human colon tumors. Mechanistically, ZEB1 upregulation by SPRY2 results from the combined induction of ETS1 transcription factor and the repression of microRNAs (miR-200 family, miR-150) that target ZEB1 RNA. Moreover, SPRY2 increased AKT activation by epidermal growth factor, whereas AKT and also Src inhibition reduced the induction of ZEB1. Altogether, these data suggest that AKT and Src are implicated in SPRY2 action. Collectively, these results show a tumorigenic role of SPRY2 in colon cancer that is based on the dysregulation of tight junction and epithelial polarity master genes via upregulation of ZEB1. The dissection of the mechanism of action of SPRY2 in colon cancer cells is important to understand the upregulation of this gene in a subset of patients with this neoplasia that have poor prognosis.
Collapse
Affiliation(s)
- A Barbáchano
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - A Fernández-Barral
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - F Pereira
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - M F Segura
- Department of Pathology, New York University School of Medicine, New York, USA
| | - P Ordóñez-Morán
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - E Carrillo-de Santa Pau
- Epithelial Carcinogenesis Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - J M González-Sancho
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - D Hanniford
- Department of Pathology, New York University School of Medicine, New York, USA
| | - N Martínez
- Unidad de Biología Celular, Unidad Funcional de Investigación en Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - A Costales-Carrera
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - F X Real
- Epithelial Carcinogenesis Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - H G Pálmer
- Stem cells and Cancer Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - J M Rojas
- Unidad de Biología Celular, Unidad Funcional de Investigación en Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - E Hernando
- Department of Pathology, New York University School of Medicine, New York, USA
| | - A Muñoz
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
15
|
Land SC, Scott CL, Walker D. mTOR signalling, embryogenesis and the control of lung development. Semin Cell Dev Biol 2014; 36:68-78. [PMID: 25289569 DOI: 10.1016/j.semcdb.2014.09.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 09/07/2014] [Accepted: 09/11/2014] [Indexed: 12/15/2022]
Abstract
The existence of a nutrient sensitive "autocatakinetic" regulator of embryonic tissue growth has been hypothesised since the early 20th century, beginning with pioneering work on the determinants of foetal size by the Australian physiologist, Thorburn Brailsford-Robertson. We now know that the mammalian target of rapamycin complexes (mTORC1 and 2) perform this essential function in all eukaryotic tissues by balancing nutrient and energy supply during the first stages of embryonic cleavage, the formation of embryonic stem cell layers and niches, the highly specified programmes of tissue growth during organogenesis and, at birth, paving the way for the first few breaths of life. This review provides a synopsis of the role of the mTOR complexes in each of these events, culminating in an analysis of lung branching morphogenesis as a way of demonstrating the central role mTOR in defining organ structural complexity. We conclude that the mTOR complexes satisfy the key requirements of a nutrient sensitive growth controller and can therefore be considered as Brailsford-Robertson's autocatakinetic centre that drives tissue growth programmes during foetal development.
Collapse
Affiliation(s)
- Stephen C Land
- Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK.
| | - Claire L Scott
- Prostrakan Pharmaceuticals, Galabank Business Park, Galashiels TD1 1PR, UK
| | - David Walker
- School of Psychology & Neuroscience, Westburn Lane, St Andrews KY16 9JP, UK
| |
Collapse
|
16
|
Abstract
The fibroblast growth factor receptors (FGFRs) regulate important biological processes including cell proliferation and differentiation during development and tissue repair. Over the past decades, numerous pathological conditions and developmental syndromes have emerged as a consequence of deregulation in the FGFRs signaling network. This review aims to provide an overview of FGFR family, their complex signaling pathways in tumorigenesis, and the current development and application of therapeutics targeting the FGFRs signaling for treatment of refractory human cancers.
Collapse
Affiliation(s)
- Kai Hung Tiong
- School of Postgraduate Studies and Research, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Li Yen Mah
- School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, International Medical University, 126 Jalan 19/155B, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, International Medical University, 126 Jalan 19/155B, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
A pathway from leukemogenic oncogenes and stem cell chemokines to RNA processing via THOC5. Leukemia 2012; 27:932-40. [PMID: 23032722 DOI: 10.1038/leu.2012.283] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
THOC5 is a member of the THO complex that is involved in processing and transport of mRNA. We have shown previously that hematopoietic stem cells have an absolute requirement for THOC5 for survival and that THOC5 is phosphorylated on tyrosine 225 as a consequence of leukemogenic protein tyrosine kinase (PTK) action. We have investigated pathways for THOC5 phosphorylation to develop an understanding of THO complex modulation by tyrosine kinase (TK) oncogenes in leukemias. We demonstrate that THOC5 phosphorylation is mediated by Src PTK and CD45 protein tyrosine phosphatase action and that this event is sensitive to oxidative status. We show that THOC5 phosphorylation is elevated in stem cells from patients with chronic myeloid leukemia (CML) and that this phosphorylation is sensitive to the frontline drugs used in CML treatment. Further we show that THOC5 Y225 phosphorylation governs mRNA binding. In addition, CXCL12 is shown to induce THOC5 Y225 phosphorylation, and site-directed mutagenesis demonstrates that this modulates motile response. In conclusion, we delineate a signaling pathway stimulated by leukemogenic PTKs, chemokines and oxidative stress that can affect THO complex mediation of gene expression describing mechanisms for post-transcriptional regulation of protein levels.
