1
|
Goto A, Omori K, Yamaguchi-Tomikawa T, Kobayashi H, Shinoda-Ito Y, Hirai K, Ikeda A, Takashiba S. Interleukin-6/soluble IL-6 receptor-induced secretion of cathepsin B and L from human gingival fibroblasts is regulated by caveolin-1 and ERK1/2 pathways. FRONTIERS IN DENTAL MEDICINE 2025; 6:1547222. [PMID: 40135201 PMCID: PMC11933118 DOI: 10.3389/fdmed.2025.1547222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Aims Cathepsins are essential lysosomal enzymes that maintain organismal homeostasis by degrading extracellular substrates. The inflammatory cytokine interleukin-6 (IL-6) increases the production of cathepsins through the caveolin-1 (Cav-1) and c-Jun N-terminal kinase (JNK) signaling pathways, which have been implicated in the destruction of periodontal tissue. This study investigated the effect of the IL-6/soluble IL-6 receptor (sIL-6R) complex on the extracellular secretion of cathepsins in human gingival fibroblasts (HGFs) and examined the function of extracellularly secreted cathepsins B and L under acidic culture conditions in vitro. Methods HGFs were isolated from healthy volunteer donors. The expression of Cav-1 was suppressed via transfection with small interfering RNA (siRNA) targeting Cav-1. The expression levels of cathepsins B and L induced by extracellular IL-6/sIL-6R were measured using western blotting and enzyme-linked immunosorbent assay. Extracellular cathepsin activity following IL-6/sIL-6R stimulation was assessed using a methylcoumarylamide substrate in a fluorescence-based assay. IL-6/sIL-6R-induced expression of cathepsins B and L in HGFs was quantified under inhibitory conditions for extracellular signal-regulated kinase (ERK) 1/2 and/or JNK signaling, both of which are transduction pathways activated by IL-6/sIL-6R. This quantification was also performed in HGFs with suppressed Cav-1 expression using western blotting. Results Cathepsins B and L were secreted in their precursor forms from HGFs, with significantly elevated protein levels observed at 24, 48, and 72 h post-IL-6/sIL-6R stimulation. Under acidic culture conditions, cathepsin B activity increased at 48 and 72 h. Cav-1 suppression inhibited the secretion of cathepsin B regardless of IL-6/sIL-6R stimulation, whereas the secretion of cathepsin L was reduced only after 48 h of IL-6/sIL-6R stimulation. Inhibition of ERK1/2 and JNK pathways decreased the secretion of cathepsin B after 48 h of IL-6/sIL-6R stimulation, and JNK inhibition reduced the secretion of cathepsin L under similar conditions. Conclusion IL-6/sIL-6R stimulation increased the extracellular secretion of cathepsin B and L precursors in HGFs, and these precursors became activated under acidic conditions. Cav-1 and ERK1/2 are involved in regulating the secretion of cathepsin B precursors.
Collapse
Affiliation(s)
- Ayaka Goto
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazuhiro Omori
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tomoko Yamaguchi-Tomikawa
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroya Kobayashi
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuki Shinoda-Ito
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kimito Hirai
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Atsushi Ikeda
- Department of Periodontics & Endodontics, Division of Dentistry, Okayama University Hospital, Okayama, Japan
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
2
|
Chowdhury NN, Yang Y, Dutta A, Luo M, Wei Z, Abrahams SR, Revenko AS, Shah F, Miles LA, Parmer RJ, de Laat B, Wolberg AS, Luyendyk JP, Fishel ML, Flick MJ. Plasminogen deficiency suppresses pancreatic ductal adenocarcinoma disease progression. Mol Oncol 2024; 18:113-135. [PMID: 37971174 PMCID: PMC10766200 DOI: 10.1002/1878-0261.13552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 10/06/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal metastatic disease associated with robust activation of the coagulation and fibrinolytic systems. However, the potential contribution of the primary fibrinolytic protease plasminogen to PDAC disease progression has remained largely undefined. Mice bearing C57Bl/6-derived KPC (KRasG12D , TRP53R172H ) tumors displayed evidence of plasmin activity in the form of high plasmin-antiplasmin complexes and high plasmin generation potential relative to mice without tumors. Notably, plasminogen-deficient mice (Plg- ) had significantly diminished KPC tumor growth in subcutaneous and orthotopic implantation models. Moreover, the metastatic potential of KPC cells was significantly diminished in Plg- mice, which was linked to reduced early adhesion and/or survival of KPC tumor cells. The reduction in primary orthotopic KPC tumor growth in Plg- mice was associated with increased apoptosis, reduced accumulation of pro-tumor immune cells, and increased local proinflammatory cytokine production. Elimination of fibrin(ogen), the primary proteolytic target of plasmin, did not alter KPC primary tumor growth and resulted in only a modest reduction in metastatic potential. In contrast, deficiencies in the plasminogen receptors Plg-RKT or S100A10 in tumor cells significantly reduced tumor growth. Plg-RKT reduction in tumor cells, but not reduced S100A10, suppressed metastatic potential in a manner that mimicked plasminogen deficiency. Finally, tumor growth was also reduced in NSG mice subcutaneously or orthotopically implanted with patient-derived PDAC tumor cells in which circulating plasminogen was pharmacologically reduced. Collectively, these studies suggest that plasminogen promotes PDAC tumor growth and metastatic potential, in part through engaging plasminogen receptors on tumor cells.
Collapse
Affiliation(s)
- Nayela N. Chowdhury
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndianapolisINUSA
- Department of Pharmacology and ToxicologyIndiana University School of MedicineIndianapolisINUSA
| | - Yi Yang
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillNCUSA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillNCUSA
- UNC Blood Research CenterUniversity of North Carolina at Chapel HillNCUSA
| | - Ananya Dutta
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillNCUSA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillNCUSA
- UNC Blood Research CenterUniversity of North Carolina at Chapel HillNCUSA
| | - Michelle Luo
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillNCUSA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillNCUSA
- UNC Blood Research CenterUniversity of North Carolina at Chapel HillNCUSA
| | - Zimu Wei
- Department of Pathobiology & Diagnostic InvestigationMichigan State UniversityEast LansingMIUSA
- Institute for Integrative ToxicologyMichigan State UniversityEast LansingMIUSA
- Department of Pharmacology and ToxicologyMichigan State UniversityEast LansingMIUSA
| | - Sara R. Abrahams
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillNCUSA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillNCUSA
- UNC Blood Research CenterUniversity of North Carolina at Chapel HillNCUSA
| | | | - Fenil Shah
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndianapolisINUSA
| | - Lindsey A. Miles
- Department of Molecular MedicineScripps Research InstituteLa JollaCAUSA
| | - Robert J. Parmer
- Department of Medicine, Veterans Administration San Diego Healthcare SystemUniversity of California, San DiegoCAUSA
| | - Bas de Laat
- Synapse Research InstituteMaastrichtThe Netherlands
| | - Alisa S. Wolberg
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillNCUSA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillNCUSA
- UNC Blood Research CenterUniversity of North Carolina at Chapel HillNCUSA
| | - James P. Luyendyk
- Department of Pathobiology & Diagnostic InvestigationMichigan State UniversityEast LansingMIUSA
- Institute for Integrative ToxicologyMichigan State UniversityEast LansingMIUSA
- Department of Pharmacology and ToxicologyMichigan State UniversityEast LansingMIUSA
| | - Melissa L. Fishel
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndianapolisINUSA
- Department of Pharmacology and ToxicologyIndiana University School of MedicineIndianapolisINUSA
| | - Matthew J. Flick
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillNCUSA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillNCUSA
- UNC Blood Research CenterUniversity of North Carolina at Chapel HillNCUSA
| |
Collapse
|
3
|
Obaha A, Novinec M. Regulation of Peptidase Activity beyond the Active Site in Human Health and Disease. Int J Mol Sci 2023; 24:17120. [PMID: 38069440 PMCID: PMC10707025 DOI: 10.3390/ijms242317120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
This comprehensive review addresses the intricate and multifaceted regulation of peptidase activity in human health and disease, providing a comprehensive investigation that extends well beyond the boundaries of the active site. Our review focuses on multiple mechanisms and highlights the important role of exosites, allosteric sites, and processes involved in zymogen activation. These mechanisms play a central role in shaping the complex world of peptidase function and are promising potential targets for the development of innovative drugs and therapeutic interventions. The review also briefly discusses the influence of glycosaminoglycans and non-inhibitory binding proteins on enzyme activities. Understanding their role may be a crucial factor in the development of therapeutic strategies. By elucidating the intricate web of regulatory mechanisms that control peptidase activity, this review deepens our understanding in this field and provides a roadmap for various strategies to influence and modulate peptidase activity.
Collapse
Affiliation(s)
| | - Marko Novinec
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
4
|
Biasizzo M, Javoršek U, Vidak E, Zarić M, Turk B. Cysteine cathepsins: A long and winding road towards clinics. Mol Aspects Med 2022; 88:101150. [PMID: 36283280 DOI: 10.1016/j.mam.2022.101150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022]
Abstract
Biomedical research often focuses on properties that differentiate between diseased and healthy tissue; one of the current focuses is elevated expression and altered localisation of proteases. Among these proteases, dysregulation of cysteine cathepsins can frequently be observed in inflammation-associated diseases, which tips the functional balance from normal physiological to pathological manifestations. Their overexpression and secretion regularly exhibit a strong correlation with the development and progression of such diseases, making them attractive pharmacological targets. But beyond their mostly detrimental role in inflammation-associated diseases, cysteine cathepsins are physiologically highly important enzymes involved in various biological processes crucial for maintaining homeostasis and responding to different stimuli. Consequently, several challenges have emerged during the efforts made to translate basic research data into clinical applications. In this review, we present both physiological and pathological roles of cysteine cathepsins and discuss the clinical potential of cysteine cathepsin-targeting strategies for disease management and diagnosis.
Collapse
Affiliation(s)
- Monika Biasizzo
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Urban Javoršek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Eva Vidak
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Miki Zarić
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Shim MS, Liton PB. The physiological and pathophysiological roles of the autophagy lysosomal system in the conventional aqueous humor outflow pathway: More than cellular clean up. Prog Retin Eye Res 2022; 90:101064. [PMID: 35370083 PMCID: PMC9464695 DOI: 10.1016/j.preteyeres.2022.101064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/09/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
Abstract
During the last few years, the autophagy lysosomal system is emerging as a central cellular pathway with roles in survival, acting as a housekeeper and stress response mechanism. Studies by our and other labs suggest that autophagy might play an essential role in maintaining aqueous humor outflow homeostasis, and that malfunction of autophagy in outflow pathway cells might predispose to ocular hypertension and glaucoma pathogenesis. In this review, we will collect the current knowledge and discuss the molecular mechanisms by which autophagy does or might regulate normal outflow pathway tissue function, and its response to different types of stressors (oxidative stress and mechanical stress). We will also discuss novel roles of autophagy and lysosomal enzymes in modulation of TGFβ signaling and ECM remodeling, and the link between dysregulated autophagy and cellular senescence. We will examine what we have learnt, using pre-clinical animal models about how dysregulated autophagy can contribute to disease and apply that to the current status of autophagy in human glaucoma. Finally, we will consider and discuss the challenges and the potential of autophagy as a therapeutic target for the treatment of ocular hypertension and glaucoma.
