1
|
Wang M, Zhang L, Liu Z, Guo A, Yang G, Yu T. Host-Microbiota Interactions in the Pathogenesis of Porcine Fetal Mummification. Microorganisms 2025; 13:1052. [PMID: 40431225 PMCID: PMC12113762 DOI: 10.3390/microorganisms13051052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
The number of mummies (MUM) in pigs is a major factor affecting sow reproductive performance. Reducing the incidence of MUM can effectively improve sow utilization efficiency. However, the complex mechanisms by which the host genome, gut microbiome, and metabolome interact to influence sow MUM remain unclear. Based on the current research landscape, this study systematically reveals the regulatory mechanisms of the host genome-gut microbiome-metabolome interaction network on sow MUM. By conducting a multi-omics analysis on the intestinal contents of Yorkshire sows during late gestation across different parities, we constructed a dynamic atlas of the gut microbiota and identified 385 core microbial taxa. Through multi-model MWAS and meta-analysis, we screened six key microbial taxa significantly associated with MUM, including Bacteroidales_RF16_group, Prevotellaceae_Ga6A1_group, Comamonas, Paraprevotella, Dorea, and Gallicola. An mGWAS analysis further identified Bacteroidales_RF16_group as regulated by host genetics, as well as candidate genes such as EGF, ENPEP, and CASP6, and important SNP loci such as rs345237235 and rs3475666995. The study found that the abundance of Proteobacteria in the sow's gut increased progressively from the first parity, providing a theoretical basis for pathogen suppression mechanisms. By integrating fecal metabolomics data, we constructed a four-dimensional regulatory network of host gene-gut microbiota-metabolite-host phenotype. This study innovatively combines quantitative genetics with multi-omics approaches, not only providing a theoretical foundation for understanding host-microbiota interaction mechanisms but also offering critical scientific guidance for reducing sow MUM incidence and improving reproductive efficiency.
Collapse
Affiliation(s)
| | | | | | | | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Taiyong Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
2
|
Widgerow AD, Ziegler ME, Shafiq F. TriHex 2.0-Advancing Skin Health Science and the TriHex Technology. J Cosmet Dermatol 2025; 24:e16690. [PMID: 39660586 PMCID: PMC11845939 DOI: 10.1111/jocd.16690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/30/2024] [Accepted: 11/09/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND The original TriHex combination-Tripeptide-1 and Hexapeptide-12 (TriHex) encompasses a peptide combination selected for its ability to modulate the extracellular matrix (ECM) by progressively eliminating clumped collagen and elastin fragments and then stimulating replacement with new collagen and elastin. Incorporation of a proprietary, patent-pending Octapeptide-45 (Octa) to the TriHex original provides potential for added benefit based on the peptide's capacity to stimulate hyaluronic acid (HA) and its anticipated added benefit in wound healing. This is named TriHex 2.0 in the paper. MATERIALS AND METHODS A full-scale validation process was structured to assess Octa synergy with TriHex using an ex vivo model, assessing ECM changes histologically in relation to elastin, HA and basement membrane components. In addition, gene expression studies were undertaken, including bulk and single cell sequencing analysis to assess the particular changes that occurred by adding Octa to the TriHex. Following the gene expression analysis, a further round of ex vivo studies was conducted to assess protein expression of the defined differentially expressed genes using histological staining. RESULTS Octa synergized with TriHex as demonstrated by significantly upregulated genes (p < 0.05) affecting the ECM and basement membrane. A histological assessment using the ex vivo model demonstrated tropoelastin intensity significantly increasing with TriHex (43%) and 2.0 (42%) (p < 0.05 for both) compared to untreated explants. HA levels (CD44 intensity) significantly increased with TriHex (69%; p < 0.01), while TriHex 2.0 demonstrated HA levels 160% greater (p < 0.001) than the untreated tissue. Single cell sequencing identified a gene expression profile upregulation relating to ECM modulation and wound healing in both TriHex and 2.0, but TriHex 2.0 showed additional activities in basement membrane physiology, stem cell recruitment, and protection of fibroblasts against cellular senescence. CONCLUSION The addition of Octapeptide-45 to TriHex technology in the form of TriHex 2.0 is a significant advance to TriHex technology science. Both forms demonstrate ECM remodeling and positive wound healing, but supplementary benefits are evident including increased elastin and hyaluronic acid stimulation, added effects on the basement membrane, additional wound healing capacity in basal keratinocytes and anti-senescent effects in fibroblasts. This is helpful for pre-conditioning of the skin prior to procedures and post procedure related to additional ECM remodeling, wound healing advantages, senescent cell targeting and DEJ strengthening. Clinical studies to follow.
Collapse
Affiliation(s)
- Alan D. Widgerow
- Division Chief Research, Professor Plastic Surgery Center for Tissue EngineeringUniversity of CaliforniaIrvineCaliforniaUSA
| | | | | |
Collapse
|
3
|
Cariba S, Srivastava A, Bronsema K, Kouthouridis S, Zhang B, Payne SL. Innervated Coculture Device to Model Peripheral Nerve-Mediated Fibroblast Activation. ACS Biomater Sci Eng 2024; 10:7566-7576. [PMID: 39601321 PMCID: PMC11633653 DOI: 10.1021/acsbiomaterials.4c01482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Cutaneous wound healing is a complex process involving various cellular and molecular interactions, resulting in the formation of a collagen-rich scar with imperfect function and morphology. Dermal fibroblasts are crucial to successful wound healing, migrating to the wound site where they are activated to provide extracellular matrix remodeling and wound closure. Peripheral nerves have been shown to play an important role in wound healing, with loss or damage to these nerves often leading to impaired healing and the formation of chronic nonhealing wounds. Previous research has suggested that sensory nerves secrete trophic factors that can regulate wound healing, including fibroblast activation; however, the direct cell-cell interaction between nerves and fibroblasts has not been extensively studied. To address this knowledge gap, we developed an in vitro co-culture model using a device called the IFlowPlate. This model supports the long-term viability of multiple cell types while allowing for direct contact between sensory nerve cells and dermal fibroblasts. Using the IFlowPlate, we demonstrate that co-culture of dorsal root ganglia with dermal fibroblasts increases fibroblast proliferation, collagen and α-smooth muscle actin expression, and secretion of pro-wound healing factors, suggesting that nerves can promote wound healing by modulating fibroblast activation. The IFlowPlate offers a user-friendly and high-throughput platform to study the in vitro interactions between nerves and a variety of cell types that can be applied to wound healing and other important biological processes.
Collapse
Affiliation(s)
- Solsa Cariba
- Department
of Biomedical Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Avika Srivastava
- Department
of Biomedical Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Kendra Bronsema
- Department
of Biomedical Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Sonya Kouthouridis
- Department
of Chemical Engineering, McMaster University, Hamilton L8S 4L8, Canada
| | - Boyang Zhang
- Department
of Chemical Engineering, McMaster University, Hamilton L8S 4L8, Canada
- School
of Biomedical Engineering, McMaster University, Hamilton L8S 4L8, Canada
| | - Samantha L. Payne
- Department
of Biomedical Sciences, University of Guelph, Guelph N1G 2W1, Canada
| |
Collapse
|
4
|
Deguchi E, Lin S, Hirayama D, Matsuda K, Tanave A, Sumiyama K, Tsukiji S, Otani T, Furuse M, Sorkin A, Matsuda M, Terai K. Low-affinity ligands of the epidermal growth factor receptor are long-range signal transmitters in collective cell migration of epithelial cells. Cell Rep 2024; 43:114986. [PMID: 39546398 PMCID: PMC11717429 DOI: 10.1016/j.celrep.2024.114986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
Canonical epidermal growth factor (EGF) receptor (EGFR) activation involves the binding of seven EGFR ligands (EGFRLs); however, their extracellular dynamics remain elusive. Here, employing fluorescent probes and a tool for triggering ectodomain shedding, we show that epiregulin (EREG), a low-affinity EGFRL, rapidly and efficiently activates EGFR in Madin-Darby canine kidney (MDCK) epithelial cells and mouse epidermis. During collective cell migration, EGFR and extracellular signal-regulated kinase (ERK) activation waves propagate in an a disintegrin and metalloprotease 17 (ADAM17) sheddase- and EGFRL-dependent manner. Upon induced EGFRL shedding, low-affinity ligands EREG and amphiregulin (AREG) mediate faster and broader ERK waves than high-affinity ligands. Tight/adherens junction integrity is essential for ERK activation propagation, suggesting that tight intercellular spaces prefer the low-affinity EGFRLs for efficient signal transmission. In EREG-deficient mice, ERK wave propagation and cell migration were impaired during skin wound repair. We additionally show that heparin-binding EGF-like growth factor (HBEGF) primarily promotes surrounding cell motility. Our findings underscore the pivotal role of low-affinity EGFRLs in rapid intercellular signal transmission.
Collapse
Affiliation(s)
- Eriko Deguchi
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shuhao Lin
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Daiki Hirayama
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kimiya Matsuda
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akira Tanave
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Kenta Sumiyama
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Shinya Tsukiji
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-0061, Japan
| | - Tetsuhisa Otani
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji 192-0397, Tokyo, Japan; Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Alexander Sorkin
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan; Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kenta Terai
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan; Graduate School of Medicine, Tokushima University, Shinkura-cho, Tokushima 770-8501, Japan.
| |
Collapse
|
5
|
Zhang L, Bounds A, Girkin J. Using spatial frequency domain imaging to monitor a skin biopsy wound: a pilot study. BIOMEDICAL OPTICS EXPRESS 2024; 15:5872-5885. [PMID: 39421765 PMCID: PMC11482166 DOI: 10.1364/boe.536843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024]
Abstract
Surgical wound infection is a global postoperative issue adding a significant clinical burden and increasing healthcare costs. Early detection and subsequent diagnosis of infection is vital for accurate, early, and effective treatments. In this paper, we report a pilot study exploring spatial frequency domain imaging (SFDI) to monitor, in-vivo, a biopsy wound in human skin. The reduced scattering coefficient, μ s ' , absorption coefficient, μ a and the oxygen saturation, StO 2, were measured using a SFDI system at 617 and 850 nm. We found the μ s ' was better capable of monitoring structural changes, possible pus within the wound, re-epithelialization, and collagen fiber remodeling, than with the eye alone. The μ a map is capable of revealing the total hemoglobin distribution in the wound area but was limited in some regions due to the scab covering. This case study indicates SFDI's potential for monitoring and quantifying the process of surgical wound healing and infection.
