1
|
Mussa A, Ismail NH, Hamid M, Al-Hatamleh MAI, Bragoli A, Hajissa K, Mokhtar NF, Mohamud R, Uskoković V, Hassan R. Understanding the role of TNFR2 signaling in the tumor microenvironment of breast cancer. J Exp Clin Cancer Res 2024; 43:312. [PMID: 39609700 PMCID: PMC11603874 DOI: 10.1186/s13046-024-03218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy among women. It is characterized by a high level of heterogeneity that emerges from the interaction of several cellular and soluble components in the tumor microenvironment (TME), such as cytokines, tumor cells and tumor-associated immune cells. Tumor necrosis factor (TNF) receptor 2 (TNFR2) appears to play a significant role in microenvironmental regulation, tumor progression, immune evasion, drug resistance, and metastasis of many types of cancer, including BC. However, the significance of TNFR2 in BC biology is not fully understood. This review provides an overview of TNFR2 biology, detailing its activation and its interactions with important signaling pathways in the TME (e.g., NF-κB, MAPK, and PI3K/Akt pathways). We discuss potential therapeutic strategies targeting TNFR2, with the aim of enhancing the antitumor immune response to BC. This review provides insights into role of TNFR2 as a major immune checkpoint for the future treatment of patients with BC.
Collapse
Affiliation(s)
- Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Mahasin Hamid
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan Province, Changsha, 410013, China
- Department of Zoology, Faculty of Sciences and Information Technology, University of Nyala, Nyala, 63311, Sudan
| | - Mohammad A I Al-Hatamleh
- Division of Hematology and Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anthony Bragoli
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Khalid Hajissa
- Department of Zoology, Faculty of Science and Technology, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (iNFORMM), Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| | - Vuk Uskoković
- TardigradeNano LLC, Irvine, CA, 92604, USA
- Division of Natural Sciences, Fullerton College, Fullerton, CA, 92832, USA
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| |
Collapse
|
2
|
Zhang W, Zhu C, Liao Y, Zhou M, Xu W, Zou Z. Caspase-8 in inflammatory diseases: a potential therapeutic target. Cell Mol Biol Lett 2024; 29:130. [PMID: 39379817 PMCID: PMC11463096 DOI: 10.1186/s11658-024-00646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Caspase-8, a renowned cysteine-aspartic protease within its enzyme family, initially garnered attention for its regulatory role in extrinsic apoptosis. With advancing research, a growing body of evidence has substantiated its involvement in other cell death processes, such as pyroptosis and necroptosis, as well as its modulatory effects on inflammasomes and proinflammatory cytokines. PANoptosis, an emerging concept of cell death, encompasses pyroptosis, apoptosis, and necroptosis, providing insight into the often overlapping cellular mortality observed during disease progression. The activation or deficiency of caspase-8 enzymatic activity is closely linked to PANoptosis, positioning caspase-8 as a key regulator of cell survival or death across various physiological and pathological processes. Aberrant expression of caspase-8 is closely associated with the development and progression of a range of inflammatory diseases, including immune system disorders, neurodegenerative diseases (NDDs), sepsis, and cancer. This paper delves into the regulatory role and impact of caspase-8 in these conditions, aiming to elucidate potential therapeutic strategies for the future intervention.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yan Liao
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Miao Zhou
- Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, 210009, Jiangsu, China.
| | - Wenyun Xu
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
3
|
Munoz Pinto MF, Campbell SJ, Simoglou Karali C, Johanssen VA, Bristow C, Cheng VWT, Zarghami N, Larkin JR, Pannell M, Hearn A, Chui C, Brinquis Nunez B, Bokma E, Holgate R, Anthony DC, Sibson NR. Selective blood-brain barrier permeabilization of brain metastases by a type 1 receptor-selective tumor necrosis factor mutein. Neuro Oncol 2022; 24:52-63. [PMID: 34297105 PMCID: PMC8730757 DOI: 10.1093/neuonc/noab177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Metastasis to the brain is a major challenge with poor prognosis. The blood-brain barrier (BBB) is a significant impediment to effective treatment, being intact during the early stages of tumor development and heterogeneously permeable at later stages. Intravenous injection of tumor necrosis factor (TNF) selectively induces BBB permeabilization at sites of brain micrometastasis, in a TNF type 1 receptor (TNFR1)-dependent manner. Here, to enable clinical translation, we have developed a TNFR1-selective agonist variant of human TNF that induces BBB permeabilization, while minimizing potential toxicity. METHODS A library of human TNF muteins (mutTNF) was generated and assessed for binding specificity to mouse and human TNFR1/2, endothelial permeabilizing activity in vitro, potential immunogenicity, and circulatory half-life. The permeabilizing ability of the most promising variant was assessed in vivo in a model of brain metastasis. RESULTS The primary mutTNF variant showed similar affinity for human TNFR1 than wild-type human TNF, similar affinity for mouse TNFR1 as wild-type mouse TNF, undetectable binding to human/mouse TNFR2, low potential immunogenicity, and permeabilization of an endothelial monolayer. Circulatory half-life was similar to mouse/human TNF and BBB permeabilization was induced selectively at sites of micrometastases in vivo, with a time window of ≥24 hours and enabling delivery of agents within a therapeutically relevant range (0.5-150 kDa), including the clinically approved therapy, trastuzumab. CONCLUSIONS We have developed a clinically translatable mutTNF that selectively opens the BBB at micrometastatic sites, while leaving the rest of the cerebrovasculature intact. This approach will open a window for brain metastasis treatment that currently does not exist.
Collapse
Affiliation(s)
- Mario F Munoz Pinto
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Sandra J Campbell
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Christina Simoglou Karali
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Vanessa A Johanssen
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Claire Bristow
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Vinton W T Cheng
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Niloufar Zarghami
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - James R Larkin
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Maria Pannell
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
- OxSonics Ltd., The Magdalen Centre, Oxford Science Park, Oxford, UK
| | - Arron Hearn
- Abzena Ltd., Babraham Research Campus, Babraham, Cambridge, UK
| | - Cherry Chui
- Abzena Ltd., Babraham Research Campus, Babraham, Cambridge, UK
| | | | - Evert Bokma
- Abzena Ltd., Babraham Research Campus, Babraham, Cambridge, UK
| | - Robert Holgate
- Abzena Ltd., Babraham Research Campus, Babraham, Cambridge, UK
| | | | - Nicola R Sibson
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Antileukemic Natural Product Induced Both Apoptotic and Pyroptotic Programmed Cell Death and Differentiation Effect. Int J Mol Sci 2021; 22:ijms222011239. [PMID: 34681898 PMCID: PMC8538678 DOI: 10.3390/ijms222011239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 01/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common forms of leukemia. Despite advances in the management of such malignancies and the progress of novel therapies, unmet medical needs still exist in AML because of several factors, including poor response to chemotherapy and high relapse rates. Ardisianone, a plant-derived natural component with an alkyl benzoquinone structure, induced apoptosis in leukemic HL-60 cells. The determination of dozens of apoptosis-related proteins showed that ardisianone upregulated death receptors and downregulated the inhibitor of apoptosis protein (IAPs). Western blotting showed that ardisianone induced a dramatic increase in tumor necrosis factor receptor 2 (TNFR2) protein expression. Ardisianone also induced downstream signaling by activating caspase-8 and -3 and degradation in Bid, a caspase-8 substrate. Furthermore, ardisianone induced degradation in DNA fragmentation factor 45 kDa (DFF45), a subunit of inhibitors of caspase-activated DNase (ICAD). Q-VD-OPh (a broad-spectrum caspase inhibitor) significantly diminished ardisianone-induced apoptosis, confirming the involvement of caspase-dependent apoptosis. Moreover, ardisianone induced pyroptosis. Using transmission electron microscopic examination and Western blot analysis, key markers including gasdermin D, high mobility group box1 (HMGB1), and caspase-1 and -5 were detected. Notably, ardisianone induced the differentiation of the remaining survival cells, which were characterized by an increase in the expression of CD11b and CD68, two markers of macrophages and monocytes. Wright–Giemsa staining also showed the differentiation of cells into monocyte and macrophage morphology. In conclusion, the data suggested that ardisianone induced the apoptosis and pyroptosis of leukemic cells through downregulation of IAPs and activation of caspase pathways that caused gasdermin D cleavage and DNA double-stranded breaks and ultimately led to programmed cell death. Ardisianone also induced the differentiation of leukemic cells into monocyte-like and macrophage-like cells. The data suggested the potential of ardisianone for further antileukemic development.
