1
|
Ulecia-Morón C, Bris ÁG, MacDowell KS, Madrigal JLM, García-Bueno B, Leza JC, Caso JR. Chronic mild stress disrupts mitophagy and mitochondrial status in rat frontal cortex. J Transl Med 2025; 23:580. [PMID: 40410878 PMCID: PMC12102876 DOI: 10.1186/s12967-025-06604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 05/12/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND Mitochondria are very dynamic organelles that maintain cellular homeostasis, crucial in the central nervous system. Mitochondrial abnormalities have been described in neuropsychiatric diseases, namely major depression disorder (MDD) and schizophrenia. Since stress is the predominant non-genetic cause of MDD, and has a direct impact on mitochondrial networks, understanding how psychological stress affects mitochondrial health is vital to improve the current pharmacological therapies. METHODS The effect of 21 days of unpredictable stress was evaluated in frontal cortex of Wistar male rats comparing protein and gene markers of mitophagy (PINK1, PARKIN, BNIP3, NIX, FUNDC1), mitochondrial biosynthesis (PGC1α, NRF1, TFAM) and dynamics (MFN1, MFN2, OPA1, DRP1), and mitochondrial presence within microglia with the MitoTracker Green FM™ probe. RESULTS Chronic mild stress (CMS) caused the upregulation of mitochondrial mass, mitochondria depolarization, dysregulation in mitochondrial dynamics towards fusion, the increase of mitophagy markers and the induction of genes that activate mitochondrial biogenesis in frontal cortex. CMS also promoted microglia recruitment and mitochondrial number boosting within them. CONCLUSIONS There is a dysregulation of mitochondrial dynamics towards fusion, an upregulation of mitophagy markers, and the induction of genes associated with mitochondrial biogenesis in response to CMS in the frontal cortex of adult rats. This study highlights the impact of psychological stress on brain mitochondrial networks.
Collapse
Affiliation(s)
- Cristina Ulecia-Morón
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Plaza Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Álvaro G Bris
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Plaza Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Karina S MacDowell
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Plaza Ramón y Cajal s/n, Madrid, 28040, Spain
| | - José L M Madrigal
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Plaza Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Borja García-Bueno
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Plaza Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Juan C Leza
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Plaza Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Javier R Caso
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Plaza Ramón y Cajal s/n, Madrid, 28040, Spain.
| |
Collapse
|
2
|
Daumke O, van der Laan M. Molecular machineries shaping the mitochondrial inner membrane. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00854-z. [PMID: 40369159 DOI: 10.1038/s41580-025-00854-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
Mitochondria display intricately shaped deep invaginations of the mitochondrial inner membrane (MIM) termed cristae. This peculiar membrane architecture is essential for diverse mitochondrial functions, such as oxidative phosphorylation or the biosynthesis of cellular building blocks. Conserved protein nano-machineries such as F1Fo-ATP synthase oligomers and the mitochondrial contact site and cristae organizing system (MICOS) act as adaptable protein-lipid scaffolds controlling MIM biogenesis and its dynamic remodelling. Signal-dependent rearrangements of cristae architecture and MIM fusion events are governed by the dynamin-like GTPase optic atrophy 1 (OPA1). Recent groundbreaking structural insights into these nano-machineries have considerably advanced our understanding of the functional architecture of mitochondria. In this Review, we discuss how the MIM-shaping machineries cooperate to control cristae and crista junction dynamics, including MIM fusion, in response to cellular signalling pathways. We also explore how mutations affecting MIM-shaping machineries compromise mitochondrial functions.
Collapse
Affiliation(s)
- Oliver Daumke
- Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| | - Martin van der Laan
- Medical Biochemistry & Molecular Biology, Center for Molecular Signalling (PZMS), Saarland University Medical School, Homburg/Saar, Germany.
| |
Collapse
|
3
|
Pan D, Chen P, Zhang H, Zhao Q, Fang W, Ji S, Chen T. Mitochondrial quality control: A promising target of traditional Chinese medicine in the treatment of cardiovascular disease. Pharmacol Res 2025; 215:107712. [PMID: 40154932 DOI: 10.1016/j.phrs.2025.107712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/08/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Cardiovascular disease remains the leading cause of death globally, and drugs for new targets are urgently needed. Mitochondria are the primary sources of cellular energy, play crucial roles in regulating cellular homeostasis, and are tightly associated with pathological processes in cardiovascular disease. In response to physiological signals and external stimuli in cardiovascular disease, mitochondrial quality control, which mainly includes mitophagy, mitochondrial dynamics, and mitochondrial biogenesis, is initiated to meet cellular requirements and maintain cellular homeostasis. Traditional Chinese Medicine (TCM) has been shown to have pharmacological effects on alleviating cardiac injury in various cardiovascular diseases, including myocardial ischemia/reperfusion, myocardial infarction, and heart failure, by regulating mitochondrial quality control. Recently, several molecular mechanisms of TCM in the treatment of cardiovascular disease have been elucidated. However, mitochondrial quality control by TCM for treating cardiovascular disease has not been investigated. In this review, we aim to decipher the pharmacological effects and molecular mechanisms of TCM in regulating mitochondrial quality in various cardiovascular diseases. We also present our perspectives regarding future research in this field.
Collapse
Affiliation(s)
- Deng Pan
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Zhejiang, China.
| | - Pengfei Chen
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - He Zhang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Zhao
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Zhejiang, China
| | - Wei Fang
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Zhejiang, China
| | - Siyan Ji
- Stomatology Department of Qiqihar Medical College School, Heilongjiang, China
| | - Tielong Chen
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Zhejiang, China.
| |
Collapse
|
4
|
Heard TC, Abaasah IE, Botts E, Christy BA, Mdaki MKS, Ross E, Meledeo MA, Herzig MC. Cold storage effects on mitochondrial bioenergetics and protein expression in human mesenchymal stromal cells. Cytotherapy 2025:S1465-3249(25)00682-6. [PMID: 40380957 DOI: 10.1016/j.jcyt.2025.04.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 05/19/2025]
Abstract
BACKGROUND A ready-to-use format for cell therapy products, human mesenchymal stromal cells (MSCs) or other progenitor cells, would make their use in acute trauma feasible by the military or in rural community hospitals. In designing a strategy to package MSCs, it was noted that vitality (adenosine triphosphate [ATP] content) fell prior to viability. This study investigated the effects of cold storage on mitochondrial bioenergetics and protein in MSCs. METHODS Commercial MSCs were harvested and resuspended in either a balanced salt solution (PlasmaLyte A) or xeno-free medium (XFM) and then stored at 4°C. Cells were assayed on Days 0, 4, 7, 14, and 21 for cell count, viability, and ATP content, mitochondrial bioenergetics by Seahorse XF24 and Oroboros, and mitochondrial membrane potential by JC1 staining. Levels of proteins involved in mitochondrial function were assayed by Western blots. Proteins assessed included those involved in mitochondrial fusion (OPA1, MFN1, MFN2), fission (FIS1, DRP1, and DRP1 phosphoserine 637), regulation (PINK1 kinase and Parkin ubiquitin-ligase), mitophagy (NDP52 and optineurin), and electron transport chain function (COX IV, SDHB, cytochrome C, and NDUFS1). RESULTS Total counts for cells stored in PlasmaLyte A and XFM were similar through Day 21. However, by Day 4, while viability was modestly decreased for cells stored in PlasmaLyte A compared with those in XFM (68% vs. 83%), ATP content plummeted for cells stored in PlasmaLyte A, with only 9.5% of the initial ATP compared with 86% of the initial ATP levels for cells stored in XFM. Both the Seahorse assays and JC1 staining identified further differences between media. JC1 staining revealed that mitochondria were almost completely depolarized by Day 7 following storage in PlasmaLyte A whereas polarized mitochondria were still evident at Day 21 for cells stored in XFM. By Western blot analyses, significant changes in fusion, fission, and mitophagy proteins were observed both for media and over time whereas the electron transport proteins were generally stable. Significant changes in the phosphorylated form of the fission protein DRP1S637 most closely correlated with the ATP data. All parameters were better preserved over time in the XFM. CONCLUSIONS This study highlighted changes that occur during 4°C storage in the areas of vitality, mitochondrial membrane polarization, and fission. With these targets, research into treatments or additives to a media to improve cold storage and maintain functional cells at 4°C could result in a product that greatly extends the therapeutic use of cellular therapies.
Collapse
Affiliation(s)
- Tiffany C Heard
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, USA
| | - Isaac E Abaasah
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, USA
| | - Eric Botts
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, USA
| | - Barbara A Christy
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, USA
| | - Maj Kennedy S Mdaki
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, USA
| | - Evan Ross
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, USA
| | - M Adam Meledeo
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, USA
| | - Maryanne C Herzig
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, USA.
| |
Collapse
|
5
|
Willett BAS, Thompson SB, Chen V, Dareshouri A, Jackson CL, Brunetti T, D'Alessandro A, Klarquist J, Nemkov T, Kedl RM. Mitochondrial protein OPA1 is required for the expansion of effector CD8 T cells. Cell Rep 2025; 44:115610. [PMID: 40261796 DOI: 10.1016/j.celrep.2025.115610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/14/2025] [Accepted: 04/02/2025] [Indexed: 04/24/2025] Open
Abstract
Short-lived effector cells are characterized metabolically by a highly glycolytic state, driving energy and biomass acquisition, whereas memory-fated T cells have historically been described as meeting these requirements through mitochondrial metabolism. Here, we show that the mitochondrial protein optic atrophy 1 (OPA1) is critical for rapidly dividing CD8 T cells in vivo, the requirement for which is most pronounced in effector CD8 T cells. More specifically, OPA1 supports proper cell cycle initiation and progression and the viability and survival of CD8 T cells during clonal expansion. Use of mice deficient in the mitochondrial membrane fusion proteins Mitofusin 1 and 2 (MFN1/2) in both in vivo proliferation/differentiation assays and ex vivo metabolic analysis indicates that the requirement for OPA1 during cell division supersedes its role in mitochondrial fusion. We conclude that OPA1 is critical for the generation and accumulation of short-lived effector cells that arise during the response to infection.
Collapse
Affiliation(s)
- Benjamin A S Willett
- Department of Immunology and Microbiology, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Scott B Thompson
- Department of Immunology and Microbiology, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vincent Chen
- Department of Immunology and Microbiology, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anza Dareshouri
- Department of Cell and Developmental Biology, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Conner L Jackson
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tonya Brunetti
- Department of Immunology and Microbiology, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry & Molecular Genetics, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jared Klarquist
- Department of Immunology and Microbiology, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Travis Nemkov
- Department of Biochemistry & Molecular Genetics, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Ross M Kedl
- Department of Immunology and Microbiology, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
6
|
Park SJ, Cerella C, Kang JM, Byun J, Kum D, Orlikova-Boyer B, Lorant A, Schnekenburger M, Al-Mourabit A, Christov C, Lee J, Han BW, Diederich M. Tetrahydrobenzimidazole TMQ0153 targets OPA1 and restores drug sensitivity in AML via ROS-induced mitochondrial metabolic reprogramming. J Exp Clin Cancer Res 2025; 44:114. [PMID: 40197337 PMCID: PMC11974110 DOI: 10.1186/s13046-025-03372-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a highly aggressive cancer with a 5-year survival rate of less than 35%. It is characterized by significant drug resistance and abnormal energy metabolism. Mitochondrial dynamics and metabolism are crucial for AML cell survival. Mitochondrial fusion protein optic atrophy (OPA)1 is upregulated in AML patients with adverse mutations and correlates with poor prognosis. METHOD This study investigated targeting OPA1 with TMQ0153, a tetrahydrobenzimidazole derivative, to disrupt mitochondrial metabolism and dynamics as a novel therapeutic approach to overcome treatment resistance. Effects of TMQ0153 treatment on OPA1 and mitofusin (MFN)2 protein levels, mitochondrial morphology, and function in AML cells. In this study, we examined reactive oxygen species (ROS) production, oxidative phosphorylation (OXPHOS) inhibition, mitochondrial membrane potential (MMP) depolarization, and apoptosis. Additionally, metabolic profiling was conducted to analyze changes in metabolic pathways. RESULTS TMQ0153 treatment significantly reduced OPA1 and mitofusin (MFN)2 protein levels and disrupted the mitochondrial morphology and function in AML cells. This increases ROS production and inhibits OXPHOS, MMP depolarization, and caspase-dependent apoptosis. Metabolic reprogramming was observed, shifting from mitochondrial respiration to glycolysis and impaired respiratory chain activity. Profiling revealed reduced overall metabolism along with changes in the glutathione (GSH)/oxidized glutathione (GSSG) and NAD⁺/NADH redox ratios. TMQ0153 treatment reduces tumor volume and weight in MV4-11 xenografts in vivo. Combination therapies with TMQ0153 and other AML drugs significantly reduced the leukemic burden and prolonged survival in NOD scid gamma (NSG) mice xenografted with U937-luc and MOLM-14-luc cells. CONCLUSION TMQ0153 targets mitochondrial dynamics by inhibiting OPA1, inducing metabolic reprogramming, and triggering apoptosis in AML cells. It enhances the efficacy of existing AML therapies and provides a promising combination treatment approach that exploits mitochondrial vulnerability and metabolic reprogramming to improve treatment outcomes in AML.