Collapse
Affiliation(s)
- Lai Zhang
- Centre for Advanced Instrumentation, Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - Alistair Bounds
- Occuity Ltd, The Blade, Abbey Square, Reading RG1 3BE, United Kingdom
| | - John Girkin
- Centre for Advanced Instrumentation, Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
6
|
Deguchi E, Lin S, Hirayama D, Matsuda K, Tanave A, Sumiyama K, Tsukiji S, Otani T, Furuse M, Sorkin A, Matsuda M, Terai K. Low-affinity ligands of the epidermal growth factor receptor are long-range signal transmitters during collective cell migration of epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614853. [PMID: 39399773 PMCID: PMC11468830 DOI: 10.1101/2024.09.25.614853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Epidermal growth factor receptor ligands (EGFRLs) consist of seven proteins. In stark contrast to the amassed knowledge concerning the epidermal growth factor receptors themselves, the extracellular dynamics of individual EGFRLs remain elusive. Here, employing fluorescent probes and a tool for triggering ectodomain shedding of EGFRLs, we show that EREG, a low-affinity EGFRL, exhibits the most rapid and efficient activation of EGFR in confluent epithelial cells and mouse epidermis. In Madin-Darby canine kidney (MDCK) renal epithelial cells, EGFR- and ERK-activation waves propagate during collective cell migration in an ADAM17 sheddase- and EGFRL-dependent manner. Upon induction of EGFRL shedding, radial ERK activation waves were observed in the surrounding receiver cells. Notably, the low-affinity ligands EREG and AREG mediated faster and broader ERK waves than the high-affinity ligands. The integrity of tight/adherens junctions was essential for the propagation of ERK activation, implying that the tight intercellular spaces prefer the low-affinity EGFRL to the high-affinity ligands for efficient signal transmission. To validate this observation in vivo , we generated EREG-deficient mice expressing the ERK biosensor and found that ERK wave propagation and cell migration were impaired during skin wound repair. In conclusion, we have quantitatively demonstrated the distinctions among EGFRLs in shedding, diffusion, and target cell activation in physiological contexts. Our findings underscore the pivotal role of low-affinity EGFRLs in rapid intercellular signal transmission.
Collapse
|
7
|
Mullin JA, Rahmani E, Kiick KL, Sullivan MO. Growth factors and growth factor gene therapies for treating chronic wounds. Bioeng Transl Med 2024; 9:e10642. [PMID: 38818118 PMCID: PMC11135157 DOI: 10.1002/btm2.10642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 06/01/2024] Open
Abstract
Chronic wounds are an unmet clinical need affecting millions of patients globally, and current standards of care fail to consistently promote complete wound closure and prevent recurrence. Disruptions in growth factor signaling, a hallmark of chronic wounds, have led researchers to pursue growth factor therapies as potential supplements to standards of care. Initial studies delivering growth factors in protein form showed promise, with a few formulations reaching clinical trials and one obtaining clinical approval. However, protein-form growth factors are limited by instability and off-target effects. Gene therapy offers an alternative approach to deliver growth factors to the chronic wound environment, but safety concerns surrounding gene therapy as well as efficacy challenges in the gene delivery process have prevented clinical translation. Current growth factor delivery and gene therapy approaches have primarily used single growth factor formulations, but recent efforts have aimed to develop multi-growth factor approaches that are better suited to address growth factor insufficiencies in the chronic wound environment, and these strategies have demonstrated improved efficacy in preclinical studies. This review provides an overview of chronic wound healing, emphasizing the need and potential for growth factor therapies. It includes a summary of current standards of care, recent advances in growth factor, cell-based, and gene therapy approaches, and future perspectives for multi-growth factor therapeutics.
Collapse
Affiliation(s)
- James A. Mullin
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Erfan Rahmani
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Kristi L. Kiick
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
- Department of Materials Science and EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Millicent O. Sullivan
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| |
Collapse
|
8
|
Fan R, Zhang C, Li F, Li B, McCarthy A, Zhang Y, Chen S, Zhang L. Hierarchically Assembled Nanofiber Scaffolds with Dual Growth Factor Gradients Promote Skin Wound Healing Through Rapid Cell Recruitment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309993. [PMID: 38326085 PMCID: PMC11005683 DOI: 10.1002/advs.202309993] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Indexed: 02/09/2024]
Abstract
To address current challenges in effectively treating large skin defects caused by trauma in clinical medicine, the fabrication, and evaluation of a novel radially aligned nanofiber scaffold (RAS) with dual growth factor gradients is presented. These aligned nanofibers and the scaffold's spatial design provide many all-around "highways" for cell migration from the edge of the wound to the center area. Besides, the chemotaxis induced by two growth factor gradients further promotes cell migration. Incorporating epidermal growth factor (EGF) aids in the proliferation and differentiation of basal layer cells in the epidermis, augmenting the scaffold's ability to promote epidermal regeneration. Concurrently, the scaffold-bound vascular endothelial growth factor (VEGF) recruits vascular endothelial cells at the wound's center, resulting in angiogenesis and improving blood supply and nutrient delivery, which is critical for granulation tissue regeneration. The RAS+EGF+VEGF group demonstrates superior performance in wound immune regulation, wound closure, hair follicle regeneration, and ECM deposition and remodeling compared to other groups. This study highlights the promising potential of hierarchically assembled nanofiber scaffolds with dual growth factor gradients for wound repair and tissue regeneration applications.
Collapse
Affiliation(s)
- Ruyi Fan
- Department of Histology and EmbryologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- National Medical Products Administration (NMPA) and Guangdong Medical Products Administration (GDMPA)Key Laboratory for Safety Evaluation of CosmeticsGuangzhou510515China
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Chuwei Zhang
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantong226001China
| | - Fei Li
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantong226001China
| | - Bo Li
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantong226001China
| | - Alec McCarthy
- Department of Surgery – TransplantHolland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNebraska68105USA
| | - Yi Zhang
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantong226001China
| | - Shixuan Chen
- Department of Histology and EmbryologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- National Medical Products Administration (NMPA) and Guangdong Medical Products Administration (GDMPA)Key Laboratory for Safety Evaluation of CosmeticsGuangzhou510515China
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Lin Zhang
- Department of Histology and EmbryologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- National Medical Products Administration (NMPA) and Guangdong Medical Products Administration (GDMPA)Key Laboratory for Safety Evaluation of CosmeticsGuangzhou510515China
| |
Collapse
|
9
|
Hama R, Nakazawa Y. Evaluation of the Modification Effects of Heparin/Dalteparin on Silk Fibroin Structure and Physical Properties for Skin Wound Healing. Polymers (Basel) 2024; 16:321. [PMID: 38337209 DOI: 10.3390/polym16030321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
We have developed a functionalized silk fibroin (BSF) that can serve as an improved fundamental material for dressings by specifically capturing growth factors secreted during the healing process and supplying them to cells accumulated in the wound area to enhance the tissue regeneration efficiency. When considering the design of heparin-modified BSF, there is a difficulty with binding to high-molecular-weight polysaccharides without disrupting the hydrophobic crystalline structure of the BSF. In this study, a low-molecular-weight pharmaceutical heparin, dalteparin, was selected and cross-linked with the tyrosine residue presence in the BSF non-crystalline region. When targeting 3D porous applications like nanofiber sheets, as it is crucial not only to enhance biological activity but also to improve handling by maintaining stability in water and mechanical strength, a trade-off between improved cell affinity and reduced mechanical strength depending on crystalline structure was evaluated. The use of dalteparin maintained the mechanical strength better than unfractionated heparin by reducing the effect on disturbing BSF recrystallization. Film surface hydrophilicity and cell proliferation induction were significantly higher in the dalteparin group. For BSF functionalization, using purified heparin was an effective approach that achieved a balance between preserving the mechanical properties and induction of tissue regeneration, offering the potential for various forms in the future.
Collapse
Affiliation(s)
- Rikako Hama
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei 184-8588, Japan
| | - Yasumoto Nakazawa
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei 184-8588, Japan
| |
Collapse
|
10
|
Dainichi T, Matsumoto R, Sakurai K, Kabashima K. Necessary and sufficient factors of keratinocytes in psoriatic dermatitis. Front Immunol 2024; 15:1326219. [PMID: 38312837 PMCID: PMC10834637 DOI: 10.3389/fimmu.2024.1326219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Affiliation(s)
- Teruki Dainichi
- Department of Dermatology, Kagawa University Faculty of Medicine, Miki-cho, Japan
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Reiko Matsumoto
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Sakurai
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Agency for Science, Technology and Research (A*STAR) Skin Research Laboratories (ASRL), A*STAR, Singapore, Singapore
| |
Collapse
|
11
|
Won KJ, Lee R, Choi SH, Kim JH, Hwang SH, Nah SY. Gintonin-Induced Wound-Healing-Related Responses Involve Epidermal-Growth-Factor-like Effects in Keratinocytes. Int J Mol Sci 2023; 24:14094. [PMID: 37762395 PMCID: PMC10531430 DOI: 10.3390/ijms241814094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Epidermal growth factor (EGF) receptor activation and related downstream signaling pathways are known to be one of the major mechanisms of the proliferation and migration of keratinocytes. The heparin-binding EGF-like growth factor (HB-EGF) binds to EGF receptors and stimulates keratinocyte proliferation and migration. Gintonin, a novel ginseng compound, is a lysophosphatidic acid (LPA) receptor ligand. Gintonin has skin-wound-healing effects. However, the underlying mechanisms for these gintonin actions remain unclear. In this study, we aimed to elucidate the involvement of EGFRs in gintonin-induced wound repair in HaCaT keratinocytes. In this study, a water-soluble tetrazolium salt-based assay, a modified Boyden chamber migration assay, and immunoblotting were performed. Gintonin increased EGF receptor activation in HaCaT cells. However, the gintonin-induced phosphorylation of the EGF receptor was markedly reduced via treatment with the LPA inhibitor Ki16425 or the EGF receptor inhibitor erlotinib. Gintonin-enhanced proliferation and migration were blocked by the EGF receptor inhibitors (erlotinib and AG1478). Additionally, gintonin stimulated the expression and release of HB-EGF in HaCaT cells. EGF receptor inhibitors blocked gintonin-enhanced HB-EGF expression. These results indicate that the wound-healing effects of gintonin are closely related to the collaboration between EGF receptor activation and HB-EGF release-mediated downstream signaling pathways.
Collapse
Affiliation(s)
- Kyung-Jong Won
- Department of Physiology and Medical Science, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea;
| | - Rami Lee
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (R.L.); (J.-H.K.)
| | - Sun-Hye Choi
- Department of Animal Health, College of Health and Medical Services, Osan University, Osan 18119, Republic of Korea;
| | - Ji-Hun Kim
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (R.L.); (J.-H.K.)
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju 26339, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (R.L.); (J.-H.K.)
| |
Collapse
|
12
|
Jakl V, Popp T, Haupt J, Port M, Roesler R, Wiese S, Friemert B, Rojewski MT, Schrezenmeier H. Effect of Expansion Media on Functional Characteristics of Bone Marrow-Derived Mesenchymal Stromal Cells. Cells 2023; 12:2105. [PMID: 37626914 PMCID: PMC10453497 DOI: 10.3390/cells12162105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The therapeutic efficacy of mesenchymal stromal cells (MSCs) has been shown to rely on their immunomodulatory and regenerative properties. In order to obtain sufficient numbers of cells for clinical applications, MSCs have to be expanded ex vivo. Expansion media with xenogeneic-free (XF) growth-promoting supplements like human platelet lysate (PL) or serum- and xenogeneic-free (SF/XF) formulations have been established as safe and efficient, and both groups provide different beneficial qualities. In this study, MSCs were expanded in XF or SF/XF media as well as in mixtures thereof. MSCs cultured in these media were analyzed for phenotypic and functional properties. MSC expansion was optimal with SF/XF conditions when PL was present. Metabolic patterns, consumption of growth factors, and secretome of MSCs differed depending on the type and concentration of supplement. The lactate per glucose yield increased along with a higher proportion of PL. Many factors in the supernatant of cultured MSCs showed distinct patterns depending on the supplement (e.g., FGF-2, TGFβ, and insulin only in PL-expanded MSC, and leptin, sCD40L PDGF-AA only in SF/XF-expanded MSC). This also resulted in changes in cell characteristics like migratory potential. These findings support current approaches where growth media may be utilized for priming MSCs for specific therapeutic applications.