Collapse
|
5
|
Alvarez Cooper I, Beecher K, Chehrehasa F, Belmer A, Bartlett SE. Tumour Necrosis Factor in Neuroplasticity, Neurogenesis and Alcohol Use Disorder. Brain Plast 2020; 6:47-66. [PMID: 33680846 PMCID: PMC7903009 DOI: 10.3233/bpl-190095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alcohol use disorder is a pervasive and detrimental condition that involves changes in neuroplasticity and neurogenesis. Alcohol activates the neuroimmune system and alters the inflammatory status of the brain. Tumour necrosis factor (TNF) is a well characterised neuroimmune signal but its involvement in alcohol use disorder is unknown. In this review, we discuss the variable findings of TNF's effect on neuroplasticity and neurogenesis. Acute ethanol exposure reduces TNF release while chronic alcohol intake generally increases TNF levels. Evidence suggests TNF potentiates excitatory transmission, promotes anxiety during alcohol withdrawal and is involved in drug use in rodents. An association between craving for alcohol and TNF is apparent during withdrawal in humans. While anti-inflammatory therapies show efficacy in reversing neurogenic deficit after alcohol exposure, there is no evidence for TNF's essential involvement in alcohol's effect on neurogenesis. Overall, defining TNF's role in alcohol use disorder is complicated by poor understanding of its variable effects on synaptic transmission and neurogenesis. While TNF may be of relevance during withdrawal, the neuroimmune system likely acts through a larger group of inflammatory cytokines to alter neuroplasticity and neurogenesis. Understanding the individual relevance of TNF in alcohol use disorder awaits a more comprehensive understanding of TNF's effects within the brain.
Collapse
Affiliation(s)
- Ignatius Alvarez Cooper
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
| | - Kate Beecher
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Fatemeh Chehrehasa
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
| | - Arnauld Belmer
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Selena E. Bartlett
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
6
|
Quercetin improves immune function in Arbor Acre broilers through activation of NF-κB signaling pathway. Poult Sci 2020; 99:906-913. [PMID: 32029167 PMCID: PMC7587811 DOI: 10.1016/j.psj.2019.12.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Indexed: 12/15/2022] Open
Abstract
Quercetin, the main component of flavonoids, has a wide range of biological actions. Quercetin can be made into a variety of additives for practice, because of the stable chemical structure and water-soluble derivatives. This study was intended to explore the effects of quercetin on immune function and its regulatory mechanism in Arbor Acre broiler to provide a practical basis for improving poultry immune function and figure out the optimum supplementation as functional feed additives. A total of 240 one-day-old healthy Arbor Acre broilers, similar in body weight, were randomly allotted to 4 treatments with 6 replicates, 10 broilers in each replicate and fed with diets containing quercetin at 0, 0.02, 0.04, and 0.06% for 6 wk. Blood and immune organs (spleen, thymus, and bursa) were collected from chickens at the end of the experiment. Growth performance, immune organs indexes, contents of serum immune molecules, splenic T lymphocyte proliferative responses, and expression of immune related genes were evaluated. The results showed that dietary quercetin had no significant effect (P > 0.05) on growth performance of broilers. Compared with control, 0.06% quercetin supplementation in diet significantly increased spleen index and thymus index (P < 0.05). It also increased the secretion of immune molecules including immunoglobulin A (IgA), interleukin-4 (IL-4) (P < 0.001), immunoglobulin M (IgM) (P = 0.007), complement component 4 (C4) (P = 0.001), and tumor necrosis factor-α (TNF-α) (P < 0.05). On the other hand, 0.02% quercetin supplementation significantly increased complement component 3 (C3) (P < 0.05). Additionally, both 0.04 and 0.06% quercetin supplementation significantly increased expression of TNF-α, TNF receptor associated factor-2 (TRAF-2), TNF receptor superfamily member 1B (TNFRSF1B), nuclear factor kappa-B p65 subunit (NF-κBp65), and interferon-γ (IFN-γ) mRNA (P < 0.05), and expression of NF-κB inhibitor-alpha (IκB-α) mRNA were significantly decreased (P < 0.05). Thus, quercetin improved immune function via NF-κB signaling pathway triggered by TNF-α.
Collapse
|
7
|
TNFR2 knockdown triggers apoptosis-induced proliferation in primarily cultured Schwann cells. Neurosci Res 2020; 150:29-36. [DOI: 10.1016/j.neures.2019.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/12/2019] [Accepted: 01/30/2019] [Indexed: 12/13/2022]
|
8
|
Tumour Necrosis Factor Alpha in Intestinal Homeostasis and Gut Related Diseases. Int J Mol Sci 2019; 20:ijms20081887. [PMID: 30995806 PMCID: PMC6515381 DOI: 10.3390/ijms20081887] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/05/2019] [Accepted: 04/13/2019] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelium constitutes an indispensable single-layered barrier to protect the body from invading pathogens, antigens or toxins. At the same time, beneficial nutrients and water have to be absorbed by the epithelium. To prevent development of intestinal inflammation or tumour formation, intestinal homeostasis has to be tightly controlled and therefore a strict balance between cell death and proliferation has to be maintained. The proinflammatory cytokine tumour necrosis factor alpha (TNFα) was shown to play a striking role for the regulation of this balance in the gut. Depending on the cellular conditions, on the one hand TNFα is able to mediate cell survival by activating NFκB signalling. On the other hand, TNFα might trigger cell death, in particular caspase-dependent apoptosis but also caspase-independent programmed necrosis. By regulating these cell death and survival mechanisms, TNFα exerts a variety of beneficial functions in the intestine. However, TNFα signalling is also supposed to play a critical role for the pathogenesis of inflammatory bowel disease (IBD), infectious diseases, intestinal wound healing and tumour formation. Here we review the literature about the physiological and pathophysiological role of TNFα signalling for the maintenance of intestinal homeostasis and the benefits and difficulties of anti-TNFα treatment during IBD.
Collapse
|
9
|
Gerald MJ, Bracchi-Ricard V, Ricard J, Fischer R, Nandakumar B, Blumenthal GH, Williams R, Kontermann RE, Pfizenmaier K, Moxon KA, Bethea JR. Continuous infusion of an agonist of the tumor necrosis factor receptor 2 in the spinal cord improves recovery after traumatic contusive injury. CNS Neurosci Ther 2019; 25:884-893. [PMID: 30941924 PMCID: PMC6630008 DOI: 10.1111/cns.13125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
Aim The activation of the TNFR2 receptor is beneficial in several pathologies of the central nervous system, and this study examines whether it can ameliorate the recovery process following spinal cord injury. Methods EHD2‐sc‐mTNFR2, an agonist specific for TNFR2, was used to treat neurons exposed to high levels of glutamate in vitro. In vivo, it was infused directly to the spinal cord via osmotic pumps immediately after a contusion to the cord at the T9 level. Locomotion behavior was assessed for 6 weeks, and the tissue was analyzed (lesion size, RNA and protein expression, cell death) after injury. Somatosensory evoked potentials were also measured in response to hindlimb stimulation. Results The activation of TNFR2 protected neurons from glutamate‐mediated excitotoxicity through the activation of phosphoinositide‐3 kinase gamma in vitro and improved the locomotion of animals following spinal cord injury. The extent of the injury was not affected by infusing EHD2‐sc‐mTNFR2, but higher levels of neurofilament H and 2′, 3′‐cyclic‐nucleotide 3′‐phosphodiesterase were observed 6 weeks after the injury. Finally, the activation of TNFR2 after injury increased the neural response recorded in the cortex following hindlimb stimulation. Conclusion The activation of TNFR2 in the spinal cord following contusive injury leads to enhanced locomotion and better cortical responses to hindlimb stimulation.