Collapse
Affiliation(s)
- Myoung Sup Shim
- Duke University, Department of Ophthalmology, Durham, NC, 27705, USA
| | - Paloma B Liton
- Duke University, Department of Ophthalmology, Durham, NC, 27705, USA.
| |
Collapse
|
6
|
Robinson H, Ruelcke JE, Lewis A, Bond CS, Fox AH, Bharti V, Wani S, Cloonan N, Lai A, Margolin D, Li L, Salomon C, Richards RS, Farrell A, Gardiner RA, Parton RG, Cristino AS, Hill MM. Caveolin-1-driven membrane remodelling regulates hnRNPK-mediated exosomal microRNA sorting in cancer. Clin Transl Med 2021; 11:e381. [PMID: 33931969 PMCID: PMC8031663 DOI: 10.1002/ctm2.381] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Caveolae proteins play diverse roles in cancer development and progression. In prostate cancer, non-caveolar caveolin-1 (CAV1) promotes metastasis, while CAVIN1 attenuates CAV1-induced metastasis. Here, we unveil a novel mechanism linking CAV1 to selective loading of exosomes with metastasis-promoting microRNAs. RESULTS We identify hnRNPK as a CAV1-regulated microRNA binding protein. In the absence of CAVIN1, non-caveolar CAV1 drives localisation of hnRPNK to multi-vesicular bodies (MVBs), recruiting AsUGnA motif-containing miRNAs and causing their release within exosomes. This process is dependent on the lipid environment of membranes as shown by cholesterol depletion using methyl-β-cyclodextrin or by treatment with n-3 polyunsaturated fatty acids. Consistent with a role in bone metastasis, knockdown of hnRNPK in prostate cancer PC3 cells abolished the ability of PC3 extracellular vesicles (EV) to induce osteoclastogenesis, and biofluid EV hnRNPK is elevated in metastatic prostate and colorectal cancer. CONCLUSIONS Taken together, these results support a novel pan-cancer mechanism for CAV1-driven exosomal release of hnRNPK and associated miRNA in metastasis, which is modulated by the membrane lipid environment.
Collapse
Affiliation(s)
- Harley Robinson
- The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQueenslandAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Jayde E. Ruelcke
- The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQueenslandAustralia
| | - Amanda Lewis
- School of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Charles S. Bond
- School of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Archa H. Fox
- School of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
- The Harry Perkins Institute of Medical ResearchQEII Medical CentreNedlandsWAAustralia
| | - Vandhana Bharti
- QIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Shivangi Wani
- QIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Nicole Cloonan
- QIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Andrew Lai
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women's HospitalThe University of QueenslandBrisbaneQueenslandAustralia
| | - David Margolin
- Maternal‐Fetal Medicine, Department of Obstetrics and GynecologyOchsner Clinic FoundationNew OrleansUSA
| | - Li Li
- Maternal‐Fetal Medicine, Department of Obstetrics and GynecologyOchsner Clinic FoundationNew OrleansUSA
| | - Carlos Salomon
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women's HospitalThe University of QueenslandBrisbaneQueenslandAustralia
- Maternal‐Fetal Medicine, Department of Obstetrics and GynecologyOchsner Clinic FoundationNew OrleansUSA
- Department of Clinical Biochemistry and Immunology, Faculty of PharmacyUniversity of ConcepciónConcepciónChile
| | - Renée S. Richards
- QIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Aine Farrell
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women's HospitalThe University of QueenslandBrisbaneQueenslandAustralia
| | - Robert A. Gardiner
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women's HospitalThe University of QueenslandBrisbaneQueenslandAustralia
| | - Robert G. Parton
- Institute for Molecular BioscienceThe University of QueenslandSt LuciaQueenslandAustralia
- Centre for Microscopy and MicroanalysisThe University of QueenslandSt LuciaQueenslandAustralia
| | - Alexandre S. Cristino
- The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQueenslandAustralia
- Griffith Institute for Drug DiscoveryGriffith UniversityBrisbaneQueenslandAustralia
| | - Michelle M. Hill
- The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQueenslandAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| |
Collapse
|
7
|
Ulčakar L, Novinec M. Inhibition of Human Cathepsins B and L by Caffeic Acid and Its Derivatives. Biomolecules 2020; 11:E31. [PMID: 33383850 PMCID: PMC7824550 DOI: 10.3390/biom11010031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022] Open
Abstract
Caffeic acid (CA) and its derivatives caffeic acid phenethyl ester (CAPE) and chlorogenic acid (CGA) are phenolic compounds of plant origin with a wide range of biological activities. Here, we identify and characterize their inhibitory properties against human cathepsins B and L, potent, ubiquitously expressed cysteine peptidases involved in protein turnover and homeostasis, as well as pathological conditions, such as cancer. We show that CAPE and CGA inhibit both peptidases, while CA shows a preference for cathepsin B, resulting in the strongest inhibition among these combinations. All compounds are linear (complete) inhibitors acting via mixed or catalytic mechanisms. Cathepsin B is more strongly inhibited at pH 7.4 than at 5.5, and CA inhibits its endopeptidase activity preferentially over its peptidyl-dipeptidase activity. Altogether, the results identify the CA scaffold as a promising candidate for the development of cathepsin B inhibitors, specifically targeting its endopeptidase activity associated with pathological proteolysis of extracellular substrates.
Collapse
Affiliation(s)
| | - Marko Novinec
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia;
| |
Collapse
|
8
|
Cathepsin B Localizes in the Caveolae and Participates in the Proteolytic Cascade in Trabecular Meshwork Cells. Potential New Drug Target for the Treatment of Glaucoma. J Clin Med 2020; 10:jcm10010078. [PMID: 33379277 PMCID: PMC7795952 DOI: 10.3390/jcm10010078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular matrix (ECM) deposition in the trabecular meshwork (TM) is one of the hallmarks of glaucoma, a group of human diseases and leading cause of permanent blindness. The molecular mechanisms underlying ECM deposition in the glaucomatous TM are not known, but it is presumed to be a consequence of excessive synthesis of ECM components, decreased proteolytic degradation, or both. Targeting ECM deposition might represent a therapeutic approach to restore outflow facility in glaucoma. Previous work conducted in our laboratory identified the lysosomal enzyme cathepsin B (CTSB) to be expressed on the cellular surface and to be secreted into the culture media in trabecular meshwork (TM) cells. Here, we further investigated the role of CTSB on ECM remodeling and outflow physiology in vitro and in CSTBko mice. Our results indicate that CTSB localizes in the caveolae and participates in the pericellular degradation of ECM in TM cells. We also report here a novel role of CTSB in regulating the expression of PAI-1 and TGFβ/Smad signaling in TM cells vitro and in vivo in CTSBko mice. We propose enhancing CTSB activity as a novel therapeutic target to attenuate fibrosis and ECM deposition in the glaucomatous outflow pathway.
Collapse
|
9
|
Abstract
The glycolytic phenotype of the Warburg effect is associated with acidification of the tumor microenvironment. In this review, we describe how acidification of the tumor microenvironment may increase the invasive and degradative phenotype of cancer cells. As a template of an extracellular acidic microenvironment that is linked to proteolysis, we use the resorptive pit formed between osteoclasts and bone. We describe similar changes that have been observed in cancer cells in response to an acidic microenvironment and that are associated with proteolysis and invasive and metastatic phenotypes. This includes consideration of changes observed in the intracellular trafficking of vesicles, i.e., lysosomes and exosomes, and in specialized regions of the membrane, i.e., invadopodia and caveolae. Cancer-associated cells are known to affect what is generally referred to as tumor proteolysis but little direct evidence for this being regulated by acidosis; we describe potential links that should be verified.
Collapse
|
10
|
Dheer D, Nicolas J, Shankar R. Cathepsin-sensitive nanoscale drug delivery systems for cancer therapy and other diseases. Adv Drug Deliv Rev 2019; 151-152:130-151. [PMID: 30690054 DOI: 10.1016/j.addr.2019.01.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/23/2019] [Indexed: 12/26/2022]
Abstract
Cathepsins are an important category of enzymes that have attracted great attention for the delivery of drugs to improve the therapeutic outcome of a broad range of nanoscale drug delivery systems. These proteases can be utilized for instance through actuation of polymer-drug conjugates (e.g., triggering the drug release) to bypass limitations of many drug candidates. A substantial amount of work has been witnessed in the design and the evaluation of Cathepsin-sensitive drug delivery systems, especially based on the tetra-peptide sequence (Gly-Phe-Leu-Gly, GFLG) which has been extensively used as a spacer that can be cleaved in the presence of Cathepsin B. This Review Article will give an in-depth overview of the design and the biological evaluation of Cathepsin-sensitive drug delivery systems and their application in different pathologies including cancer before discussing Cathepsin B-cleavable prodrugs under clinical trials.
Collapse
|
11
|
Kruglikov IL, Zhang Z, Scherer PE. Caveolin-1 in skin aging - From innocent bystander to major contributor. Ageing Res Rev 2019; 55:100959. [PMID: 31493519 PMCID: PMC6783389 DOI: 10.1016/j.arr.2019.100959] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/01/2019] [Accepted: 09/03/2019] [Indexed: 01/10/2023]
Abstract
Caveolin-1 (Cav-1) appears to be both a pathophysiological contributor and a target in different inflammatory and hyperproliferative skin conditions as well as in skin aging. Skin fibroblasts demonstrate an up-regulation of Cav-1 expression both in chronological and UV-induced aging, and such an up-regulation was observed both in vitro and in vivo. Typical alterations in aging skin involve a reduction of the dermis thickness, a significant expansion of the dermal white adipose tissue as well as modifications of the content and distribution of hyaluronan, impairment of autophagic flux, a reduction of collagen expression and an increase in tissue inflammation. All of these phenomena can be connected with changes in Cav-1 expression in the aging skin. Modified expression of Cav-1 can also significantly influence the mechanical properties of individual skin layers, thus changing the total mechanical stability of the layered composite skin/WAT, leading to typical structural modifications of the skin surface in the aging skin. Selective reduction of Cav-1 expression has the potential to exert anti-aging effects on the skin.
Collapse
Affiliation(s)
| | - Zhuzhen Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8549, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8549, USA.
| |
Collapse
|
12
|
Uemura T, Tsaprailis G, Gerner EW. GSTΠ stimulates caveolin-1-regulated polyamine uptake via actin remodeling. Oncotarget 2019; 10:5713-5723. [PMID: 31620246 PMCID: PMC6779281 DOI: 10.18632/oncotarget.27192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022] Open
Abstract
Polyamines spermidine and spermine, and their diamine precursor putrescine, are essential for normal cellular functions in both pro- and eukaryotes. Cellular polyamine levels are regulated by biosynthesis, degradation and transport. Transport of dietary and luminal bacterial polyamines in gastrointestinal (GI) tissues plays a significant role in tissue polyamine homeostasis. We have reported that caveolin-1 play an inhibitory role in polyamine uptake in GI tissues. We investigated the mechanism of caveolin-1-regulated polyamine transport. We found that glutathione S-transferase Π(GSTΠ) was secreted from caveolin-1 knockdown cells and stimulated spermidine transport in human colon-derived HCT116 cells. GSTΠ secreted in the medium increased S-glutathionylated protein level in the plasma membrane fraction. Proteomic analysis revealed that actin was S-glutathionylated by GSTΠ. Immunofluorescence microscopy demonstrated that actin filaments around plasma membrane were S-glutathionylated in caveolin-1 knockdown cells. Inhibition of actin remodeling by jasplakinolide caused a decrease in polyamine uptake activity. These data support a model in which caveolin-1 negatively regulates polyamine uptake by inhibiting GSTΠ secretion, which stimulates actin remodeling and endocytosis.