Collapse
Affiliation(s)
- Viktoria Jakl
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
| | - Tanja Popp
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
| | - Julian Haupt
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
- Clinic for Trauma Surgery and Orthopedics, Army Hospital Ulm, 89081 Ulm, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
| | - Reinhild Roesler
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany; (R.R.); (S.W.)
| | - Sebastian Wiese
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany; (R.R.); (S.W.)
| | - Benedikt Friemert
- Clinic for Trauma Surgery and Orthopedics, Army Hospital Ulm, 89081 Ulm, Germany
| | - Markus T. Rojewski
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|
13
|
Dai X, Shiraishi K, Muto J, Mori H, Murakami M, Sayama K. Nuclear IL-33 Plays an Important Role in EGFR-Mediated Keratinocyte Migration by Regulating the Activation of Signal Transducer and Activator of Transcription 3 and NF-κB. JID INNOVATIONS 2023; 3:100205. [PMID: 37441125 PMCID: PMC10333683 DOI: 10.1016/j.xjidi.2023.100205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 07/15/2023] Open
Abstract
Nuclear IL-33 levels are high at the epidermal edges of skin wounds and facilitate wound healing. However, IL-33-mediated regulation of keratinocyte (KC) biology during wound healing remains poorly understood. During skin-wound healing, KC migration and re-epithelialization are mediated predominantly by EGFR signaling activation and depend on the function of signal transducer and activator of transcription 3 (STAT3). We found that migrating KCs at the leading edges of mouse skin wounds exhibited concomitant induction and nuclear colocalization of IL-33 and phosphorylated STAT3. In cultured human KCs, activation of EGFR signaling caused rapid elevation of nuclear IL-33, which directly interacts with phosphorylated STAT3, promoting STAT3 activation. In vitro KC migration and wound-healing assays revealed that high nuclear IL-33 levels were required for KC migration and wound closure. KC mobility associated with a lack of suprabasal epidermal keratins and extracellular matrix degradation mediated by matrix metalloproteinases (MMPs) control cell migration at the intracellular and extracellular levels, respectively. In EGFR-activated KCs, nuclear IL-33 mediated keratin 1 and 10 downregulation and MMP9 upregulation by promoting STAT3 activation and limited MMP1, MMP3, and MMP10 induction by suppressing NF-κB transactivation. Thus, epidermal nuclear IL-33 is involved in KC migration and wound closure by regulating the STAT3 and NF-κB pathways.
Collapse
Affiliation(s)
- Xiuju Dai
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Ken Shiraishi
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Jun Muto
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hideki Mori
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masamoto Murakami
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Koji Sayama
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
14
|
Pan SC, Lai CH, Vu VT, Vu CA, Huang CJ, Cheng CM, Chen WY. Paper-Based Exosomal MicroRNA-21 Detection for Wound Monitoring: A Proof of Concept and Clinical Validation Trial Study. Int J Mol Sci 2023; 24:9822. [PMID: 37372974 DOI: 10.3390/ijms24129822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Emerging evidence has shown that microRNAs play pivotal roles in wound healing. MicroRNA-21 (miR-21) was previously found to upregulate in order to fulfill an anti-inflammation role for wounds. Exosomal miRNAs have been identified and explored as essential markers for diagnostic medicine. However, the role of exosomal miR-21 in wounds has yet to be well studied. In order to facilitate the early management of poorly healing wounds, we developed an easy-to-use, rapid, paper-based microfluidic-exosomal miR-21 extraction device to determine wound prognosis in a timely manner. We isolated and then quantitatively examined exosomal miR-21 in wound fluids from normal tissues and acute and chronic wounds. Eight improving wounds displayed lower levels of exosomal miR-21 expression after wound debridement. However, four instances of increased exosomal miR-21 expression levels were notably associated with patients with poor healing wounds despite aggressive wound debridement, indicating a predictive role of tissue exosomal miR-21 for wound outcome. Paper-based nucleic acid extraction device provides a rapid and user-friendly approach for evaluating exosomal miR-21 in wound fluids as a means of monitoring wounds. Our data suggest that tissue exosomal miR-21 is a reliable marker for determining current wound status.
Collapse
Affiliation(s)
- Shin-Chen Pan
- Department of Surgery, Section of Plastic and Reconstructive Surgery, National Cheng Kung University Hospital, College of Medicine, International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 704, Taiwan
| | - Chi-Hung Lai
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Van-Truc Vu
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Cao-An Vu
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Chun-Jen Huang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Wen-Yih Chen
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
15
|
Zheng SY, Wan XX, Kambey PA, Luo Y, Hu XM, Liu YF, Shan JQ, Chen YW, Xiong K. Therapeutic role of growth factors in treating diabetic wound. World J Diabetes 2023; 14:364-395. [PMID: 37122434 PMCID: PMC10130901 DOI: 10.4239/wjd.v14.i4.364] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
Wounds in diabetic patients, especially diabetic foot ulcers, are more difficult to heal compared with normal wounds and can easily deteriorate, leading to amputation. Common treatments cannot heal diabetic wounds or control their many complications. Growth factors are found to play important roles in regulating complex diabetic wound healing. Different growth factors such as transforming growth factor beta 1, insulin-like growth factor, and vascular endothelial growth factor play different roles in diabetic wound healing. This implies that a therapeutic modality modulating different growth factors to suit wound healing can significantly improve the treatment of diabetic wounds. Further, some current treatments have been shown to promote the healing of diabetic wounds by modulating specific growth factors. The purpose of this study was to discuss the role played by each growth factor in therapeutic approaches so as to stimulate further therapeutic thinking.
Collapse
Affiliation(s)
- Shen-Yuan Zheng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Yan Luo
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Yi-Fan Liu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Jia-Qi Shan
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Yu-Wei Chen
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
- Key Laboratory of Emergency and Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, Hainan Province, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
16
|
Ili P, Sari F. Egg yolk oil accelerates wound healing in streptozotocin induced diabetic rats. Biotech Histochem 2023; 98:94-111. [PMID: 36040350 DOI: 10.1080/10520295.2022.2115554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Impaired diabetic wound healing causes foot ulcers. We investigated egg yolk oil for skin wound healing in streptozotocin (STZ) induced diabetic rats. Rats were allocated into three groups of six. Group 1, nondiabetic control group, was treated topically with 2% fusidic acid ointment. Group 2, STZ diabetic control, was treated topically with 2% fusidic acid ointment. Group 3, STZ diabetic group, was treated topically with egg yolk oil. Three days after STZ injection, two full thickness excisional skin wounds were created on the back of each animal. Wound diameter was measured for 14 days and wound contraction was calculated. Re-epithelization time also was determined. Three rats from each group were sacrificed on experimental day 7 and the remaining rats on day 14. Wound samples were examined using hematoxylin and eosin, periodic acid-Schiff, Masson's trichrome, Taenzer-Unna orcein and toluidine blue staining. Expression of endoglin (CD105), epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) were investigated using immunohistochemistry. Egg yolk oil increased the proliferation of epithelial cells and angiogenesis, and stimulated collagen deposition in the lesion area. Egg yolk oil increased CD105, EGF and VEGF expression in blood vessels, and EGF and VEGF expression in epidermis of the lesions. The predominant fatty acids in egg yolk oil are oleic, palmitic and linoleic, which likely were responsible for the beneficial effects of egg yolk oil on diabetic wound healing. Egg yolk oil appears to be a promising therapeutic agent for healing of diabetic wounds.
Collapse
Affiliation(s)
- Pinar Ili
- Department of Medical Services and Techniques, Denizli Vocational School of Health Services, Pamukkale University, Denizli, Turkey
| | - Fikret Sari
- Department of Plant and Animal Production, Tavas Vocational School, Pamukkale University, Denizli, Turkey
| |
Collapse
|
17
|
Li D, Guo J, Ni X, Sun G, Bao H. The progress and challenges of circRNA for diabetic foot ulcers: A mini-review. Front Endocrinol (Lausanne) 2022; 13:1019935. [PMID: 36531481 PMCID: PMC9747764 DOI: 10.3389/fendo.2022.1019935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Since the Human Genome Project was successfully completed, humanity has entered a post-genome era, and the second-generation sequencing technology has gradually progressed and become more accurate. Meanwhile, circRNAs plays a crucial role in the regulation of diseases and potential clinical applications has gradually attracted the attention of physicians. However, the mechanisms of circRNAs regulation at the cellular and molecular level of diabetic foot ulcer (DFU) is still not well-understood. With the deepening of research, there have been many recent studies conducted to explore the effect of circRNAs on DFU. In this mini-review, we discuss the potential role of circRNAs as therapeutic targets and diagnostic markers for DFU in order to gain a better understanding of the molecular mechanisms that underlie the development of DFU and to establish a theoretical basis for accurate treatment and effective prevention.
Collapse
Affiliation(s)
- Deer Li
- Graduate School, Inner Mongolia Medical University, Hohhot, China
- Department of Traumatology and Orthopedics, Inner Mongolia People’s Hospital, Hohhot, China
| | - Jiaxing Guo
- Department of Joint Surgery, The Second Affiliated Hospital, Inner Mongolia Medical University, Hohhot, China
| | - Xiyu Ni
- Graduate School, Inner Mongolia Medical University, Hohhot, China
- Department of Traumatology and Orthopedics, Inner Mongolia People’s Hospital, Hohhot, China
| | - Guanwen Sun
- Department of Traumatology and Orthopedics, Inner Mongolia People’s Hospital, Hohhot, China
| | - Huhe Bao
- Department of Traumatology and Orthopedics, Inner Mongolia People’s Hospital, Hohhot, China
| |
Collapse
|
18
|
RhFGF21 Protects Epidermal Cells against UVB-Induced Apoptosis through Activating AMPK-Mediated Autophagy. Int J Mol Sci 2022; 23:ijms232012466. [PMID: 36293323 PMCID: PMC9603848 DOI: 10.3390/ijms232012466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Ultraviolet irradiation, especially ultraviolet B (UVB) irradiation, increases the risks of various skin diseases, such as sunburn, photo-aging and cancer. However, few drugs are available to treat skin lesions. Therefore, the discovery of drugs to improve the health of irradiated skin is urgently needed. Fibroblast growth factor 21 (FGF21) is a metabolic factor that plays an important role in the protection and repair of various types of pathological damage. The effects of FGF21 on skin injury caused by UVB-irradiation were the focus of this study. We found that UVB irradiation promoted the expression of FGF21 protein in mouse epidermal cells, and exogenous recombinant human FGF21 (rhFGF21) protected mouse skin tissue against UVB-induced injury. RhFGF21 inhibited the inflammatory responses and epidermal cell apoptosis as well as promotion of autophagy in UVB-irradiated mice. Moreover, we found that rhFGF21 protected HaCaT cells against UVB-induced apoptosis, and the protective effect was enhanced by treatment with an autophagy activator (rapamycin) but was inhibited by treatment with an autophagy inhibitor (3-methyladenine, 3MA). AMP-activated protein kinase (AMPK), as a cellular energy sensor, regulates autophagy. RhFGF21 increased the expression of p-AMPK protein in epidermal cells irradiated with UVB in vivo and in vitro. Moreover, rhFGF21 increased autophagy levels and the viability were diminished by treatment with an AMPK inhibitor (compound C). RhFGF21 protects epidermal cells against UVB-induced apoptosis by inducing AMPK-mediated autophagy.