Collapse
Affiliation(s)
- Marcus J Gerald
- Department of Biology, Drexel University, Philadelphia, Pennsylvania
| | | | - Jerome Ricard
- Department of Biology, Drexel University, Philadelphia, Pennsylvania
| | - Roman Fischer
- Department of Biology, Drexel University, Philadelphia, Pennsylvania
| | - Bharadwaj Nandakumar
- Department of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania.,Department of Biomedical Engineering, University of California-Davis, Davis, California
| | - Gary H Blumenthal
- Department of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania.,Department of Biomedical Engineering, University of California-Davis, Davis, California
| | - Raushaun Williams
- Department of Biology, Drexel University, Philadelphia, Pennsylvania
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Karen A Moxon
- Department of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania.,Department of Biomedical Engineering, University of California-Davis, Davis, California
| | - John R Bethea
- Department of Biology, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Zhang S, Wang X, Li C, Feng S, Zhang A, Yang K, Zhou H. Identification and functional characterization of grass carp (Ctenopharyngodon idella) tumor necrosis factor receptor 2 and its soluble form with potentiality for targeting inflammation. FISH & SHELLFISH IMMUNOLOGY 2019; 86:393-402. [PMID: 30502465 DOI: 10.1016/j.fsi.2018.11.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/15/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Tumor necrosis factor-alpha (TNF-α) signals through two distinct cell surface receptors, TNFR1 and TNFR2 in mammals. In the present study, grass carp Tnfr2 (gcTnfr2) was isolated and characterized. Sequence alignment and phylogenetic analysis suggested that gcTnfr2 was a homolog of goldfish and zebrafish Tnfr2. Tissue distribution assay showed gctnfr2 transcripts were expressed in all examined tissues similar to gctnfr1. To functionally characterize the newly cloned molecule, gcTnfr2 was overexpressed in COS7 cell lines and it showed the ability to mediate the recombinant grass carp Tnf (rgcTnf)-α-triggered NF-κΒ activity and gcil1b promoter activity, clarifying its role in mediating Tnf-α signaling. The recombinant soluble form of gcTnfr2 (rgcsTnfr2) was prepared and it was able to interact with rgcTnf-α with higher affinity than that of rgcsTnfr1. Moreover, grass carp soluble Tnfr2 (gcsTnfr2) were detected in the culture medium of grass carp head kidney leukocytes (HKLs) and heat-inactivated A. hydrophila challenge significantly induced its production, indicating involvement of gcsTnfr2 in inflammation response. In agreement with this notion, rgcsTnfr2 effectively antagonized the effect of rgcTnf-α on il1b mRNA expression in HKLs, suggesting anti-Tnf-α property of gcsTnfr2. To strengthen the anti-inflammatory role of soluble Tnfr2, bacteria were injected intraperitoneally in grass carp followed by rgcsTnfr2. Hematoxylin-eosin (HE) staining of head kidney, spleen and intestine showed that rgcsTnfr2 could significantly improve infection-induced histopathological changes. These results functionally identified gcTnfr2 and its soluble form, particularly highlighting the role of gcsTnfr2 against Tnf-α-triggered inflammatory signaling. In this line, rgcsTnfr2 displayed anti-inflammatory potentiality during infection, thereby providing a powerful mediator of inflammation control in fish.
Collapse
Affiliation(s)
- Shengnan Zhang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Xinyan Wang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Chenglong Li
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Shiyu Feng
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Anying Zhang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Kun Yang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Hong Zhou
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, PR China.
| |
Collapse
|
11
|
Qu Y, Zhao G, Li H. Forward and Reverse Signaling Mediated by Transmembrane Tumor Necrosis Factor-Alpha and TNF Receptor 2: Potential Roles in an Immunosuppressive Tumor Microenvironment. Front Immunol 2017; 8:1675. [PMID: 29234328 PMCID: PMC5712345 DOI: 10.3389/fimmu.2017.01675] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 11/14/2017] [Indexed: 12/31/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) is a pleiotropic inflammatory cytokine produced mainly by activated macrophages, lymphocytes and other cell types. Two distinct forms of TNF-α have been identified: soluble TNF-α (sTNF-α) and transmembrane TNF-α (mTNF-α). mTNF-α, which is the precursor of sTNF-α, can be cleaved by the TNF-α converting enzyme (TACE) and is released as sTNF-α. sTNF-α binds primarily to TNF receptor 1 (TNFR1) and plays an important role in the inflammatory immune response, whereas mTNF-α interacts primarily with TNF receptor 2 (TNFR2) and mediates the promotion of cellular proliferation and survival and other biological effects. It has been reported that the interaction between mTNF-α and TNFR2 induces bi-directional (forward and reverse) signaling in both mTNF-α- and TNFR2-expressing cells. Increasing evidence shows that the forward and reverse signaling mediated by mTNF-α and TNFR2 might play a significant role in the tumor microenvironment. In this review, the role of the crosstalk between mTNF-α and TNFR2 in the tumor microenvironment will be discussed.
Collapse
Affiliation(s)
- Yang Qu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| | - Gang Zhao
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| | - Hui Li
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
12
|
Uversky VN, El-Baky NA, El-Fakharany EM, Sabry A, Mattar EH, Uversky AV, Redwan EM. Functionality of intrinsic disorder in tumor necrosis factor-α and its receptors. FEBS J 2017; 284:3589-3618. [PMID: 28746777 DOI: 10.1111/febs.14182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/15/2017] [Accepted: 07/20/2017] [Indexed: 01/02/2023]
Abstract
Tumor necrosis factor-α (TNF-α) is a pleiotropic inflammatory cytokine that exerts potent cytotoxic effects on solid tumor cells, while not affecting their normal counterparts. It is also known that TNF-α exerts many of its biological functions via interaction with specific receptors. To understand the potential roles of intrinsic disorder in the functioning of this important cytokine, we explored the peculiarities of intrinsic disorder distribution in human TNF-α and its homologs from various species, ranging from zebrafish to chimpanzee. We also studied the peculiarities of intrinsic disorder distribution in human TNF-α receptors, TNFR1 and TNFR2. Analysis revealed that cytoplasmic domains of TNF-α and its receptors are expected to be highly disordered. Furthermore, although the sequence identities of analyzed TNF-α homologs range from 99.57% (between human and chimpanzee proteins) to 22.33% (between frog and fish proteins), their intrinsic disorder profiles are characterized by a remarkable similarity. These observations indicate that the peculiarities of distribution of the intrinsic disorder propensity within the amino acid sequences are evolutionary conserved, and therefore could be of functional importance for this family of proteins. We also show that disordered and flexible regions of human TNF-α and its TNFR1 and TNFR2 receptors are crucial for some of their biological activities.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Nawal Abd El-Baky
- Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| | - Esmail M El-Fakharany
- Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| | - Amira Sabry
- Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| | - Ehab H Mattar
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alexey V Uversky
- Center for Data Analytics and Biomedical Informatics, Department of Computer and Information Sciences, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| |
Collapse
|
13
|
Therapeutic Strategies Under Development Targeting Inflammatory Mechanisms in Amyotrophic Lateral Sclerosis. Mol Neurobiol 2017; 55:2789-2813. [PMID: 28455693 DOI: 10.1007/s12035-017-0532-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
|
14
|
TRAF2 multitasking in TNF receptor-induced signaling to NF-κB, MAP kinases and cell death. Biochem Pharmacol 2016; 116:1-10. [DOI: 10.1016/j.bcp.2016.03.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 03/14/2016] [Indexed: 12/15/2022]
|
15
|
Borda A, Vila J, Fernández-Urién I, Zozaya JM, Guerra A, Borda F. Pretreatment predictive value of blood neutrophil/lymphocyte ratio in R0 gastric cancer resectability. GASTROENTEROLOGIA Y HEPATOLOGIA 2016; 40:1-9. [PMID: 27142343 DOI: 10.1016/j.gastrohep.2016.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/11/2016] [Accepted: 03/11/2016] [Indexed: 02/08/2023]
Abstract
INTRODUCTION New parameters complementary to clinical TNM classification are needed, to orient preoperative on the possibility of a R0 gastric cancer resection. We analysed the possible predictive value of blood neutrophil/lymphocytic ratio (N/L) in relation to resectability. METHODS Two hundred and fifty-seven gastric cancers consecutively diagnosed and without neoadjuvant treatment were retrospectively studied. Univariate and multivariate analysis of the frequency of R0 cases was performed between groups with a normal N/L ratio (<5) and pathological N/L ratio (≥5). Furthermore, we studied the subgroup of operated patients (n=156) analysing the frequency of R0 resection according to N/L ratio<5 or≥5. RESULTS One hundred and fifty-six patients underwent surgical intervention, of which 139 had R0 resections. A high N/L ratio was registered in 46 cases (17.9%). Globally, resectability was higher in patients with a N/L ratio<5: 59.7% vs. N/L ratio≥5: 28.6% (P<.001; OR=3.76; 95% CI=1.78-8.04). The relation between N/L ratio<5 and R0 resection was confirmed in the multivariate (P=.006; OR=3.86; 95% CI=1.46-10.22). In the operated subgroup, the higher frequency of R0 resection achievement is maintained in cases with N/L ratio<5: 91.3% vs. 72.2% (P=.015; OR=4.04; 95% CI=1.23-13.26). CONCLUSIONS The presence of a N/L ratio<5 at the diagnosis of a gastric carcinoma is related in a significant and independent way with a higher frequency of R0 tumoral resection, globally. This higher proportion of R0 resection cases in patients with a N/L<5 ratio is confirmed in the subgroup of operated patients.