Collapse
Affiliation(s)
- Takeshi Uemura
- Amine Pharma Research Institute, Chuo-ku, Chiba 260-0856, Japan
| | - George Tsaprailis
- Center for Toxicology, College of Pharmacy, Tucson, Arizona 85721, USA
| | - Eugene W Gerner
- Cancer Prevention Pharmaceuticals, Tucson, Arizona 85718, USA
| |
Collapse
|
13
|
Rauff A, LaBelle SA, Strobel HA, Hoying JB, Weiss JA. Imaging the Dynamic Interaction Between Sprouting Microvessels and the Extracellular Matrix. Front Physiol 2019; 10:1011. [PMID: 31507428 PMCID: PMC6713949 DOI: 10.3389/fphys.2019.01011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Thorough understanding of growth and evolution of tissue vasculature is fundamental to many fields of medicine including cancer therapy, wound healing, and tissue engineering. Angiogenesis, the growth of new vessels from existing ones, is dynamically influenced by a variety of environmental factors, including mechanical and biophysical factors, chemotactic factors, proteolysis, and interaction with stromal cells. Yet, dynamic interactions between neovessels and their environment are difficult to study with traditional fixed time imaging techniques. Advancements in imaging technologies permit time-series and volumetric imaging, affording the ability to visualize microvessel growth over 3D space and time. Time-lapse imaging has led to more informative investigations of angiogenesis. The environmental factors implicated in angiogenesis span a wide range of signals. Neovessels advance through stromal matrices by forming attachments and pulling and pushing on their microenvironment, reorganizing matrix fibers, and inducing large deformations of the surrounding stroma. Concurrently, neovessels secrete proteolytic enzymes to degrade their basement membrane, create space for new vessels to grow, and release matrix-bound cytokines. Growing neovessels also respond to a host of soluble and matrix-bound growth factors, and display preferential growth along a cytokine gradient. Lastly, stromal cells such as macrophages and mesenchymal stem cells (MSCs) interact directly with neovessels and their surrounding matrix to facilitate sprouting, vessel fusion, and tissue remodeling. This review highlights how time-lapse imaging techniques advanced our understanding of the interaction of blood vessels with their environment during sprouting angiogenesis. The technology provides means to characterize the evolution of microvessel behavior, providing new insights and holding great promise for further research on the process of angiogenesis.
Collapse
Affiliation(s)
- Adam Rauff
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| | - Steven A. LaBelle
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| | - Hannah A. Strobel
- Innovations Laboratory, Advanced Solutions Life Sciences, Manchester, NH, United States
| | - James B. Hoying
- Innovations Laboratory, Advanced Solutions Life Sciences, Manchester, NH, United States
| | - Jeffrey A. Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
14
|
Rudzińska M, Parodi A, Soond SM, Vinarov AZ, Korolev DO, Morozov AO, Daglioglu C, Tutar Y, Zamyatnin AA. The Role of Cysteine Cathepsins in Cancer Progression and Drug Resistance. Int J Mol Sci 2019; 20:3602. [PMID: 31340550 PMCID: PMC6678516 DOI: 10.3390/ijms20143602] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/21/2022] Open
Abstract
Cysteine cathepsins are lysosomal enzymes belonging to the papain family. Their expression is misregulated in a wide variety of tumors, and ample data prove their involvement in cancer progression, angiogenesis, metastasis, and in the occurrence of drug resistance. However, while their overexpression is usually associated with highly aggressive tumor phenotypes, their mechanistic role in cancer progression is still to be determined to develop new therapeutic strategies. In this review, we highlight the literature related to the role of the cysteine cathepsins in cancer biology, with particular emphasis on their input into tumor biology.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Alessandro Parodi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Surinder M Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Andrey Z Vinarov
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia
| | - Dmitry O Korolev
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia
| | - Andrey O Morozov
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia
| | - Cenk Daglioglu
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, 35430 Urla/Izmir, Turkey
| | - Yusuf Tutar
- Faculty of Pharmacy, University of Health Sciences, 34668 Istanbul, Turkey
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
15
|
Szumska J, Batool Z, Al-Hashimi A, Venugopalan V, Skripnik V, Schaschke N, Bogyo M, Brix K. Treatment of rat thyrocytes in vitro with cathepsin B and L inhibitors results in disruption of primary cilia leading to redistribution of the trace amine associated receptor 1 to the endoplasmic reticulum. Biochimie 2019; 166:270-285. [PMID: 31302164 DOI: 10.1016/j.biochi.2019.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022]
Abstract
Taar1 is a G protein-coupled receptor (GPCR) confined to primary cilia of rodent thyroid epithelial cells. Taar1-deficient mouse thyroid follicles feature luminal accumulation of thyroglobulin suggesting that Taar1 acts as a regulator of extra- and pericellular thyroglobulin processing, which is mediated by cysteine cathepsin proteases present at the apical plasma membrane of rodent thyrocytes. Here, by immunostaining and confocal laser scanning microscopy, we demonstrated co-localization of cathepsin L, but only little cathepsin B, with Taar1 at primary cilia of rat thyrocytes, the FRT cells. Because proteases were shown to affect half-lives of certain receptors, we determined the effect of cathepsin activity inhibition on sub-cellular localization of Taar1 in FRT cells, whereupon Taar1 localization altered such that it was retained in compartments of the secretory pathway. Since the same effect on Taar1 localization was observed in both cathepsin B and L inhibitor-treated cells, the interaction of cathepsin activities and sub-cellular localization of Taar1 was thought to be indirect. Indeed, we observed that cathepsin inhibition resulted in a lack of primary cilia from FRT cells. Next, we proved that primary cilia are a necessity for Taar1 trafficking to reach the plasma membrane of FRT cells, since the disruption of primary cilia by treatment with β-cyclodextrin resulted in Taar1 retention in compartments of the secretory pathway. Furthermore, in less well-polarized rat thyrocytes, namely in FRTL-5 cells lacking primary cilia, Taar1 was mainly confined to the compartments of the secretory pathway. We conclude that Taar1 localization in polarized thyroid epithelial cells requires the presence of primary cilia, which is dependent on the proteolytic activity of cysteine cathepsins B and L.
Collapse
Affiliation(s)
- Joanna Szumska
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Zaina Batool
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Alaa Al-Hashimi
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Vaishnavi Venugopalan
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Vladislav Skripnik
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Klaudia Brix
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
16
|
Chen BJ, Tang YJ, Tang YL, Liang XH. What makes cells move: Requirements and obstacles for leader cells in collective invasion. Exp Cell Res 2019; 382:111481. [PMID: 31247191 DOI: 10.1016/j.yexcr.2019.06.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/15/2019] [Accepted: 06/23/2019] [Indexed: 02/05/2023]
Abstract
Most recently, mounting evidence has shown that cancer cells can invade as a cohesive and multicellular group with coordinated movement, which is called collective invasion. In this cohesive cancer cell group, cancer cells at the front of collective invasion are defined as leader cell that are responsible for many aspects of collective invasion, including sensing the microenvironment, determining the invasion direction, modifying the path of invasion and transmitting information to other cells. To fulfill their dispensable roles, leader cells are required to embark on some specific phenotypes with unusual expression of some proteins and it's very important to investigate into these proteins as they may serve as potential therapeutic targets. Here, in this review we will summarize current knowledge on four emerging proteins highly expressed in leader cells including K14, ΔNp63α, Dll4 and cysteine protease cathepsin B (CTSB), with a focus on their important roles in collective invasion and special mechanisms by which they promote collective invasion.
Collapse
Affiliation(s)
- Bing-Jun Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, China.
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral Pathology, West China Hospital of Stomatology, Sichuan University.China.
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, China.
| |
Collapse
|
17
|
Pu W, Nassar ZD, Khabbazi S, Xie N, McMahon KA, Parton RG, Riggins GJ, Harris JM, Parat MO. Correlation of the invasive potential of glioblastoma and expression of caveola-forming proteins caveolin-1 and CAVIN1. J Neurooncol 2019; 143:207-220. [PMID: 30949900 DOI: 10.1007/s11060-019-03161-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Glioblastoma (GBM) is the most common primary brain cancer. The average survival time for the majority of patients is approximately 15 months after diagnosis. A major feature of GBM that contributes to its poor prognosis is its high invasiveness. Caveolae are plasma membrane subdomains that participate in numerous biological functions. Caveolin-1 and Caveolae Associated Protein 1 (CAVIN1), formerly termed Polymerase I and Transcript Release Factor, are both necessary for caveola formation. We hypothesized that high expression of caveola-forming proteins in GBM promotes invasiveness via modulation of the production of matrix-degrading enzymes. METHODS The mRNA expression of caveola-forming proteins and matrix proteases in GBM samples, and survival after stratifying patients according to caveolin-1 or CAVIN1 expression, were analyzed from TCGA and REMBRANDT databases. The proteolytic profile of cell lines expressing or devoid of caveola-forming proteins was investigated using zymography and real-time qPCR. Invasion through basement membrane-like protein was investigated in vitro. RESULTS Expression of both caveolin-1 and CAVIN1 was increased in GBM compared to normal samples and correlated with expression of urokinase plasminogen activator (uPA) and gelatinases. High expression of caveola-forming proteins was associated with shorter survival time. GBM cell lines capable of forming caveolae expressed more uPA and matrix metalloproteinase-2 (MMP-2) and/or -9 (MMP-9) and were more invasive than GBM cells devoid of caveola-forming proteins. Experimental manipulation of caveolin-1 or CAVIN1 expression in GBM cells recapitulated some, but not all of these features. Caveolae modulate GBM cell invasion in part via matrix protease expression.
