1
|
Zhang P, Medwig-Kinney TN, Breiner EA, Perez JM, Song AN, Goldstein B. Cell signaling facilitates apical constriction by basolaterally recruiting Arp2/3 via Rac and WAVE. J Cell Biol 2025; 224:e202409133. [PMID: 40042443 PMCID: PMC11893165 DOI: 10.1083/jcb.202409133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 03/12/2025] Open
Abstract
Apical constriction is a critical cell shape change that drives cell internalization and tissue bending. How precisely localized actomyosin regulators drive apical constriction remains poorly understood. Caenorhabditis elegans gastrulation provides a valuable model to address this question. The Arp2/3 complex is essential in C. elegans gastrulation. To understand how Arp2/3 is locally regulated, we imaged embryos with endogenously tagged Arp2/3 and its nucleation-promoting factors (NPFs). The three NPFs-WAVE, WASP, and WASH-controlled Arp2/3 localization at distinct subcellular locations. We exploited this finding to study distinct populations of Arp2/3 and found that only WAVE depletion caused penetrant gastrulation defects. WAVE localized basolaterally with Arp2/3 and controlled F-actin levels near cell-cell contacts. WAVE and Arp2/3 localization depended on CED-10/Rac. Establishing ectopic cell contacts recruited WAVE and Arp2/3, identifying the contact as a symmetry-breaking cue for localization of these proteins. These results suggest that cell-cell signaling via Rac activates WAVE and Arp2/3 basolaterally and that basolateral Arp2/3 makes an important contribution to apical constriction.
Collapse
Affiliation(s)
- Pu Zhang
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Eleanor A. Breiner
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jadyn M. Perez
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - April N. Song
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Zhang P, Medwig-Kinney TN, Breiner EA, Perez JM, Song AN, Goldstein B. Cell signaling facilitates apical constriction by basolaterally recruiting Arp2/3 via Rac and WAVE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614059. [PMID: 39386716 PMCID: PMC11463545 DOI: 10.1101/2024.09.23.614059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Apical constriction is a critical cell shape change that bends tissues. How precisely-localized actomyosin regulators drive apical constriction remains poorly understood. C. elegans gastrulation provides a valuable model to address this question. The Arp2/3 complex is essential in C. elegans gastrulation. To understand how Arp2/3 is locally regulated, we imaged embryos with endogenously-tagged Arp2/3 and its nucleation-promoting factors (NPFs). The three NPFs - WAVE, WASP, and WASH - colocalized with Arp2/3 and controlled Arp2/3 localization at distinct subcellular locations. We exploited this finding to study distinct populations of Arp2/3 and found that only WAVE depletion caused penetrant gastrulation defects. WAVE localized basolaterally with Arp2/3 at cell-cell contacts, dependent on CED-10/Rac. Establishing ectopic cell contacts recruited WAVE and Arp2/3, identifying contact as a symmetry-breaking cue for localization of these proteins. These results suggest that cell-cell signaling via Rac activates WAVE and Arp2/3 basolaterally, and that basolateral Arp2/3 is important for apical constriction.
Collapse
Affiliation(s)
- Pu Zhang
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Eleanor A. Breiner
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jadyn M. Perez
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - April N. Song
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Romero MD, Carabeo RA. Dynamin-dependent entry of Chlamydia trachomatis is sequentially regulated by the effectors TarP and TmeA. Nat Commun 2024; 15:4926. [PMID: 38858371 PMCID: PMC11164928 DOI: 10.1038/s41467-024-49350-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/30/2024] [Indexed: 06/12/2024] Open
Abstract
Chlamydia invasion of epithelial cells is a pathogen-driven process involving two functionally distinct effectors - TarP and TmeA. They collaborate to promote robust actin dynamics at sites of entry. Here, we extend studies on the molecular mechanism of invasion by implicating the host GTPase dynamin 2 (Dyn2) in the completion of pathogen uptake. Importantly, Dyn2 function is modulated by TarP and TmeA at the levels of recruitment and activation through oligomerization, respectively. TarP-dependent recruitment requires phosphatidylinositol 3-kinase and the small GTPase Rac1, while TmeA has a post-recruitment role related to Dyn2 oligomerization. This is based on the rescue of invasion duration and efficiency in the absence of TmeA by the Dyn2 oligomer-stabilizing small molecule activator Ryngo 1-23. Notably, Dyn2 also regulated turnover of TarP- and TmeA-associated actin networks, with disrupted Dyn2 function resulting in aberrant turnover dynamics, thus establishing the interdependent functional relationship between Dyn2 and the effectors TarP and TmeA.
Collapse
Affiliation(s)
- Matthew D Romero
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rey A Carabeo
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
4
|
Campellone KG, Lebek NM, King VL. Branching out in different directions: Emerging cellular functions for the Arp2/3 complex and WASP-family actin nucleation factors. Eur J Cell Biol 2023; 102:151301. [PMID: 36907023 DOI: 10.1016/j.ejcb.2023.151301] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/07/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The actin cytoskeleton impacts practically every function of a eukaryotic cell. Historically, the best-characterized cytoskeletal activities are in cell morphogenesis, motility, and division. The structural and dynamic properties of the actin cytoskeleton are also crucial for establishing, maintaining, and changing the organization of membrane-bound organelles and other intracellular structures. Such activities are important in nearly all animal cells and tissues, although distinct anatomical regions and physiological systems rely on different regulatory factors. Recent work indicates that the Arp2/3 complex, a broadly expressed actin nucleator, drives actin assembly during several intracellular stress response pathways. These newly described Arp2/3-mediated cytoskeletal rearrangements are coordinated by members of the Wiskott-Aldrich Syndrome Protein (WASP) family of actin nucleation-promoting factors. Thus, the Arp2/3 complex and WASP-family proteins are emerging as crucial players in cytoplasmic and nuclear activities including autophagy, apoptosis, chromatin dynamics, and DNA repair. Characterizations of the functions of the actin assembly machinery in such stress response mechanisms are advancing our understanding of both normal and pathogenic processes, and hold great promise for providing insights into organismal development and interventions for disease.
Collapse
Affiliation(s)
- Kenneth G Campellone
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA.
| | - Nadine M Lebek
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA
| | - Virginia L King
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA
| |
Collapse
|
5
|
Bieling P, Rottner K. From WRC to Arp2/3: Collective molecular mechanisms of branched actin network assembly. Curr Opin Cell Biol 2023; 80:102156. [PMID: 36868090 DOI: 10.1016/j.ceb.2023.102156] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 03/05/2023]
Abstract
Branched actin networks have emerged as major force-generating structures driving the protrusions in various distinct cell types and processes, ranging from lamellipodia operating in mesenchymal and epithelial cell migration or tails pushing intracellular pathogens and vesicles to developing spine heads on neurons. Many key molecular features are conserved among all those Arp2/3 complex-containing, branched actin networks. Here, we will review recent progress in our molecular understanding of the core biochemical machinery driving branched actin nucleation, from the generation of filament primers to Arp2/3 activator recruitment, regulation and turnover. Due to the wealth of information on distinct, Arp2/3 network-containing structures, we are largely focusing-in an exemplary fashion-on canonical lamellipodia of mesenchymal cells, which are regulated by Rac GTPases, their downstream effector WAVE Regulatory Complex and its target Arp2/3 complex. Novel insight additionally confirms that WAVE and Arp2/3 complexes regulate or are themselves tuned by additional prominent actin regulatory factors, including Ena/VASP family members and heterodimeric capping protein. Finally, we are considering recent insights into effects exerted by mechanical force, both at the branched network and individual actin regulator level.
Collapse
Affiliation(s)
- Peter Bieling
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.
| |
Collapse
|
6
|
Konopa A, Meier MA, Franz MJ, Bernardinelli E, Voegele AL, Atreya R, Ribback S, Roessler S, Aigner A, Singer K, Singer S, Sarikas A, Muehlich S. LPA receptor 1 (LPAR1) is a novel interaction partner of Filamin A that promotes Filamin A phosphorylation, MRTF-A transcriptional activity and oncogene-induced senescence. Oncogenesis 2022; 11:69. [PMID: 36577757 PMCID: PMC9797565 DOI: 10.1038/s41389-022-00445-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022] Open
Abstract
Myocardin-related transcription factors A and B (MRTFs) are coactivators of Serum Response Factor (SRF), which controls fundamental biological processes such as cell growth, migration, and differentiation. MRTF and SRF transcriptional activity play an important role in hepatocellular carcinoma (HCC) growth, which represents the second leading cause of cancer-related mortality in humans worldwide. We, therefore, searched for druggable targets in HCC that regulate MRTF/SRF transcriptional activity and can be exploited therapeutically for HCC therapy. We identified the G protein-coupled lysophosphatidic acid receptor 1 (LPAR1) as a novel interaction partner of MRTF-A and Filamin A (FLNA) using fluorescence resonance energy transfer-(FRET) and proximity ligation assay (PLA) in vitro in HCC cells and in vivo in organoids. We found that LPAR1 promotes FLNA phosphorylation at S2152 which enhances the complex formation of FLNA and MRTF-A, actin polymerization, and MRTF transcriptional activity. Pharmacological blockade or depletion of LPAR1 prevents FLNA phosphorylation and complex formation with MRTF-A, resulting in reduced MRTF/SRF target gene expression and oncogene-induced senescence. Thus, inhibition of the LPAR1-FLNA-MRTF-A interaction represents a promising strategy for HCC therapy.
Collapse
Affiliation(s)
- Andreas Konopa
- grid.5330.50000 0001 2107 3311Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Melanie A. Meier
- grid.5330.50000 0001 2107 3311Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Miriam J. Franz
- grid.5330.50000 0001 2107 3311Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Emanuele Bernardinelli
- grid.21604.310000 0004 0523 5263Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Anna-Lena Voegele
- grid.5330.50000 0001 2107 3311Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Raja Atreya
- grid.5330.50000 0001 2107 3311Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Silvia Ribback
- grid.5603.0Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Stephanie Roessler
- grid.7700.00000 0001 2190 4373Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Achim Aigner
- grid.9647.c0000 0004 7669 9786Rudolf Boehm Institute of Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Leipzig, Germany
| | - Kerstin Singer
- grid.411544.10000 0001 0196 8249Department for Pathology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Stephan Singer
- grid.411544.10000 0001 0196 8249Department for Pathology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Antonio Sarikas
- grid.21604.310000 0004 0523 5263Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Susanne Muehlich
- grid.5330.50000 0001 2107 3311Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
7
|
Bending over backwards: BAR proteins and the actin cytoskeleton in mammalian receptor-mediated endocytosis. Eur J Cell Biol 2022; 101:151257. [PMID: 35863103 DOI: 10.1016/j.ejcb.2022.151257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
The role of the actin cytoskeleton during receptor-mediated endocytosis (RME) has been well characterized in yeast for many years. Only more recently has the interplay between the actin cytoskeleton and RME been extensively explored in mammalian cells. These studies have revealed the central roles of BAR proteins in RME, and have demonstrated significant roles of BAR proteins in linking the actin cytoskeleton to this cellular process. The actin cytoskeleton generates and transmits mechanical force to promote the extension of receptor-bound endocytic vesicles into the cell. Many adaptor proteins link and regulate the actin cytoskeleton at the sites of endocytosis. This review will cover key effectors, adaptors and signalling molecules that help to facilitate the invagination of the cell membrane during receptor-mediated endocytosis, including recent insights gained on the roles of BAR proteins. The final part of this review will explore associations of alterations to genes encoding BAR proteins with cancer.