Collapse
|
18
|
A missense mutation in Fgfr1 causes ear and skull defects in hush puppy mice. Mamm Genome 2011; 22:290-305. [PMID: 21479780 PMCID: PMC3099004 DOI: 10.1007/s00335-011-9324-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 03/09/2011] [Indexed: 11/03/2022]
Abstract
The hush puppy mouse mutant has been shown previously to have skull and outer, middle, and inner ear defects, and an increase in hearing threshold. The fibroblast growth factor receptor 1 (Fgfr1) gene is located in the region of chromosome 8 containing the mutation. Sequencing of the gene in hush puppy heterozygotes revealed a missense mutation in the kinase domain of the protein (W691R). Homozygotes were found to die during development, at approximately embryonic day 8.5, and displayed a phenotype similar to null mutants. Reverse transcription PCR indicated a decrease in Fgfr1 transcript in heterozygotes and homozygotes. Generation of a construct containing the mutation allowed the function of the mutated receptor to be studied. Immunocytochemistry showed that the mutant receptor protein was present at the cell membrane, suggesting normal expression and trafficking. Measurements of changes in intracellular calcium concentration showed that the mutated receptor could not activate the IP3 pathway, in contrast to the wild-type receptor, nor could it initiate activation of the Ras/MAP kinase pathway. Thus, the hush puppy mutation in fibroblast growth factor receptor 1 appears to cause a loss of receptor function. The mutant protein appears to have a dominant negative effect, which could be due to it dimerising with the wild-type protein and inhibiting its activity, thus further reducing the levels of functional protein. A dominant modifier, Mhspy, which reduces the effect of the hush puppy mutation on pinna and stapes development, has been mapped to the distal end of chromosome 7 and may show imprinting.
Collapse
|
19
|
Caverzasio J, Thouverey C. Activation of FGF receptors is a new mechanism by which strontium ranelate induces osteoblastic cell growth. Cell Physiol Biochem 2011; 27:243-50. [PMID: 21471713 DOI: 10.1159/000327950] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Strontium ranelate (SrRan) is an anti-osteoporotic treatment that reduces the risk of vertebral and hip fractures. Recent in vitro studies suggest that the effect of strontium ranelate on osteoblastic cell growth likely involves two processes including activation of the calcium sensing receptor (CaSR) and a yet undefined mechanism. In the present study, we investigated the CaSR-independent molecular mechanism by which SrRan stimulates osteoblast growth. METHODS MC3T3-E1 and primary osteoblastic cells, specific inhibitors of receptor tyrosine kinases (RTK) and western blot analysis were used to characterize the CaSR-independent mechanism in osteoblastic cells. RESULTS A selective inhibitor of FGF receptor but not other RTK inhibitors markedly blunted cell growth induced by SrRan in osteoblastic cells. Associated with this observation, SrRan induced rapid activation of FGFR signaling pathways such as PLCγ, FRS2, Akt, ERK1,2 and p38. FGFR-dependent stimulation of osteogenic cell growth was also observed with other cations but not with neomycin, a selective CaSR agonist. Also, in cultured conditions used in this study, MC3T3-E1 cells and primary osteoblasts did not express the CaSR. CONCLUSION data presented in this study suggest that activation of FGFRs is a new potential mechanism by which strontium can stimulate osteoblastic cell growth. Activation of FGFR-dependent cell growth is also observed in response to other cations suggesting that activation of FGF receptors is a new cation sensing mechanism in osteoblasts.
Collapse
Affiliation(s)
- Joseph Caverzasio
- Service of Bone Diseases, Department of Rehabilitation and Geriatrics, University Hospital of Geneva, Geneva, Switzerland.
| | | |
Collapse
|
20
|
Abstract
Docking proteins comprise a distinct category of intracellular, noncatalytic signalling protein, that function downstream of a variety of receptor and receptor-associated tyrosine kinases and regulate diverse physiological and pathological processes. The growth factor receptor bound 2-associated binder/Daughter of Sevenless, insulin receptor substrate, fibroblast growth factor receptor substrate 2 and downstream of tyrosine kinases protein families fall into this category. This minireview focuses on the structure, function and regulation of these proteins.
Collapse
Affiliation(s)
- Tilman Brummer
- Centre for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
21
|
Cunningham DL, Sweet SMM, Cooper HJ, Heath JK. Differential phosphoproteomics of fibroblast growth factor signaling: identification of Src family kinase-mediated phosphorylation events. J Proteome Res 2010; 9:2317-28. [PMID: 20225815 PMCID: PMC2950672 DOI: 10.1021/pr9010475] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Indexed: 01/12/2023]
Abstract
Activation of signal transduction by the receptor tyrosine kinase, fibroblast growth factor receptor (FGFR), results in a cascade of protein-protein interactions that rely on the occurrence of specific tyrosine phosphorylation events. One such protein recruited to the activated receptor complex is the nonreceptor tyrosine kinase, Src, which is involved in both initiation and termination of further signaling events. To gain a further understanding of the tyrosine phosphorylation events that occur during FGF signaling, with a specific focus on those that are dependent on Src family kinase (SFK) activity, we have applied SILAC combined with chemical inhibition of SFK activity to search for phosphorylation events that are dependent on SFK activity in FGF stimulated cells. In addition, we used a more targeted approach to carry out high coverage phosphopeptide mapping of one Src substrate protein, the multifunctional adaptor Dok1, and to identify SFK-dependent Dok1 binding partners. From these analyses we identify 80 SFK-dependent phosphorylation events on 40 proteins. We further identify 18 SFK-dependent Dok1 interactions and 9 SFK-dependent Dok1 phosphorylation sites, 6 of which had not previously been known to be SFK-dependent.