Collapse
MESH Headings
- Humans
- GTP Phosphohydrolases/metabolism
- GTP Phosphohydrolases/antagonists & inhibitors
- GTP Phosphohydrolases/genetics
- Reactive Oxygen Species/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Animals
- Mice
- Benzimidazoles/pharmacology
- Mitochondria/metabolism
- Mitochondria/drug effects
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Apoptosis/drug effects
- Oxidative Phosphorylation/drug effects
- Drug Resistance, Neoplasm/drug effects
- Membrane Potential, Mitochondrial/drug effects
- Metabolic Reprogramming
Collapse
Affiliation(s)
- Su Jung Park
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Present address: Department of Cancer Research, Luxembourg Institute of Health (LIH), BAM Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Jin Mo Kang
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinyoung Byun
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - David Kum
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Barbora Orlikova-Boyer
- Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Present address: Department of Cancer Research, Luxembourg Institute of Health (LIH), BAM Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Anne Lorant
- Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Present address: Luxembourg Centre for Systems Biomedicine, Bioinformatics Core, Roudeneck, 1, Boulevard du Jazz, Esch-sur-Alzette, L-4370, Luxembourg
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Present address: Department of Cancer Research, Luxembourg Institute of Health (LIH), BAM Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Ali Al-Mourabit
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-Sur-Yvette, 91190, France
| | - Christo Christov
- Service d'Histologie, Faculté de Médicine, Université de Lorraine, and INSERM U1256 NGERE, 54000, Nancy, France
| | - Juyong Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Marc Diederich
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
7
|
Szögi T, Borsos BN, Masic D, Radics B, Bella Z, Bánfi A, Ördög N, Zsiros C, Kiricsi Á, Pankotai-Bodó G, Kovács Á, Paróczai D, Botkáné AL, Kajtár B, Sükösd F, Lehoczki A, Polgár T, Letoha A, Pankotai T, Tiszlavicz L. Novel biomarkers of mitochondrial dysfunction in Long COVID patients. GeroScience 2025; 47:2245-2261. [PMID: 39495479 PMCID: PMC11979091 DOI: 10.1007/s11357-024-01398-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) can lead to severe acute respiratory syndrome, and while most individuals recover within weeks, approximately 30-40% experience persistent symptoms collectively known as Long COVID, post-COVID-19 syndrome, or post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (PASC). These enduring symptoms, including fatigue, respiratory difficulties, body pain, short-term memory loss, concentration issues, and sleep disturbances, can persist for months. According to recent studies, SARS-CoV-2 infection causes prolonged disruptions in mitochondrial function, significantly altering cellular energy metabolism. Our research employed transmission electron microscopy to reveal distinct mitochondrial structural abnormalities in Long COVID patients, notably including significant swelling, disrupted cristae, and an overall irregular morphology, which collectively indicates severe mitochondrial distress. We noted increased levels of superoxide dismutase 1 which signals oxidative stress and elevated autophagy-related 4B cysteine peptidase levels, indicating disruptions in mitophagy. Importantly, our analysis also identified reduced levels of circulating cell-free mitochondrial DNA (ccf-mtDNA) in these patients, serving as a novel biomarker for the condition. These findings underscore the crucial role of persistent mitochondrial dysfunction in the pathogenesis of Long COVID. Further exploration of the cellular and molecular mechanisms underlying post-viral mitochondrial dysfunction is critical, particularly to understand the roles of autoimmune reactions and the reactivation of latent viruses in perpetuating these conditions. This comprehensive understanding could pave the way for targeted therapeutic interventions designed to alleviate the chronic impacts of Long COVID. By utilizing circulating ccf-mtDNA and other novel mitochondrial biomarkers, we can enhance our diagnostic capabilities and improve the management of this complex syndrome.
Collapse
Affiliation(s)
- Titanilla Szögi
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Barbara N Borsos
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
| | - Dejana Masic
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Bence Radics
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Zsolt Bella
- Department of Oto-Rhino- Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Bánfi
- Department of Pediatrics and Pediatric Health Center, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Nóra Ördög
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Csenge Zsiros
- Department of Oto-Rhino- Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ágnes Kiricsi
- Department of Oto-Rhino- Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gabriella Pankotai-Bodó
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ágnes Kovács
- Pulmonology Clinic, Albert Szent-Györgyi Medical and Pharmaceutical Centre, University of Szeged, Szeged, Hungary
| | - Dóra Paróczai
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Lugosi Botkáné
- Pulmonology Clinic, Albert Szent-Györgyi Medical and Pharmaceutical Centre, University of Szeged, Szeged, Hungary
| | - Béla Kajtár
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - Farkas Sükösd
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Tamás Polgár
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Annamária Letoha
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tibor Pankotai
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary.
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary.
| | - László Tiszlavicz
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
8
|
Ling Z, Ge X, Jin C, Song Z, Zhang H, Fu Y, Zheng K, Xu R, Jiang H. Copper doped bioactive glass promotes matrix vesicles-mediated biomineralization via osteoblast mitophagy and mitochondrial dynamics during bone regeneration. Bioact Mater 2025; 46:195-212. [PMID: 39760064 PMCID: PMC11699476 DOI: 10.1016/j.bioactmat.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/05/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Bone defect repair remains a great challenge in the field of orthopedics. Human body essential trace element such as copper is essential for bone regeneration, but how to use it in bone defects and the underlying its mechanisms of promoting bone formation need to be further explored. In this study, by doping copper into mesoporous bioactive glass nanoparticles (Cu-MBGNs), we unveil a previously unidentified role of copper in facilitating osteoblast mitophagy and mitochondrial dynamics, which enhance amorphous calcium phosphate (ACP) release and subsequent biomineralization, ultimately accelerating the process of bone regeneration. Specifically, by constructing conditional knockout mice lacking the autophagy gene Atg5 in osteogenic lineage cells, we first confirmed the role of Cu-MBGNs-promoted bone formation via mediating osteoblast autophagy pathway. Then, the in vitro studies revealed that Cu-MBGNs strengthened mitophagy by inducing ROS production and recruiting PINK1/Parkin, thereby facilitating the efficient release of ACP from mitochondria into matrix vesicles for biomineralization during bone regeneration. Moreover, we found that Cu-MBGNs promoted mitochondrion fission via activating dynamin related protein 1 (Drp1) to reinforce mitophagy pathway. Together, this study highlights the potential of Cu-MBGNs-mediated mitophagy and biomineralization for augmenting bone regeneration, offering a promising avenue for the development of advanced bioactive materials in orthopedic applications.
Collapse
Affiliation(s)
- Ziji Ling
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Xiao Ge
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Chengyu Jin
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Zesheng Song
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Hang Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Yu Fu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Kai Zheng
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Rongyao Xu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Hongbing Jiang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| |
Collapse
|
9
|
Liang L, Lv W, Cheng G, Gao M, Sun J, Liu N, Zhang H, Guo B, Liu J, Li Y, Xie S, Wang J, Hei J, Zhang J. Impact of celastrol on mitochondrial dynamics and proliferation in glioblastoma. BMC Cancer 2025; 25:412. [PMID: 40050778 PMCID: PMC11887396 DOI: 10.1186/s12885-025-13733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/13/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Targeting mitochondrial dynamics offers promising strategies for treating glioblastoma multiforme. Celastrol has demonstrated therapeutic effects on various cancers, but its impact on mitochondrial dynamics in glioblastoma multiforme remains largely unknown. We studied the effects of Celastrol on mitochondrial dynamics, redox homeostasis, and the proliferation. METHODS Mito-Tracker Green staining was conducted on U251, LN229, and U87-MG cells to evaluate the effects of Celastrol on mitochondrial dynamics. The Western blot analysis quantified the expression levels of mitochondrial dynamin, antioxidant enzymes, and cell cycle-related proteins. JC-1 staining was performed to discern mitochondrial membrane potential. Mitochondrial reactive oxygen species were identified using MitoSOX. The proliferative capacity of cells was assessed using Cell Counting Kit-8 analysis, and colony formation assays. Survival analysis was employed to evaluate the therapeutic efficacy of Celastrol in C57BL/6J mice with glioblastoma. RESULTS Our findings suggest that Celastrol (1 and 1.5 µM) promotes mitochondrial fission by downregulating the expression of mitofusin-1. A decrease in mitochondrial membrane potential at 1 and 1.5 µM indicates that Celastrol impaired mitochondrial function. Concurrently, an increase in mitochondrial reactive oxygen species and impaired upregulation of antioxidant enzymes were noted at 1.5 µM, indicating that Celastrol led to an imbalance in mitochondrial redox homeostasis. At both 1 and 1.5 µM, cell proliferation was inhibited, which may be related to the decreased expression levels of Cyclin-dependent kinase 1 and Cyclin B1. Celastrol extended the survival of GBM-afflicted mice. CONCLUSION Celastrol promotes mitochondrial fission in glioblastoma multiforme cells by reducing mitofusin-1 expression, accompanying mitochondrial dysfunction, lower mitochondrial membrane potential, heightened oxidative stress, and decreased Cyclin-dependent kinase 1 and Cyclin B1 levels. This indicates that Celastrol possesses potential for repurposing as an agent targeting mitochondrial dynamics in glioblastoma multiforme, warranting further investigation.
Collapse
Affiliation(s)
- Lei Liang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Wenying Lv
- Department of Neurosurgery, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Gang Cheng
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Mou Gao
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Junzhao Sun
- Department of Neurosurgery, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Ning Liu
- Department of Neurosurgery, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100010, China
| | - Hanbo Zhang
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Baorui Guo
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiayu Liu
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yanteng Li
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | | | | | - Junru Hei
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Jianning Zhang
- Medical School of Chinese PLA, Beijing, 100853, China.
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
10
|
Tábara LC, Segawa M, Prudent J. Molecular mechanisms of mitochondrial dynamics. Nat Rev Mol Cell Biol 2025; 26:123-146. [PMID: 39420231 DOI: 10.1038/s41580-024-00785-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Mitochondria not only synthesize energy required for cellular functions but are also involved in numerous cellular pathways including apoptosis, calcium homoeostasis, inflammation and immunity. Mitochondria are dynamic organelles that undergo cycles of fission and fusion, and these transitions between fragmented and hyperfused networks ensure mitochondrial function, enabling adaptations to metabolic changes or cellular stress. Defects in mitochondrial morphology have been associated with numerous diseases, highlighting the importance of elucidating the molecular mechanisms regulating mitochondrial morphology. Here, we discuss recent structural insights into the assembly and mechanism of action of the core mitochondrial dynamics proteins, such as the dynamin-related protein 1 (DRP1) that controls division, and the mitofusins (MFN1 and MFN2) and optic atrophy 1 (OPA1) driving membrane fusion. Furthermore, we provide an updated view of the complex interplay between different proteins, lipids and organelles during the processes of mitochondrial membrane fusion and fission. Overall, we aim to present a valuable framework reflecting current perspectives on how mitochondrial membrane remodelling is regulated.
Collapse
Affiliation(s)
- Luis-Carlos Tábara
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Mayuko Segawa
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Ritenis EJ, Padilha CS, Cooke MB, Stathis CG, Philp A, Camera DM. The acute and chronic influence of exercise on mitochondrial dynamics in skeletal muscle. Am J Physiol Endocrinol Metab 2025; 328:E198-E209. [PMID: 39441237 DOI: 10.1152/ajpendo.00311.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Exercise and nutritional modulation are potent stimuli for eliciting increases in mitochondrial mass and function. Collectively, these beneficial adaptations are increasingly recognized to coincide with improvements in skeletal muscle health. Mitochondrial dynamics of fission and fusion are increasingly implicated as having a central role in mediating aspects of key organelle adaptations that are seen with exercise. Exercise-induced mitochondrial adaptation dynamics that have been implicated are 1) increases to mitochondrial turnover, resulting from elevated rates of mitochondrial synthesis (biogenesis) and degradative (mitophagy) processes and 2) morphological changes to the three-dimensional (3-D) tubular network, known as the mitochondrial reticulum, that mitochondria form in skeletal muscle. Notably, mitochondrial fission has also been implicated in coordinating increases in mitophagy, following acute exercise. Furthermore, increased fusion following exercise training promotes increased connectivity of the mitochondrial reticulum and is associated with improved metabolism and mitochondrial function. However, the molecular basis and fashion in which exercise infers beneficial mitochondrial adaptations through mitochondrial dynamics remains to be fully elucidated. This review attempts to highlight recent developments investigating the effects of exercise on mitochondrial dynamics, while attempting to offer a perspective of the methodological refinements and potential variables, such as substrate/glycogen availability, which should be considered going forward.