Collapse
|
8
|
Kramer DA, Piper HK, Chen B. WASP family proteins: Molecular mechanisms and implications in human disease. Eur J Cell Biol 2022; 101:151244. [PMID: 35667337 PMCID: PMC9357188 DOI: 10.1016/j.ejcb.2022.151244] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023] Open
Abstract
Proteins of the Wiskott-Aldrich syndrome protein (WASP) family play a central role in regulating actin cytoskeletal dynamics in a wide range of cellular processes. Genetic mutations or misregulation of these proteins are tightly associated with many diseases. The WASP-family proteins act by transmitting various upstream signals to their conserved WH2-Central-Acidic (WCA) peptide sequence at the C-terminus, which in turn binds to the Arp2/3 complex to stimulate the formation of branched actin networks at membranes. Despite this common feature, the regulatory mechanisms and cellular functions of distinct WASP-family proteins are very different. Here, we summarize and clarify our current understanding of WASP-family proteins and how disruption of their functions is related to human disease.
Collapse
Affiliation(s)
- Daniel A Kramer
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Hannah K Piper
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA.
| |
Collapse
|
9
|
Sun J, Zhong X, Fu X, Miller H, Lee P, Yu B, Liu C. The Actin Regulators Involved in the Function and Related Diseases of Lymphocytes. Front Immunol 2022; 13:799309. [PMID: 35371070 PMCID: PMC8965893 DOI: 10.3389/fimmu.2022.799309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Actin is an important cytoskeletal protein involved in signal transduction, cell structure and motility. Actin regulators include actin-monomer-binding proteins, Wiskott-Aldrich syndrome (WAS) family of proteins, nucleation proteins, actin filament polymerases and severing proteins. This group of proteins regulate the dynamic changes in actin assembly/disassembly, thus playing an important role in cell motility, intracellular transport, cell division and other basic cellular activities. Lymphocytes are important components of the human immune system, consisting of T-lymphocytes (T cells), B-lymphocytes (B cells) and natural killer cells (NK cells). Lymphocytes are indispensable for both innate and adaptive immunity and cannot function normally without various actin regulators. In this review, we first briefly introduce the structure and fundamental functions of a variety of well-known and newly discovered actin regulators, then we highlight the role of actin regulators in T cell, B cell and NK cell, and finally provide a landscape of various diseases associated with them. This review provides new directions in exploring actin regulators and promotes more precise and effective treatments for related diseases.
Collapse
Affiliation(s)
- Jianxuan Sun
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Zhong
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Fu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bing Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Abouelezz A, Almeida-Souza L. The mammalian endocytic cytoskeleton. Eur J Cell Biol 2022; 101:151222. [DOI: 10.1016/j.ejcb.2022.151222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/27/2022] Open
|
11
|
Brunetti RM, Kockelkoren G, Raghavan P, Bell GR, Britain D, Puri N, Collins SR, Leonetti MD, Stamou D, Weiner OD. WASP integrates substrate topology and cell polarity to guide neutrophil migration. J Cell Biol 2022; 221:e202104046. [PMID: 34964841 PMCID: PMC8719638 DOI: 10.1083/jcb.202104046] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/19/2021] [Accepted: 12/10/2021] [Indexed: 12/02/2022] Open
Abstract
To control their movement, cells need to coordinate actin assembly with the geometric features of their substrate. Here, we uncover a role for the actin regulator WASP in the 3D migration of neutrophils. We show that WASP responds to substrate topology by enriching to sites of inward, substrate-induced membrane deformation. Superresolution imaging reveals that WASP preferentially enriches to the necks of these substrate-induced invaginations, a distribution that could support substrate pinching. WASP facilitates recruitment of the Arp2/3 complex to these sites, stimulating local actin assembly that couples substrate features with the cytoskeleton. Surprisingly, WASP only enriches to membrane deformations in the front half of the cell, within a permissive zone set by WASP's front-biased regulator Cdc42. While WASP KO cells exhibit relatively normal migration on flat substrates, they are defective at topology-directed migration. Our data suggest that WASP integrates substrate topology with cell polarity by selectively polymerizing actin around substrate-induced membrane deformations in the front half of the cell.
Collapse
Affiliation(s)
- Rachel M. Brunetti
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Center for Geometrically Engineered Cellular Membranes, University of California, San Francisco, San Francisco, CA
| | - Gabriele Kockelkoren
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- Center for Geometrically Engineered Cellular Membranes, University of Copenhagen, Copenhagen, Denmark
| | - Preethi Raghavan
- University of California, Berkeley–University of California, San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| | - George R.R. Bell
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA
| | - Derek Britain
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Center for Geometrically Engineered Cellular Membranes, University of California, San Francisco, San Francisco, CA
| | - Natasha Puri
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Sean R. Collins
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA
| | | | - Dimitrios Stamou
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- Center for Geometrically Engineered Cellular Membranes, University of Copenhagen, Copenhagen, Denmark
| | - Orion D. Weiner
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Center for Geometrically Engineered Cellular Membranes, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
12
|
Pipathsouk A, Brunetti RM, Town JP, Graziano BR, Breuer A, Pellett PA, Marchuk K, Tran NHT, Krummel MF, Stamou D, Weiner OD. The WAVE complex associates with sites of saddle membrane curvature. J Cell Biol 2021; 220:e202003086. [PMID: 34096975 PMCID: PMC8185649 DOI: 10.1083/jcb.202003086] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/13/2021] [Accepted: 05/18/2021] [Indexed: 12/30/2022] Open
Abstract
How local interactions of actin regulators yield large-scale organization of cell shape and movement is not well understood. Here we investigate how the WAVE complex organizes sheet-like lamellipodia. Using super-resolution microscopy, we find that the WAVE complex forms actin-independent 230-nm-wide rings that localize to regions of saddle membrane curvature. This pattern of enrichment could explain several emergent cell behaviors, such as expanding and self-straightening lamellipodia and the ability of endothelial cells to recognize and seal transcellular holes. The WAVE complex recruits IRSp53 to sites of saddle curvature but does not depend on IRSp53 for its own localization. Although the WAVE complex stimulates actin nucleation via the Arp2/3 complex, sheet-like protrusions are still observed in ARP2-null, but not WAVE complex-null, cells. Therefore, the WAVE complex has additional roles in cell morphogenesis beyond Arp2/3 complex activation. Our work defines organizing principles of the WAVE complex lamellipodial template and suggests how feedback between cell shape and actin regulators instructs cell morphogenesis.
Collapse
Affiliation(s)
- Anne Pipathsouk
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Rachel M. Brunetti
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Jason P. Town
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Brian R. Graziano
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Artù Breuer
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | | | - Kyle Marchuk
- Department of Pathology and Biological Imaging Development CoLab, University of California, San Francisco, San Francisco, CA
| | - Ngoc-Han T. Tran
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Matthew F. Krummel
- Department of Pathology and Biological Imaging Development CoLab, University of California, San Francisco, San Francisco, CA
| | - Dimitrios Stamou
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Orion D. Weiner
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
13
|
Filić V, Mijanović L, Putar D, Talajić A, Ćetković H, Weber I. Regulation of the Actin Cytoskeleton via Rho GTPase Signalling in Dictyostelium and Mammalian Cells: A Parallel Slalom. Cells 2021; 10:1592. [PMID: 34202767 PMCID: PMC8305917 DOI: 10.3390/cells10071592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 01/15/2023] Open
Abstract
Both Dictyostelium amoebae and mammalian cells are endowed with an elaborate actin cytoskeleton that enables them to perform a multitude of tasks essential for survival. Although these organisms diverged more than a billion years ago, their cells share the capability of chemotactic migration, large-scale endocytosis, binary division effected by actomyosin contraction, and various types of adhesions to other cells and to the extracellular environment. The composition and dynamics of the transient actin-based structures that are engaged in these processes are also astonishingly similar in these evolutionary distant organisms. The question arises whether this remarkable resemblance in the cellular motility hardware is accompanied by a similar correspondence in matching software, the signalling networks that govern the assembly of the actin cytoskeleton. Small GTPases from the Rho family play pivotal roles in the control of the actin cytoskeleton dynamics. Indicatively, Dictyostelium matches mammals in the number of these proteins. We give an overview of the Rho signalling pathways that regulate the actin dynamics in Dictyostelium and compare them with similar signalling networks in mammals. We also provide a phylogeny of Rho GTPases in Amoebozoa, which shows a variability of the Rho inventories across different clades found also in Metazoa.
Collapse
Affiliation(s)
- Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| | | | | | | | | | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| |
Collapse
|
14
|
Chakrabarti R, Lee M, Higgs HN. Multiple roles for actin in secretory and endocytic pathways. Curr Biol 2021; 31:R603-R618. [PMID: 34033793 DOI: 10.1016/j.cub.2021.03.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Actin filaments play multiple roles in the secretory pathway and in endosome dynamics in mammals, including maintenance of Golgi structure, release of membrane cargo from the trans-Golgi network (TGN), endocytosis, and endosomal sorting dynamics. In addition, TGN carrier transport and endocytosis both occur by multiple mechanisms in mammals. Actin likely plays a role in at least four mammalian endocytic pathways, five pathways for membrane release from the TGN, and three processes involving endosomes. Also, the mammalian Golgi structure is highly dynamic, and actin is likely important for these dynamics. One challenge for many of these processes is the need to deal with other membrane-associated structures, such as the cortical actin network at the plasma membrane or the matrix that surrounds the Golgi. Arp2/3 complex is a major actin assembly factor in most of the processes mentioned, but roles for formins and tandem WH2-motif-containing assembly factors are being elucidated and are anticipated to grow with further study. The specific role for actin has not been defined for most of these processes, but is likely to involve the generation of force for membrane dynamics, either by actin polymerization itself or by myosin motor activity. Defining these processes mechanistically is necessary for understanding membrane dynamics in general, as well as pathways that utilize these processes, such as autophagy.
