1
|
Wang Y, Li S, Liang X, Fan J, Li S, Zhou F, Li X, Lai M, Feng D, Li Y. AP2A1 activates Rab7 to promote axonal autophagosome transport and slow the progression of Alzheimer's disease. Alzheimers Res Ther 2025; 17:132. [PMID: 40490761 DOI: 10.1186/s13195-025-01771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 05/23/2025] [Indexed: 06/11/2025]
Affiliation(s)
- Yangyang Wang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
- Chongqing Traditional Chinese Medicine Hospital, No.6, Panxi Seven Branch Road, Jiangbei District, Chongqing, 400011, P. R. China
| | - Siyu Li
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
- Chongqing Traditional Chinese Medicine Hospital, No.6, Panxi Seven Branch Road, Jiangbei District, Chongqing, 400011, P. R. China
| | - Xiao Liang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Jianing Fan
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Shijie Li
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, 400030, P. R. China
| | - Fanlin Zhou
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, 400030, P. R. China
| | - Xiaoju Li
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, 400030, P. R. China
| | - Mengmeng Lai
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Dianmao Feng
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yu Li
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
- Chongqing Traditional Chinese Medicine Hospital, No.6, Panxi Seven Branch Road, Jiangbei District, Chongqing, 400011, P. R. China.
| |
Collapse
|
2
|
Skóra B, Szychowski KA. Proteostasis and autophagy disruption by the aging-related VGVAPG hexapeptide - preliminary insights into a potential novel elastin-induced neurodegeneration pathway in an in vitro human cellular neuron model. Neurochem Int 2025; 187:105992. [PMID: 40348194 DOI: 10.1016/j.neuint.2025.105992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/05/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
The hexapeptide Val-Gly-Val-Ala-Pro-Gly (VGVAPG) is the most readily released product of elastin degradation, a process closely associated with aging. Recent studies have demonstrated the ability of this peptide to upregulate Sirtuin 2 (SIRT2) mRNA and protein expression. The correlation between HRD1 ligase (Synoviolin 1) and the degradation of SIRT2 has been previously reported in the literature. This study aimed to explore the impact of VGVAPG-induced interaction between HRD1 and SIRT2 and its effects on autophagy in differentiated SH-SY5Y cells in vitro (a simplified model of neurons). The results revealed that VGVAPG decreases HRD1 mRNA and protein expression while correlating with SIRT2 overexpression. Further analysis showed reduced SEL1L protein levels and an increase in p97/VCP protein expression. Additionally, enhanced phosphorylation of IRE1α indicated induction of ER stress in the tested cell model without affecting mTOR. Decreased proteasome activity and accumulation of ubiquitin were also noted. This phenomenon triggered VGVAPG-induced autophagy, as evidenced by increased expression of autophagy-related proteins ATG16L1, ATG5, ATG18, and FIP200. However, autophagy was suppressed probably as a result of VGVAPG-induced phosphorylation of ERK1/2. These findings demonstrate that the aging-related hexapeptide VGVAPG downregulates the function of the SEL1L-HRD1 complex, leading to SIRT2 accumulation and subsequent ER stress due to ERAD and UPS. This cascade, in turn, activates autophagy as an alternative clearance pathway aimed at restoring proteostasis; however, the process becomes dysregulated, leading to persistent ER stress. This dual effect may have significant implications in neurobiology, given the well-established correlation between autophagy impairment and aging-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszów, St. Sucharskiego 2, 35 -225, Rzeszów, Poland.
| | - Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszów, St. Sucharskiego 2, 35 -225, Rzeszów, Poland
| |
Collapse
|
3
|
Fourriere L, Gleeson PA. Organelle perturbation in Alzheimer's disease: do intracellular amyloid-ß and the fragmented Golgi mediate early intracellular neurotoxicity? Front Cell Dev Biol 2025; 13:1550211. [PMID: 40302938 PMCID: PMC12037564 DOI: 10.3389/fcell.2025.1550211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/17/2025] [Indexed: 05/02/2025] Open
Abstract
Alzheimer's disease is a devastating and incurable neurological disease. Most of the current research has focused on developing drugs to clear the extracellular amyloid plaques in the brain of Alzheimer's disease patients. However, this approach is limited as it does not treat the underlying cause of the disease. In this review, we highlight the evidence in the field showing that the accumulation of intracellular toxic amyloid-ß could underpin very early events in neuronal death in both familial early-onset and sporadic late-onset alzheimer's disease. Indeed, intracellular amyloid-ß, which is produced within intracellular compartments, has been shown to perturb endosomal and secretory organelles, in different neuronal models, and the brain of Alzheimer's patients, leading to membrane trafficking defects and perturbation of neuronal function associated with cognition defects. The Golgi apparatus is a central transport and signaling hub at the crossroads of the secretory and endocytic pathways and perturbation of the Golgi ribbon structure is a hallmark of Alzheimer's disease. Here, we discuss the role of the Golgi as a major player in the regulation of amyloid-β production and propose that the Golgi apparatus plays a key role in a cellular network which can seed the onset of Alzheimer's disease. Moreover, we propose that the Golgi is central in an intracellular feedback loop leading to an enhanced level of amyloid-β production resulting in early neuronal defects before the appearance of clinical symptoms. Further advances in defining the molecular pathways of this intracellular feedback loop could support the design of new therapeutic strategies to target a primary source of neuronal toxicity in this disease.
Collapse
|
4
|
Chou CC, Vest R, Prado MA, Wilson-Grady J, Paulo JA, Shibuya Y, Moran-Losada P, Lee TT, Luo J, Gygi SP, Kelly JW, Finley D, Wernig M, Wyss-Coray T, Frydman J. Proteostasis and lysosomal repair deficits in transdifferentiated neurons of Alzheimer's disease. Nat Cell Biol 2025; 27:619-632. [PMID: 40140603 PMCID: PMC11991917 DOI: 10.1038/s41556-025-01623-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/21/2025] [Indexed: 03/28/2025]
Abstract
Ageing is the most prominent risk factor for Alzheimer's disease (AD). However, the cellular mechanisms linking neuronal proteostasis decline to the characteristic aberrant protein deposits in the brains of patients with AD remain elusive. Here we develop transdifferentiated neurons (tNeurons) from human dermal fibroblasts as a neuronal model that retains ageing hallmarks and exhibits AD-linked vulnerabilities. Remarkably, AD tNeurons accumulate proteotoxic deposits, including phospho-tau and amyloid β, resembling those in APP mouse brains and the brains of patients with AD. Quantitative tNeuron proteomics identify ageing- and AD-linked deficits in proteostasis and organelle homeostasis, most notably in endosome-lysosomal components. Lysosomal deficits in aged tNeurons, including constitutive lysosomal damage and ESCRT-mediated lysosomal repair defects, are exacerbated in AD tNeurons and linked to inflammatory cytokine secretion and cell death. Providing support for the centrality of lysosomal deficits in AD, compounds ameliorating lysosomal function reduce amyloid β deposits and cytokine secretion. Thus, the tNeuron model system reveals impaired lysosomal homeostasis as an early event of ageing and AD.
Collapse
Affiliation(s)
- Ching-Chieh Chou
- Department of Biology, Stanford University, Stanford, CA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Ryan Vest
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences and The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
- Qinotto Inc., San Carlos, CA, USA
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | | | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Yohei Shibuya
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Patricia Moran-Losada
- Department of Neurology and Neurological Sciences and The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ting-Ting Lee
- Department of Biology, Stanford University, Stanford, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Jian Luo
- Palo Alto Veterans Institute for Research Inc. (PAVIR), Palo Alto, CA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Marius Wernig
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences and The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Pietrzak-Wawrzyńska BA, Wnuk A, Przepiórska-Drońska K, Łach A, Kajta M. Non-nuclear Estrogen Receptor Signaling as a Promising Therapeutic Target to Reverse Alzheimer's Disease-related Autophagy Deficits and Upregulate the Membrane ESR1 and ESR2 Which Involves DNA Methylation-dependent Mechanisms. J Mol Biol 2025; 437:168982. [PMID: 39914657 DOI: 10.1016/j.jmb.2025.168982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/13/2025] [Accepted: 01/31/2025] [Indexed: 02/20/2025]
Abstract
Although Alzheimer's disease (AD) affects millions of individuals worldwide, there are currently no effective treatments available. Recent findings have suggested that non-nuclear estrogen receptor (ER) signaling represents promising therapeutic target for central nervous system disorders, offering potential treatments without the significant side effects associated with the activation of nuclear ERs. Because ER signaling deficiency and autophagy impairment have been linked to AD etiology, the present study aimed to selectively target non-nuclear ERs signaling pathways with PaPE-1 and identify autophagy-related mechanisms of neuroprotection in a cellular model of AD. The present study demonstrated that PaPE-1 protected mouse cortical neurons from AD pathology, as evidenced by MAP2-specific labeling. Posttreatment with PaPE-1 reversed the amyloid-β (Aβ)-evoked decrease in autophagic vesicles level, and increased the expression of autophagy-related mRNAs and proteins, accompanied by hypomethylation of the Atg7 gene. Moreover, posttreatment with PaPE-1 increased the levels of membrane fraction receptors ESR1/ERα and ESR2/ERβ, which corresponds to increased Esr1 and Esr2 mRNA expression and DNA hypomethylation of specific genes. In addition to inhibiting DNA methylation of autophagy and ER-related genes, PaPE-1 did not alter global DNA methylation but stimulated HAT activity in Aβ-treated cells. In summary, PaPE-1 promoted neuroprotection against Aβ-induced toxicity that involved stimulation of autophagy, upregulation of membrane ESR1 and ESR2 and decreased DNA methylation of respective genes. The present study proposes a novel therapeutic approach against AD that is based on the selective activation of non-nuclear ER signaling to overcome Aβ-induced autophagy deficits and normalize the epigenetic status of cerebral neurons.
Collapse
Affiliation(s)
- Bernadeta A Pietrzak-Wawrzyńska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Laboratory of Neuropharmacology and Epigenetics, Smetna Street 12 31-343 Krakow, Poland
| | - Agnieszka Wnuk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Laboratory of Neuropharmacology and Epigenetics, Smetna Street 12 31-343 Krakow, Poland
| | - Karolina Przepiórska-Drońska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Laboratory of Neuropharmacology and Epigenetics, Smetna Street 12 31-343 Krakow, Poland
| | - Andrzej Łach
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Laboratory of Neuropharmacology and Epigenetics, Smetna Street 12 31-343 Krakow, Poland
| | - Małgorzata Kajta
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Laboratory of Neuropharmacology and Epigenetics, Smetna Street 12 31-343 Krakow, Poland.
| |
Collapse
|
6
|
Wang L, Sooram B, Kumar R, Schedin‐Weiss S, Tjernberg LO, Winblad B. Tau degradation in Alzheimer's disease: Mechanisms and therapeutic opportunities. Alzheimers Dement 2025; 21:e70048. [PMID: 40109019 PMCID: PMC11923393 DOI: 10.1002/alz.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 03/22/2025]
Abstract
In Alzheimer's disease (AD), tau undergoes abnormal post-translational modifications and aggregations. Impaired intracellular degradation pathways further exacerbate the accumulation of pathological tau. A new strategy - targeted protein degradation - recently emerged as a modality in drug discovery where bifunctional molecules bring the target protein close to the degradation machinery to promote clearance. Since 2016, this strategy has been applied to tau pathologies and attracted broad interest in academia and the pharmaceutical industry. However, a systematic review of recent studies on tau degradation mechanisms is lacking. Here we review tau degradation mechanisms (the ubiquitin-proteasome system and the autophagy-lysosome pathway), their dysfunction in AD, and tau-targeted degraders, such as proteolysis-targeting chimeras and autophagy-targeting chimeras. We emphasize the need for a continuous exploration of tau degradation mechanisms and provide a future perspective for developing tau-targeted degraders, encouraging researchers to work on new treatment options for AD patients. HIGHLIGHTS: Post-translational modifications, aggregation, and mutations affect tau degradation. A vicious circle exists between impaired degradation pathways and tau pathologies. Ubiquitin plays an important role in complex degradation pathways. Tau-targeted degraders provide promising strategies for novel AD treatment.
Collapse
Affiliation(s)
- Lisha Wang
- Division of NeurogeriatricsDepartment of Neurobiology, Care Sciences and SocietyKarolinska InstitutetSolnaSweden
| | - Banesh Sooram
- Division of NeurogeriatricsDepartment of Neurobiology, Care Sciences and SocietyKarolinska InstitutetSolnaSweden
| | - Rajnish Kumar
- Division of NeurogeriatricsDepartment of Neurobiology, Care Sciences and SocietyKarolinska InstitutetSolnaSweden
- Department of Pharmaceutical Engineering & TechnologyIndian Institute of Technology (BHU)VaranasiIndia
| | - Sophia Schedin‐Weiss
- Division of NeurogeriatricsDepartment of Neurobiology, Care Sciences and SocietyKarolinska InstitutetSolnaSweden
| | - Lars O. Tjernberg
- Division of NeurogeriatricsDepartment of Neurobiology, Care Sciences and SocietyKarolinska InstitutetSolnaSweden
| | - Bengt Winblad
- Division of NeurogeriatricsDepartment of Neurobiology, Care Sciences and SocietyKarolinska InstitutetSolnaSweden
- Theme Inflammation and AgingKarolinska University HospitalHuddingeSweden
| |
Collapse
|
7
|
Aubrey LD, Radford SE. How is the Amyloid Fold Built? Polymorphism and the Microscopic Mechanisms of Fibril Assembly. J Mol Biol 2025:169008. [PMID: 39954780 DOI: 10.1016/j.jmb.2025.169008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
For a given protein sequence, many, up to sometimes hundreds of different amyloid fibril folds, can be formed in vitro. Yet, fibrils extracted from, or found in, human tissue, usually at the end of a long disease process, are often structurally homogeneous. Through monitoring of amyloid assembly reactions in vitro, the scientific community has gained a detailed understanding of the kinetic mechanisms of fibril assembly and the rates at which the different processes involved occur. However, how this kinetic information relates to the structural changes as a protein transforms from its initial, native structure to the canonical cross-β structure of amyloid remain obscure. While cryoEM has yielded a plethora of high-resolution information that portray a vast variety of fibril structures, there remains little knowledge of how and why each particular structure resulted. Recent work has demonstrated that fibril structures can change over an assembly time course, despite the different fibril types having similar thermodynamic stability. This points to kinetic control of the fibrils formed, with structures that initiate or elongate faster becoming the dominant products of assembly. Annotating kinetic assembly mechanisms alongside structural analysis of the fibrils formed is required to truly understand the molecular mechanisms of amyloid formation. However, this is a complicated task. In this review, we discuss how embracing this challenge could open new frontiers in amyloid research and new opportunities for therapy.