Collapse
Affiliation(s)
- Elya J Ritenis
- Department of Health Sciences and Biostatistics, Swinburne University of Technology, Melbourne, Victoria, Australia
- Centre for Healthy Ageing, Centenary Institute of Cancer Medicine and Cell Biology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Camila S Padilha
- Centre for Healthy Ageing, Centenary Institute of Cancer Medicine and Cell Biology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- School of Sport, Exercise and Rehabilitation Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Matthew B Cooke
- Sport, Performance, and Nutrition Research Group, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia
| | - Christos G Stathis
- College of Sport, Health and Engineering, Victoria University, Melbourne, Victoria, Australia
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Andrew Philp
- Centre for Healthy Ageing, Centenary Institute of Cancer Medicine and Cell Biology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- School of Sport, Exercise and Rehabilitation Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Donny M Camera
- Department of Health Sciences and Biostatistics, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Wen H, Deng H, Li B, Chen J, Zhu J, Zhang X, Yoshida S, Zhou Y. Mitochondrial diseases: from molecular mechanisms to therapeutic advances. Signal Transduct Target Ther 2025; 10:9. [PMID: 39788934 PMCID: PMC11724432 DOI: 10.1038/s41392-024-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025] Open
Abstract
Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents. These genetic defects can lead to a breakdown of mitochondrial function and metabolism, such as the collapse of oxidative phosphorylation, one of the mitochondria's most critical functions. Mitochondrial diseases, a common group of genetic disorders, are characterized by significant phenotypic and genetic heterogeneity. Clinical symptoms can manifest in various systems and organs throughout the body, with differing degrees and forms of severity. The complexity of the relationship between mitochondria and mitochondrial diseases results in an inadequate understanding of the genotype-phenotype correlation of these diseases, historically making diagnosis and treatment challenging and often leading to unsatisfactory clinical outcomes. However, recent advancements in research and technology have significantly improved our understanding and management of these conditions. Clinical translations of mitochondria-related therapies are actively progressing. This review focuses on the physiological mechanisms of mitochondria, the pathogenesis of mitochondrial diseases, and potential diagnostic and therapeutic applications. Additionally, this review discusses future perspectives on mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Haipeng Wen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hui Deng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junyu Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junye Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
13
|
Xu M, Feng P, Yan J, Li L. Mitochondrial quality control: a pathophysiological mechanism and potential therapeutic target for chronic obstructive pulmonary disease. Front Pharmacol 2025; 15:1474310. [PMID: 39830343 PMCID: PMC11739169 DOI: 10.3389/fphar.2024.1474310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent chronic respiratory disease worldwide. Mitochondrial quality control mechanisms encompass processes such as mitochondrial biogenesis, fusion, fission, and autophagy, which collectively maintain the quantity, morphology, and function of mitochondria, ensuring cellular energy supply and the progression of normal physiological activities. However, in COPD, due to the persistent stimulation of harmful factors such as smoking and air pollution, mitochondrial quality control mechanisms often become deregulated, leading to mitochondrial dysfunction. Mitochondrial dysfunction plays a pivotal role in the pathogenesis of COPD, contributing toinflammatory response, oxidative stress, cellular senescence. However, therapeutic strategies targeting mitochondria remain underexplored. This review highlights recent advances in mitochondrial dysfunction in COPD, focusing on the role of mitochondrial quality control mechanisms and their dysregulation in disease progression. We emphasize the significance of mitochondria in the pathophysiological processes of COPD and explore potential strategies to regulate mitochondrial quality and improve mitochondrial function through mitochondrial interventions, aiming to treat COPD effectively. Additionally, we analyze the limitations and challenges of existing therapeutic strategies, aiming to provide new insights and methods for COPD treatment.
Collapse
Affiliation(s)
- Mengjiao Xu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng Feng
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Ferguson Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jun Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Zhao M, Xie L, Huang W, Li M, Gu X, Zhang W, Wei J, Zhang N. Combined Effects of Cadmium and Lead on Growth Performance and Kidney Function in Broiler Chicken. Biol Trace Elem Res 2025; 203:358-373. [PMID: 38589681 DOI: 10.1007/s12011-024-04173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Cadmium (Cd) and lead (Pb) are heavy metals prevalent in the environment and feed, and they reduce production performance of domestic animals, as well as they result in residue in animal tissues. The kidney is the target tissue for Cd and Pb. And the kidney is crucial for the reabsorption of calcium (Ca), which consequently influences bone strength. However, there are relatively few studies related to the effects of Cd and Pb exposure on performance, bone strength and kidney damage in livestock. The purpose of this experiment was to explore the combined effect of Cd and Pb on growth performance and renal impairment and the possible underlying mechanism. For this, 168 1-day-old Ross 308 broilers were randomly divided into four groups of six birds each, with seven replicates in each group: control group, 50 mg Cd/kg body weight group, 200 mg Pb/kg body weight group and 50 mg Cd/kg body weight + 200 mg Pb/kg body weight group. Feed intake was recorded daily and body weight was recorded weekly. The results show that at the end of the 3rd and 6th week, one broiler from each replicate was randomly selected for sampling. Boilers co-exposed to Cd and Pb for 3 weeks and 6 weeks had significantly decreased average daily feed intake (ADFI) and average daily body weight gain (ADG) than the control group, and the ratio of feed-to-weight gain (F/G) significantly increased after 6 weeks of co-exposure to Cd and Pb. Microscopic picture and ultrastructure analyses of the kidneys showed that Cd and Pb caused kidney damage to broiler chickens, and the damage was more serious in the Cd + Pb group, which was manifested by increased renal tubular epithelial degeneration and increased interstitial stasis points. Dietary exposure to Cd and Pb impaired production performance and induced renal oxidative damage in broilers. The combined effects of Cd and Pb on the kidneys are greater than their effects alone. The PERK-ATF4 pathway mediated endoplasmic reticulum stress participates the renal oxidative damage during chronic Cd and Pb exposure.
Collapse
Affiliation(s)
- Man Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Longqiang Xie
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Wenbin Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Meiling Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Xin Gu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Wei Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei Province, China
| | - Jintao Wei
- Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei Province, China
| | - Niya Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| |
Collapse
|
15
|
Sukhorukov VS, Baranich TI, Egorova AV, Akateva AV, Okulova KM, Ryabova MS, Skvortsova KA, Dmitriev OV, Mudzhiri NM, Voronkov DN, Illarioshkin SN. Mitochondrial Dynamics in Brain Cells During Normal and Pathological Aging. Int J Mol Sci 2024; 25:12855. [PMID: 39684566 DOI: 10.3390/ijms252312855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Mitochondrial dynamics significantly play a major role in the pathogenesis of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. The dysregulation of mitochondrial biogenesis and function, characterized by impaired fission and fusion processes mediated by a number of proteins, in particular, Drp1, Mfn1, Mfn2, Opa1, and PGC-1α, contributes to neuronal vulnerability and degeneration. Insufficient mitophagy and disrupted mitochondrial transport exacerbate oxidative stress and neurotoxicity. Emerging therapeutic strategies that target mitochondrial dynamics, including various pharmacological agents, demonstrate potential for restoring mitochondrial balance and enhancing neuroprotection. This growing body of research underscores the importance of mitochondrial health in developing effective interventions for neurodegenerative conditions. This review highlights well-established links between the disruption of mitochondrial dynamics and the development of neurodegenerative processes. We also discuss different therapeutic strategies that target mitochondrial function in neurons that have been proposed as perspective neuroprotective treatments.
Collapse
Affiliation(s)
- Vladimir S Sukhorukov
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Tatiana I Baranich
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Anna V Egorova
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Anastasia V Akateva
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Kseniia M Okulova
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Maria S Ryabova
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Krisitina A Skvortsova
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Oscar V Dmitriev
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Natalia M Mudzhiri
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Dmitry N Voronkov
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Sergey N Illarioshkin
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| |
Collapse
|
16
|
Versini R, Baaden M, Cavellini L, Cohen MM, Taly A, Fuchs PFJ. Lys716 in the transmembrane domain of yeast mitofusin Fzo1 modulates anchoring and fusion. Structure 2024; 32:1997-2012.e7. [PMID: 39299234 DOI: 10.1016/j.str.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/06/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Outer mitochondrial membrane fusion, a vital cellular process, is mediated by mitofusins. However, the underlying molecular mechanism remains elusive. We have performed extensive multiscale molecular dynamics simulations to predict a model of the transmembrane (TM) domain of the yeast mitofusin Fzo1. Coarse-grained simulations of the two TM domain helices, TM1 and TM2, reveal a stable interface, which is controlled by the charge status of residue Lys716. Atomistic replica-exchange simulations further tune our model, which is confirmed by a remarkable agreement with an independent AlphaFold2 (AF2) prediction of Fzo1 in complex with its fusion partner Ugo1. Furthermore, the presence of the TM domain destabilizes the membrane, even more if Lys716 is charged, which can be an asset for initiating fusion. The functional role of Lys716 was confirmed with yeast experiments, which show that mutating Lys716 to a hydrophobic residue prevents mitochondrial fusion.
Collapse
Affiliation(s)
- Raphaëlle Versini
- Laboratoire de Biochimie Théorique, CNRS, Université Paris Cité, 75005 Paris, France; Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Marc Baaden
- Laboratoire de Biochimie Théorique, CNRS, Université Paris Cité, 75005 Paris, France
| | - Laetitia Cavellini
- Laboratoire de Biologie Cellulaire et Moléculaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, Paris, France
| | - Mickaël M Cohen
- Laboratoire de Biologie Cellulaire et Moléculaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, Paris, France
| | - Antoine Taly
- Laboratoire de Biochimie Théorique, CNRS, Université Paris Cité, 75005 Paris, France.
| | - Patrick F J Fuchs
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France; Université Paris Cité, 75006 Paris, France.
| |
Collapse
|
17
|
Cheng L, Zheng Q, Qiu K, Elmer Ker DF, Chen X, Yin Z. Mitochondrial destabilization in tendinopathy and potential therapeutic strategies. J Orthop Translat 2024; 49:49-61. [PMID: 39430132 PMCID: PMC11488423 DOI: 10.1016/j.jot.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/21/2024] [Accepted: 09/01/2024] [Indexed: 10/22/2024] Open
Abstract
Tendinopathy is a prevalent aging-related disorder characterized by pain, swelling, and impaired function, often resulting from micro-scarring and degeneration caused by overuse or trauma. Current interventions for tendinopathy have limited efficacy, highlighting the need for innovative therapies. Mitochondria play an underappreciated and yet crucial role in tenocytes function, including energy production, redox homeostasis, autophagy, and calcium regulation. Abnormalities in mitochondrial function may lead to cellular senescence. Within this context, this review provides an overview of the physiological functions of mitochondria in tendons and presents current insights into mitochondrial dysfunction in tendinopathy. It also proposes potential therapeutic strategies that focus on targeting mitochondrial health in tenocytes. These strategies include: (1) utilizing reactive oxygen species (ROS) scavengers to mitigate the detrimental effects of aberrant mitochondria, (2) employing mitochondria-protecting agents to reduce the production of dysfunctional mitochondria, and (3) supplementing with exogenous normal mitochondria. In conclusion, mitochondria-targeted therapies hold great promise for restoring mitochondrial function and improving outcomes in patients with tendinopathy. The translational potential of this article: Tendinopathy is challenging to treat effectively due to its poorly understood pathogenesis. This review thoroughly analyzes the role of mitochondria in tenocytes and proposes potential strategies for the mitochondrial treatment of tendinopathy. These findings establish a theoretical basis for future research and the clinical translation of mitochondrial therapy for tendinopathy.
Collapse
Affiliation(s)
- Linxiang Cheng
- Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Qiangqiang Zheng
- Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, And Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Kaijie Qiu
- Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, And Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong
| | - Xiao Chen
- Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, And Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Zi Yin
- Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| |
Collapse
|
18
|
Baduini IR, Castro Vildosola JE, Kavehmoghaddam S, Kiliç F, Nadeem SA, Nizama JJ, Rowand MA, Annapureddy D, Bryan CA, Do LH, Hsiao S, Jonnalagadda SA, Kasturi A, Mandava N, Muppavaram S, Ramirez B, Siner A, Suoto CN, Tamajal N, Scoma ER, Da Costa RT, Solesio ME. Type 2 diabetes mellitus and neurodegenerative disorders: The mitochondrial connection. Pharmacol Res 2024; 209:107439. [PMID: 39357690 DOI: 10.1016/j.phrs.2024.107439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
The incidence of type 2 diabetes mellitus (T2DM) has increased in our society in recent decades as the population ages, and this trend is not expected to revert. This is the same for the incidence of the main neurodegenerative disorders, including the two most common ones, which are, Alzheimer's and Parkinson's disease. Currently, no pharmacological therapies have been developed to revert or cure any of these pathologies. Interestingly, in recent years, an increased number of studies have shown a high co-morbidity between T2DM and neurodegeneration, as well as some common molecular pathways that are affected in both types of diseases. For example, while the etiopathology of T2DM and neurodegenerative disorders is highly complex, mitochondrial dysfunction has been broadly described in the early steps of both diseases; accordingly, this dysfunction has emerged as a plausible molecular link between them. In fact, the prominent role played by mitochondria in the mammalian metabolism of glucose places the physiology of the organelle in a central position to regulate many cellular processes that are affected in both T2DM and neurodegenerative disorders. In this collaborative review, we critically describe the relationship between T2DM and neurodegeneration; making a special emphasis on the mitochondrial mechanisms that could link these diseases. A better understanding of the role of mitochondria on the etiopathology of T2DM and neurodegeneration could pave the way for the development of new pharmacological therapies focused on the regulation of the physiology of the organelle. These therapies could, ultimately, contribute to increase healthspan.