Collapse
Affiliation(s)
| | | | - Helen J. Cooper
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - John K. Heath
- To whom correspondence should be addressed. Prof. John K. Heath, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K. Telephone: +44 (0)121 414 7533. Fax: +44 (0)121 414 5925.
| |
Collapse
|
22
|
Yamaji S, Saegusa J, Ieguchi K, Fujita M, Mori S, Takada YK, Takada Y. A novel fibroblast growth factor-1 (FGF1) mutant that acts as an FGF antagonist. PLoS One 2010; 5:e10273. [PMID: 20422052 PMCID: PMC2858075 DOI: 10.1371/journal.pone.0010273] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 03/30/2010] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Crosstalk between integrins and FGF receptors has been implicated in FGF signaling, but the specifics of the crosstalk are unclear. We recently discovered that 1) FGF1 directly binds to integrin alphavbeta3, 2) the integrin-binding site and FGF receptor (FGFR) binding site are distinct, and 3) the integrin-binding-defective FGF1 mutant (R50E) is defective in inducing FGF signaling although R50E still binds to FGFR and heparin and induces transient ERK1/2 activation. PRINCIPAL FINDINGS We tested if excess R50E affect DNA synthesis and cell survival induced by WT FGF1 in BaF3 mouse pro-B cells expressing human FGFR1. R50E suppressed DNA synthesis and cell proliferation induced by WT FGF1. We tested if WT FGF1 and R50E generate integrin-FGF1-FGFR ternary complex. WT FGF1 induced ternary complex formation (integrin-FGF-FGFR1) and recruitment of SHP-2 to the complex in NIH 3T3 cells and human umbilical endothelial cells, but R50E was defective in these functions. It has been reported that sustained ERK1/2 activation is integrin-dependent and crucial to cell cycle entry upon FGF stimulation. We thus determined the time-course of ERK1/2 activation induced by WT FGF1 and R50E. We found that WT FGF1 induced sustained activation of ERK1/2, but R50E was defective in this function. CONCLUSIONS/SIGNIFICANCE Our results suggest that 1) R50E is a dominant-negative mutant, 2) Ternary complex formation is involved in FGF signaling, 3) The defect of R50E to bind to integrin may be directly related to the antagonistic action of R50E. Taken together, these results suggest that R50E has potential as a therapeutic in cancer.
Collapse
Affiliation(s)
- Satoshi Yamaji
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Jun Saegusa
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Katsuaki Ieguchi
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Masaaki Fujita
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Seiji Mori
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Yoko K. Takada
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Yoshikazu Takada
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Dudka AA, Sweet SMM, Heath JK. Signal transducers and activators of transcription-3 binding to the fibroblast growth factor receptor is activated by receptor amplification. Cancer Res 2010; 70:3391-401. [PMID: 20388777 DOI: 10.1158/0008-5472.can-09-3033] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fibroblast growth factor receptors (FGFR) are cell surface tyrosine kinases that function in cell proliferation and differentiation. Aberrant FGFR signaling occurs in diverse cancers due to gene amplification, but the associated oncogenic mechanisms are poorly understood. Using a proteomics approach, we identified signal transducers and activators of transcription-3 (STAT3) as a receptor-binding partner that is mediated by Tyr(677) phosphorylation on FGFR. Binding to activated FGFR was essential for subsequent tyrosine phosphorylation and nuclear translocation of STAT3, along with activation of its downstream target genes. Tyrosine phosphorylation of STAT3 was also dependent on concomitant FGFR-dependent activity of SRC and JAK kinases. Lastly, tyrosine (but not serine) phosphorylation of STAT3 required amplified FGFR protein expression, generated either by enforced overexpression or as associated with gene amplification in cancer cells. Our findings show that amplified FGFR expression engages the STAT3 pathway, and they suggest therapeutic strategies to attack FGFR-overexpressing cancers.
Collapse
Affiliation(s)
- Anna A Dudka
- CRUK Growth Factor Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | | |
Collapse
|
24
|
De-regulated FGF receptors as therapeutic targets in cancer. Pharmacol Ther 2010; 125:105-17. [DOI: 10.1016/j.pharmthera.2009.10.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 10/06/2009] [Indexed: 12/23/2022]
|
25
|
Sato T, Gotoh N. The FRS2 family of docking/scaffolding adaptor proteins as therapeutic targets of cancer treatment. Expert Opin Ther Targets 2009; 13:689-700. [PMID: 19456272 DOI: 10.1517/14728220902942330] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND There are two members--FRS2alpha and FRS2beta--in the fibroblast growth factor receptor substrate 2 (FRS2) family of docking/scaffolding adaptor proteins. These proteins function downstream of certain kinds of receptor tyrosine kinases (RTKs) that are important for tumorigenesis. FRS2alpha acts as a control centre for fibroblast growth factor receptor signalling and encourages tumorigenesis, while FRS2beta regulates EGFR signalling negatively, and might have a tumour suppressive role. Therefore, both proteins could be good therapeutic targets for the treatment of cancer. OBJECTIVE To examine the physiological and pathological roles of FRS2, especially in cancer, and describe their potential value as therapeutic targets. METHODS A review of relevant literature. RESULTS/CONCLUSIONS Although it is still difficult to develop small compounds to modify functions of FRS2 adaptor proteins, such compounds may be useful as the next generation of molecular targeting drugs. Combination therapy with RTK-targeting drugs and FRS2-targeting drugs may be useful for cancer treatment in the near future.
Collapse
Affiliation(s)
- Takuya Sato
- The University of Tokyo, Institute of Medical Science, Division of Systems Biomedical Technology, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | |
Collapse
|
26
|
Wu H, Wu H, Li H, Wu H, Li H, Guo J. Spry2-mediated inhibition of the Ras/ERK pathway through interaction with Src kinase following cerebral ischemia. Brain Inj 2009; 22:275-81. [DOI: 10.1080/02699050801911295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Abstract
Fibroblast growth factor receptors (FGFRs) comprise a subfamily of receptor tyrosine kinases (RTKs) that are master regulators of a broad spectrum of cellular and developmental processes, including apoptosis, proliferation, migration and angiogenesis. Due to their broad impact, FGFRs and other RTKs are highly regulated and normally only basally active. Deregulation of FGFR signaling by activating mutations or ligand/receptor overexpression could allow these receptors to become constitutively active, leading to cancer development, including both hematopoietic and solid tumors, such as breast, bladder and prostate carcinomas. In this review, we focus on potential modes of FGFR-mediated tumorigenesis, in particular, the role of FGFR1 during prostate cancer progression.