Collapse
Affiliation(s)
- Liam D Aubrey
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
8
|
Li S, Wang Y, Liang X, Li Y. Autophagy intersection: Unraveling the role of the SNARE complex in lysosomal fusion in Alzheimer's disease. J Alzheimers Dis 2025; 103:979-993. [PMID: 39784954 DOI: 10.1177/13872877241307403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Autophagy is a fundamental cellular process critical for maintaining neuronal health, particularly in the context of neurodegenerative diseases such as Alzheimer's disease (AD). This review explores the intricate role of the SNARE complex in the fusion of autophagosomes with lysosomes, a crucial step in autophagic flux. Disruptions in this fusion process, often resulting from aberrant SNARE complex function or impaired lysosomal acidification, contribute to the pathological accumulation of autophagosomes and lysosomes observed in AD. We examine the composition, regulation, and interacting molecules of the SNARE complex, emphasizing its central role in autophagosome-lysosome fusion. Furthermore, we discuss the potential impact of specific SNARE protein mutations and the broader implications for neuronal health and disease progression. By elucidating the molecular mechanisms underlying SNARE-mediated autophagic fusion, we aim to highlight therapeutic targets that could restore autophagic function and mitigate the neurodegenerative processes characteristic of AD.
Collapse
Affiliation(s)
- Siyu Li
- School of Medicine, Chongqing University, Chongqing, P.R. China
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, P.R. China
| | - Yangyang Wang
- School of Medicine, Chongqing University, Chongqing, P.R. China
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, P.R. China
| | - Xiao Liang
- School of Medicine, Chongqing University, Chongqing, P.R. China
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, P.R. China
| | - Yu Li
- School of Medicine, Chongqing University, Chongqing, P.R. China
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, P.R. China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing, P.R. China
| |
Collapse
|
9
|
Zheng Q, Wang X. Alzheimer's disease: insights into pathology, molecular mechanisms, and therapy. Protein Cell 2025; 16:83-120. [PMID: 38733347 PMCID: PMC11786724 DOI: 10.1093/procel/pwae026] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia, is characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. This condition casts a significant shadow on global health due to its complex and multifactorial nature. In addition to genetic predispositions, the development of AD is influenced by a myriad of risk factors, including aging, systemic inflammation, chronic health conditions, lifestyle, and environmental exposures. Recent advancements in understanding the complex pathophysiology of AD are paving the way for enhanced diagnostic techniques, improved risk assessment, and potentially effective prevention strategies. These discoveries are crucial in the quest to unravel the complexities of AD, offering a beacon of hope for improved management and treatment options for the millions affected by this debilitating disease.
Collapse
Affiliation(s)
- Qiuyang Zheng
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Xin Wang
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
10
|
la Torre A, Lo Vecchio F, Angelillis VS, Gravina C, D’Onofrio G, Greco A. Reinforcing Nrf2 Signaling: Help in the Alzheimer's Disease Context. Int J Mol Sci 2025; 26:1130. [PMID: 39940900 PMCID: PMC11818887 DOI: 10.3390/ijms26031130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Oxidative stress plays a role in various pathophysiological diseases, including neurogenerative diseases, such as Alzheimer's disease (AD), which is the most prevalent neuro-pathology in the aging population. Oxidative stress has been reported to be one of the earliest pathological alterations in AD. Additionally, it was demonstrated that in older adults, there is a loss of free radical scavenging ability. The Nrf2 transcription factor is a key regulator in antioxidant defense systems, but, with aging, both the amount and the transcriptional activity of Nrf2 decrease. With the available treatments for AD being poorly effective, reinforcing the antioxidant defense systems via the Nrf2 pathway may be a way to prevent and treat AD. To highlight the predominant role of Nrf2 signaling in defending against oxidative stress and, therefore, against neurotoxicity, we present an overview of the natural compounds that exert their own neuroprotective roles through the activation of the Nrf2 pathway. This review is an opportunity to promote a holistic approach in the treatment of AD and to highlight the need to further refine the development of new potential Nrf2-targeting drugs.
Collapse
Affiliation(s)
- Annamaria la Torre
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (F.L.V.); (C.G.)
| | - Filomena Lo Vecchio
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (F.L.V.); (C.G.)
| | - Valentina Soccorsa Angelillis
- Complex Unit of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (V.S.A.); (A.G.)
| | - Carolina Gravina
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (F.L.V.); (C.G.)
| | - Grazia D’Onofrio
- Clinical Psychology Service, Health Department, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy;
| | - Antonio Greco
- Complex Unit of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (V.S.A.); (A.G.)
| |
Collapse
|
11
|
Ma Y, Xu D, Gan Y, Chen Z, Chen Y, Han X. Adverse outcome pathway of Alzheimer's disease-like changes resulting from autophagy flux blockade after MC-LR exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125322. [PMID: 39549990 DOI: 10.1016/j.envpol.2024.125322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024]
Abstract
Microcystins (MCs) pollution is a worldwide environmental issue concerning about human health. Microcystin-leucine-arginine (MC-LR), the most common type of MCs produced by cyanobacteria, could enter the brain and bring about damage to the nervous system. Up to date, it is not clear about the mechanism of MC-LR-induced neurotoxicity. Amyloid-β (Aβ) deposits are hallmark of Alzheimer's disease (AD). In this study, we revealed that MC-LR exposure at environment-related doses (1, 7.5, 15 μg/L) could promote Aβ accumulation in mouse brain. Mechanically, we firstly found that Aβ accumulation is closely associated with abnormal Aβ degradation due to autophagy flux blockade and lysosome dysfunctions in neurons after MC-LR exposure. Moreover, an adverse outcome pathway (AOP) framework oriented to neurotoxicity of MC-LR was conducted in this study. MC-LR inhibited the activity of protein phosphatase 2A (PP2A) in neurons, which is regarded as a molecular initiating event (MIE). In addition, the abnormalities in autophagy were observed after MC-LR exposure. The hindered autophagosome-lysosome fusion and disrupted lysosomal function were key events (KEs) after MC-LR exposure, which contributed to proteostasis dysregulation, ultimately leading to Aβ abnormal degradation and learning deficits as adverse outcomes (AO) of neurotoxicity. This study provided novel information about MC-LR neurotoxicity and new insights into understanding the mechanisms underlying the environmental chemicals-induced neurodegeneration diseases, which has deep implications for public health.
Collapse
Affiliation(s)
- Yuhan Ma
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Dihui Xu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yibin Gan
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Zining Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yabing Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Xiaodong Han
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
12
|
Jin Y, Zhao L, Zhang Y, Chen T, Shi H, Sun H, Ding S, Chen S, Cao H, Zhang G, Li Q, Gao J, Xiao M, Sheng C. BIN1 deficiency enhances ULK3-dependent autophagic flux and reduces dendritic size in mouse hippocampal neurons. Autophagy 2025; 21:223-242. [PMID: 39171951 DOI: 10.1080/15548627.2024.2393932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
Genome-wide association studies identified variants around the BIN1 (bridging integrator 1) gene locus as prominent risk factors for late-onset Alzheimer disease. In the present study, we decreased the expression of BIN1 in mouse hippocampal neurons to investigate its neuronal function. Bin1 knockdown via RNAi reduced the dendritic arbor size in primary cultured hippocampal neurons as well as in mature Cornu Ammonis 1 excitatory neurons. The AAV-mediated Bin1 RNAi knockdown also generated a significant regional volume loss around the injection sites at the organ level, as revealed by 7-Tesla structural magnetic resonance imaging, and an impaired spatial reference memory performance in the Barnes maze test. Unexpectedly, Bin1 knockdown led to concurrent activation of both macroautophagy/autophagy and MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1). Autophagy inhibition with the lysosome inhibitor chloroquine effectively mitigated the Bin1 knockdown-induced dendritic regression. The subsequent molecular studydemonstrated that increased expression of ULK3 (unc-51 like kinase 3), which is MTOR-insensitive, supported autophagosome formation in BIN1 deficiency. Reducing ULK3 activity with SU6668, a receptor tyrosine kinase inhibitor, or decreasing neuronal ULK3 expression through AAV-mediated RNAi, significantly attenuated Bin1 knockdown-induced hippocampal volume loss and spatial memory decline. In Alzheimer disease patients, the major neuronal isoform of BIN1 is specifically reduced. Our work suggests this reduction is probably an important molecular event that increases the autophagy level, which might subsequently promote brain atrophy and cognitive impairment through reducing dendritic structures, and ULK3 is a potential interventional target for relieving these detrimental effects.Abbreviations: AV: adeno-associated virus; Aβ: amyloid-β; ACTB: actin, beta; AD: Alzheimer disease; Aduk: Another Drosophila Unc-51-like kinase; AKT1: thymoma viral proto-oncogene 1; AMPK: AMP-activated protein kinase; AP: autophagosome; BafA1: bafilomycin A1; BDNF: brain derived neurotrophic factor; BIN1: bridging integrator 1; BIN1-iso1: BIN1, isoform 1; CA1: cornu Ammonis 1; CA3: cornu Ammonis 3; CLAP: clathrin and adapter binding; CQ: chloroquine; DMEM: Dulbecco's modified Eagle medium; EGFP: enhanced green fluorescent protein; GWAS: genome-wide association study; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MRI: magnetic resonance imaging; MTOR; mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; PET: positron emission tomography; qRT-PCR: real-time quantitative reverse transcription PCR; ROS: reactive oxygen species; RPS6KB1: ribosomal protein S6 kinase B1; TFEB: transcription factor EB; ULK1: unc-51 like kinase 1; ULK3: unc-51 like kinase 3.
Collapse
Affiliation(s)
- Yuxi Jin
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Lin Zhao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yanli Zhang
- Department of Psychiatry, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Tingzhen Chen
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huili Shi
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Huaiqing Sun
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shixin Ding
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Sijia Chen
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Haifeng Cao
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Guannan Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Qian Li
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Junying Gao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Chengyu Sheng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Zhuang X, Lin J, Song Y, Ban R, Zhao X, Xia Z, Wang Z, Zhang G. The Interplay Between Accumulation of Amyloid-Beta and Tau Proteins, PANoptosis, and Inflammation in Alzheimer's Disease. Neuromolecular Med 2024; 27:2. [PMID: 39751702 DOI: 10.1007/s12017-024-08815-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/01/2024] [Indexed: 01/04/2025]
Abstract
Alzheimer's disease (AD) is a common progressive neurodegenerative disorder, and the vast majority of cases occur in elderly patients. Recently, the accumulation of Aβ and tau proteins has drawn considerable attention in AD research. This review explores the multifaceted interactions between these proteins and their contribution to the pathological landscape of AD, encompassing synaptic dysfunction, neuroinflammation, and PANoptosis. PANoptosis is a collective term for programmed cell death (PCD) modalities that encompass elements of apoptosis, pyroptosis, and necroptosis. The accumulation of Aβ peptides and tau proteins, along with the immune response in brain cells, may trigger PANoptosis, thus advancing the progression of the disease. Recent advancements in molecular imaging and genetics have provided deeper insights into the interactions between Aβ peptides, tau proteins, and the immune response. The review also discusses the role of mitochondrial dysregulation in AD. The exploration of the interplay between neurodegeneration, immune responses, and cell death offers promising avenues for the development of innovative treatments.
Collapse
Affiliation(s)
- Xianbo Zhuang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Jie Lin
- School of Basic Medicine Sciences, Shandong University, Jinan, China
- Department of Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China
| | - Yamin Song
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Ru Ban
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Xin Zhao
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Zhangyong Xia
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China.
- Department of Neurology, Liaocheng People's Hospital, Shandong University, Jinan, 250012, China.
- Department of Neurology, the Second People's Hospital of Liaocheng, Liaocheng, China.
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, 252000, China.
| | - Guifeng Zhang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China.
| |
Collapse
|
14
|
Chen H, Hinz K, Zhang C, Rodriguez Y, Williams SN, Niu M, Ma X, Chao X, Frazier AL, McCarson KE, Wang X, Peng Z, Liu W, Ni HM, Zhang J, Swerdlow RH, Ding WX. Late-Life Alcohol Exposure Does Not Exacerbate Age-Dependent Reductions in Mouse Spatial Memory and Brain TFEB Activity. Biomolecules 2024; 14:1537. [PMID: 39766244 PMCID: PMC11673978 DOI: 10.3390/biom14121537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Alcohol consumption is believed to affect Alzheimer's disease (AD) risk, but the contributing mechanisms are not well understood. A potential mediator of the proposed alcohol-AD connection is autophagy, a degradation pathway that maintains organelle and protein homeostasis. Autophagy is regulated through the activity of Transcription factor EB (TFEB), which promotes lysosome and autophagy-related gene expression. The purpose of this study is to explore whether chronic alcohol consumption worsens the age-related decline in TFEB-mediated lysosomal biogenesis in the brain and exacerbates cognitive decline associated with aging. To explore the effect of alcohol on brain TFEB and autophagy, we exposed young (3-month-old) and aged (23-month-old) mice to two alcohol-feeding paradigms and assessed biochemical, transcriptome, histology, and behavioral endpoints. In young mice, alcohol decreased hippocampal nuclear TFEB staining but increased SQSTM1/p62, LC3-II, ubiquitinated proteins, and phosphorylated Tau. Hippocampal TFEB activity was lower in aged mice than it was in young mice, and Gao-binge alcohol feeding did not worsen the age-related reduction in TFEB activity. Morris Water and Barnes Maze spatial memory tasks were used to characterize the effects of aging and chronic alcohol exposure (mice fed alcohol for 4 weeks). The aged mice showed worse spatial memory acquisition in both tests. Alcohol feeding slightly impaired spatial memory in the young mice, but had little effect or even slightly improved spatial memory acquisition in the aged mice. In conclusion, aging produces greater reductions in brain autophagy flux and impairment of spatial memory than alcohol consumption.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA; (H.C.); (K.H.); (C.Z.); (Y.R.); (S.N.W.); (M.N.); (X.M.); (X.C.); (K.E.M.); (H.-M.N.)
| | - Kaitlyn Hinz
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA; (H.C.); (K.H.); (C.Z.); (Y.R.); (S.N.W.); (M.N.); (X.M.); (X.C.); (K.E.M.); (H.-M.N.)
| | - Chen Zhang
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA; (H.C.); (K.H.); (C.Z.); (Y.R.); (S.N.W.); (M.N.); (X.M.); (X.C.); (K.E.M.); (H.-M.N.)
| | - Yssa Rodriguez
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA; (H.C.); (K.H.); (C.Z.); (Y.R.); (S.N.W.); (M.N.); (X.M.); (X.C.); (K.E.M.); (H.-M.N.)
| | - Sha Neisha Williams
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA; (H.C.); (K.H.); (C.Z.); (Y.R.); (S.N.W.); (M.N.); (X.M.); (X.C.); (K.E.M.); (H.-M.N.)
| | - Mengwei Niu
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA; (H.C.); (K.H.); (C.Z.); (Y.R.); (S.N.W.); (M.N.); (X.M.); (X.C.); (K.E.M.); (H.-M.N.)
| | - Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA; (H.C.); (K.H.); (C.Z.); (Y.R.); (S.N.W.); (M.N.); (X.M.); (X.C.); (K.E.M.); (H.-M.N.)
| | - Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA; (H.C.); (K.H.); (C.Z.); (Y.R.); (S.N.W.); (M.N.); (X.M.); (X.C.); (K.E.M.); (H.-M.N.)
| | - Alexandria L. Frazier
- R.L. Smith IDDRC Rodent Behavior Facility, Disease Model and Assessment Services, The University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Kenneth E. McCarson
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA; (H.C.); (K.H.); (C.Z.); (Y.R.); (S.N.W.); (M.N.); (X.M.); (X.C.); (K.E.M.); (H.-M.N.)