Collapse
Affiliation(s)
- Isabella R Baduini
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Jose E Castro Vildosola
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Sheida Kavehmoghaddam
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Fatmanur Kiliç
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - S Aiman Nadeem
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Juan J Nizama
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Marietta A Rowand
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Dileep Annapureddy
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Chris-Ann Bryan
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Lisa H Do
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Samuel Hsiao
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Sai A Jonnalagadda
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Akhila Kasturi
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Nikhila Mandava
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Sachin Muppavaram
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Bryan Ramirez
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Aleece Siner
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Christina N Suoto
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Nasira Tamajal
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Ernest R Scoma
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Renata T Da Costa
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Maria E Solesio
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA.
| |
Collapse
|
19
|
Wang F, Huynh PM, An YA. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Compr Physiol 2024; 14:5581-5640. [PMID: 39382163 DOI: 10.1002/cphy.c230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
For a long time, white adipocytes were thought to function as lipid storages due to the sizeable unilocular lipid droplet that occupies most of their space. However, recent discoveries have highlighted the critical role of white adipocytes in maintaining energy homeostasis and contributing to obesity and related metabolic diseases. These physiological and pathological functions depend heavily on the mitochondria that reside in white adipocytes. This article aims to provide an up-to-date overview of the recent research on the function and dysfunction of white adipocyte mitochondria. After briefly summarizing the fundamental aspects of mitochondrial biology, the article describes the protective role of functional mitochondria in white adipocyte and white adipose tissue health and various roles of dysfunctional mitochondria in unhealthy white adipocytes and obesity. Finally, the article emphasizes the importance of enhancing mitochondrial quantity and quality as a therapeutic avenue to correct mitochondrial dysfunction, promote white adipocyte browning, and ultimately improve obesity and its associated metabolic diseases. © 2024 American Physiological Society. Compr Physiol 14:5581-5640, 2024.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Phu M Huynh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
20
|
Zhang Y, Ma L, Wang Z, Gao C, Yang L, Li M, Tang X, Yuan H, Pang D, Ouyang H. Mfn2 R364W, Mfn2 G176S, and Mfn2 H165R mutations drive Charcot-Marie-Tooth type 2A disease by inducing apoptosis and mitochondrial oxidative phosphorylation damage. Int J Biol Macromol 2024; 278:134673. [PMID: 39142491 DOI: 10.1016/j.ijbiomac.2024.134673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Charcot-Marie-Tooth type 2A (CMT2A) is a single-gene motor sensory neuropathy caused by Mfn2 mutation. It is generally believed that CMT2A involves mitochondrial fusion disruption. However, how Mfn2 mutation mediates the mitochondrial membrane fusion loss and its further pathogenic mechanisms remain unclear. Here, in vivo and in vitro mouse models harboring the Mfn2R364W, Mfn2G176S and Mfn2H165R mutations were constructed. Mitochondrial membrane fusion and fission proteins analysis showed that Mfn2R364W, Mfn2G176S, and Mfn2H165R/+ mutations maintain the expression of Mfn2, but promote Drp1 upregulation and Opa1 hydrolytic cleavage. In Mfn2H165R/H165R mutation, Mfn2, Drp1, and Opa1 all play a role in inducing mitochondrial fragmentation, and the mitochondrial aggregation is affected by Mfn2 loss. Further research into the pathogenesis of CMT2A showed these three mutations all induce mitochondria-mediated apoptosis, and mitochondrial oxidative phosphorylation damage. Overall, loss of overall fusion activity affects mitochondrial DNA (mtDNA) stability and causes mitochondrial loss and dysfunction, ultimately leading to CMT2A disease. Interestingly, the differences in the pathogenesis of CMT2A between Mfn2R364W, Mfn2G176S, Mfn2H165R/+ and Mfn2H165R/H165R mutations, including the distribution of Mfn2 and mitochondria, the expression of mitochondrial outer membrane-associated proteins (Bax, VDAC1 and AIF), and the enzyme activity of mitochondrial complex I, are related to the expression of Mfn2.
Collapse
Affiliation(s)
- Yuanzhu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China; Central Laboratory, People's Hospital of Ningxia Hui Autonomous Region, 750002, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Lerong Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China
| | - Ziru Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China
| | - Chuang Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China; Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Lin Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China
| | - Mengjing Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China
| | - Xiaochun Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China; Chongqing Research Institute, Jilin University, Chongqing, China
| | - Hongming Yuan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China.
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China; Chongqing Research Institute, Jilin University, Chongqing, China.
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China; Chongqing Research Institute, Jilin University, Chongqing, China.
| |
Collapse
|
21
|
Papageorgiou MP, Filiou MD. Mitochondrial dynamics and psychiatric disorders: The missing link. Neurosci Biobehav Rev 2024; 165:105837. [PMID: 39089419 DOI: 10.1016/j.neubiorev.2024.105837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Elucidating the molecular mechanisms of psychopathology is crucial for optimized diagnosis and treatment. Accumulating data have underlined how mitochondrial bioenergetics affect major psychiatric disorders. However, how mitochondrial dynamics, a term addressing mitochondria quality control, including mitochondrial fission, fusion, biogenesis and mitophagy, is implicated in psychopathologies remains elusive. In this review, we summarize the existing literature on mitochondrial dynamics perturbations in psychiatric disorders/neuropsychiatric phenotypes. We include preclinical/clinical literature on mitochondrial dynamics recalibrations in anxiety, depression, post-traumatic stress disorder (PTSD), bipolar disorder and schizophrenia. We discuss alterations in mitochondrial network, morphology and shape, molecular markers of the mitochondrial dynamics machinery and mitochondrial DNA copy number (mtDNAcn) in animal models and human cohorts in brain and peripheral material. By looking for common altered mitochondrial dynamics patterns across diagnoses/phenotypes, we highlight mitophagy and biogenesis as regulators of anxiety and depression pathophysiology, respectively, as well as the fusion mediator dynamin-like 120 kDa protein (Opa1) as a molecular hub contributing to psychopathology. Finally, we comment on limitations and future directions in this novel neuropsychiatry field.
Collapse
Affiliation(s)
- Maria P Papageorgiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Greece; Biomedical Research Institute, Foundation for Research and Technology-Hellas, Ioannina, Greece.
| | - Michaela D Filiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Greece; Biomedical Research Institute, Foundation for Research and Technology-Hellas, Ioannina, Greece; Institute of Biosciences, University of Ioannina, Greece.
| |
Collapse
|
22
|
Marino Y, Inferrera F, D'Amico R, Impellizzeri D, Cordaro M, Siracusa R, Gugliandolo E, Fusco R, Cuzzocrea S, Di Paola R. Role of mitochondrial dysfunction and biogenesis in fibromyalgia syndrome: Molecular mechanism in central nervous system. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167301. [PMID: 38878832 DOI: 10.1016/j.bbadis.2024.167301] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 08/18/2024]
Abstract
A critical role for mitochondrial dysfunction has been shown in the pathogenesis of fibromyalgia. It is a chronic pain syndrome characterized by neuroinflammation and impaired oxidative balance in the central nervous system. Boswellia serrata (BS), a natural polyphenol, is a well-known able to influence the mitochondrial metabolism. The objective of this study was to evaluate the mitochondrial dysfunction and biogenesis in fibromyalgia and their modulation by BS. To induce the model reserpine (1 mg/Kg) was subcutaneously administered for three consecutive days and BS (100 mg/Kg) was given orally for twenty-one days. BS reduced pain like behaviors in reserpine-injected rats and the astrocytes activation in the dorsal horn of the spinal cord and prefrontal cortex that are recognized as key regions associated with the neuropathic pain. Vulnerability to neuroinflammation and impaired neuronal plasticity have been described as consequences of mitochondrial dysfunction. BS administration increased PGC-1α expression in the nucleus of spinal cord and brain tissues, promoting the expression of regulatory genes for mitochondrial biogenesis (NRF-1, Tfam and UCP2) and cellular antioxidant defence mechanisms (catalase, SOD2 and Prdx 3). According with these data BS reduced lipid peroxidation and the GSSG/GSH ratio and increased SOD activity in the same tissues. Our results also showed that BS administration mitigates cytochrome-c leakage by promoting mitochondrial function and supported the movement of PGC-1α protein into the nucleus restoring the quality control of mitochondria. Additionally, BS reduced Drp1 and Fis1, preventing both mitochondrial fission and cell death, and increased the expression of Mfn2 protein, facilitating mitochondrial fusion. Overall, our results showed important mitochondrial dysfunction in central nervous system in fibromyalgia syndrome and the role of BS in restoring mitochondrial dynamics.
Collapse
Affiliation(s)
- Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Francesca Inferrera
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy.
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy.
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy.
| |
Collapse
|
23
|
Choi DH, Lee SM, Park BN, Lee MH, Yang DE, Son YK, Kim SE, An WS. Omega-3 Fatty Acids Modify Drp1 Expression and Activate the PINK1-Dependent Mitophagy Pathway in the Kidney and Heart of Adenine-Induced Uremic Rats. Biomedicines 2024; 12:2107. [PMID: 39335620 PMCID: PMC11429207 DOI: 10.3390/biomedicines12092107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Mitochondrial homeostasis is controlled by biogenesis, dynamics, and mitophagy. Mitochondrial dysfunction plays a central role in cardiovascular and renal disease and omega-3 fatty acids (FAs) are beneficial for cardiovascular disease. We investigated whether omega-3 fatty acids (FAs) regulate mitochondrial biogenesis, dynamics, and mitophagy in the kidney and heart of adenine-induced uremic rats. Eighteen male Sprague Dawley rats were divided into normal control, adenine control, and adenine with omega-3 FA groups. Using Western blot analysis, the kidney and heart expression of mitochondrial homeostasis-related molecules, including peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), dynamin-related protein 1 (Drp1), and phosphatase and tensin homolog-induced putative kinase 1 (PINK1) were investigated. Compared to normal, serum creatinine and heart weight/body weight in adenine control were increased and slightly improved in the omega-3 FA group. Compared to the normal controls, the expression of PGC-1α and PINK1 in the kidney and heart of the adenine group was downregulated, which was reversed after omega-3 FA supplementation. Drp1 was upregulated in the kidney but downregulated in the heart in the adenine group. Drp1 expression in the heart recovered in the omega-3 FA group. Mitochondrial DNA (mtDNA) was decreased in the kidney and heart of the adenine control group but the mtDNA of the heart was recovered in the omega-3 FA group. Drp1, which is related to mitochondrial fission, may function oppositely in the uremic kidney and heart. Omega-3 FAs may be beneficial for mitochondrial homeostasis by activating mitochondrial biogenesis and PINK1-dependent mitophagy in the kidney and heart of uremic rats.
Collapse
Affiliation(s)
- Dong Ho Choi
- Department of Internal Medicine, Good Moon Hwa Hospital, Busan 48735, Republic of Korea
| | - Su Mi Lee
- Department of Internal Medicine, Dong-A University, Busan 49201, Republic of Korea; (S.M.L.); (B.N.P.); (D.E.Y.); (Y.K.S.); (S.E.K.)
| | - Bin Na Park
- Department of Internal Medicine, Dong-A University, Busan 49201, Republic of Korea; (S.M.L.); (B.N.P.); (D.E.Y.); (Y.K.S.); (S.E.K.)
| | - Mi Hwa Lee
- Department of Anatomy and Cell Biology, Dong-A University, Busan 49201, Republic of Korea;
| | - Dong Eun Yang
- Department of Internal Medicine, Dong-A University, Busan 49201, Republic of Korea; (S.M.L.); (B.N.P.); (D.E.Y.); (Y.K.S.); (S.E.K.)
| | - Young Ki Son
- Department of Internal Medicine, Dong-A University, Busan 49201, Republic of Korea; (S.M.L.); (B.N.P.); (D.E.Y.); (Y.K.S.); (S.E.K.)
| | - Seong Eun Kim
- Department of Internal Medicine, Dong-A University, Busan 49201, Republic of Korea; (S.M.L.); (B.N.P.); (D.E.Y.); (Y.K.S.); (S.E.K.)
| | - Won Suk An
- Department of Internal Medicine, Dong-A University, Busan 49201, Republic of Korea; (S.M.L.); (B.N.P.); (D.E.Y.); (Y.K.S.); (S.E.K.)