Collapse
Affiliation(s)
- Victor D Acevedo
- Program in Cell and Molecular Biology, Department of Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
28
|
Ogita H, Ikeda W, Takai Y. Roles of cell adhesion molecules nectin and nectin-like molecule-5 in the regulation of cell movement and proliferation. J Microsc 2008; 231:455-65. [PMID: 18755001 DOI: 10.1111/j.1365-2818.2008.02058.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In response to chemoattractants, migrating cells form protrusions, such as lamellipodia and filopodia, and structures, such as ruffles over lamellipodia, focal complexes and focal adhesions at leading edges. The formation of these leading edge structures is essential for directional cell movement. Nectin-like molecule-5 (Necl-5) interacts in cis with PDGF receptor and integrin alpha(v)beta(3), and enhances the activation of signalling molecules associated with these transmembrane proteins, which results in the formation of leading edge structures and enhancement of directional cell movement. When migrating cells come into contact with each other, cell-cell adhesion is initiated, resulting in reduced cell velocity. Necl-5 first interacts in trans with nectin-3. This interaction is transient and induces down-regulation of Necl-5 expression at the cell surface, resulting in reduced cell movement. Cell proliferation is also suppressed by the down-regulation of Necl-5, because the inhibitory effect of Necl-5 on Sprouty2, a negative regulator of the Ras signalling, is diminished. PDGF receptor and integrin alpha(v)beta(3), which have interacted with Necl-5, then form a complex with nectin, which initiates cell-cell adhesion and recruits cadherin to the nectin-based cell-cell adhesion sites to form stable adherens junctions. The formation of adherens junctions stops cell movement, in part through inactivation of integrin alpha(v)beta(3) caused by the trans-interaction of nectin. Thus, nectin and Necl-5 play key roles in the regulation of cell movement and proliferation.
Collapse
Affiliation(s)
- H Ogita
- Department of Molecular Biology and Biochemistry, Faculty of MedicineOsaka, University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | |
Collapse
|
29
|
Gaffney EA, Heath JK, Kwiatkowska MZ. A mass action model of a Fibroblast Growth Factor signaling pathway and its simplification. Bull Math Biol 2008; 70:2229-63. [PMID: 18841420 DOI: 10.1007/s11538-008-9342-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 05/23/2008] [Indexed: 10/21/2022]
Abstract
We consider a kinetic law of mass action model for Fibroblast Growth Factor (FGF) signaling, focusing on the induction of the RAS-MAP kinase pathway via GRB2 binding. Our biologically simple model suffers a combinatorial explosion in the number of differential equations required to simulate the system. In addition to numerically solving the full model, we show that it can be accurately simplified. This requires combining matched asymptotics, the quasi-steady state hypothesis, and the fact subsets of the equations decouple asymptotically. Both the full and simplified models reproduce the qualitative dynamics observed experimentally and in previous stochastic models. The simplified model also elucidates both the qualitative features of GRB2 binding and the complex relationship between SHP2 levels, the rate SHP2 induces dephosphorylation and levels of bound GRB2. In addition to providing insight into the important and redundant features of FGF signaling, such work further highlights the usefulness of numerous simplification techniques in the study of mass action models of signal transduction, as also illustrated recently by Borisov and co-workers (Borisov et al. in Biophys. J. 89, 951-966, 2005, Biosystems 83, 152-166, 2006; Kiyatkin et al. in J. Biol. Chem. 281, 19925-19938, 2006). These developments will facilitate the construction of tractable models of FGF signaling, incorporating further biological realism, such as spatial effects or realistic binding stoichiometries, despite a more severe combinatorial explosion associated with the latter.
Collapse
Affiliation(s)
- E A Gaffney
- Centre for Mathematical Biology, Mathematical Institute, University of Oxford, 24-29 St Giles', Oxford OX1 3LB, UK.
| | | | | |
Collapse
|
30
|
Sweet SMM, Mardakheh FK, Ryan KJP, Langton AJ, Heath JK, Cooper HJ. Targeted online liquid chromatography electron capture dissociation mass spectrometry for the localization of sites of in vivo phosphorylation in human Sprouty2. Anal Chem 2008; 80:6650-7. [PMID: 18683950 DOI: 10.1021/ac800963a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We demonstrate a strategy employing collision-induced dissociation for phosphopeptide discovery, followed by targeted electron capture dissociation (ECD) for site localization. The high mass accuracy and low background noise of the ECD mass spectra allow facile sequencing of coeluting isobaric phosphopeptides, with up to two isobaric phosphopeptides sequenced from a single mass spectrum. In contrast to the previously described neutral loss dependent ECD method, targeted ECD allows analysis of both phosphotyrosine peptides and lower abundance phosphopeptides. The approach was applied to phosphorylation analysis of human Sprouty2, a regulator of receptor tyrosine kinase signaling. Fifteen sites of phosphorylation were identified, 11 of which are novel.
Collapse
Affiliation(s)
- Steve M M Sweet
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | |
Collapse
|
31
|
Endosomal trafficking of Src tyrosine kinase. Trends Cell Biol 2008; 18:322-9. [PMID: 18515107 DOI: 10.1016/j.tcb.2008.05.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 05/01/2008] [Accepted: 05/06/2008] [Indexed: 12/29/2022]
Abstract
Endosomal trafficking is an essential cellular process involved in the transport of proteins such as integrins, hormone receptors, growth factor receptors, receptor tyrosine kinases, and lipids (e.g. sphingomyelin). Regulation of this process is highly complex and involves Arf GAPs, SNAREs, Rab proteins, Rho GTPases and the actin cytoskeleton. In this article, we focus on the intracellular targeting of the Src family of non-receptor tyrosine kinases (nRTKs), and the role of endosomes in the delivery of nRTKs to the plasma membrane. Furthermore, we discuss the role of the actin cytoskeleton in this process and consider how endosome-regulated intracellular trafficking affects cell signalling.
