1
|
Guay KP, Chou WC, Canniff NP, Paul KB, Hebert DN. N-glycan-dependent protein maturation and quality control in the ER. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00855-y. [PMID: 40389697 DOI: 10.1038/s41580-025-00855-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2025] [Indexed: 05/21/2025]
Abstract
The vast majority of proteins that traverse the mammalian secretory pathway become N-glycosylated in the endoplasmic reticulum (ER). The bulky glycan protein modifications, which are conserved in fungi and humans, act as maturation and quality-control tags. In this Review, we discuss findings published in the past decade that have rapidly expanded our understanding of the transfer and processing of N-glycans, as well as their role in protein maturation, quality control and trafficking in the ER, facilitated by structural insights into the addition of N-glycans by the oligosaccharyltransferases A and B (OST-A and OST-B). These findings suggest that N-glycans serve as reporters of the folding status of secretory proteins as they traverse the ER, enabling the lectin chaperones to guide their maturation. We also explore how the emergence of co-translational glycosylation and the expansion of the glycoproteostasis network in metazoans has expanded the role of N-glycans in early protein-maturation events and quality control.
Collapse
Affiliation(s)
- Kevin P Guay
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA.
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA.
| | - Wen-Chuan Chou
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA
| | - Nathan P Canniff
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA
| | - Kylie B Paul
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA
| | - Daniel N Hebert
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
2
|
Kuzminsky I, Ghanim M. Immunity responses as checkpoints for efficient transmission of begomoviruses by whiteflies. Virology 2025; 605:110462. [PMID: 40020542 DOI: 10.1016/j.virol.2025.110462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/05/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
Begomoviruses are a group of single stranded DNA plant viruses exclusively transmitted by the sweet potato whitefly Bemisia tabaci in a persistent, circulative manner. After acquisition from plant phloem, this group of viruses circulate and are retained within the whitefly, interacting with tissues, cells and molecular pathways for maintaining the safety of the infective intact virions, by exploiting cellular mechanisms and avoiding degradation by the insect immune responses. During retention, the virions are internalized in the midgut cells, exit and spend hours-days in the hemolymph and cross into salivary gland cells, before transmission. Destroying this group of viruses by the insect immune system seems inefficient for the most part, by examining their very efficient transmission. Thus, within the various sites along the transmission pathway especially in the midgut, it is thought that the immune system with its various layers is activated for avoiding the damage caused by the viruses on one hand, and for ensuring their safe circulation and transmission on the other hand. Begomoviruses have evolved mechanisms for counteracting and exploiting the activated immune system for their safe translocation within the whitefly. In this review, we discuss the various levels of immunity activated against begomoviruses in B. tabaci, taking other pathogen-vector systems as examples and reflecting relevant components on the interactions between B. tabaci and Begomoviruses.
Collapse
Affiliation(s)
- Ilana Kuzminsky
- Department of Entomology, Volcani Center, Rishon LeZion, 7505101, Israel; Department of Agroecology and Plant Health, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Murad Ghanim
- Department of Entomology, Volcani Center, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
3
|
Molle J, Duponchel S, Rieusset J, Ovize M, Ivanov AV, Zoulim F, Bartosch B. Exploration of the Role of Cyclophilins in Established Hepatitis B and C Infections. Viruses 2024; 17:11. [PMID: 39861799 PMCID: PMC11768883 DOI: 10.3390/v17010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025] Open
Abstract
Cyclophilin (Cyp) inhibitors are of clinical interest in respect to their antiviral activities in the context of many viral infections including chronic hepatitis B and C. Cyps are a group of enzymes with peptidyl-prolyl isomerase activity (PPIase), known to be required for replication of diverse viruses including hepatitis B and C viruses (HBV and HCV). Amongst the Cyp family, the molecular mechanisms underlying the antiviral effects of CypA have been investigated in detail, but potential roles of other Cyps are less well studied in the context of viral hepatitis. Furthermore, most studies investigating the role of Cyps in viral hepatitis did not investigate the potential therapeutic effects of their inhibition in already-established infections but have rather been performed in the context of neo-infections. Here, we investigated the effects of genetically silencing Cyps on persistent HCV and HBV infections. We confirm antiviral effects of CypA and CypD knock down and demonstrate novel roles for CypG and CypH in HCV replication. We show, furthermore, that CypA silencing has a modest but reproducible impact on persistent HBV infections in cultured human hepatocytes.
Collapse
Affiliation(s)
- Jennifer Molle
- INSERM U1052, CNRS UMR5286, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Lyon Hepatology Institute (IHU Everest), 69003 Lyon, France; (J.M.); (S.D.); (F.Z.)
| | - Sarah Duponchel
- INSERM U1052, CNRS UMR5286, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Lyon Hepatology Institute (IHU Everest), 69003 Lyon, France; (J.M.); (S.D.); (F.Z.)
| | - Jennifer Rieusset
- CarMeN Laboratory, INSERM U1060, INRA U1397, Lyon Hepatology Institute, 69007 Lyon, France; (J.R.); (M.O.)
| | - Michel Ovize
- CarMeN Laboratory, INSERM U1060, INRA U1397, Lyon Hepatology Institute, 69007 Lyon, France; (J.R.); (M.O.)
| | - Alexander V. Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Fabien Zoulim
- INSERM U1052, CNRS UMR5286, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Lyon Hepatology Institute (IHU Everest), 69003 Lyon, France; (J.M.); (S.D.); (F.Z.)
| | - Birke Bartosch
- INSERM U1052, CNRS UMR5286, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Lyon Hepatology Institute (IHU Everest), 69003 Lyon, France; (J.M.); (S.D.); (F.Z.)
| |
Collapse
|
4
|
Janthakhin Y, Juntapremjit S, Hummel K, Razzazi-Fazeli E, Kingtong S. The Alteration of Proteomic Profiles in Hippocampus of Type 2 Diabetic Mice Associated With Cognitive Impairment. Bioinform Biol Insights 2024; 18:11779322241306290. [PMID: 39703749 PMCID: PMC11656429 DOI: 10.1177/11779322241306290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Clinical and experimental studies have demonstrated that type 2 diabetes mellitus (T2DM) affects the brain structure and function, in particular the hippocampus, leading to cognitive impairments. However, the molecular mechanisms underlying cognitive deficits induced by T2DM are not fully understood. In this study, we aimed to investigate the effects of T2DM on behavior, the proteome profile in the hippocampus, and the potential molecular pathways involved in the development of cognitive dysfunction in T2DM mice. We found that the diabetic mice exhibited cognitive impairment in the novel object location recognition test and the novel object recognition test. The proteomic analysis revealed that various molecular pathways were involved in this context. These included the upregulation of proteins in the protein synthesis and folding pathway (EIF5A, RSP24, and PPIB), endocytosis and cellular trafficking (VPS24, SNX12, and ARP2/3), cannabinoid receptor interacting (CRIP1), ubiquitination (SKP1), and oxidative stress response (NUDT3). Downregulated proteins were related to mitochondria function (ANT1), neuronal development (ELP1), protein glycosylation (RPN2), and endocytosis (VPS4). Our study shows that T2DM mice exhibit neurocognitive impairment, which is linked to the dysregulation of hippocampal proteins involved in various molecular pathways. These findings contribute to a better understanding of the pathophysiology of T2DM-related cognitive impairment and may identify molecular targets for drug development to treat T2DM-associated cognitive impairment conditions.
Collapse
Affiliation(s)
- Yoottana Janthakhin
- Department of Research and Applied Psychology, Faculty of Education, Burapha University, Chonburi, Thailand
| | - Sirikran Juntapremjit
- Department of Learning Management, Faculty of Education, Burapha University, Chonburi, Thailand
| | - Karin Hummel
- VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | | | - Sutin Kingtong
- Department of Biology, Faculty of Science, Burapha University, Chonburi, Thailand
| |
Collapse
|
5
|
Stauffer WT, Goodman AZ, Gallay PA. Cyclophilin inhibition as a strategy for the treatment of human disease. Front Pharmacol 2024; 15:1417945. [PMID: 39045055 PMCID: PMC11264201 DOI: 10.3389/fphar.2024.1417945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/14/2024] [Indexed: 07/25/2024] Open
Abstract
Cyclophilins (Cyps), characterized as peptidyl-prolyl cis-trans isomerases (PPIases), are highly conserved and ubiquitous, playing a crucial role in protein folding and cellular signaling. This review summarizes the biochemical pathways mediated by Cyps, including their involvement in pathological states such as viral replication, inflammation, and cancer progression, to underscore the therapeutic potential of Cyp inhibition. The exploration of Cyp inhibitors (CypI) in this review, particularly non-immunosuppressive cyclosporine A (CsA) derivatives, highlights their significance as therapeutic agents. The structural and functional nuances of CsA derivatives are examined, including their efficacy, mechanism of action, and the balance between therapeutic benefits and off-target effects. The landscape of CypI is evaluated to emphasize the clinical need for targeted approaches to exploit the complex biology of Cyps and to propose future directions for research that may enhance the utility of non-immunosuppressive CsA derivatives in treating diseases where Cyps play a key pathological role.
Collapse
Affiliation(s)
| | | | - Philippe A. Gallay
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
6
|
Kim G, Lee J, Ha J, Kang I, Choe W. Endoplasmic Reticulum Stress and Its Impact on Adipogenesis: Molecular Mechanisms Implicated. Nutrients 2023; 15:5082. [PMID: 38140341 PMCID: PMC10745682 DOI: 10.3390/nu15245082] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Endoplasmic reticulum (ER) stress plays a pivotal role in adipogenesis, which encompasses the differentiation of adipocytes and lipid accumulation. Sustained ER stress has the potential to disrupt the signaling of the unfolded protein response (UPR), thereby influencing adipogenesis. This comprehensive review illuminates the molecular mechanisms that underpin the interplay between ER stress and adipogenesis. We delve into the dysregulation of UPR pathways, namely, IRE1-XBP1, PERK and ATF6 in relation to adipocyte differentiation, lipid metabolism, and tissue inflammation. Moreover, we scrutinize how ER stress impacts key adipogenic transcription factors such as proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding proteins (C/EBPs) along with their interaction with other signaling pathways. The cellular ramifications include alterations in lipid metabolism, dysregulation of adipokines, and aged adipose tissue inflammation. We also discuss the potential roles the molecular chaperones cyclophilin A and cyclophilin B play in adipogenesis. By shedding light on the intricate relationship between ER stress and adipogenesis, this review paves the way for devising innovative therapeutic interventions.
Collapse
Affiliation(s)
- Gyuhui Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jiyoon Lee
- Department of Biological Sciences, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30609, USA;
| | - Joohun Ha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
Kucharski M, Wirjanata G, Nayak S, Boentoro J, Dziekan JM, Assisi C, van der Pluijm RW, Miotto O, Mok S, Dondorp AM, Bozdech Z. Short tandem repeat polymorphism in the promoter region of cyclophilin 19B drives its transcriptional upregulation and contributes to drug resistance in the malaria parasite Plasmodium falciparum. PLoS Pathog 2023; 19:e1011118. [PMID: 36696458 PMCID: PMC9901795 DOI: 10.1371/journal.ppat.1011118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 02/06/2023] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Resistance of the human malaria parasites, Plasmodium falciparum, to artemisinins is now fully established in Southeast Asia and is gradually emerging in Sub-Saharan Africa. Although nonsynonymous SNPs in the pfk13 Kelch-repeat propeller (KREP) domain are clearly associated with artemisinin resistance, their functional relevance requires cooperation with other genetic factors/alterations of the P. falciparum genome, collectively referred to as genetic background. Here we provide experimental evidence that P. falciparum cyclophilin 19B (PfCYP19B) may represent one putative factor in this genetic background, contributing to artemisinin resistance via its increased expression. We show that overexpression of PfCYP19B in vitro drives limited but significant resistance to not only artemisinin but also piperaquine, an important partner drug in artemisinin-based combination therapies. We showed that PfCYP19B acts as a negative regulator of the integrated stress response (ISR) pathway by modulating levels of phosphorylated eIF2α (eIF2α-P). Curiously, artemisinin and piperaquine affect eIF2α-P in an inverse direction that in both cases can be modulated by PfCYP19B towards resistance. Here we also provide evidence that the upregulation of PfCYP19B in the drug-resistant parasites appears to be maintained by a short tandem repeat (SRT) sequence polymorphism in the gene's promoter region. These results support a model that artemisinin (and other drugs) resistance mechanisms are complex genetic traits being contributed to by altered expression of multiple genes driven by genetic polymorphism at their promoter regions.