Collapse
|
19
|
Silk Fibroin Conjugated with Heparin Promotes Epithelialization and Wound Healing. Polymers (Basel) 2022; 14:polym14173582. [PMID: 36080656 PMCID: PMC9460566 DOI: 10.3390/polym14173582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Silk fibroin (SF) has attracted attention as a base biomaterial that could be suitable in many applications because of its shape and structure. Highly functional SF has been developed to promote tissue regeneration with heparin conjugation. However, the hydrophobic three-dimensional structure of SF makes it difficult to bind to high-molecular-weight and hydrophilic compounds such as heparin. In this study, sufficient heparin modification was achieved using tyrosine residues as reaction points to improve cellular response. As it was considered that there was a trade-off between the improvement of water wettability and cell responsiveness induced by heparin modification, influences on the structure, and mechanical properties, the structure and physical properties of the SF conjugated with heparin were extensively evaluated. Results showed that increased amounts of heparin modification raised heparin content and water wettability on film surfaces even though SF formation was not inhibited. In addition, the proliferation of endothelial cells and fibroblasts were enhanced when a surface with sufficient heparin assumed its potential in assisting wound healing. This research emphasizes the importance of material design focusing on the crystal structure inherent in SF in the development of functionalized SF materials.
Collapse
|
20
|
Maier M, Olthoff S, Hill K, Zosel C, Magauer T, Wein LA, Schaefer M. KS0365, a novel activator of the transient receptor potential vanilloid 3 (TRPV3) channel, accelerates keratinocyte migration. Br J Pharmacol 2022; 179:5290-5304. [PMID: 35916168 DOI: 10.1111/bph.15937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 06/09/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Ca2+ signalling mediated by the thermosensitive, non-selective, Ca2+ -permeable transient receptor potential channel TRPV3 is assumed to play a critical role in regulating several aspects of skin functions, such as keratinocyte proliferation, differentiation, skin barrier formation and wound healing. Studying the function of TRPV3 in skin homeostasis, however, is still constrained by a lack of potent and selective pharmacological modulators of TRPV3. EXPERIMENTAL APPROACH By screening an in-house compound library using fluorometric intracellular Ca2+ assays, we identified two chemically related hits. The more potent and efficient TRPV3 activator KS0365 was further evaluated in fluo-4-assisted Ca2+ assays, different Ca2+ imaging approaches, electrophysiological studies, cytotoxicity and migration assays. KEY RESULTS KS0365 activated recombinant and native mouse TRPV3 more potently and with a higher efficacy compared to 2-APB and did not activate TRPV1, TRPV2 or TRPV4 channels. The activation of TRPV3 by KS0365 super-additively accelerated the EGF-induced keratinocyte migration, which was inhibited by the TRP channel blocker ruthenium red or by siRNA-mediated TRPV3 knockdown. Moreover, KS0365 induced strong Ca2+ responses in migrating front cells and in leading edges of keratinocytes. CONCLUSIONS AND IMPLICATIONS The selective TRPV3 activator KS0365 triggers increases in [Ca2+ ]i with most prominent signals in the leading edge, and accelerates migration of keratinocytes. TRPV3 activators may promote reepithelialization upon skin wounding.
Collapse
Affiliation(s)
- Marion Maier
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig, Germany
| | - Stefan Olthoff
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig, Germany
| | - Kerstin Hill
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig, Germany
| | - Carolin Zosel
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig, Germany
| | - Thomas Magauer
- Leopold-Franzens-University Innsbruck, Institute of Organic Chemistry and Center for Molecular Biosciences, Innsbruck, Austria
| | - Lukas Anton Wein
- Leopold-Franzens-University Innsbruck, Institute of Organic Chemistry and Center for Molecular Biosciences, Innsbruck, Austria
| | - Michael Schaefer
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig, Germany
| |
Collapse
|
21
|
Xu Q, Sigen A, Wang W. Injectable Hydrogels as a Stem Cell Delivery Platform for Wound Healing. MULTIFUNCTIONAL HYDROGELS FOR BIOMEDICAL APPLICATIONS 2022:323-355. [DOI: 10.1002/9783527825820.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
22
|
Kaur G, Narayanan G, Garg D, Sachdev A, Matai I. Biomaterials-Based Regenerative Strategies for Skin Tissue Wound Healing. ACS APPLIED BIO MATERIALS 2022; 5:2069-2106. [PMID: 35451829 DOI: 10.1021/acsabm.2c00035] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skin tissue wound healing proceeds through four major stages, including hematoma formation, inflammation, and neo-tissue formation, and culminates with tissue remodeling. These four steps significantly overlap with each other and are aided by various factors such as cells, cytokines (both anti- and pro-inflammatory), and growth factors that aid in the neo-tissue formation. In all these stages, advanced biomaterials provide several functional advantages, such as removing wound exudates, providing cover, transporting oxygen to the wound site, and preventing infection from microbes. In addition, advanced biomaterials serve as vehicles to carry proteins/drug molecules/growth factors and/or antimicrobial agents to the target wound site. In this review, we report recent advancements in biomaterials-based regenerative strategies that augment the skin tissue wound healing process. In conjunction with other medical sciences, designing nanoengineered biomaterials is gaining significant attention for providing numerous functionalities to trigger wound repair. In this regard, we highlight the advent of nanomaterial-based constructs for wound healing, especially those that are being evaluated in clinical settings. Herein, we also emphasize the competence and versatility of the three-dimensional (3D) bioprinting technique for advanced wound management. Finally, we discuss the challenges and clinical perspective of various biomaterial-based wound dressings, along with prospective future directions. With regenerative strategies that utilize a cocktail of cell sources, antimicrobial agents, drugs, and/or growth factors, it is expected that significant patient-specific strategies will be developed in the near future, resulting in complete wound healing with no scar tissue formation.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Materials Science and Sensor Applications, Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Ganesh Narayanan
- Fiber and Polymer Science Program, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Deepa Garg
- Materials Science and Sensor Applications, Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Abhay Sachdev
- Materials Science and Sensor Applications, Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Ishita Matai
- Department of Biotechnology, School of Biological Sciences, Amity University Punjab, Mohali 140306, India
| |
Collapse
|
23
|
Yeganeh PM, Tahmasebi S, Esmaeilzadeh A. Cellular and biological factors involved in healing wounds and burns and treatment options in tissue engineering. Regen Med 2022; 17:401-418. [PMID: 35545963 DOI: 10.2217/rme-2022-0029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Severe traumatic wounds and burns have a high chance of mortality and can leave survivors with many functional disabilities and cosmetic problems, including scars. The healing process requires a harmonious interplay of various cells and growth factors. Different structures of the skin house numerous cells, matrix components and growth factors. Any disturbance in the balance between these components can impair the healing process. The function of cells and growth factors can be manipulated and facilitated to aid tissue repair. In the current review, the authors focus on the importance of the skin microenvironment, the pathophysiology of various types of burns, mechanisms and factors involved in skin repair and wound healing and regeneration of the skin using tissue engineering approaches.
Collapse
Affiliation(s)
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Esmaeilzadeh
- Department of immunology, School of Medicine, Zanjan University of Medical Science, Zanjan, 4513956111, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Science, Zanjan, Iran
| |
Collapse
|
24
|
Solarte David VA, Güiza-Argüello VR, Arango-Rodríguez ML, Sossa CL, Becerra-Bayona SM. Decellularized Tissues for Wound Healing: Towards Closing the Gap Between Scaffold Design and Effective Extracellular Matrix Remodeling. Front Bioeng Biotechnol 2022; 10:821852. [PMID: 35252131 PMCID: PMC8896438 DOI: 10.3389/fbioe.2022.821852] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/28/2022] [Indexed: 12/27/2022] Open
Abstract
The absence or damage of a tissue is the main cause of most acute or chronic diseases and are one of the appealing challenges that novel therapeutic alternatives have, in order to recover lost functions through tissue regeneration. Chronic cutaneous lesions are the most frequent cause of wounds, being a massive area of regenerative medicine and tissue engineering to have efforts to develop new bioactive medical products that not only allow an appropriate and rapid healing, but also avoid severe complications such as bacterial infections. In tissue repair and regeneration processes, there are several overlapping stages that involve the synergy of cells, the extracellular matrix (ECM) and biomolecules, which coordinate processes of ECM remodeling as well as cell proliferation and differentiation. Although these three components play a crucial role in the wound healing process, the ECM has the function of acting as a biological platform to permit the correct interaction between them. In particular, ECM is a mixture of crosslinked proteins that contain bioactive domains that cells recognize in order to promote migration, proliferation and differentiation. Currently, tissue engineering has employed several synthetic polymers to design bioactive scaffolds to mimic the native ECM, by combining biopolymers with growth factors including collagen and fibrinogen. Among these, decellularized tissues have been proposed as an alternative for reconstructing cutaneous lesions since they maintain the complex protein conformation, providing the required functional domains for cell differentiation. In this review, we present an in-depth discussion of different natural matrixes recently employed for designing novel therapeutic alternatives for treating cutaneous injuries, and overview some future perspectives in this area.
Collapse
Affiliation(s)
- Víctor Alfonso Solarte David
- Program of Medicine, Faculty of Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
- Program of Biomedical Engineering, Faculty of Engineering, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
| | - Viviana Raquel Güiza-Argüello
- Metallurgical Engineering and Materials Science Department, Faculty of Physicochemical Engineering, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Martha L. Arango-Rodríguez
- Multi-tissue Bank and Advanced Therapy Center, Fundación Oftalmológica de Santander, Clínica Carlos Ardila Lulle, Floridablanca, Colombia
| | - Claudia L. Sossa
- Program of Medicine, Faculty of Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
- Multi-tissue Bank and Advanced Therapy Center, Fundación Oftalmológica de Santander, Clínica Carlos Ardila Lulle, Floridablanca, Colombia
| | - Silvia M. Becerra-Bayona
- Program of Medicine, Faculty of Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
- *Correspondence: Silvia M. Becerra-Bayona,
| |
Collapse
|
25
|
A peptide toxin in ant venom mimics vertebrate EGF-like hormones to cause long-lasting hypersensitivity in mammals. Proc Natl Acad Sci U S A 2022; 119:2112630119. [PMID: 35131940 PMCID: PMC8851504 DOI: 10.1073/pnas.2112630119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
The targeting of mammalian ErbB receptor signaling by a venom toxin to cause hypersensitivity is a mode of action that has not previously been described. Natural selection of a defensive toxin to target ErbB signaling provides compelling independent evidence for a fundamental role of this receptor and its ligands in mammalian pain. The evolution of a toxin in ant venom to mimic a vertebrate nociceptive hormone serves as an example of both convergent evolution and molecular mimicry, illustrating how natural selection can shape the gene product of one organism to resemble that of another. Venoms are excellent model systems for studying evolutionary processes associated with predator–prey interactions. Here, we present the discovery of a peptide toxin, MIITX2-Mg1a, which is a major component of the venom of the Australian giant red bull ant Myrmecia gulosa and has evolved to mimic, both structurally and functionally, vertebrate epidermal growth factor (EGF) peptide hormones. We show that Mg1a is a potent agonist of the mammalian EGF receptor ErbB1, and that intraplantar injection in mice causes long-lasting hypersensitivity of the injected paw. These data reveal a previously undescribed venom mode of action, highlight a role for ErbB receptors in mammalian pain signaling, and provide an example of molecular mimicry driven by defensive selection pressure.