- Medical Science Research Center, Dong-A University, Busan 49201, Republic of Korea
| |
Collapse
|
24
|
Lacombe A, Scorrano L. The interplay between mitochondrial dynamics and autophagy: From a key homeostatic mechanism to a driver of pathology. Semin Cell Dev Biol 2024; 161-162:1-19. [PMID: 38430721 DOI: 10.1016/j.semcdb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
The complex relationship between mitochondrial dynamics and autophagy illustrates how two cellular housekeeping processes are intimately linked, illuminating fundamental principles of cellular homeostasis and shedding light on disparate pathological conditions including several neurodegenerative disorders. Here we review the basic tenets of mitochondrial dynamics i.e., the concerted balance between fusion and fission of the organelle, and its interplay with macroautophagy and selective mitochondrial autophagy, also dubbed mitophagy, in the maintenance of mitochondrial quality control and ultimately in cell viability. We illustrate how conditions of altered mitochondrial dynamics reverberate on autophagy and vice versa. Finally, we illustrate how altered interplay between these two key cellular processes participates in the pathogenesis of human disorders affecting multiple organs and systems.
Collapse
Affiliation(s)
- Alice Lacombe
- Dept. of Biology, University of Padova, Padova, Italy
| | - Luca Scorrano
- Dept. of Biology, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
25
|
Li Z, Liang S, Ke L, Wang M, Gao K, Li D, Xu Z, Li N, Zhang P, Cheng W. Cell life-or-death events in osteoporosis: All roads lead to mitochondrial dynamics. Pharmacol Res 2024; 208:107383. [PMID: 39214266 DOI: 10.1016/j.phrs.2024.107383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Mitochondria exhibit heterogeneous shapes and networks within and among cell types and tissues, also in normal or osteoporotic bone tissues with complex cell types. This dynamic characteristic is determined by the high plasticity provided by mitochondrial dynamics and is stemmed from responding to the survival and functional requirements of various bone cells in a specific microenvironments. In contrast, mitochondrial dysfunction, induced by dysregulation of mitochondrial dynamics, may act as a trigger of cell death signals, including common apoptosis and other forms of programmed cell death (PCD). These PCD processes consisting of tightly structured cascade gene expression events, can further influence the bone remodeling by facilitating the death of various bone cells. Mitochondrial dynamics, therefore, drive the bone cells to stand at the crossroads of life and death by integrating external signals and altering metabolism, shape, and signal-response properties of mitochondria. This implies that targeting mitochondrial dynamics displays significant potential in treatment of osteoporosis. Considerable effort has been made in osteoporosis to emphasize the parallel roles of mitochondria in regulating energy metabolism, calcium signal transduction, oxidative stress, inflammation, and cell death. However, the emerging field of mitochondrial dynamics-related PCD is not well understood. Herein, to bridge the gap, we outline the latest knowledge on mitochondrial dynamics regulating bone cell life or death during normal bone remodeling and osteoporosis.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Songlin Liang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Mengjie Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050011, China
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518000, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518000, China; Shandong Zhongke Advanced Technology Co., Ltd., Jinan, 250300, China.
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
26
|
Peñalva DA, Monnappa AK, Natale P, López-Montero I. Mfn2-dependent fusion pathway of PE-enriched micron-sized vesicles. Proc Natl Acad Sci U S A 2024; 121:e2313609121. [PMID: 39012824 PMCID: PMC11287154 DOI: 10.1073/pnas.2313609121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Mitofusins (Mfn1 and Mfn2) are the mitochondrial outer-membrane fusion proteins in mammals and belong to the dynamin superfamily of multidomain GTPases. Recent structural studies of truncated variants lacking alpha helical transmembrane domains suggested that Mfns dimerize to promote the approximation and the fusion of the mitochondrial outer membranes upon the hydrolysis of guanine 5'-triphosphate disodium salt (GTP). However, next to the presence of GTP, the fusion activity seems to require multiple regulatory factors that control the dynamics and kinetics of mitochondrial fusion through the formation of Mfn1-Mfn2 heterodimers. Here, we purified and reconstituted the full-length murine Mfn2 protein into giant unilamellar vesicles (GUVs) with different lipid compositions. The incubation with GTP resulted in the fusion of Mfn2-GUVs. High-speed video-microscopy showed that the Mfn2-dependent membrane fusion pathway progressed through a zipper mechanism where the formation and growth of an adhesion patch eventually led to the formation of a membrane opening at the rim of the septum. The presence of physiological concentration (up to 30 mol%) of dioleoyl-phosphatidylethanolamine (DOPE) was shown to be a requisite to observe GTP-induced Mfn2-dependent fusion. Our observations show that Mfn2 alone can promote the fusion of micron-sized DOPE-enriched vesicles without the requirement of regulatory cofactors, such as membrane curvature, or the assistance of other proteins.
Collapse
Affiliation(s)
- Daniel A. Peñalva
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Sur, Bahía BlancaB8000, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía BlancaB8000, Argentina
| | - Ajay K. Monnappa
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid28041, Spain
| | - Paolo Natale
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid28041, Spain
- Departamento Química Física, Universidad Complutense de Madrid, Madrid28041, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid28041, Spain
| | - Iván López-Montero
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid28041, Spain
- Departamento Química Física, Universidad Complutense de Madrid, Madrid28041, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid28041, Spain
| |
Collapse
|
27
|
Kondadi AK, Reichert AS. Mitochondrial Dynamics at Different Levels: From Cristae Dynamics to Interorganellar Cross Talk. Annu Rev Biophys 2024; 53:147-168. [PMID: 38166176 DOI: 10.1146/annurev-biophys-030822-020736] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Mitochondria are essential organelles performing important cellular functions ranging from bioenergetics and metabolism to apoptotic signaling and immune responses. They are highly dynamic at different structural and functional levels. Mitochondria have been shown to constantly undergo fusion and fission processes and dynamically interact with other organelles such as the endoplasmic reticulum, peroxisomes, and lipid droplets. The field of mitochondrial dynamics has evolved hand in hand with technological achievements including advanced fluorescence super-resolution nanoscopy. Dynamic remodeling of the cristae membrane within individual mitochondria, discovered very recently, opens up a further exciting layer of mitochondrial dynamics. In this review, we discuss mitochondrial dynamics at the following levels: (a) within an individual mitochondrion, (b) among mitochondria, and (c) between mitochondria and other organelles. Although the three tiers of mitochondrial dynamics have in the past been classified in a hierarchical manner, they are functionally connected and must act in a coordinated manner to maintain cellular functions and thus prevent various human diseases.
Collapse
Affiliation(s)
- Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; ,
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; ,
| |
Collapse
|
28
|
Caggiano EG, Taniguchi CM. UCP2 and pancreatic cancer: conscious uncoupling for therapeutic effect. Cancer Metastasis Rev 2024; 43:777-794. [PMID: 38194152 PMCID: PMC11156755 DOI: 10.1007/s10555-023-10157-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/13/2023] [Indexed: 01/10/2024]
Abstract
Pancreatic cancer has an exaggerated dependence on mitochondrial metabolism, but methods to specifically target the mitochondria without off target effects in normal tissues that rely on these organelles is a significant challenge. The mitochondrial uncoupling protein 2 (UCP2) has potential as a cancer-specific drug target, and thus, we will review the known biology of UCP2 and discuss its potential role in the pathobiology and future therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Emily G Caggiano
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Cullen M Taniguchi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
29
|
Song Y, Ren S, Chen X, Li X, Chen L, Zhao S, Zhang Y, Shen X, Chen Y. Inhibition of MFN1 restores tamoxifen-induced apoptosis in resistant cells by disrupting aberrant mitochondrial fusion dynamics. Cancer Lett 2024; 590:216847. [PMID: 38583647 DOI: 10.1016/j.canlet.2024.216847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/18/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
Tamoxifen (TAM) resistance presents a major clinical obstacle in the management of estrogen-sensitive breast cancer, highlighting the need to understand the underlying mechanisms and potential therapeutic approaches. We showed that dysregulated mitochondrial dynamics were involved in TAM resistance by protecting against mitochondrial apoptosis. The dysregulated mitochondrial dynamics were associated with increased mitochondrial fusion and decreased fission, thus preventing the release of mitochondrial cytochrome c to the cytoplasm following TAM treatment. Dynamin-related GTPase protein mitofusin 1 (MFN1), which promotes fusion, was upregulated in TAM-resistant cells, and high MFN1 expression indicated a poor prognosis in TAM-treated patients. Mitochondrial translocation of MFN1 and interaction between MFN1 and mitofusin 2 (MFN2) were enhanced to promote mitochondrial outer membrane fusion. The interaction of MFN1 and cristae-shaping protein optic atrophy 1 (OPA1) and OPA1 oligomerization were reduced due to augmented OPA1 proteolytic cleavage, and their apoptosis-promoting function was reduced due to cristae remodeling. Furthermore, the interaction of MFN1 and BAK were increased, which restrained BAK activation following TAM treatment. Knockdown or pharmacological inhibition of MFN1 blocked mitochondrial fusion, restored BAK oligomerization and cytochrome c release, and amplified activation of caspase-3/9, thus sensitizing resistant cells to apoptosis and facilitating the therapeutic effects of TAM both in vivo and in vitro. Conversely, overexpression of MFN1 alleviated TAM-induced mitochondrial apoptosis and promoted TAM resistance in sensitive cells. These results revealed that dysregulated mitochondrial dynamics contributes to the development of TAM resistance, suggesting that targeting MFN1-mediated mitochondrial fusion is a promising strategy to circumvent TAM resistance.
Collapse
Affiliation(s)
- Yuxuan Song
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China
| | - Shuang Ren
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China
| | - Xingmei Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China
| | - Xuhong Li
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China
| | - Lin Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China
| | - Shijie Zhao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China
| | - Yue Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China.
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China.
| | - Yan Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China.
| |
Collapse
|
30
|
Du X, Duan M, Kan S, Yang Y, Xu S, Wei J, Li J, Chen H, Zhou X, Xie J. TGF-β3 mediates mitochondrial dynamics through the p-Smad3/AMPK pathway. Cell Prolif 2024; 57:e13579. [PMID: 38012096 PMCID: PMC11056712 DOI: 10.1111/cpr.13579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
It is well recognized that mitochondrial dynamics plays a vital role in cartilage physiology. Any perturbation in mitochondrial dynamics could cause disorders in cartilage metabolism and even lead to the occurrence of cartilage diseases such as osteoarthritis (OA). TGF-β3, as an important growth factor that appears in the joints of OA disease, shows its great potential in chondrocyte growth and metabolism. Nevertheless, the role of TGF-β3 on mitochondrial dynamics is still not well understood. Here we aimed to investigate the effect of TGF-β3 on mitochondrial dynamics of chondrocytes and reveal its underlying bio-mechanism. By using transmission electron microscopy (TEM) for the number and morphology of mitochondria, western blotting for the protein expressions, immunofluorescence for the cytoplasmic distributions of proteins, and RNA sequencing for the transcriptome changes related to mitochondrial dynamics. We found that TGF-β3 could increase the number of mitochondria in chondrocytes. TGF-β3-enhanced mitochondrial number was via promoting the mitochondrial fission. The mitochondrial fission induced by TGF-β3 was mediated by AMPK signaling. TGF-β3 activated canonical p-Smad3 signaling and resultantly mediated AMPK-induced mitochondrial fission. Taken together, these results elucidate an understanding of the role of TGF-β3 on mitochondrial dynamics in chondrocytes and provide potential cues for therapeutic strategies in cartilage injury and OA disease in terms of energy metabolism.
Collapse
Affiliation(s)
- Xinmei Du
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Shiyi Kan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yueyi Yang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Siqun Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Jieya Wei
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Jiazhou Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Hao Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Jing Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| |
Collapse
|
31
|
Zhang W, Li M, Ye X, Jiang M, Wu X, Tang Z, Hu L, Zhang H, Li Y, Pan J. Disturbance of mitochondrial dynamics in myocardium of broilers with pulmonary hypertension syndrome. Br Poult Sci 2024; 65:154-164. [PMID: 38380624 DOI: 10.1080/00071668.2024.2308277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/05/2023] [Indexed: 02/22/2024]
Abstract
1. The following study investigated the relationship between pulmonary hypertension syndrome (PHS) and mitochondrial dynamics in broiler cardiomyocytes.2. An animal model for PHS was established by injecting broiler chickens with CM-32 cellulose particles. Broiler myocardial cells were cultured under hypoxic conditions to establish an in vitro model. The ascites heart index, histomorphology, mitochondrial ultrastructure, and mitochondrial dynamic-related gene and protein expression were evaluated.3. The myocardial fibres from PHS broilers had wider spaces and were wavy and twisted and the number of mitochondria increased. Compared with the control group, the gene and protein expression levels were decreased for Opa1, Mfn1, and Mfn2 in the myocardium of PHS broilers. The gene and protein expression was significantly increased for Drp1 and Mff.4. This study showed that PHS in broilers may cause myocardial mitochondrial dysfunction, specifically by diminishing mitochondrial fusion and enhancing fission, causing disturbances in the mitochondrial dynamics of the heart.