Collapse
Affiliation(s)
- Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Miriam Lee
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
15
|
Zang Y, Chaudhari K, Bashaw GJ. New insights into the molecular mechanisms of axon guidance receptor regulation and signaling. Curr Top Dev Biol 2021; 142:147-196. [PMID: 33706917 DOI: 10.1016/bs.ctdb.2020.11.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As the nervous system develops, newly differentiated neurons need to extend their axons toward their synaptic targets to form functional neural circuits. During this highly dynamic process of axon pathfinding, guidance receptors expressed at the tips of motile axons interact with soluble guidance cues or membrane tethered molecules present in the environment to be either attracted toward or repelled away from the source of these cues. As competing cues are often present at the same location and during the same developmental period, guidance receptors need to be both spatially and temporally regulated in order for the navigating axons to make appropriate guidance decisions. This regulation is exerted by a diverse array of molecular mechanisms that have come into focus over the past several decades and these mechanisms ensure that the correct complement of surface receptors is present on the growth cone, a fan-shaped expansion at the tip of the axon. This dynamic, highly motile structure is defined by a lamellipodial network lining the periphery of the growth cone interspersed with finger-like filopodial projections that serve to explore the surrounding environment. Once axon guidance receptors are deployed at the right place and time at the growth cone surface, they respond to their respective ligands by initiating a complex set of signaling events that serve to rearrange the growth cone membrane and the actin and microtubule cytoskeleton to affect axon growth and guidance. In this review, we highlight recent advances that shed light on the rich complexity of mechanisms that regulate axon guidance receptor distribution, activation and downstream signaling.
Collapse
Affiliation(s)
- Yixin Zang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Karina Chaudhari
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
16
|
Alexandrova AY, Chikina AS, Svitkina TM. Actin cytoskeleton in mesenchymal-to-amoeboid transition of cancer cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:197-256. [PMID: 33066874 DOI: 10.1016/bs.ircmb.2020.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During development of metastasis, tumor cells migrate through different tissues and encounter different extracellular matrices. An ability of cells to adapt mechanisms of their migration to these diverse environmental conditions, called migration plasticity, gives tumor cells an advantage over normal cells for long distant dissemination. Different modes of individual cell motility-mesenchymal and amoeboid-are driven by different molecular mechanisms, which largely depend on functions of the actin cytoskeleton that can be modulated in a wide range by cellular signaling mechanisms in response to environmental conditions. Various triggers can switch one motility mode to another, but regulations of these transitions are incompletely understood. However, understanding of the mechanisms driving migration plasticity is instrumental for finding anti-cancer treatment capable to stop cancer metastasis. In this review, we discuss cytoskeletal features, which allow the individually migrating cells to switch between mesenchymal and amoeboid migrating modes, called mesenchymal-to-amoeboid transition (MAT). We briefly describe main characteristics of different cell migration modes, and then discuss the triggering factors that initiate MAT with special attention to cytoskeletal features essential for migration plasticity.
Collapse
Affiliation(s)
- Antonina Y Alexandrova
- Laboratory of Mechanisms of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia.
| | - Aleksandra S Chikina
- Cell Migration and Invasion and Spatio-Temporal Regulation of Antigen Presentation teams, UMR144/U932 Institut Curie, Paris, France
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
17
|
Hidalgo-Sastre A, Desztics J, Dantes Z, Schulte K, Ensarioglu HK, Bassey-Archibong B, Öllinger R, Engleiter T, Rayner L, Einwächter H, Daniel JM, Altaee ASA, Steiger K, Lesina M, Rad R, Reichert M, von Figura G, Siveke JT, Schmid RM, Lubeseder-Martellato C. Loss of Wasl improves pancreatic cancer outcome. JCI Insight 2020; 5:127275. [PMID: 32434991 DOI: 10.1172/jci.insight.127275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/22/2020] [Indexed: 12/20/2022] Open
Abstract
Several studies have suggested an oncogenic role for the neural Wiskott-Aldrich syndrome protein (N-WASP, encoded by the Wasl gene), but thus far, little is known about its function in pancreatic ductal adenocarcinoma (PDAC). In this study, we performed in silico analysis of WASL expression in PDAC patients and found a correlation between low WASL expression and prolonged survival. To clarify the role of Wasl in pancreatic carcinogenesis, we used 2 oncogenic Kras-based PDAC mouse models with pancreas-specific Wasl deletion. In line with human data, both mouse models had an increased survival benefit due to either impaired tumor development in the presence of the tumor suppressor Trp53 or the delayed tumor progression and senescent phenotype upon genetic ablation of Trp53. Mechanistically, loss of Wasl resulted in cell-autonomous senescence through displacement of the N-WASP binding partners WASP-interacting protein (WIP) and p120ctn; vesicular accumulation of GSK3β, as well as YAP1 and phosphorylated β-catenin, which are components of the destruction complex; and upregulation of Cdkn1a(p21), a master regulator of senescence. Our findings, thus, indicate that Wasl functions in an oncogenic manner in PDAC by promoting the deregulation of the p120-catenin/β-catenin/p21 pathway. Therefore, strategies to reduce N-WASP activity might improve the survival outcomes of PDAC patients.
Collapse
Affiliation(s)
- Ana Hidalgo-Sastre
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Germany
| | - Judit Desztics
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Germany
| | - Zahra Dantes
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Germany
| | - Katharina Schulte
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Germany
| | - Hilal Kabadayi Ensarioglu
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Germany.,Department of Histology and Embryology, Manisa Celal Bayar University, Turkey
| | | | - Rupert Öllinger
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Germany.,Institute of Molecular Oncology and Functional Genomics and
| | - Thomas Engleiter
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Germany.,Institute of Molecular Oncology and Functional Genomics and
| | - Lyndsay Rayner
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Henrik Einwächter
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Germany
| | - Juliet M Daniel
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | - Katia Steiger
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Marina Lesina
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Germany
| | - Roland Rad
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Germany.,Institute of Molecular Oncology and Functional Genomics and
| | - Maximilian Reichert
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Germany
| | - Guido von Figura
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Germany
| | - Jens T Siveke
- Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK) partner site Essen, Essen, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roland M Schmid
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK) partner site Essen, Essen, Germany
| | | |
Collapse
|
18
|
Łyszkiewicz M, Ziętara N, Frey L, Pannicke U, Stern M, Liu Y, Fan Y, Puchałka J, Hollizeck S, Somekh I, Rohlfs M, Yilmaz T, Ünal E, Karakukcu M, Patiroğlu T, Kellerer C, Karasu E, Sykora KW, Lev A, Simon A, Somech R, Roesler J, Hoenig M, Keppler OT, Schwarz K, Klein C. Human FCHO1 deficiency reveals role for clathrin-mediated endocytosis in development and function of T cells. Nat Commun 2020; 11:1031. [PMID: 32098969 PMCID: PMC7042371 DOI: 10.1038/s41467-020-14809-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/23/2020] [Indexed: 01/05/2023] Open
Abstract
Clathrin-mediated endocytosis (CME) is critical for internalisation of molecules across cell membranes. The FCH domain only 1 (FCHO1) protein is key molecule involved in the early stages of CME formation. The consequences of mutations in FCHO1 in humans were unknown. We identify ten unrelated patients with variable T and B cell lymphopenia, who are homozygous for six distinct mutations in FCHO1. We demonstrate that these mutations either lead to mislocalisation of the protein or prevent its interaction with binding partners. Live-cell imaging of cells expressing mutant variants of FCHO1 provide evidence of impaired formation of clathrin coated pits (CCP). Patient T cells are unresponsive to T cell receptor (TCR) triggering. Internalisation of the TCR receptor is severely perturbed in FCHO1-deficient Jurkat T cells but can be rescued by expression of wild-type FCHO1. Thus, we discovered a previously unrecognised critical role of FCHO1 and CME during T-cell development and function in humans.
Collapse
Affiliation(s)
- Marcin Łyszkiewicz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany.
- Institute for Immunology, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Munich, Germany.
| | - Natalia Ziętara
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
- Institute for Immunology, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Munich, Germany
| | - Laura Frey
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Ulrich Pannicke
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Marcel Stern
- Max von Pettenkofer Institute, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Yanshan Liu
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Yanxin Fan
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Jacek Puchałka
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Sebastian Hollizeck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Ido Somekh
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Meino Rohlfs
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Tuğba Yilmaz
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Erciyes University, Kayseri, Turkey
| | - Ekrem Ünal
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Erciyes University, Kayseri, Turkey
| | - Musa Karakukcu
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Erciyes University, Kayseri, Turkey
| | - Türkan Patiroğlu
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Erciyes University, Kayseri, Turkey
- Department of Pediatrics, Division of Pediatric Immunology, Erciyes University, Kayseri, Turkey
| | | | - Ebru Karasu
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Karl-Walter Sykora
- Department of Pediatric Hematology/Oncology, Hannover Medical School, Hannover, Germany
| | - Atar Lev
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine Tel Aviv University, Tel Aviv, Israel
| | - Amos Simon
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine Tel Aviv University, Tel Aviv, Israel
| | - Raz Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine Tel Aviv University, Tel Aviv, Israel
| | - Joachim Roesler
- Department of Pediatrics, Carl Gustav Carus Technical University Dresden, Dresden, Germany
| | - Manfred Hoenig
- Department of Pediatrics, University Medical Centre Ulm, Ulm, Germany
| | - Oliver T Keppler
- Max von Pettenkofer Institute, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg, Hessen, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany.
| |
Collapse
|
19
|
Enteropathogenic Escherichia coli (EPEC) Recruitment of PAR Polarity Protein Atypical PKCζ to Pedestals and Cell-Cell Contacts Precedes Disruption of Tight Junctions in Intestinal Epithelial Cells. Int J Mol Sci 2020; 21:ijms21020527. [PMID: 31947656 PMCID: PMC7014222 DOI: 10.3390/ijms21020527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/26/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) uses a type three secretion system to inject effector proteins into host intestinal epithelial cells, causing diarrhea. EPEC induces the formation of pedestals underlying attached bacteria, disrupts tight junction (TJ) structure and function, and alters apico-basal polarity by redistributing the polarity proteins Crb3 and Pals1, although the mechanisms are unknown. Here we investigate the temporal relationship of PAR polarity complex and TJ disruption following EPEC infection. EPEC recruits active aPKCζ, a PAR polarity protein, to actin within pedestals and at the plasma membrane prior to disrupting TJ. The EPEC effector EspF binds the endocytic protein sorting nexin 9 (SNX9). This interaction impacts actin pedestal organization, recruitment of active aPKCζ to actin at cell–cell borders, endocytosis of JAM-A S285 and occludin, and TJ barrier function. Collectively, data presented herein support the hypothesis that EPEC-induced perturbation of TJ is a downstream effect of disruption of the PAR complex and that EspF binding to SNX9 contributes to this phenotype. aPKCζ phosphorylates polarity and TJ proteins and participates in actin dynamics. Therefore, the early recruitment of aPKCζ to EPEC pedestals and increased interaction with actin at the membrane may destabilize polarity complexes ultimately resulting in perturbation of TJ.