Collapse
Affiliation(s)
- Michal Kucharski
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Grennady Wirjanata
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sourav Nayak
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Josephine Boentoro
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Christina Assisi
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Rob W. van der Pluijm
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sachel Mok
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Arjen M. Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Peptide release, radical scavenging capacity, and antioxidant responses in intestinal cells are determined by soybean variety and gastrointestinal digestion under simulated conditions. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Hill SE, Esquivel AR, Ospina SR, Rahal LM, Dickey CA, Blair LJ. Chaperoning activity of the cyclophilin family prevents tau aggregation. Protein Sci 2022; 31:e4448. [PMID: 36305768 PMCID: PMC9597375 DOI: 10.1002/pro.4448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/18/2022] [Accepted: 09/11/2022] [Indexed: 11/09/2022]
Abstract
Tauopathies, such as Alzheimer's disease, are characterized by the misfolding and progressive accumulation of the microtubule associated protein tau. Chaperones, tasked with maintaining protein homeostasis, can become imbalanced with age and contribute to the progression of neurodegenerative disease. Cyclophilins are a promising pool of underinvestigated chaperones with peptidyl-prolyl isomerase activity that may play protective roles in regulating tau aggregation. Using a Thioflavin T fluorescence-based assay to monitor in vitro tau aggregation, all eight cyclophilins, which include PPIA to PPIH prevent tau aggregation, with PPIB, PPIC, PPID, and PPIH showing the greatest inhibition. The low thermal stability of PPID and the strong heparin binding of PPIB undermines the simplistic interpretation of reduced tau aggregation. In a cellular model of tau accumulation, all cyclophilins, except PPID and PPIH, reduce insoluble tau. PPIB, PPIC, PPIE, and PPIF also reduce soluble tau levels with PPIC exclusively protecting cells from tau seeding. Overall, this study demonstrates cyclophilins prevent tau fibril formation and many reduce cellular insoluble tau accumulation with PPIC having the greatest potential as a molecular tool to mitigate tau seeding and accumulation.
Collapse
Affiliation(s)
- Shannon E. Hill
- USF Health Byrd Alzheimer's InstituteUniversity of South FloridaTampaFloridaUSA
- Department of Molecular MedicineUniversity of South FloridaTampaFloridaUSA
| | - Abigail R. Esquivel
- USF Health Byrd Alzheimer's InstituteUniversity of South FloridaTampaFloridaUSA
- Department of Molecular MedicineUniversity of South FloridaTampaFloridaUSA
| | - Santiago Rodriguez Ospina
- USF Health Byrd Alzheimer's InstituteUniversity of South FloridaTampaFloridaUSA
- Department of Molecular MedicineUniversity of South FloridaTampaFloridaUSA
| | - Lauren M. Rahal
- USF Health Byrd Alzheimer's InstituteUniversity of South FloridaTampaFloridaUSA
- Department of Molecular MedicineUniversity of South FloridaTampaFloridaUSA
| | - Chad A. Dickey
- USF Health Byrd Alzheimer's InstituteUniversity of South FloridaTampaFloridaUSA
- Department of Molecular MedicineUniversity of South FloridaTampaFloridaUSA
| | - Laura J. Blair
- USF Health Byrd Alzheimer's InstituteUniversity of South FloridaTampaFloridaUSA
- Department of Molecular MedicineUniversity of South FloridaTampaFloridaUSA
- Research ServiceJames A. Haley Veterans HospitalTampaFloridaUSA
| |
Collapse
|
10
|
Pugh KW, Alnaed M, Brackett CM, Blagg BSJ. The biology and inhibition of glucose-regulated protein 94/gp96. Med Res Rev 2022; 42:2007-2024. [PMID: 35861260 PMCID: PMC10003671 DOI: 10.1002/med.21915] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022]
Abstract
The 94 kDa molecular chaperone, glucose-regulated protein 94 (Grp94), has garnered interest during the last decade due to its direct association with endoplasmic reticulum (ER) stress and disease. Grp94 belongs to the Hsp90 family of molecular chaperones and is a master regulator of ER homeostasis due to its ability to fold and stabilize proteins/receptors, and to chaperone misfolded proteins for degradation. Multiple studies have demonstrated that Grp94 knockdown or inhibition leads to the degradation of client protein substrates, which leads to disruption of disease-dependent signaling pathways. As a result, small molecule inhibitors of Grp94 have become a promising therapeutic approach to target a variety of disease states. Specifically, Grp94 has proven to be a promising target for cancer, glaucoma, immune-mediated inflammation, and viral infection. Moreover, Grp94-peptide complexes have been utilized effectively as adjuvants for vaccines against a variety of disease states. This work highlights the significance of Grp94 biology and the development of therapeutics that target this molecular chaperone in multiple disease states.
Collapse
Affiliation(s)
- Kyler W. Pugh
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Marim Alnaed
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Christopher M. Brackett
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Brian S. J. Blagg
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
11
|
Guo H, Zhuang K, Ding N, Hua R, Tang H, Wu Y, Yuan Z, Li T, He S. High-fat diet induced cyclophilin B enhances STAT3/lncRNA-PVT1 feedforward loop and promotes growth and metastasis in colorectal cancer. Cell Death Dis 2022; 13:883. [PMID: 36266267 PMCID: PMC9584950 DOI: 10.1038/s41419-022-05328-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 01/23/2023]
Abstract
High-fat diet (HFD) has been implicated to promote colorectal cancer (CRC). Recently, oncogene Cyclophilin B (CypB) is reported to be induced by cholesterol. However, the role of CypB in CRC carcinogenesis and metastasis associated with HFD remains unknown. In the present study, we showed that HFD-induced CypB enhances proliferation and metastasis through an inflammation-driven circuit, including Signal Transducer and Activator of Transcription 3 (STAT3)-triggered transcription of lncRNA-PVT1, and its binding with CypB that promotes activation of STAT3. CypB was found to be upregulated in CRC, which was correlated with elevated body mass index and poor prognosis. HFD induced CypB expression and proinflammatory cytokines in colon of mice. Besides, CypB restoration facilitated growth, invasion and metastasis in CRC cells both in vitro and in vivo. Moreover, RIP sequencing data identified lncRNA-PVT1 as a functional binding partner of CypB. Mechanistically, PVT1 increased the phosphorylation and nuclear translocation of STAT3 in response to IL-6, through directly interaction with CypB, which impedes the binding of Suppressors Of Cytokine Signalling 3 (SOCS3) to STAT3. Furthermore, STAT3 in turn activated PVT1 transcription through binding to its promoter, forming a regulatory loop. Finally, this CypB/STAT3/PVT1 axis was verified in TCGA datasets and CRC tissue arrays. Our data revealed that CypB linked HFD and CRC malignancy by enhancing the CypB/STAT3/PVT1 feedforward axis and activation of STAT3.
Collapse
Affiliation(s)
- Hanqing Guo
- grid.43169.390000 0001 0599 1243First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China ,grid.43169.390000 0001 0599 1243Department of Gastroenterology, Xi’an Central Hospital, College of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Kun Zhuang
- grid.43169.390000 0001 0599 1243Department of Gastroenterology, Xi’an Central Hospital, College of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Ning Ding
- grid.43169.390000 0001 0599 1243First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Rui Hua
- grid.43169.390000 0001 0599 1243First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Hailing Tang
- grid.43169.390000 0001 0599 1243Department of Gastroenterology, Xi’an Central Hospital, College of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Yue Wu
- grid.43169.390000 0001 0599 1243First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China ,grid.452438.c0000 0004 1760 8119Department of Cardiovascular Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zuyi Yuan
- grid.43169.390000 0001 0599 1243First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China ,grid.452438.c0000 0004 1760 8119Department of Cardiovascular Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ting Li
- grid.43169.390000 0001 0599 1243First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China ,grid.452438.c0000 0004 1760 8119Department of Cardiovascular Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shuixiang He
- grid.43169.390000 0001 0599 1243First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
12
|
Simón Serrano S, Tavecchio M, Mallik J, Grönberg A, Elmér E, Kifagi C, Gallay P, Hansson MJ, Massoumi R. Synergistic Effects of Sanglifehrin-Based Cyclophilin Inhibitor NV651 with Cisplatin in Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14194553. [PMID: 36230472 PMCID: PMC9559492 DOI: 10.3390/cancers14194553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC), commonly diagnosed at an advanced stage, is the most common primary liver cancer. Owing to a lack of effective HCC treatments and the commonly acquired chemoresistance, novel therapies need to be investigated. Cyclophilins-intracellular proteins with peptidyl-prolyl isomerase activity-have been shown to play a key role in therapy resistance and cell proliferation. Here, we aimed to evaluate changes in the gene expression of HCC cells caused by cyclophilin inhibition in order to explore suitable combination treatment approaches, including the use of chemoagents, such as cisplatin. Our results show that the novel cyclophilin inhibitor NV651 decreases the expression of genes involved in several pathways related to the cancer cell cycle and DNA repair. We evaluated the potential synergistic effect of NV651 in combination with other treatments used against HCC in cisplatin-sensitive cells. NV651 showed a synergistic effect in inhibiting cell proliferation, with a significant increase in intrinsic apoptosis in combination with the DNA crosslinking agent cisplatin. This combination also affected cell cycle progression and reduced the capacity of the cell to repair DNA in comparison with a single treatment with cisplatin. Based on these results, we believe that the combination of cisplatin and NV651 may provide a novel approach to HCC treatment.
Collapse
Affiliation(s)
- Sonia Simón Serrano
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, SE-223 63 Lund, Sweden
- Abliva AB, Medicon Village, Scheelevägen 2, SE-233 81 Lund, Sweden
| | - Michele Tavecchio
- Abliva AB, Medicon Village, Scheelevägen 2, SE-233 81 Lund, Sweden
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, SE-221 84 Lund, Sweden
| | - Josef Mallik
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, SE-223 63 Lund, Sweden
| | - Alvar Grönberg
- Abliva AB, Medicon Village, Scheelevägen 2, SE-233 81 Lund, Sweden
| | - Eskil Elmér
- Abliva AB, Medicon Village, Scheelevägen 2, SE-233 81 Lund, Sweden
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, SE-221 84 Lund, Sweden
| | - Chamseddine Kifagi
- NGS & OMICS Data Analysis (NODA) Consulting, Flöjtvägen 10b, SE-224 68 Lund, Sweden
| | - Philippe Gallay
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Magnus Joakim Hansson
- Abliva AB, Medicon Village, Scheelevägen 2, SE-233 81 Lund, Sweden
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, SE-221 84 Lund, Sweden
| | - Ramin Massoumi
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, SE-223 63 Lund, Sweden
- Correspondence: ; Tel.: +46-46-222-64-30
| |
Collapse
|
13
|
Sakono M. ER Endogenous Protein Complexed with Lectin Chaperones Calnexin/Calreticulin. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2119.1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Masafumi Sakono
- Department of Applied Chemistry, Faculty of Engineering, University of Toyama
| |
Collapse
|
14
|
Sakono M. ER Endogenous Protein Complexed with Lectin Chaperones Calnexin/Calreticulin. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2119.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Masafumi Sakono
- Department of Applied Chemistry, Faculty of Engineering, University of Toyama
| |
Collapse
|
15
|
Dsouza VL, Shivakumar AB, Kulal N, Gangadharan G, Kumar D, Kabekkodu SP. Phytochemical based Modulation of Endoplasmic Reticulum Stress in Alzheimer's Disease. Curr Top Med Chem 2022; 22:1880-1896. [PMID: 35761490 DOI: 10.2174/1568026622666220624155357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/01/2022] [Accepted: 05/10/2022] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a severe progressive neurodegenerative condition that shows misfolding and aggregation of proteins contributing to a decline in cognitive function involving multiple behavioral, neuropsychological, and cognitive domains. Multiple epi (genetic) changes and environmental agents have been shown to play an active role in ER stress induction. Neurodegeneration due to endoplasmic reticulum (ER) stress is considered one of the major underlying causes of AD. ER stress may affect essential cellular functions related to biosynthesis, assembly, folding, and post-translational modification of proteins leading to neuronal inflammation to promote AD pathology. Treatment with phytochemicals has been shown to delay the onset and disease progression and improve the well-being of patients by targeting multiple signaling pathways in AD. Phytochemical's protective effect against neuronal damage in AD pathology may be associated with the reversal of ER stress and unfolding protein response by enhancing the antioxidant and anti-inflammatory properties of the neuronal cells. Hence, pharmacological interventions using phytochemicals can be a potential strategy to reverse ER stress and improve AD management. Towards this, the present review discusses the role of phytochemicals in preventing ER stress in the pathology of AD.