Collapse
|
26
|
Jaurila H, Koskela M, Koivukangas V, Gäddnäs F, Salo T, Ala-Kokko TI. Growth factor expression is enhanced and extracellular matrix proteins are depressed in healing skin wounds in septic patients compared with healthy controls. APMIS 2021; 130:155-168. [PMID: 34939229 PMCID: PMC9305760 DOI: 10.1111/apm.13175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 11/28/2022]
Abstract
Sepsis manifests as a dysregulated immune response to infection, damaging organs. Skin has a critical role in protecting the body. In sepsis, skin wound healing is impaired. The mechanisms behind it have been poorly studied. In this study, suction blister wounds were induced on intact abdominal skin in 15 septic patients. A single blister wound was biopsied from each patient and from 10 healthy controls. Immunohistochemical staining of growth factors and extracellular matrix (ECM) proteins was performed. Significance (p < 0.05) of the differences was calculated. The following growth factors were overexpressed in the skin of septic patients compared with healthy controls: epithelial growth factor (intact epithelium p = 0.007, migrating epithelium p = 0.038), vascular epithelial growth factor (intact epithelium p < 0.001, migrating epithelium p = 0.011) and transforming growth factor beta (migrating epithelium p = 0.002). The expression of syndecan‐1 was upregulated in the skin of septic patients compared with healthy controls (intact epithelium p = 0.048, migrating epithelium p = 0.028). The following ECM proteins had lower expression in the epithelium in septic patients than in healthy controls: tenascin‐C (migrating epithelium p = 0.03) and laminin‐332 (intact epithelium p = 0.036). In sepsis, growth factor and syndecan expression was enhanced, while ECM and basement membrane proteins were mostly depressed.
Collapse
Affiliation(s)
- Henna Jaurila
- ¹Research Group of Surgery, Anesthesia and Intensive Care, Oulu University Hospital, Oulu, Finland, Medical Research Center Oulu, University of Oulu, Finland.,Cancer and Translational Medicine Research Unit, Faculty of Medicine, Medical Research Center Oulu, University of Oulu, Finland
| | - Marjo Koskela
- ¹Research Group of Surgery, Anesthesia and Intensive Care, Oulu University Hospital, Oulu, Finland, Medical Research Center Oulu, University of Oulu, Finland
| | - Vesa Koivukangas
- ¹Research Group of Surgery, Anesthesia and Intensive Care, Oulu University Hospital, Oulu, Finland, Medical Research Center Oulu, University of Oulu, Finland
| | - Fiia Gäddnäs
- ¹Research Group of Surgery, Anesthesia and Intensive Care, Oulu University Hospital, Oulu, Finland, Medical Research Center Oulu, University of Oulu, Finland
| | - Tuula Salo
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, Medical Research Center Oulu, University of Oulu, Finland.,Research Group of Oral Health Sciences, Oulu University Hospital, Medical Research Center Oulu, University of Oulu, Finland
| | - Tero I Ala-Kokko
- ¹Research Group of Surgery, Anesthesia and Intensive Care, Oulu University Hospital, Oulu, Finland, Medical Research Center Oulu, University of Oulu, Finland
| |
Collapse
|
27
|
VEGF-A, PDGF-BB and HB-EGF engineered for promiscuous super affinity to the extracellular matrix improve wound healing in a model of type 1 diabetes. NPJ Regen Med 2021; 6:76. [PMID: 34795305 PMCID: PMC8602425 DOI: 10.1038/s41536-021-00189-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic non-healing wounds, frequently caused by diabetes, lead to lower quality of life, infection, and amputation. These wounds have limited treatment options. We have previously engineered growth factors to bind to exposed extracellular matrix (ECM) in the wound environment using the heparin-binding domain of placental growth factor-2 (PlGF-2123–144), which binds promiscuously to ECM proteins. Here, in the type 1 diabetic (T1D) NOD mouse model, engineered growth factors (eGFs) improved both re-epithelialization and granulation tissue formation. eGFs were even more potent in combination, and the “triple therapy” of vascular endothelial growth factor-A (VEGF-PlGF-2123–144), platelet-derived growth factor-BB (PDGF-BB-PlGF-2123–144), and heparin-binding epidermal growth factor (HB-EGF-PlGF-2123–144) both improved wound healing and remained at the site of administration for significantly longer than wild-type growth factors. In addition, we also found that changes in the cellular milieu of a wound, including changing amounts of M1 macrophages, M2 macrophages and effector T cells, are most predictive of wound-healing success in the NOD mouse model. These results suggest that the triple therapy of VEGF-PlGF-2123–144, PDGF-BB-PlGF-2123–144, and HB-EGF-PlGF-2123–144 may be an effective therapy for chronic non-healing wounds in that occur as a complication of diabetes.
Collapse
|
28
|
Otsuka T, Kan HM, Laurencin CT. Regenerative Engineering Approaches to Scar-Free Skin Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00229-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Hade MD, Suire CN, Suo Z. Mesenchymal Stem Cell-Derived Exosomes: Applications in Regenerative Medicine. Cells 2021; 10:1959. [PMID: 34440728 PMCID: PMC8393426 DOI: 10.3390/cells10081959] [Citation(s) in RCA: 293] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are a type of extracellular vesicles, produced within multivesicular bodies, that are then released into the extracellular space through a merging of the multivesicular body with the plasma membrane. These vesicles are secreted by almost all cell types to aid in a vast array of cellular functions, including intercellular communication, cell differentiation and proliferation, angiogenesis, stress response, and immune signaling. This ability to contribute to several distinct processes is due to the complexity of exosomes, as they carry a multitude of signaling moieties, including proteins, lipids, cell surface receptors, enzymes, cytokines, transcription factors, and nucleic acids. The favorable biological properties of exosomes including biocompatibility, stability, low toxicity, and proficient exchange of molecular cargos make exosomes prime candidates for tissue engineering and regenerative medicine. Exploring the functions and molecular payloads of exosomes can facilitate tissue regeneration therapies and provide mechanistic insight into paracrine modulation of cellular activities. In this review, we summarize the current knowledge of exosome biogenesis, composition, and isolation methods. We also discuss emerging healing properties of exosomes and exosomal cargos, such as microRNAs, in brain injuries, cardiovascular disease, and COVID-19 amongst others. Overall, this review highlights the burgeoning roles and potential applications of exosomes in regenerative medicine.
Collapse
Affiliation(s)
| | | | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA; (M.D.H.); (C.N.S.)
| |
Collapse
|
30
|
Anderegg U, Halfter N, Schnabelrauch M, Hintze V. Collagen/glycosaminoglycan-based matrices for controlling skin cell responses. Biol Chem 2021; 402:1325-1335. [PMID: 34218546 DOI: 10.1515/hsz-2021-0176] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022]
Abstract
Wound healing and tissue regeneration are orchestrated by the cellular microenvironment, e.g. the extracellular matrix (ECM). Including ECM components in biomaterials is a promising approach for improving regenerative processes, e.g. wound healing in skin. This review addresses recent findings for enhanced epidermal-dermal regenerative processes on collagen (coll)/glycosaminoglycan (GAG)-based matrices containing sulfated GAG (sGAG) in simple and complex in vitro models. These matrices comprise 2D-coatings, electrospun nanofibrous scaffolds, and photo-crosslinked acrylated hyaluronan (HA-AC)/coll-based hydrogels. They demonstrated to regulate keratinocyte and fibroblast migration and growth, to stimulate melanogenesis in melanocytes from the outer root sheath (ORS) of hair follicles and to enhance the epithelial differentiation of human mesenchymal stem cells (hMSC). The matrices' suitability for delivery of relevant growth factors, like heparin-binding epidermal growth factor like growth factor (HB-EGF), further highlights their potential as bioinspired, functional microenvironments for enhancing skin regeneration.
Collapse
Affiliation(s)
- Ulf Anderegg
- Department of Dermatology, Venereology and Allergology, Leipzig University, D-04103Leipzig, Germany
| | - Norbert Halfter
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, D-01069 Dresden, Germany
| | | | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, D-01069 Dresden, Germany
| |
Collapse
|
31
|
Stroedecke K, Meinel S, Markwardt F, Kloeckner U, Straetz N, Quarch K, Schreier B, Kopf M, Gekle M, Grossmann C. The mineralocorticoid receptor leads to increased expression of EGFR and T-type calcium channels that support HL-1 cell hypertrophy. Sci Rep 2021; 11:13229. [PMID: 34168192 PMCID: PMC8225817 DOI: 10.1038/s41598-021-92284-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/05/2021] [Indexed: 11/12/2022] Open
Abstract
The EGF receptor (EGFR) has been extensively studied in tumor biology and recently a role in cardiovascular pathophysiology was suggested. The mineralocorticoid receptor (MR) is an important effector of the renin-angiotensin-aldosterone-system and elicits pathophysiological effects in the cardiovascular system; however, the underlying molecular mechanisms are unclear. Our aim was to investigate the importance of EGFR for MR-mediated cardiovascular pathophysiology because MR is known to induce EGFR expression. We identified a SNP within the EGFR promoter that modulates MR-induced EGFR expression. In RNA-sequencing and qPCR experiments in heart tissue of EGFR KO and WT mice, changes in EGFR abundance led to differential expression of cardiac ion channels, especially of the T-type calcium channel CACNA1H. Accordingly, CACNA1H expression was increased in WT mice after in vivo MR activation by aldosterone but not in respective EGFR KO mice. Aldosterone- and EGF-responsiveness of CACNA1H expression was confirmed in HL-1 cells by Western blot and by measuring peak current density of T-type calcium channels. Aldosterone-induced CACNA1H protein expression could be abrogated by the EGFR inhibitor AG1478. Furthermore, inhibition of T-type calcium channels with mibefradil or ML218 reduced diameter, volume and BNP levels in HL-1 cells. In conclusion the MR regulates EGFR and CACNA1H expression, which has an effect on HL-1 cell diameter, and the extent of this regulation seems to depend on the SNP-216 (G/T) genotype. This suggests that the EGFR may be an intermediate for MR-mediated cardiovascular changes and that SNP analysis can help identify subgroups of patients that will benefit most from MR antagonists.
Collapse
Affiliation(s)
- Katharina Stroedecke
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Sandra Meinel
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Fritz Markwardt
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Udo Kloeckner
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Nicole Straetz
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Katja Quarch
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Barbara Schreier
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Michael Kopf
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Michael Gekle
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Claudia Grossmann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany.
| |
Collapse
|
32
|
KGF Phage Model Peptide Accelerates Cutaneous Wound Healing in a Diabetic Rat Model. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10209-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Haensel D, Jin S, Sun P, Cinco R, Dragan M, Nguyen Q, Cang Z, Gong Y, Vu R, MacLean AL, Kessenbrock K, Gratton E, Nie Q, Dai X. Defining Epidermal Basal Cell States during Skin Homeostasis and Wound Healing Using Single-Cell Transcriptomics. Cell Rep 2021; 30:3932-3947.e6. [PMID: 32187560 PMCID: PMC7218802 DOI: 10.1016/j.celrep.2020.02.091] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/07/2020] [Accepted: 02/25/2020] [Indexed: 01/17/2023] Open
Abstract
Our knowledge of transcriptional heterogeneities in epithelial stem and progenitor cell compartments is limited. Epidermal basal cells sustain cutaneous tissue maintenance and drive wound healing. Previous studies have probed basal cell heterogeneity in stem and progenitor potential, but a comprehensive dissection of basal cell dynamics during differentiation is lacking. Using single-cell RNA sequencing coupled with RNAScope and fluorescence lifetime imaging, we identify three non-proliferative and one proliferative basal cell state in homeostatic skin that differ in metabolic preference and become spatially partitioned during wound re-epithelialization. Pseudotemporal trajectory and RNA velocity analyses predict a quasi-linear differentiation hierarchy where basal cells progress from Col17a1Hi/Trp63Hi state to early-response state, proliferate at the juncture of these two states, or become growth arrested before differentiating into spinous cells. Wound healing induces plasticity manifested by dynamic basal-spinous interconversions at multiple basal transcriptional states. Our study provides a systematic view of epidermal cellular dynamics, supporting a revised “hierarchical-lineage” model of homeostasis. Haensel et al. performed a comprehensive dissection of the cellular makeup of skin during homeostasis and wound healing and the molecular heterogeneity and cellular dynamics within its stem-cell-containing epidermal basal layer. Their work provides insights and stimulates further investigation into the mechanism of skin maintenance and repair.