Collapse
Affiliation(s)
- W Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, P.R. China
| | - M Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, P.R. China
| | - X Ye
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, P.R. China
| | - M Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, P.R. China
| | - X Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, P.R. China
| | - Z Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, P.R. China
| | - L Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, P.R. China
| | - H Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, P.R. China
| | - Y Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, P.R. China
| | - J Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
32
|
Alghamdi A. A detailed review of pharmacology of MFN1 (mitofusion-1)-mediated mitochondrial dynamics: Implications for cellular health and diseases. Saudi Pharm J 2024; 32:102012. [PMID: 38463181 PMCID: PMC10924208 DOI: 10.1016/j.jsps.2024.102012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
The mitochondria are responsible for the production of cellular ATP, the regulation of cytosolic calcium levels, and the organization of numerous apoptotic proteins through the release of cofactors necessary for the activation of caspases. This level of functional adaptability can only be attained by sophisticated structural alignment. The morphology of the mitochondria does not remain unchanged throughout time; rather, it undergoes change as a result of processes known as fusion and fission. Fzo in flies, Fzo1 in yeast, and mitofusins in mammals are responsible for managing the outer mitochondrial membrane fusion process, whereas Mgm1 in yeast and optic atrophy 1 in mammals are responsible for managing the inner mitochondrial membrane fusion process. The fusion process is composed of two phases. MFN1, a GTPase that is located on the outer membrane of the mitochondria, is involved in the process of linking nearby mitochondria, maintaining the potential of the mitochondrial membrane, and apoptosis. This article offers specific information regarding the functions of MFN1 in a variety of cells and organs found in living creatures. According to the findings of the literature review, MFN1 plays an important part in a number of diseases and organ systems; nevertheless, the protein's function in other disease models and cell types has to be investigated in the near future so that it can be chosen as a promising marker for the therapeutic and diagnostic potentials it possesses. Overall, the major findings of this review highlight the pivotal role of mitofusin (MFN1) in regulating mitochondrial dynamics and its implications across various diseases, including neurodegenerative disorders, cardiovascular diseases, and metabolic syndromes. Our review identifies novel therapeutic targets within the MFN1 signaling pathways and underscores the potential of MFN1 modulation as a promising strategy for treating mitochondrial-related diseases. Additionally, the review calls for further research into MFN1's molecular mechanisms to unlock new avenues for clinical interventions, emphasizing the need for targeted therapies that address MFN1 dysfunction.
Collapse
Affiliation(s)
- Adel Alghamdi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Baha University, P.O. Box 1988 Al-Baha, Saudi Arabia
| |
Collapse
|
33
|
Song YF, Wang LJ, Luo Z, Hogstrand C, Lai XH, Zheng FF. Moderate replacement of fish oil with palmitic acid-stimulated mitochondrial fusion promotes β-oxidation by Mfn2 interacting with Cpt1α via its GTPase-domain. J Nutr Biochem 2024; 126:109559. [PMID: 38158094 DOI: 10.1016/j.jnutbio.2023.109559] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The mitochondrial matrix serves as the principal locale for the process of fatty acids (FAs) β-oxidation. Preserving the integrity and homeostasis of mitochondria, which is accomplished through ongoing fusion and fission events, is of paramount importance for the effective execution of FAs β-oxidation. There has been no investigation to date into whether and how mitochondrial fusion directly enhances FAs β-oxidation. The underlying mechanism of a balanced FAs ratio favoring hepatic lipid homeostasis remains largely unclear. To address such gaps, the present study was conducted to investigate the mechanism through which a balanced dietary FAs ratio enhances hepatic FAs β-oxidation. The investigation specifically focused on the involvement of Mfn2-mediated mitochondrial fusion in the regulation of Cpt1α in this process. In the present study, the yellow catfish (Pelteobagrus fulvidraco), recognized as a model organism for lipid metabolism, were subjected to eight weeks of in vivo feeding with six distinct diets featuring varying FAs ratios. Additionally, in vitro experiments were conducted to inhibit Mfn2-mediated mitochondrial fusion in isolated hepatocytes, achieved through the transfection of hepatocytes with si-mfn2. Further, deletion mutants for both Mfn2 and Cpt1α were constructed to elucidate the critical regions responsible for the interactions between these two proteins within the system. The key findings were: (1) Substituting palmitic acid (PA) for fish oil (FO) proved to be enhanced in reducing hepatic lipid accumulation. This beneficial effect was primarily attributed to the activation of mitochondrial FAs β-oxidation; (2) The balanced replacement of PA stimulated Mfn2-mediated mitochondrial fusion by diminishing Mfn2 ubiquitination, thereby enhancing its protein retention within the mitochondria; (3) Mfn2-mediated mitochondrial fusion promoted FAs β-oxidation through direct interaction between Mfn2 and Cpt1α via its GTPase-domains, which is essential for the maintenance of Cpt1 activity. Notably, the present research results unveil a previously undisclosed mechanism wherein Mfn2-mediated mitochondrial fusion promotes FAs β-oxidation by directly augmenting the capacity for FA transport into mitochondria (MT), in addition to expanding the mitochondrial matrix. This underscores the pivotal role of mitochondrial fusion in preserving hepatic lipid homeostasis. The present results further confirm that these mechanisms are evolutionarily conserved, extending their relevance from fish to mammals.
Collapse
Affiliation(s)
- Yu-Feng Song
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China.
| | - Ling-Jiao Wang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London, UK
| | - Xiao-Hong Lai
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Fei-Fei Zheng
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
34
|
Pokharel MD, Garcia-Flores A, Marciano D, Franco MC, Fineman JR, Aggarwal S, Wang T, Black SM. Mitochondrial network dynamics in pulmonary disease: Bridging the gap between inflammation, oxidative stress, and bioenergetics. Redox Biol 2024; 70:103049. [PMID: 38295575 PMCID: PMC10844980 DOI: 10.1016/j.redox.2024.103049] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
Once thought of in terms of bioenergetics, mitochondria are now widely accepted as both the orchestrator of cellular health and the gatekeeper of cell death. The pulmonary disease field has performed extensive efforts to explore the role of mitochondria in regulating inflammation, cellular metabolism, apoptosis, and oxidative stress. However, a critical component of these processes needs to be more studied: mitochondrial network dynamics. Mitochondria morphologically change in response to their environment to regulate these processes through fusion, fission, and mitophagy. This allows mitochondria to adapt their function to respond to cellular requirements, a critical component in maintaining cellular homeostasis. For that reason, mitochondrial network dynamics can be considered a bridge that brings multiple cellular processes together, revealing a potential pathway for therapeutic intervention. In this review, we discuss the critical modulators of mitochondrial dynamics and how they are affected in pulmonary diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), acute lung injury (ALI), and pulmonary arterial hypertension (PAH). A dysregulated mitochondrial network plays a crucial role in lung disease pathobiology, and aberrant fission/fusion/mitophagy pathways are druggable processes that warrant further exploration. Thus, we also discuss the candidates for lung disease therapeutics that regulate mitochondrial network dynamics.
Collapse
Affiliation(s)
- Marissa D Pokharel
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Alejandro Garcia-Flores
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA
| | - David Marciano
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Maria C Franco
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, UC San Francisco, San Francisco, CA, 94143, USA
| | - Saurabh Aggarwal
- Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Stephen M Black
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
35
|
Kim M, Paik JH, Lee H, Kim MJ, Eum SM, Kim SY, Choi S, Park HY, Jeong HG, Jeong TS. Ancistrocladus tectorius Extract Inhibits Obesity by Promoting Thermogenesis and Mitochondrial Dynamics in High-Fat Diet-Fed Mice. Int J Mol Sci 2024; 25:3743. [PMID: 38612554 PMCID: PMC11011498 DOI: 10.3390/ijms25073743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Root extracts of Ancistrocladus tectorius (AT), a shrub native to China, have been shown to have antiviral and antitumor activities, but the anti-obesity effects of AT aerial parts, mainly the leaves and stems, have not been investigated. This study is the first to investigate the anti-obesity effects and molecular mechanism of AT 70% ethanol extract in 3T3-L1 adipocytes and high-fat diet (HFD)-fed C57BL/6J mice. Treatment with AT extract inhibited lipid accumulation in 3T3-L1 cells and decreased the expression of adipogenesis-related genes. AT extract also upregulated the mRNA expression of genes related to mitochondrial dynamics in 3T3-L1 adipocytes. AT administration for 12 weeks reduced body weight and organ weights, including liver, pancreas, and white and brown adipose tissue, and improved plasma profiles such as glucose, insulin, homeostasis model assessment of insulin resistance, triglyceride (TG), and total cholesterol in HFD-fed mice. AT extract reduced HFD-induced hepatic steatosis with levels of liver TG and lipogenesis-related genes. AT extract upregulated thermogenesis-related genes such as Cidea, Pgc1α, Ucp1, Prdm16, Adrb1, and Adrb3 and mitochondrial dynamics-related genes such as Mff, Opa1, and Mfn2 in brown adipose tissue (BAT). Therefore, AT extract effectively reduced obesity by promoting thermogenesis and the mitochondrial dynamics of BAT in HFD-fed mice.
Collapse
Affiliation(s)
- Minju Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (M.K.); (H.L.); (M.J.K.); (H.-Y.P.)
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin Hyub Paik
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (J.H.P.); (S.M.E.); (S.Y.K.); (S.C.)
| | - Hwa Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (M.K.); (H.L.); (M.J.K.); (H.-Y.P.)
| | - Min Ji Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (M.K.); (H.L.); (M.J.K.); (H.-Y.P.)
| | - Sang Mi Eum
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (J.H.P.); (S.M.E.); (S.Y.K.); (S.C.)
| | - Soo Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (J.H.P.); (S.M.E.); (S.Y.K.); (S.C.)
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (J.H.P.); (S.M.E.); (S.Y.K.); (S.C.)
| | - Ho-Yong Park
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (M.K.); (H.L.); (M.J.K.); (H.-Y.P.)
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tae-Sook Jeong
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (M.K.); (H.L.); (M.J.K.); (H.-Y.P.)
| |
Collapse
|
36
|
Liu Y, Huo JL, Ren K, Pan S, Liu H, Zheng Y, Chen J, Qiao Y, Yang Y, Feng Q. Mitochondria-associated endoplasmic reticulum membrane (MAM): a dark horse for diabetic cardiomyopathy treatment. Cell Death Discov 2024; 10:148. [PMID: 38509100 PMCID: PMC10954771 DOI: 10.1038/s41420-024-01918-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/25/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024] Open
Abstract
Diabetic cardiomyopathy (DCM), an important complication of diabetes mellitus (DM), is one of the most serious chronic heart diseases and has become a major cause of heart failure worldwide. At present, the pathogenesis of DCM is unclear, and there is still a lack of effective therapeutics. Previous studies have shown that the homeostasis of mitochondria and the endoplasmic reticulum (ER) play a core role in maintaining cardiovascular function, and structural and functional abnormalities in these organelles seriously impact the occurrence and development of various cardiovascular diseases, including DCM. The interplay between mitochondria and the ER is mediated by the mitochondria-associated ER membrane (MAM), which participates in regulating energy metabolism, calcium homeostasis, mitochondrial dynamics, autophagy, ER stress, inflammation, and other cellular processes. Recent studies have proven that MAM is closely related to the initiation and progression of DCM. In this study, we aim to summarize the recent research progress on MAM, elaborate on the key role of MAM in DCM, and discuss the potential of MAM as an important therapeutic target for DCM, thereby providing a theoretical reference for basic and clinical studies of DCM treatment.
Collapse
Affiliation(s)
- Yong Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China
| | - Jin-Ling Huo
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China
| | - Hengdao Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
| | - Yifeng Zheng
- Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan
| | - Jingfang Chen
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China
| | - Yingjin Qiao
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
| | - Yang Yang
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China.
| |
Collapse
|
37
|
Wang H, Luo W, Chen H, Cai Z, Xu G. Mitochondrial dynamics and mitochondrial autophagy: Molecular structure, orchestrating mechanism and related disorders. Mitochondrion 2024; 75:101847. [PMID: 38246334 DOI: 10.1016/j.mito.2024.101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Mitochondrial dynamics and autophagy play essential roles in normal cellular physiological activities, while abnormal mitochondrial dynamics and mitochondrial autophagy can cause cancer and related disorders. Abnormal mitochondrial dynamics usually occur in parallel with mitochondrial autophagy. Both have been reported to have a synergistic effect and can therefore complement or inhibit each other. Progress has been made in understanding the classical mitochondrial PINK1/Parkin pathway and mitochondrial dynamical abnormalities. Still, the mechanisms and regulatory pathways underlying the interaction between mitophagy and mitochondrial dynamics remain unexplored. Like other existing reviews, we review the molecular structure of proteins involved in mitochondrial dynamics and mitochondrial autophagy, and how their abnormalities can lead to the development of related diseases. We will also review the individual or synergistic effects of abnormal mitochondrial dynamics and mitophagy leading to cellular proliferation, differentiation and invasion. In addition, we explore the mechanisms underlying mitochondrial dynamics and mitochondrial autophagy to contribute to targeted and precise regulation of mitochondrial function. Through the study of abnormal mitochondrial dynamics and mitochondrial autophagy regulation mechanisms, as well as the role of early disease development, effective targets for mitochondrial function regulation can be proposed to enable accurate diagnosis and treatment of the associated disorders.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China; Guangzhou Medical University, Guangzhou 511495, China
| | - Wenjun Luo
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China
| | - Haoyu Chen
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China
| | - Zhiduan Cai
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China.