Collapse
Affiliation(s)
- Wenjun Pu
- PACE, University of Queensland School of Pharmacy, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Zeyad D Nassar
- School of Medicine and Freemasons Foundation Centre for Men's Health, South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia
| | - Samira Khabbazi
- PACE, University of Queensland School of Pharmacy, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Nan Xie
- PACE, University of Queensland School of Pharmacy, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Kerrie-Ann McMahon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Gregory J Riggins
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21213, USA
| | - Jonathan M Harris
- Institute of Health Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Marie-Odile Parat
- PACE, University of Queensland School of Pharmacy, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
18
|
Kanno Y. The Role of Fibrinolytic Regulators in Vascular Dysfunction of Systemic Sclerosis. Int J Mol Sci 2019; 20:ijms20030619. [PMID: 30709025 PMCID: PMC6387418 DOI: 10.3390/ijms20030619] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 02/08/2023] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disease of autoimmune origin characterized by vascular dysfunction and extensive fibrosis of the skin and visceral organs. Vascular dysfunction is caused by endothelial cell (EC) apoptosis, defective angiogenesis, defective vasculogenesis, endothelial-to-mesenchymal transition (EndoMT), and coagulation abnormalities, and exacerbates the disease. Fibrinolytic regulators, such as plasminogen (Plg), plasmin, α2-antiplasmin (α2AP), tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA) and its receptor (uPAR), plasminogen activator inhibitor 1 (PAI-1), and angiostatin, are considered to play an important role in the maintenance of endothelial homeostasis, and are associated with the endothelial dysfunction of SSc. This review considers the roles of fibrinolytic factors in vascular dysfunction of SSc.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, 97-1 Kodo Kyo-tanabe, Kyoto 610-0395, Japan.
| |
Collapse
|
19
|
Vizovišek M, Fonović M, Turk B. Cysteine cathepsins in extracellular matrix remodeling: Extracellular matrix degradation and beyond. Matrix Biol 2019; 75-76:141-159. [DOI: 10.1016/j.matbio.2018.01.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/14/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022]
|
20
|
Saranya G, Joseph MM, Karunakaran V, Nair JB, Saritha VN, Veena VS, Sujathan K, Ajayaghosh A, Maiti KK. Enzyme-Driven Switchable Fluorescence-SERS Diagnostic Nanococktail for the Multiplex Detection of Lung Cancer Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:38807-38818. [PMID: 30353718 DOI: 10.1021/acsami.8b15583] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Comprehensive profiling of multiple protein targets plays a critical role in deeper understanding of specific disease conditions associated with high heterogeneity and complexity. Herein, we present the design and fabrication of smart programmable nanoarchitectures, which could integrate clinically relevant diagnostic modalities for the multiplexed detection of most prevalent panel of disease biomarkers present in lung cancer. The multiplex nanoprobes were prepared by attaching dual-functional Raman-active fluorogens onto spherical gold nanoparticles through a peptide linker, Phe-Lys-Cys (FKC), which is engineered with a cathepsin B (cathB) enzyme cleavage site. The presence of cathB induces the scission of FKC upon homing into the cancer cells, resulting in the release of the initially latent fluorophores with a concomitant quenching of the surface-enhanced Raman signal intensity, thereby realizing an on-off switching between the fluorescence and Raman modalities. The enzyme-triggered switchable nanoprobes were utilized for the simultaneous detection of pathologically relevant lung cancer targets by tethering with specific antibody units. The multiplex-targeted multicolor coded detection capability of the antitags was successfully developed as a valid protein screening methodology, which can address the unmet challenges in the conventional clinical scenario for the precise and early diagnosis of lung cancer.
Collapse
Affiliation(s)
| | | | | | | | - Valliamma N Saritha
- Division of Cancer Research , Regional Cancer Centre (RCC) , Thiruvananthapuram 695011 , India
| | - Vamadevan S Veena
- Division of Cancer Research , Regional Cancer Centre (RCC) , Thiruvananthapuram 695011 , India
| | - Kunjuraman Sujathan
- Division of Cancer Research , Regional Cancer Centre (RCC) , Thiruvananthapuram 695011 , India
| | | | | |
Collapse
|
21
|
Torrejón B, Cristóbal I, Rojo F, García-Foncillas J. Caveolin-1 is Markedly Downregulated in Patients with Early-Stage Colorectal Cancer. World J Surg 2018; 41:2625-2630. [PMID: 28560511 DOI: 10.1007/s00268-017-4065-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Caveolin-1 (CAV-1), the main scaffold protein in caveolae, is frequently deregulated in human cancer. Of importance, this protein has been described to show tumor suppressor or oncogenic properties depending on the cell type and the stage of the disease. In fact, its role in colorectal cancer (CRC) remains to be fully clarified due to discrepancies in the literature. METHODS We analyzed CAV-1 by western blot in a set of early-stage CRC patients with paired tumor tissue and normal colonic mucosa available. CAV-1 mRNA and expression levels of miR-124, 133 and 802 were quantified by real-time PCR. RESULTS We found CAV-1 strongly downregulated in 76.2% of tumor samples and associated with the subgroup of elderly patients (p = 0.027). We observed by real-time PCR a lack of correlation between CAV-1 mRNA and protein levels in some cases with CAV-1 downregulated by western blot, and miR-124 deregulation was identified as a potential contributing alteration to decrease CAV-1 protein expression. CONCLUSION CAV-1 is commonly downregulated in patients with primary CRC, which suggests its tumor suppressor role in early stages of this disease. Moreover, based on our findings, the previous discrepancies observed in different studies to date could be due to a complex posttranscriptional CAV-1 regulation.
Collapse
Affiliation(s)
- Blanca Torrejón
- Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz, UAM, University Hospital "Fundación Jiménez Díaz", Avda. Reyes Católicos-2, 28040, Madrid, Spain
| | - Ion Cristóbal
- Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz, UAM, University Hospital "Fundación Jiménez Díaz", Avda. Reyes Católicos-2, 28040, Madrid, Spain.
| | - Federico Rojo
- Pathology Department, University Hospital "Fundacion Jimenez Diaz", Autonomous University of Madrid, 28040, Madrid, Spain
| | - Jesús García-Foncillas
- Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz, UAM, University Hospital "Fundación Jiménez Díaz", Avda. Reyes Católicos-2, 28040, Madrid, Spain.
| |
Collapse
|
22
|
Chan YC, Hsiao M. Protease-activated nanomaterials for targeted cancer theranostics. Nanomedicine (Lond) 2017; 12:2153-2159. [PMID: 28814163 DOI: 10.2217/nnm-2017-0068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cancer metastasis accompanies irreversible proteolysis. Malignant cells that abnormally express extracellular proteases usually lead to a poor outcome during cancer progression. The development of protease-activated drugs is an important goal. Moreover, the specific proteolytic mechanism can be used as a diagnostic strategy. Currently, nanotechnology for use in medication has been extensively developed to exploit the physical and chemical properties of nanoparticles. For example, to improve the efficacy of cancer therapy drugs, targeted delivery has been attempted by combining a targeting ligand with a nanoparticle. Multifunctional nanoparticles have been prepared for cancer therapy and diagnosis because of their advantages such as stable physical properties, drug carrying ability and potential specific targeting ability. In this review, we present reports on protease-activated nanoparticle design for cancer theranostics. We further describe recent protease-activated metalloprotease-based and cathepsin-based nanomaterials used in cancer nanotheranostics. Innovative protease-activated nanomaterials have significant potential for designing personalized treatment.
Collapse
Affiliation(s)
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
23
|
Demirci NS, Dogan M, Erdem GU, Kacar S, Turhan T, Kilickap S, Cigirgan LC, Kayacetin E, Bozkaya Y, Zengin N. Is plasma caveolin-1 level a prognostic biomarker in metastatic pancreatic cancer? Saudi J Gastroenterol 2017; 23:183-189. [PMID: 28611342 PMCID: PMC5470378 DOI: 10.4103/sjg.sjg_483_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND/AIMS To evaluate the prognostic significance of plasma caveolin (CAV)-1 and its association with survival and treatment response rates in metastatic pancreatic cancer (MPC). PATIENTS AND METHODS Plasma samples were prospectively collected from 41 patients with newly diagnosed MPC. Moreover, plasma samples were collected from 48 patients with chronic pancreatitis and 41 healthy individuals (control groups) for assessing Cav-1 levels. Plasma Cav-1 levels were evaluated at baseline and after three cycles of chemotherapy in the patients with MPC. RESULTS The median Cav-1 level was 13.8 ng/mL for the patients with MPC and 12.2 ng/mL for healthy individuals (P = 0.009). The Cav-1 cut-off level was calculated as 11.6 ng/mL by using the receiver operating characteristic curve. The median overall survival and progression-free survival rates were 5 and 2.4 months, respectively, for participants with a high basal plasma Cav-1 level; the corresponding values were 10.5 and 9.4 months for participants with a low plasma Cav-1 level (P = 0.011 and P= 0.003, respectively). Of the 41 patients with MPC, 23 completed at least three cycles of chemotherapy. The median Cav-1 level was 13 ng/mL for post-treatment MPC (r2: 0.917; P= 0.001). High basal plasma caveolin-1 level have continued to remain at high levels even after chemotherapy, showing a trend toward worse response rates (P = 0.086). CONCLUSION High basal plasma Cav-1 levels seem to be associated with poor survival and tend to yield worse therapeutic outcomes in patients with MPC. This study is the first to evaluate the prognostic significance of plasma Cav-1 levels as a prognostic factor in patients with MPC. However, larger prospective clinical trials are warranted.
Collapse
Affiliation(s)
- Nebi S. Demirci
- Department of Medical Oncology, Ankara Numune Training and Research Hospital, Ankara, Turkey,Address for correspondence: Dr. Nebi S. Demirci, Department of Medical Oncology, Ankara Numune Training and Research Hospital, Ankara, Turkey. E-mail:
| | - Mutlu Dogan
- Department of Medical Oncology, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Gokmen U. Erdem
- Department of Medical Oncology, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Sabite Kacar
- Department of Gastroenterology, Turkiye Yuksek Ihtisas Training and Research Hospital, Ankara, Turkey
| | - Turan Turhan
- Department of Biochemistry, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Saadettin Kilickap
- Department of Medical Oncology, Hacettepe University Medical Faculty, Ankara, Turkey
| | - Lutfi C. Cigirgan
- Department of Biochemistry, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Ertugrul Kayacetin
- Department of Gastroenterology, Turkiye Yuksek Ihtisas Training and Research Hospital, Ankara, Turkey
| | - Yakup Bozkaya
- Department of Medical Oncology, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Nurullah Zengin
- Department of Medical Oncology, Ankara Numune Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
24
|
Ibrahim SA, El-Ghonaimy EA, Hassan H, Mahana N, Mahmoud MA, El-Mamlouk T, El-Shinawi M, Mohamed MM. Hormonal-receptor positive breast cancer: IL-6 augments invasion and lymph node metastasis via stimulating cathepsin B expression. J Adv Res 2016; 7:661-70. [PMID: 27482469 PMCID: PMC4957008 DOI: 10.1016/j.jare.2016.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/18/2016] [Accepted: 06/24/2016] [Indexed: 01/17/2023] Open
Abstract
Hormonal-receptor positive (HRP) breast cancer patients with positive metastatic axillary lymph nodes are characterized by poor prognosis and increased mortality rate. The mechanisms by which cancer cells invade lymph nodes have not yet been fully explored. Several studies have shown that expression of IL-6 and the proteolytic enzyme cathepsin B (CTSB) was associated with breast cancer poor prognosis. In the present study, the effect of different concentrations of recombinant human IL-6 on the invasiveness capacity of HRP breast cancer cell line MCF-7 was tested using an in vitro invasion chamber assay. The impact of IL-6 on expression and activity of CTSB was also investigated. IL-6 treatment promoted the invasiveness potential of MCF-7 cells in a dose-dependent manner. Furthermore, MCF-7 cells displayed elevated CTSB expression and activity associated with loss of E-cadherin and upregulation of vimentin protein levels upon IL-6 stimulation. To validate these results in vivo, the level of expression of IL-6 and CTSB in the carcinoma tissues of HRP-breast cancer patients with positive and negative axillary metastatic lymph nodes (pLNs and nLNs) was assessed. Western blot and immunohistochemical staining data showed that expression of IL-6 and CTSB was higher in carcinoma tissues in HRP-breast cancer with pLNs than those with nLNs patients. ELISA results showed carcinoma tissues of HRP-breast cancer with pLNs exhibited significantly elevated IL-6 protein levels by approximately 2.8-fold compared with those with nLNs patients (P < 0.05). Interestingly, a significantly positive correlation between IL-6 and CTSB expression was detected in clinical samples of HRP-breast cancer patients with pLNs (r = 0.78, P < 0.01). Collectively, this study suggests that IL-6-induced CTSB may play a role in lymph node metastasis, and that may possess future therapeutic implications for HRP-breast cancer patients with pLNs. Further studies are necessary to fully identify IL-6/CTSB axis in different molecular subtypes of breast cancer.