Collapse
Affiliation(s)
- Venzil Lavie Dsouza
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Apoorva Bettagere Shivakumar
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Nikshitha Kulal
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Gireesh Gangadharan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune, 411038, Maharashtra, India
- Department of Entomology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
- UC Davis Comprehensive Cancer Centre, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| |
Collapse
|
16
|
Simón Serrano S, Tavecchio M, Grönberg A, Sime W, Jemaà M, Moss S, Gregory MA, Gallay P, Elmér E, Hansson MJ, Massoumi R. Novel Cyclophilin Inhibitor Decreases Cell Proliferation and Tumor Growth in Models of Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13123041. [PMID: 34207224 PMCID: PMC8234462 DOI: 10.3390/cancers13123041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cyclophilins, a family of proteins with peptidyl prolyl isomerase activity, have been found to be overexpressed in several cancers, including hepatocellular carcinoma (HCC), and their expression is correlated to a poor prognosis. Cyclophilins play an important role in proliferation and cancer resistance in HCC. In this study, we evaluated the potential capacity of cyclophilin inhibitors as a treatment against HCC. We showed that our selected cyclophilin inhibitor, NV651, was able to decrease cell proliferation in vitro and induce an accumulation of cells in the G2/M phase due to a mitotic block. We could also confirm its capacity to decrease tumor growths in mice and its safety in vitro as well as in vivo. Abstract Hepatocellular carcinoma (HCC), the most common primary liver cancer, is usually diagnosed in its late state. Tyrosine kinase inhibitors such as sorafenib and regorafenib are one of the few treatment options approved for advanced HCC and only prolong the patient’s life expectancy by a few months. Therefore, there is a need for novel effective treatments. Cyclophilins are intracellular proteins that catalyze the cis/trans isomerization of peptide bonds at proline residues. Cyclophilins are known to be overexpressed in HCC, affecting therapy resistance and cell proliferation. In the present study, we explored the potential of cyclophilin inhibitors as new therapeutic options for HCC in vitro and in vivo. Our results showed that the novel cyclophilin inhibitor, NV651, was able to significantly decrease proliferation in a diverse set of HCC cell lines. The exposure of HCC cells to NV651 caused an accumulation of cells during mitosis and consequent accumulation in the G2/M phase of the cell cycle. NV651 reduced tumor growth in vivo using an HCC xenograft model without affecting the body weights of the animals. The safety aspects of NV651 were also confirmed in primary human hepatocytes without any cytotoxic effects. Based on the results obtained in this study, we propose NV651 as a potential treatment strategy for HCC.
Collapse
Affiliation(s)
- Sonia Simón Serrano
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, 223 63 Lund, Sweden; (S.S.S.); (W.S.); (M.J.)
- Abliva AB, Medicon Village, Scheelevägen 2, SE-233 81 Lund, Sweden; (M.T.); (A.G.); (E.E.); (M.J.H.)
| | - Michele Tavecchio
- Abliva AB, Medicon Village, Scheelevägen 2, SE-233 81 Lund, Sweden; (M.T.); (A.G.); (E.E.); (M.J.H.)
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, SE-221 84 Lund, Sweden
| | - Alvar Grönberg
- Abliva AB, Medicon Village, Scheelevägen 2, SE-233 81 Lund, Sweden; (M.T.); (A.G.); (E.E.); (M.J.H.)
| | - Wondossen Sime
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, 223 63 Lund, Sweden; (S.S.S.); (W.S.); (M.J.)
| | - Mohamed Jemaà
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, 223 63 Lund, Sweden; (S.S.S.); (W.S.); (M.J.)
| | - Steven Moss
- Isomerase Therapeutics Ltd., Suite 9, Science Village, Chesterford Research Park, Cambridge CB10 1XL, UK; (S.M.); (M.A.G.)
| | - Matthew Alan Gregory
- Isomerase Therapeutics Ltd., Suite 9, Science Village, Chesterford Research Park, Cambridge CB10 1XL, UK; (S.M.); (M.A.G.)
| | - Philippe Gallay
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA;
| | - Eskil Elmér
- Abliva AB, Medicon Village, Scheelevägen 2, SE-233 81 Lund, Sweden; (M.T.); (A.G.); (E.E.); (M.J.H.)
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, SE-221 84 Lund, Sweden
| | - Magnus Joakim Hansson
- Abliva AB, Medicon Village, Scheelevägen 2, SE-233 81 Lund, Sweden; (M.T.); (A.G.); (E.E.); (M.J.H.)
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, SE-221 84 Lund, Sweden
| | - Ramin Massoumi
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, 223 63 Lund, Sweden; (S.S.S.); (W.S.); (M.J.)
- Correspondence: ; Tel.: +46-46-222-64-30
| |
Collapse
|
17
|
Liang L, Lin R, Xie Y, Lin H, Shao F, Rui W, Chen H. The Role of Cyclophilins in Inflammatory Bowel Disease and Colorectal Cancer. Int J Biol Sci 2021; 17:2548-2560. [PMID: 34326693 PMCID: PMC8315013 DOI: 10.7150/ijbs.58671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Cyclophilins (Cyps) is a kind of ubiquitous protein family in organisms, which has biological functions such as promoting intracellular protein folding and participating in the pathological processes of inflammation and tumor. Inflammatory bowel disease (IBD) and colorectal cancer (CRC) are two common intestinal diseases, but the etiology and pathogenesis of these two diseases are still unclear. IBD and CRC are closely associated, IBD has always been considered as one of the main risks of CRC. However, the role of Cyps in these two related intestinal diseases is rarely studied and reported. In this review, the expression of CypA, CypB and CypD in IBD, especially ulcerative colitis (UC), and CRC, their relationship with the development of these two intestinal diseases, as well as the possible pathogenesis, were briefly summarized, so as to provide modest reference for clinical researches and treatments in future.
Collapse
Affiliation(s)
- Lifang Liang
- Department of Pathogenic Biology and Immunology, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Rongxiao Lin
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Ying Xie
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Huaqing Lin
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- GDPU-HKU Zhongshan Biomedical Innovation Plaform, Zhongshan 528437, Guangdong Province, PR China
- Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Fangyuan Shao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Wen Rui
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, Guangdong Province, PR China
- Guangdong Cosmetics Engineering & Technology Research Center,Guangzhou 510006, Guangdong Province, PR China
| | - Hongyuan Chen
- Department of Pathogenic Biology and Immunology, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- GDPU-HKU Zhongshan Biomedical Innovation Plaform, Zhongshan 528437, Guangdong Province, PR China
- Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, Guangdong Province, PR China
- Guangdong Cosmetics Engineering & Technology Research Center,Guangzhou 510006, Guangdong Province, PR China
| |
Collapse
|
18
|
Lee YS, Jeong S, Kim KY, Yoon JS, Kim S, Yoon KS, Ha J, Kang I, Choe W. Honokiol inhibits hepatoma carcinoma cell migration through downregulated Cyclophilin B expression. Biochem Biophys Res Commun 2021; 552:44-51. [PMID: 33743348 DOI: 10.1016/j.bbrc.2021.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fifth common types of cancer with poor prognosis in the world. Honokiol (HNK), a natural biphenyl compound derived from the magnolia plant, has been reported to exert anticancer effects, but its mechanism has not been elucidated exactly. In the present study, HNK treatment significantly suppressed the migration ability of HepG2 and Hep3B human hepatocellular carcinoma. The treatment reduced the expression levels of the genes associated with cell migration, such as S100A4, MMP-2, MMP-9 and Vimentin. Interestingly, treatment with HNK significantly reduced the expression level of Cyclophilin B (CypB) which stimulates cancer cell migration. However, overexpressed CypB abolished HNK-mediated suppression of cell migration, and reversed the apoptotic effects of HNK. Altogether, we concluded that the suppression of migration activities by HNK was through down-regulated CypB in HCC. These finding suggest that HNK may be a promising candidate for HCC treatment via regulation of CypB.
Collapse
Affiliation(s)
- Young-Seok Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Suyun Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ki-Yoon Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ji-Su Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sungsoo Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Joohun Ha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
19
|
Shin S, Lee J, Kwon Y, Park KS, Jeong JH, Choi SJ, Bang SI, Chang JW, Lee C. Comparative Proteomic Analysis of the Mesenchymal Stem Cells Secretome from Adipose, Bone Marrow, Placenta and Wharton's Jelly. Int J Mol Sci 2021; 22:ijms22020845. [PMID: 33467726 PMCID: PMC7829982 DOI: 10.3390/ijms22020845] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have the potential to be a viable therapy against various diseases due to their paracrine effects, such as secretion of immunomodulatory, trophic and protective factors. These cells are known to be distributed within various organs and tissues. Although they possess the same characteristics, MSCs from different sources are believed to have different secretion potentials and patterns, which may influence their therapeutic effects in disease environments. We characterized the protein secretome of adipose (AD), bone marrow (BM), placenta (PL), and Wharton’s jelly (WJ)-derived human MSCs by using conditioned media and analyzing the secretome by mass spectrometry and follow-up bioinformatics. Each MSC secretome profile had distinct characteristics depending on the source. However, the functional analyses of the secretome from different sources showed that they share similar characteristics, such as cell migration and negative regulation of programmed cell death, even though differences in the composition of the secretome exist. This study shows that the secretome of fetal-derived MSCs, such as PL and WJ, had a more diverse composition than that of AD and BM-derived MSCs, and it was assumed that their therapeutic potential was greater because of these properties.
Collapse
Affiliation(s)
- Sungho Shin
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Korea; (S.S.); (Y.K.)
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea;
| | - Jeongmin Lee
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea;
- R&D Center, ENCell Co., Ltd., Seoul 06351, Korea
| | - Yumi Kwon
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Korea; (S.S.); (Y.K.)
| | - Kang-Sik Park
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea;
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Jae-Hoon Jeong
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea;
| | - Suk-Joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Sa Ik Bang
- Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Jong Wook Chang
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea;
- R&D Center, ENCell Co., Ltd., Seoul 06351, Korea
- Correspondence: (J.W.C.); (C.L.)
| | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Korea; (S.S.); (Y.K.)