Collapse
Affiliation(s)
- Ana Borda
- Servicio de Digestivo, Complejo Hospitalario de Navarra, Instituto de Investigaciones Sanitarias de Navarra (IDISNA), Pamplona, Navarra, España.
| | - Juan Vila
- Servicio de Digestivo, Complejo Hospitalario de Navarra, Instituto de Investigaciones Sanitarias de Navarra (IDISNA), Pamplona, Navarra, España
| | - Ignacio Fernández-Urién
- Servicio de Digestivo, Complejo Hospitalario de Navarra, Instituto de Investigaciones Sanitarias de Navarra (IDISNA), Pamplona, Navarra, España
| | - José Manuel Zozaya
- Servicio de Digestivo, Complejo Hospitalario de Navarra, Instituto de Investigaciones Sanitarias de Navarra (IDISNA), Pamplona, Navarra, España
| | - Ana Guerra
- Servicio de Digestivo, Complejo Hospitalario de Navarra, Instituto de Investigaciones Sanitarias de Navarra (IDISNA), Pamplona, Navarra, España
| | - Fernando Borda
- Servicio de Digestivo, Complejo Hospitalario de Navarra, Instituto de Investigaciones Sanitarias de Navarra (IDISNA), Pamplona, Navarra, España
| |
Collapse
|
16
|
Han HY, Ryu MH, Son Y, Lee G, Jeong SH, Kim H. Poncirus trifoliata Rafin. induces the apoptosis of triple-negative breast cancer cells via activation of the c-Jun NH(2)-terminal kinase and extracellular signal-regulated kinase pathways. Pharmacogn Mag 2015; 11:S237-43. [PMID: 26664011 PMCID: PMC4653333 DOI: 10.4103/0973-1296.166056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: Poncirus trifoliata Rafin. is a traditional medicine with known anti-inflammatory and anti-cancer properties. Traditionally, it is used to control chronic inflammation, allergy and gastrointestinal diseases such as digestive ulcers gastritis in China, Japan, and Korea. Objectives: To evaluate the apoptosis-inducing activity of a P. trifoliata methanol extract (MEPT) and elucidate the molecular mechanisms. Materials and Methods: The anti-cancer effect of MEPT and its underlying mechanisms were investigated in breast cancer cells using 3,4,5-dimethyl N-methylthiazol-2-yl-2, 5-d-phenyl tetrazolium bromide assay, cell cycle analysis, and western blotting. Results: MEPT suppressed the proliferation of MDA-MB-231 cells with inhibition dose 50% value of 119.44 μg/mL at 24 h, which have features typical of triple-negative breast cancer cells. MEPT also altered the characteristic features of the MDA-MB-231 cells and increased the proportion of cells undergoing sub-G1 arrest. In addition, MEPT increased levels of caspase 8 and 3 in MDA-MB-231 cells, whereas caspase 9 was not detected. In addition, MEPT-induced tumor necrosis factor receptor (TNFR) and TNFR type 1-associated death domain (TRADD) protein and the activations of c-Jun NH(2)-terminal kinase (JNK) and extracellular signal-regulated kinases (ERK). Conclusion: Our results indicate that MEPT has chemotherapeutic potential in triple-negative breast cancer and that at the molecular level its effects are derived from the activations of TNFR and of the mitogen-activated protein kinase pathway.
Collapse
Affiliation(s)
- Hye-Yeon Han
- Department of Oral Pathology, School of Dentistry, Institute of translational Dental Sciences, Yangsan, South Korea
| | - Mi Heon Ryu
- Department of Oral Pathology, School of Dentistry, Institute of translational Dental Sciences, Yangsan, South Korea
| | - Yonghae Son
- Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan, South Korea
| | - Guemsan Lee
- Department of Herbology, College of Korean Medicine, Wonkwang, University, Iksan, South Korea
| | - Seung-Hwa Jeong
- Department of Preventive and Community Dentistry, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Hyungwoo Kim
- Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan, South Korea
| |
Collapse
|
17
|
TRAF-mediated modulation of NF-kB AND JNK Activation by TNFR2. Cell Signal 2014; 26:2658-66. [DOI: 10.1016/j.cellsig.2014.08.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/15/2014] [Indexed: 12/14/2022]
|
18
|
Wang QL, Zhao L, Feng N, Zhou P, Wu Q, Fan R, Li J, Zhang SM, Wang YM, Xu XZ, Yu SQ, Yi DH, Pei JM. Lacidipine attenuates TNF-α-induced cardiomyocyte apoptosis. Cytokine 2014; 71:60-5. [PMID: 25226445 DOI: 10.1016/j.cyto.2014.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/31/2014] [Accepted: 08/19/2014] [Indexed: 11/28/2022]
Abstract
This study was designed to investigate whether lacidipine elicited a protective role on cardiomyocyte against apoptosis induced by TNF-α. Neonatal rat cardiomyocytes were randomly assigned into different groups. TUNEL staining was utilized to detect apoptosis, and caspase-3 and caspse-12 were determined. To explore the underlying mechanism, Z-ATAD-FMK (a selective caspase-12 inhibitor) was used to identify the key molecule involved. TNF-α increased caspase-3 expression, which was mediated by increased caspase-12 expression. In the meantime, apoptosis was significantly induced by TNF-α. Lacidipine lowered caspase-12 and caspase-3 expression, and cardiomyocyte apoptosis induced by TNF-α. The results suggest that lacidipine attenuates TNF-α -induced apoptosis via inhibition of caspase-12 and caspase-3 successively.
Collapse
Affiliation(s)
- Qiu-Lin Wang
- Department of Cardiology, Chengdu Medical College, Chengdu, Sichuan Province, PR China
| | - Lei Zhao
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| | - Na Feng
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| | - Peng Zhou
- Department of Cardiology, Chengdu Medical College, Chengdu, Sichuan Province, PR China
| | - Qi Wu
- Department of Cardiology, Chengdu Medical College, Chengdu, Sichuan Province, PR China
| | - Rong Fan
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| | - Juan Li
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| | - Shu-Miao Zhang
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| | - Yue-Min Wang
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| | - Xue-Zeng Xu
- Department of Cardiosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| | - Shi-Qiang Yu
- Department of Cardiosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| | - Ding-Hua Yi
- Department of Cardiosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, PR China.
| | - Jian-Ming Pei
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, PR China; Department of Cardiosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, PR China.
| |
Collapse
|
19
|
Bechill J, Muller WJ. Herpesvirus entry mediator (HVEM) attenuates signals mediated by the lymphotoxin β receptor (LTβR) in human cells stimulated by the shared ligand LIGHT. Mol Immunol 2014; 62:96-103. [PMID: 24980868 DOI: 10.1016/j.molimm.2014.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/06/2014] [Accepted: 06/08/2014] [Indexed: 01/13/2023]
Abstract
Signals mediated by members of the tumor necrosis factor receptor superfamily modulate a network of diverse processes including initiation of inflammatory responses and altering cell fate between pathways favoring survival and death. Although such pathways have been well-described for the TNF-α receptor, less is known about signaling induced by the TNF superfamily member LIGHT and how it is differentially altered by expression of its two receptors LTβR and HVEM in the same cell. We used cell lines with different relative expression of HVEM and LTβR to show that LIGHT-induced signals mediated by these receptors were associated with altered TRAF2 stability and RelA nuclear translocation. Production of the inflammatory chemokine CXCL10 was primarily mediated by LTβR. Higher expression of HVEM was associated with cell survival, while unopposed LTβR signaling favored pathways leading to apoptosis. Importantly, restoring HVEM expression in cells with low endogenous expression recapitulated the phenotype of cells with higher endogenous expression. Together, our data provide evidence that relative expression of HVEM and LTβR modulates canonical NF-κB and pro-apoptotic signals stimulated by LIGHT.
Collapse
Affiliation(s)
- John Bechill
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Northwestern University, 310 East Superior Street, Morton 4-685, Chicago, IL 60611 USA
| | - William J Muller
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Northwestern University, 310 East Superior Street, Morton 4-685, Chicago, IL 60611 USA.
| |
Collapse
|
20
|
Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediators Inflamm 2014; 2014:861231. [PMID: 24966471 PMCID: PMC4055424 DOI: 10.1155/2014/861231] [Citation(s) in RCA: 490] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/07/2014] [Indexed: 02/08/2023] Open
Abstract
Tumor necrosis factor alpha (TNF-α) is a proinflammatory cytokine that exerts both homeostatic and pathophysiological roles in the central nervous system. In pathological conditions, microglia release large amounts of TNF-α; this de novo production of TNF-α is an important component of the so-called neuroinflammatory response that is associated with several neurological disorders. In addition, TNF-α can potentiate glutamate-mediated cytotoxicity by two complementary mechanisms: indirectly, by inhibiting glutamate transport on astrocytes, and directly, by rapidly triggering the surface expression of Ca+2 permeable-AMPA receptors and NMDA receptors, while decreasing inhibitory GABAA receptors on neurons. Thus, the net effect of TNF-α is to alter the balance of excitation and inhibition resulting in a higher synaptic excitatory/inhibitory ratio. This review summarizes the current knowledge of the cellular and molecular mechanisms by which TNF-α links the neuroinflammatory and excitotoxic processes that occur in several neurodegenerative diseases, but with a special emphasis on amyotrophic lateral sclerosis (ALS). As microglial activation and upregulation of TNF-α expression is a common feature of several CNS diseases, as well as chronic opioid exposure and neuropathic pain, modulating TNF-α signaling may represent a valuable target for intervention.