Collapse
Affiliation(s)
- Sherif A Ibrahim
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Eslam A El-Ghonaimy
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Hebatallah Hassan
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Noha Mahana
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | | - Tahani El-Mamlouk
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Mona M Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
25
|
Lysosomal cysteine peptidases – Molecules signaling tumor cell death and survival. Semin Cancer Biol 2015; 35:168-79. [DOI: 10.1016/j.semcancer.2015.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 12/18/2022]
|
26
|
Ramalho SD, Sharma R, White JK, Aggarwal N, Chalasani A, Sameni M, Moin K, Vieira PC, Turro C, Kodanko JJ, Sloane BF. Imaging Sites of Inhibition of Proteolysis in Pathomimetic Human Breast Cancer Cultures by Light-Activated Ruthenium Compound. PLoS One 2015; 10:e0142527. [PMID: 26562785 PMCID: PMC4643019 DOI: 10.1371/journal.pone.0142527] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/22/2015] [Indexed: 11/21/2022] Open
Abstract
The cysteine protease cathepsin B has been causally linked to progression and metastasis of breast cancers. We demonstrate inhibition by a dipeptidyl nitrile inhibitor (compound 1) of cathepsin B activity and also of pericellular degradation of dye-quenched collagen IV by living breast cancer cells. To image, localize and quantify collagen IV degradation in real-time we used 3D pathomimetic breast cancer models designed to mimic the in vivo microenvironment of breast cancers. We further report the synthesis and characterization of a caged version of compound 1, [Ru(bpy)2(1)2](BF4)2 (compound 2), which can be photoactivated with visible light. Upon light activation, compound 2, like compound 1, inhibited cathepsin B activity and pericellular collagen IV degradation by the 3D pathomimetic models of living breast cancer cells, without causing toxicity. We suggest that caged inhibitor 2 is a prototype for cathepsin B inhibitors that can control both the site and timing of inhibition in cancer.
Collapse
Affiliation(s)
- Suelem D. Ramalho
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Rajgopal Sharma
- Department of Chemistry, Wayne State University, Detroit, Michigan, United States of America
| | - Jessica K. White
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Neha Aggarwal
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
| | - Anita Chalasani
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
| | - Mansoureh Sameni
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
| | - Kamiar Moin
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
- Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
| | - Paulo C. Vieira
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Jeremy J. Kodanko
- Department of Chemistry, Wayne State University, Detroit, Michigan, United States of America
- * E-mail: (BFS); (JJK)
| | - Bonnie F. Sloane
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
- Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
- * E-mail: (BFS); (JJK)
| |
Collapse
|
27
|
Damasceno IZ, Melo KRB, Nascimento FD, Souza DSP, Araujo MS, Souza SEG, Sampaio MU, Nader HB, Tersariol ILS, Motta G. Bradykinin release avoids high molecular weight kininogen endocytosis. PLoS One 2015; 10:e0121721. [PMID: 25822177 PMCID: PMC4379145 DOI: 10.1371/journal.pone.0121721] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/03/2015] [Indexed: 01/22/2023] Open
Abstract
Human H-kininogen (120 kDa) plays a role in many pathophysiological processes and interacts with the cell surface through protein receptors and proteoglycans, which mediate H-kininogen endocytosis. In the present work we demonstrate that H-kininogen containing bradykinin domain is internalized and different endogenous kininogenases are present in CHO-K1 cells. We used CHO-K1 (wild type) and CHO-745 (mutant deficient in proteoglycans biosynthesis) cell lines. H-kininogen endocytosis was studied using confocal microscopy, and its hydrolysis by cell lysate fraction was determined by immunoblotting. Bradykinin release was also measured by radioimmunoassay. H-kininogen interaction with the cell surface of CHO-745 cells resulted in bradykinin release by serine proteases. In CHO-K1 cells, which produce heparan and chondroitin sulfate proteoglycans, internalization of H-kininogen through its bradykinin domain can occur on lipid raft domains/caveolae. Nevertheless bradykinin-free H-kininogen was not internalized by CHO-K1 cells. The H-kininogen present in acidic endosomal vesicles in CHO-K1 was approximately 10-fold higher than the levels in CHO-745. CHO-K1 lysate fractions were assayed at pH 5.5 and intact H-kininogen was totally hydrolyzed into a 62 kDa fragment. By contrast, at an assay pH 7.4, the remained fragments were 115 kDa, 83 kDa, 62 kDa and 48 kDa in size. The antipain-Sepharose chromatography separated endogenous kininogenases from CHO-K1 lysate fraction. No difference was detected in the assays at pH 5.5 or 7.4, but the proteins in the fraction bound to the resin released bradykinin from H-kininogen. However, the proteins in the unbound fraction cleaved intact H-kininogen at other sites but did not release bradykinin. H-kininogen can interact with extravascular cells, and is internalized dependent on its bradykinin domain and cell surface proteoglycans. After internalization, H-kininogen is proteolytically processed by intracellular kininogenases. The present data also demonstrates that serine or cysteine proteases in lipid raft domains/caveolae on the CHO cell can hydrolyze H-kininogen, thus releasing kinins.
Collapse
Affiliation(s)
- Igor Z. Damasceno
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brasil
| | - Katia R. B. Melo
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brasil
| | - Fabio D. Nascimento
- Programas de Biomateriais e Biotecnologia, Universidade Anhanguera de São Paulo (UNIAN SP), São Paulo, SP, Brasil
| | - Daianne S. P. Souza
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brasil
| | - Mariana S. Araujo
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brasil
| | - Sinval E. G. Souza
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brasil
| | - Misako U. Sampaio
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brasil
| | - Helena B. Nader
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brasil
| | - Ivarne L. S. Tersariol
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brasil
- * E-mail: (ILST); (GM)
| | - Guacyara Motta
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brasil
- * E-mail: (ILST); (GM)
| |
Collapse
|
28
|
Abstract
Pericellular proteases have long been associated with cancer invasion and metastasis due to their ability to degrade extracellular matrix components. Recent studies demonstrate that proteases also modulate tumor progression and metastasis through highly regulated and complex processes involving cleavage, processing, or shedding of cell adhesion molecules, growth factors, cytokines, and kinases. In this review, we address how cancer cells, together with their surrounding microenvironment, regulate pericellular proteolysis. We dissect the multitude of mechanisms by which pericellular proteases contribute to cancer progression and discuss how this knowledge can be integrated into therapeutic opportunities.
Collapse
Affiliation(s)
- Lisa Sevenich
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Johanna A Joyce
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| |
Collapse
|
29
|
Cysteine cathepsin activity regulation by glycosaminoglycans. BIOMED RESEARCH INTERNATIONAL 2014; 2014:309718. [PMID: 25587532 PMCID: PMC4283429 DOI: 10.1155/2014/309718] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/02/2014] [Indexed: 11/26/2022]
Abstract
Cysteine cathepsins are a group of enzymes normally found in the endolysosomes where they are primarily involved in intracellular protein turnover but also have a critical role in MHC II-mediated antigen processing and presentation. However, in a number of pathologies cysteine cathepsins were found to be heavily upregulated and secreted into extracellular milieu, where they were found to degrade a number of extracellular proteins. A major role in modulating cathepsin activities play glycosaminoglycans, which were found not only to facilitate their autocatalytic activation including at neutral pH, but also to critically modulate their activities such as in the case of the collagenolytic activity of cathepsin K. The interaction between cathepsins and glycosaminoglycans will be discussed in more detail.
Collapse
|
30
|
Theocharis AD, Gialeli C, Bouris P, Giannopoulou E, Skandalis SS, Aletras AJ, Iozzo RV, Karamanos NK. Cell-matrix interactions: focus on proteoglycan-proteinase interplay and pharmacological targeting in cancer. FEBS J 2014; 281:5023-42. [PMID: 25333340 PMCID: PMC5036392 DOI: 10.1111/febs.12927] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/04/2014] [Accepted: 07/09/2014] [Indexed: 01/10/2023]
Abstract
Proteoglycans are major constituents of extracellular matrices, as well as cell surfaces and basement membranes. They play key roles in supporting the dynamic extracellular matrix by generating complex structural networks with other macromolecules and by regulating cellular phenotypes and signaling. It is becoming evident, however, that proteolytic enzymes are required partners for matrix remodeling and for modulating cell signaling via matrix constituents. Proteinases contribute to all stages of diseases, particularly cancer development and progression, and contextually participate in either the removal of damaged products or in the processing of matrix molecules and signaling receptors. The dynamic interplay between proteoglycans and proteolytic enzymes is a crucial biological step that contributes to the pathophysiology of cancer and inflammation. Moreover, proteoglycans are implicated in the expression and secretion of proteolytic enzymes and often modulate their activities. In this review, we describe the emerging biological roles of proteoglycans and proteinases, with a special emphasis on their complex interplay. We critically evaluate this important proteoglycan-proteinase interactome and discuss future challenges with respect to targeting this axis in the treatment of cancer.
Collapse
Affiliation(s)
- Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece
| | - Chrisostomi Gialeli
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece
| | - Panagiotis Bouris
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece
| | - Efstathia Giannopoulou
- Clinical Oncology Laboratory, Division of Oncology, University Hospital of Patras, Patras Medical School, Patras 26110, Greece
| | - Spyros S. Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece
| | - Alexios J. Aletras
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece
| |
Collapse
|
31
|
Herszényi L, Barabás L, Hritz I, István G, Tulassay Z. Impact of proteolytic enzymes in colorectal cancer development and progression. World J Gastroenterol 2014; 20:13246-13257. [PMID: 25309062 PMCID: PMC4188883 DOI: 10.3748/wjg.v20.i37.13246] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/26/2014] [Accepted: 05/23/2014] [Indexed: 02/06/2023] Open
Abstract
Tumor invasion and metastasis is a highly complicated, multi-step phenomenon. In the complex event of tumor progression, tumor cells interact with basement membrane and extracellular matrix components. Proteolytic enzymes (proteinases) are involved in the degradation of extracellular matrix, but also in cancer invasion and metastasis. The four categories of proteinases (cysteine-, serine-, aspartic-, and metalloproteinases) are named and classified according to the essential catalytic component in their active site. We and others have shown that proteolytic enzymes play a major role not only in colorectal cancer (CRC) invasion and metastasis, but also in malignant transformation of precancerous lesions into cancer. Tissue and serum-plasma antigen concentrations of proteinases might be of great value in identifying patients with poor prognosis in CRC. Our results, in concordance with others indicate the potential tumor marker impact of proteinases for the early diagnosis of CRC. In addition, proteinases may also serve as potential target molecules for therapeutic agents.