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea;
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
- Correspondence: (J.W.C.); (C.L.)
| |
Collapse
|
20
|
Gopisetty MK, Adamecz DI, Nagy FI, Baji Á, Lathira V, Szabó MR, Gáspár R, Csont T, Frank É, Kiricsi M. Androstano-arylpyrimidines: Novel small molecule inhibitors of MDR1 for sensitizing multidrug-resistant breast cancer cells. Eur J Pharm Sci 2021; 156:105587. [PMID: 33039566 DOI: 10.1016/j.ejps.2020.105587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/07/2020] [Accepted: 10/04/2020] [Indexed: 11/19/2022]
Abstract
Apart from the numerous physiological functions of MDR1, it is widely known for its role in granting multidrug resistance to cancer cells. This ATP-driven transmembrane protein exports a wide range of chemotherapeutic agents from cancer cells, thereby deterring drugs to reach effective intracellular concentrations. Thus, inhibition of MDR1 expression or function would be a viable option to enhance the accumulation of cytotoxic agents in cancer cells which in turn could improve significantly the success rate of chemotherapy. Although, several pharmacological inhibitors have been designed and tested in the past, due to their unsuccessful translation to clinical application, there is still ongoing research to find suitable compounds to manipulate MDR1 function and potentially overturn multidrug resistance. In the present study, we demonstrate that novel DHT-derived A-ring-fused arylpyrimidinone derivatives, based on their acetylation status, can inhibit MDR1 efflux activity in MDR1 overexpressing multidrug-resistant breast adenocarcinoma cells. Strikingly, all derivatives carrying an acetoxy group on the sterane d-ring were highly potent in hindering Rhodamine 123 export via MDR1, however deacetylated molecules were not capable to exert a similar effect on multidrug resistant cancer cells. The possible molecular and cellular mechanisms underlying the efflux pump inhibiting function of acetylated derivatives were dissected using the most potent MDR1 inhibitor, compound 10g and its deacetylated counterpart (11g). Importantly, molecule 10g was able to sensitize drug resistant cells to doxorubicin-induced apoptosis, further verifying the highly advantageous nature of efflux pump inhibition upon chemotherapy. Our experiments also revealed that neither mitochondrial damage, nor MDR1 gene regulation could lay behind the MDR1 inhibitory function of compound 10g. Molecular docking studies were carried out to analyze the interactions of 10g and 11g with MDR1, however no significant differences in their binding properties were observed. Nevertheless, our results indicate that the ER stress inducing potential of molecule 10g might be the fundamental mechanism behind its inhibitory action on MDR1. With additional studies, our work can yield a structural platform for a new generation of small molecule MDR1 inhibitors to sensitize drug resistant cancer cells and at the same time it elucidates the exemplary involvement of endoplasmic reticulum stress in the molecular events to defeat multidrug resistance.
Collapse
Affiliation(s)
- Mohana Krishna Gopisetty
- Department of Biochemistry and Molecular Biology, Doctoral School of Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Dóra Izabella Adamecz
- Department of Biochemistry and Molecular Biology, Doctoral School of Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Ferenc István Nagy
- Department of Biochemistry and Molecular Biology, Doctoral School of Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Ádám Baji
- Department of Organic Chemistry, University of Szeged, Dóm tér 8., Szeged H-6720, Hungary
| | - Vasiliki Lathira
- School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
| | - Márton Richárd Szabó
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Institute of Biochemistry, Interdisciplinary Center of Excellence, University of Szeged, Dóm tér 9., Szeged H-6720, Hungary
| | - Renáta Gáspár
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Institute of Biochemistry, Interdisciplinary Center of Excellence, University of Szeged, Dóm tér 9., Szeged H-6720, Hungary
| | - Tamás Csont
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Institute of Biochemistry, Interdisciplinary Center of Excellence, University of Szeged, Dóm tér 9., Szeged H-6720, Hungary
| | - Éva Frank
- Department of Organic Chemistry, University of Szeged, Dóm tér 8., Szeged H-6720, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, Doctoral School of Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary.
| |
Collapse
|
21
|
Yun HR, Jo YH, Kim J, Nguyen NNY, Shin Y, Kim SS, Choi TG. Palmitoyl Protein Thioesterase 1 Is Essential for Myogenic Autophagy of C2C12 Skeletal Myoblast. Front Physiol 2020; 11:569221. [PMID: 33178040 PMCID: PMC7593845 DOI: 10.3389/fphys.2020.569221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/10/2020] [Indexed: 01/20/2023] Open
Abstract
Skeletal muscle differentiation is an essential process for the maintenance of muscle development and homeostasis. Reactive oxygen species (ROS) are critical signaling molecules involved in muscle differentiation. Palmitoyl protein thioesterase 1 (PPT1), a lysosomal enzyme, is involved in removing thioester-linked fatty acid groups from modified cysteine residues in proteins. However, the role of PPT1 in muscle differentiation remains to be elucidated. Here, we found that PPT1 plays a critical role in the differentiation of C2C12 skeletal myoblasts. The expression of PPT1 gradually increased in response to mitochondrial ROS (mtROS) during muscle differentiation, which was attenuated by treatment with antioxidants. Moreover, we revealed that PPT1 transactivation occurs through nuclear factor erythroid 2-regulated factor 2 (Nrf2) binding the antioxidant response element (ARE) in its promoter region. Knockdown of PPT1 with specific small interference RNA (siRNA) disrupted lysosomal function by increasing its pH. Subsequently, it caused excessive accumulation of autophagy flux, thereby impairing muscle fiber formation. In conclusion, we suggest that PPT1 is factor a responsible for myogenic autophagy in differentiating C2C12 myoblasts.
Collapse
Affiliation(s)
- Hyeong Rok Yun
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, South Korea
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
| | - Yong Hwa Jo
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Jieun Kim
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Ngoc Ngo Yen Nguyen
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Yoonhwa Shin
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, South Korea
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
| | - Sung Soo Kim
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Sung Soo Kim,
| | - Tae Gyu Choi
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
- Tae Gyu Choi,
| |
Collapse
|
22
|
Kozlov G, Gehring K. Calnexin cycle - structural features of the ER chaperone system. FEBS J 2020; 287:4322-4340. [PMID: 32285592 PMCID: PMC7687155 DOI: 10.1111/febs.15330] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/31/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER) is the major folding compartment for secreted and membrane proteins and is the site of a specific chaperone system, the calnexin cycle, for folding N-glycosylated proteins. Recent structures of components of the calnexin cycle have deepened our understanding of quality control mechanisms and protein folding pathways in the ER. In the calnexin cycle, proteins carrying monoglucosylated glycans bind to the lectin chaperones calnexin and calreticulin, which recruit a variety of function-specific chaperones to mediate protein disulfide formation, proline isomerization, and general protein folding. Upon trimming by glucosidase II, the glycan without an inner glucose residue is no longer able to bind to the lectin chaperones. For proteins that have not yet folded properly, the enzyme UDP-glucose:glycoprotein glucosyltransferase (UGGT) acts as a checkpoint by adding a glucose back to the N-glycan. This allows the misfolded proteins to re-associate with calnexin and calreticulin for additional rounds of chaperone-mediated refolding and prevents them from exiting the ERs. Here, we review progress in structural studies of the calnexin cycle, which reveal common features of how lectin chaperones recruit function-specific chaperones and how UGGT recognizes misfolded proteins.
Collapse
Affiliation(s)
- Guennadi Kozlov
- From the Department of Biochemistry & Centre for Structural BiologyMcGill UniversityMontréalQCCanada
| | - Kalle Gehring
- From the Department of Biochemistry & Centre for Structural BiologyMcGill UniversityMontréalQCCanada
| |
Collapse
|
23
|
Mezera MA, Li W, Edwards AJ, Koch DJ, Beard AD, Wiltbank MC. Identification of stable genes in the corpus luteum of lactating Holstein cows in pregnancy and luteolysis: Implications for selection of reverse-transcription quantitative PCR reference genes. J Dairy Sci 2020; 103:4846-4857. [PMID: 32229123 DOI: 10.3168/jds.2019-17526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/10/2020] [Indexed: 12/20/2022]
Abstract
In lactating dairy cattle, the corpus luteum (CL) is a dynamic endocrine tissue vital for pregnancy maintenance, fertility, and cyclicity. Understanding processes underlying luteal physiology is therefore necessary to increase reproductive efficiency in cattle. A common technique for investigating luteal physiology is reverse-transcription quantitative PCR (RT-qPCR), a valuable tool for quantifying gene expression. However, reference-gene-based RT-qPCR quantification methods require utilization of stably expressed genes to accurately assess mRNA expression. Historically, selection of reference genes in cattle has relied on subjective selection of a small pool of reference genes, many of which may have significant expression variation among different tissues or physiologic states. This is particularly concerning in dynamic tissues such as the CL, with its capacity for rapid physiologic changes during luteolysis, and likely in the less characterized period of CL maintenance during pregnancy. Thus, there is a clear need to identify reference genes well suited for the bovine CL over a wide range of physiological states. Whole-transcriptome RNA sequencing stands as an effective method to identify new reference genes by enabling the assessment of the expression profile of the entire pool of mRNA transcripts. We report the identification of 13 novel putative reference genes using RNA sequencing in the bovine CL throughout early pregnancy and luteolysis: RPL4, UQCRFS1, COX4I1, RPS4X, SSR3, CST3, ZNF266, CDC42, CD63, HIF1A, YWHAE, EIF3E, and PPIB. Independent RT-qPCR analyses were conducted confirming expression stability in another set of CL tissues from pregnancy and regression, with analyses performed for 3 groups of samples: (1) all samples, (2) samples from pregnancy alone, and (3) samples throughout the process of CL regression. Seven genes were found to be more stable in all states than 2 traditional reference genes (ACTB and GAPDH): RPS4X, COX4I1, PPIB, SSR3, RPL4, YWHAE, and CDC42. When CL tissues from pregnant animals alone were analyzed, CST3, HIF1A, and CD63 were also identified as more stable than ACTB and GAPDH. Identification of these new reference genes will aid in accurate normalization of RT-qPCR results, contributing to proper interpretation of gene expression relevant to luteal physiology. Furthermore, our analysis sheds light on the effects of luteolysis and pregnancy on the stability of gene expression in the bovine CL.
Collapse
Affiliation(s)
- M A Mezera
- Department of Dairy Science, University of Wisconsin, Madison 53706; Endocrinology and Reproductive Physiology Program, University of Wisconsin, Madison 53706
| | - W Li
- USDA Dairy Forage Research Center, Madison, WI 53706.
| | - A J Edwards
- USDA Dairy Forage Research Center, Madison, WI 53706
| | - D J Koch
- USDA Dairy Forage Research Center, Madison, WI 53706
| | - A D Beard
- Department of Dairy Science, University of Wisconsin, Madison 53706; Endocrinology and Reproductive Physiology Program, University of Wisconsin, Madison 53706
| | - M C Wiltbank
- Department of Dairy Science, University of Wisconsin, Madison 53706
| |
Collapse
|
24
|
Lizák B, Birk J, Zana M, Kosztyi G, Kratschmar DV, Odermatt A, Zimmermann R, Geiszt M, Appenzeller-Herzog C, Bánhegyi G. Ca 2+ mobilization-dependent reduction of the endoplasmic reticulum lumen is due to influx of cytosolic glutathione. BMC Biol 2020; 18:19. [PMID: 32101139 PMCID: PMC7043043 DOI: 10.1186/s12915-020-0749-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/11/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The lumen of the endoplasmic reticulum (ER) acts as a cellular Ca2+ store and a site for oxidative protein folding, which is controlled by the reduced glutathione (GSH) and glutathione-disulfide (GSSG) redox pair. Although depletion of luminal Ca2+ from the ER provokes a rapid and reversible shift towards a more reducing poise in the ER, the underlying molecular basis remains unclear. RESULTS We found that Ca2+ mobilization-dependent ER luminal reduction was sensitive to inhibition of GSH synthesis or dilution of cytosolic GSH by selective permeabilization of the plasma membrane. A glutathione-centered mechanism was further indicated by increased ER luminal glutathione levels in response to Ca2+ efflux. Inducible reduction of the ER lumen by GSH flux was independent of the Ca2+-binding chaperone calreticulin, which has previously been implicated in this process. However, opening the translocon channel by puromycin or addition of cyclosporine A mimicked the GSH-related effect of Ca2+ mobilization. While the action of puromycin was ascribable to Ca2+ leakage from the ER, the mechanism of cyclosporine A-induced GSH flux was independent of calcineurin and cyclophilins A and B and remained unclear. CONCLUSIONS Our data strongly suggest that ER influx of cytosolic GSH, rather than inhibition of local oxidoreductases, is responsible for the reductive shift upon Ca2+ mobilization. We postulate the existence of a Ca2+- and cyclosporine A-sensitive GSH transporter in the ER membrane. These findings have important implications for ER redox homeostasis under normal physiology and ER stress.