Collapse
|
21
|
Ji R, Wu HG, Shi Y. Regulatory effect of zinc finger protein A20 on inflammation and apoptosis: Implications for inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2014; 22:508-514. [DOI: 10.11569/wcjd.v22.i4.508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Zinc finger protein A20, also known as tumor necrosis factor alpha-induced protein 3 (TNFAIP3), is a protein with dual enzyme activities: ubiquitination and deubiquitination. It can negatively regulate inflammation and apoptosis mediated by a variety of signal transduction pathway, playing an important role in the occurrence, development and prognosis of inflammatory diseases, especially inflammatory bowel diseases. In recent years, the role of zinc finger protein A20 in inflammation and apoptosis has gained growing concern. This paper gives a brief overview of the biological effects of zinc finger protein A20 on inflammation and apoptosis mediated by tumor necrosis factor alpha/tumor necrosis factor receptor 1, nuclear factor kappa B, lipopolysaccharide/lipopolysaccharide - nuclear factor kappa B, oxidized low density lipoprotein and other pathways as well as the negative regulatory effect of zinc finger protein A20 on intestinal inflammation and epithelial apoptosis in inflammatory bowel disease.
Collapse
|
22
|
Tumor necrosis factor receptor 2: its contribution to acute cellular rejection and clear cell renal carcinoma. BIOMED RESEARCH INTERNATIONAL 2013; 2013:821310. [PMID: 24350291 PMCID: PMC3848079 DOI: 10.1155/2013/821310] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 12/26/2022]
Abstract
Tumor necrosis factor receptor 2 (TNFR2) is a type I transmembrane glycoprotein and one of the two receptors that orchestrate the complex biological functions of tumor necrosis factor (TNF, also designed TNF-α). Accumulating experimental evidence suggests that TNFR2 plays an important role in renal disorders associated with acute cellular rejection and clear cell renal carcinoma but its exact role in these settings is still not completely understood. This papers reviews the factors that may mediate TNFR2 induction in acute cellular rejection and clear cell renal carcinoma and its contribution to these conditions and discusses its therapeutic implications. A greater understanding of the function of TNFR2 may lead to the development of new anti-TNF drugs.
Collapse
|
23
|
Ardestani S, Deskins DL, Young PP. Membrane TNF-alpha-activated programmed necrosis is mediated by Ceramide-induced reactive oxygen species. J Mol Signal 2013; 8:12. [PMID: 24180579 PMCID: PMC3895838 DOI: 10.1186/1750-2187-8-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/23/2013] [Indexed: 12/13/2022] Open
Abstract
Background Programmed necrosis is a form of caspase-independent cell death whose molecular regulation is poorly understood. While tumor necrosis factor-alpha (TNF-α) has been identified as an activator of programmed necrosis, the specific context under which this can happen is unclear. Recently we reported that TNF-α can be expressed by human tumor cells as both a membrane tethered (mTNF-α) and a soluble (sTNF-α) form. Whereas low level, tumor-derived sTNF-α acts as a tumor promoter, tumor cell expression of mTNF-α significantly delays tumor growth in mice, in large part by induction of programmed necrosis of tumor associated myeloid cells. In this study we sought to determine the molecular mechanism involved in mTNF-α oxidative stress-induced cell death by evaluating the known pathways involved in TNF receptor-induced programmed necrosis. Methods The source of Reactive Oxygen Species (ROS) in mTNF-α treated cells was determined by coculturing RAW 264.7 monocytic and L929 fibroblasts cells with fixed B16F10 control or mTNF-α expressing-melanoma cells in the presence of inhibitors of NADPH and mitochondria ROS. To identify the down-stream effector of TNF-a receptors (TNFR), level of phospho-RIP-1 and ceramide activity were evaluated. To determine whether mTNF-mediated cell death was dependent on a specific TNFR, cell death was measured in primary CD11b myeloid cells isolated from wild-type or TNFR-1, TNFR-2, TNFR-1 and TNFR-2 double knockout mice, cocultured with various TNF-α isoform. Results Tumor derived-mTNF-α increased ROS-mediated cytotoxicity, independent of caspase-3 activity. Although TNFR on target cells were required for this effect, we observed that mTNF-induced cell death could be mediated through both TNFR-1 and the death domain-lacking TNFR-2. ROS generation and cytotoxicity were inhibited by a mitochondrial respiratory chain inhibitor but not by an inhibitor of NADPH oxidase. mTNF-α mediated cytotoxicity was independent of RIP-1, a serine/threonine kinase that serves as a main adaptor protein of sTNF-α induced programmed necrosis. Instead, mTNF-α-induced ROS and cell death was prohibited by the ceramide-activated protein kinase (CAPK) inhibitor. Conclusion These findings demonstrate that the mTNF-α isoform is an effective inducer of programmed necrosis through a caspase independent, ceramide-related pathway. Interestingly, unlike sTNFα, mTNF-induced programmed necrosis is not dependent on the presence of TNFR1.
Collapse
Affiliation(s)
- Shidrokh Ardestani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, C2217A MCN, Nashville, TN 37232, USA.
| | | | | |
Collapse
|
24
|
Zhu W, Tan Y, Qiu Q, Li X, Huang Z, Fu Y, Liang M. Comparison of the properties of human CD146+ and CD146- periodontal ligament cells in response to stimulation with tumour necrosis factor α. Arch Oral Biol 2013; 58:1791-803. [PMID: 24200306 DOI: 10.1016/j.archoralbio.2013.09.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/20/2013] [Accepted: 09/29/2013] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Periodontal ligament stem cells (PDLSCs) can be used in periodontal regeneration. Tumour necrosis factor-alpha (TNF-α) participates in the regulation of cell proliferation, apoptosis, differentiation, and migration. However, whether TNF-α can affect the biological features of PDLSCs is still unclear. The objective of this study was to illustrate the biological effects (proliferation, apoptosis, osteogenesis and migration) of TNF-α on human CD146 positive periodontal ligament cells (CD146+PLDCs) and CD146 negative periodontal ligament cells (CD146-PDLCs). METHODS CD146±PDLCs were isolated from human PDLCs and analyzed using a fluorescence-activated cell sorter. The biological effects of TNF-α on CD146±PDLCs were evaluated by CCK-8 assay (proliferation), DAPI staining (apoptosis), alizarin red staining and alkaline phosphatase activities assay (osteogenesis), and wounding assay and transwell assay (migration). RESULTS CD146+PDLCs, which expressed MSC surface markers CD105, CD90, CD73, CD44, and Stro-1, showed higher proliferative and osteogenic potential than CD146-PDLCs. TNF-α at a dose of 2.5ng/ml was found to enhance both proliferation and osteogenesis in CD146+PDLCs. At 5ng/ml, TNF-α promoted proliferation, osteogenesis, and apoptosis in CD146+PDLCs and enhanced osteogenesis in CD146-PDLCs. At 10ng/ml, TNF-α only aggravated apoptosis in CD146+PDLCs. The migratory ability of both CD146+PDLCs and CD146-PDLCs was not altered by TNF-α. CONCLUSIONS CD146+PDLCs were subpopulation of MSC. It showed greater proliferative and osteogenic potential than CD146-PDLCs. At low concentration, TNF-α was beneficial to CD146+PDLCs on proliferation and osteogenesis, and at high concentration it was detrimental. CD146-PDLCs were found to be less sensitive to TNF-α.
Collapse
Affiliation(s)
- Wenjun Zhu
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Neuroinflammation in the aging down syndrome brain; lessons from Alzheimer's disease. Curr Gerontol Geriatr Res 2012; 2012:170276. [PMID: 22454637 PMCID: PMC3290800 DOI: 10.1155/2012/170276] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 11/15/2011] [Indexed: 12/25/2022] Open
Abstract
Down syndrome (DS) is the most genetic cause of mental retardation and is caused by the triplication of chromosome 21. In addition to the disabilities caused early in life, DS is also noted as causing Alzheimer's-disease-like pathological changes in the brain, leading to 50-70% of DS patients showing dementia by 60-70 years of age. Inflammation is a complex process that has a key role to play in the pathogenesis of Alzheimer's disease. There is relatively little understood about inflammation in the DS brain and how the genetics of DS may alter this inflammatory response and change the course of disease in the DS brain. The goal of this review is to highlight our current understanding of inflammation in Alzheimer's disease and predict how inflammation may affect the pathology of the DS brain based on this information and the known genetic changes that occur due to triplication of chromosome 21.