Collapse
|
20
|
Botté A, Potier MC. Focusing on cellular biomarkers: The endo-lysosomal pathway in Down syndrome. PROGRESS IN BRAIN RESEARCH 2019; 251:209-243. [PMID: 32057308 DOI: 10.1016/bs.pbr.2019.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Down syndrome (DS) is the most frequent chromosomal disorder. It is caused by the triplication of human chromosome 21, leading to increased dosage of a variety of genes including APP (Amyloid Precursor Protein). Mainly for this reason, individuals with DS are at high risk to develop Alzheimer's disease (AD). Extensive literature identified various morphological and molecular abnormalities in the endo-lysosomal pathway both in DS and AD. Most studies in this field investigated the causative role of APP (Amyloid Precursor Protein) in endo-lysosomal dysfunctions, thus linking phenotypes observed in DS and AD. In DS context, several lines of evidence and emerging hypotheses suggest that other molecular players and pathways may be implicated in these complex phenotypes. In this review, we outline the normal functioning of endosomal trafficking and summarize the research on endo-lysosomal dysfunction in DS in light of AD findings. We emphasize the role of genes of chromosome 21 implicated in endocytosis to explain endosomal abnormalities and set the limitations and perspectives of models used to explore endo-lysosomal dysfunction in DS and find new biomarkers. The review highlights the complexity of endo-lysosomal dysfunction in DS and suggests directions for future research in the field.
Collapse
Affiliation(s)
- Alexandra Botté
- Institut du Cerveau et de la Moelle épinière (ICM), CNRS UMR7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Marie-Claude Potier
- Institut du Cerveau et de la Moelle épinière (ICM), CNRS UMR7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
21
|
Juin A, Spence HJ, Martin KJ, McGhee E, Neilson M, Cutiongco MFA, Gadegaard N, Mackay G, Fort L, Lilla S, Kalna G, Thomason P, Koh YWH, Norman JC, Insall RH, Machesky LM. N-WASP Control of LPAR1 Trafficking Establishes Response to Self-Generated LPA Gradients to Promote Pancreatic Cancer Cell Metastasis. Dev Cell 2019; 51:431-445.e7. [PMID: 31668663 PMCID: PMC6863394 DOI: 10.1016/j.devcel.2019.09.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 07/23/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma is one of the most invasive and metastatic cancers and has a dismal 5-year survival rate. We show that N-WASP drives pancreatic cancer metastasis, with roles in both chemotaxis and matrix remodeling. lysophosphatidic acid, a signaling lipid abundant in blood and ascites fluid, is both a mitogen and chemoattractant for cancer cells. Pancreatic cancer cells break lysophosphatidic acid down as they respond to it, setting up a self-generated gradient driving tumor egress. N-WASP-depleted cells do not recognize lysophosphatidic acid gradients, leading to altered RhoA activation, decreased contractility and traction forces, and reduced metastasis. We describe a signaling loop whereby N-WASP and the endocytic adapter SNX18 promote lysophosphatidic acid-induced RhoA-mediated contractility and force generation by controlling lysophosphatidic acid receptor recycling and preventing degradation. This chemotactic loop drives collagen remodeling, tumor invasion, and metastasis and could be an important target against pancreatic cancer spread.
Collapse
Affiliation(s)
| | | | | | | | | | - Marie F A Cutiongco
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| | - Nikolaj Gadegaard
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| | | | - Loic Fort
- CRUK Beatson Institute, Glasgow G61 1BD, UK
| | | | | | | | | | - Jim C Norman
- CRUK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - Robert H Insall
- CRUK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - Laura M Machesky
- CRUK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK.
| |
Collapse
|
22
|
The regulators of BCR signaling during B cell activation. BLOOD SCIENCE 2019; 1:119-129. [PMID: 35402811 PMCID: PMC8975005 DOI: 10.1097/bs9.0000000000000026] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/25/2019] [Indexed: 11/26/2022] Open
Abstract
B lymphocytes produce antibodies under the stimulation of specific antigens, thereby exerting an immune effect. B cells identify antigens by their surface B cell receptor (BCR), which upon stimulation, directs the cell to activate and differentiate into antibody generating plasma cells. Activation of B cells via their BCRs involves signaling pathways that are tightly controlled by various regulators. In this review, we will discuss three major BCR mediated signaling pathways (the PLC-γ2 pathway, PI3K pathway and MAPK pathway) and related regulators, which were roughly divided into positive, negative and mutual-balanced regulators, and the specific regulators of the specific signaling pathway based on regulatory effects.
Collapse
|
23
|
Aung KT, Yoshioka K, Aki S, Ishimaru K, Takuwa N, Takuwa Y. The class II phosphoinositide 3-kinases PI3K-C2α and PI3K-C2β differentially regulate clathrin-dependent pinocytosis in human vascular endothelial cells. J Physiol Sci 2019; 69:263-280. [PMID: 30374841 PMCID: PMC10717547 DOI: 10.1007/s12576-018-0644-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/13/2018] [Indexed: 01/18/2023]
Abstract
Pinocytosis is an important fundamental cellular process that is used by the cell to transport fluid and solutes. Phosphoinositide 3-kinases (PI3Ks) regulate a diverse array of dynamic membrane events. However, it is not well-understood which PI3K isoforms are involved in specific mechanisms of pinocytosis. We performed knockdown studies of endogenous PI3K isoforms and clathrin heavy chain (CHC) mediated by small interfering RNA (siRNA). The results demonstrated that the class II PI3K PI3K-C2α and PI3K-C2β, but not the class I or III PI3K, were required for pinocytosis, based on an evaluation of fluorescein-5-isothiocyanate (FITC)-dextran uptake in endothelial cells. Pinocytosis was partially dependent on both clathrin and dynamin, and both PI3K-C2α and PI3K-C2β were required for clathrin-mediated-but not clathrin-non-mediated-FITC-dextran uptake at the step leading up to its delivery to early endosomes. Both PI3K-C2α and PI3K-C2β were co-localized with clathrin-coated pits and vesicles. However, PI3K-C2β, but not PI3K-C2α, was highly co-localized with actin filament-associated clathrin-coated structures and required for actin filament formation at the clathrin-coated structures. These results indicate that PI3K-C2α and PI3K-C2β play differential, indispensable roles in clathrin-mediated pinocytosis.
Collapse
Affiliation(s)
- Khin Thuzar Aung
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, 920-8640, Japan
| | - Kazuaki Yoshioka
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, 920-8640, Japan
| | - Sho Aki
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, 920-8640, Japan
| | - Kazuhiro Ishimaru
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, 920-8640, Japan
| | - Noriko Takuwa
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, 920-8640, Japan
- Department of Health Science, Ishikawa Prefectural University, Kahoku, Ishikawa, 929-1210, Japan
| | - Yoh Takuwa
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, 920-8640, Japan.
| |
Collapse
|
24
|
Rottner K, Faix J, Bogdan S, Linder S, Kerkhoff E. Actin assembly mechanisms at a glance. J Cell Sci 2018; 130:3427-3435. [PMID: 29032357 DOI: 10.1242/jcs.206433] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The actin cytoskeleton and associated motor proteins provide the driving forces for establishing the astonishing morphological diversity and dynamics of mammalian cells. Aside from functions in protruding and contracting cell membranes for motility, differentiation or cell division, the actin cytoskeleton provides forces to shape and move intracellular membranes of organelles and vesicles. To establish the many different actin assembly functions required in time and space, actin nucleators are targeted to specific subcellular compartments, thereby restricting the generation of specific actin filament structures to those sites. Recent research has revealed that targeting and activation of actin filament nucleators, elongators and myosin motors are tightly coordinated by conserved protein complexes to orchestrate force generation. In this Cell Science at a Glance article and the accompanying poster, we summarize and discuss the current knowledge on the corresponding protein complexes and their modes of action in actin nucleation, elongation and force generation.
Collapse
Affiliation(s)
- Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Sven Bogdan
- Institute for Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Eugen Kerkhoff
- Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
25
|
Actin Cross-Linking Toxin Is a Universal Inhibitor of Tandem-Organized and Oligomeric G-Actin Binding Proteins. Curr Biol 2018; 28:1536-1547.e9. [PMID: 29731300 DOI: 10.1016/j.cub.2018.03.065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/06/2018] [Accepted: 03/28/2018] [Indexed: 11/20/2022]
Abstract
Delivery of bacterial toxins to host cells is hindered by host protective barriers. This obstruction dictates a remarkable efficiency of toxins, a single copy of which may kill a host cell. Efficiency of actin-targeting toxins is further hampered by an overwhelming abundance of their target. The actin cross-linking domain (ACD) toxins of Vibrio species and related bacterial genera catalyze the formation of covalently cross-linked actin oligomers. Recently, we reported that the ACD toxicity can be amplified via a multivalent inhibitory association of actin oligomers with actin assembly factors formins, suggesting that the oligomers may act as secondary toxins. Importantly, many proteins involved in nucleation, elongation, severing, branching, and bundling of actin filaments contain G-actin-binding Wiskott-Aldrich syndrome protein (WASP)-homology motifs 2 (WH2) organized in tandem and therefore may act as a multivalent platform for high-affinity interaction with the ACD-cross-linked actin oligomers. Using live-cell single-molecule speckle (SiMS) microscopy, total internal reflection fluorescence (TIRF) microscopy, and actin polymerization assays, we show that, in addition to formins, the oligomers bind with high affinity and potently inhibit several families of actin assembly factors: Ena/vasodilator-stimulated phosphorprotein (VASP); Spire; and the Arp2/3 complex, both in vitro and in live cells. As a result, ACD blocks the actin retrograde flow and membrane dynamics and disrupts association of Ena/VASP with adhesion complexes. This study defines ACD as a universal inhibitor of tandem-organized G-actin binding proteins that overcomes the abundance of actin by redirecting the toxicity cascade toward less abundant targets and thus leading to profound disorganization of the actin cytoskeleton and disruption of actin-dependent cellular functions.
Collapse
|
26
|
Molinie N, Gautreau A. The Arp2/3 Regulatory System and Its Deregulation in Cancer. Physiol Rev 2017; 98:215-238. [PMID: 29212790 DOI: 10.1152/physrev.00006.2017] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 02/07/2023] Open
Abstract
The Arp2/3 complex is an evolutionary conserved molecular machine that generates branched actin networks. When activated, the Arp2/3 complex contributes the actin branched junction and thus cross-links the polymerizing actin filaments in a network that exerts a pushing force. The different activators initiate branched actin networks at the cytosolic surface of different cellular membranes to promote their protrusion, movement, or scission in cell migration and membrane traffic. Here we review the structure, function, and regulation of all the direct regulators of the Arp2/3 complex that induce or inhibit the initiation of a branched actin network and that controls the stability of its branched junctions. Our goal is to present recent findings concerning novel inhibitory proteins or the regulation of the actin branched junction and place these in the context of what was previously known to provide a global overview of how the Arp2/3 complex is regulated in human cells. We focus on the human set of Arp2/3 regulators to compare normal Arp2/3 regulation in untransformed cells to the deregulation of the Arp2/3 system observed in patients affected by various cancers. In many cases, these deregulations promote cancer progression and have a direct impact on patient survival.