- R.L. Smith IDDRC Rodent Behavior Facility, Disease Model and Assessment Services, The University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Xiaowan Wang
- Department of Neurology, The University of Kansas Medical Center, Kansas City, KS 66160, USA; (X.W.); (R.H.S.)
| | - Zheyun Peng
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, MI 48201, USA; (Z.P.); (W.L.)
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, MI 48201, USA; (Z.P.); (W.L.)
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA; (H.C.); (K.H.); (C.Z.); (Y.R.); (S.N.W.); (M.N.); (X.M.); (X.C.); (K.E.M.); (H.-M.N.)
| | - Jianhua Zhang
- Department of Pathology, Division of Molecular Cellular Pathology, University of Alabama at Birmingham, 901 19th Street South, Birmingham, AL 35294, USA;
| | - Russell H. Swerdlow
- Department of Neurology, The University of Kansas Medical Center, Kansas City, KS 66160, USA; (X.W.); (R.H.S.)
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA; (H.C.); (K.H.); (C.Z.); (Y.R.); (S.N.W.); (M.N.); (X.M.); (X.C.); (K.E.M.); (H.-M.N.)
- Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
15
|
Mothes T, Konstantinidis E, Eltom K, Dakhel A, Rostami J, Erlandsson A. Tau processing and tau-mediated inflammation differ in human APOEε2 and APOEε4 astrocytes. iScience 2024; 27:111163. [PMID: 39524360 PMCID: PMC11549983 DOI: 10.1016/j.isci.2024.111163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/28/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) and progressive supra-nuclear palsy (PSP) are both proteinopathies, characterized by the accumulation of tau aggregates. APOEε4 is the greatest genetic risk factor for developing AD, while APOEε2 is a significant risk factor for developing PSP. In the brain, astrocytes are the predominant producer of ApoE, but they are also important for inflammation and overall brain homeostasis. Although, tau inclusions appear frequently in astrocytes in both AD and PSP brains, their connection to ApoE remains unclear. Here, we show that hiPSC-derived APOE 2/2 astrocytes accumulate, process, and spread pathogenic tau aggregates more efficiently than isogenic APOE 4/4 astrocytes. Moreover, the APOE 2/2 astrocytes display a more robust inflammatory response, which could be of relevance for the disease course. Taken together, our data highlight a central role of ApoE in astrocyte-mediated tau pathology.
Collapse
Affiliation(s)
- Tobias Mothes
- Uppsala University, Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala, Sweden
| | - Evangelos Konstantinidis
- Uppsala University, Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala, Sweden
| | - Khalid Eltom
- Uppsala University, Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala, Sweden
| | - Abdulkhalek Dakhel
- Uppsala University, Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala, Sweden
| | - Jinar Rostami
- Uppsala University, Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala, Sweden
| | - Anna Erlandsson
- Uppsala University, Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala, Sweden
| |
Collapse
|
16
|
Zaman Z, Islam R, Koganti B, Falki V, Osentoski T, Graham S, Sharoar MG. Highly prevalent geriatric medications and their effect on β-amyloid fibril formation. BMC Neurol 2024; 24:445. [PMID: 39543530 PMCID: PMC11562802 DOI: 10.1186/s12883-024-03930-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND The unprecedented increase in the older population and ever-increasing incidence of dementia are leading to a "silver tsunami" in upcoming decades. To combat multimorbidity and maintain daily activities, elderly people face a high prevalence of polypharmacy. However, how these medications affect dementia-related pathology, such as Alzheimer's β-amyloid (Aβ) fibrils formation, remains unknown. In the present study, we aimed to analyze the medication profiles of Alzheimer's disease (AD; n = 124), mild cognitive impairment (MCI; n = 114), and non-demented (ND; n = 228) patients to identify highly prevalent drugs and to determine the effects of those drugs on Aβ fibrils formation. METHODS Study subjects (≥ 65 years) were recruited from an academic geriatric practice that heavily focuses on memory disorders. The disease state was defined based on the score of multiple cognitive assessments. Individual medications for each subject were listed and categorized into 10 major drug classes. Statistical analysis was performed to determine the frequency of individual and collective drug classes, which are expressed as percentages of the respective cohorts. 10 µM monomeric β-amyloid (Aβ) 42 and fibrillar Aβ (fAβ) were incubated for 6-48 h in the presence of 25 µM drugs. fAβ was prepared with a 1:10 ratio of Aβ42 to Aβ40. The amount of Aβ fibrils was monitored using a thioflavin T (Th-T) assay. Neuronal cells (N2A and SHSY-5Y) were treated with 25 µM drugs, and cell death was measured using a lactose dehydrogenase (LDH) assay. RESULTS We noticed a high prevalence (82-90%) of polypharmacy and diverse medication profiles including anti-inflammatory (65-77%), vitamin and mineral (64-72%), anti-cholesterol (33-41%), anti-hypersensitive (35-39%), proton pump inhibitor (23-34%), anti-thyroid (9-21%), anti-diabetic (5-13%), anti-constipation (9-11%), anti-coagulant (10-13%), and anti-insomnia (9-20%) drugs in the three cohorts. Our LDH assay with 18 highly prevalent drug components showed toxic effects of Norvasc, Tylenol, Colace, and Plavix on N2A cells, and of vitamin D and Novasc on SH-SY5Y cells. All these drugs except Colace significantly reduced the amount of Aβ fibril when incubated with Aβ42 for a short period (6 h). However, Lipitor, vitamin D, Levothyroxine, Prilosec, Flomax, and Norvasc prominently reduce the amount of fibrils when incubated with monomeric Aβ42 for a longer period (48 h). Furthermore, our disaggregation study with fAβ showed consistent results for cholecalciferol (vitamin D), omeprazole (Prilosec), clopidogrel hydrogensulfate (Flomax), levothyroxine, and amlodipine (Norvasc). The chemical structures of these four efficient molecules contain polyphenol components, a characteristic feature of the structures of polyphenolic inhibitors of Aβ fibrillation. CONCLUSION A higher polypharmacy incidence was observed in an elderly population of 228 ND, 114 MCI, and 124 AD patients. We found that several highly recommended drug components, including vitamin D3, Levothyroxine, Prilosec, Flomax, and Norvasc, efficiently reduce the amount of fibrils formed by monomeric Aβ42 and existing preformed Aβ fibrils in vitro. However, only Levothyroxine was able to prevent Aβ-mediated toxicity to SH-SY5Y cells. Our study suggested that these drugs likely function as polyphenolic inhibitors of Aβ.
Collapse
Affiliation(s)
- Zakia Zaman
- Corewell Health Research Institute, Corewell Health East, 3811 W 13 mile Road, Royal Oak, MI, 48073, USA
| | - Radia Islam
- Corewell Health Research Institute, Corewell Health East, 3811 W 13 mile Road, Royal Oak, MI, 48073, USA
| | - Bhavya Koganti
- Corewell Health Research Institute, Corewell Health East, 3811 W 13 mile Road, Royal Oak, MI, 48073, USA
| | - Vaibhavkumar Falki
- Corewell Health Research Institute, Corewell Health East, 3811 W 13 mile Road, Royal Oak, MI, 48073, USA
| | - Tammy Osentoski
- Corewell Health Research Institute, Corewell Health East, 3811 W 13 mile Road, Royal Oak, MI, 48073, USA
| | - Stewart Graham
- Corewell Health Research Institute, Corewell Health East, 3811 W 13 mile Road, Royal Oak, MI, 48073, USA
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Corewell Health East, 3811 W 13 mile Road, Royal Oak, MI, 48073, USA
| | - Md Golam Sharoar
- Corewell Health Research Institute, Corewell Health East, 3811 W 13 mile Road, Royal Oak, MI, 48073, USA.
- Department of Internal Medicine, Oakland University William Beaumont School of Medicine, Corewell Health East, 3811 W 13 mile Road, Royal Oak, MI, 48073, USA.
| |
Collapse
|
17
|
Azimzadeh M, Cheah PS, Ling KH. Brain insulin resistance in Down syndrome: Involvement of PI3K-Akt/mTOR axis in early-onset of Alzheimer's disease and its potential as a therapeutic target. Biochem Biophys Res Commun 2024; 733:150713. [PMID: 39307112 DOI: 10.1016/j.bbrc.2024.150713] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/06/2024]
Abstract
Down syndrome (DS) is the most common genetic cause of intellectual impairment, characterised by an extra copy of chromosome 21. After the age of 40, DS individuals are highly susceptible to accelerated ageing and the development of early-onset Alzheimer-like neuropathology. In the context of DS, the brain presents a spectrum of neuropathological mechanisms and metabolic anomalies. These include heightened desensitisation of brain insulin and insulin-like growth factor-1 (IGF-1) reactions, compromised mitochondrial functionality, escalated oxidative stress, reduced autophagy, and the accumulation of amyloid beta and tau phosphorylation. These multifaceted factors intertwine to shape the intricate landscape of DS-related brain pathology. Altered brain insulin signalling is linked to Alzheimer's disease (AD). This disruption may stem from anomalies in the extracellular aspect (insulin receptor) or the intracellular facet, involving the inhibition of insulin receptor substrate 1 (IRS1). Both domains contribute to the intricate mechanism underlying this dysregulation. The PI3K-Akt/mammalian target of the rapamycin (mTOR) axis is a crucial intracellular element of the insulin signalling pathway that connects numerous physiological processes in the cell cycle. In age-related neurodegenerative disorders like AD, aberrant modulation of the PI3K-Akt signalling cascade is a key factor contributing to their onset. Aberrant and sustained hyperactivation of the PI3K/Akt-mTOR axis in the DS brain is implicated in early symptoms of AD development. Targeting the PI3K-Akt/mTOR pathway may help delay the onset of early-onset AD in individuals with DS, offering a potential way to slow disease progression and enhance their quality of life.
Collapse
Affiliation(s)
- Mansour Azimzadeh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Malaysian Research Institute on Ageing (MyAgeing®), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Malaysian Research Institute on Ageing (MyAgeing®), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
18
|
Grosso Jasutkar H, Wasserlein EM, Ishola A, Litt N, Staniszewski A, Arancio O, Yamamoto A. Adult-onset deactivation of autophagy leads to loss of synapse homeostasis and cognitive impairment, with implications for alzheimer disease. Autophagy 2024; 20:2540-2555. [PMID: 38949671 PMCID: PMC11572145 DOI: 10.1080/15548627.2024.2368335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024] Open
Abstract
A growing number of studies link dysfunction of macroautophagy/autophagy to the pathogenesis of diseases such as Alzheimer disease (AD). Given the global importance of autophagy for homeostasis, how its dysfunction can lead to specific neurological changes is puzzling. To examine this further, we compared the global deactivation of autophagy in the adult mouse using the atg7iKO with the impact of AD-associated pathogenic changes in autophagic processing of synaptic proteins. Isolated forebrain synaptosomes, rather than total homogenates, from atg7iKO mice demonstrated accumulation of synaptic proteins, suggesting that the synapse might be a vulnerable site for protein homeostasis disruption. Moreover, the deactivation of autophagy resulted in impaired cognitive performance over time, whereas gross locomotor skills remained intact. Despite deactivation of autophagy for 6.5 weeks, changes in cognition were in the absence of cell death or synapse loss. In the symptomatic APP PSEN1 double-transgenic mouse model of AD, we found that the impairment in autophagosome maturation coupled with diminished presence of discrete synaptic proteins in autophagosomes isolated from these mice, leading to the accumulation of one of these proteins in the detergent insoluble protein fraction. This protein, SLC17A7/Vglut, also accumulated in atg7iKO mouse synaptosomes. Taken together, we conclude that synaptic autophagy plays a role in maintaining protein homeostasis, and that while decreasing autophagy interrupts normal cognitive function, the preservation of locomotion suggests that not all circuits are affected similarly. Our data suggest that the disruption of autophagic activity in AD may have relevance for the cognitive impairment in this adult-onset neurodegenerative disease. Abbreviations: 2dRAWM: 2-day radial arm water maze; AD: Alzheimer disease; Aβ: amyloid-beta; AIF1/Iba1: allograft inflammatory factor 1; APP: amyloid beta precursor protein; ATG7: autophagy related 7; AV: autophagic vacuole; CCV: cargo capture value; Ctrl: control; DLG4/PSD-95: discs large MAGUK scaffold protein 4; GFAP: glial fibrillary acidic protein; GRIN2B/NMDAR2b: glutamate ionotropic receptor NMDA type subunit 2B; LTD: long-term depression; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; m/o: months-old; PNS: post-nuclear supernatant; PSEN1/PS1: presenilin 1; SHB: sucrose homogenization buffer; SLC32A1/Vgat: solute carrier family 32 member 1; SLC17A7/Vglut1: solute carrier family 17 member 7; SNAP25: synaptosome associated protein 25; SQSTM1/p62: sequestosome 1; SYN1: synapsin I; SYP: synaptophysin ; SYT1: synaptotagmin 1; Tam: tamoxifen; VAMP2: vesicle associated membrane protein 2; VCL: vinculin; wks: weeks.