| | - Guibin Xu
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China; Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510230, China.
| |
Collapse
|
38
|
Zhu J, Tao Q, Du G, Huang L, Li M, Wang M, Wang Q. Mitochondrial dynamics disruption: Unraveling Dinotefuran's impact on cardiotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123238. [PMID: 38159629 DOI: 10.1016/j.envpol.2023.123238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/10/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Exposure to pesticides has been associated with several cardiovascular complications in animal models. Neonicotinoids are now the most widely used insecticide globally, while the impact of neonicotinoids on cardiovascular function and the role of mitochondrial dynamics in neonicotinoids-induced cardiotoxicity is unclear. In the present study, Xenopus laevis tadpoles were exposed to environmental related concentrations (0, 5, and 50 μg/L) of typical neonicotinoid dinotefuran, with two enantiomers, for 21 days. We evaluated the changes in heart rate and cardiomyocyte apoptosis in exposed tadpoles. Then, we performed the transcriptome, metabolomics, transmission electron microscopy (TEM), and protein immunoblot to investigate the potential adverse impact of two enantiomers of dinotefuran on cardiotoxicity associated with mitochondrial dynamics. We observed changes in heart rate and increased cardiomyocyte apoptosis in exposed tadpoles, indicating that dinotefuran had a cardiotoxic effect. We further found that the cardiac contractile function pathway was significantly enriched, while the glucose metabolism-related pathways were also disturbed significantly. TEM observation revealed that the mitochondrial morphology of cardiomyocytes in exposed tadpoles was swollen, and mitophagy was increased. Mitochondria fusion was excessively manifested in the enhanced mitochondrial fusion protein. The mitochondrial respiratory chain was also disturbed, which led to an increase in ROS production and a decrease in ATP content. Therefore, our results suggested that dinotefuran exposure can induce cardiac disease associated mitochondrial disorders by interfering with the functionality and dynamics of mitochondria. In addition, both two enantiomers of dinotefuran have certain toxicity to tadpole cardiomyocytes, while R-dinotefuran exhibited higher toxicity than S-enantiomer, which may be attributed to disparities in the activation capacities of the respiratory chain.
Collapse
Affiliation(s)
- Jiaping Zhu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Qiao Tao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Gaoyi Du
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Lei Huang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Meng Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Mengcen Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Qiangwei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
39
|
An G, Park J, Song J, Hong T, Song G, Lim W. Relevance of the endoplasmic reticulum-mitochondria axis in cancer diagnosis and therapy. Exp Mol Med 2024; 56:40-50. [PMID: 38172597 PMCID: PMC10834980 DOI: 10.1038/s12276-023-01137-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 01/05/2024] Open
Abstract
Dynamic interactions between organelles are responsible for a variety of intercellular functions, and the endoplasmic reticulum (ER)-mitochondrial axis is recognized as a representative interorganelle system. Several studies have confirmed that most proteins in the physically tethered sites between the ER and mitochondria, called mitochondria-associated ER membranes (MAMs), are vital for intracellular physiology. MAM proteins are involved in the regulation of calcium homeostasis, lipid metabolism, and mitochondrial dynamics and are associated with processes related to intracellular stress conditions, such as oxidative stress and unfolded protein responses. Accumulating evidence has shown that, owing to their extensive involvement in cellular homeostasis, alterations in the ER-mitochondrial axis are one of the etiological factors of tumors. An in-depth understanding of MAM proteins and their impact on cell physiology, particularly in cancers, may help elucidate their potential as diagnostic and therapeutic targets for cancers. For example, the modulation of MAM proteins is utilized not only to target diverse intracellular signaling pathways within cancer cells but also to increase the sensitivity of cancer cells to anticancer reagents and regulate immune cell activities. Therefore, the current review summarizes and discusses recent advances in research on the functional roles of MAM proteins and their characteristics in cancers from a diagnostic perspective. Additionally, this review provides insights into diverse therapeutic strategies that target MAM proteins in various cancer types.
Collapse
Affiliation(s)
- Garam An
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jisoo Song
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
40
|
Song MS, Lee DK, Lee CY, Park SC, Yang J. Host Subcellular Organelles: Targets of Viral Manipulation. Int J Mol Sci 2024; 25:1638. [PMID: 38338917 PMCID: PMC10855258 DOI: 10.3390/ijms25031638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Viruses have evolved sophisticated mechanisms to manipulate host cell processes and utilize intracellular organelles to facilitate their replication. These complex interactions between viruses and cellular organelles allow them to hijack the cellular machinery and impair homeostasis. Moreover, viral infection alters the cell membrane's structure and composition and induces vesicle formation to facilitate intracellular trafficking of viral components. However, the research focus has predominantly been on the immune response elicited by viruses, often overlooking the significant alterations that viruses induce in cellular organelles. Gaining a deeper understanding of these virus-induced cellular changes is crucial for elucidating the full life cycle of viruses and developing potent antiviral therapies. Exploring virus-induced cellular changes could substantially improve our understanding of viral infection mechanisms.
Collapse
Affiliation(s)
- Min Seok Song
- Department of Physiology and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Dong-Kun Lee
- Department of Physiology and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Chung-Young Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sang-Cheol Park
- Artificial Intelligence and Robotics Laboratory, Myongji Hospital, Goyang 10475, Republic of Korea
| | - Jinsung Yang
- Department of Biochemistry and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| |
Collapse
|
41
|
Liu Q, Yan X, Yuan Y, Li R, Zhao Y, Fu J, Wang J, Su J. HTRA2/OMI-Mediated Mitochondrial Quality Control Alters Macrophage Polarization Affecting Systemic Chronic Inflammation. Int J Mol Sci 2024; 25:1577. [PMID: 38338855 PMCID: PMC10855076 DOI: 10.3390/ijms25031577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Systemic chronic inflammation (SCI) due to intrinsic immune over-activation is an important factor in the development of many noninfectious chronic diseases, such as neurodegenerative diseases and diabetes mellitus. Among these immune responses, macrophages are extensively involved in the regulation of inflammatory responses by virtue of their polarization plasticity; thus, dysregulation of macrophage polarization direction is one of the potential causes of the generation and maintenance of SCI. High-temperature demand protein A2 (HtrA2/Omi) is an important regulator of mitochondrial quality control, not only participating in the degradation of mis-accumulated proteins in the mitochondrial unfolded protein response (UPRmt) to maintain normal mitochondrial function through its enzymatic activity, but also participating in the regulation of mitochondrial dynamics-related protein interactions to maintain mitochondrial morphology. Recent studies have also reported the involvement of HtrA2/Omi as a novel inflammatory mediator in the regulation of the inflammatory response. HtrA2/Omi regulates the inflammatory response in BMDM by controlling TRAF2 stabilization in a collagen-induced arthritis mouse model; the lack of HtrA2 ameliorates pro-inflammatory cytokine expression in macrophages. In this review, we summarize the mechanisms by which HtrA2/Omi proteins are involved in macrophage polarization remodeling by influencing macrophage energy metabolism reprogramming through the regulation of inflammatory signaling pathways and mitochondrial quality control, elucidating the roles played by HtrA2/Omi proteins in inflammatory responses. In conclusion, interfering with HtrA2/Omi may become an important entry point for regulating macrophage polarization, providing new research space for developing HtrA2/Omi-based therapies for SCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basical Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130012, China
| |
Collapse
|
42
|
Skalka GL, Tsakovska M, Murphy DJ. Kinase signalling adaptation supports dysfunctional mitochondria in disease. Front Mol Biosci 2024; 11:1354682. [PMID: 38434478 PMCID: PMC10906720 DOI: 10.3389/fmolb.2024.1354682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Mitochondria form a critical control nexus which are essential for maintaining correct tissue homeostasis. An increasing number of studies have identified dysregulation of mitochondria as a driver in cancer. However, which pathways support and promote this adapted mitochondrial function? A key hallmark of cancer is perturbation of kinase signalling pathways. These pathways include mitogen activated protein kinases (MAPK), lipid secondary messenger networks, cyclic-AMP-activated (cAMP)/AMP-activated kinases (AMPK), and Ca2+/calmodulin-dependent protein kinase (CaMK) networks. These signalling pathways have multiple substrates which support initiation and persistence of cancer. Many of these are involved in the regulation of mitochondrial morphology, mitochondrial apoptosis, mitochondrial calcium homeostasis, mitochondrial associated membranes (MAMs), and retrograde ROS signalling. This review will aim to both explore how kinase signalling integrates with these critical mitochondrial pathways and highlight how these systems can be usurped to support the development of disease. In addition, we will identify areas which require further investigation to fully understand the complexities of these regulatory interactions. Overall, this review will emphasize how studying the interaction between kinase signalling and mitochondria improves our understanding of mitochondrial homeostasis and can yield novel therapeutic targets to treat disease.
Collapse
Affiliation(s)
- George L. Skalka
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mina Tsakovska
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Daniel J. Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- CRUK Scotland Institute, Glasgow, United Kingdom
| |
Collapse
|
43
|
Yegambaram M, Sun X, Lu Q, Jin Y, Ornatowski W, Soto J, Aggarwal S, Wang T, Tieu K, Gu H, Fineman JR, Black SM. Mitochondrial hyperfusion induces metabolic remodeling in lung endothelial cells by modifying the activities of electron transport chain complexes I and III. Free Radic Biol Med 2024; 210:183-194. [PMID: 37979892 PMCID: PMC12051485 DOI: 10.1016/j.freeradbiomed.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
OBJECTIVE Pulmonary hypertension (PH) is a progressive disease with vascular remodeling as a critical structural alteration. We have previously shown that metabolic reprogramming is an early initiating mechanism in animal models of PH. This metabolic dysregulation has been linked to remodeling the mitochondrial network to favor fission. However, whether the mitochondrial fission/fusion balance underlies the metabolic reprogramming found early in PH development is unknown. METHODS Utilizing a rat early model of PH, in conjunction with cultured pulmonary endothelial cells (PECs), we utilized metabolic flux assays, Seahorse Bioassays, measurements of electron transport chain (ETC) complex activity, fluorescent microscopy, and molecular approaches to investigate the link between the disruption of mitochondrial dynamics and the early metabolic changes that occur in PH. RESULTS We observed increased fusion mediators, including Mfn1, Mfn2, and Opa1, and unchanged fission mediators, including Drp1 and Fis1, in a two-week monocrotaline-induced PH animal model (early-stage PH). We were able to establish a connection between increases in fusion mediator Mfn1 and metabolic reprogramming. Using an adenoviral expression system to enhance Mfn1 levels in pulmonary endothelial cells and utilizing 13C-glucose labeled substrate, we found increased production of 13C lactate and decreased TCA cycle metabolites, revealing a Warburg phenotype. The use of a 13C5-glutamine substrate showed evidence that hyperfusion also induces oxidative carboxylation. The increase in glycolysis was linked to increased hypoxia-inducible factor 1α (HIF-1α) protein levels secondary to the disruption of cellular bioenergetics and higher levels of mitochondrial reactive oxygen species (mt-ROS). The elevation in mt-ROS correlated with attenuated ETC complexes I and III activities. Utilizing a mitochondrial-targeted antioxidant to suppress mt-ROS, limited HIF-1α protein levels, which reduced cellular glycolysis and reestablished mitochondrial membrane potential. CONCLUSIONS Our data connects mitochondrial fusion-mediated mt-ROS to the Warburg phenotype in early-stage PH development.
Collapse
Affiliation(s)
- Manivannan Yegambaram
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Xutong Sun
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Qing Lu
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA
| | | | - Jamie Soto
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA
| | - Saurabh Aggarwal
- Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Kim Tieu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Stephen M Black
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
44
|
Das R, Maity S, Das P, Kamal IM, Chakrabarti S, Chakrabarti O. CMT2A-linked MFN2 mutation, T206I promotes mitochondrial hyperfusion and predisposes cells towards mitophagy. Mitochondrion 2024; 74:101825. [PMID: 38092249 DOI: 10.1016/j.mito.2023.101825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/01/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Mutations in Mitofusin2 (MFN2) associated with the pathology of the debilitating neuropathy Charcot-Marie-Tooth type 2A (CMT2A) are known to alter mitochondrial morphology. Previously, such mutations have been shown to elicit two diametrically opposite phenotypes - while some mutations have been causally linked to enhanced mitochondrial fragmentation, others have been shown to induce hyperfusion. Our study identifies one such MFN2 mutant, T206I that causes mitochondrial hyperfusion. Cells expressing this MFN2 mutant have elongated and interconnected mitochondria. T206I-MFN2 mutation in the GTPase domain increases MFN2 stability and renders cells susceptible to stress. We show that cells expressing T206I-MFN2 have a higher predisposition towards mitophagy under conditions of serum starvation. We also detect increased DRP1 recruitment onto the outer mitochondrial membrane, though the total DRP1 protein level remains unchanged. Here we have characterized a lesser studied CMT2A-linked MFN2 mutant to show that its presence affects mitochondrial morphology and homeostasis.