Collapse
Affiliation(s)
- Beáta Lizák
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary.
| | - Julia Birk
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Melinda Zana
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- "Momentum" Peroxidase Enzyme Research Group of the Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergely Kosztyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Denise V Kratschmar
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, 66421, Homburg, Germany
| | - Miklós Geiszt
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- "Momentum" Peroxidase Enzyme Research Group of the Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary
| | - Christian Appenzeller-Herzog
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
- University Medical Library, University of Basel, Spiegelgasse 5, 4051, Basel, Switzerland.
| | - Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
25
|
Teng MR, Huang JA, Zhu ZT, Li H, Shen JF, Chen Q. Cyclophilin B promotes cell proliferation, migration, invasion and angiogenesis via regulating the STAT3 pathway in non-small cell lung cancer. Pathol Res Pract 2019; 215:152417. [DOI: 10.1016/j.prp.2019.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/29/2019] [Accepted: 04/16/2019] [Indexed: 10/27/2022]
|
26
|
Gómez-Fernández P, Urtasun A, Astobiza I, Mena J, Alloza I, Vandenbroeck K. Pharmacological Targeting of the ER-Resident Chaperones GRP94 or Cyclophilin B Induces Secretion of IL-22 Binding Protein Isoform-1 (IL-22BPi1). Int J Mol Sci 2019; 20:ijms20102440. [PMID: 31108847 PMCID: PMC6566634 DOI: 10.3390/ijms20102440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 01/05/2023] Open
Abstract
Of the three interleukin-22 binding protein (IL-22BP) isoforms produced by the human IL22RA2 gene, IL-22BPi2 and IL-22BPi3 are capable of neutralizing IL-22. The longest isoform, IL-22BPi1, does not bind IL-22, is poorly secreted, and its retention within the endoplasmic reticulum (ER) is associated with induction of an unfolded protein response (UPR). Therapeutic modulation of IL-22BPi2 and IL-22BPi3 production may be beneficial in IL-22-dependent disorders. Recently, we identified the ER chaperones GRP94 and cyclophilin B in the interactomes of both IL-22BPi1 and IL-22BPi2. In this study, we investigated whether secretion of the IL-22BP isoforms could be modulated by pharmacological targeting of GRP94 and cyclophilin B, either by means of geldanamycin, that binds to the ADP/ATP pocket shared by HSP90 paralogs, or by cyclosporin A, which causes depletion of ER cyclophilin B levels through secretion. We found that geldanamycin and its analogs did not influence secretion of IL-22BPi2 or IL-22BPi3, but significantly enhanced intracellular and secreted levels of IL-22BPi1. The secreted protein was heterogeneously glycosylated, with both high-mannose and complex-type glycoforms present. In addition, cyclosporine A augmented the secretion of IL-22BPi1 and reduced that of IL-22BPi2 and IL-22BPi3. Our data indicate that the ATPase activity of GRP94 and cyclophilin B are instrumental in ER sequestration and degradation of IL-22BPi1, and that blocking these factors mobilizes IL-22BPi1 toward the secretory route.
Collapse
Affiliation(s)
- Paloma Gómez-Fernández
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48490 Leioa, Spain.
| | - Andoni Urtasun
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48490 Leioa, Spain.
| | - Ianire Astobiza
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48490 Leioa, Spain.
| | - Jorge Mena
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48490 Leioa, Spain.
| | - Iraide Alloza
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48490 Leioa, Spain.
| | - Koen Vandenbroeck
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48490 Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
27
|
Feng SQ, Zong SY, Liu JX, Chen Y, Xu R, Yin X, Zhao R, Li Y, Luo TT. VEGF Antagonism Attenuates Cerebral Ischemia/Reperfusion-Induced Injury via Inhibiting Endoplasmic Reticulum Stress-Mediated Apoptosis. Biol Pharm Bull 2019; 42:692-702. [PMID: 30828041 DOI: 10.1248/bpb.b18-00628] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endoplasmic reticulum (ER) stress-mediated apoptosis pathway is considered to play a vital role in mediating stroke and other cerebrovascular diseases. Previous studies have showed that vascular endothelial growth factor (VEGF) antagonism reduced cerebral ischemic-reperfusion (CI/R) damage, but whether attenuation of ER stress-induced apoptosis is contributing to its mechanisms remains elusive. Our study aimed to investigate the protective effect of VEGF antagonism on CI/R-induced injury. First, oxygen-glucose deprivation and re-oxygenation (OGD/R) BEND3 cell model was constructed to estimate small interfering RNA (siRNA)-VEGF on damage of endothelial cells. Next, in animal model, CI/R mice were induced by middle cerebral artery occlusion (MCAO) for 2 h followed by 24 h reperfusion to investigate cerebral tissue damage. For treatment group, mice received 100 µg/kg anti-VEGF antibodies at 30 min before MCAO, followed by 24 h reperfusion. Our findings demonstrated that pre-administration of siRNA-VEGF before OGD/R changed the biological characteristics of BEND3 cells, reversed the levels of X-box binding protein-1 (XBP-1) and glucose-regulated protein 78 (GRP78), showing siRNA-VEGF attenuated, at least in part, the oxidative damage in OGD/R cell by down-regulating ER stress. In mice experiment, pre-administration of anti-VEGF antibody reduced the brain infarct volume and edema extent and improved neurological scores outcome of CI/R injury mice. Pathological and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining results also confirmed this protective effect. The expressions of VEGF, CATT/EBP homologous protein (CHOP), inositol requiring enzyme 1α (IRE-1α), and cleaved-caspase12 and c-jun N-terminal kinase (JNK) phosphorylation were also prominently decreased. These results suggested that inhibition of endogenous VEGF attenuates CI/R-induced injury via inhibiting ER stress-mediated apoptosis.
Collapse
Affiliation(s)
- Shu-Qing Feng
- Department of Ultrasound, The First People's Hospital of Yunnan Province.,Department of Ultrasound, The Affiliated Hospital of Kunming University of Science and Technology
| | - Shao-Yun Zong
- Department of Ultrasound, The First People's Hospital of Yunnan Province.,Department of Ultrasound, The Affiliated Hospital of Kunming University of Science and Technology
| | - Jia-Xin Liu
- Medical School of Kunming University of Science and Technology
| | - Yang Chen
- Department of Ultrasound, The First People's Hospital of Yunnan Province.,Department of Ultrasound, The Affiliated Hospital of Kunming University of Science and Technology
| | - Rong Xu
- Department of Ultrasound, The First People's Hospital of Yunnan Province.,Department of Ultrasound, The Affiliated Hospital of Kunming University of Science and Technology
| | - Xin Yin
- Department of Ultrasound, The First People's Hospital of Yunnan Province.,Department of Ultrasound, The Affiliated Hospital of Kunming University of Science and Technology
| | - Rong Zhao
- Yunnan province Hospital of Traditional Chinese Medical
| | - Ying Li
- Department of Rehabilitation, The First People's Hospital of Yunnan Province.,Department of Rehabilitation, The Affiliated Hospital of Kunming University of Science and Technology
| | - Ting-Ting Luo
- Department of Ultrasound, The First People's Hospital of Yunnan Province.,Department of Ultrasound, The Affiliated Hospital of Kunming University of Science and Technology
| |
Collapse
|
28
|
Yuan J, Mo H, Luo J, Zhao S, Liang S, Jiang Y, Zhang M. PPARα activation alleviates damage to the cytoskeleton during acute myocardial ischemia/reperfusion in rats. Mol Med Rep 2018; 17:7218-7226. [PMID: 29568903 PMCID: PMC5928683 DOI: 10.3892/mmr.2018.8771] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023] Open
Abstract
The cytoskeleton serves an important role in maintaining cellular morphology and function, and it is a substrate of calpain during myocardial ischemia/reperfusion (I/R) injury (MIRI). Calpain may be activated by endoplasmic reticulum (ER) stress during MIRI. The activation of peroxisome proliferator-activated receptor α (PPARα) may inhibit ischemia/reperfusion damage by regulating stress reactions. The present study aimed to determine whether the activation of PPARα protects against MIRI-induced cytoskeletal degradation, and investigated the underlying mechanism involved. Wistar rats were pretreated with or without fenofibrate and subjected to left anterior descending coronary artery ligation for 45 min, followed by 120 min of reperfusion. Calpain activity and the expression of PPARα, desmin and ER stress parameters were evaluated. Electrocardiography was performed and cardiac function was evaluated. The ultrastructure was observed under transmission electron microscopy. I/R significantly induced damage to the cytoskeleton in cardiomyocytes and cardiac dysfunction, all of which were improved by PPARα activation. In addition, I/R increased ER stress and calpain activity, which were significantly decreased in fenofibrate-pretreated rat heart tissue. The results suggested that PPARα activation may exert a protective effect against I/R in the myocardium, at least in part via ER stress inhibition. Suppression of ER stress may be an effective therapeutic target for protecting the I/R myocardium.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hongdan Mo
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jing Luo
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Suhong Zhao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shuang Liang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yu Jiang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Maomao Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
29
|
Wang B, Lin L, Wang H, Guo H, Gu Y, Ding W. Overexpressed cyclophilin B suppresses aldosterone-induced proximal tubular cell injury both in vitro and in vivo. Oncotarget 2018; 7:69309-69320. [PMID: 27732567 PMCID: PMC5342479 DOI: 10.18632/oncotarget.12503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/28/2016] [Indexed: 11/25/2022] Open
Abstract
The renin-angiotensin-aldosterone system (RAAS) is overactivated in patients with chronic kidney disease. Oxidative stress and endoplasmic reticulum stress (ERS) are two major mechanisms responsible for aldosterone-induced kidney injury. Cyclophilin (CYP) B is a chaperone protein that accelerates the rate of protein folding through its peptidyl-prolyl cis-trans isomerase (PPIase) activity. We report that overexpression of wild-type CYPB attenuated aldosterone-induced oxidative stress (evidenced by reduced production of reactive oxygen species and improved mitochondrial dysfunction), ERS (indicated by reduced expression of the ERS markers glucose-regulated protein 78 [GRP78] and C/-EBP homologous protein [CHOP]), and tubular cell apoptosis in comparison with aldosterone-induced human kidney-2 (HK-2) cells. The in vivo study also yielded similar results. Hence, CYPB performs a crucial function in protecting cells against aldosterone-induced oxidative stress, ERS, and tubular cell injury via its PPIase activity.
Collapse
Affiliation(s)
- Bin Wang
- Division of Nephrology, Huashan Hospital and Institute of Nephrology, Fudan University, Xuhui, Shanghai, P.R. China
| | - Lilu Lin
- Division of Nephrology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, P.R. China
| | - Haidong Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, P.R. China
| | - Honglei Guo
- Division of Nephrology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, P.R. China
| | - Yong Gu
- Division of Nephrology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, P.R. China
| | - Wei Ding
- Division of Nephrology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, P.R. China
| |
Collapse
|
30
|
Gao X, Luo Z, Xiang T, Wang K, Li J, Wang P. Dihydroartemisinin Induces Endoplasmic Reticulum Stress-Mediated Apoptosis in HepG2 Human Hepatoma Cells. TUMORI JOURNAL 2018; 97:771-80. [DOI: 10.1177/030089161109700615] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Aims and Background Previous studies showed that dihydroartemisinin (DHA) possessed antitumor activity in many human tumor cells through the induction of apoptosis. The aim of this study was to investigate the effects of DHA on apoptosis in the human hepatocellular carcinoma cell line HepG2 and the possible molecular mechanisms involved. Methods The inhibitory effect of DHA on HepG2 cells was measured by MTT assay. The percentage of apoptotic cells was detected by flow cytometry with double staining of fluorescein isothiocyanate-annexin V/propidium iodide. The intracellular production of reactive oxygen species (ROS) and intracellular Ca2+ concentration ([Ca2+]i) were detected by fluorescence spectrophotometry. Protein expression of GADD153, Bcl-2 and Bax in HepG2 cells was examined by Western blot and immunocytochemistry. Results DHA significantly inhibited proliferation of HepG2 cells in a dose- and time-dependent manner. The apoptosis rates in HepG2 cells treated with 0, 50, 100 and 200 mol/L DHA for 24 hours were 2.53 ± 0.88%, 24.85 ± 3.63%, 35.27 ± 5.92% and 48.53 ± 7.76%, respectively. Compared with the control group, DHA significantly increased ROS generation and [Ca2+]i level (P <0.05), with the generation of ROS preceding the increase in [Ca2+]i. An increase in GADD153 and Bax expression and a decrease in Bcl-2 were observed in DHA-treated cells. Pretreatment with the antioxidant N-acetylcysteine could attenuate the effects of DHA in the experiments. Conclusion DHA could inhibit proliferation and induce apoptosis in HepG2 cell lines through increasing the intracellular production of ROS and [Ca2+]i. Endoplasmic reticulum stress-induced apoptosis may contribute to this effect by regulating the expression of GADD153, proapoptotic Bax, and antiapoptotic Bcl-2.