Collapse
|
32
|
Gotoh N. Regulation of growth factor signaling by FRS2 family docking/scaffold adaptor proteins. Cancer Sci 2008; 99:1319-25. [PMID: 18452557 PMCID: PMC11159094 DOI: 10.1111/j.1349-7006.2008.00840.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Accepted: 03/27/2008] [Indexed: 12/26/2022] Open
Abstract
The FRS2 family of adaptor/scaffold proteins has two members, FRS2alpha and FRS2beta. Both proteins contain N-terminal myristylation sites for localization on the plasma membrane and a PTB domain for binding to limited species of receptor tyrosine kinases (RTKs), including the FGF receptor, the neurotophin receptor, RET, and ALK. Activation of these RTKs allows FRS2 proteins to become phosphorylated of tyrosine residues and then bind to Grb2 and Shp2, a SH2 domain-containing adaptor and a tyrosine phosphatase, respectively. Subsequently, Shp2 activates a Ras/ERK pathway and Grb2 activates a Ras/ERK, phosphatidyl inositol (PI)-3 kinase and ubiquitination/degradation pathways by binding to SOS, Gab1, and Cbl via the SH3 domains of Grb2. FRS2alpha acts as 'a conning center' in FGF signaling mainly because it induces sustained levels of activation of ERK via Shp2-binding sites and Grb2-binding sites, though the contribution of the former is greater. Indeed, FRS2alpha knockout mice and mice with mutated Shp2-binding sites exhibit a variety of phenotypes due to defects in FGF signaling in vivo. Although FRS2beta binds to the EGF receptor, it does not induce tyrosine phosphorylation on the receptor. Instead, it inhibits EGF signaling, resulting in inhibition of EGF-induced cell proliferation and cell transformation. Based on these findings, the involvement of FRS2 proteins in tumorigenesis should be studied extensively to be validated as candidate biomarkers for the effectiveness of treatments targeting RTKs such as the FGF receptor and EGF receptor.
Collapse
Affiliation(s)
- Noriko Gotoh
- Division of Systems Biomedical Technology, Institute of Medical Science, University of Tokyo.
| |
Collapse
|
33
|
Ogita H, Takai Y. Cross-talk among integrin, cadherin, and growth factor receptor: roles of nectin and nectin-like molecule. ACTA ACUST UNITED AC 2008; 265:1-54. [PMID: 18275885 DOI: 10.1016/s0074-7696(07)65001-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Integrin, cadherin, and growth factor receptor are key molecules for fundamental cellular functions including cell movement, proliferation, differentiation, adhesion, and survival. These cell surface molecules cross-talk with each other in the regulation of such cellular functions. Nectin and nectin-like molecule (Necl) have been identified as cell adhesion molecules that belong to the immunoglobulin superfamily. Nectin and Necl play important roles in the integration of integrin, cadherin, and growth factor receptor at the cell-cell adhesion sites of contacting cells and at the leading edges of moving cells, and thus are also involved in the fundamental cellular functions together with integrin, cadherin, and growth factor receptor. This chapter describes how newly identified cell adhesion molecules, nectin and Necl, modulate the cross-talk among integrin, cadherin, and growth factor receptor and how these integrated molecules act in the regulation of fundamental cellular functions.
Collapse
Affiliation(s)
- Hisakazu Ogita
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
34
|
Sprouty proteins, masterminds of receptor tyrosine kinase signaling. Angiogenesis 2008; 11:53-62. [PMID: 18219583 DOI: 10.1007/s10456-008-9089-1] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 01/07/2008] [Indexed: 01/07/2023]
Abstract
Angiogenesis relies on endothelial cells properly processing signals from growth factors provided in both an autocrine and a paracrine manner. These mitogens bind to their cognate receptor tyrosine kinases (RTKs) on the cell surface, thereby activating a myriad of complex intracellular signaling pathways whose outputs include cell growth, migration, and morphogenesis. Understanding how these cascades are precisely controlled will provide insight into physiological and pathological angiogenesis. The Sprouty (Spry) family of proteins is a highly conserved group of negative feedback loop modulators of growth factor-mediated mitogen-activated protein kinase (MAPK) activation originally described in Drosophila. There are four mammalian orthologs (Spry1-4) whose modulation of RTK-induced signaling pathways is growth factor- and cell context-dependent. Endothelial cells are a group of highly differentiated cell types necessary for defining the mammalian vasculature. These cells respond to a plethora of growth factors and express all four Spry isoforms, thus highlighting the complexity that is required to form and maintain vessels in mammals. This review describes Spry functions in the context of endothelial biology and angiogenesis, and provides an update on Spry-interacting proteins and Spry mechanisms of action.
Collapse
|
35
|
Vecchione A, Cooper HJ, Trim KJ, Akbarzadeh S, Heath JK, Wheldon LM. Protein partners in the life history of activated fibroblast growth factor receptors. Proteomics 2007; 7:4565-78. [DOI: 10.1002/pmic.200700615] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
36
|
Src kinase modulates the activation, transport and signalling dynamics of fibroblast growth factor receptors. EMBO Rep 2007; 8:1162-9. [PMID: 17975556 DOI: 10.1038/sj.embor.7401097] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 09/14/2007] [Accepted: 09/19/2007] [Indexed: 11/08/2022] Open
Abstract
The non-receptor tyrosine kinase Src is recruited to activated fibroblast growth factor receptor (FGFR) complexes through the adaptor protein factor receptor substrate 2 (FRS2). Here, we show that Src kinase activity has a crucial role in the regulation of FGFR1 signalling dynamics. Following receptor activation by ligand binding, activated Src is colocalized with activated FGFR1 at the plasma membrane. This localization requires both active Src and FGFR1 kinases, which are inter-dependent. Internalization of activated FGFR1 is associated with release from complexes containing activated Src. Src-mediated transport and subsequent activation of FGFR1 require both RhoB endosomes and an intact actin cytoskeleton. Chemical and genetic inhibition studies showed strikingly different requirements for Src family kinases in FGFR1-mediated signalling; activation of the phosphoinositide-3 kinase-Akt pathway is severely attenuated, whereas activation of the extracellular signal-regulated kinase pathway is delayed in its initial phase and fails to attenuate.