Collapse
|
32
|
Tan CD, Hobbs C, Sameni M, Sloane BF, Stutts MJ, Tarran R. Cathepsin B contributes to Na+ hyperabsorption in cystic fibrosis airway epithelial cultures. J Physiol 2014; 592:5251-68. [PMID: 25260629 DOI: 10.1113/jphysiol.2013.267286] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In cystic fibrosis (CF) lung disease, the absence of functional CF transmembrane conductance regulator results in Cl(-)/HCO3 (-) hyposecretion and triggers Na(+) hyperabsorption through the epithelial Na(+) channel (ENaC), which contribute to reduced airway surface liquid (ASL) pH and volume. Prostasin, a membrane-anchored serine protease with trypsin-like substrate specificity has previously been shown to activate ENaC in CF airways. However, prostasin is typically inactive below pH 7.0, suggesting that it may be less relevant in acidic CF airways. Cathepsin B (CTSB) is present in both normal and CF epithelia and is secreted into ASL, but little is known about its function in the airways. We hypothesized that the acidic ASL seen in CF airways may stimulate CTSB to activate ENaC, contributing to Na(+) hyperabsorption and depletion of CF ASL volume. In Xenopus laevis oocytes, CTSB triggered α- and γENaC cleavage and induced an increase in ENaC activity. In bronchial epithelia from both normal and CF donor lungs, CTSB localized to the apical membrane. In normal and CF human bronchial epithelial cultures, CTSB was detected at the apical plasma membrane and in the ASL. CTSB activity was significantly elevated in acidic ASL, which correlated with increased abundance of ENaC in the plasma membrane and a reduction in ASL volume. This acid/CTSB-dependent activation of ENaC was ameliorated with the cell impermeable, CTSB-selective inhibitor CA074, suggesting that CTSB inhibition may have therapeutic relevance. Taken together, our data suggest that CTSB is a pathophysiologically relevant protease that activates ENaC in CF airways.
Collapse
Affiliation(s)
- Chong Da Tan
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC, USA
| | - Carey Hobbs
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC, USA
| | - Mansoureh Sameni
- Department of Pharmacology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Bonnie F Sloane
- Department of Pharmacology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - M Jackson Stutts
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC, USA
| | - Robert Tarran
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
33
|
Aggarwal N, Sloane BF. Cathepsin B: multiple roles in cancer. Proteomics Clin Appl 2014; 8:427-37. [PMID: 24677670 PMCID: PMC4205946 DOI: 10.1002/prca.201300105] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/05/2013] [Accepted: 12/19/2013] [Indexed: 12/21/2022]
Abstract
Proteases, including intracellular proteases, play roles at many different stages of malignant progression. Our focus here is cathepsin B, a lysosomal cysteine cathepsin. High levels of cathepsin B are found in a wide variety of human cancers, levels that often induce secretion and association of cathepsin B with the tumor cell membrane. In experimental models, such as transgenic models of murine pancreatic and mammary carcinomas, causal roles for cathepsin B have been demonstrated in initiation, growth/tumor cell proliferation, angiogenesis, invasion, and metastasis. Tumor growth in transgenic models is promoted by cathepsin B in tumor-associated cells, for example, tumor-associated macrophages, as well as in tumor cells. In transgenic models, the absence of cathepsin B has been associated with enhanced apoptosis, yet cathepsin B also has been shown to contribute to apoptosis. Cathepsin B is part of a proteolytic pathway identified in xenograft models of human glioma; targeting only cathepsin B in these tumors is less effective than targeting cathepsin B in combination with other proteases or protease receptors. Understanding the mechanisms responsible for increased expression of cathepsin B in tumors and association of cathepsin B with tumor cell membranes is needed to determine whether targeting cathepsin B could be of therapeutic benefit.
Collapse
Affiliation(s)
- Neha Aggarwal
- Department of Physiology, Wayne State University School of Medicine, Detroit, Ml, USA
| | - Bonnie F. Sloane
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Ml, USA
| |
Collapse
|
34
|
Suzuki S, Tanigawara Y. Forced expression of S100A10 reduces sensitivity to oxaliplatin in colorectal cancer cells. Proteome Sci 2014; 12:26. [PMID: 24851084 PMCID: PMC4029833 DOI: 10.1186/1477-5956-12-26] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 04/30/2014] [Indexed: 12/12/2022] Open
Abstract
Background Individual responses to oxaliplatin (L-OHP)-based chemotherapy remain unpredictable. Our recent proteomics studies have demonstrated that intracellular protein expression levels of S100A10 are significantly correlated with the sensitivity of colorectal cancer (CRC) cells to L-OHP, but not 5-FU, suggesting that S100A10 is a candidate predictive marker for the response to L-OHP. In this study, we investigated whether S100A10 is involved in L-OHP sensitivity or not. Results Forced expression of S100A10 in COLO-320 CRC cells significantly increased the 50% inhibitory concentration (IC50) for L-OHP (P = 0.003), but did not change that for 5-FU, indicating that S100A10 is more specific to L-OHP than 5-FU. Silencing of the S100A10 gene showed no apparent effect on sensitivity to L-OHP in HT29 cells. Silencing of the annexin A2 (a binding partner of S100A10) gene alone downregulated both annexin A2 and S100A10 protein levels, with no change in S100A10 gene expression. However, original levels of intact S100A10 protein in CRC cells positively correlated with S100A10 mRNA levels (P = 0.002, R = 0.91). Conclusions The present results have shown that protein expression of S100A10 was associated with resistance to L-OHP, but not 5-FU, supporting the hypothesis that S100A10 expression may predict L-OHP sensitivity. Thus, our present study provides basic findings to support that S100A10 expression can be used as a predictive marker for tumor sensitivity to L-OHP.
Collapse
Affiliation(s)
- Sayo Suzuki
- Department of Clinical Pharmacokinetics and Pharmacodynamics, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan ; Center for Pharmacy Practice, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Yusuke Tanigawara
- Department of Clinical Pharmacokinetics and Pharmacodynamics, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
35
|
Fonović M, Turk B. Cysteine cathepsins and extracellular matrix degradation. Biochim Biophys Acta Gen Subj 2014; 1840:2560-70. [PMID: 24680817 DOI: 10.1016/j.bbagen.2014.03.017] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/16/2014] [Accepted: 03/22/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND Cysteine cathepsins are normally found in the lysosomes where they are involved in intracellular protein turnover. Their ability to degrade the components of the extracellular matrix in vitro was first reported more than 25years ago. However, cathepsins were for a long time not considered to be among the major players in ECM degradation in vivo. During the last decade it has, however, become evident that abundant secretion of cysteine cathepsins into extracellular milieu is accompanying numerous physiological and disease conditions, enabling the cathepsins to degrade extracellular proteins. SCOPE OF VIEW In this review we will focus on cysteine cathepsins and their extracellular functions linked with ECM degradation, including regulation of their activity, which is often enhanced by acidification of the extracellular microenvironment, such as found in the bone resorption lacunae or tumor microenvironment. We will further discuss the ECM substrates of cathepsins with a focus on collagen and elastin, including the importance of that for pathologies. Finally, we will overview the current status of cathepsin inhibitors in clinical development for treatment of ECM-linked diseases, in particular osteoporosis. MAJOR CONCLUSIONS Cysteine cathepsins are among the major proteases involved in ECM remodeling, and their role is not limited to degradation only. Deregulation of their activity is linked with numerous ECM-linked diseases and they are now validated targets in a number of them. Cathepsins S and K are the most attractive targets, especially cathepsin K as a major therapeutic target for osteoporosis with drugs targeting it in advanced clinical trials. GENERAL SIGNIFICANCE Due to their major role in ECM remodeling cysteine cathepsins have emerged as an important group of therapeutic targets for a number of ECM-related diseases, including, osteoporosis, cancer and cardiovascular diseases. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
- Marko Fonović
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Boris Turk
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia.
| |
Collapse
|
36
|
|
37
|
Zurawska-Płaksej E, Piwowar A, Knapik-Kordecka M, Warwas M. Activities of neutrophil membrane-bound proteases in type 2 diabetic patients. Arch Med Res 2013; 45:36-43. [PMID: 24316113 DOI: 10.1016/j.arcmed.2013.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 09/21/2013] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND AIMS Hyperglycemia and oxidative stress in type 2 diabetes (T2DM) provoke neutrophil overstimulation and the release and/or translocation of proteases from granules to the cell surface. Although the expression of neutrophil membrane-bound elastase (MLE) is well documented, the presence of the membrane-bound form of cathepsin B (MCB) is unknown. The aim of our study was to evaluate the neutrophil MLE and MCB activities in T2DM patients and their associations with the metabolic and clinical parameters of the disease. METHODS Neutrophils were obtained from 47 T2DM patients and 20 control subjects. The activities of MLE and MCB and the intracellular activities of the examined proteases (ILE and ICB, respectively) were measured using fluorometric substrates. Additionally, the percentage equivalents of the activities, namely, MLEtot/ILEtot and MCBtot/ICBtot, were calculated. The susceptibility to inhibitors of both forms of the studied proteases was also determined. RESULTS A significant increase in the activities of MLE, MCB, ILE, and ICB was found in neutrophils from T2DM patients compared with the control group. The percentage equivalent (contribution of the total membrane-bound activities to the total intracellular activities) was also higher. A partial resistance of the membrane-bound forms toward their inhibitors was revealed. Higher activities of both the membrane-bound and the intracellular proteases were also observed in patients with poor glycemic and metabolic control. The differences between subgroups with different therapeutic schemes were also revealed. CONCLUSIONS The pathophysiological implications of the neutrophil membrane-bound forms of leukocyte elastase and cathepsin B are of great importance in the development of T2DM and its complications.