Collapse
Affiliation(s)
- Nicolas Molinie
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR 7654, Palaiseau, France; and Moscow Institute of Physics and Technology, Life Sciences Center, Dolgoprudny, Russia
| | - Alexis Gautreau
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR 7654, Palaiseau, France; and Moscow Institute of Physics and Technology, Life Sciences Center, Dolgoprudny, Russia
| |
Collapse
|
27
|
Tapia R, Kralicek SE, Hecht GA. EPEC effector EspF promotes Crumbs3 endocytosis and disrupts epithelial cell polarity. Cell Microbiol 2017; 19. [PMID: 28618099 DOI: 10.1111/cmi.12757] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/19/2017] [Accepted: 06/09/2017] [Indexed: 12/12/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) uses a type III secretion system to inject effector proteins into host intestinal epithelial cells causing diarrhoea. EPEC infection redistributes basolateral proteins β1-integrin and Na+ /K+ ATPase to the apical membrane of host cells. The Crumbs (Crb) polarity complex (Crb3/Pals1/Patj) is essential for epithelial cell polarisation and tight junction (TJ) assembly. Here, we demonstrate that EPEC displaces Crb3 and Pals1 from the apical membrane to the cytoplasm of cultured intestinal epithelial cells and colonocytes of infected mice. In vitro studies show that EspF, but not Map, alters Crb3, whereas both effectors modulate Pals1. EspF perturbs polarity formation in cyst morphogenesis assays and induces endocytosis and apical redistribution of Na+ /K+ ATPase. EspF binds to sorting nexin 9 (SNX9) causing membrane remodelling in host cells. Infection with ΔespF/pespFD3, a mutant strain that ablates EspF binding to SNX9, or inhibition of dynamin, attenuates Crb3 endocytosis caused by EPEC. In addition, infection with ΔespF/pespFD3 has no impact on Na+ /K+ ATPase endocytosis. These data support the hypothesis that EPEC perturbs apical-basal polarity in an EspF-dependent manner, which would contribute to EPEC-associated diarrhoea by disruption of TJ and altering the crucial positioning of membrane transporters involved in the absorption of ions and solutes.
Collapse
Affiliation(s)
- Rocio Tapia
- Department of Medicine and Division of Gastroenterology and Nutrition, Loyola University Chicago, Chicago, IL, USA
| | - Sarah E Kralicek
- Department of Medicine and Division of Gastroenterology and Nutrition, Loyola University Chicago, Chicago, IL, USA
| | - Gail A Hecht
- Department of Medicine and Division of Gastroenterology and Nutrition, Loyola University Chicago, Chicago, IL, USA.,Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA.,Edward Hines Jr. VA Hospital, Hines, IL, USA
| |
Collapse
|
28
|
Cloin BMC, De Zitter E, Salas D, Gielen V, Folkers GE, Mikhaylova M, Bergeler M, Krajnik B, Harvey J, Hoogenraad CC, Van Meervelt L, Dedecker P, Kapitein LC. Efficient switching of mCherry fluorescence using chemical caging. Proc Natl Acad Sci U S A 2017; 114:7013-7018. [PMID: 28630286 PMCID: PMC5502588 DOI: 10.1073/pnas.1617280114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Fluorophores with dynamic or controllable fluorescence emission have become essential tools for advanced imaging, such as superresolution imaging. These applications have driven the continuing development of photoactivatable or photoconvertible labels, including genetically encoded fluorescent proteins. These new probes work well but require the introduction of new labels that may interfere with the proper functioning of existing constructs and therefore require extensive functional characterization. In this work we show that the widely used red fluorescent protein mCherry can be brought to a purely chemically induced blue-fluorescent state by incubation with β-mercaptoethanol (βME). The molecules can be recovered to the red fluorescent state by washing out the βME or through irradiation with violet light, with up to 80% total recovery. We show that this can be used to perform single-molecule localization microscopy (SMLM) on cells expressing mCherry, which renders this approach applicable to a very wide range of existing constructs. We performed a detailed investigation of the mechanism underlying these dynamics, using X-ray crystallography, NMR spectroscopy, and ab initio quantum-mechanical calculations. We find that the βME-induced fluorescence quenching of mCherry occurs both via the direct addition of βME to the chromophore and through βME-mediated reduction of the chromophore. These results not only offer a strategy to expand SMLM imaging to a broad range of available biological models, but also present unique insights into the chemistry and functioning of a highly important class of fluorophores.
Collapse
Affiliation(s)
- Bas M C Cloin
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Elke De Zitter
- Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, 3001 Heverlee, Belgium
| | - Desiree Salas
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Vincent Gielen
- Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, 3001 Heverlee, Belgium
| | - Gert E Folkers
- NMR Spectroscopy, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Marina Mikhaylova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Maike Bergeler
- Quantum Chemistry and Physical Chemistry, Department of Chemistry, KU Leuven, 3001 Heverlee, Belgium
| | - Bartosz Krajnik
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, 3001 Heverlee, Belgium
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Jeremy Harvey
- Quantum Chemistry and Physical Chemistry, Department of Chemistry, KU Leuven, 3001 Heverlee, Belgium
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Luc Van Meervelt
- Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, 3001 Heverlee, Belgium
| | - Peter Dedecker
- Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, 3001 Heverlee, Belgium;
| | - Lukas C Kapitein
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands;
| |
Collapse
|
29
|
Saito M, Otsu W, Hsu KS, Chuang JZ, Yanagisawa T, Shieh V, Kaitsuka T, Wei FY, Tomizawa K, Sung CH. Tctex-1 controls ciliary resorption by regulating branched actin polymerization and endocytosis. EMBO Rep 2017; 18:1460-1472. [PMID: 28607034 DOI: 10.15252/embr.201744204] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/13/2017] [Accepted: 05/16/2017] [Indexed: 11/09/2022] Open
Abstract
The primary cilium is a plasma membrane-protruding sensory organelle that undergoes regulated assembly and resorption. While the assembly process has been studied extensively, the cellular machinery that governs ciliary resorption is less well understood. Previous studies showed that the ciliary pocket membrane is an actin-rich, endocytosis-active periciliary subdomain. Furthermore, Tctex-1, originally identified as a cytoplasmic dynein light chain, has a dynein-independent role in ciliary resorption upon phosphorylation at Thr94. Here, we show that the remodeling and endocytosis of the ciliary pocket membrane are accelerated during ciliary resorption. This process depends on phospho(T94)Tctex-1, actin, and dynamin. Mechanistically, Tctex-1 physically and functionally interacts with the actin dynamics regulators annexin A2, Arp2/3 complex, and Cdc42. Phospho(T94)Tctex-1 is required for Cdc42 activation before the onset of ciliary resorption. Moreover, inhibiting clathrin-dependent endocytosis or suppressing Rab5GTPase on early endosomes effectively abrogates ciliary resorption. Taken together with the epistasis functional assays, our results support a model in which phospho(T94)Tctex-1-regulated actin polymerization and periciliary endocytosis play an active role in orchestrating the initial phase of ciliary resorption.
Collapse
Affiliation(s)
- Masaki Saito
- Department of Molecular Pharmacology, Graduate School of Medicine, Tohoku University, Aoba-ku Sendai, Japan .,Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku Sendai, Japan.,Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY, USA
| | - Wataru Otsu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY, USA
| | - Kuo-Shun Hsu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY, USA
| | - Jen-Zen Chuang
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY, USA
| | - Teruyuki Yanagisawa
- Department of Molecular Pharmacology, Graduate School of Medicine, Tohoku University, Aoba-ku Sendai, Japan
| | - Vincent Shieh
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY, USA
| | - Taku Kaitsuka
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ching-Hwa Sung
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY, USA .,Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
30
|
Bagnato P, Castagnino A, Cortese K, Bono M, Grasso S, Bellese G, Daniele T, Lundmark R, Defilippi P, Castagnola P, Tacchetti C. Cooperative but distinct early co-signaling events originate from ERBB2 and ERBB1 receptors upon trastuzumab treatment in breast cancer cells. Oncotarget 2017; 8:60109-60122. [PMID: 28947957 PMCID: PMC5601125 DOI: 10.18632/oncotarget.17686] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/03/2017] [Indexed: 12/19/2022] Open
Abstract
ERBB2 receptor belongs to the ERBB tyrosine kinase receptor family. At variance to the other family members, ERBB2 is a constitutively active orphan receptor. Upon ligand binding and activation, ERBB receptors form homo- or hetero-dimers with the other family members, including ERBB2, promoting an intracellular signaling cascade. ERBB2 is the preferred dimerization partner and ERBB2 heterodimers signaling is stronger and longer acting compared to heterodimers between other ERBB members. The specific contribution of ERBB2 in heterodimer signaling is still undefined. Here we report the formation of circular dorsal ruffles (CDRs) upon treatment of the ERBB2-overexpressing breast cancer cell lines SK-BR-3 and ZR751 with Trastuzumab, a therapeutic humanized monoclonal antibody directed against ERBB2. We found that in SK-BR-3 cells Trastuzumab leads to surface redistribution of ERBB2 and ERBB1 in CDRs, and that the ERBB2-dependent ERK1/2 phosphorylation and ERBB1 expression are both required for CDR formation. In particular, in these cells CDR formation requires activation of both the protein regulator of actin polymerization N-WASP, mediated by ERK1/2, and of the actin depolymerizing protein cofilin, mediated by ERBB1. Furthermore, we suggest that this latter event may be inhibited by the negative cell motility regulator p140Cap, as we found that p140Cap overexpression led to cofilin deactivation and inhibition of CDR formation. In conclusion, here we show for the first time an ERBB2-specific signaling contribution to an ERBB2/ERBB1 heterodimer, in the activation of a complex biological process such as the formation of CDRs.