Collapse
|
37
|
Wu HW, Li HF, Guo J. N-methyl-D-aspartate receptors mediate diphosphorylation of extracellular signal-regulated kinases through Src family tyrosine kinases and Ca2+/calmodulin-dependent protein kinase II in rat hippocampus after cerebral ischemia. Neurosci Bull 2007; 23:107-12. [PMID: 17592533 PMCID: PMC5550594 DOI: 10.1007/s12264-007-0015-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE Extracellular signal-regulated kinases (ERKs) can be activated by calcium signals. In this study, we investigated whether calcium-dependent kinases were involved in ERKs cascade activation after global cerebral ischemia. METHODS Cerebral ischemia was induced by four-vessel occlusion, and the calcium-dependent proteins were detected by immunoblot. RESULTS Lethal-simulated ischemia significantly resulted in ERKs activation in N-methyl-D-aspartate (NMDA) receptor-dependent manner, accompanying with differential upregulation of Src kinase and Ca2+/calmodulin-dependent protein kinase II (CaMKII) activities. With the inhibition of Src family tyrosine kinases or CaMKII by administration of PP2 or KN62, the phosphorylation of ERKs was impaired dramatically during post-ischemia recovery. However, ischemic challenge also repressed ERKs activity when Src kinase was excessively activated. CONCLUSION Src family tyrosine kinases and CaMKII might be involved in the activation of ERKs mediated by NMDA receptor in response to acute ischemic stimuli in vivo, but the intense activation of Src kinase resulted from ischemia may play a reverse role in the ERKs cascade.
Collapse
Affiliation(s)
- Hui-Wen Wu
- Morphological Laboratory, Nanjing Medical University, Nanjing, 210029 China
| | - Hong-Fu Li
- Jingsu Province Hospital of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing, 210029 China
| | - Jun Guo
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210029 China
| |
Collapse
|
38
|
Ward GR, Franklin SO, Gerald TM, Dempsey KT, Clodfelter DE, Krissinger DJ, Patel KM, Vrana KE, Howlett AC. Glucocorticoids plus opioids up-regulate genes that influence neuronal function. Cell Mol Neurobiol 2007; 27:651-60. [PMID: 17554624 PMCID: PMC11517204 DOI: 10.1007/s10571-007-9151-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 04/13/2007] [Indexed: 01/27/2023]
Abstract
(1) This study investigated the functional genomics of glucocorticoid and opioid receptor stimulation in cellular adaptations using a cultured neuronal cell model. (2) Human SH-SY5Y neuroblastoma cells grown in hormone-depleted serum were treated for 2-days with the glucocorticoid receptor-II agonist dexamethasone (30 nM); the mu-opioid receptor agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin acetate (DAMGO; 1 nM); or dexamethasone (30 nM) plus DAMGO (1 nM). RNA was extracted; purified, reverse transcribed, and labeled cDNA was hybridized to a 10,000-oliogonucleotide-array human gene chip. Gene expression changes that were significantly different between treatment groups and were of interest due to biological function were verified by real-time reverse transcription polymerase chain reaction (RT-PCR). Five relevant genes were identified for which the combination of dexamethasone plus DAMGO, but neither one alone, significantly up-regulated gene expression (ANOVA, P < 0.05). (3) Proteins coded by the identified genes: FRS2 (fibroblast growth factor receptor substrate-2; CTNNB1 (beta1-catenin); PRCP (prolyl-carboxypeptidase); MPHOSPH9 (M-phase phosphoprotein 9); and ZFP95 (zinc finger protein 95) serve important neuronal functions in signal transduction, synapse formation, neuronal growth and development, or transcription regulation. Neither opioid, glucocorticoid nor combined treatments significantly altered the cell growth rate determined by cell counts and protein. (4) We conclude that sustained mu-opioid receptor stimulation accompanied by glucocorticoids can synergistically regulate genes that influence neuronal function. Future studies are warranted to determine if combined influences of glucocorticoid fluctuations and opioid receptor stimulation in vivo can orchestrate exagerated neuroadaptation to reinforcing drugs under chronic mild stress conditions.
Collapse
Affiliation(s)
- Gregg R. Ward
- Neuroscience of Drug Abuse Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707 USA
- Present Address: Department of Biology, Division of Natural Sciences & Mathematics, Saint Augustine’s College, Raleigh, NC 27610 USA
| | - Steven O. Franklin
- Neuroscience of Drug Abuse Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707 USA
| | - Tonya M. Gerald
- Neuroscience of Drug Abuse Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707 USA
| | - Krystal T. Dempsey
- Neuroscience of Drug Abuse Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707 USA
- Present Address: Biogen Idec, Research Triangle Park, NC 27709 USA
| | - Darrel E. Clodfelter
- Neuroscience of Drug Abuse Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707 USA
| | - Dan J. Krissinger
- Department of Pharmacology, Pennsylvania State University College of Medicine/Milton S. Hershey Medical Center, Hershey, PA 17033 USA
| | - Kruti M. Patel
- Department of Pharmacology, Pennsylvania State University College of Medicine/Milton S. Hershey Medical Center, Hershey, PA 17033 USA
| | - Kent E. Vrana
- Department of Pharmacology, Pennsylvania State University College of Medicine/Milton S. Hershey Medical Center, Hershey, PA 17033 USA
| | - Allyn C. Howlett
- Neuroscience of Drug Abuse Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707 USA
- Department of Physiology & Pharmacology, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem, NC 27157 USA
| |
Collapse
|
39
|
Kajita M, Ikeda W, Tamaru Y, Takai Y. Regulation of platelet-derived growth factor-induced Ras signaling by poliovirus receptor Necl-5 and negative growth regulator Sprouty2. Genes Cells 2007; 12:345-57. [PMID: 17352739 DOI: 10.1111/j.1365-2443.2007.01062.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Necl-5, known as a poliovirus receptor and up-regulated in many cancer cells, enhances platelet-derived growth factor (PDGF)-induced activation of Ras-Raf-MEK-ERK signaling, but not PDGF-induced tyrosine phosphorylation of PDGF receptor, resulting in facilitation of cell proliferation. Here, we showed that Necl-5 interacted with Sprouty2, known to be a negative regulator of growth factor-induced signaling, and reduced the inhibitory effect of Sprouty2 on PDGF-induced Ras signaling. Necl-5 was reported to be down-regulated by its trans-interaction with nectin-3 upon cell-cell contact, initiating cooperative cell-cell adhesion with cadherin. This down-regulation of Necl-5 caused tyrosine phosphorylation of Sprouty2 by c-Src, which was activated by PDGF receptor in response to PDGF, and inhibited PDGF-induced Ras signaling. Thus, Necl-5 and Sprouty2 cooperatively regulate PDGF-induced Ras signaling. The roles of Necl-5 and Sprouty2 in contact inhibition for cell proliferation are also discussed.