Collapse
Affiliation(s)
- Ewa Zurawska-Płaksej
- Department of Pharmaceutical Biochemistry, Wroclaw Medical University, Wroclaw, Poland.
| | - Agnieszka Piwowar
- Department of Pharmaceutical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Maria Knapik-Kordecka
- Department and Clinic of Angiology, Hypertension and Diabetology, Wroclaw Medical University, Wroclaw, Poland
| | - Maria Warwas
- Department of Pharmaceutical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
38
|
Cell type-dependent pathogenic functions of overexpressed human cathepsin B in murine breast cancer progression. Oncogene 2013; 33:4474-84. [PMID: 24077280 DOI: 10.1038/onc.2013.395] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 07/03/2013] [Accepted: 08/19/2013] [Indexed: 12/13/2022]
Abstract
The cysteine protease cathepsin B (CTSB) is frequently overexpressed in human breast cancer and correlated with a poor prognosis. Genetic deficiency or pharmacological inhibition of CTSB attenuates tumor growth, invasion and metastasis in mouse models of human cancers. CTSB is expressed in both cancer cells and cells of the tumor stroma, in particular in tumor-associated macrophages (TAM). In order to evaluate the impact of tumor- or stromal cell-derived CTSB on Polyoma Middle T (PyMT)-induced breast cancer progression, we used in vivo and in vitro approaches to induce human CTSB overexpression in PyMT cancer cells or stromal cells alone or in combination. Orthotopic transplantation experiments revealed that CTSB overexpression in cancer cells rather than in the stroma affects PyMT tumor progression. In 3D cultures, primary PyMT tumor cells showed higher extracellular matrix proteolysis and enhanced collective cell invasion when CTSB was overexpressed and proteolytically active. Coculture of PyMT cells with bone marrow-derived macrophages induced a TAM-like macrophage phenotype in vitro, and the presence of such M2-polarized macrophages in 3D cultures enhanced sprouting of tumor spheroids. We employed a doxycycline (DOX)-inducible CTSB expression system to selectively overexpress human CTSB either in cancer cells or in macrophages in 3D cocultures. Tumor spheroid invasiveness was only enhanced when CTSB was overexpressed in cancer cells, whereas CTSB expression in macrophages alone did not further promote invasiveness of tumor spheroids. We conclude that CTSB overexpression in the PyMT mouse model promotes tumor progression not by a stromal effect, but by a direct, cancer cell-inherent mode of action: CTSB overexpression renders the PyMT cancers more invasive by increasing proteolytic extracellular matrix protein degradation fostering collective cell invasion into adjacent tissue.
Collapse
|
39
|
Gashenko EA, Lebedeva VA, Brak IV, Tsykalenko EA, Vinokurova GV, Korolenko TA. Evaluation of serum procathepsin B, cystatin B and cystatin C as possible biomarkers of ovarian cancer. Int J Circumpolar Health 2013; 72:21215. [PMID: 23986888 PMCID: PMC3754495 DOI: 10.3402/ijch.v72i0.21215] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objectives To evaluate procathepsin B, as well as endogenous inhibitors of cysteine proteases (cystatin B and cystatin C) in biological fluids as possible biomarkers of ovarian cancer. To observe levels of serum procathepsin B in different age groups. Study design The sample (N=27) of women with gynaecological tumours included 18 patients with ovarian cancer (n=18) and 9 patients with benign ovarian tumours (n=9); 72 healthy women were in the control group. All patients were treated in Novosibirsk Regional Oncological Center, Russia. Serum samples of healthy women (n=40) aged 18–70 years were used as controls for common biomarker of ovarian cancer CA-125. In the Procathepsin B study, serum samples of healthy women (n=32) aged 18–40 years (n=14), 41–55 years (n=10) and 56–80 (n=8) years were used as controls. Methods Common biomarker of ovarian cancer, CA-125, was assayed by using a commercial kit (Vector, Koltsovo, Novosibirsk Region, Russia). Procathepsin B was measured by means of a commercial kit for human procathepsin B (R&D, USA); cystatin C was measured by commercial ELISA kits for human (BioVendor, Czechia); cystatin B was measured by ELISA kits for human (USCN Life Science Inc., Wuhan, China). Statistical analysis was performed by one-way ANOVA (Statistica 10 Program). Results In the control group, serum procathepsin B concentration did not reveal age dependency. In the ovarian cancer group, both levels of serum procathepsin B and standard biomarker CA-125 increased significantly (both p<0.001) compared with the control group. In the benign ovarian tumour group, serum procathepsin B (p<0.001) and CA-125 (p=0.004) increased about 2.5- and 8-fold compared to the control group. Serum cystatin B level increased up to 1.7-fold in the ovarian cancer group compared to the control group. The increase of serum CA-125 was about 3.5-fold higher (p=0.017) and procathepsin B was 1.8-fold higher (p<0.05) in the ovarian cancer group compared to the benign tumour group. Cystatin B in ascites fluid increased equally in both ovarian cancer (p<0.001) and benign ovarian tumours group (p<0.05). Cystatin C concentration in ascites fluid increased only in patients with ovarian cancer (p<0.05) and did not change in the benign tumours group. Large increases of procathepsin B level (about 13-fold, p<0.001) and to a lesser degree of cystatin C (1.8-fold, p<0.05) and cystatin B levels (1.4 fold, p<0.001) were revealed in ascites fluids of patients with ovarian cancer compared to the control serum. The significant difference in serum procathepsin B levels was noted between the ovarian cancer and benign tumour groups (p<0.05), which could be used in differential diagnostics between malignant and benign gynaecological tumours. Conclusion Serum procathepsin B demonstrated significant promise as a new biomarker of ovarian cancer.
Collapse
|
40
|
Mohamed MM, Al-Raawi D, Sabet SF, El-Shinawi M. Inflammatory breast cancer: New factors contribute to disease etiology: A review. J Adv Res 2013; 5:525-36. [PMID: 25685520 PMCID: PMC4294279 DOI: 10.1016/j.jare.2013.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 05/16/2013] [Accepted: 06/07/2013] [Indexed: 12/11/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a highly metastatic and fatal form of breast cancer. In fact, IBC is characterized by specific morphological, phenotypic, and biological properties that distinguish it from non-IBC. The aggressive behavior of IBC being more common among young women and the low survival rate alarmed researchers to explore the disease biology. Despite the basic and translational studies needed to understand IBC disease biology and identify specific biomarkers, studies are limited by few available IBC cell lines, experimental models, and paucity of patient samples. Above all, in the last decade, researchers were able to identify new factors that may play a crucial role in IBC progression. Among identified factors are cytokines, chemokines, growth factors, and proteases. In addition, viral infection was also suggested to participate in the etiology of IBC disease. In this review, we present novel factors suggested by different studies to contribute to the etiology of IBC and the proposed new therapeutic insights.
Collapse
Affiliation(s)
- Mona M Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Diaa Al-Raawi
- Department of Zoology, Faculty of Science, Sana'a University, Yemen
| | - Salwa F Sabet
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
41
|
Basu Roy UK, Henkhaus RS, Loupakis F, Cremolini C, Gerner EW, Ignatenko NA. Caveolin-1 is a novel regulator of K-RAS-dependent migration in colon carcinogenesis. Int J Cancer 2013; 133:43-57. [PMID: 23280667 DOI: 10.1002/ijc.28001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 11/12/2012] [Accepted: 12/05/2012] [Indexed: 12/13/2022]
Abstract
Caveolin-1 is an essential component of membrane caveolae. It is an important regulator of cellular processes such as signal transduction and endocytosis. We report here, for the first time, that caveolin-1 is a target of the K-RAS oncogene in colon carcinogenesis. Caveolin-1 is induced in colon cancer cells and in human colon tumor samples, in response to K-RAS activating mutations. An activated K-RAS oncogene transcriptionally induces caveolin-1 expression in human colon cancer cells and this effect is not restricted to the type of activating K-RAS mutation. Inhibition of the P-I3 Kinase-AKT pathway, but not the ERK MAPK pathway, both important K-RAS effectors, leads to a decrease in caveolin-1 expression indicating that the AKT pathway is involved in caveolin-1 expression in response to an activated K-RAS. Increased AKT signaling induces caveolin-1 expression by increasing the activity of the transcription factor, Sp1. Interestingly; caveolin-1 depletion alters K-RAS-dependent signaling by decreasing Grb2-SOS activity. Consistent with these finding, caveolin-1-depleted cells shows decreased migration in vitro. However, caveolin-1 overexpression by itself does not increase migration whereas an activated Src can increase migration in a caveolin-1-dependent manner. This increased migration is highly dependent on the RhoA GTPase, indicating that an activated K-RAS modulates migration in part via caveolin-1 induction, and increasing RhoA activity via phospho-caveolin-1. Our findings indicate that K-RAS regulates both caveolin-1 expression and other factors affecting caveolin-1 functions in colon cancer-derived cell migration.
Collapse
Affiliation(s)
- Upal K Basu Roy
- Department of Biochemistry and Molecular Biophysics, Biochemistry and Molecular and Cellular Biology Graduate Program, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | |
Collapse
|
42
|
Reichenbach G, Starzinski-Powitz A, Sloane BF, Doll M, Kippenberger S, Bernd A, Kaufmann R, Meissner M. PPARα agonist Wy14643 suppresses cathepsin B in human endothelial cells via transcriptional, post-transcriptional and post-translational mechanisms. Angiogenesis 2012; 16:223-33. [PMID: 23096928 DOI: 10.1007/s10456-012-9314-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 10/12/2012] [Indexed: 10/27/2022]
Abstract
Cathepsin B has been shown to be important in angiogenesis; therefore, understanding its regulation in endothelial cells should provide fundamental information that will aid in the development of new treatment options. Peroxisome proliferator-activated receptors (PPARs) have been shown to have anti-inflammatory, anti-angiogenic and anti-tumorigenic properties. We explored the influence of a PPARα agonist on cathepsin B expression in human endothelial cells. The PPARα agonist, Wy14643, was found to inhibit cathepsin B protein expression. Further studies demonstrated the Wy14643-dependent but PPARα-independent suppression of cathepsin B. This has been previously described for other PPAR agonists. Wy14643 suppressed the accumulation of cathepsin B mRNA, which was accompanied by the selective suppression of a 5'-alternative splice variant. Consistent with these results, luciferase promoter assays and electrophoretic mobility shift analysis demonstrated that the suppression was facilitated by reduced binding of the transcription factors USF1/2 to an E-box within the cathepsin B promoter. Additionally, Wy14643 treatment resulted in a reduction in cathepsin B half-life, suggesting a posttranslational regulatory mechanism. Overall, our results suggest that the PPARα-dependent anti-angiogenic action of Wy14643 seems to be mediated, in part, by Wy14643-dependent but PPARα-independent regulation of cathepsin B expression.
Collapse
Affiliation(s)
- Gabi Reichenbach
- Department of Dermatology, Venereology and Allergology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Choi KY, Swierczewska M, Lee S, Chen X. Protease-activated drug development. Am J Cancer Res 2012; 2:156-78. [PMID: 22400063 PMCID: PMC3296471 DOI: 10.7150/thno.4068] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 01/28/2012] [Indexed: 12/11/2022] Open
Abstract
In this extensive review, we elucidate the importance of proteases and their role in drug development in various diseases with an emphasis on cancer. First, key proteases are introduced along with their function in disease progression. Next, we link these proteases as targets for the development of prodrugs and provide clinical examples of protease-activatable prodrugs. Finally, we provide significant design considerations needed for the development of the next generation protease-targeted and protease-activatable prodrugs.