Collapse
Affiliation(s)
- Hilary Grosso Jasutkar
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | | | - Azeez Ishola
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Nicole Litt
- Department of Neurology, Columbia University, New York, NY, USA
| | - Agnieszka Staniszewski
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Ottavio Arancio
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Ai Yamamoto
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
19
|
Li M, Mo Y, Yu Q, Anayyat U, Yang H, Zhang F, Wei Y, Wang X. Rotating magnetic field improves cognitive and memory impairments in APP/PS1 mice by activating autophagy and inhibiting the PI3K/AKT/mTOR signaling pathway. Exp Neurol 2024; 383:115029. [PMID: 39461710 DOI: 10.1016/j.expneurol.2024.115029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/16/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Alzheimer's disease (AD) is a geriatric disorder that can be roughly classified into sporadic AD and hereditary AD. The latter is strongly associated with genetic factors, and its treatment poses greater challenges compared to sporadic AD. Rotating magnetic fields (RMF) is a non-invasive treatment known to have diverse biological effects, including the modulation of the central nervous system and aging. However, the impact of RMF on hereditary AD and its underlying mechanism remain unexplored. In this study, we exposed APP/PS1 mice to RMF (2 h/day, 0.2 T, 4 Hz) for a duration of 6 months. The results demonstrated that RMF treatment significantly ameliorated their cognitive and memory impairments, attenuated neuronal damage, and reduced amyloid deposition. Furthermore, RNA-sequencing analysis revealed a significant enrichment of autophagy-related genes and the PI3K/AKT-mTOR signaling pathway. Western blotting further confirmed that RMF activated autophagy and suppressed the phosphorylation of proteins associated with the PI3K/AKT/mTOR signaling pathway in APP/PS1 mice. These protective effects and the underlying mechanism were also observed in Aβ25-35-exposed HT22 cells. Collectively, our findings indicate that RMF improves cognitive and memory dysfunction in APP/PS1 mice by activating autophagy and inhibiting the PI3K/AKT/mTOR signaling pathway, thus highlighting the potential of RMF as a clinical treatment for hereditary AD.
Collapse
Affiliation(s)
- Mengqing Li
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong 518061, China
| | - Yaxian Mo
- Songgang People's Hospital, Shenzhen, Guangdong 518105, China
| | - Qinyao Yu
- School of Pharmacy, Shenzhen University, Shenzhen, Guangdong 518061, China
| | - Umer Anayyat
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong 518061, China
| | - Hua Yang
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong 518061, China
| | - Fen Zhang
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong 518061, China
| | - Yunpeng Wei
- Songgang People's Hospital, Shenzhen, Guangdong 518105, China.
| | - Xiaomei Wang
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong 518061, China; International Cancer Center, Shenzhen University Health Sciences Center, Shenzhen, Guangdong 518061, China.
| |
Collapse
|
20
|
Loers G, Bork U, Schachner M. Functional Relationships between L1CAM, LC3, ATG12, and Aβ. Int J Mol Sci 2024; 25:10829. [PMID: 39409157 PMCID: PMC11476435 DOI: 10.3390/ijms251910829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024] Open
Abstract
Abnormal protein accumulations in the brain are linked to aging and the pathogenesis of dementia of various types, including Alzheimer's disease. These accumulations can be reduced by cell indigenous mechanisms. Among these is autophagy, whereby proteins are transferred to lysosomes for degradation. Autophagic dysfunction hampers the elimination of pathogenic protein aggregations that contribute to cell death. We had observed that the adhesion molecule L1 interacts with microtubule-associated protein 1 light-chain 3 (LC3), which is needed for autophagy substrate selection. L1 increases cell survival in an LC3-dependent manner via its extracellular LC3 interacting region (LIR). L1 also interacts with Aβ and reduces the Aβ plaque load in an AD model mouse. Based on these results, we investigated whether L1 could contribute to autophagy of aggregated Aβ and its clearance. We here show that L1 interacts with autophagy-related protein 12 (ATG12) via its LIR domain, whereas interaction with ubiquitin-binding protein p62/SQSTM1 does not depend on LIR. Aβ, bound to L1, is carried to the autophagosome leading to Aβ elimination. Showing that the mitophagy-related L1-70 fragment is ubiquitinated, we expect that the p62/SQSTM1 pathway also contributes to Aβ elimination. We propose that enhancing L1 functions may contribute to therapy in humans.
Collapse
Affiliation(s)
- Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Ute Bork
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Melitta Schachner
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| |
Collapse
|
21
|
Althobaiti NA, Al-Abbas NS, Alsharif I, Albalawi AE, Almars AI, Basabrain AA, Jafer A, Ellatif SA, Bauthman NM, Almohaimeed HM, Soliman MH. Gadd45A-mediated autophagy regulation and its impact on Alzheimer's disease pathogenesis: Deciphering the molecular Nexus. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167353. [PMID: 39004381 DOI: 10.1016/j.bbadis.2024.167353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND The growth arrest and DNA damage-inducible 45 (Gadd45) gene has been implicated in various central nervous system (CNS) functions, both normal and pathological, including aging, memory, and neurodegenerative diseases. In this study, we examined whether Gadd45A deletion triggers pathways associated with neurodegenerative diseases including Alzheimer's disease (AD). METHODS Utilizing transcriptome data from AD-associated hippocampus samples, we identified Gadd45A as a pivotal regulator of autophagy. Comprehensive analyses, including Gene Ontology enrichment and protein-protein interaction network assessments, highlighted Cdkn1A as a significant downstream target of Gadd45A. Experimental validation confirmed Gadd45A's role in modulating Cdkn1A expression and autophagy levels in hippocampal cells. We also examined the effects of autophagy on hippocampal functions and proinflammatory cytokine secretion. Additionally, a murine model was employed to validate the importance of Gadd45A in neuroinflammation and AD pathology. RESULTS Our study identified 20 autophagy regulatory factors associated with AD, with Gadd45A emerging as a critical regulator. Experimental findings demonstrated that Gadd45A influences hippocampal cell fate by reducing Cdkn1A expression and suppressing autophagic activity. Comparisons between wild-type (WT) and Gadd45A knockout (Gadd45A-/-) mice revealed that Gadd45A-/- mice exhibited significant cognitive impairments, including deficits in working and spatial memory, increased Tau hyperphosphorylation, and elevated levels of kinases involved in Tau phosphorylation in the hippocampus. Additionally, Gadd45A-/- mice showed significant increases in pro-inflammatory cytokines and decreases autophagy markers in the brain. Neurotrophin levels and dendritic spine length were also reduced in Gadd45A-/- mice, likely contributing to the observed cognitive deficits. CONCLUSIONS These findings support the direct involvement of the Gadd45A gene in AD pathogenesis, and enhancing the expression of Gadd45A may represent a promising therapeutic strategy for the treatment of AD.
Collapse
Affiliation(s)
- Norah A Althobaiti
- Biology Department, College of Science and Humanities, Shaqra University, Saudi Arabia
| | - Nouf S Al-Abbas
- Department of Biology, Jamoum University College, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Ifat Alsharif
- Department of Biology, Jamoum University College, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Aishah E Albalawi
- Faculty of Science, Department of Biology, University of Tabuk, Tabuk 47913, Saudi Arabia
| | - Amany I Almars
- Department of Medial Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ammar A Basabrain
- Department of Medial Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ayman Jafer
- Department of Medial Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sawsan Abd Ellatif
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Nuha M Bauthman
- Department of Obstetric & Gynecology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mona H Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu 46429, Saudi Arabia.
| |
Collapse
|
22
|
Pramanik S, Devi M H, Chakrabarty S, Paylar B, Pradhan A, Thaker M, Ayyadhury S, Manavalan A, Olsson PE, Pramanik G, Heese K. Microglia signaling in health and disease - Implications in sex-specific brain development and plasticity. Neurosci Biobehav Rev 2024; 165:105834. [PMID: 39084583 DOI: 10.1016/j.neubiorev.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Microglia, the intrinsic neuroimmune cells residing in the central nervous system (CNS), exert a pivotal influence on brain development, homeostasis, and functionality, encompassing critical roles during both aging and pathological states. Recent advancements in comprehending brain plasticity and functions have spotlighted conspicuous variances between male and female brains, notably in neurogenesis, neuronal myelination, axon fasciculation, and synaptogenesis. Nevertheless, the precise impact of microglia on sex-specific brain cell plasticity, sculpting diverse neural network architectures and circuits, remains largely unexplored. This article seeks to unravel the present understanding of microglial involvement in brain development, plasticity, and function, with a specific emphasis on microglial signaling in brain sex polymorphism. Commencing with an overview of microglia in the CNS and their associated signaling cascades, we subsequently probe recent revelations regarding molecular signaling by microglia in sex-dependent brain developmental plasticity, functions, and diseases. Notably, C-X3-C motif chemokine receptor 1 (CX3CR1), triggering receptors expressed on myeloid cells 2 (TREM2), calcium (Ca2+), and apolipoprotein E (APOE) emerge as molecular candidates significantly contributing to sex-dependent brain development and plasticity. In conclusion, we address burgeoning inquiries surrounding microglia's pivotal role in the functional diversity of developing and aging brains, contemplating their potential implications for gender-tailored therapeutic strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Subrata Pramanik
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Harini Devi M
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Saswata Chakrabarty
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Berkay Paylar
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manisha Thaker
- Eurofins Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 17601, USA
| | - Shamini Ayyadhury
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Arulmani Manavalan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Gopal Pramanik
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133791, the Republic of Korea.
| |
Collapse
|
23
|
Avalos B, Kulbe JR, Ford MK, Laird AE, Walter K, Mante M, Florio JB, Boustani A, Chaillon A, Schlachetzki JCM, Sundermann EE, Volsky DJ, Rissman RA, Ellis RJ, Letendre SL, Iudicello J, Fields JA. Cannabis Use and Cannabidiol Modulate HIV-Induced Alterations in TREM2 Expression: Implications for Age-Related Neuropathogenesis. Viruses 2024; 16:1509. [PMID: 39459844 PMCID: PMC11512329 DOI: 10.3390/v16101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is involved in neuroinflammation and HIV-associated neurocognitive impairment (NCI). People with HIV (PWH) using cannabis exhibit lower inflammation and neurological disorders. We hypothesized that TREM2 dysfunction mediates HIV neuropathogenesis and can be reversed by cannabinoids. EcoHIV-infected wildtype (WT) and TREM2R47H mutant mice were used to study HIV's impact on TREM2 and behavior. TREM2 and related gene expressions were examined in monocyte-derived macrophages (MDMs) from PWH (n = 42) and people without HIV (PWoH; n = 19) with varying cannabis use via RNA sequencing and qPCR. Differences in membrane-bound and soluble TREM2 (sTREM2) were evaluated using immunocytochemistry (ICC) and ELISA. EcoHIV increased immature and C-terminal fragment forms of TREM2 in WT mice but not in TREM2R47H mice, with increased IBA1 protein in TREM2R47H hippocampi, correlating with worse memory test performance. TREM2 mRNA levels increased with age in PWoH but not in PWH. Cannabidiol (CBD) treatment increased TREM2 mRNA alone and with IL1β. RNA-seq showed the upregulation of TREM2-related transcripts in cannabis-using PWH compared to naïve controls. IL1β increased sTREM2 and reduced membrane-bound TREM2, effects partially reversed by CBD. These findings suggest HIV affects TREM2 expression modulated by cannabis and CBD, offering insights for therapeutic strategies.
Collapse
Affiliation(s)
- Bryant Avalos
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Jacqueline R. Kulbe
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Mary K. Ford
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Anna Elizabeth Laird
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Kyle Walter
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Michael Mante
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, 9880 Mesa Rim Road, San Diego, CA 92121, USA; (M.M.); (J.B.F.); (R.A.R.)
| | - Jazmin B. Florio
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, 9880 Mesa Rim Road, San Diego, CA 92121, USA; (M.M.); (J.B.F.); (R.A.R.)
| | - Ali Boustani
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Antoine Chaillon
- Department of Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA;
| | | | - Erin E. Sundermann
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - David J. Volsky
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert A. Rissman
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, 9880 Mesa Rim Road, San Diego, CA 92121, USA; (M.M.); (J.B.F.); (R.A.R.)
| | - Ronald J. Ellis
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA;
| | - Scott L. Letendre
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
- Department of Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA;
| | - Jennifer Iudicello
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| |
Collapse
|
24
|
Lin X, Chen C, Chen J, Zhu C, Zhang J, Su R, Chen S, Weng S, Chang X, Lin S, Chen Y, Li J, Lin L, Zhou J, Guo Z, Yu G, Shao W, Hu H, Wu S, Zhang Q, Li H, Zheng F. Long Noncoding RNA NR_030777 Alleviates Cobalt Nanoparticles-Induced Neurodegenerative Damage by Promoting Autophagosome-Lysosome Fusion. ACS NANO 2024; 18:24872-24897. [PMID: 39197041 PMCID: PMC11394346 DOI: 10.1021/acsnano.4c05249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/30/2024]
Abstract
Potential exposure to cobalt nanoparticles (CoNPs) occurs in various fields, including hard alloy industrial production, the increasing use of new energy lithium-ion batteries, and millions of patients with metal-on-metal joint prostheses. Evidence from human, animal, and in vitro experiments suggests a close relationship between CoNPs and neurotoxicity. However, a systematic assessment of central nervous system (CNS) impairment due to CoNPs exposure and the underlying molecular mechanisms is lacking. In this study, we found that CoNPs induced neurodegenerative damage both in vivo and in vitro, including cognitive impairment, β-amyloid deposition and Tau hyperphosphorylation. CoNPs promoted the formation of autophagosomes and impeding autophagosomal-lysosomal fusion in vivo and in vitro, leading to toxic protein accumulation. Moreover, CoNPs exposure reduced the level of transcription factor EB (TFEB) and the abundance of lysosome, causing a blockage in autophagosomal-lysosomal fusion. Interestingly, overexpression of long noncoding RNA NR_030777 mitigated CoNPs-induced neurodegenerative damage in both in vivo and in vitro models. Fluorescence in situ hybridization assay revealed that NR_030777 directly binds and stabilizes TFEB mRNA, alleviating the blockage of autophagosomal-lysosomal fusion and ultimately restoring neurodegeneration induced by CoNPs in vivo and in vitro. In summary, our study demonstrates that autophagic dysfunction is the main toxic mechanism of neurodegeneration upon CoNPs exposure and NR_030777 plays a crucial role in CoNPs-induced autophagic dysfunction. Additionally, the proposed adverse outcome pathway contributes to a better understanding of CNS toxicity assessment of CoNPs.