Collapse
Affiliation(s)
- Xiaoling Gao
- Institute of Life Science, Chongqing Medical University, Chongqing, PR China
| | - Ziguo Luo
- Institute of Life Science, Chongqing Medical University, Chongqing, PR China
| | - Tingxiu Xiang
- Molecular Oncology and Epigenetics Laboratory, First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Kejian Wang
- Department of Anatomy, Chongqing Medical University, Chongqing, PR China
| | - Jian Li
- Institute of Life Science, Chongqing Medical University, Chongqing, PR China
| | - Pilong Wang
- Department of Gastroenterology, First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
31
|
Gong J, Wang XZ, Wang T, Chen JJ, Xie XY, Hu H, Yu F, Liu HL, Jiang XY, Fan HD. Molecular signal networks and regulating mechanisms of the unfolded protein response. J Zhejiang Univ Sci B 2017; 18:1-14. [PMID: 28070992 DOI: 10.1631/jzus.b1600043] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Within the cell, several mechanisms exist to maintain homeostasis of the endoplasmic reticulum (ER). One of the primary mechanisms is the unfolded protein response (UPR). In this review, we primarily focus on the latest signal webs and regulation mechanisms of the UPR. The relationships among ER stress, apoptosis, and cancer are also discussed. Under the normal state, binding immunoglobulin protein (BiP) interacts with the three sensors (protein kinase RNA-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1α (IRE1α)). Under ER stress, misfolded proteins interact with BiP, resulting in the release of BiP from the sensors. Subsequently, the three sensors dimerize and autophosphorylate to promote the signal cascades of ER stress. ER stress includes a series of positive and negative feedback signals, such as those regulating the stabilization of the sensors/BiP complex, activating and inactivating the sensors by autophosphorylation and dephosphorylation, activating specific transcription factors to enable selective transcription, and augmenting the ability to refold and export. Apart from the three basic pathways, vascular endothelial growth factor (VEGF)-VEGF receptor (VEGFR)-phospholipase C-γ (PLCγ)-mammalian target of rapamycin complex 1 (mTORC1) pathway, induced only in solid tumors, can also activate ATF6 and PERK signal cascades, and IRE1α also can be activated by activated RAC-alpha serine/threonine-protein kinase (AKT). A moderate UPR functions as a pro-survival signal to return the cell to its state of homeostasis. However, persistent ER stress will induce cells to undergo apoptosis in response to increasing reactive oxygen species (ROS), Ca2+ in the cytoplasmic matrix, and other apoptosis signal cascades, such as c-Jun N-terminal kinase (JNK), signal transducer and activator of transcription 3 (STAT3), and P38, when cellular damage exceeds the capacity of this adaptive response.
Collapse
Affiliation(s)
- Jing Gong
- Sichuan Radio and TV University, Chengdu 610073, China
| | - Xing-Zhi Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou 310036, China
| | - Tao Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou 310036, China
| | - Jiao-Jiao Chen
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou 310036, China
| | - Xiao-Yuan Xie
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hui Hu
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou 310036, China
| | - Fang Yu
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou 310036, China
| | - Hui-Lin Liu
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou 310036, China
| | - Xing-Yan Jiang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou 310036, China
| | - Han-Dong Fan
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
32
|
Zhao K, Li J, He W, Song D, Zhang X, Zhang D, Zhou Y, Gao F. Cyclophilin B facilitates the replication of Orf virus. Virol J 2017; 14:114. [PMID: 28619100 PMCID: PMC5471767 DOI: 10.1186/s12985-017-0781-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/06/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Viruses interact with host cellular factors to construct a more favourable environment for their efficient replication. Expression of cyclophilin B (CypB), a cellular peptidyl-prolyl cis-trans isomerase (PPIase), was found to be significantly up-regulated. Recently, a number of studies have shown that CypB is important in the replication of several viruses, including Japanese encephalitis virus (JEV), hepatitis C virus (HCV) and human papillomavirus type 16 (HPV 16). However, the function of cellular CypB in ORFV replication has not yet been explored. METHODS Suppression subtractive hybridization (SSH) technique was applied to identify genes differentially expressed in the ORFV-infected MDBK cells at an early phase of infection. Cellular CypB was confirmed to be significantly up-regulated by quantitative reverse transcription-PCR (qRT-PCR) analysis and Western blotting. The role of CypB in ORFV infection was further determined using Cyclosporin A (CsA) and RNA interference (RNAi). Effect of CypB gene silencing on ORFV replication by 50% tissue culture infectious dose (TCID50) assay and qRT-PCR detection. RESULTS In the present study, CypB was found to be significantly up-regulated in the ORFV-infected MDBK cells at an early phase of infection. Cyclosporin A (CsA) exhibited suppressive effects on ORFV replication through the inhibition of CypB. Silencing of CypB gene inhibited the replication of ORFV in MDBK cells. In conclusion, these data suggest that CypB is critical for the efficient replication of the ORFV genome. CONCLUSIONS Cellular CypB was confirmed to be significantly up-regulated in the ORFV-infected MDBK cells at an early phase of infection, which could effectively facilitate the replication of ORFV.
Collapse
Affiliation(s)
- Kui Zhao
- College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, China
| | - Jida Li
- College of Public Hygiene, ZunYi Medical University, 201 Dalian Road, Zunyi, 563003, China
| | - Wenqi He
- College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, China
| | - Deguang Song
- College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, China
| | - Ximu Zhang
- Laboratory Animal Center, Peking University, 5 Summer palace Road, Beijing, 100871, China
| | - Di Zhang
- College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, China
| | - Yanlong Zhou
- College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, China
| | - Feng Gao
- College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, China. .,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, China.
| |
Collapse
|
33
|
Suh KS, Chon S, Choi EM. Limonene attenuates methylglyoxal-induced dysfunction in MC3T3-E1 osteoblastic cells. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1337082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Kwang Sik Suh
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Suk Chon
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Eun Mi Choi
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
34
|
Wang L, Gundelach JH, Bram RJ. Cycloheximide promotes paraptosis induced by inhibition of cyclophilins in glioblastoma multiforme. Cell Death Dis 2017; 8:e2807. [PMID: 28518150 PMCID: PMC5520731 DOI: 10.1038/cddis.2017.217] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/22/2017] [Accepted: 04/05/2017] [Indexed: 01/09/2023]
Abstract
Cancer is the second leading cause of death worldwide. Current treatment strategies based on multi-agent chemotherapy and/or radiation regimens have improved overall survival in some cases. However, resistance to apoptosis often develops in cancer cells, and its occurrence is thought to contribute to treatment failure. Non-apoptotic cell death mechanisms have become of great interest, therefore, in hopes that they would bypass tumor cell resistance. Glioblastoma multiforme (GBM), a grade IV astrocytic tumor is the most frequent brain tumor in adults, and has a high rate of mortality. We report that NIM811, a small molecule cyclophilin-binding inhibitor, induces catastrophic vacuolization and cell death in GBM cells. These unique features are distinct from many known cell death pathways, and are associated with an incompletely defined cell death mechanism known as paraptosis. We found that NIM811-induced paraptosis is due to unresolved ER stress. The abnormal upregulation of protein translation was responsible for the build-up of misfolded or unfolded proteins in ER, whereas pro-survival autophagy and UPR signals were shutdown during prolonged treatment with NIM811. Although cycloheximide has been claimed to suppress paraptosis, instead we find that it only temporarily delayed vacuole formation, but actually enhanced paraptotic cell death in the long term. On the other hand, mTOR inhibitors rescued cells from NIM811-induced paraptosis by sustaining autophagy and the UPR, while specifically restraining cap-dependent translation. These findings not only provide new insights into the mechanisms underlying paraptosis, but also shed light on a potential approach to enhance GBM treatment.
Collapse
Affiliation(s)
- Lin Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Justin H Gundelach
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Richard J Bram
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.,Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
35
|
Choi EM, Suh KS, Rhee SY, Oh S, Kim SW, Pak YK, Choe W, Ha J, Chon S. Exposure to tetrabromobisphenol A induces cellular dysfunction in osteoblastic MC3T3-E1 cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:561-570. [PMID: 28276884 DOI: 10.1080/10934529.2017.1284435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study was undertaken to investigate the possible involvement of oxidative stress in tetrabromobisphenol A (TBBPA)-induced toxicity in osteoblastic MC3T3-E1 cells. To examine the potential effect of TBBPA on cultured osteoblastic cells, we measured cell viability, apoptosis, reactive oxygen species (ROS), mitochondrial superoxide, and mitochondrial parameters including adenosine triphosphate (ATP) level, cardiolipin content, cytochrome c release, cyclophilin levels, and differentiation markers in osteoblastic MC3T3-E1 cells. TBBPA exposure for 48 h caused the apoptosis and cytotoxicity of MC3T3-E1 cells. TBBPA also induced ROS and mitochondrial superoxide production in a concentration-dependent manner. These results suggest that TBBPA induces osteoblast apoptosis and ROS production, resulting in bone diseases. Moreover, TBBPA induced cardiolipin peroxidation, cytochrome c release, and decreased ATP levels which induced apoptosis or necrosis. TBBPA decreased the differentiation markers, collagen synthesis, alkaline phosphatase activity, and calcium deposition in cells. Additionally, TBBPA decreased cyclophilin A and B releases. Taken together, these data support the notion that TBBPA inhibits osteoblast function and has detrimental effects on osteoblasts through a mechanism involving oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Eun Mi Choi
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Kwang Sik Suh
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Sang Youl Rhee
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Seungjoon Oh
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Sung Woon Kim
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Youngmi Kim Pak
- b Department of Physiology , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Wonchae Choe
- c Department of Biochemistry and Molecular Biology (BK21 project) , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Joohun Ha
- c Department of Biochemistry and Molecular Biology (BK21 project) , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Suk Chon
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| |
Collapse
|
36
|
Li X, You M, Liu YJ, Ma L, Jin PP, Zhou R, Zhang ZX, Hua B, Ji XJ, Cheng XY, Yin F, Chen Y, Yin W. Reversal of the Apoptotic Resistance of Non-Small-Cell Lung Carcinoma towards TRAIL by Natural Product Toosendanin. Sci Rep 2017; 7:42748. [PMID: 28209994 PMCID: PMC5314365 DOI: 10.1038/srep42748] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/13/2017] [Indexed: 11/18/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively triggers cancer cell death via its association with death receptors on the cell membrane, but exerts negligible side effects on normal cells. However, some non-small-cell lung carcinoma (NSCLC) patients exhibited resistance to TRAIL treatment in clinical trials, and the mechanism varies. In this study, we described for the first time that toosendanin (TSN), a triterpenoid derivative used in Chinese medicine for pain management, could significantly sensitize human primary NSCLC cells or NSCLC cell lines to TRAIL-mediated apoptosis both in vitro and in vivo, while showing low toxicity against human primary cells or tissues. The underlying apoptotic mechanisms involved upregulation of death receptor 5 (DR5) and CCAAT/enhancer binding protein homologous protein, which is related to the endoplasmic reticulum stress response, and is further associated with reactive oxygen species generation and Ca2+ accumulation. Surprisingly, TSN also induced autophagy in NSCLC cells, which recruited membrane DR5, and subsequently antagonized the apoptosis-sensitizing effect of TSN. Taken together, TSN can be used to sensitize tumors and the combination of TRAIL and TSN may represent a useful strategy for NSCLC therapy; moreover, autophagy serves as an important drug resistance mechanism for TSN.