Collapse
|
26
|
Cabal-Hierro L, Lazo PS. Signal transduction by tumor necrosis factor receptors. Cell Signal 2012; 24:1297-305. [PMID: 22374304 DOI: 10.1016/j.cellsig.2012.02.006] [Citation(s) in RCA: 327] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/14/2012] [Indexed: 12/24/2022]
Abstract
Tumor necrosis factor (TNF) is a key mediator in the inflammatory response which is implicated in the onset of a number of diseases. Research on TNF led to the characterization of the largest family of cytokines known until now, the TNF superfamily, which exert their biological effects through the interaction with transmembrane receptors of the TNFR superfamily. TNF itself exerts its biological effects interacting with two different receptors: TNFR1 and TNFR2. TNFR1 presents a death domain on its intracellular region. In contrast to TNFR1, TNFR2 does not have a death domain. Activation of TNFR1 implies the consecutive formation of two different TNF receptor signalling complexes. Complex I controls the expression of antiapoptotic proteins that prevent the triggering of cell death processes, whereas Complex II triggers cell death processes. TNFR2 only signals for antiapoptotic reactions. However, recent evidence indicates that TNFR2 also signals to induce TRAF2 degradation. TRAF2 is a key mediator in signal transduction of both TNFR1 and TNFR2. Thus, this novel signalling pathway has two important implications: on one hand, it represents an auto regulatory loop for TNFR2; on the other hand, when this signal is triggered TNFR1 activity is modified so that antiapoptotic pathways are inhibited and apoptotic reactions are enhanced.
Collapse
Affiliation(s)
- Lucía Cabal-Hierro
- Departamento de Bioquímica y Biología Molecular and Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33071 Oviedo, Spain
| | | |
Collapse
|
27
|
Montgomery SL, Bowers WJ. Tumor necrosis factor-alpha and the roles it plays in homeostatic and degenerative processes within the central nervous system. J Neuroimmune Pharmacol 2011; 7:42-59. [PMID: 21728035 DOI: 10.1007/s11481-011-9287-2] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/20/2011] [Indexed: 12/12/2022]
Abstract
Tumor Necrosis Factor-alpha (TNF-α) is a prototypic pro-inflammatory cytokine involved in the innate immune response. TNF-α ligation and downstream signaling with one of its cognate receptors, TNF-RI or TNF-RII, modulates fundamental processes in the brain including synapse formation and regulation, neurogenesis, regeneration, and general maintenance of the central nervous system (CNS). During states of chronic neuroinflammation, extensive experimental evidence implicates TNF-α as a key mediator in disease progression, gliosis, demyelination, inflammation, blood-brain-barrier deterioration, and cell death. This review explores the complex roles of TNF-α in the CNS under normal physiologic conditions and during neurodegeneration. We focus our discussion on Multiple Sclerosis, Parkinson's disease, and Alzheimer's disease, relaying the outcomes of preclinical and clinical testing of TNF-α directed therapeutic strategies, and arguing that despite the wealth of functions attributed to this central cytokine, surprisingly little is known about the cell type- and stage-specific roles of TNF-α in these debilitating disorders.
Collapse
Affiliation(s)
- Sara L Montgomery
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
28
|
Molecular Mechanism of JNK/Bim/Bax Apoptotic Pathway Induced by TNF-α in Differentiated PC12 Cells*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Safety evaluation and pharmacokinetics of a novel human tumor necrosis factor-alpha exhibited a higher antitumor activity and a lower systemic toxicity. Anticancer Drugs 2010; 21:243-51. [DOI: 10.1097/cad.0b013e328333d5ce] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Ernandez T, Mayadas TN. Immunoregulatory role of TNFalpha in inflammatory kidney diseases. Kidney Int 2009; 76:262-76. [PMID: 19436333 DOI: 10.1038/ki.2009.142] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor necrosis factor alpha (TNFalpha), a pleiotropic cytokine, plays important inflammatory roles in renal diseases such as lupus nephritis, anti-neutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis and renal allograft rejection. However, TNFalpha also plays critical immunoregulatory roles that are required to maintain immune homeostasis. These complex biological functions of TNFalpha are orchestrated by its two receptors, TNFR1 and TNFR2. For example, TNFR2 promotes leukocyte infiltration and tissue injury in an animal model of immune complex-mediated glomerulonephritis. On the other hand, TNFR1 plays an immunoregulatory function in a murine lupus model with a deficiency in this receptor that leads to more severe autoimmune symptoms. In humans, proinflammatory and immunoregulatory roles for TNFalpha are strikingly illustrated in patients on anti-TNFalpha medications: These treatments are greatly beneficial in certain inflammatory diseases such as rheumatoid arthritis but, on the other hand, are also associated with the induction of autoimmune lupus-like syndromes and enhanced autoimmunity in multiple sclerosis patients. The indication for anti-TNFalpha treatments in renal inflammatory diseases is still under discussion. Ongoing clinical trials may help to clarify the potential benefit of such treatments in lupus nephritis and ANCA-associated glomerulonephritis. Overall, the complex biology of TNFalpha is not fully understood. A greater understanding of the function of its receptors may provide a framework to understand its contrasting proinflammatory and immunoregulatory functions. This may lead the development of new, more specific anti-inflammatory drugs.
Collapse
Affiliation(s)
- Thomas Ernandez
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
31
|
Sanchez A, Espinosa P, Esparza MA, Colon M, Bernal G, Mancilla R. Mycobacterium tuberculosis 38-kDa lipoprotein is apoptogenic for human monocyte-derived macrophages. Scand J Immunol 2009; 69:20-8. [PMID: 19140873 DOI: 10.1111/j.1365-3083.2008.02193.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mycobacterium tuberculosis is the main aetiologic agent of tuberculosis, a disease of great concern in less-developed regions. Apoptosis is a conspicuous event in macrophages infected in vitro with mycobacteria, a phenomenon also observed in vivo in granulomas of patients with tuberculosis. To determine its significance, it is important to define the mycobacterial moieties involved and how they cause apoptosis. Here we show that the 38-kDa lipoprotein induces macrophage caspase-dependent apoptosis involving TNF-alpha and FasL and, interestingly, with the upregulation of cell-death receptors TNFR1, TNFR2 and Fas. A role for the Toll-like receptor 2 was also demonstrated. In conclusion, the ability to induce apoptosis of host cells is another property of the 38-kDa lipoprotein, a molecule that has focused attention for being an immunodominant antigen that participates in phosphate transport.
Collapse
Affiliation(s)
- A Sanchez
- Departamento de Inmunologia, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Mexico City
| | | | | | | | | | | |
Collapse
|
32
|
Takimoto T, Sato K, Akiba Y, Takahashi K. Role of chicken TL1A on inflammatory responses and partial characterization of its receptor. THE JOURNAL OF IMMUNOLOGY 2008; 180:8327-32. [PMID: 18523299 DOI: 10.4049/jimmunol.180.12.8327] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of chicken TNF-like ligand 1A (ChTL1A) on inflammation and its receptor candidates was investigated to further understand its function as a proinflammatory cytokine. ChTL1A decreased the viability of CHO-K1 cells transfected with chicken TNFR2 or decoy receptor 3 and bound to TNFR2 and decoy receptor 3. ChTL1A was detected in chicken blood samples taken 4 h after LPS injection. Increased mRNA for inflammatory response-related factors such as IL-1beta, IL-6, ChTL1A, IFN-gamma, inducible NO synthase, and cyclooxygenase 2 were found in spleen samples following LPS injection. Ceruloplasmin and alpha(1) acid glycoprotein (as positive acute phase proteins) were increased in chicken plasma 12 h after ChTL1A injection. The injection of anti-ChTL1A Ab was able to prevent typical increases in plasma nitrite plus nitrate, ceruloplasmin, and alpha(1) acid glycoprotein concentrations following LPS injection. These results indicate that ChTL1A is a proinflammatory cytokine in chickens, animals that do not have TNF-alpha and lymphotoxin alpha orthologous genes, and that its proinflammatory action is, at least in part, expressed through binding to TNFR2.
Collapse
Affiliation(s)
- Tetsuya Takimoto
- Laboratory of Animal Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
33
|
Edelblum KL, Goettel JA, Koyama T, McElroy SJ, Yan F, Polk DB. TNFR1 promotes tumor necrosis factor-mediated mouse colon epithelial cell survival through RAF activation of NF-kappaB. J Biol Chem 2008; 283:29485-94. [PMID: 18713739 PMCID: PMC2570867 DOI: 10.1074/jbc.m801269200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tumor necrosis factor (TNF) is a therapeutic target in the treatment of inflammatory bowel disease; however, the exact role of TNF signaling in the colon epithelium remains unclear. We demonstrate that TNF activation of TNF receptor (R)1 stimulates both pro- and anti-apoptotic signaling pathways in the colon epithelium; however, TNFR1 protects against colon epithelial cell apoptosis following TNF exposure. To investigate anti-apoptotic signaling pathways downstream of TNFR1, we generated an intestinal epithelium-specific Raf knock-out mouse and identified Raf kinase as a key regulator of colon epithelial cell survival in response to TNF. Surprisingly, Raf promotes NF-kappaB p65 phosphorylation, independent of MEK signaling, to support cell survival. Taken together, these data demonstrate a novel pathway in which Raf promotes colon epithelial cell survival through NF-kappaB downstream of TNFR1 activation. Thus, further understanding of colon epithelial cell-specific TNFR signaling may result in the identification of new targets for inflammatory bowel disease treatment and define novel mediators of colitis-associated cancer.