Collapse
Affiliation(s)
- Xinpei Lin
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Cheng Chen
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jinxiang Chen
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Canlin Zhu
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jiajun Zhang
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Ruiqi Su
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Shujia Chen
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Shucan Weng
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Xiangyu Chang
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Shengsong Lin
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Yilong Chen
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jiamei Li
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Ling Lin
- Public
Technology Service Center, Fujian Medical
University, Fuzhou, Fujian Province 350122, China
| | - Jinfu Zhou
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Medical
Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health
Hospital College of Clinical Medicine for Obstetrics & Gynecology
and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province 350001, China
| | - Zhenkun Guo
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Guangxia Yu
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Wenya Shao
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Hong Hu
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Siying Wu
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Department
of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Qunwei Zhang
- Department
of Epidemiology and Population Health, School of Public Health and
Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, Kentucky 40292, United States
| | - Huangyuan Li
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Fuli Zheng
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| |
Collapse
|
25
|
Li YB, Fu Q, Guo M, Du Y, Chen Y, Cheng Y. MicroRNAs: pioneering regulators in Alzheimer's disease pathogenesis, diagnosis, and therapy. Transl Psychiatry 2024; 14:367. [PMID: 39256358 PMCID: PMC11387755 DOI: 10.1038/s41398-024-03075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
This article delves into Alzheimer's disease (AD), a prevalent neurodegenerative condition primarily affecting the elderly. It is characterized by progressive memory and cognitive impairments, severely disrupting daily life. Recent research highlights the potential involvement of microRNAs in the pathogenesis of AD. MicroRNAs (MiRNAs), short non-coding RNAs comprising 20-24 nucleotides, significantly influence gene regulation by hindering translation or promoting degradation of target genes. This review explores the role of specific miRNAs in AD progression, focusing on their impact on β-amyloid (Aβ) peptide accumulation, intracellular aggregation of hyperphosphorylated tau proteins, mitochondrial dysfunction, neuroinflammation, oxidative stress, and the expression of the APOE4 gene. Our insights contribute to understanding AD's pathology, offering new avenues for identifying diagnostic markers and developing novel therapeutic targets.
Collapse
Affiliation(s)
- Yao-Bo Li
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Qiang Fu
- Institute of National Security, Minzu University of China, Beijing, China
| | - Mei Guo
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yang Du
- Institute of National Security, Minzu University of China, Beijing, China
| | - Yuewen Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China.
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.
- Institute of National Security, Minzu University of China, Beijing, China.
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China.
| |
Collapse
|
26
|
Ferrari V, Tedesco B, Cozzi M, Chierichetti M, Casarotto E, Pramaggiore P, Cornaggia L, Mohamed A, Patelli G, Piccolella M, Cristofani R, Crippa V, Galbiati M, Poletti A, Rusmini P. Lysosome quality control in health and neurodegenerative diseases. Cell Mol Biol Lett 2024; 29:116. [PMID: 39237893 PMCID: PMC11378602 DOI: 10.1186/s11658-024-00633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Lysosomes are acidic organelles involved in crucial intracellular functions, including the degradation of organelles and protein, membrane repair, phagocytosis, endocytosis, and nutrient sensing. Given these key roles of lysosomes, maintaining their homeostasis is essential for cell viability. Thus, to preserve lysosome integrity and functionality, cells have developed a complex intracellular system, called lysosome quality control (LQC). Several stressors may affect the integrity of lysosomes, causing Lysosomal membrane permeabilization (LMP), in which membrane rupture results in the leakage of luminal hydrolase enzymes into the cytosol. After sensing the damage, LQC either activates lysosome repair, or induces the degradation of the ruptured lysosomes through autophagy. In addition, LQC stimulates the de novo biogenesis of functional lysosomes and lysosome exocytosis. Alterations in LQC give rise to deleterious consequences for cellular homeostasis. Specifically, the persistence of impaired lysosomes or the malfunctioning of lysosomal processes leads to cellular toxicity and death, thereby contributing to the pathogenesis of different disorders, including neurodegenerative diseases (NDs). Recently, several pieces of evidence have underlined the importance of the role of lysosomes in NDs. In this review, we describe the elements of the LQC system, how they cooperate to maintain lysosome homeostasis, and their implication in the pathogenesis of different NDs.
Collapse
Affiliation(s)
- Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Marta Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Paola Pramaggiore
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Laura Cornaggia
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Ali Mohamed
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Guglielmo Patelli
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy.
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| |
Collapse
|
27
|
Al Rihani SB, Elfakhri KH, Ebrahim HY, Al-Ghraiybah NF, Alkhalifa AE, El Sayed KA, Kaddoumi A. The Usnic Acid Analogue 4-FPBUA Enhances the Blood-Brain Barrier Function and Induces Autophagy in Alzheimer's Disease Mouse Models. ACS Chem Neurosci 2024; 15:3152-3167. [PMID: 39145537 DOI: 10.1021/acschemneuro.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Preclinical and clinical studies have indicated that compromised blood-brain barrier (BBB) function contributes to Alzheimer's disease (AD) pathology. BBB breakdown ranged from mild disruption of tight junctions (TJs) with increased BBB permeability to chronic integrity loss, affecting transport across the BBB, reducing brain perfusion, and triggering inflammatory responses. We recently developed a high-throughput screening (HTS) assay to identify hit compounds that enhance the function of a cell-based BBB model. The HTS screen identified (S,E)-2-acetyl-6-[3-(4'-fluorobiphenyl-4-yl)acryloyl]-3,7,9-trihydroxy-8,9b-dimethyldibenzo-[b,d]furan-1(9bH)-one (4-FPBUA), a semisynthetic analogue of naturally occurring usnic acid, which protected the in vitro model against Aβ toxicity. Usnic acid is a lichen-derived secondary metabolite with a unique dibenzofuran skeleton that is commonly found in lichenized fungi of the genera Usnea. In this study, we aimed to evaluate the effect of 4-FPBUA in vitro on the cell-based BBB model function and its in vivo ability to rectify BBB function and reduce brain Aβ in two AD mouse models, namely, 5xFAD and TgSwDI. Our findings demonstrated that 4-FPBUA enhanced cell-based BBB function, increased Aβ transport across the monolayer, and reversed BBB breakdown in vivo by enhancing autophagy as an mTOR inhibitor. Induced autophagy was associated with a significant reduction in Aβ accumulation and related pathologies and improved memory function. These results underscore the potential of 4-FPBUA as a candidate for further preclinical exploration to better understand its mechanisms of action and to optimize dosing strategies. Continued research may also elucidate additional pathways through which 4-FPBUA contributed to the amelioration of BBB dysfunction in AD. Collectively, our findings supported the development of 4-FPBUA as a therapeutic agent against AD.
Collapse
Affiliation(s)
- Sweilem B Al Rihani
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Pharmacy Research Building, Auburn University, Auburn, Alabama 36849, United States
| | - Khaled H Elfakhri
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71201, United States
| | - Hassan Y Ebrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71201, United States
| | - Nour F Al-Ghraiybah
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Pharmacy Research Building, Auburn University, Auburn, Alabama 36849, United States
| | - Amer E Alkhalifa
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Pharmacy Research Building, Auburn University, Auburn, Alabama 36849, United States
| | - Khalid A El Sayed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71201, United States
| | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Pharmacy Research Building, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
28
|
Di Domenico F, Lanzillotta C, Perluigi M. Redox imbalance and metabolic defects in the context of Alzheimer disease. FEBS Lett 2024; 598:2047-2066. [PMID: 38472147 DOI: 10.1002/1873-3468.14840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024]
Abstract
Redox reactions play a critical role for intracellular processes, including pathways involved in metabolism and signaling. Reactive oxygen species (ROS) act either as second messengers or generators of protein modifications, fundamental mechanisms for signal transduction. Disturbance of redox homeostasis is associated with many disorders. Among these, Alzheimer's disease is a neurodegenerative pathology that presents hallmarks of oxidative damage such as increased ROS production, decreased activity of antioxidant enzymes, oxidative modifications of macromolecules, and changes in mitochondrial homeostasis. Interestingly, alteration of redox homeostasis is closely associated with defects of energy metabolism, involving both carbohydrates and lipids, the major energy fuels for the cell. As the brain relies exclusively on glucose metabolism, defects of glucose utilization represent a harmful event for the brain. During aging, a progressive perturbation of energy metabolism occurs resulting in brain hypometabolism. This condition contributes to increase neuronal cell vulnerability ultimately resulting in cognitive impairment. The current review discusses the crosstalk between alteration of redox homeostasis and brain energy defects that seems to act in concert in promoting Alzheimer's neurodegeneration.
Collapse
Affiliation(s)
- Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Italy
| | - Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
29
|
Qiang RR, Xiang Y, Zhang L, Bai XY, Zhang D, Li YJ, Yang YL, Liu XL. Ferroptosis: A new strategy for targeting Alzheimer's disease. Neurochem Int 2024; 178:105773. [PMID: 38789042 DOI: 10.1016/j.neuint.2024.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a complex pathogenesis, which involves the formation of amyloid plaques and neurofibrillary tangles. Many recent studies have revealed a close association between ferroptosis and the pathogenesis of AD. Factors such as ferroptosis-associated iron overload, lipid peroxidation, disturbances in redox homeostasis, and accumulation of reactive oxygen species have been found to contribute to the pathological progression of AD. In this review, we explore the mechanisms underlying ferroptosis, describe the link between ferroptosis and AD, and examine the reported efficacy of ferroptosis inhibitors in treating AD. Finally, we discuss the potential challenges to ferroptosis inhibitors use in the clinic, enabling their faster use in clinical treatment.
Collapse
Affiliation(s)
| | - Yang Xiang
- College of Physical Education, Yan'an University, Shaanxi, 716000, China
| | - Lei Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Xin Yue Bai
- School of Medicine, Yan'an University, Yan'an, China
| | - Die Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Yang Jing Li
- School of Medicine, Yan'an University, Yan'an, China
| | - Yan Ling Yang
- School of Medicine, Yan'an University, Yan'an, China
| | - Xiao Long Liu
- School of Medicine, Yan'an University, Yan'an, China.
| |
Collapse
|
30
|
Sun F, Wang J, Meng L, Zhou Z, Xu Y, Yang M, Li Y, Jiang T, Liu B, Yan H. AdipoRon promotes amyloid-β clearance through enhancing autophagy via nuclear GAPDH-induced sirtuin 1 activation in Alzheimer's disease. Br J Pharmacol 2024; 181:3039-3063. [PMID: 38679474 DOI: 10.1111/bph.16400] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND AND PURPOSE Amyloid-β (Aβ) peptide is one of the more important pathological markers in Alzheimer's disease (AD). The development of AD impairs autophagy, which results in an imbalanced clearance of Aβ. Our previous research demonstrated that AdipoRon, an agonist of adiponectin receptors, decreased the deposition of Aβ and enhanced cognitive function in AD. However, the exact mechanisms by which AdipoRon affects Aβ clearance remain unclear. EXPERIMENTAL APPROACH We studied how AdipoRon affects autophagy in HT22 cells and APP/PS1 transgenic mice. We also investigated the signalling pathway involved and used pharmacological inhibitors to examine the role of autophagy in this process. KEY RESULTS AdipoRon promotes Aβ clearance by activating neuronal autophagy in the APP/PS1 transgenic mice. Interestingly, we found that AdipoRon induces the nuclear translocation of GAPDH, where it interacts with the SIRT1/DBC1 complex. This interaction then leads to the release of DBC1 and the activation of SIRT1, which in turn activates autophagy. Importantly, we found that inhibiting either GAPDH or SIRT1 to suppress the activity of SIRT1 counteracts the elevated autophagy and decreased Aβ deposition caused by AdipoRon. This suggests that SIRT1 plays a critical role in the effect of AdipoRon on autophagic induction in AD. CONCLUSION AND IMPLICATIONS AdipoRon promotes the clearance of Aβ by enhancing autophagy through the AdipoR1/AMPK-dependent nuclear translocation of GAPDH and subsequent activation of SIRT1. This novel molecular pathway sheds light on the modulation of autophagy in AD and may lead to the development of new therapeutic strategies targeting this pathway.
Collapse
Affiliation(s)
- Fengjiao Sun
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Jiangong Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Lingbin Meng
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Zhenyu Zhou
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yong Xu
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Meizi Yang
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yixin Li
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Tianrui Jiang
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Bin Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Haijing Yan
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
31
|
Barnaba C, Broadbent DG, Kaminsky EG, Perez GI, Schmidt JC. AMPK regulates phagophore-to-autophagosome maturation. J Cell Biol 2024; 223:e202309145. [PMID: 38775785 PMCID: PMC11110907 DOI: 10.1083/jcb.202309145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/28/2024] [Accepted: 05/04/2024] [Indexed: 05/24/2024] Open
Abstract
Autophagy is an important metabolic pathway that can non-selectively recycle cellular material or lead to targeted degradation of protein aggregates or damaged organelles. Autophagosome formation starts with autophagy factors accumulating on lipid vesicles containing ATG9. These phagophores attach to donor membranes, expand via ATG2-mediated lipid transfer, capture cargo, and mature into autophagosomes, ultimately fusing with lysosomes for their degradation. Autophagy can be activated by nutrient stress, for example, by a reduction in the cellular levels of amino acids. In contrast, how autophagy is regulated by low cellular ATP levels via the AMP-activated protein kinase (AMPK), an important therapeutic target, is less clear. Using live-cell imaging and an automated image analysis pipeline, we systematically dissect how nutrient starvation regulates autophagosome biogenesis. We demonstrate that glucose starvation downregulates autophagosome maturation by AMPK-mediated inhibition of phagophore tethering to donor membrane. Our results clarify AMPKs regulatory role in autophagy and highlight its potential as a therapeutic target to reduce autophagy.