Collapse
Affiliation(s)
- Daniel Haensel
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92627, USA
- These authors contributed equally
| | - Suoqin Jin
- Department of Mathematics, University of California, Irvine, CA 92697, USA
- These authors contributed equally
| | - Peng Sun
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Rachel Cinco
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - Morgan Dragan
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92627, USA
| | - Quy Nguyen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Zixuan Cang
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92627, USA
- Department of Mathematics, University of California, Irvine, CA 92697, USA
| | - Yanwen Gong
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA
| | - Remy Vu
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92627, USA
| | - Adam L. MacLean
- Department of Mathematics, University of California, Irvine, CA 92697, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - Qing Nie
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92627, USA
- Department of Mathematics, University of California, Irvine, CA 92697, USA
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Correspondence: (Q.N.), (X.D.)
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92627, USA
- Lead Contact
- Correspondence: (Q.N.), (X.D.)
| |
Collapse
|
34
|
Augustine R, Hasan A, Dalvi YB, Rehman SRU, Varghese R, Unni RN, Yalcin HC, Alfkey R, Thomas S, Al Moustafa AE. Growth factor loaded in situ photocrosslinkable poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/gelatin methacryloyl hybrid patch for diabetic wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111519. [DOI: 10.1016/j.msec.2020.111519] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022]
|
35
|
Chen J, Bekale LA, Khomtchouk KM, Xia A, Cao Z, Ning S, Knox SJ, Santa Maria PL. Locally administered heparin-binding epidermal growth factor-like growth factor reduces radiation-induced oral mucositis in mice. Sci Rep 2020; 10:17327. [PMID: 33060741 PMCID: PMC7567084 DOI: 10.1038/s41598-020-73875-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/21/2020] [Indexed: 01/28/2023] Open
Abstract
Oral mucositis refers to lesions of the oral mucosa observed in patients with cancer being treated with radiation with or without chemotherapy, and can significantly affect quality of life. There is a large unmet medical need to prevent oral mucositis that can occur with radiation either alone or in combination with chemotherapy. We investigated the efficacy of locally administered heparin-binding epidermal growth factor-like growth factor (HB-EGF), a potent epithelial proliferation and migration stimulator of the oral mucosa as a potential therapy to prevent radiation induced oral mucositis. Using a single dose (20 Gy) of radiation to the oral cavity of female C57BL/6 J mice, we evaluated the efficacy of HB-EGF treatment (5 µl of 10 µg/ml) solution. The results show that HB-EGF delivered post radiation, significantly increased the area of epithelial thickness on the tongue (dorsal tongue (42,106 vs 53,493 µm2, p < 0.01), ventral tongue (30,793 vs 39,095 µm2, *p < 0.05)) compared to vehicle control, enhanced new epithelial cell division, and increased the quality and quantity of desmosomes in the oral mucosa measured in the tongue and buccal mucosa. This data provides the proof of concept that local administration of HB-EGF has the potential to be developed as a topical treatment to mitigate oral mucositis following radiation.
Collapse
Affiliation(s)
- Jing Chen
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA
| | - Laurent A Bekale
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA.
| | - Kelly M Khomtchouk
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA
| | - Anping Xia
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA
| | - Zhixin Cao
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Shoucheng Ning
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Susan J Knox
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Peter L Santa Maria
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA.
| |
Collapse
|
36
|
Biniazan F, Manzari-Tavakoli A, Safaeinejad F, Moghimi A, Rajaei F, Niknejad H. The differentiation effect of bone morphogenetic protein (BMP) on human amniotic epithelial stem cells to express ectodermal lineage markers. Cell Tissue Res 2020; 383:751-763. [PMID: 32960356 DOI: 10.1007/s00441-020-03280-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/12/2020] [Indexed: 11/28/2022]
Abstract
Stem cells are a promising tool for treatment of a variety of degenerative diseases. Human amniotic epithelial stem cells (hAECs) have desirable and unique characteristics that make them a proper candidate for cell therapy. In this study, we have investigated the effects of BMP-4 (bone morphogenetic protein-4) and its inhibition on differentiation of AECs into ectodermal lineages. Analysis of AEC-derived ectodermal lineages (neurons and keratinocytes) was performed by using flow cytometry technique for Map2 and β-tubulin (as neuron markers), Olig2 and MBP (as oligodendrocyte markers), and K14 and K10 (as keratinocyte markers). The results of this study illustrated that noggin (as BMP antagonist), BMP4, and both BMP4 and heparin (together or separately) increased neural and keratinocyte marker expression, respectively. The expression of markers MAP2, olig2, and K14 in hAECs has been significantly decreased 21 days after exposure to differentiation medium (without growth factors) compared with isolation day, which supports the hypothesis that AECs can be dedifferentiated into pluripotent cells. Moreover, activation and inhibition of BMP signaling have no effects on viability of hAECs. The results of this study showed that BMP signaling and its inhibition are the key factors for ectodermal lineage differentiation of amnion-derived stem cells.
Collapse
Affiliation(s)
- Felor Biniazan
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Asma Manzari-Tavakoli
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fahimeh Safaeinejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Moghimi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Farzad Rajaei
- Cellular and Molecular Research Center, Qazvin University of Medical Science, Qazvin, Iran.
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Wentzel AS, Petit J, van Veen WG, Fink IR, Scheer MH, Piazzon MC, Forlenza M, Spaink HP, Wiegertjes GF. Transcriptome sequencing supports a conservation of macrophage polarization in fish. Sci Rep 2020; 10:13470. [PMID: 32778701 PMCID: PMC7418020 DOI: 10.1038/s41598-020-70248-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
Mammalian macrophages can adopt polarization states that, depending on the exact stimuli present in their extracellular environment, can lead to very different functions. Although these different polarization states have been shown primarily for macrophages of humans and mice, it is likely that polarized macrophages with corresponding phenotypes exist across mammals. Evidence of functional conservation in macrophages from teleost fish suggests that the same, or at least comparable polarization states should also be present in teleosts. However, corresponding transcriptional profiles of marker genes have not been reported thus far. In this study we confirm that macrophages from common carp can polarize into M1- and M2 phenotypes with conserved functions and corresponding transcriptional profiles compared to mammalian macrophages. Carp M1 macrophages show increased production of nitric oxide and a transcriptional profile with increased pro-inflammatory cytokines and mediators, including il6, il12 and saa. Carp M2 macrophages show increased arginase activity and a transcriptional profile with increased anti-inflammatory mediators, including cyr61, timp2b and tgm2b. Our RNA sequencing approach allowed us to list, in an unbiased manner, markers discriminating between M1 and M2 macrophages of teleost fish. We discuss the importance of our findings for the evaluation of immunostimulants for aquaculture and for the identification of gene targets to generate transgenic zebrafish for detailed studies on M1 and M2 macrophages. Above all, we discuss the striking degree of evolutionary conservation of macrophage polarization in a lower vertebrate.
Collapse
Affiliation(s)
- Annelieke S Wentzel
- Cell Biology and Immunology Group, Aquaculture and Fisheries Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Jules Petit
- Aquaculture and Fisheries Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Wouter G van Veen
- Experimental Zoology Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Inge Rosenbek Fink
- Cell Biology and Immunology Group, Aquaculture and Fisheries Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Marleen H Scheer
- Cell Biology and Immunology Group, Aquaculture and Fisheries Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de La Sal (IATS-CSIC), 12595, Ribera de Cabanes, Castellón, Spain
| | - Maria Forlenza
- Cell Biology and Immunology Group, Aquaculture and Fisheries Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, Einsteinweg 55, 2332 CC, Leiden, The Netherlands
| | - Geert F Wiegertjes
- Aquaculture and Fisheries Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands.
| |
Collapse
|
38
|
Monavarian M, Kader S, Moeinzadeh S, Jabbari E. Regenerative Scar-Free Skin Wound Healing. TISSUE ENGINEERING PART B-REVIEWS 2020; 25:294-311. [PMID: 30938269 DOI: 10.1089/ten.teb.2018.0350] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IMPACT STATEMENT Millions of people every year develop scars in response to skin injuries after surgery, trauma, or burns with significant undesired physical and psychological effects. This review provides an update on engineering strategies for scar-free wound healing and discusses the role of different cell types, growth factors, cytokines, and extracellular components in regenerative wound healing. The use of pro-regenerative matrices combined with engineered cells with less intrinsic potential for fibrogenesis is a promising strategy for achieving scar-free skin tissue regeneration.
Collapse
Affiliation(s)
- Mehri Monavarian
- 1Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina
| | - Safaa Kader
- 1Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina.,2Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina
| | - Seyedsina Moeinzadeh
- 1Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina
| | - Esmaiel Jabbari
- 1Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
39
|
Roy SR, Li G, Hu X, Zhang S, Yukawa S, Du E, Zhang Y. Integrin and Heparan Sulfate Dual-Targeting Peptide Assembly Suppresses Cancer Metastasis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19277-19284. [PMID: 32266811 DOI: 10.1021/acsami.0c02235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metastasis is one of the ongoing challenges in cancer therapy which most treatments failed to address. Inspired by the upregulated expression of both integrin β1 and heparan sulfate in metastatic tumors, we developed an integrin/HS dual-targeting peptide assembly that selectively inhibits cancer cell migration and invasion. Particularly, the dual-targeting peptide self-assembles into nanofibrous microdomains specifically on the cancer cell membrane, triggering spatial organization of integrins, which form clusters on the apical membrane. Via the actin cytoskeleton that physically connects to integrin clusters, the oncogene yes-associated protein, which regulates cancer metastasis, is deactivated. We showed that in multiple cancer cell lines, including the highly metastatic pancreatic cancer cells, the dual-targeting peptide exerts potent and dose-dependent antimetastatic effects. Our work illustrates how basic biochemical insights can be exploited as the basis for nano-biointerface fabrication, which is potentially a general design strategy for nanomedicine development.