Collapse
Affiliation(s)
- Karen L Edelblum
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0696, USA
| | | | | | | | | | | |
Collapse
|
34
|
Zhang L, Xing D, Chen M. Bim(L) displacing Bcl-x(L) promotes Bax translocation during TNFalpha-induced apoptosis. Apoptosis 2008; 13:950-8. [PMID: 18500555 DOI: 10.1007/s10495-008-0226-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 05/12/2008] [Indexed: 11/29/2022]
Abstract
Bcl-2 family proteins are implicated as essential regulators in tumor necrosis factor-alpha (TNFalpha)-induced apoptosis. Bim(L), a BH3-only member of Bcl-2 family, can directly or indirectly activate the proapoptotic Bax and the subsequent mitochondrial apoptotic pathway. However, the molecular mechanism of Bim(L) activating Bax activation during TNFalpha-induced apoptosis is not fully understood. In this study, the role of Bim(L) in Bax activation during TNFalpha-induced apoptosis was investigated in differentiated PC12 and MCF7 cells, with real-time single-cell analysis. The experimental results show that Bax translocated to mitochondria and cytochrome c (Cyt c) released from mitochondria after TNFalpha treatment. Furthermore, SP600125 (specific inhibitor of JNK) could inhibit the Cyt c release from mitochondria. Co-immunoprecipitation results show that, the interaction between Bcl-x(L) and Bax decreased after TNFalpha treatment, while that between Bcl-x(L) and Bim(L) increased. Bax did not co-immunoprecipitate with Bim(L) before or after the TNFalpha treatment. In addition, the increased interaction between Bim(L) and Bcl-x(L) was dynamically monitored by using fluorescence resonance energy transfer (FRET) technique. Most importantly, there was no evidence of Bim(L) redistribution to mitochondria until cell apoptosis. By comprehensively analyzing these data, it is concluded that Bim(L) displaces Bcl-x(L) in the mitochondria and promotes Bax translocation during TNFalpha-induced apoptosis.
Collapse
Affiliation(s)
- Lan Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
| | | | | |
Collapse
|
35
|
Biragyn A, Coscia M, Nagashima K, Sanford M, Young HA, Olkhanud P. Murine beta-defensin 2 promotes TLR-4/MyD88-mediated and NF-kappaB-dependent atypical death of APCs via activation of TNFR2. J Leukoc Biol 2008; 83:998-1008. [PMID: 18192488 PMCID: PMC2365917 DOI: 10.1189/jlb.1007700] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mammalian antimicrobial peptides, including beta-defensins, represent an ancient arm of innate immunity designed to directly neutralize invading microbes. Previously, we demonstrated that murine beta-defensin 2 (mDF2beta) also acted as an endogenous ligand for TLR-4-activating maturation of dendritic cells (DCs). Herein, we report that this TLR-4 -dependent activation leads to induction of an atypical cell death that is unexpectedly exaggerated by the inhibition of caspases. Experiments using APCs with nonfunctional TNF-alpha or its receptors suggest that this is a NF-kappaB- and TNF-alpha-dependent process that does not require TNFR1. We demonstrate that mDF2beta triggers a TNFR2-mediated signaling cascade of "self-destruction" through up-regulation of membrane-bound TNF-alpha and TNFR2. This appears not to be an isolated phenomenon, as human synthetic beta-defenisn 3 was also able to activate and kill DCs. We propose that beta-defenins may play an important immunoregulatory role as controllers of the natural process of elimination of activated APCs.
Collapse
Affiliation(s)
- Arya Biragyn
- Laboratory of Immunology, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Mizoguchi E, Hachiya Y, Kawada M, Nagatani K, Ogawa A, Sugimoto K, Mizoguchi A, Podolsky DK. TNF receptor type I-dependent activation of innate responses to reduce intestinal damage-associated mortality. Gastroenterology 2008; 134:470-80. [PMID: 18242213 DOI: 10.1053/j.gastro.2007.11.055] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2006] [Accepted: 11/08/2007] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Ligation of tumor necrosis factor (TNF) receptors (TNFRs) with TNF plays a critical role in the pathogenesis of human inflammatory bowel disease (IBD). However, it remains unclear which cell types activated through TNFR-associated signaling cascades are involved in the pathogenesis of colitis. METHODS Recombination activating gene-1 (RAG) knockout (KO) (no T or B cells)-based TNFR double and triple KO mice were generated. Bone marrow (BM) chimera mice in which BM-derived myeloid cells, but not colonic epithelial cells (CECs), express TNFRs were also generated. Colitis was induced by administration of dextran sodium sulfate (DSS) in distilled water. Murine lines and chimeras were assessed for disease severity, histopathology, apoptotic cell rate, epithelial proliferation, and bacterial invasion rate. RESULTS Following DSS administration, mice lacking both RAG and TNFR1 exhibited a high mortality (>80%) rate with an impaired CEC regeneration compared with RAG KO and RAG x TNFR2 double KO (DKO) mice. Transplantation of RAG KO-derived BM cells restored CEC regeneration and rescued the majority of recipient RAG x TNFR1 DKO mice from DSS-induced mortality. After BM transplantation, RAG x TNFR1 DKO mice exhibited an increased rate of apoptosis in the colonic lamina propria macrophages in association with the activation of caspases. In addition, BM reconstitution directly or indirectly enhanced the proliferation of CECs by activating mitogen-activated protein kinase and phosphoinositide-3 kinase/Akt pathways. CONCLUSIONS TNFR1-signaling cascade in colonic myeloid lineage cells contributes to the suppression of acute damage-associated mortality presumably by controlling CEC homeostasis.
Collapse
Affiliation(s)
- Emiko Mizoguchi
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Wullaert A, van Loo G, Heyninck K, Beyaert R. Hepatic tumor necrosis factor signaling and nuclear factor-kappaB: effects on liver homeostasis and beyond. Endocr Rev 2007; 28:365-86. [PMID: 17431229 DOI: 10.1210/er.2006-0031] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The proinflammatory cytokine TNF has a pivotal role in liver pathophysiology because it holds the capacity to induce both hepatocyte cell death and hepatocyte proliferation. This dual effect of TNF on hepatocytes reflects its ability to induce both nuclear factor kappaB (NF-kappaB)-dependent gene expression and cell death. Multiple studies have demonstrated the crucial role of the transcription factor NF-kappaB in the decision between life and death of a hepatocyte. Massive hepatocyte apoptosis preceding embryonic lethality in NF-kappaB-deficient mice constituted the first indication of an essential antiapoptotic function of NF-kappaB in the liver. Although many studies confirmed this crucial cytoprotective role of NF-kappaB in adult liver, a number of genetic studies recently obtained conflicting results on the exact role of NF-kappaB in different mouse models of TNF hepatotoxicity, demonstrating that caution should be taken when interpreting studies using different NF-kappaB-deficient mice in distinct models of liver injury. Recent reports showing a role for hepatic NF-kappaB activation in the proliferation of malignant cells during hepatocarcinogenesis, and in the progression of fatty liver diseases to insulin resistance and type 2 diabetes mellitus demonstrate that NF-kappaB can also have more detrimental effects in the liver. Moreover, its role in the development of the metabolic syndrome emphasizes that hepatic NF-kappaB activation might also have adverse effects on the endocrine system. Therefore, understanding the regulation of hepatic TNF signaling and NF-kappaB activation is of critical therapeutic importance. In this review, we summarize how studies on the role of NF-kappaB in different mouse models of liver pathologies have contributed to this understanding.
Collapse
Affiliation(s)
- Andy Wullaert
- Department for Molecular Biomedical Research, VIB, Ghent University, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium
| | | | | | | |
Collapse
|
38
|
Krysov SV, Rowley TF, Al-Shamkhani A. Inhibition of p38 mitogen-activated protein kinase unmasks a CD30-triggered apoptotic pathway in anaplastic large cell lymphoma cells. Mol Cancer Ther 2007; 6:703-11. [PMID: 17308066 DOI: 10.1158/1535-7163.mct-06-0544] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CD30, a non-death domain-containing member of the tumor necrosis factor receptor superfamily, triggers apoptosis in anaplastic large cell lymphoma cells. The CD30 signaling pathways that lead to the induction of apoptosis are poorly defined. Here, we show that the induction of apoptosis by CD30 requires concurrent inhibition of p38 mitogen-activated protein kinase, which itself is activated by engagement of CD30 with CD30 ligand. Treatment of anaplastic large cell lymphoma cells with CD30 ligand and pharmacologic inhibitors of p38 mitogen-activated protein kinase, but not with CD30 ligand or inhibitors alone, triggered the activation of caspase-8 and the induction of apoptosis. Caspase-8 activation occurred within a few hours (2.5-4 h) after receptor triggering, was unaffected by the neutralization of ligands for the death domain-containing receptors TNFR1, Fas, DR3, DR4, or DR5, but was abolished by the expression of a dominant-negative form of the adaptor protein FADD. Importantly, we show that expression of the caspase-8 inhibitor c-FLIP(S) is strongly induced by the CD30 ligand, and that this is dependent on the activation of p38 mitogen-activated protein kinase. Thus, we provide evidence that the induction of apoptosis by CD30 in anaplastic large cell lymphoma cells is normally circumvented by the activation of p38 mitogen-activated protein kinase. These findings have implications for CD30-targeted immunotherapy of anaplastic large cell lymphoma.