Collapse
Affiliation(s)
- Mihoko Kajita
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
40
|
Nadeau RJ, Toher JL, Yang X, Kovalenko D, Friesel R. Regulation of Sprouty2 stability by mammalian Seven-in-Absentia homolog 2. J Cell Biochem 2007; 100:151-60. [PMID: 16888801 DOI: 10.1002/jcb.21040] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mammalian Sprouty (Spry) gene expression is rapidly induced upon activation of the FGF receptor signaling pathway in multiple cell types including cells of mesenchymal and epithelial origin. Spry2 inhibits FGF-dependent ERK activation and thus Spry acts as a feedback inhibitor of FGF-mediated proliferation. In addition, Spry2 interacts with the ring-finger-containing E3 ubiquitin ligase, c-Cbl, in a manner that is dependent upon phosphorylation of Tyr55 of Spry2. This interaction results in the poly-ubiquitination and subsequent degradation of Spry2 by the proteasome. Here, we describe the identification of another E3 ubiquitin ligase, human Seven-in-Absentia homolog-2 (SIAH2), as a Spry2 interacting protein. We show by yeast two-hybrid analysis that the N-terminal domain of Spry2 and the ring finger domain of SIAH2 mediated this interaction. Co-expression of SIAH2 resulted in proteasomal degradation of Spry1, 2, and to a lesser extent Spry4. The related E3 ubiquitin-ligase, SIAH1, had little effect on Spry2 protein stability when co-expressed. Unlike c-Cbl-mediated degradation of Spry2, SIAH2-mediated degradation was independent of phosphorylation of Spry2 on Tyr55. Spry2 was also phosphorylated on Tyr227, and phosphorylation of this residue was also dispensable for SIAH2-mediated degradation of Spry2. Finally, co-expression of SIAH2 with Spry2 resulted in a rescue of FGF2-mediated ERK phosphorylation. These data suggest a novel mechanism whereby Spry2 stability is regulated in a manner that is independent of tyrosine phosphorylation, and provides an addition level of control of Spry2 protein levels.
Collapse
Affiliation(s)
- Robert J Nadeau
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074-7205, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
Since the days of Hans Spemann, the ocular lens has served as one of the most important developmental systems for elucidating fundamental processes of induction and differentiation. More recently, studies in the lens have contributed significantly to our understanding of cell cycle regulation and apoptosis. Over 20 years of accumulated evidence using several different vertebrate species has suggested that fibroblast growth factors (FGFs) and/or fibroblast growth factor receptors (FGFRs) play a key role in lens development. FGFR signaling has been implicated in lens induction, lens cell proliferation and survival, lens fiber differentiation and lens regeneration. Here we will review and discuss historical and recent evidence suggesting that (FGFR) signaling plays a vital and universal role in multiple aspects of lens development.
Collapse
|
42
|
Yang X, Webster JB, Kovalenko D, Nadeau RJ, Zubanova O, Chen PY, Friesel R. Sprouty genes are expressed in osteoblasts and inhibit fibroblast growth factor-mediated osteoblast responses. Calcif Tissue Int 2006; 78:233-40. [PMID: 16604287 DOI: 10.1007/s00223-005-0231-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 02/07/2006] [Indexed: 10/24/2022]
Abstract
Fibroblast growth factors (FGFs) and fibroblast growth factor receptors (FGFRs) are major regulators of skeletal growth and development. Signal transduction via FGFRs is complex and mediates proliferation, differentiation, or migration depending upon the cellular context. Members of the Spry gene family antagonize the FGFR signal transduction pathway and inhibit lung morphogenesis, angiogenesis, and chondrogenesis. We examined the expression of Spry2 in the osteoblastic MC3T3-E1 cell line. MC3T3-E1 cells express Spry2 in response to FGF1 stimulation. Treatment of MC3T3-E1 cells with FGF1 results in the expression of Spry2 in a manner consistent with an early response gene. Pharmacological inhibitors of mitogen-activated protein kinase activation inhibit FGF1-induced expression of Spry2 mRNA. Transient overexpression of Spry2 in MC3T3-E1 resulted in decreased FGF1-mediated extracellular signal-regulated kinase phosphorylation and FGF1-stimulated osteopontin promoter activity. Furthermore, we show that Spry2 interacts with Raf-1 in a glutathione-S-transferase pulldown assay and that this interaction may involve multiple sites. Finally, Spry2 expression precedes the onset of the expression of osteoblast differentiation markers in an in vitro assay of primary osteoblast differentiation. Taken together, these results indicate that Spry2 expression is an early response to stimulation by FGF1 in MC3T3-E1 cells and acts as a feedback inhibitor of FGF1-induced osteoblast responses, possibly through interaction with Raf1.