Collapse
Affiliation(s)
- Carlo Barnaba
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - David G. Broadbent
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Emily G. Kaminsky
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Gloria I. Perez
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Jens C. Schmidt
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
32
|
Chau DDL, Yu Z, Chan WWR, Yuqi Z, Chang RCC, Ngo JCK, Chan HYE, Lau KF. The cellular adaptor GULP1 interacts with ATG14 to potentiate autophagy and APP processing. Cell Mol Life Sci 2024; 81:323. [PMID: 39080084 PMCID: PMC11335243 DOI: 10.1007/s00018-024-05351-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/06/2024] [Accepted: 07/05/2024] [Indexed: 08/22/2024]
Abstract
Autophagy is a highly conserved catabolic mechanism by which unnecessary or dysfunctional cellular components are removed. The dysregulation of autophagy has been implicated in various neurodegenerative diseases, including Alzheimer's disease (AD). Understanding the molecular mechanism(s)/molecules that influence autophagy may provide important insights into developing therapeutic strategies against AD and other neurodegenerative disorders. Engulfment adaptor phosphotyrosine-binding domain-containing protein 1 (GULP1) is an adaptor that interacts with amyloid precursor protein (APP) to promote amyloid-β peptide production via an unidentified mechanism. Emerging evidence suggests that GULP1 has a role in autophagy. Here, we show that GULP1 is involved in autophagy through an interaction with autophagy-related 14 (ATG14), which is a regulator of autophagosome formation. GULP1 potentiated the stimulatory effect of ATG14 on autophagy by modulating class III phosphatidylinositol 3-kinase complex 1 (PI3KC3-C1) activity. The effect of GULP1 is attenuated by a GULP1 mutation (GULP1m) that disrupts the GULP1-ATG14 interaction. Conversely, PI3KC3-C1 activity is enhanced in cells expressing APP but not in those expressing an APP mutant that does not bind GULP1, which suggests a role of GULP1-APP in regulating PI3KC3-C1 activity. Notably, GULP1 facilitates the targeting of ATG14 to the endoplasmic reticulum (ER). Moreover, the levels of both ATG14 and APP are elevated in the autophagic vacuoles (AVs) of cells expressing GULP1, but not in those expressing GULP1m. APP processing is markedly enhanced in cells co-expressing GULP1 and ATG14. Hence, GULP1 alters APP processing by promoting the entry of APP into AVs. In summary, we unveil a novel role of GULP1 in enhancing the targeting of ATG14 to the ER to stimulate autophagy and, consequently, APP processing.
Collapse
Affiliation(s)
- Dennis Dik-Long Chau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhicheng Yu
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai Wa Ray Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhai Yuqi
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Raymond Chuen Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Jacky Chi Ki Ngo
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ho Yin Edwin Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwok-Fai Lau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
33
|
Kim S, Chun H, Kim Y, Kim Y, Park U, Chu J, Bhalla M, Choi SH, Yousefian-Jazi A, Kim S, Hyeon SJ, Kim S, Kim Y, Ju YH, Lee SE, Lee H, Lee K, Oh SJ, Hwang EM, Lee J, Lee CJ, Ryu H. Astrocytic autophagy plasticity modulates Aβ clearance and cognitive function in Alzheimer's disease. Mol Neurodegener 2024; 19:55. [PMID: 39044253 PMCID: PMC11267931 DOI: 10.1186/s13024-024-00740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Astrocytes, one of the most resilient cells in the brain, transform into reactive astrocytes in response to toxic proteins such as amyloid beta (Aβ) in Alzheimer's disease (AD). However, reactive astrocyte-mediated non-cell autonomous neuropathological mechanism is not fully understood yet. We aimed our study to find out whether Aβ-induced proteotoxic stress affects the expression of autophagy genes and the modulation of autophagic flux in astrocytes, and if yes, how Aβ-induced autophagy-associated genes are involved Aβ clearance in astrocytes of animal model of AD. METHODS Whole RNA sequencing (RNA-seq) was performed to detect gene expression patterns in Aβ-treated human astrocytes in a time-dependent manner. To verify the role of astrocytic autophagy in an AD mouse model, we developed AAVs expressing shRNAs for MAP1LC3B/LC3B (LC3B) and Sequestosome1 (SQSTM1) based on AAV-R-CREon vector, which is a Cre recombinase-dependent gene-silencing system. Also, the effect of astrocyte-specific overexpression of LC3B on the neuropathology in AD (APP/PS1) mice was determined. Neuropathological alterations of AD mice with astrocytic autophagy dysfunction were observed by confocal microscopy and transmission electron microscope (TEM). Behavioral changes of mice were examined through novel object recognition test (NOR) and novel object place recognition test (NOPR). RESULTS Here, we show that astrocytes, unlike neurons, undergo plastic changes in autophagic processes to remove Aβ. Aβ transiently induces expression of LC3B gene and turns on a prolonged transcription of SQSTM1 gene. The Aβ-induced astrocytic autophagy accelerates urea cycle and putrescine degradation pathway. Pharmacological inhibition of autophagy exacerbates mitochondrial dysfunction and oxidative stress in astrocytes. Astrocyte-specific knockdown of LC3B and SQSTM1 significantly increases Aβ plaque formation and GFAP-positive astrocytes in APP/PS1 mice, along with a significant reduction of neuronal marker and cognitive function. In contrast, astrocyte-specific overexpression of LC3B reduced Aβ aggregates in the brain of APP/PS1 mice. An increase of LC3B and SQSTM1 protein is found in astrocytes of the hippocampus in AD patients. CONCLUSIONS Taken together, our data indicates that Aβ-induced astrocytic autophagic plasticity is an important cellular event to modulate Aβ clearance and maintain cognitive function in AD mice.
Collapse
Affiliation(s)
- Suhyun Kim
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Heejung Chun
- College of Pharmacy, Yonsei-SL Bigen Institute (YSLI), Yonsei University, Incheon, 21983, Republic of Korea
| | - Yunha Kim
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yeyun Kim
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Uiyeol Park
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Deaprtment of Medicine, Hanyang University Medical School, Seoul, 04763, Republic of Korea
| | - Jiyeon Chu
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Mridula Bhalla
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
- IBS School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Seung-Hye Choi
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Ali Yousefian-Jazi
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sojung Kim
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Seung Jae Hyeon
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Seungchan Kim
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yeonseo Kim
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yeon Ha Ju
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
- IBS School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyunbeom Lee
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Kyungeun Lee
- Advanced Analysis and Data Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Soo-Jin Oh
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Eun Mi Hwang
- Center for Brain Function, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Junghee Lee
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA.
- VA Boston Healthcare System, Boston, MA, 02130, USA.
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea.
- IBS School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Hoon Ryu
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Department of Converging Science and Technology, KHU-KIST, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
34
|
Grenon MB, Papavergi MT, Bathini P, Sadowski M, Lemere CA. Temporal Characterization of the Amyloidogenic APPswe/PS1dE9;hAPOE4 Mouse Model of Alzheimer's Disease. Int J Mol Sci 2024; 25:5754. [PMID: 38891941 PMCID: PMC11172317 DOI: 10.3390/ijms25115754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating disorder with a global prevalence estimated at 55 million people. In clinical studies administering certain anti-beta-amyloid (Aβ) antibodies, amyloid-related imaging abnormalities (ARIAs) have emerged as major adverse events. The frequency of these events is higher among apolipoprotein ε4 allele carriers (APOE4) compared to non-carriers. To reflect patients most at risk for vascular complications of anti-Aβ immunotherapy, we selected an APPswe/PS1dE9 transgenic mouse model bearing the human APOE4 gene (APPPS1:E4) and compared it with the same APP/PS1 mouse model bearing the human APOE3 gene (APOE ε3 allele; APPPS1:E3). Using histological and biochemical analyses, we characterized mice at three ages: 8, 12, and 16 months. Female and male mice were assayed for general cerebral fibrillar and pyroglutamate (pGlu-3) Aβ deposition, cerebral amyloid angiopathy (CAA), microhemorrhages, apoE and cholesterol composition, astrocytes, microglia, inflammation, lysosomal dysfunction, and neuritic dystrophy. Amyloidosis, lipid deposition, and astrogliosis increased with age in APPPS1:E4 mice, while inflammation did not reveal significant changes with age. In general, APOE4 carriers showed elevated Aβ, apoE, reactive astrocytes, pro-inflammatory cytokines, microglial response, and neuritic dystrophy compared to APOE3 carriers at different ages. These results highlight the potential of the APPPS1:E4 mouse model as a valuable tool in investigating the vascular side effects associated with anti-amyloid immunotherapy.
Collapse
Affiliation(s)
- Martine B. Grenon
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.B.G.); (M.-T.P.); (P.B.)
- Section Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Maria-Tzousi Papavergi
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.B.G.); (M.-T.P.); (P.B.)
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Praveen Bathini
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.B.G.); (M.-T.P.); (P.B.)
| | - Martin Sadowski
- Departments of Neurology, Psychiatry, and Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA;
| | - Cynthia A. Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.B.G.); (M.-T.P.); (P.B.)
| |
Collapse
|
35
|
Kinger S, Jagtap YA, Kumar P, Choudhary A, Prasad A, Prajapati VK, Kumar A, Mehta G, Mishra A. Proteostasis in neurodegenerative diseases. Adv Clin Chem 2024; 121:270-333. [PMID: 38797543 DOI: 10.1016/bs.acc.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Proteostasis is essential for normal function of proteins and vital for cellular health and survival. Proteostasis encompasses all stages in the "life" of a protein, that is, from translation to functional performance and, ultimately, to degradation. Proteins need native conformations for function and in the presence of multiple types of stress, their misfolding and aggregation can occur. A coordinated network of proteins is at the core of proteostasis in cells. Among these, chaperones are required for maintaining the integrity of protein conformations by preventing misfolding and aggregation and guide those with abnormal conformation to degradation. The ubiquitin-proteasome system (UPS) and autophagy are major cellular pathways for degrading proteins. Although failure or decreased functioning of components of this network can lead to proteotoxicity and disease, like neuron degenerative diseases, underlying factors are not completely understood. Accumulating misfolded and aggregated proteins are considered major pathomechanisms of neurodegeneration. In this chapter, we have described the components of three major branches required for proteostasis-chaperones, UPS and autophagy, the mechanistic basis of their function, and their potential for protection against various neurodegenerative conditions, like Alzheimer's, Parkinson's, and Huntington's disease. The modulation of various proteostasis network proteins, like chaperones, E3 ubiquitin ligases, proteasome, and autophagy-associated proteins as therapeutic targets by small molecules as well as new and unconventional approaches, shows promise.
Collapse
Affiliation(s)
- Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, India
| | - Gunjan Mehta
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India.
| |
Collapse
|
36
|
Thal DR, Gawor K, Moonen S. Regulated cell death and its role in Alzheimer's disease and amyotrophic lateral sclerosis. Acta Neuropathol 2024; 147:69. [PMID: 38583129 DOI: 10.1007/s00401-024-02722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/08/2024]
Abstract
Despite considerable research efforts, it is still not clear which mechanisms underlie neuronal cell death in neurodegenerative diseases. During the last 20 years, multiple pathways have been identified that can execute regulated cell death (RCD). Among these RCD pathways, apoptosis, necroptosis, pyroptosis, ferroptosis, autophagy-related cell death, and lysosome-dependent cell death have been intensively investigated. Although RCD consists of numerous individual pathways, multiple common proteins have been identified that allow shifting from one cell death pathway to another. Another layer of complexity is added by mechanisms such as the endosomal machinery, able to regulate the activation of some RCD pathways, preventing cell death. In addition, restricted axonal degeneration and synaptic pruning can occur as a result of RCD activation without loss of the cell body. RCD plays a complex role in neurodegenerative processes, varying across different disorders. It has been shown that RCD is differentially involved in Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), among the most common neurodegenerative diseases. In AD, neuronal loss is associated with the activation of not only necroptosis, but also pyroptosis. In ALS, on the other hand, motor neuron death is not linked to canonical necroptosis, whereas pyroptosis pathway activation is seen in white matter microglia. Despite these differences in the activation of RCD pathways in AD and ALS, the accumulation of protein aggregates immunoreactive for p62/SQSTM1 (sequestosome 1) is a common event in both diseases and many other neurodegenerative disorders. In this review, we describe the major RCD pathways with clear activation in AD and ALS, the main interactions between these pathways, as well as their differential and similar involvement in these disorders. Finally, we will discuss targeting RCD as an innovative therapeutic concept for neurodegenerative diseases, such as AD and ALS. Considering that the execution of RCD or "cellular suicide" represents the final stage in neurodegeneration, it seems crucial to prevent neuronal death in patients by targeting RCD. This would offer valuable time to address upstream events in the pathological cascade by keeping the neurons alive.
Collapse
Affiliation(s)
- Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute (LBI), KU-Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium.
| | - Klara Gawor
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute (LBI), KU-Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Sebastiaan Moonen
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute (LBI), KU-Leuven, Herestraat 49, 3000, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
- Center for Brain & Disease Research, VIB, Leuven, Belgium
| |
Collapse
|
37
|
Peddinti V, Avaghade MM, Suthar SU, Rout B, Gomte SS, Agnihotri TG, Jain A. Gut instincts: Unveiling the connection between gut microbiota and Alzheimer's disease. Clin Nutr ESPEN 2024; 60:266-280. [PMID: 38479921 DOI: 10.1016/j.clnesp.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 04/13/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder marked by neuroinflammation and gradual cognitive decline. Recent research has revealed that the gut microbiota (GM) plays an important role in the pathogenesis of AD through the microbiota-gut-brain axis. However, the mechanism by which GM and microbial metabolites alter brain function is not clearly understood. GM dysbiosis increases the permeability of the intestine, alters the blood-brain barrier permeability, and elevates proinflammatory mediators causing neurodegeneration. This review article introduced us to the composition and functions of GM along with its repercussions of dysbiosis in relation to AD. We also discussed the importance of the gut-brain axis and its role in communication. Later we focused on the mechanism behind gut dysbiosis and the progression of AD including neuroinflammation, oxidative stress, and changes in neurotransmitter levels. Furthermore, we highlighted recent developments in AD management, such as microbiota-based therapy, dietary interventions like prebiotics, probiotics, and fecal microbiota transplantation. Finally, we concluded with challenges and future directions in AD research based on GM.