Collapse
MESH Headings
- Apoptosis/drug effects
- Blotting, Western
- CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism
- Caspase 3/metabolism
- Caspase 8/metabolism
- Caspase Inhibitors
- Cell Cycle/drug effects
- Fas Ligand Protein/metabolism
- Fas-Associated Death Domain Protein/metabolism
- Humans
- Ki-1 Antigen/immunology
- Ki-1 Antigen/pharmacology
- Lymphoma, Large-Cell, Anaplastic/genetics
- Lymphoma, Large-Cell, Anaplastic/metabolism
- Lymphoma, Large-Cell, Anaplastic/pathology
- Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Member 25/metabolism
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Transfection
- Tumor Cells, Cultured/drug effects
- Tumor Necrosis Factor-alpha/metabolism
- fas Receptor/metabolism
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
- p38 Mitogen-Activated Protein Kinases/genetics
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Sergey V Krysov
- Tenovus Research Laboratory, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, United Kingdom
| | | | | |
Collapse
|
39
|
Iosif RE, Ekdahl CT, Ahlenius H, Pronk CJH, Bonde S, Kokaia Z, Jacobsen SEW, Lindvall O. Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci 2006; 26:9703-12. [PMID: 16988041 PMCID: PMC6674454 DOI: 10.1523/jneurosci.2723-06.2006] [Citation(s) in RCA: 382] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is a proinflammatory cytokine, acting through the TNF-R1 and TNF-R2 receptors. The two receptors have been proposed to mediate distinct TNF-alpha effects in the CNS, TNF-R1 contributing to neuronal damage and TNF-R2 being neuroprotective. Whether TNF-alpha and its receptors play any role for neurogenesis in the adult brain is unclear. Here we used mouse models with loss of TNF-R1 and TNF-R2 function to establish whether signaling through these receptors could influence hippocampal neurogenesis in vivo under basal conditions, as well as after status epilepticus (SE), which is associated with inflammation and elevated TNF-alpha levels. Notably, in the intact brain, the number of new, mature hippocampal neurons was elevated in TNF-R1(-/-) and TNF-R1/R2(-/-) mice, whereas no significant changes were detected in TNF-R2(-/-) mice. Also after SE, the TNF-R1(-/-) and TNF-R1/R2(-/-) mice produced more new neurons. In contrast, the TNF-R2(-/-) mice showed reduced SE-induced neurogenesis. Cell proliferation in the dentate subgranular zone was elevated in TNF-R1(-/-) and TNF-R1/R2(-/-) mice both under basal conditions and after SE. The TNF-R2(-/-) mice either showed no change or minor decrease of cell proliferation. TNF-R1 and TNF-R2 receptors were expressed by hippocampal progenitors, as assessed with reverse transcription-PCR on sorted or cultured cells and immunocytochemistry on cultures. Our data reveal differential actions of TNF-R1 and TNF-R2 signaling in adult hippocampal neurogenesis and identify for the first time TNF-R1 as a negative regulator of neural progenitor proliferation in both the intact and pathological brain.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Cells, Cultured
- Growth Inhibitors/genetics
- Growth Inhibitors/physiology
- Hippocampus/cytology
- Hippocampus/pathology
- Hippocampus/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neurons/cytology
- Neurons/metabolism
- Neurons/pathology
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/physiology
- Receptors, Tumor Necrosis Factor, Type II/deficiency
- Receptors, Tumor Necrosis Factor, Type II/physiology
- Stem Cells/cytology
- Stem Cells/physiology
Collapse
Affiliation(s)
- Robert E. Iosif
- Laboratory of Neurogenesis and Cell Therapy, Section of Restorative Neurology, Wallenberg Neuroscience Center
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE 221 84 Lund, Sweden
| | - Christine T. Ekdahl
- Laboratory of Neurogenesis and Cell Therapy, Section of Restorative Neurology, Wallenberg Neuroscience Center
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE 221 84 Lund, Sweden
| | - Henrik Ahlenius
- Laboratory of Neural Stem Cell Biology, Section of Restorative Neurology, Stem Cell Institute, University Hospital, SE 221 84 Lund, Sweden, and
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE 221 84 Lund, Sweden
| | - Cornelis J. H. Pronk
- Hematopoietic Stem Cell Laboratory, and
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE 221 84 Lund, Sweden
| | - Sara Bonde
- Laboratory of Neurogenesis and Cell Therapy, Section of Restorative Neurology, Wallenberg Neuroscience Center
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE 221 84 Lund, Sweden
| | - Zaal Kokaia
- Laboratory of Neural Stem Cell Biology, Section of Restorative Neurology, Stem Cell Institute, University Hospital, SE 221 84 Lund, Sweden, and
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE 221 84 Lund, Sweden
| | - Sten-Eirik W. Jacobsen
- Hematopoietic Stem Cell Laboratory, and
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE 221 84 Lund, Sweden
| | - Olle Lindvall
- Laboratory of Neurogenesis and Cell Therapy, Section of Restorative Neurology, Wallenberg Neuroscience Center
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE 221 84 Lund, Sweden
| |
Collapse
|
40
|
Hui D, Satkunam N, Al Kaptan M, Reiman T, Lai R. Pathway-specific apoptotic gene expression profiling in chronic lymphocytic leukemia and follicular lymphoma. Mod Pathol 2006; 19:1192-202. [PMID: 16763612 DOI: 10.1038/modpathol.3800632] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Defects in the apoptotic pathway are pathogenetically important in chronic lymphocytic leukemia and follicular lymphoma. To further understand these defects, we profiled the apoptotic gene expression of these two neoplasms. Oligonucleotide arrays with 112 apoptotic genes were used, and data analysis was performed on seven chronic lymphocytic leukemia and 10 follicular lymphoma frozen tumor samples from six and seven patients, respectively. The overall gene expression pattern was strikingly similar among all 17 samples, regardless of the type of lymphoma and history of chemotherapy exposure. MCL1, TNFRSF1B and TNFRSF7 were highly expressed in most cases. The apoptotic gene expression between the groups of untreated chronic lymphocytic leukemia (n=3) and untreated follicular lymphoma (n=6) was also similar (Pearson correlation coefficient, 0.94). Comparison between the groups of untreated chronic lymphocytic leukemia (n=3) and postchemotherapy chronic lymphocytic leukemia (n=4) revealed six genes with >2-fold changes, including BIRC5/Survivin that was higher in the postchemotherapy samples. This finding was validated by immunohistochemistry. Similar analysis of follicular lymphoma cases did not identify any significant differences. To conclude, our findings suggest that chronic lymphocytic leukemia and follicular lymphoma share common apoptotic defects, and highlight the importance of MCL1 and the TNF pathway. Upregulation of survivin may be one of the mechanisms by which chronic lymphocytic leukemia becomes desensitized to chemotherapy.
Collapse
MESH Headings
- Aged
- Antineoplastic Agents/therapeutic use
- Apoptosis/genetics
- Biopsy
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Humans
- Inhibitor of Apoptosis Proteins
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/metabolism
- Lymphoma, Follicular/pathology
- Male
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Middle Aged
- Myeloid Cell Leukemia Sequence 1 Protein
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Oligonucleotide Array Sequence Analysis
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type II
- Survivin
- Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics
- Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- David Hui
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AL, Canada
| | | | | | | | | |
Collapse
|
41
|
Abstract
In response to invasion by microbial pathogens, host defense mechanisms get activated by both the innate and adaptive arms of the immune responses. TNF (tumor necrosis factor) is a potent proinflammatory cytokine expressed by activated macrophages and lymphocytes that induces diverse cellular responses that can vary from apoptosis to the expression of genes involved in both early inflammatory and acquired immune responses. A wide spectrum of microbes has acquired elegant mechanisms to overcome or deflect the host responses mediated by TNF. For example, modulatory proteins encoded by multiple families of viruses can block TNF and TNF-mediated responses at multiple levels, such as the inhibition of the TNF ligand or its receptors, or by modulating key transduction molecules of the TNF signaling pathway. Bacteria, on the other hand, tend to modify TNF-mediated responses specifically by regulating components of the TNF signaling pathway. Investigation of these diverse strategies employed by viral and bacterial pathogens has significantly advanced our understanding of both host TNF responses and microbial pathogenesis. This review summarizes the diverse microbial strategies to regulate TNF and how such insights into TNF modulation could benefit the treatment of inflammatory or autoimmune diseases.
Collapse
|