Collapse
Affiliation(s)
- Xin Li
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences, Nanjing University, Nanjing, 210093, China.,Jiangsu Key Lab of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming You
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Yong-Jian Liu
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences, Nanjing University, Nanjing, 210093, China
| | - Lin Ma
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences, Nanjing University, Nanjing, 210093, China
| | - Pei-Pei Jin
- Department of Anesthesiology and Intensive Care Unit, Changhai Hospital, Affiliated Hospital of the Second Military Medical University, Shanghai, China
| | - Ri Zhou
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences, Nanjing University, Nanjing, 210093, China
| | - Zhao-Xin Zhang
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences, Nanjing University, Nanjing, 210093, China
| | - Baojin Hua
- Guang'anmen hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Jun Ji
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences, Nanjing University, Nanjing, 210093, China
| | - Xiao-Ying Cheng
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences, Nanjing University, Nanjing, 210093, China
| | - Fangzhou Yin
- College of Pharmacy, Nanjing University of Chinese medicine, China
| | - Yan Chen
- Guang'anmen hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Jiangsu Cancer Hospital &Institute Affiliated to Nanjing Medical University, China
| | - Wu Yin
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences, Nanjing University, Nanjing, 210093, China.,Jiangsu Key Lab of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
37
|
Oh Y, Jeong K, Kim K, Lee YS, Jeong S, Kim SS, Yoon KS, Ha J, Kang I, Choe W. Cyclophilin B protects SH-SY5Y human neuroblastoma cells against MPP(+)-induced neurotoxicity via JNK pathway. Biochem Biophys Res Commun 2016; 478:1396-402. [PMID: 27569281 DOI: 10.1016/j.bbrc.2016.08.135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder of aging. PD involves a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyidine (MPTP) and its toxic metabolite 1-methyl-4-phenylpyridinium ion (MPP+) inhibit the complex I of the mitochondrial electron transport chain, and have been widely used to construct PD models. Cyclophilin B (CypB) is an endoplasmic reticulum protein that binds to cyclosporine A as a cyclophilin family member. CypB has peptidyl-prolyl cis-trans isomerase (PPIase) activity. We investigated the protective effects of overexpressed CypB on MPP+-induced neurocytotoxicity in SH-SY5Y human neuroblastoma cells. Overexpressed CypB decreased MPP(+)-induced oxidative stress through the modulation of antioxidant enzymes including manganese superoxide dismutase and catalase, and prevented neurocytotoxicity via mitogen-activated protein kinase, especially the c-Jun N-terminal kinase pathway. In addition, CypB inhibited the activation of MPP(+)-induced the pro-apoptotic molecules poly (ADP-ribose) polymerase, Bax, and Bcl-2, and attenuated MPP(+)-induced mitochondrial dysfunction. The data suggest that overexpressed CypB protects neuronal cells from MPP+-induced dopaminergic neuronal cell death.
Collapse
Affiliation(s)
- Yoojung Oh
- Department of Biomedical Science, Graduate School, Kyung Hee University, Republic of Korea
| | - Kwon Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Republic of Korea
| | - Kiyoon Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Republic of Korea
| | - Young-Seok Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Republic of Korea
| | - Suyun Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, Medicine Research Center for Bioreaction of Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biochemistry and Molecular Biology, Medicine Research Center for Bioreaction of Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, Medicine Research Center for Bioreaction of Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, Medicine Research Center for Bioreaction of Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, Medicine Research Center for Bioreaction of Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Republic of Korea.
| |
Collapse
|
38
|
Dunyak BM, Gestwicki JE. Peptidyl-Proline Isomerases (PPIases): Targets for Natural Products and Natural Product-Inspired Compounds. J Med Chem 2016; 59:9622-9644. [PMID: 27409354 DOI: 10.1021/acs.jmedchem.6b00411] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peptidyl-proline isomerases (PPIases) are a chaperone superfamily comprising the FK506-binding proteins (FKBPs), cyclophilins, and parvulins. PPIases catalyze the cis/trans isomerization of proline, acting as a regulatory switch during folding, activation, and/or degradation of many proteins. These "clients" include proteins with key roles in cancer, neurodegeneration, and psychiatric disorders, suggesting that PPIase inhibitors could be important therapeutics. However, the active site of PPIases is shallow, solvent-exposed, and well conserved between family members, making selective inhibitor design challenging. Despite these hurdles, macrocyclic natural products, including FK506, rapamycin, and cyclosporin, bind PPIases with nanomolar or better affinity. De novo attempts to derive new classes of inhibitors have been somewhat less successful, often showcasing the "undruggable" features of PPIases. Interestingly, the most potent of these next-generation molecules tend to integrate features of the natural products, including macrocyclization or proline mimicry strategies. Here, we review recent developments and ongoing challenges in the inhibition of PPIases, with a focus on how natural products might inform the creation of potent and selective inhibitors.
Collapse
Affiliation(s)
- Bryan M Dunyak
- Department of Biological Chemistry, University of Michigan Medical School , 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States.,Department of Pharmaceutical Chemistry, University of California at San Francisco , 675 Nelson Rising Lane, San Francisco, California 94158, United States
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California at San Francisco , 675 Nelson Rising Lane, San Francisco, California 94158, United States
| |
Collapse
|
39
|
Balasubramanian MN, Panserat S, Dupont-Nivet M, Quillet E, Montfort J, Le Cam A, Medale F, Kaushik SJ, Geurden I. Molecular pathways associated with the nutritional programming of plant-based diet acceptance in rainbow trout following an early feeding exposure. BMC Genomics 2016; 17:449. [PMID: 27296167 PMCID: PMC4907080 DOI: 10.1186/s12864-016-2804-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/27/2016] [Indexed: 01/12/2023] Open
Abstract
Background The achievement of sustainable feeding practices in aquaculture by reducing the reliance on wild-captured fish, via replacement of fish-based feed with plant-based feed, is impeded by the poor growth response seen in fish fed high levels of plant ingredients. Our recent strategy to nutritionally program rainbow trout by early short-term exposure to a plant-based (V) diet versus a control fish-based (M) diet at the first-feeding fry stage when the trout fry start to consume exogenous feed, resulted in remarkable improvements in feed intake, growth and feed utilization when the same fish were challenged with the diet V (V-challenge) at the juvenile stage, several months following initial exposure. We employed microarray expression analysis at the first-feeding and juvenile stages to deduce the mechanisms associated with the nutritional programming of plant-based feed acceptance in trout. Results Transcriptomic analysis was performed on rainbow trout whole fry after 3 weeks exposure to either diet V or diet M at the first feeding stage (3-week), and in the whole brain and liver of juvenile trout after a 25 day V-challenge, using a rainbow trout custom oligonucleotide microarray. Overall, 1787 (3-week + Brain) and 924 (3-week + Liver) mRNA probes were affected by the early-feeding exposure. Gene ontology and pathway analysis of the corresponding genes revealed that nutritional programming affects pathways of sensory perception, synaptic transmission, cognitive processes and neuroendocrine peptides in the brain; whereas in the liver, pathways mediating intermediary metabolism, xenobiotic metabolism, proteolysis, and cytoskeletal regulation of cell cycle are affected. These results suggest that the nutritionally programmed enhanced acceptance of a plant-based feed in rainbow trout is driven by probable acquisition of flavour and feed preferences, and reduced sensitivity to changes in hepatic metabolic and stress pathways. Conclusions This study outlines the molecular mechanisms in trout brain and liver that accompany the nutritional programming of plant-based diet acceptance in trout, reinforces the notion of the first-feeding stage in oviparous fish as a critical window for nutritional programming, and provides support for utilizing this strategy to achieve improvements in sustainability of feeding practices in aquaculture. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2804-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mukundh N Balasubramanian
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Pôle d'Hydrobiologie INRA, 64310, Saint Pée-sur-Nivelle, France
| | - Stephane Panserat
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Pôle d'Hydrobiologie INRA, 64310, Saint Pée-sur-Nivelle, France
| | - Mathilde Dupont-Nivet
- INRA, UMR1313 GABI Génétique Animale et Biologie Intégrative, 78350, Jouy-en-Josas, France
| | - Edwige Quillet
- INRA, UMR1313 GABI Génétique Animale et Biologie Intégrative, 78350, Jouy-en-Josas, France
| | - Jerome Montfort
- INRA, UR 1037 Laboratoire de Physiologie et Génomique des Poissons (LPGP), Rennes, France
| | - Aurelie Le Cam
- INRA, UR 1037 Laboratoire de Physiologie et Génomique des Poissons (LPGP), Rennes, France
| | - Francoise Medale
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Pôle d'Hydrobiologie INRA, 64310, Saint Pée-sur-Nivelle, France
| | - Sadasivam J Kaushik
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Pôle d'Hydrobiologie INRA, 64310, Saint Pée-sur-Nivelle, France
| | - Inge Geurden
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Pôle d'Hydrobiologie INRA, 64310, Saint Pée-sur-Nivelle, France.
| |
Collapse
|
40
|
Yang X, Jiang J, Yang X, Han J, Zheng Q. Licochalcone A induces T24 bladder cancer cell apoptosis by increasing intracellular calcium levels. Mol Med Rep 2016; 14:911-9. [PMID: 27221781 DOI: 10.3892/mmr.2016.5334] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 05/03/2016] [Indexed: 11/06/2022] Open
Abstract
Licochalcone A (LCA) has been reported to significantly inhibit cell proliferation, increase reactive oxygen species (ROS) levels, and induce apoptosis of T24 human bladder cancer cells via mitochondria and endoplasmic reticulum (ER) stress-triggered signaling pathways. Based on these findings, the present study aimed to investigate the mechanisms by which LCA induces apoptosis of T24 cells. Cultured T24 cells were treated with LCA, and cell viability was measured using the sulforhodamine B assay. Apoptosis was detected by flow cytometry with Annexin V/propidium iodide staining, and by fluorescent microscopy with Hoechst 33258 staining. The levels of intracellular free calcium ions were determined using Fluo-3 AM dye marker. Intracellular ROS levels were assessed using the 2',7'-dichlorodihydrofluorescein diacetate probe assay. The mitochondrial membrane potential was measured using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl benzimidazole carbocyanine iodide. Furthermore, the mRNA expression levels of B‑cell lymphoma (Bcl)‑extra large, Bcl‑2‑associated X protein, Bcl‑2‑interacting mediator of cell death, apoptotic protease activating factor‑1 (Apaf‑1), calpain 2, cysteinyl aspartate specific proteinase (caspase)‑3, caspase‑4 and caspase‑9 were determined using reverse transcription semiquantitative and quantitative polymerase chain reaction analyses. Treatment with LCA inhibited proliferation and induced apoptosis of T24 cells, and increased intracellular Ca2+ levels and ROS production. Furthermore, LCA induced mitochondrial dysfunction, decreased mitochondrial membrane potential, and increased the mRNA expression levels of Apaf‑1, caspase‑9 and caspase‑3. Exposure of T24 cells to LCA also triggered calpain 2 and caspase‑4 activation, resulting in apoptosis. These findings indicated that LCA increased intracellular Ca2+ levels, which may be associated with mitochondrial dysfunction. In addition, the ER stress pathway may be considered an important mechanism by which LCA induces apoptosis of T24 bladder cancer cells.
Collapse
Affiliation(s)
- Xinhui Yang
- Department of Pharmacology, Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Jiangtao Jiang
- Department of Pharmacology, Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Xinyan Yang
- Department of Pharmacology, Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Jichun Han
- Department of Pharmacology, Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Qiusheng Zheng
- Department of Pharmacology, Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| |
Collapse
|
41
|
Horn S, Kirkegaard JS, Hoelper S, Seymour PA, Rescan C, Nielsen JH, Madsen OD, Jensen JN, Krüger M, Grønborg M, Ahnfelt-Rønne J. Research Resource: A Dual Proteomic Approach Identifies Regulated Islet Proteins During β-Cell Mass Expansion In Vivo. Mol Endocrinol 2015; 30:133-43. [PMID: 26649805 DOI: 10.1210/me.2015-1208] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Diabetes is characterized by insulin insufficiency due to a relative paucity of functional β-cell mass. Thus, strategies for increasing β-cell mass in situ are sought-after for therapeutic purposes. Pregnancy is a physiological state capable of inducing robust β-cell mass expansion, however, the mechanisms driving this expansion are not fully understood. Thus, the aim of this study was to characterize pregnancy-induced changes in the islet proteome at the peak of β-cell proliferation in mice. Islets from pregnant and nonpregnant littermates were compared via 2 proteomic strategies. In vivo pulsed stable isotope labeling of amino acids in cell culture was used to monitor de novo protein synthesis during the first 14.5 days of pregnancy. In parallel, protein abundance was determined using ex vivo dimethyl labelling at gestational day 14.5. Comparison of the 2 datasets revealed 170 islet proteins to be up regulated as a response to pregnancy. These included several proteins, not previously associated with pregnancy-induced islet expansion, such as CLIC1, STMN1, MCM6, PPIB, NEDD4, and HLTF. Confirming the validity of our approach, we also identified proteins encoded by genes known to be associated with pregnancy-induced islet expansion, such as CHGB, IGFBP5, MATN2, EHHADH, IVD, and BMP1. Bioinformatic analyses demonstrated enrichment and activation of the biological functions: "protein synthesis" and "proliferation," and predicted the transcription factors HNF4α, MYC, MYCN, E2F1, NFE2L2, and HNF1α as upstream regulators of the observed expressional changes. As the first characterization of the islet-proteome during pregnancy, this study provides novel insight into the mechanisms involved in promoting pregnancy-induced β-cell mass expansion and function.