Collapse
Affiliation(s)
- Rajdeep Das
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, India
| | - Sebabrata Maity
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, India
| | - Palamou Das
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, India
| | - Izaz Monir Kamal
- Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, CN 6, Sector V, Salt Lake, Kolkata 700091, India; Academy of Scientific and Innovative Research (AcSIR), Gaziabad, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, CN 6, Sector V, Salt Lake, Kolkata 700091, India; Academy of Scientific and Innovative Research (AcSIR), Gaziabad, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, India.
| |
Collapse
|
45
|
Goldman A, Mullokandov M, Zaltsman Y, Regev L, Levin-Zaidman S, Gross A. MTCH2 cooperates with MFN2 and lysophosphatidic acid synthesis to sustain mitochondrial fusion. EMBO Rep 2024; 25:45-67. [PMID: 38177900 PMCID: PMC10897490 DOI: 10.1038/s44319-023-00009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 01/06/2024] Open
Abstract
Fusion of the outer mitochondrial membrane (OMM) is regulated by mitofusin 1 (MFN1) and 2 (MFN2), yet the differential contribution of each of these proteins is less understood. Mitochondrial carrier homolog 2 (MTCH2) also plays a role in mitochondrial fusion, but its exact function remains unresolved. MTCH2 overexpression enforces MFN2-independent mitochondrial fusion, proposedly by modulating the phospholipid lysophosphatidic acid (LPA), which is synthesized by glycerol-phosphate acyl transferases (GPATs) in the endoplasmic reticulum (ER) and the OMM. Here we report that MTCH2 requires MFN1 to enforce mitochondrial fusion and that fragmentation caused by loss of MTCH2 can be specifically counterbalanced by overexpression of MFN2 but not MFN1, partially independent of its GTPase activity and mitochondrial localization. Pharmacological inhibition of GPATs (GPATi) or silencing ER-resident GPATs suppresses MFN2's ability to compensate for the loss of MTCH2. Loss of either MTCH2, MFN2, or GPATi does not impair stress-induced mitochondrial fusion, whereas the combined loss of MTCH2 and GPATi or the combined loss of MTCH2 and MFN2 does. Taken together, we unmask two cooperative mechanisms that sustain mitochondrial fusion.
Collapse
Affiliation(s)
- Andres Goldman
- Montreal Neurological Institute, McGill University, Montreal, Canada.
| | - Michael Mullokandov
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yehudit Zaltsman
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Limor Regev
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Smadar Levin-Zaidman
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Atan Gross
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
46
|
Stadler K, Ilatovskaya DV. Renal Epithelial Mitochondria: Implications for Hypertensive Kidney Disease. Compr Physiol 2023; 14:5225-5242. [PMID: 38158371 PMCID: PMC11194858 DOI: 10.1002/cphy.c220033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
According to the Centers for Disease Control and Prevention, 1 in 2 U.S. adults have hypertension, and more than 1 in 7 chronic kidney disease. In fact, hypertension is the second leading cause of kidney failure in the United States; it is a complex disease characterized by, leading to, and caused by renal dysfunction. It is well-established that hypertensive renal damage is accompanied by mitochondrial damage and oxidative stress, which are differentially regulated and manifested along the nephron due to the diverse structure and functions of renal cells. This article provides a summary of the relevant knowledge of mitochondrial bioenergetics and metabolism, focuses on renal mitochondrial function, and discusses the evidence that has been accumulated regarding the role of epithelial mitochondrial bioenergetics in the development of renal tissue dysfunction in hypertension. © 2024 American Physiological Society. Compr Physiol 14:5225-5242, 2024.
Collapse
Affiliation(s)
- Krisztian Stadler
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Daria V. Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
47
|
Yegambaram M, Sun X, Flores AG, Lu Q, Soto J, Richards J, Aggarwal S, Wang T, Gu H, Fineman JR, Black SM. Novel Relationship between Mitofusin 2-Mediated Mitochondrial Hyperfusion, Metabolic Remodeling, and Glycolysis in Pulmonary Arterial Endothelial Cells. Int J Mol Sci 2023; 24:17533. [PMID: 38139362 PMCID: PMC10744129 DOI: 10.3390/ijms242417533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The disruption of mitochondrial dynamics has been identified in cardiovascular diseases, including pulmonary hypertension (PH), ischemia-reperfusion injury, heart failure, and cardiomyopathy. Mitofusin 2 (Mfn2) is abundantly expressed in heart and pulmonary vasculature cells at the outer mitochondrial membrane to modulate fusion. Previously, we have reported reduced levels of Mfn2 and fragmented mitochondria in pulmonary arterial endothelial cells (PAECs) isolated from a sheep model of PH induced by pulmonary over-circulation and restoring Mfn2 normalized mitochondrial function. In this study, we assessed the effect of increased expression of Mfn2 on mitochondrial metabolism, bioenergetics, reactive oxygen species production, and mitochondrial membrane potential in control PAECs. Using an adenoviral expression system to overexpress Mfn2 in PAECs and utilizing 13C labeled substrates, we assessed the levels of TCA cycle metabolites. We identified increased pyruvate and lactate production in cells, revealing a glycolytic phenotype (Warburg phenotype). Mfn2 overexpression decreased the mitochondrial ATP production rate, increased the rate of glycolytic ATP production, and disrupted mitochondrial bioenergetics. The increase in glycolysis was linked to increased hypoxia-inducible factor 1α (HIF-1α) protein levels, elevated mitochondrial reactive oxygen species (mt-ROS), and decreased mitochondrial membrane potential. Our data suggest that disrupting the mitochondrial fusion/fission balance to favor hyperfusion leads to a metabolic shift that promotes aerobic glycolysis. Thus, therapies designed to increase mitochondrial fusion should be approached with caution.
Collapse
Affiliation(s)
- Manivannan Yegambaram
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (X.S.); (A.G.F.); (Q.L.); (J.S.); (J.R.); (T.W.); (H.G.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Xutong Sun
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (X.S.); (A.G.F.); (Q.L.); (J.S.); (J.R.); (T.W.); (H.G.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Alejandro Garcia Flores
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (X.S.); (A.G.F.); (Q.L.); (J.S.); (J.R.); (T.W.); (H.G.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Qing Lu
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (X.S.); (A.G.F.); (Q.L.); (J.S.); (J.R.); (T.W.); (H.G.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Jamie Soto
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (X.S.); (A.G.F.); (Q.L.); (J.S.); (J.R.); (T.W.); (H.G.)
| | - Jaime Richards
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (X.S.); (A.G.F.); (Q.L.); (J.S.); (J.R.); (T.W.); (H.G.)
| | - Saurabh Aggarwal
- Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Ting Wang
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (X.S.); (A.G.F.); (Q.L.); (J.S.); (J.R.); (T.W.); (H.G.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (X.S.); (A.G.F.); (Q.L.); (J.S.); (J.R.); (T.W.); (H.G.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Jeffrey R. Fineman
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA;
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | - Stephen M. Black
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (X.S.); (A.G.F.); (Q.L.); (J.S.); (J.R.); (T.W.); (H.G.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
- Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| |
Collapse
|
48
|
Ito Y, Yamagata M, Yamamoto T, Hirasaka K, Nikawa T, Sato T. The reciprocal regulation between mitochondrial-associated membranes and Notch signaling in skeletal muscle atrophy. eLife 2023; 12:RP89381. [PMID: 38099641 PMCID: PMC10723794 DOI: 10.7554/elife.89381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Skeletal muscle atrophy and the inhibition of muscle regeneration are known to occur as a natural consequence of aging, yet the underlying mechanisms that lead to these processes in atrophic myofibers remain largely unclear. Our research has revealed that the maintenance of proper mitochondrial-associated endoplasmic reticulum membranes (MAM) is vital for preventing skeletal muscle atrophy in microgravity environments. We discovered that the deletion of the mitochondrial fusion protein Mitofusin2 (MFN2), which serves as a tether for MAM, in human induced pluripotent stem (iPS) cells or the reduction of MAM in differentiated myotubes caused by microgravity interfered with myogenic differentiation process and an increased susceptibility to muscle atrophy, as well as the activation of the Notch signaling pathway. The atrophic phenotype of differentiated myotubes in microgravity and the regenerative capacity of Mfn2-deficient muscle stem cells in dystrophic mice were both ameliorated by treatment with the gamma-secretase inhibitor DAPT. Our findings demonstrate how the orchestration of mitochondrial morphology in differentiated myotubes and regenerating muscle stem cells plays a crucial role in regulating Notch signaling through the interaction of MAM.
Collapse
Affiliation(s)
- Yurika Ito
- Faculty of Medical Sciences, Fujita Health UniversityToyoakeJapan
| | - Mari Yamagata
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha UniversityKyotanabeJapan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application, Kyoto UniversityKyotoJapan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto UniversityKyotoJapan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP)KyotoJapan
| | - Katsuya Hirasaka
- Organization for Marine Science and Technology, Nagasaki University Graduate SchoolNagasakiJapan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate SchoolTokushimaJapan
| | - Takahiko Sato
- Department of Ophthalmology, Kyoto Prefectural University of MedicineKyotoJapan
- Department of Anatomy, Faculty of Medicine, Fujita Health UniversityToyoakeJapan
- International Center for Cell and Gene Therapy, Fujita Health UniversityToyoakeJapan
| |
Collapse
|
49
|
Zhou Y, Suo W, Zhang X, Liang J, Zhao W, Wang Y, Li H, Ni Q. Targeting mitochondrial quality control for diabetic cardiomyopathy: Therapeutic potential of hypoglycemic drugs. Biomed Pharmacother 2023; 168:115669. [PMID: 37820568 DOI: 10.1016/j.biopha.2023.115669] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/23/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023] Open
Abstract
Diabetic cardiomyopathy is a chronic cardiovascular complication caused by diabetes that is characterized by changes in myocardial structure and function, ultimately leading to heart failure and even death. Mitochondria serve as the provider of energy to cardiomyocytes, and mitochondrial dysfunction plays a central role in the development of diabetic cardiomyopathy. In response to a series of pathological changes caused by mitochondrial dysfunction, the mitochondrial quality control system is activated. The mitochondrial quality control system (including mitochondrial biogenesis, fusion and fission, and mitophagy) is core to maintaining the normal structure of mitochondria and performing their normal physiological functions. However, mitochondrial quality control is abnormal in diabetic cardiomyopathy, resulting in insufficient mitochondrial fusion and excessive fission within the cardiomyocyte, and fragmented mitochondria are not phagocytosed in a timely manner, accumulating within the cardiomyocyte resulting in cardiomyocyte injury. Currently, there is no specific therapy or prevention for diabetic cardiomyopathy, and glycemic control remains the mainstay. In this review, we first elucidate the pathogenesis of diabetic cardiomyopathy and explore the link between pathological mitochondrial quality control and the development of diabetic cardiomyopathy. Then, we summarize how clinically used hypoglycemic agents (including sodium-glucose cotransport protein 2 inhibitions, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, thiazolidinediones, metformin, and α-glucosidase inhibitors) exert cardioprotective effects to treat and prevent diabetic cardiomyopathy by targeting the mitochondrial quality control system. In addition, the mechanisms of complementary alternative therapies, such as active ingredients of traditional Chinese medicine, exercise, and lifestyle, targeting mitochondrial quality control for the treatment of diabetic cardiomyopathy are also added, which lays the foundation for the excavation of new diabetic cardioprotective drugs.
Collapse
Affiliation(s)
- Yutong Zhou
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Wendong Suo
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xinai Zhang
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Jiaojiao Liang
- Zhengzhou Shuqing Medical College, Zhengzhou 450064, China
| | - Weizhe Zhao
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing 100105, China
| | - Yue Wang
- Capital Medical University, Beijing 100069, China
| | - Hong Li
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Qing Ni
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China.
| |
Collapse
|
50
|
Atici AE, Crother TR, Noval Rivas M. Mitochondrial quality control in health and cardiovascular diseases. Front Cell Dev Biol 2023; 11:1290046. [PMID: 38020895 PMCID: PMC10657886 DOI: 10.3389/fcell.2023.1290046] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Cardiovascular diseases (CVDs) are one of the primary causes of mortality worldwide. An optimal mitochondrial function is central to supplying tissues with high energy demand, such as the cardiovascular system. In addition to producing ATP as a power source, mitochondria are also heavily involved in adaptation to environmental stress and fine-tuning tissue functions. Mitochondrial quality control (MQC) through fission, fusion, mitophagy, and biogenesis ensures the clearance of dysfunctional mitochondria and preserves mitochondrial homeostasis in cardiovascular tissues. Furthermore, mitochondria generate reactive oxygen species (ROS), which trigger the production of pro-inflammatory cytokines and regulate cell survival. Mitochondrial dysfunction has been implicated in multiple CVDs, including ischemia-reperfusion (I/R), atherosclerosis, heart failure, cardiac hypertrophy, hypertension, diabetic and genetic cardiomyopathies, and Kawasaki Disease (KD). Thus, MQC is pivotal in promoting cardiovascular health. Here, we outline the mechanisms of MQC and discuss the current literature on mitochondrial adaptation in CVDs.
Collapse
Affiliation(s)
- Asli E. Atici
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Timothy R. Crother
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Magali Noval Rivas
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|