Collapse
Affiliation(s)
- Sona Rani Roy
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Guanying Li
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Xunwu Hu
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Shijin Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Sachie Yukawa
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Enming Du
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Ye Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
40
|
Letsiou S, Bakea A, Le Goff G, Lopes P, Gardikis Κ, Alonso C, Álvarez PA, Ouazzani J. In vitro protective effects of marine-derived Aspergillus puulaauensis TM124-S4 extract on H 2O 2-stressed primary human fibroblasts. Toxicol In Vitro 2020; 66:104869. [PMID: 32320759 DOI: 10.1016/j.tiv.2020.104869] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022]
Abstract
Nowadays, there is a huge interest in natural products obtained from marine organisms that can promote human health.The aim of the present study is to evaluate for the first time, the in vitro effects of marine Aspergillus puulaauensis TM124-S4 extract against oxidative stress in human fibroblasts, and its potential as a cosmetic ingredient. The strain was isolated from the Mediterranean Sea star, Echinaster sepositus, and identified according to ITS molecular sequence homology as a member of Aspergillus section versicolores.To gain insight on the bioactivity underpinning the effects of TM124-S4 extract on oxidative stress, we examined a panel of a hundred genes as well as cell viability. Initially, Aspergillus puulaauensis TM124-S4 promoted cell viability.The change in gene transcripts revealed that Aspergillus puulaauensis TM124-S4 extracts exhibited skin protection properties by mediating cell proliferation (EPS8, GDF15, CASP7, VEGFA), antioxidant response (CAT, SOD1, TXN, GPX1), skin hydration (CD44, CRABP2, SERPINE) and DNA repair (PCNA, P21). The extract also modulated the expression of genes involved in skin pigmentation and aging (TYR, FOXO3).These findings indicate that Aspergillus puulaauensis TM124-S4 extract possesses significant in-vitro skin protection activity against induced oxidative stress.Furthermore, new insights are provided into the beneficial role of fungal bioactive compounds in skin related research.
Collapse
Affiliation(s)
- Sophia Letsiou
- Laboratory of Biochemistry, Research and Development department, APIVITA S.A., Industrial Park of Markopoulo Mesogaias, 19003 Markopoulo Attiki, Athens, Greece.
| | - Artemis Bakea
- Laboratory of Biochemistry, Research and Development department, APIVITA S.A., Industrial Park of Markopoulo Mesogaias, 19003 Markopoulo Attiki, Athens, Greece
| | - Géraldine Le Goff
- Institut de Chimie des Substances Naturelles ICSN, Centre National de la Recherche Scientifique CNRS, Avenue de la Terrasse 91198, Gif-sur-Yvette, France
| | - Philippe Lopes
- Institut de Chimie des Substances Naturelles ICSN, Centre National de la Recherche Scientifique CNRS, Avenue de la Terrasse 91198, Gif-sur-Yvette, France
| | - Κonstantinos Gardikis
- Laboratory of Biochemistry, Research and Development department, APIVITA S.A., Industrial Park of Markopoulo Mesogaias, 19003 Markopoulo Attiki, Athens, Greece
| | | | | | - Jamal Ouazzani
- Institut de Chimie des Substances Naturelles ICSN, Centre National de la Recherche Scientifique CNRS, Avenue de la Terrasse 91198, Gif-sur-Yvette, France
| |
Collapse
|
41
|
Kim D, Kwon S. Vibrational stress affects extracellular signal-regulated kinases activation and cytoskeleton structure in human keratinocytes. PLoS One 2020; 15:e0231174. [PMID: 32267880 PMCID: PMC7141684 DOI: 10.1371/journal.pone.0231174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/17/2020] [Indexed: 01/22/2023] Open
Abstract
As the outermost organ, the skin can be damaged following injuries such as wounds and bacterial or viral infections, and such damage should be rapidly restored to defend the body against physical, chemical, and microbial assaults. However, the wound healing process can be delayed or prolonged by health conditions, including diabetes mellitus, venous stasis disease, ischemia, and even stress. In this study, we developed a vibrational cell culture model and investigated the effects of mechanical vibrations on human keratinocytes. The HaCaT cells were exposed to vibrations at a frequency of 45 Hz with accelerations of 0.8g for 2 h per day. The applied mechanical vibration did not affect cell viability or cell proliferation. Cell migratory activity did increase following exposure to vibration, but the change was not statistically significant. The results of immunostaining (F-actin), western blot (ERK1/2), and RT-qPCR (FGF-2, PDGF-B, HB-EGF, TGF-β1, EGFR, and KGFR) analyses demonstrated that the applied vibration resulted in rearrangement of the cytoskeleton, leading to activation of ERK1/2, one of the MAPK signaling pathways, and upregulation of the gene expression levels of HB-EGF and EGFR. The results suggest that mechanical vibration may have wound healing potential and could be used as a mechanical energy-based treatment for enhancing wound healing efficiency.
Collapse
Affiliation(s)
- Dongjoo Kim
- Department of Biological Engineering, Inha University, Incheon, Korea
- Biology and Medical Device Evaluation Team, Korea Testing & Research Institute, Gwacheon, Korea
| | - Soonjo Kwon
- Department of Biological Engineering, Inha University, Incheon, Korea
- * E-mail:
| |
Collapse
|
42
|
Wang A, Toma MA, Ma J, Li D, Vij M, Chu T, Wang J, Li X, Xu Landén N. Circular RNA hsa_circ_0084443 Is Upregulated in Diabetic Foot Ulcer and Modulates Keratinocyte Migration and Proliferation. Adv Wound Care (New Rochelle) 2020; 9:145-160. [PMID: 32117579 DOI: 10.1089/wound.2019.0956] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/12/2019] [Indexed: 12/15/2022] Open
Abstract
Objective: Insufficient knowledge about the molecular pathology of diabetic foot ulcer (DFU) impedes the development of effective wound treatment. Circular RNAs (circRNAs) are a novel class of RNA recently discovered to be widely expressed and have important biological functions; however, their role in skin wound healing remains largely unexplored. In this study, we investigated the role of circRNAs in DFU. Approach: CircRNA expression was profiled in normal wounds (NWs) and DFUs by microarray analysis, and hsa_circ_0084443 was identified as differentially expressed. The circularity and subcellular localization of hsa_circ_0084443 were characterized by northern blotting, real-time PCR, and fluorescence in situ hybridization. Cell migration, cell growth, and the transcriptome of human primary keratinocytes were analyzed after overexpression or RNA interference of hsa_circ_0084443. Results: hsa_circ_0084443 is downregulated in NWs compared with intact skin, and its level is higher in DFUs than NWs. We confirmed its circularity and presence in the cytoplasm of human epidermal keratinocytes. We showed that hsa_circ_0084443 reduced motility while enhancing the growth of keratinocytes. Furthermore, we identified a gene network with the potential to mediate the biological effect of hsa_circ_0084443. Innovation: CircRNAs have a functional role and a potential clinical significance in skin wound healing. Conclusions: We identified hsa_circ_0084443, a circRNA downregulated during NW healing, as a negative regulator of keratinocyte migration. Higher levels of hsa_circ_0084443 were detected in DFU samples, suggesting that it plays a role in pathology. These findings pave the way to understanding the functional role of circRNAs in human skin wound healing.
Collapse
Affiliation(s)
- Aoxue Wang
- Department of Dermatology, The Second Hospital of Dalian Medical University, College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Maria A. Toma
- Dermatology and Venereology Unit, Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jingxin Ma
- Department of Cell Biology, Dalian Medical University, Dalian, China
| | - Dongqing Li
- Dermatology and Venereology Unit, Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manika Vij
- Dermatology and Venereology Unit, Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tongbin Chu
- Department of Wound Regeneration, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jing Wang
- Department of Dermatology, The Second Hospital of Dalian Medical University, College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xi Li
- Dermatology and Venereology Unit, Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ning Xu Landén
- Dermatology and Venereology Unit, Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
43
|
Transcriptional analysis of scar-free wound healing during early stages of tail regeneration in the green anole lizard, Anolis carolinensis. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.regen.2019.100025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Sferra A, Petrini S, Bellacchio E, Nicita F, Scibelli F, Dentici ML, Alfieri P, Cestra G, Bertini ES, Zanni G. TUBB Variants Underlying Different Phenotypes Result in Altered Vesicle Trafficking and Microtubule Dynamics. Int J Mol Sci 2020; 21:ijms21041385. [PMID: 32085672 PMCID: PMC7073044 DOI: 10.3390/ijms21041385] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 11/26/2022] Open
Abstract
Tubulinopathies are rare neurological disorders caused by alterations in tubulin structure and function, giving rise to a wide range of brain abnormalities involving neuronal proliferation, migration, differentiation and axon guidance. TUBB is one of the ten β-tubulin encoding genes present in the human genome and is broadly expressed in the developing central nervous system and the skin. Mutations in TUBB are responsible for two distinct pathological conditions: the first is characterized by microcephaly and complex structural brain malformations and the second, also known as “circumferential skin creases Kunze type” (CSC-KT), is associated to neurological features, excess skin folding and growth retardation. We used a combination of immunocytochemical and cellular approaches to explore, on patients’ derived fibroblasts, the functional consequences of two TUBB variants: the novel mutation (p.N52S), associated with basal ganglia and cerebellar dysgenesis, and the previously reported variant (p.M73T), linked to microcephaly, corpus callosum agenesis and CSC-KT skin phenotype. Our results demonstrate that these variants impair microtubule (MT) function and dynamics. Most importantly, our studies show an altered epidermal growth factor (EGF) and transferrin (Tf) intracellular vesicle trafficking in both patients’ fibroblasts, suggesting a specific role of TUBB in MT-dependent vesicular transport.
Collapse
Affiliation(s)
- Antonella Sferra
- Unit of Neuromuscular and Neurodegenerative Disorders, Department Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (F.N.); (E.S.B.)
- Correspondence: (A.S.); (G.Z.)
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy;
| | - Emanuele Bellacchio
- Department of Research Laboratories, Bambino Gesù Children’s Hospital, 00146 Rome, Italy;
| | - Francesco Nicita
- Unit of Neuromuscular and Neurodegenerative Disorders, Department Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (F.N.); (E.S.B.)
| | - Francesco Scibelli
- Unit of Child Neuropsychiatry, Department of Neurosciences, Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (F.S.); (P.A.)
| | - Maria Lisa Dentici
- Unit of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Paolo Alfieri
- Unit of Child Neuropsychiatry, Department of Neurosciences, Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (F.S.); (P.A.)
| | - Gianluca Cestra
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) and University of Rome “Sapienza”, Department of Biology and Biotechnology, 00185 Rome, Italy;
| | - Enrico Silvio Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (F.N.); (E.S.B.)
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Disorders, Department Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (F.N.); (E.S.B.)
- Correspondence: (A.S.); (G.Z.)
| |
Collapse
|
45
|
Liu Z, Skafar DF, Kilburn B, Das SK, Armant DR. Extraembryonic heparin-binding epidermal growth factor-like growth factor deficiency compromises placentation in mice. Biol Reprod 2020; 100:217-226. [PMID: 30084919 DOI: 10.1093/biolre/ioy174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/27/2018] [Indexed: 01/04/2023] Open
Abstract
Heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF) is expressed in the embryo and uterus at the implantation site, stimulating trophoblast invasive activity essential for placentation. The effect of extraembryonic HBEGF deficiency on placental development was investigated by breeding mice heterozygous for the Hbegf null mutation. On gestation day 13.5, the average placental weights of the wild-type (Hbegf+/+) and heterozygous (Hbegf+/-) mice were approximately 76 and 77 mg, respectively, as opposed to reduced average placental weights of approximately 61 mg in homozygous null (Hbgef-/-) females. In contrast, fetal weights were not significantly affected by genotype. HBEGF immunostaining in placental sections was Hbegf gene dosage-dependent, while expression of other EGF family members was comparable in Hbegf+/+ and Hbegf-/- placentas. Histological analysis revealed no apparent differences in trophoblast giant cells, but the spongiotrophoblast region was reduced compared to labyrinth (P < 0.05) in Hbegf null placentas. While no differences in cell apoptosis were noted, proliferation as assessed by nuclear Ki67 staining was elevated in the labyrinth and decreased in the spongiotrophoblast region of Hbegf-/- placentas. Labyrinth morphology appeared disrupted in Hbegf -/- placentas stained with laminin, a marker for capillary basement membrane, and the capillary density was reduced. Immunohistochemical staining revealed reduced vascular endothelial growth factor (VEGF) levels in both spongiotrophoblast and labyrinth (P < 0.01) regions of Hbegf-/- placentas. In vitro, HBEGF supplementation increases the expression of VEGF in a human trophoblast cell line. These findings suggest that trophoblast HBEGF promotes placental capillary formation by inducing VEGF in the developing placenta of mice.