Collapse
|
44
|
Rothberg JM, Sameni M, Moin K, Sloane BF. Live-cell imaging of tumor proteolysis: impact of cellular and non-cellular microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1824:123-32. [PMID: 21854877 PMCID: PMC3232330 DOI: 10.1016/j.bbapap.2011.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 01/26/2023]
Abstract
Our laboratory has had a longstanding interest in how the interactions between tumors and their microenvironment affect malignant progression. Recently, we have focused on defining the proteolytic pathways that function in the transition of breast cancer from the pre-invasive lesions of ductal carcinoma in situ (DCIS) to invasive ductal carcinomas (IDCs). We use live-cell imaging to visualize, localize and quantify proteolysis as it occurs in real-time and thereby have established roles for lysosomal cysteine proteases both pericellularly and intracellularly in tumor proteolysis. To facilitate these studies, we have developed and optimized 3D organotypic co-culture models that recapitulate the in vivo interactions of mammary epithelial cells or tumor cells with stromal and inflammatory cells. Here we will discuss the background that led to our present studies as well as the techniques and models that we employ. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cells, Cultured
- Cellular Microenvironment/physiology
- Diagnostic Imaging/methods
- Female
- Humans
- Microscopy, Video
- Models, Biological
- Neoplasms/diagnosis
- Neoplasms/metabolism
- Neoplasms/pathology
- Proteolysis
- Single-Cell Analysis/methods
- Tumor Microenvironment/physiology
Collapse
Affiliation(s)
- Jennifer M Rothberg
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
45
|
Suzuki S, Yamayoshi Y, Nishimuta A, Tanigawara Y. S100A10 protein expression is associated with oxaliplatin sensitivity in human colorectal cancer cells. Proteome Sci 2011; 9:76. [PMID: 22206547 PMCID: PMC3317844 DOI: 10.1186/1477-5956-9-76] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 12/30/2011] [Indexed: 12/27/2022] Open
Abstract
Background Individual responses to oxaliplatin (L-OHP)-based chemotherapy remain unpredictable. The objective of our study was to find candidate protein markers for tumor sensitivity to L-OHP from intracellular proteins of human colorectal cancer (CRC) cell lines. We performed expression difference mapping (EDM) analysis of whole cell lysates from 11 human CRC cell lines with different sensitivities to L-OHP by using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS), and identified a candidate protein by liquid chromatography/mass spectrometry ion trap time-of-flight (LCMS-IT-TOF). Results Of the qualified mass peaks obtained by EDM analysis, 41 proteins were differentially expressed in 11 human colorectal cancer cell lines. Among these proteins, the peak intensity of 11.1 kDa protein was strongly correlated with the L-OHP sensitivity (50% inhibitory concentrations) (P < 0.001, R2 = 0.80). We identified this protein as Protein S100-A10 (S100A10) by MS/MS ion search using LCMS-IT-TOF. We verified its differential expression and the correlation between S100A10 protein expression levels in drug-untreated CRC cells and their L-OHP sensitivities by Western blot analyses. In addition, S100A10 protein expression levels were not correlated with sensitivity to 5-fluorouracil, suggesting that S100A10 is more specific to L-OHP than to 5-fluorouracil in CRC cells. S100A10 was detected in cell culture supernatant, suggesting secretion out of cells. Conclusions By proteomic approaches including SELDI technology, we have demonstrated that intracellular S100A10 protein expression levels in drug-untreated CRC cells differ according to cell lines and are significantly correlated with sensitivity of CRC cells to L-OHP exposure. Our findings provide a new clue to searching predictive markers of the response to L-OHP, suggesting that S100A10 is expected to be one of the candidate protein markers.
Collapse
Affiliation(s)
- Sayo Suzuki
- Department of Clinical Pharmacokinetics and Pharmacodynamics, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | | | |
Collapse
|
46
|
Cheng XW, Huang Z, Kuzuya M, Okumura K, Murohara T. Cysteine Protease Cathepsins in Atherosclerosis-Based Vascular Disease and Its Complications. Hypertension 2011; 58:978-86. [PMID: 21986502 DOI: 10.1161/hypertensionaha.111.180935] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xian Wu Cheng
- From the Departments of Cardiology (X.W.C., K.O., T.M.) and Geriatrics (Z.H., M.K.), Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Cardiology (X.W.C.), Yanbian University Hospital, Yanji, Jilin Province, China; Department of Internal Medicine (X.W.C.), Kyung Hee University Hospital, Seoul, Korea
| | - Zhe Huang
- From the Departments of Cardiology (X.W.C., K.O., T.M.) and Geriatrics (Z.H., M.K.), Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Cardiology (X.W.C.), Yanbian University Hospital, Yanji, Jilin Province, China; Department of Internal Medicine (X.W.C.), Kyung Hee University Hospital, Seoul, Korea
| | - Masafumi Kuzuya
- From the Departments of Cardiology (X.W.C., K.O., T.M.) and Geriatrics (Z.H., M.K.), Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Cardiology (X.W.C.), Yanbian University Hospital, Yanji, Jilin Province, China; Department of Internal Medicine (X.W.C.), Kyung Hee University Hospital, Seoul, Korea
| | - Kenji Okumura
- From the Departments of Cardiology (X.W.C., K.O., T.M.) and Geriatrics (Z.H., M.K.), Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Cardiology (X.W.C.), Yanbian University Hospital, Yanji, Jilin Province, China; Department of Internal Medicine (X.W.C.), Kyung Hee University Hospital, Seoul, Korea
| | - Toyoaki Murohara
- From the Departments of Cardiology (X.W.C., K.O., T.M.) and Geriatrics (Z.H., M.K.), Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Cardiology (X.W.C.), Yanbian University Hospital, Yanji, Jilin Province, China; Department of Internal Medicine (X.W.C.), Kyung Hee University Hospital, Seoul, Korea
| |
Collapse
|
47
|
Inhibition of cathepsin B activity attenuates extracellular matrix degradation and inflammatory breast cancer invasion. Breast Cancer Res 2011; 13:R115. [PMID: 22093547 PMCID: PMC3326557 DOI: 10.1186/bcr3058] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 11/14/2011] [Accepted: 11/17/2011] [Indexed: 12/14/2022] Open
Abstract
Introduction Inflammatory breast cancer (IBC) is an aggressive, metastatic and highly angiogenic form of locally advanced breast cancer with a relatively poor three-year survival rate. Breast cancer invasion has been linked to proteolytic activity at the tumor cell surface. Here we explored a role for active cathepsin B on the cell surface in the invasiveness of IBC. Methods We examined expression of the cysteine protease cathepsin B and the serine protease urokinase plasminogen activator (uPA), its receptor uPAR and caveolin-1 in two IBC cell lines: SUM149 and SUM190. We utilized a live cell proteolysis assay to localize in real time the degradation of type IV collagen by IBC cells. IBC patient biopsies were examined for expression of cathepsin B and caveolin-1. Results Both cell lines expressed comparable levels of cathepsin B and uPA. In contrast, levels of caveolin-1 and uPAR were greater in SUM149 cells. We observed that uPA, uPAR and enzymatically active cathepsin B were colocalized in caveolae fractions isolated from SUM149 cells. Using a live-cell proteolysis assay, we demonstrated that both IBC cell lines degrade type IV collagen. The SUM149 cells exhibit predominantly pericellular proteolysis, consistent with localization of proteolytic pathway constitutents to caveolar membrane microdomains. A functional role for cathepsin B was confirmed by the ability of CA074, a cell impermeable and highly selective cathepsin B inhibitor, to significantly reduce pericellular proteolysis and invasion by SUM149 cells. A statistically significant co-expression of cathepsin B and caveolin-1 was found in IBC patient biopsies, thus validating our in vitro data. Conclusion Our study is the first to show that the proteolytic activity of cathepsin B and its co-expression with caveolin-1 contributes to the aggressiveness of IBC.
Collapse
|
48
|
Li YH. Clinical significance of expression of caveolin-1 and vascular endothelial growth factor in colorectal carcinoma. Shijie Huaren Xiaohua Zazhi 2011; 19:2241-2245. [DOI: 10.11569/wcjd.v19.i21.2241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the expressions of caveolin-1 (Cav-1) and vascular endothelial growth factor (VEGF) in colorectal cancer and to analyze their correlation with the clinicopathological features of colorectal cancer.
METHODS: Immunohistochemistry was used to detect the expression of Cav-1 and VEGF in 83 colorectal carcinoma specimens and matched normal colorectal mucosal specimens.
RESULTS: The positive rate of Cav-1 expression was significantly lower in colorectal carcinoma than in normal colorectal mucosa (38.6% vs 81.9%, P < 0.01). VEGF was over-expressed in colorectal cancer compared to matched normal colorectal tissue (74.7% vs 13.3%, P < 0.01). The expression of Cav-1 and VEGF was significantly correlated with tumor differentiation, invasion depth and lymph node metastasis (all P < 0.05), but not with patient's age, sex or tumor size. There is a negative correlation between Cav-1 and VEGF expression in colorectal cancer (r = -0.393, P < 0.01).
CONCLUSION: The absent expression of Cav-1 and over-expression of VEGF may play an important role in the development and progression of colorectal carcinoma.
Collapse
|
49
|
Gopinath S, Alapati K, Malla RR, Gondi CS, Mohanam S, Dinh DH, Rao JS. Mechanism of p27 upregulation induced by downregulation of cathepsin B and uPAR in glioma. Mol Oncol 2011; 5:426-37. [PMID: 21840777 DOI: 10.1016/j.molonc.2011.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 11/29/2022] Open
Abstract
Cathepsin B and urokinase plasminogen activator receptor (uPAR) are overexpressed in gliomas. Deregulation of the G1 phase cell cycle machinery is a common feature of cancers. p27(Kip1) (p27) is one of the major cyclin-CDK regulators in the G1 phase. uPAR and cathepsin B downregulation was recently shown to induce p27 expression through PI3K/Akt/FOXO3a signaling. Since uPAR and cathepsin B knockdown also decreased phosphorylation of ERK, we hypothesized that ERK also has a role to play in p27 induction. As induction of p27 is due to an increase in gene transcription, we investigated the roles of c-Myc and E2F1 transcription factors which have been shown to potently affect p27 promoter activity. In the present study, shRNA against cathepsin B and uPAR as well as specific inhibitors, Wortmannin (10 μM) and U0126 (10 μM), were used to determine the roles of AKT and ERK signaling on p27 expression. Immunoblot analysis demonstrated that downregulation of both p-ERK and p-AKT downstream of EGFR and β1 integrin are involved in the p27 upregulation. Cathepsin B and uPAR downregulation induced E2F1 and decreased phosphorylaion of pocket proteins and c-Myc expression. CHIP analysis and luciferase expression studies confirmed the functional association of transcription factor E2F1 to the p27 promoter. Further, c-Myc-Max interaction inhibitor studies showed an inverse pattern of c-Myc and p27 expression. Also, cathepsin B and uPAR downregulation reduced tumor growth and increased p27 nuclear expression in vivo. In summary, cathepsin B and uPAR downregulation reduced p-ERK levels and c-Myc expression, increased expression of E2F1 and FOXO3a, decreased phosphorylation of pocket proteins and thus upregulated p27 expression in glioma cells.
Collapse
Affiliation(s)
- Sreelatha Gopinath
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Kasabova M, Saidi A, Naudin C, Sage J, Lecaille F, Lalmanach G. Cysteine Cathepsins: Markers and Therapy Targets in Lung Disorders. Clin Rev Bone Miner Metab 2011. [DOI: 10.1007/s12018-011-9094-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|