Collapse
Affiliation(s)
- Paola Bagnato
- DIMES, Dipartimento di Medicina Sperimentale, Anatomia Umana, Università di Genova, Genova, Italy
| | - Alessia Castagnino
- DIMES, Dipartimento di Medicina Sperimentale, Anatomia Umana, Università di Genova, Genova, Italy
| | - Katia Cortese
- DIMES, Dipartimento di Medicina Sperimentale, Anatomia Umana, Università di Genova, Genova, Italy
| | - Maria Bono
- DIMES, Dipartimento di Medicina Sperimentale, Anatomia Umana, Università di Genova, Genova, Italy
| | - Silvia Grasso
- Molecular Biotechnology Centre and Department of Genetics, Biology and Biochemistry, Torino, Italy
| | - Grazia Bellese
- DIMES, Dipartimento di Medicina Sperimentale, Anatomia Umana, Università di Genova, Genova, Italy
| | - Tiziana Daniele
- San Raffaele Scientific Institute, Experimental Imaging Centre, Milan, Italy
| | - Richard Lundmark
- Department of Medical Biochemistry and Biophysics, Umea University, Umea, Sweden
| | - Paola Defilippi
- Molecular Biotechnology Centre and Department of Genetics, Biology and Biochemistry, Torino, Italy
| | - Patrizio Castagnola
- Department of Integrated Oncological Therapies, IRCCS AOU - San Martino - IST, Largo Rosanna Benzi, Genova, Italy
| | - Carlo Tacchetti
- DIMES, Dipartimento di Medicina Sperimentale, Anatomia Umana, Università di Genova, Genova, Italy.,San Raffaele Scientific Institute, Experimental Imaging Centre, Milan, Italy
| |
Collapse
|
31
|
Fritz-Laylin LK, Lord SJ, Mullins RD. WASP and SCAR are evolutionarily conserved in actin-filled pseudopod-based motility. J Cell Biol 2017; 216:1673-1688. [PMID: 28473602 PMCID: PMC5461030 DOI: 10.1083/jcb.201701074] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/12/2017] [Accepted: 03/31/2017] [Indexed: 01/08/2023] Open
Abstract
Eukaryotic cells use diverse cellular mechanisms to crawl through complex environments. Fritz-Laylin et al. define α-motility as a mode of migration associated with dynamic, actin-filled pseudopods and show that WASP and SCAR constitute an evolutionarily conserved genetic signature of α-motility. Diverse eukaryotic cells crawl through complex environments using distinct modes of migration. To understand the underlying mechanisms and their evolutionary relationships, we must define each mode and identify its phenotypic and molecular markers. In this study, we focus on a widely dispersed migration mode characterized by dynamic actin-filled pseudopods that we call “α-motility.” Mining genomic data reveals a clear trend: only organisms with both WASP and SCAR/WAVE—activators of branched actin assembly—make actin-filled pseudopods. Although SCAR has been shown to drive pseudopod formation, WASP’s role in this process is controversial. We hypothesize that these genes collectively represent a genetic signature of α-motility because both are used for pseudopod formation. WASP depletion from human neutrophils confirms that both proteins are involved in explosive actin polymerization, pseudopod formation, and cell migration. WASP and WAVE also colocalize to dynamic signaling structures. Moreover, retention of WASP together with SCAR correctly predicts α-motility in disease-causing chytrid fungi, which we show crawl at >30 µm/min with actin-filled pseudopods. By focusing on one migration mode in many eukaryotes, we identify a genetic marker of pseudopod formation, the morphological feature of α-motility, providing evidence for a widely distributed mode of cell crawling with a single evolutionary origin.
Collapse
Affiliation(s)
- Lillian K Fritz-Laylin
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Samuel J Lord
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143
| | - R Dyche Mullins
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
32
|
Lubeseder-Martellato C, Alexandrow K, Hidalgo-Sastre A, Heid I, Boos SL, Briel T, Schmid RM, Siveke JT. Oncogenic KRas-induced Increase in Fluid-phase Endocytosis is Dependent on N-WASP and is Required for the Formation of Pancreatic Preneoplastic Lesions. EBioMedicine 2017; 15:90-99. [PMID: 28057438 PMCID: PMC5233824 DOI: 10.1016/j.ebiom.2016.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/28/2016] [Accepted: 12/20/2016] [Indexed: 01/13/2023] Open
Abstract
Fluid-phase endocytosis is a homeostatic process with an unknown role in tumor initiation. The driver mutation in pancreatic ductal adenocarcinoma (PDAC) is constitutively active KRasG12D, which induces neoplastic transformation of acinar cells through acinar-to-ductal metaplasia (ADM). We have previously shown that KRasG12D-induced ADM is dependent on RAC1 and EGF receptor (EGFR) by a not fully clarified mechanism. Using three-dimensional mouse and human acinar tissue cultures and genetically engineered mouse models, we provide evidence that (i) KRasG12D leads to EGFR-dependent sustained fluid-phase endocytosis (FPE) during acinar metaplasia; (ii) variations in plasma membrane tension increase FPE and lead to ADM in vitro independently of EGFR; and (iii) that RAC1 regulates ADM formation partially through actin-dependent regulation of FPE. In addition, mice with a pancreas-specific deletion of the Neural-Wiskott-Aldrich syndrome protein (N-WASP), a regulator of F-actin, have reduced FPE and impaired ADM emphasizing the in vivo relevance of our findings. This work defines a new role of FPE as a tumor initiating mechanism.
Collapse
Affiliation(s)
- Clara Lubeseder-Martellato
- Clinic and Polyclinic for Internal Medicine II, Klinikum Rechts der Isar, Technical University of Munich, Germany.
| | - Katharina Alexandrow
- Clinic and Polyclinic for Internal Medicine II, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Ana Hidalgo-Sastre
- Clinic and Polyclinic for Internal Medicine II, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Irina Heid
- Institute of Radiology, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Sophie Luise Boos
- Clinic and Polyclinic for Internal Medicine II, Klinikum Rechts der Isar, Technical University of Munich, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Thomas Briel
- Clinic and Polyclinic for Internal Medicine II, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Roland M Schmid
- Clinic and Polyclinic for Internal Medicine II, Klinikum Rechts der Isar, Technical University of Munich, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Jens T Siveke
- Clinic and Polyclinic for Internal Medicine II, Klinikum Rechts der Isar, Technical University of Munich, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center, DKFZ, Heidelberg, Germany; Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK), Partner Site Essen, West German Cancer Center, University Hospital Essen, Germany.
| |
Collapse
|
33
|
Xu C, Fu X, Zhu S, Liu JJ. Retrolinkin recruits the WAVE1 protein complex to facilitate BDNF-induced TrkB endocytosis and dendrite outgrowth. Mol Biol Cell 2016; 27:3342-3356. [PMID: 27605705 PMCID: PMC5170866 DOI: 10.1091/mbc.e16-05-0326] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
Retrolinkin, a neuronal membrane protein, coordinates with endophilin A1 and mediates early endocytic trafficking and signal transduction of the ligand-receptor complex formed between brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase B (TrkB), in dendrites of CNS neurons. Here we report that retrolinkin interacts with the CYFIP1/2 subunit of the WAVE1 complex, a member of the WASP/WAVE family of nucleation-promoting factors that binds and activates the Arp2/3 complex to promote branched actin polymerization. WAVE1, not N-WASP, is required for BDNF-induced TrkB endocytosis and dendrite outgrowth. Disruption of the interaction between retrolinkin and CYFIP1/2 impairs recruitment of WAVE1 to neuronal plasma membrane upon BDNF addition and blocks internalization of activated TrkB. We also show that WAVE1-mediated endocytosis of BDNF-activated TrkB is actin dependent and clathrin independent. These results not only reveal the mechanistic role of retrolinkin in BDNF-TrkB endocytosis, but also indicate that WASP/WAVE-dependent actin polymerization during endocytosis is regulated by cell type-specific and cargo-specific modulators.
Collapse
Affiliation(s)
- Chenchang Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China.,Graduate School, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiuping Fu
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China.,Graduate School, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Shaoxia Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jia-Jia Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
34
|
Liu Z, Ning G, Xu R, Cao Y, Meng A, Wang Q. Fscn1 is required for the trafficking of TGF-β family type I receptors during endoderm formation. Nat Commun 2016; 7:12603. [PMID: 27545838 PMCID: PMC4996939 DOI: 10.1038/ncomms12603] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/15/2016] [Indexed: 01/01/2023] Open
Abstract
Microtubules function in TGF-β signalling by facilitating the cytoplasmic trafficking of internalized receptors and the nucleocytoplasmic shuttling of Smads. However, nothing is known about whether actin filaments are required for these processes. Here we report that zebrafish actin-bundling protein fscn1a is highly expressed in mesendodermal precursors and its expression is directly regulated by the TGF-β superfamily member Nodal. Knockdown or knockout of fscn1a leads to a reduction of Nodal signal transduction and endoderm formation in zebrafish embryos. Fscn1 specifically interacts with TGF-β family type I receptors, and its depletion disrupts the association between receptors and actin filaments and sequesters the internalized receptors into clathrin-coated vesicles. Therefore, Fscn1 acts as a molecular linker between TGF-β family type I receptors and the actin filaments to promote the trafficking of internalized receptors from clathrin-coated vesicles to early endosomes during zebrafish endoderm formation. It is unclear how the cytoskeleton acts to assist in TGF-β signalling downstream of the receptor. Here, in zebrafish, the authors show that the actin-bundling protein FSCN1 interacts with TGF-β type I receptors ALK 4 and 5, enabling actin filament mediated vesicle trafficking and endoderm formation.
Collapse
Affiliation(s)
- Zhaoting Liu
- State Key Laboratory of Membrane Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guozhu Ning
- State Key Laboratory of Membrane Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ranran Xu
- State Key Laboratory of Membrane Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Cao
- State Key Laboratory of Membrane Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Anming Meng
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Steffen A, Stradal TEB, Rottner K. Signalling Pathways Controlling Cellular Actin Organization. Handb Exp Pharmacol 2016; 235:153-178. [PMID: 27757765 DOI: 10.1007/164_2016_35] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The actin cytoskeleton is essential for morphogenesis and virtually all types of cell shape changes. Reorganization is per definition driven by continuous disassembly and re-assembly of actin filaments, controlled by major, ubiquitously operating machines. These are specifically employed by the cell to tune its activities in accordance with respective environmental conditions or to satisfy specific needs.Here we sketch some fundamental signalling pathways established to contribute to the reorganization of specific actin structures at the plasma membrane. Rho-family GTPases are at the core of these pathways, and dissection of their precise contributions to actin reorganization in different cell types and tissues will thus continue to improve our understanding of these important signalling nodes. Furthermore, we will draw your attention to the emerging theme of actin reorganization on intracellular membranes, its functional relation to Rho-GTPase signalling, and its relevance for the exciting phenomenon autophagy.
Collapse
Affiliation(s)
- Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.,Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| |
Collapse
|
36
|
Stradal TEB, Costa SCP. Type III Secreted Virulence Factors Manipulating Signaling to Actin Dynamics. Curr Top Microbiol Immunol 2016; 399:175-199. [PMID: 27744505 DOI: 10.1007/82_2016_35] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A key aspect of bacterial pathogenesis is the colonization and persistence within the host and, later on, its dissemination to new niches. During evolution, bacteria developed a myriad of virulence mechanisms to usurp the host's sophisticated defense mechanisms in order to establish their colonization niche. Elucidation of the highly dynamic and complex interactions between host and pathogens remains an important field of study. Here, we highlight the conserved manipulation of the actin cytoskeleton by some Gram-negative gastrointestinal pathogens, addressing the role of type III secreted bacterial GEFs at the different steps of pathogenesis. As a final topic, we review cytoskeleton dynamics induced by EPEC/EHEC strains for pedestal formation.