Collapse
Affiliation(s)
- Zitao Liu
- Department of Pediatrics, Division of Reproductive and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,New Hope Fertility Center, New York City, New York, USA
| | - Debra F Skafar
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Brian Kilburn
- Departments of Obstetrics & Gynecology and Anatomy and Cell Biology, Wayne State University, Detroit, Michigan, USA
| | - Sanjoy K Das
- Department of Pediatrics, Division of Reproductive and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - D Randall Armant
- Departments of Obstetrics & Gynecology and Anatomy and Cell Biology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
46
|
Firouzi F, Sinha Choudhury S, Broughton K, Salazar A, Bailey B, Sussman MA. Human CardioChimeras: Creation of a Novel "Next-Generation" Cardiac Cell. J Am Heart Assoc 2020; 9:e013452. [PMID: 31902324 PMCID: PMC6988174 DOI: 10.1161/jaha.119.013452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background CardioChimeras produced by fusion of murine c‐kit+ cardiac interstitial cells with mesenchymal stem cells promote superior structural and functional recovery in a mouse model of myocardial infarction compared with either precursor cell alone or in combination. Creation of human CardioChimeras (hCCs) represents the next step in translational development of this novel cell type, but new challenges arise when working with c‐kit+ cardiac interstitial cells isolated and expanded from human heart tissue samples. The objective of the study was to establish a reliable cell fusion protocol for consistent optimized creation of hCCs and characterize fundamental hCC properties. Methods and Results Cell fusion was induced by incubating human c‐kit+ cardiac interstitial cells and mesenchymal stem cells at a 2:1 ratio with inactivated Sendai virus. Hybrid cells were sorted into 96‐well microplates for clonal expansion to derive unique cloned hCCs, which were then characterized for various cellular and molecular properties. hCCs exhibited enhanced survival relative to the parent cells and promoted cardiomyocyte survival in response to serum deprivation in vitro. Conclusions The generation of hCC is demonstrated and validated in this study, representing the next step toward implementation of a novel cell product for therapeutic development. Feasibility of creating human hybrid cells prompts consideration of multiple possibilities to create novel chimeric cells derived from cells with desirable traits to promote healing in pathologically damaged myocardium.
Collapse
Affiliation(s)
- Fareheh Firouzi
- Department of Biology and Integrated Regenerative Research Institute San Diego State University San Diego CA
| | - Sarmistha Sinha Choudhury
- Department of Biology and Integrated Regenerative Research Institute San Diego State University San Diego CA
| | - Kathleen Broughton
- Department of Biology and Integrated Regenerative Research Institute San Diego State University San Diego CA
| | - Adriana Salazar
- Department of Biology and Integrated Regenerative Research Institute San Diego State University San Diego CA
| | - Barbara Bailey
- Department of Mathematics & Statistics San Diego State University San Diego CA
| | - Mark A Sussman
- Department of Biology and Integrated Regenerative Research Institute San Diego State University San Diego CA
| |
Collapse
|
47
|
Wang Y, Graves DT. Keratinocyte Function in Normal and Diabetic Wounds and Modulation by FOXO1. J Diabetes Res 2020; 2020:3714704. [PMID: 33195703 PMCID: PMC7641706 DOI: 10.1155/2020/3714704] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023] Open
Abstract
Diabetes has a significant and negative impact on wound healing, which involves complex interactions between multiple cell types. Keratinocytes play a crucial role in the healing process by rapidly covering dermal and mucosal wound surfaces to reestablish an epithelial barrier with the outside environment. Keratinocytes produce multiple factors to promote reepithelialization and produce factors that enhance connective tissue repair through the elaboration of mediators that stimulate angiogenesis and production of connective tissue matrix. Among the factors that keratinocytes produce to aid healing are transforming growth factor-β (TGF-β), vascular endothelial growth factor-A (VEGF-A), connective tissue growth factor (CTGF), and antioxidants. In a diabetic environment, this program is disrupted, and keratinocytes fail to produce growth factors and instead switch to a program that is detrimental to healing. Changes in keratinocyte behavior have been linked to high glucose and advanced glycation end products that alter the activities of the transcription factor, FOXO1. This review examines reepithelialization and factors produced by keratinocytes that upregulate connective tissue healing and angiogenesis and how they are altered by diabetes.
Collapse
Affiliation(s)
- Yulan Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079 Hubei, China
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104 Pennsylvania, USA
- Department of Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079 Hubei, China
| | - Dana T. Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104 Pennsylvania, USA
| |
Collapse
|
48
|
Zhu M, Kong D, Tian R, Pang M, Mo M, Chen Y, Yang G, Liu Cheng H, Lei X, Fang K, Cheng B, Wu Y. Platelet sonicates activate hair follicle stem cells and mediate enhanced hair follicle regeneration. J Cell Mol Med 2019; 24:1786-1794. [PMID: 31802614 PMCID: PMC6991668 DOI: 10.1111/jcmm.14873] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/30/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
An increasing number of studies show that platelet-rich plasma (PRP) is effective for androgenic alopecia (AGA). However, the underlying cellular and molecular mechanisms along with its effect on hair follicle stem cells are poorly understood. In this study, we designed to induce platelets in PRP to release factors by calcium chloride (PC) or by sonication where platelet lysates (PS) or the supernatants of platelet lysate (PSS) were used to evaluate their effect on the hair follicle activation and regeneration. We found that PSS and PS exhibited a superior effect in activating telogen hair follicles than PC. In addition, PSS injection into the skin activated quiescent hair follicles and induced K15+ hair follicle stem cell proliferation in K14-H2B-GFP mice. Moreover, PSS promoted skin-derived precursor (SKP) survival in vitro and enhanced hair follicle formation in vivo. In consistence, protein array analysis of different PRP preparations revealed that PSS contained higher levels of 16 growth factors (out of 41 factors analysed) than PC, many of them have been known to promote hair follicle regeneration. Thus, our data indicate that sonicated PRP promotes hair follicle stem cell activation and de novo hair follicle regeneration.
Collapse
Affiliation(s)
- Meishu Zhu
- The Graduate School of Southern Medical University, Guangzhou, China.,Department of Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China.,Department of Burn & Plastic Surgery, the First Affiliated Hospital of Shenzhen University, Health Science Center, the Second People's Hospital of Shenzhen, Shenzhen, China
| | - Deqiang Kong
- The Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, and Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China
| | - Ruiyun Tian
- The Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, and Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China
| | - Mengru Pang
- The Graduate School of Southern Medical University, Guangzhou, China.,Department of Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Miaohua Mo
- The Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, and Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China
| | - Yu Chen
- The Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, and Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China
| | - Guang Yang
- The Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, and Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China
| | - Hanghang Liu Cheng
- Key Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, The Fourth Medical Center of General Hospital of PLA, Beijing, China
| | - Xiaoxuan Lei
- Department of Burn & Plastic Surgery, the First Affiliated Hospital of Shenzhen University, Health Science Center, the Second People's Hospital of Shenzhen, Shenzhen, China
| | - Kunwu Fang
- Department of Burn & Plastic Surgery, the First Affiliated Hospital of Shenzhen University, Health Science Center, the Second People's Hospital of Shenzhen, Shenzhen, China
| | - Biao Cheng
- The Graduate School of Southern Medical University, Guangzhou, China.,Department of Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Yaojiong Wu
- The Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, and Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China
| |
Collapse
|
49
|
Walendzik K, Kopcewicz M, Bukowska J, Panasiewicz G, Szafranska B, Gawronska-Kozak B. The Transcription Factor FOXN1 Regulates Skin Adipogenesis and Affects Susceptibility to Diet-Induced Obesity. J Invest Dermatol 2019; 140:1166-1175.e9. [PMID: 31811821 DOI: 10.1016/j.jid.2019.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022]
Abstract
FOXN1, a transcription factor expressed in the epidermis, regulates keratinocyte differentiation and participates in skin wound healing. In this study, we explored the impact of FOXN1 insufficiency on diet-stimulated weight gain and dermal white adipose tissue regulation in the intact and wounded skin of FOXN1eGFP/+ (heterozygotes, FOXN1-insufficient) mice in the context of age and diet. The results showed that on a high-fat diet, FOXN1eGFP/+ mice gained significantly less body weight than their FOXN1+/+ counterparts (FOXN1-sufficient mice). The intact and wounded skin of FOXN1eGFP/+ mice displayed abrogated expression of the master regulators of adipogenesis, PPARγ, FABP4, and leptin, which decreased with age in FOXN1+/+ mice. FOXN1 insufficiency also resulted in a decreased percentage of adipocyte-committed precursor cells (CD24+) in the skin. The proadipogenic pathway genes Bmp2, Igf2, and Mest showed a gradual decrease in expression that accompanied the gradual inactivation of FOXN1 in the skin of FOXN1+/+, FOXN1eGFP/+, and FOXN1eGFP/eGFP (lack of FOXN1) mice. Bone morphogenetic protein 2 and insulin-like growth factor 2 signals colocalized with FOXN1-eGFP in the epidermis and in hair follicles. These data demonstrated that FOXN1 initiates the cascade of adipogenic signaling that regulates skin homeostasis and wound healing and affects susceptibility to diet-induced obesity.
Collapse
Affiliation(s)
- Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Bukowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Grzegorz Panasiewicz
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Bozena Szafranska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| |
Collapse
|
50
|
Hachim D, Whittaker TE, Kim H, Stevens MM. Glycosaminoglycan-based biomaterials for growth factor and cytokine delivery: Making the right choices. J Control Release 2019; 313:131-147. [PMID: 31629041 PMCID: PMC6900262 DOI: 10.1016/j.jconrel.2019.10.018] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022]
Abstract
Controlled, localized drug delivery is a long-standing goal of medical research, realization of which could reduce the harmful side-effects of drugs and allow more effective treatment of wounds, cancers, organ damage and other diseases. This is particularly the case for protein "drugs" and other therapeutic biological cargoes, which can be challenging to deliver effectively by conventional systemic administration. However, developing biocompatible materials that can sequester large quantities of protein and release them in a sustained and controlled manner has proven challenging. Glycosaminoglycans (GAGs) represent a promising class of bio-derived materials that possess these key properties and can additionally potentially enhance the biological effects of the delivered protein. They are a diverse group of linear polysaccharides with varied functionalities and suitabilities for different cargoes. However, most investigations so far have focused on a relatively small subset of GAGs - particularly heparin, a readily available, promiscuously-binding GAG. There is emerging evidence that for many applications other GAGs are in fact more suitable for regulated and sustained delivery. In this review, we aim to illuminate the beneficial properties of various GAGs with reference to specific protein cargoes, and to provide guidelines for informed choice of GAGs for therapeutic applications.
Collapse
Affiliation(s)
- Daniel Hachim
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Thomas E Whittaker
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Hyemin Kim
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Molly M Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.
| |
Collapse
|