Collapse
Affiliation(s)
- X Yang
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Jarvis LA, Toering SJ, Simon MA, Krasnow MA, Smith-Bolton RK. Sprouty proteins are in vivo targets of Corkscrew/SHP-2 tyrosine phosphatases. Development 2006; 133:1133-42. [PMID: 16481357 DOI: 10.1242/dev.02255] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drosophila Corkscrew protein and its vertebrate ortholog SHP-2(now known as Ptpn11) positively modulate receptor tyrosine kinase (RTK)signaling during development, but how these tyrosine phosphatases promote tyrosine kinase signaling is not well understood. Sprouty proteins are tyrosine-phosphorylated RTK feedback inhibitors, but their regulation and mechanism of action are also poorly understood. Here, we show that Corkscrew/SHP-2 proteins control Sprouty phosphorylation and function. Genetic experiments demonstrate that Corkscrew/SHP-2 and Sprouty proteins have opposite effects on RTK-mediated developmental events in Drosophilaand an RTK signaling process in cultured mammalian cells, and the genes display dose-sensitive genetic interactions. In cultured cells, inactivation of SHP-2 increases phosphorylation on the critical tyrosine of Sprouty 1. SHP-2 associates in a complex with Sprouty 1 in cultured cells and in vitro,and a purified SHP-2 protein dephosphorylates the critical tyrosine of Sprouty 1. Substrate-trapping forms of Corkscrew bind Sprouty in cultured Drosophila cells and the developing eye. These results identify Sprouty proteins as in vivo targets of Corkscrew/SHP-2 tyrosine phosphatases and show how Corkscrew/SHP-2 proteins can promote RTK signaling by inactivating a feedback inhibitor. We propose that this double-negative feedback circuit shapes the output profile of RTK signaling events.
Collapse
Affiliation(s)
- Lesley A Jarvis
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305-5307 USA
| | | | | | | | | |
Collapse
|
44
|
DaSilva J, Xu L, Kim HJ, Miller WT, Bar-Sagi D. Regulation of sprouty stability by Mnk1-dependent phosphorylation. Mol Cell Biol 2006; 26:1898-907. [PMID: 16479008 PMCID: PMC1430244 DOI: 10.1128/mcb.26.5.1898-1907.2006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 09/06/2005] [Accepted: 12/14/2005] [Indexed: 12/18/2022] Open
Abstract
Sprouty (Spry) proteins are negative feedback modulators of receptor tyrosine kinase pathways in Drosophila melanogaster and mammals. Mammalian Spry proteins have been shown to undergo tyrosine and serine phosphorylation in response to growth factor stimulation. While several studies have addressed the function of tyrosine phosphorylation of Spry, little is known about the significance of Spry serine phosphorylation. Here we identify mitogen-activated protein kinase-interacting kinase 1 (Mnk1) as the kinase that phosphorylates human Spry2 (hSpry2) on serines 112 and 121. Mutation of these serine residues to alanine or inhibition of Mnk1 activity increases the rate of ligand-induced degradation of hSpry2. Conversely, enhancement of serine phosphorylation achieved through either the inhibition of cellular phosphatases or the expression of active Mnk1 results in the stabilization of hSpry2. Previous studies have shown that growth factor stimulation induces the proteolytic degradation of hSpry2 by stimulating tyrosine phosphorylation on hSpry2, which in turn promotes c-Cbl binding and polyubiquitination. A mutant of hSpry2 that is deficient in serine phosphorylation displays enhanced tyrosine phosphorylation and c-Cbl binding, indicating that serine phosphorylation stabilizes hSpry2 by exerting an antagonistic effect on tyrosine phosphorylation. Moreover, loss of serine phosphorylation and the resulting enhanced degradation of hSpry2 impair its capacity to antagonize fibroblast growth factor-induced extracellular signal-regulated kinase activation. Our results imply that Mnk1-mediated serine phosphorylation of hSpry2 constitutes a regulatory mechanism to extend the temporal range of Spry activity.
Collapse
Affiliation(s)
- John DaSilva
- Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | | | |
Collapse
|
45
|
Kolch W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 2005; 6:827-37. [PMID: 16227978 DOI: 10.1038/nrm1743] [Citation(s) in RCA: 815] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The pathway from Ras through Raf and MEK (MAPK and ERK kinase) to ERK/MAPK (extracellular signal-regulated kinase/mitogen-activated protein kinase) regulates many fundamental cellular processes. Recently, a number of scaffolding proteins and endogenous inhibitors have been identified, and their important roles in regulating signalling through this pathway are now emerging. Some scaffolds augment the signal flux, but also mediate crosstalk with other pathways; certain adaptors target MEK-ERK/MAPK complexes to subcellular localizations; others provide regulated inhibition. Computational modelling indicates that, together, these modulators can determine the dynamic biological behaviour of the pathway.
Collapse
Affiliation(s)
- Walter Kolch
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
| |
Collapse
|
46
|
Mason JM, Morrison DJ, Basson MA, Licht JD. Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends Cell Biol 2005; 16:45-54. [PMID: 16337795 DOI: 10.1016/j.tcb.2005.11.004] [Citation(s) in RCA: 343] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 10/13/2005] [Accepted: 11/16/2005] [Indexed: 11/26/2022]
Abstract
Receptor tyrosine kinases (RTKs) control a wide variety of processes in multicellular organisms, including proliferation, differentiation, migration and survival. Their activity is tightly controlled through the coordinated action of both positive and negative regulators that function at multiple levels of the signal transduction cascade, and at different time points within the growth-factor-induced response. When this process goes awry, the outcome can be developmental defects and malignancy. Sprouty (Spry) proteins represent a major class of ligand-inducible inhibitors of RTK-dependent signaling pathways. New biochemical and genetic evidence indicates specific roles of the Spry genes in development and multiple modes of action of the Spry proteins in regulation of the RTK-induced response.
Collapse
Affiliation(s)
- Jacqueline M Mason
- Mount Sinai School of Medicine, Department of Medicine, Division of Hematology and Oncology, Box 1079, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | |
Collapse
|