Collapse
Affiliation(s)
- Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Baunschweig, Germany.
| | - Sonia C P Costa
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Baunschweig, Germany
| |
Collapse
|
37
|
Nogueira AT, Pedrosa AT, Carabeo RA. Manipulation of the Host Cell Cytoskeleton by Chlamydia. Curr Top Microbiol Immunol 2016; 412:59-80. [PMID: 27197645 DOI: 10.1007/82_2016_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Chlamydiae are obligate intracellular pathogens. They undergo a biphasic developmental cycle differentiating between the infectious but metabolically quiescent elementary body and the vegetative, but non-infectious reticulate body. Chlamydia spends a significant portion of its development in the non-infectious stage, demanding an effective strategy of manipulating the host cells to ensure its intracellular survival and replication. A common target of all Chlamydia species studied so far is the host cell cytoskeleton, with past and recent findings revealing crucial roles in invasion, inclusion maintenance, nutrient acquisition, and egress. The molecular details of how Chlamydia co-opts the cytoskeleton is becoming clearer, with bacterial factors and their corresponding host cell targets identified.
Collapse
Affiliation(s)
- Ana T Nogueira
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Antonio T Pedrosa
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Rey A Carabeo
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| |
Collapse
|
38
|
Daher FB, Braybrook SA. How to let go: pectin and plant cell adhesion. FRONTIERS IN PLANT SCIENCE 2015; 6:523. [PMID: 26236321 PMCID: PMC4500915 DOI: 10.3389/fpls.2015.00523] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/29/2015] [Indexed: 05/18/2023]
Abstract
Plant cells do not, in general, migrate. They maintain a fixed position relative to their neighbors, intimately linked through growth and differentiation. The mediator of this connection, the pectin-rich middle lamella, is deposited during cell division and maintained throughout the cell's life to protect tissue integrity. The maintenance of adhesion requires cell wall modification and is dependent on the actin cytoskeleton. There are developmental processes that require cell separation, such as organ abscission, dehiscence, and ripening. In these instances, the pectin-rich middle lamella must be actively altered to allow cell separation, a process which also requires cell wall modification. In this review, we will focus on the role of pectin and its modification in cell adhesion and separation. Recent insights gained in pectin gel mechanics will be discussed in relation to existing knowledge of pectin chemistry as it relates to cell adhesion. As a whole, we hope to begin defining the physical mechanisms behind a cells' ability to hang on, and how it lets go.
Collapse
|
39
|
Singhai A, Wakefield DL, Bryant KL, Hammes SR, Holowka D, Baird B. Spatially defined EGF receptor activation reveals an F-actin-dependent phospho-Erk signaling complex. Biophys J 2014; 107:2639-51. [PMID: 25468343 DOI: 10.1016/j.bpj.2014.09.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/19/2014] [Accepted: 09/30/2014] [Indexed: 12/24/2022] Open
Abstract
We investigated the association of signaling proteins with epidermal growth factor (EGF) receptors (EGFR) using biotinylated EGF bound to streptavidin that is covalently coupled in an ordered array of micron-sized features on silicon surfaces. Using NIH-3T3 cells stably expressing EGFR, we observe concentration of fluorescently labeled receptors and stimulated tyrosine phosphorylation that are spatially confined to the regions of immobilized EGF and quantified by cross-correlation analysis. We observe recruitment of phosphorylated paxillin to activated EGFR at these patterned features, as well as β1-containing integrins that preferentially localize to more peripheral EGF features, as quantified by radial fluorescence analysis. In addition, we detect recruitment of EGFP-Ras, MEK, and phosphorylated Erk to patterned EGF in a process that depends on F-actin and phosphoinositides. These studies reveal and quantify the coformation of multiprotein EGFR signaling complexes at the plasma membrane in response to micropatterned growth factors.
Collapse
Affiliation(s)
- Amit Singhai
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Devin L Wakefield
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Kirsten L Bryant
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | | | - David Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Barbara Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York.
| |
Collapse
|
40
|
Flores JA, Balseiro-Gomez S, Cabeza JM, Acosta J, Ramirez-Ponce P, Ales E. A new role for myosin II in vesicle fission. PLoS One 2014; 9:e100757. [PMID: 24959909 PMCID: PMC4069105 DOI: 10.1371/journal.pone.0100757] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/28/2014] [Indexed: 11/19/2022] Open
Abstract
An endocytic vesicle is formed from a flat plasma membrane patch by a sequential process of invagination, bud formation and fission. The scission step requires the formation of a tubular membrane neck (the fission pore) that connects the endocytic vesicle with the plasma membrane. Progress in vesicle fission can be measured by the formation and closure of the fission pore. Live-cell imaging and sensitive biophysical measurements have provided various glimpses into the structure and behaviour of the fission pore. In the present study, the role of non-muscle myosin II (NM-2) in vesicle fission was tested by analyzing the kinetics of the fission pore with perforated-patch clamp capacitance measurements to detect single vesicle endocytosis with millisecond time resolution in peritoneal mast cells. Blebbistatin, a specific inhibitor of NM-2, dramatically increased the duration of the fission pore and also prevented closure during large endocytic events. Using the fluorescent markers FM1-43 and pHrodo Green dextran, we found that NM-2 inhibition greatly arrested vesicle fission in a late phase of the scission event when the pore reached a final diameter of ∼ 5 nm. Our results indicate that loss of the ATPase activity of myosin II drastically reduces the efficiency of membrane scission by making vesicle closure incomplete and suggest that NM-2 might be especially relevant in vesicle fission during compound endocytosis.
Collapse
Affiliation(s)
- Juan A. Flores
- Dpto. Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Santiago Balseiro-Gomez
- Dpto. Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Jose M. Cabeza
- Dpto. Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Jorge Acosta
- Dpto. Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Pilar Ramirez-Ponce
- Dpto. Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Eva Ales
- Dpto. Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
41
|
Croisé P, Estay-Ahumada C, Gasman S, Ory S. Rho GTPases, phosphoinositides, and actin: a tripartite framework for efficient vesicular trafficking. Small GTPases 2014; 5:e29469. [PMID: 24914539 DOI: 10.4161/sgtp.29469] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rho GTPases are well known regulators of the actin cytoskeleton that act by binding and activating actin nucleators. They are therefore involved in many actin-based processes, including cell migration, cell polarity, and membrane trafficking. With the identification of phosphoinositide kinases and phosphatases as potential binding partners or effectors, Rho GTPases also appear to participate in the regulation of phosphoinositide metabolism. Since both actin dynamics and phosphoinositide turnover affect the efficiency and the fidelity of vesicle transport between cell compartments, Rho GTPases have emerged as critical players in membrane trafficking. Rho GTPase activity, actin remodeling, and phosphoinositide metabolism need to be coordinated in both space and time to ensure the progression of vesicles along membrane trafficking pathways. Although most molecular pathways are still unclear, in this review, we will highlight recent advances made in our understanding of how Rho-dependent signaling pathways organize actin dynamics and phosphoinositides and how phosphoinositides potentially provide negative feedback to Rho GTPases during endocytosis, exocytosis and membrane exchange between intracellular compartments.
Collapse
Affiliation(s)
- Pauline Croisé
- CNRS UPR 3212; Institut des Neurosciences Cellulaires et Intégratives; Université de Strasbourg; Strasbourg, France
| | - Catherine Estay-Ahumada
- CNRS UPR 3212; Institut des Neurosciences Cellulaires et Intégratives; Université de Strasbourg; Strasbourg, France
| | - Stéphane Gasman
- CNRS UPR 3212; Institut des Neurosciences Cellulaires et Intégratives; Université de Strasbourg; Strasbourg, France
| | - Stéphane Ory
- CNRS UPR 3212; Institut des Neurosciences Cellulaires et Intégratives; Université de Strasbourg; Strasbourg, France
| |
Collapse
|
42
|
Abstract
There are many pathways of endocytosis at the cell surface that apparently operate at the same time. With the advent of new molecular genetic and imaging tools, an understanding of the different ways by which a cell may endocytose cargo is increasing by leaps and bounds. In this review we explore pathways of endocytosis that occur in the absence of clathrin. These are referred to as clathrin-independent endocytosis (CIE). Here we primarily focus on those pathways that function at the small scale in which some have distinct coats (caveolae) and others function in the absence of specific coated intermediates. We follow the trafficking itineraries of the material endocytosed by these pathways and finally discuss the functional roles that these pathways play in cell and tissue physiology. It is likely that these pathways will play key roles in the regulation of plasma membrane area and tension and also control the availability of membrane during cell migration.
Collapse
Affiliation(s)
- Satyajit Mayor
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, and Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - Robert G Parton
- The University of Queensland, Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, Queensland 4072, Brisbane, Australia
| | - Julie G Donaldson
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
43
|
Hoque M, Rentero C, Cairns R, Tebar F, Enrich C, Grewal T. Annexins — Scaffolds modulating PKC localization and signaling. Cell Signal 2014; 26:1213-25. [DOI: 10.1016/j.cellsig.2014.02.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/22/2014] [Indexed: 12/15/2022]
|
44
|
Humphries AC, Donnelly SK, Way M. Cdc42 and the Rho GEF intersectin-1 collaborate with Nck to promote N-WASP-dependent actin polymerisation. J Cell Sci 2014; 127:673-85. [PMID: 24284073 DOI: 10.1242/jcs.141366] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vaccinia virus enhances its cell-to-cell spread by inducing Arp2/3-dependent actin polymerisation. This process is initiated by Src- and Abl-mediated phosphorylation of the viral transmembrane protein A36, leading to recruitment of a signalling network consisting of Grb2, Nck, WIP and N-WASP. Nck is a potent activator of N-WASP-Arp2/3-dependent actin polymerisation. However, recent observations demonstrate that an interaction between Nck and N-WASP is not required for vaccinia actin tail formation. We found that Cdc42 cooperates with Nck to promote actin tail formation by stabilising N-WASP beneath the virus. Cdc42 activation is mediated by the Rho guanine-nucleotide-exchange factor (GEF) intersectin-1 (ITSN1), which is recruited to the virus prior to its actin-based motility. Moreover, Cdc42, ITSN1 and N-WASP function collaboratively in a feed-forward loop to promote vaccinia-induced actin polymerisation. Outside the context of infection, we demonstrate that ITSN1 also functions together with Cdc42, Nck and N-WASP during phagocytosis mediated by the Fc gamma receptor. Our observations suggest that ITSN1 is an important general regulator of Cdc42-, Nck- and N-WASP-dependent actin polymerisation.