Collapse
Affiliation(s)
- Vasu Peddinti
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Manoj Mohan Avaghade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Sunil Umedmal Suthar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Biswajit Rout
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
38
|
Datta D, Perone I, Wijegunawardana D, Liang F, Morozov YM, Arellano J, Duque A, Xie Z, van Dyck CH, Joyce MKP, Arnsten AFT. Nanoscale imaging of pT217-tau in aged rhesus macaque entorhinal and dorsolateral prefrontal cortex: Evidence of interneuronal trafficking and early-stage neurodegeneration. Alzheimers Dement 2024; 20:2843-2860. [PMID: 38445818 PMCID: PMC11032534 DOI: 10.1002/alz.13737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Tau phosphorylated at threonine-217 (pT217-tau) is a novel fluid-based biomarker that predicts onset of Alzheimer's disease (AD) symptoms, but little is known about how pT217-tau arises in the brain, as soluble pT217-tau is dephosphorylated post mortem in humans. METHODS We used multilabel immunofluorescence and immunoelectron microscopy to examine the subcellular localization of early-stage pT217-tau in entorhinal and prefrontal cortices of aged macaques with naturally occurring tau pathology and assayed pT217-tau levels in plasma. RESULTS pT217-tau was aggregated on microtubules within dendrites exhibiting early signs of degeneration, including autophagic vacuoles. It was also seen trafficking between excitatory neurons within synapses on spines, where it was exposed to the extracellular space, and thus accessible to cerebrospinal fluid (CSF)/blood. Plasma pT217-tau levels increased across the age span and thus can serve as a biomarker in macaques. DISCUSSION These data help to explain why pT217-tau predicts degeneration in AD and how it gains access to CSF and plasma to serve as a fluid biomarker.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of NeuroscienceYale UniversitySchool of MedicineNew HavenConnecticutUSA
- Department of PsychiatryYale UniversitySchool of MedicineNew HavenConnecticutUSA
| | - Isabella Perone
- Department of NeuroscienceYale UniversitySchool of MedicineNew HavenConnecticutUSA
| | | | - Feng Liang
- Department of AnesthesiaCritical Care and Pain MedicineMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Yury M. Morozov
- Department of NeuroscienceYale UniversitySchool of MedicineNew HavenConnecticutUSA
| | - Jon Arellano
- Department of NeuroscienceYale UniversitySchool of MedicineNew HavenConnecticutUSA
| | - Alvaro Duque
- Department of NeuroscienceYale UniversitySchool of MedicineNew HavenConnecticutUSA
| | - Zhongcong Xie
- Department of AnesthesiaCritical Care and Pain MedicineMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Mary Kate P. Joyce
- Department of NeuroscienceYale UniversitySchool of MedicineNew HavenConnecticutUSA
| | - Amy F. T. Arnsten
- Department of NeuroscienceYale UniversitySchool of MedicineNew HavenConnecticutUSA
| |
Collapse
|
39
|
Huang H, Sharoar MG, Pathoulas J, Fan L, He W, Xiang R, Yan R. Accumulation of neutral lipids in dystrophic neurites surrounding amyloid plaques in Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167086. [PMID: 38378084 PMCID: PMC10999334 DOI: 10.1016/j.bbadis.2024.167086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
Alzheimer's disease (AD) is characterized by the formation β-amyloid (Aβ) deposited neuritic plaques. Recent evidence suggests that abnormal lipid metabolism and accumulation could serve as biomarkers for neurodegenerative diseases, including AD. Tubular endoplasmic reticulum protein, reticulon 3 (RTN3), plays a crucial role in the development of neuritic plaque and lipid metabolism in AD brains. In present study, we sought to investigate a potential association between neutral lipid accumulation and AD pathology. BODIPY 500/510 dye was used to label neutral lipid surrounding Aβ plaques in APPNL-G-F mouse and AD postmortem brains samples. Immunofluorescent images were captured using confocal microscope and co-localization between lipid metabolism proteins and neutral lipids were evaluated. Lipid accumulation in Aβ plaque surrounding dystrophic neurites (DNs) was observed in the cortical region of AD mouse models and human AD brain samples. The neutral lipid staining was not co-localized with IBA1-labeled microglia or GFAP-labeled astrocytes, but it was co-labeled with VAMP2 and neurofilament. We further showed that neutral lipids were accumulated in RTN3 immunoreactive DNs. Both the neutral lipids accumulation and RIDNs formation showed age-dependent patterns in surrounding amyloid plaques. Mechanistic studies revealed that RTN3 likely contributes to the enrichment of neutral lipids near plaques by interacting with heat shock cognate protein 70 (HSC70) and diminishing its function in chaperone-mediated lipophagy. Our study provides immunohistochemical evidence of neutral lipids being enriched in DNs near amyloid plaques. Our findings shed light on RTN3-mediaed lipid accumulation in AD neuropathology and provide fresh insights into the role of RTN3 in neurodegenerative diseases.
Collapse
Affiliation(s)
- Hao Huang
- Department of Nephrology, Xiangya Hospital and National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China; Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA; Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China.
| | - Md Golam Sharoar
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA; Alzheimer's Disease Research Program, Corewell Health Research Institute, Oakland University William Beaumont School of Medicine, Corewell Health East, Royal Oak, MI 48073, USA
| | - Joseph Pathoulas
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Liangliang Fan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Wanxia He
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Rong Xiang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China.
| | - Riqiang Yan
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
40
|
Chen H, Hinz K, Zhang C, Rodriguez Y, Williams SN, Niu M, Ma X, Chao X, Frazier AL, McCarson KE, Wang X, Peng Z, Liu W, Ni HM, Zhang J, Swerdlow RH, Ding WX. Late-Life Alcohol Exposure Does Not Exacerbate Age-Dependent Reductions in Mouse Spatial Memory and Brain TFEB Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.23.581774. [PMID: 38464149 PMCID: PMC10925107 DOI: 10.1101/2024.02.23.581774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Alcohol consumption is believed to affect Alzheimer's disease (AD) risk, but the contributing mechanisms are not well understood. A potential mediator of the proposed alcohol-AD connection is autophagy, a degradation pathway that maintains organelle and protein homeostasis. Autophagy is in turn regulated through the activity of Transcription factor EB (TFEB), which promotes lysosome and autophagy-related gene expression. To explore the effect of alcohol on brain TFEB and autophagy, we exposed young (3-month old) and aged (23-month old) mice to two alcohol-feeding paradigms and assessed biochemical, transcriptome, histology, and behavioral endpoints. In young mice, alcohol decreased hippocampal nuclear TFEB staining but increased SQSTM1/p62, LC3-II, ubiquitinated proteins, and phosphorylated Tau. Hippocampal TFEB activity was lower in aged mice than it was in young mice, and Gao-binge alcohol feeding did not worsen the age-related reduction in TFEB activity. To better assess the impact of chronic alcohol exposure, we fed young and aged mice alcohol for four weeks before completing Morris Water and Barnes Maze spatial memory testing. The aged mice showed worse spatial memory on both tests. While alcohol feeding slightly impaired spatial memory in the young mice, it had little effect or even slightly improved spatial memory in the aged mice. These findings suggest that aging is a far more important driver of spatial memory impairment and reduced autophagy flux than alcohol consumption.
Collapse
|
41
|
Devadoss D, Akkaoui J, Nair M, Lakshmana MK. LRRC25 expression during physiological aging and in mouse models of Alzheimer's disease and iPSC-derived neurons. Front Mol Neurosci 2024; 17:1365752. [PMID: 38476461 PMCID: PMC10929014 DOI: 10.3389/fnmol.2024.1365752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
The leucine-rich repeat-containing protein 25 (LRRC25) is relatively a novel protein with no information on its role in neuronal or brain function. A recent study suggested LRRC25 is a potential risk factor for Alzheimer's disease (AD). As a first step to understanding LRRC25's role in the brain and AD, we found LRRC25 is expressed in both cell membranes and cytoplasm in a punctuate appearance in astrocytes, microglia, and neurons in cell lines as well as mouse brain. We also found that LRRC25 expression is both age- and brain region-dependent and that 1-day-old (1D) pups expressed the least amount of LRRC25 protein compared to adult ages. In the APΔE9 mice, immunoblot quantified LRRC25 protein levels were increased by 166% (**p < 0.01) in the cortex (CX) and by 215% (***p < 0.001) in the hippocampus (HP) relative to wild-type (WT) controls. Both the brainstem (BS) and cerebellum (CB) showed no significant alterations. In the 3xTg mice, only CX showed an increase of LRRC25 protein by 91% (*p < 0.05) when compared to WT controls although the increased trend was noted in the other brain regions. In the AD patient brains also LRRC25 protein levels were increased by 153% (***p < 0.001) when compared to normal control (NC) subjects. Finally, LRRC25 expression in the iPSC-derived neurons quantified by immunofluorescence was increased by 181% (**p < 0.01) in AD-derived neurons when compared to NC-derived neurons. Thus increased LRRC25 protein in multiple models of AD suggests that LRRC25 may play a pathogenic role in either Aβ or tau pathology in AD. The mechanism for the increased levels of LRRC25 in AD is unknown at present, but a previous study showed that LRRC25 levels also increase during neonatal hypoxic-ischemia neuronal damage. Based on the evidence that autophagy is highly dysregulated in AD, the increased LRRC25 levels may be due to decreased autophagic degradation of LRRC25. Increased LRRC25 in turn may regulate the stability or activity of key enzymes involved in either Aβ or hyperphosphorylated tau generation and thus may contribute to increased plaques and neurofibrillary tangles.
Collapse
Affiliation(s)
| | | | | | - Madepalli K. Lakshmana
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
42
|
Romero-Molina C, Neuner SM, Ryszawiec M, Pébay A, Dominantly Inherited Alzheimer Network, Marcora E, Goate A. Autosomal Dominant Alzheimer's Disease Mutations in Human Microglia Are Not Sufficient to Trigger Amyloid Pathology in WT Mice but Might Affect Pathology in 5XFAD Mice. Int J Mol Sci 2024; 25:2565. [PMID: 38473822 PMCID: PMC10932392 DOI: 10.3390/ijms25052565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Several genetic variants that affect microglia function have been identified as risk factors for Alzheimer's Disease (AD), supporting the importance of this cell type in disease progression. However, the effect of autosomal dominant mutations in the amyloid precursor protein (APP) or the presenilin (PSEN1/2) genes has not been addressed in microglia in vivo. We xenotransplanted human microglia derived from non-carriers and carriers of autosomal dominant AD (ADAD)-causing mutations in the brain of hCSF1 WT or 5XFAD mice. We observed that ADAD mutations in microglia are not sufficient to trigger amyloid pathology in WT mice. In 5XFAD mice, we observed a non-statistically significant increase in amyloid plaque volume and number of dystrophic neurites, coupled with a reduction in plaque-associated microglia in the brain of mice xenotransplanted with ADAD human microglia compared to mice xenotransplanted with non-ADAD microglia. In addition, we observed a non-statistically significant impairment in working and contextual memory in 5XFAD mice xenotransplanted with ADAD microglia compared to those xenotransplanted with non-ADAD-carrier microglia. We conclude that, although not sufficient to initiate amyloid pathology in the healthy brain, mutations in APP and PSEN1 in human microglia might cause mild changes in pathological and cognitive outcomes in 5XFAD mice in a manner consistent with increased AD risk.
Collapse
Affiliation(s)
- Carmen Romero-Molina
- Ronald M. Loeb Center for Alzheimer’s Disease, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; (C.R.-M.); (S.M.N.); (M.R.); (E.M.)
| | - Sarah M. Neuner
- Ronald M. Loeb Center for Alzheimer’s Disease, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; (C.R.-M.); (S.M.N.); (M.R.); (E.M.)
| | - Marcelina Ryszawiec
- Ronald M. Loeb Center for Alzheimer’s Disease, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; (C.R.-M.); (S.M.N.); (M.R.); (E.M.)
| | - Alice Pébay
- Department of Anatomy and Physiology, Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | | | - Edoardo Marcora
- Ronald M. Loeb Center for Alzheimer’s Disease, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; (C.R.-M.); (S.M.N.); (M.R.); (E.M.)
| | - Alison Goate
- Ronald M. Loeb Center for Alzheimer’s Disease, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; (C.R.-M.); (S.M.N.); (M.R.); (E.M.)
| |
Collapse
|
43
|
Cadiz MP, Gibson KA, Todd KT, Nascari DG, Massa N, Lilley MT, Olney KC, Al-Amin MM, Jiang H, Holtzman DM, Fryer JD. Aducanumab anti-amyloid immunotherapy induces sustained microglial and immune alterations. J Exp Med 2024; 221:e20231363. [PMID: 38226975 PMCID: PMC10791560 DOI: 10.1084/jem.20231363] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/01/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Aducanumab, an anti-amyloid immunotherapy for Alzheimer's disease, efficiently reduces Aβ, though its plaque clearance mechanisms, long-term effects, and effects of discontinuation are not fully understood. We assessed the effect of aducanumab treatment and withdrawal on Aβ, neuritic dystrophy, astrocytes, and microglia in the APP/PS1 amyloid mouse model. We found that reductions in amyloid and neuritic dystrophy during acute treatment were accompanied by microglial and astrocytic activation, and microglial recruitment to plaques and adoption of an aducanumab-specific pro-phagocytic and pro-degradation transcriptomic signature, indicating a role for microglia in aducanumab-mediated Aβ clearance. Reductions in Aβ and dystrophy were sustained 15 but not 30 wk after discontinuation, and reaccumulation of plaques coincided with loss of the microglial aducanumab signature and failure of microglia to reactivate. This suggests that despite the initial benefit from treatment, microglia are unable to respond later to restrain plaque reaccumulation, making further studies on the effect of amyloid-directed immunotherapy withdrawal crucial for assessing long-term safety and efficacy.
Collapse
Affiliation(s)
- Mika P. Cadiz
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Scottsdale, AZ, USA
| | | | - Kennedi T. Todd
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ, USA
| | - David G. Nascari
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ, USA
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Scottsdale, AZ, USA
- MD/PhD Training Program, Mayo Clinic, Scottsdale, AZ, USA
| | - Nashali Massa
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Scottsdale, AZ, USA
| | - Meredith T. Lilley
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Scottsdale, AZ, USA
| | | | - Md Mamun Al-Amin
- Department of Medical and Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hong Jiang
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - David M. Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - John D. Fryer
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Scottsdale, AZ, USA
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Scottsdale, AZ, USA
- MD/PhD Training Program, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
44
|
Chen H, Yang X, Gao Y, Jiang H, Guo M, Zhou Y, Li C, Tan Y, Zhang Y, Xue W. Electroacupuncture ameliorates cognitive impairment in APP/PS1 mouse by modulating TFEB levels to relieve ALP dysfunction. Brain Res 2024; 1823:148683. [PMID: 37992796 DOI: 10.1016/j.brainres.2023.148683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
Recently, the underlying mechanisms of acupuncture on the effects of Alzheimer's disease (AD) treatment have not been fully elucidated. Defects in ALP (autophagy-lysosomal pathway) and TFEB (transcription factor EB) play critical roles in AD. Our previous studies have demonstrated that electroacupuncture (EA) can ameliorate both β-amyloid (Aβ) pathology and cognitive function in APP/PS1 mice. However, the effects of EA on the expression of ALP and TFEB and their potential mechanisms require further investigation. Twenty-eight male APP/PS1 mice were randomly divided into Tg and Tg + EA groups, and 14 C57BL/6 mice served as the wild-type (WT) group. After 1 week of adaptation to the living environment, mice in the Tg + EA group were restrained in mouse bags and received manual acupuncture at Baihui (GV20) acupoint and EA stimulation at bilateral Yongquan (KI1) acupoints, using the same restraint method for WT and Tg groups. The intervention was applied for 15 min each time, every other day, lasting for six weeks. After intervention, the spatial learning and memory of the mice was assessed using the Morris water maze test. Hippocampal Aβ expression was detected by immunohistochemistry and ELISA. Transmission electron microscopy (TEM) was used to observe autophagic vacuoles and autolysosomes in the hippocampus. Immunofluorescence method was applied to examine the expression of TFEB in CA1 region of the hippocampus and the co-localization of CTSD or LAMP1 with Aβ. Western blot analysis was performed to evaluate the changes of LC3, p62, CTSD, LAMP1, TFEB and n-TFEB (nuclear TFEB) in the hippocampus. The findings of behavioral assessment indicated that EA alleviated the cognitive impairment of APP/PS1 mice. Compared with the WT group, the Tg group showed significant cognitive decline and abnormalities in ALP and TFEB function (P < 0.01 or P < 0.05). However, these abnormal changes were alleviated in the Tg + EA group (P < 0.01 or P < 0.05). The Tg group also showed more senile plaques and ALP dysfunction features, compared with the WT group, and these changes were alleviated by EA. In conclusion, this study highlights that EA ameliorated Aβ pathology-related cognitive impairments in the APP/PS1 model associated with ALP and TFEB dysfunction.