Collapse
Affiliation(s)
- Ashley C Humphries
- Cell Motility Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | |
Collapse
|
45
|
Liu C, Bai X, Wu J, Sharma S, Upadhyaya A, Dahlberg CIM, Westerberg LS, Snapper SB, Zhao X, Song W. N-wasp is essential for the negative regulation of B cell receptor signaling. PLoS Biol 2013; 11:e1001704. [PMID: 24223520 PMCID: PMC3818172 DOI: 10.1371/journal.pbio.1001704] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 09/25/2013] [Indexed: 11/19/2022] Open
Abstract
Negative regulation of receptor signaling is essential for controlling cell activation and differentiation. In B-lymphocytes, the down-regulation of B-cell antigen receptor (BCR) signaling is critical for suppressing the activation of self-reactive B cells; however, the mechanism underlying the negative regulation of signaling remains elusive. Using genetically manipulated mouse models and total internal reflection fluorescence microscopy, we demonstrate that neuronal Wiskott-Aldrich syndrome protein (N-WASP), which is coexpressed with WASP in all immune cells, is a critical negative regulator of B-cell signaling. B-cell-specific N-WASP gene deletion causes enhanced and prolonged BCR signaling and elevated levels of autoantibodies in the mouse serum. The increased signaling in N-WASP knockout B cells is concurrent with increased accumulation of F-actin at the B-cell surface, enhanced B-cell spreading on the antigen-presenting membrane, delayed B-cell contraction, inhibition in the merger of signaling active BCR microclusters into signaling inactive central clusters, and a blockage of BCR internalization. Upon BCR activation, WASP is activated first, followed by N-WASP in mouse and human primary B cells. The activation of N-WASP is suppressed by Bruton's tyrosine kinase-induced WASP activation, and is restored by the activation of SH2 domain-containing inositol 5-phosphatase that inhibits WASP activation. Our results reveal a new mechanism for the negative regulation of BCR signaling and broadly suggest an actin-mediated mechanism for signaling down-regulation.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Antibodies, Antinuclear/blood
- Antigens/immunology
- Autoantibodies/blood
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cells, Cultured
- Humans
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Knockout
- Protein Transport
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction
- Wiskott-Aldrich Syndrome/immunology
- Wiskott-Aldrich Syndrome/metabolism
- Wiskott-Aldrich Syndrome Protein/metabolism
- Wiskott-Aldrich Syndrome Protein, Neuronal/physiology
Collapse
Affiliation(s)
- Chaohong Liu
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Xiaoming Bai
- Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Junfeng Wu
- Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shruti Sharma
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, Maryland, United States of America
| | - Carin I. M. Dahlberg
- Translational Immunology Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Lisa S. Westerberg
- Translational Immunology Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Scott B. Snapper
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiaodong Zhao
- Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenxia Song
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
46
|
Park M, Kim HJ, Lim B, Wylegala A, Toborek M. Methamphetamine-induced occludin endocytosis is mediated by the Arp2/3 complex-regulated actin rearrangement. J Biol Chem 2013; 288:33324-34. [PMID: 24081143 PMCID: PMC3829179 DOI: 10.1074/jbc.m113.483487] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Methamphetamine (METH) is a drug of abuse with neurotoxic and neuroinflammatory effects, which include disruption of the blood-brain barrier (BBB) and alterations of tight junction protein expression. This study focused on the actin cytoskeletal rearrangement as a modulator of METH-induced redistribution of tight junction protein occludin in brain endothelial cells. Exposure to METH resulted in a shift of occludin localization from plasma membranes to endosomes. These changes were accompanied by activation of the actin-related protein 2/3 (Arp2/3) complex, which stimulates actin polymerization by promoting actin nucleation. In addition, METH-induced coronin-1b phosphorylation diminishes the inhibitory effect of nonphosphorylated coronin-1b on actin nucleation. Blocking actin nucleation with CK-666, a specific inhibitor of the Arp2/3 complex, protected against METH-induced occludin internalization and increased transendothelial monocyte migration. Importantly, treatment with CK-666 attenuated a decrease in occludin levels in brain microvessels and BBB permeability of METH-injected mice. These findings indicate that actin cytoskeletal dynamics is detrimental to METH-induced BBB dysfunction by increasing internalization of occludin.
Collapse
Affiliation(s)
- Minseon Park
- From the Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136 and
| | | | | | | | | |
Collapse
|
47
|
Vehlow A, Soong D, Vizcay-Barrena G, Bodo C, Law AL, Perera U, Krause M. Endophilin, Lamellipodin, and Mena cooperate to regulate F-actin-dependent EGF-receptor endocytosis. EMBO J 2013; 32:2722-34. [PMID: 24076656 PMCID: PMC3801443 DOI: 10.1038/emboj.2013.212] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 08/30/2013] [Indexed: 11/09/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) plays an essential role during development and diseases including cancer. Lamellipodin (Lpd) is known to control lamellipodia protrusion by regulating actin filament elongation via Ena/VASP proteins. However, it is unknown whether this mechanism supports endocytosis of the EGFR. Here, we have identified a novel role for Lpd and Mena in clathrin-mediated endocytosis (CME) of the EGFR. We have discovered that endogenous Lpd is in a complex with the EGFR and Lpd and Mena knockdown impairs EGFR endocytosis. Conversely, overexpressing Lpd substantially increases the EGFR uptake in an F-actin-dependent manner, suggesting that F-actin polymerization is limiting for EGFR uptake. Furthermore, we found that Lpd directly interacts with endophilin, a BAR domain containing protein implicated in vesicle fission. We identified a role for endophilin in EGFR endocytosis, which is mediated by Lpd. Consistently, Lpd localizes to clathrin-coated pits (CCPs) just before vesicle scission and regulates vesicle scission. Our findings suggest a novel mechanism in which Lpd mediates EGFR endocytosis via Mena downstream of endophilin. Cooperation between a BAR domain protein and a regulator of actin filament elongation during lamellipodia protrusion reveals actin cytoskeleton roles in endocytic vesicle scission in mammalian cells.
Collapse
Affiliation(s)
- Anne Vehlow
- King's College London, Randall Division of Cell and Molecular Biophysics, London, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
Liu Z, Yang X, Chen C, Liu B, Ren B, Wang L, Zhao K, Yu S, Ming H. Expression of the Arp2/3 complex in human gliomas and its role in the migration and invasion of glioma cells. Oncol Rep 2013; 30:2127-36. [PMID: 23969835 DOI: 10.3892/or.2013.2669] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/25/2013] [Indexed: 11/06/2022] Open
Abstract
A hallmark of directional cell migration is localized actin polymerization at the leading protrusions of the cell. The Arp2/3 complex nucleates the formation of the dendritic actin network (lamellipodia) at the leading edge of motile cells. This study was designed to investigate the role of the Arp2/3 complex in the infiltrative behavior of glioma cells. Immunofluorescence and western blotting showed a positive correlation between the expression of Arp2/3 and the malignancy of glioma specimens (r=0.686, P=0.02) and confocal microscopy demonstrated localization of the Arp2/3 complex in lamellipodia of glioma cells. Furthermore, we examined the effects of Arp2/3 complex inhibition in U251, LN229 and SNB19 glioma cells using CK666, an Arp2/3 complex inhibitor. Glioma cells lost lamellipodia and cell polarity after treatment with CK666. Inhibition of the Arp2/3 complex significantly affected the ability of glioma cells to migrate and invade. In the wound-healing assay, CK666 markedly inhibited cell migration, U251 cell migration was inhibited to 38.73±3.45% of control, LN229 cells to 57.40±2.16% of control and SNB19 cells to 34.17±3.82% of control. Also, CK666 significantly impaired Transwell chamber invasion capability of U251, LN229 and SNB19 cells compared with DMSO control by 72.70±4.86, 39.12±8.42 and 41.41±4.66%, respectively. The Arp2/3 complex is, therefore, likely to be a crucial participant in glioma cell invasion and migration, and may represent a target for therapeutic intervention.
Collapse
Affiliation(s)
- Zhifeng Liu
- Neuro-Oncology Laboratory, Tianjin Neurological Institute, Tianjin 300052, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Humphries AC, Way M. The non-canonical roles of clathrin and actin in pathogen internalization, egress and spread. Nat Rev Microbiol 2013; 11:551-60. [PMID: 24020073 DOI: 10.1038/nrmicro3072] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The role of clathrin in pathogen entry has received much attention and has highlighted the adaptability of clathrin during internalization. Recent studies have now uncovered additional roles for clathrin and have put the spotlight on its role in pathogen spread. Here, we discuss the manipulation of clathrin by pathogens, with specific attention to the processes that occur at the plasma membrane. In the majority of cases, both clathrin and the actin cytoskeleton are hijacked, so we also examine the interplay between these two systems and their role during pathogen internalization, egress and spread.
Collapse
Affiliation(s)
- Ashley C Humphries
- Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | | |
Collapse
|
50
|
Song W, Liu C, Upadhyaya A. The pivotal position of the actin cytoskeleton in the initiation and regulation of B cell receptor activation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:569-78. [PMID: 23886914 DOI: 10.1016/j.bbamem.2013.07.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 07/08/2013] [Accepted: 07/15/2013] [Indexed: 01/14/2023]
Abstract
The actin cytoskeleton is a dynamic cellular network known for its function in cell morphology and motility. Recent studies using high resolution and real time imaging techniques have revealed that actin plays a critical role in signal transduction, primarily by modulating the dynamics and organization of membrane-associated receptors and signaling molecules. This review summarizes what we have learned so far about a regulatory niche of the actin cytoskeleton in the signal transduction of the B cell receptor (BCR). The activation of the BCR is initiated and regulated by a close coordination between the dynamics of surface BCRs and the cortical actin network. The actin cytoskeleton is involved in regulating the signaling threshold of the BCR to antigenic stimulation, the kinetics and amplification of BCR signaling activities, and the timing and kinetics of signaling downregulation. Actin exerts its regulatory function by controlling the kinetics, magnitude, subcellular location, and nature of BCR clustering and BCR signaling complex formation at every stage of signaling. The cortical actin network is remodeled by initial detachment from the plasma membrane, disassembly and subsequent reassembly into new actin structures in response to antigenic stimulation. Signaling responsive actin regulators translate BCR stimulatory and inhibitory signals into a series of actin remodeling events, which enhance signaling activation and down-regulation by modulating the lateral mobility and spatial organization of surface BCR. The mechanistic understanding of actin-mediated signaling regulation in B cells will help us explore B cell-specific manipulations of the actin cytoskeleton as treatments for B cell-mediated autoimmunity and B cell cancer. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Wenxia Song
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA; Department of Physics, University of Maryland, College Park, MD 20742, USA.
| | - Chaohong Liu
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA; Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Arpita Upadhyaya
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA; Department of Physics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|