Collapse
Affiliation(s)
- Haotian Chen
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaokun Yang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yushan Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huili Jiang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mengwei Guo
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yingyi Zhou
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chenlu Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yunxiang Tan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405, China
| | - Yang Zhang
- Guangshui City Hospital of Traditional Chinese Medicine, 432700, China
| | - Weiguo Xue
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
45
|
Fornari Laurindo L, Aparecido Dias J, Cressoni Araújo A, Torres Pomini K, Machado Galhardi C, Rucco Penteado Detregiachi C, Santos de Argollo Haber L, Donizeti Roque D, Dib Bechara M, Vialogo Marques de Castro M, de Souza Bastos Mazuqueli Pereira E, José Tofano R, Jasmin Santos German Borgo I, Maria Barbalho S. Immunological dimensions of neuroinflammation and microglial activation: exploring innovative immunomodulatory approaches to mitigate neuroinflammatory progression. Front Immunol 2024; 14:1305933. [PMID: 38259497 PMCID: PMC10800801 DOI: 10.3389/fimmu.2023.1305933] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The increasing life expectancy has led to a higher incidence of age-related neurodegenerative conditions. Within this framework, neuroinflammation emerges as a significant contributing factor. It involves the activation of microglia and astrocytes, leading to the release of pro-inflammatory cytokines and chemokines and the infiltration of peripheral leukocytes into the central nervous system (CNS). These instances result in neuronal damage and neurodegeneration through activated nucleotide-binding domain and leucine-rich repeat containing (NLR) family pyrin domain containing protein 3 (NLRP3) and nuclear factor kappa B (NF-kB) pathways and decreased nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Due to limited effectiveness regarding the inhibition of neuroinflammatory targets using conventional drugs, there is challenging growth in the search for innovative therapies for alleviating neuroinflammation in CNS diseases or even before their onset. Our results indicate that interventions focusing on Interleukin-Driven Immunomodulation, Chemokine (CXC) Receptor Signaling and Expression, Cold Exposure, and Fibrin-Targeted strategies significantly promise to mitigate neuroinflammatory processes. These approaches demonstrate potential anti-neuroinflammatory effects, addressing conditions such as Multiple Sclerosis, Experimental autoimmune encephalomyelitis, Parkinson's Disease, and Alzheimer's Disease. While the findings are promising, immunomodulatory therapies often face limitations due to Immune-Related Adverse Events. Therefore, the conduction of randomized clinical trials in this matter is mandatory, and will pave the way for a promising future in the development of new medicines with specific therapeutic targets.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Jefferson Aparecido Dias
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Karina Torres Pomini
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Cristiano Machado Galhardi
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Claudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Luíza Santos de Argollo Haber
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Domingos Donizeti Roque
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Ricardo José Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Iris Jasmin Santos German Borgo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, Universidade de São Paulo (FOB-USP), Bauru, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, Brazil
| |
Collapse
|
46
|
Kapadia A, Theil S, Opitz S, Villacampa N, Beckert H, Schoch S, Heneka MT, Kumar S, Walter J. Phosphorylation-state dependent intraneuronal sorting of Aβ differentially impairs autophagy and the endo-lysosomal system. Autophagy 2024; 20:166-187. [PMID: 37642583 PMCID: PMC10761119 DOI: 10.1080/15548627.2023.2252300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
ABBREVIATIONS AD: Alzheimer disease; APP: amyloid beta precursor protein; ATG: autophagy related; Aβ: amyloid-β; CTSD: cathepsin D; DAPI: 4',6-diamidino-2-phenylindole; EEA1: early endosome antigen 1; FA: formic acid; GFP: green fluorescent protein; LAMP2: lysosomal-associated membrane protein 2; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAP2: microtubule-associated protein 2; nmAβ: non-modified amyloid-β; npAβ: non-phosphorylated amyloid-β; pAβ: phosphorylated amyloid-β; p-Ser26Aβ: amyloid-β phosphorylated at serine residue 26; p-Ser8Aβ: amyloid-β phosphorylated at serine residue 8; RAB: RAB, member RAS oncogene family; RFP: red fluorescent protein; SQSTM1/p62: sequestome 1; YFP: yellow fluorescent protein.
Collapse
Affiliation(s)
- Akshay Kapadia
- Molecular Cell Biology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Sandra Theil
- Molecular Cell Biology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Sabine Opitz
- Neuroinflammation Unit, German Center for Neurodegenerative Diseases e. V. (DZNE), Bonn, Germany
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Nàdia Villacampa
- Neuroinflammation Unit, German Center for Neurodegenerative Diseases e. V. (DZNE), Bonn, Germany
| | - Hannes Beckert
- Microscopy core facility, University Hospital Bonn, Bonn, Germany
| | - Susanne Schoch
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Michael. T. Heneka
- Neuroinflammation Unit, German Center for Neurodegenerative Diseases e. V. (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Sathish Kumar
- Molecular Cell Biology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Jochen Walter
- Molecular Cell Biology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
47
|
Perluigi M, Di Domenico F, Butterfield DA. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol Rev 2024; 104:103-197. [PMID: 37843394 PMCID: PMC11281823 DOI: 10.1152/physrev.00030.2022] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer disease (AD) is associated with multiple etiologies and pathological mechanisms, among which oxidative stress (OS) appears as a major determinant. Intriguingly, OS arises in various pathways regulating brain functions, and it seems to link different hypotheses and mechanisms of AD neuropathology with high fidelity. The brain is particularly vulnerable to oxidative damage, mainly because of its unique lipid composition, resulting in an amplified cascade of redox reactions that target several cellular components/functions ultimately leading to neurodegeneration. The present review highlights the "OS hypothesis of AD," including amyloid beta-peptide-associated mechanisms, the role of lipid and protein oxidation unraveled by redox proteomics, and the antioxidant strategies that have been investigated to modulate the progression of AD. Collected studies from our groups and others have contributed to unraveling the close relationships between perturbation of redox homeostasis in the brain and AD neuropathology by elucidating redox-regulated events potentially involved in both the pathogenesis and progression of AD. However, the complexity of AD pathological mechanisms requires an in-depth understanding of several major intracellular pathways affecting redox homeostasis and relevant for brain functions. This understanding is crucial to developing pharmacological strategies targeting OS-mediated toxicity that may potentially contribute to slow AD progression as well as improve the quality of life of persons with this severe dementing disorder.
Collapse
Affiliation(s)
- Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
48
|
Eckman EA, Clausen DM, Solé-Domėnech S, Lee CW, Sinobas-Pereira C, Domalewski RJ, Nichols MR, Pacheco-Quinto J. Nascent Aβ42 Fibrillization in Synaptic Endosomes Precedes Plaque Formation in a Mouse Model of Alzheimer's-like β-Amyloidosis. J Neurosci 2023; 43:8812-8824. [PMID: 37884349 PMCID: PMC10727180 DOI: 10.1523/jneurosci.1318-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/05/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023] Open
Abstract
Accumulation of amyloid-β peptide (Aβ) aggregates in synapses may contribute to the profound synaptic loss characteristic of Alzheimer's disease (AD). The origin of synaptic Aβ aggregates remains elusive, but loss of endosomal proteostasis may trigger their formation. In this study, we identified the synaptic compartments where Aβ accumulates, and performed a longitudinal analysis of synaptosomes isolated from brains of TgCRND8 APP transgenic mice of either sex. To evaluate the specific contribution of Aβ-degrading protease endothelin-converting enzyme (ECE-1) to synaptic/endosomal Aβ homeostasis, we analyzed the effect of partial Ece1 KO in brain and complete ECE1 KO in SH-SY5Y cells. Global inhibition of ECE family members was used to further assess their role in preventing synaptic Aβ accumulation. Results showed that, before extracellular amyloid deposition, synapses were burdened with detergent-soluble Aβ monomers, oligomers, and fibrils. Levels of all soluble Aβ species declined thereafter, as Aβ42 turned progressively insoluble and accumulated in Aβ-producing synaptic endosomal vesicles with characteristics of multivesicular bodies. Accordingly, fibrillar Aβ was detected in brain exosomes. ECE-1-deficient mice had significantly increased endogenous synaptosomal Aβ42 levels, and protease inhibitor experiments showed that, in TgCRND8 mice, synaptic Aβ42 became nearly resistant to degradation by ECE-related proteases. Our study supports that Aβ accumulating in synapses is produced locally, within endosomes, and does not require the presence of amyloid plaques. ECE-1 is a determinant factor controlling the accumulation and fibrillization of nascent Aβ in endosomes and, in TgCRND8 mice, Aβ overproduction causes rapid loss of Aβ42 solubility that curtails ECE-mediated degradation.SIGNIFICANCE STATEMENT Deposition of aggregated Aβ in extracellular plaques is a defining feature of AD. Aβ aggregates also accumulate in synapses and may contribute to the profound synaptic loss and cognitive dysfunction typical of the disease. However, it is not clear whether synaptotoxic Aβ is mainly derived from plaques or if it is produced and aggregated locally, within affected synaptic compartments. Filling this knowledge gap is important for the development of an effective treatment for AD, as extracellular and intrasynaptic pools of Aβ may not be equally modulated by immunotherapies or other therapeutic approaches. In this manuscript, we provide evidence that Aβ aggregates building up in synapses are formed locally, within synaptic endosomes, because of disruptions in nascent Aβ proteostasis.
Collapse
Affiliation(s)
- Elizabeth A Eckman
- Biomedical Research Institute of New Jersey, Cedar Knolls, New Jersey 07927
| | - Dana M Clausen
- Biomedical Research Institute of New Jersey, Cedar Knolls, New Jersey 07927
| | | | - Chris W Lee
- Biomedical Research Institute of New Jersey, Cedar Knolls, New Jersey 07927
| | - Cristina Sinobas-Pereira
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri 63121
| | - Ryan J Domalewski
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri 63121
| | - Michael R Nichols
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri 63121
| | | |
Collapse
|
49
|
Gao C, Liu Y, Zhang TL, Luo Y, Gao J, Chu JJ, Gong BF, Chen XH, Yin T, Zhang J, Yin Y. Biomembrane-Derived Nanoparticles in Alzheimer's Disease Therapy: A Comprehensive Review of Synthetic Lipid Nanoparticles and Natural Cell-Derived Vesicles. Int J Nanomedicine 2023; 18:7441-7468. [PMID: 38090364 PMCID: PMC10712251 DOI: 10.2147/ijn.s436774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Current therapies for Alzheimer's disease used in the clinic predominantly focus on reducing symptoms with limited capability to control disease progression; thus, novel drugs are urgently needed. While nanoparticles (liposomes, high-density lipoprotein-based nanoparticles) constructed with synthetic biomembranes have shown great potential in AD therapy due to their excellent biocompatibility, multifunctionality and ability to penetrate the BBB, nanoparticles derived from natural biomembranes (extracellular vesicles, cell membrane-based nanoparticles) display inherent biocompatibility, stability, homing ability and ability to penetrate the BBB, which may present a safer and more effective treatment for AD. In this paper, we reviewed the synthetic and natural biomembrane-derived nanoparticles that are used in AD therapy. The challenges associated with the clinical translation of biomembrane-derived nanoparticles and future perspectives are also discussed.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| | - Yan Liu
- Department of Clinical Pharmacy, Shanghai Jiao Tong University of Medicine, Shanghai, People’s Republic of China
| | - Ting-Lin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital of Naval Medical University, Shanghai, People’s Republic of China
| | - Yi Luo
- Department of Clinical Pharmacy, Shanghai Jiao Tong University of Medicine, Shanghai, People’s Republic of China
- New Drug Discovery and Development, Biotheus Inc., Zhuhai, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital of Naval Medical University, Shanghai, People’s Republic of China
| | - Jian-Jian Chu
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| | - Bao-Feng Gong
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| | - Xiao-Han Chen
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| | - Tong Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| | - Jian Zhang
- Department of Clinical Pharmacy, Shanghai Jiao Tong University of Medicine, Shanghai, People’s Republic of China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
50
|
Datta D, Perone I, Wijegunawardana D, Liang F, Morozov YM, Arellano J, Duque A, Xie Z, van Dyck CH, Arnsten AFT. Nanoscale imaging of pT217-tau in aged rhesus macaque entorhinal and dorsolateral prefrontal cortex: Evidence of interneuronal trafficking and early-stage neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566046. [PMID: 37986900 PMCID: PMC10659394 DOI: 10.1101/2023.11.07.566046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
INTRODUCTION pT217-tau is a novel fluid-based biomarker that predicts onset of Alzheimer's disease (AD) symptoms, but little is known about how pT217-tau arises in brain, as soluble pT217-tau is dephosphorylated postmortem in humans. METHODS We utilized multi-label immunofluorescence and immunoelectron-microscopy to examine the subcellular localization of early-stage pT217-tau in entorhinal and prefrontal cortices of aged macaques with naturally-occurring tau pathology and assayed pT217-tau levels in plasma. RESULTS pT217-tau was aggregated on microtubules within dendrites exhibiting early signs of degeneration, including autophagic vacuoles. It was also seen trafficking between excitatory neurons within synapses on spines, where it was exposed to the extracellular space, and thus accessible to CSF/blood. Plasma pT217-tau levels increased across the age-span and thus can serve as a biomarker in macaques. DISCUSSION These data help to explain why pT217-tau predicts degeneration in AD and how it gains access to CSF and plasma to serve as a fluid biomarker.
Collapse
|