Collapse
Affiliation(s)
- Signe Horn
- Global Research (S.Hor., J.S.K., C.R., O.D.M., J.N.J., M.G., J.A.-R.), Novo Nordisk A/S, 2870 Maaloev, Denmark; Department of Biomedical Sciences (S.Hor., J.S.K., J.H.N.), University of Copenhagen, 2200 Copenhagen N, Denmark; Max Planck Institute for Heart and Lung Research (S.Hoe.), 61231 Bad Nauheim, Germany; The Danish Stem Cell Center (P.A.S., O.D.M.), University of Copenhagen, 2200 Copenhagen N, Denmark; and Institute of Genetics (M.K.), Cluster of Excellence in Cellular Stress Responses, University of Cologne, 50931 Cologne, Germany
| | - Jeannette S Kirkegaard
- Global Research (S.Hor., J.S.K., C.R., O.D.M., J.N.J., M.G., J.A.-R.), Novo Nordisk A/S, 2870 Maaloev, Denmark; Department of Biomedical Sciences (S.Hor., J.S.K., J.H.N.), University of Copenhagen, 2200 Copenhagen N, Denmark; Max Planck Institute for Heart and Lung Research (S.Hoe.), 61231 Bad Nauheim, Germany; The Danish Stem Cell Center (P.A.S., O.D.M.), University of Copenhagen, 2200 Copenhagen N, Denmark; and Institute of Genetics (M.K.), Cluster of Excellence in Cellular Stress Responses, University of Cologne, 50931 Cologne, Germany
| | - Soraya Hoelper
- Global Research (S.Hor., J.S.K., C.R., O.D.M., J.N.J., M.G., J.A.-R.), Novo Nordisk A/S, 2870 Maaloev, Denmark; Department of Biomedical Sciences (S.Hor., J.S.K., J.H.N.), University of Copenhagen, 2200 Copenhagen N, Denmark; Max Planck Institute for Heart and Lung Research (S.Hoe.), 61231 Bad Nauheim, Germany; The Danish Stem Cell Center (P.A.S., O.D.M.), University of Copenhagen, 2200 Copenhagen N, Denmark; and Institute of Genetics (M.K.), Cluster of Excellence in Cellular Stress Responses, University of Cologne, 50931 Cologne, Germany
| | - Philip A Seymour
- Global Research (S.Hor., J.S.K., C.R., O.D.M., J.N.J., M.G., J.A.-R.), Novo Nordisk A/S, 2870 Maaloev, Denmark; Department of Biomedical Sciences (S.Hor., J.S.K., J.H.N.), University of Copenhagen, 2200 Copenhagen N, Denmark; Max Planck Institute for Heart and Lung Research (S.Hoe.), 61231 Bad Nauheim, Germany; The Danish Stem Cell Center (P.A.S., O.D.M.), University of Copenhagen, 2200 Copenhagen N, Denmark; and Institute of Genetics (M.K.), Cluster of Excellence in Cellular Stress Responses, University of Cologne, 50931 Cologne, Germany
| | - Claude Rescan
- Global Research (S.Hor., J.S.K., C.R., O.D.M., J.N.J., M.G., J.A.-R.), Novo Nordisk A/S, 2870 Maaloev, Denmark; Department of Biomedical Sciences (S.Hor., J.S.K., J.H.N.), University of Copenhagen, 2200 Copenhagen N, Denmark; Max Planck Institute for Heart and Lung Research (S.Hoe.), 61231 Bad Nauheim, Germany; The Danish Stem Cell Center (P.A.S., O.D.M.), University of Copenhagen, 2200 Copenhagen N, Denmark; and Institute of Genetics (M.K.), Cluster of Excellence in Cellular Stress Responses, University of Cologne, 50931 Cologne, Germany
| | - Jens H Nielsen
- Global Research (S.Hor., J.S.K., C.R., O.D.M., J.N.J., M.G., J.A.-R.), Novo Nordisk A/S, 2870 Maaloev, Denmark; Department of Biomedical Sciences (S.Hor., J.S.K., J.H.N.), University of Copenhagen, 2200 Copenhagen N, Denmark; Max Planck Institute for Heart and Lung Research (S.Hoe.), 61231 Bad Nauheim, Germany; The Danish Stem Cell Center (P.A.S., O.D.M.), University of Copenhagen, 2200 Copenhagen N, Denmark; and Institute of Genetics (M.K.), Cluster of Excellence in Cellular Stress Responses, University of Cologne, 50931 Cologne, Germany
| | - Ole D Madsen
- Global Research (S.Hor., J.S.K., C.R., O.D.M., J.N.J., M.G., J.A.-R.), Novo Nordisk A/S, 2870 Maaloev, Denmark; Department of Biomedical Sciences (S.Hor., J.S.K., J.H.N.), University of Copenhagen, 2200 Copenhagen N, Denmark; Max Planck Institute for Heart and Lung Research (S.Hoe.), 61231 Bad Nauheim, Germany; The Danish Stem Cell Center (P.A.S., O.D.M.), University of Copenhagen, 2200 Copenhagen N, Denmark; and Institute of Genetics (M.K.), Cluster of Excellence in Cellular Stress Responses, University of Cologne, 50931 Cologne, Germany
| | - Jan N Jensen
- Global Research (S.Hor., J.S.K., C.R., O.D.M., J.N.J., M.G., J.A.-R.), Novo Nordisk A/S, 2870 Maaloev, Denmark; Department of Biomedical Sciences (S.Hor., J.S.K., J.H.N.), University of Copenhagen, 2200 Copenhagen N, Denmark; Max Planck Institute for Heart and Lung Research (S.Hoe.), 61231 Bad Nauheim, Germany; The Danish Stem Cell Center (P.A.S., O.D.M.), University of Copenhagen, 2200 Copenhagen N, Denmark; and Institute of Genetics (M.K.), Cluster of Excellence in Cellular Stress Responses, University of Cologne, 50931 Cologne, Germany
| | - Marcus Krüger
- Global Research (S.Hor., J.S.K., C.R., O.D.M., J.N.J., M.G., J.A.-R.), Novo Nordisk A/S, 2870 Maaloev, Denmark; Department of Biomedical Sciences (S.Hor., J.S.K., J.H.N.), University of Copenhagen, 2200 Copenhagen N, Denmark; Max Planck Institute for Heart and Lung Research (S.Hoe.), 61231 Bad Nauheim, Germany; The Danish Stem Cell Center (P.A.S., O.D.M.), University of Copenhagen, 2200 Copenhagen N, Denmark; and Institute of Genetics (M.K.), Cluster of Excellence in Cellular Stress Responses, University of Cologne, 50931 Cologne, Germany
| | - Mads Grønborg
- Global Research (S.Hor., J.S.K., C.R., O.D.M., J.N.J., M.G., J.A.-R.), Novo Nordisk A/S, 2870 Maaloev, Denmark; Department of Biomedical Sciences (S.Hor., J.S.K., J.H.N.), University of Copenhagen, 2200 Copenhagen N, Denmark; Max Planck Institute for Heart and Lung Research (S.Hoe.), 61231 Bad Nauheim, Germany; The Danish Stem Cell Center (P.A.S., O.D.M.), University of Copenhagen, 2200 Copenhagen N, Denmark; and Institute of Genetics (M.K.), Cluster of Excellence in Cellular Stress Responses, University of Cologne, 50931 Cologne, Germany
| | - Jonas Ahnfelt-Rønne
- Global Research (S.Hor., J.S.K., C.R., O.D.M., J.N.J., M.G., J.A.-R.), Novo Nordisk A/S, 2870 Maaloev, Denmark; Department of Biomedical Sciences (S.Hor., J.S.K., J.H.N.), University of Copenhagen, 2200 Copenhagen N, Denmark; Max Planck Institute for Heart and Lung Research (S.Hoe.), 61231 Bad Nauheim, Germany; The Danish Stem Cell Center (P.A.S., O.D.M.), University of Copenhagen, 2200 Copenhagen N, Denmark; and Institute of Genetics (M.K.), Cluster of Excellence in Cellular Stress Responses, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
42
|
Johari YB, Estes SD, Alves CS, Sinacore MS, James DC. Integrated cell and process engineering for improved transient production of a “difficult-to-express“ fusion protein by CHO cells. Biotechnol Bioeng 2015; 112:2527-42. [DOI: 10.1002/bit.25687] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/08/2015] [Accepted: 06/24/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Yusuf B. Johari
- Department of Chemical and Biological Engineering; University of Sheffield; ChELSI Institute; Mappin Street; Sheffield S1 3JD UK
| | - Scott D. Estes
- Cell Culture Development; Biogen Idec, Inc.; Cambridge Massachusetts
| | | | - Marty S. Sinacore
- Cell Culture Development; Biogen Idec, Inc.; Cambridge Massachusetts
| | - David C. James
- Department of Chemical and Biological Engineering; University of Sheffield; ChELSI Institute; Mappin Street; Sheffield S1 3JD UK
| |
Collapse
|
43
|
Jeong K, Kim K, Kim H, Oh Y, Kim SJ, Jo Y, Choe W. Hypoxia induces cyclophilin B through the activation of transcription factor 6 in gastric adenocarcinoma cells. Oncol Lett 2015; 9:2854-2858. [PMID: 26137159 DOI: 10.3892/ol.2015.3102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 02/02/2015] [Indexed: 01/06/2023] Open
Abstract
Hypoxia is an important form of physiological stress that induces cell death, due to the resulting endoplasmic reticulum (ER) stress, particularly in solid tumors. Although previous studies have indicated that cyclophilin B (CypB) plays a role in ER stress, there is currently no direct information supporting the mechanism of CypB involvement under hypoxic conditions. However, it has previously been demonstrated that ER stress positively regulates the expression of CypB. In the present study, it was demonstrated that CypB is transcriptionally regulated by hypoxia-mediated activation of transcription factor 6 (ATF6), an ER stress transcription factor. Subsequently, the effects of ATF6 on CypB promoter activity were investigated and an ATF6-responsive region in the promoter was identified. Hypoxia and ATF6 expression each increased CypB promoter activity. Collectively, these results demonstrate that ATF6 positively regulates the expression of CypB by binding to an ATF6-responsive region in the promoter, which may play an important role in the attenuation of apoptosis in the adaption to hypoxia. These results suggest that CypB may be a key molecule in the adaptation of cells to hypoxic conditions.
Collapse
Affiliation(s)
- Kwon Jeong
- Department of Biochemistry and Molecular Biology (BK21 project), Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Seoul 130-701, Republic of Korea
| | - Kiyoon Kim
- Department of Biochemistry and Molecular Biology (BK21 project), Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Seoul 130-701, Republic of Korea
| | - Hunsung Kim
- Department of Biochemistry and Molecular Biology (BK21 project), Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Seoul 130-701, Republic of Korea
| | - Yoojung Oh
- Department of Biochemistry and Molecular Biology (BK21 project), Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Seoul 130-701, Republic of Korea
| | - Seong-Jin Kim
- Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Yunhee Jo
- Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology (BK21 project), Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Seoul 130-701, Republic of Korea
| |
Collapse
|
44
|
Mota SI, Costa RO, Ferreira IL, Santana I, Caldeira GL, Padovano C, Fonseca AC, Baldeiras I, Cunha C, Letra L, Oliveira CR, Pereira CMF, Rego AC. Oxidative stress involving changes in Nrf2 and ER stress in early stages of Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1428-41. [PMID: 25857617 DOI: 10.1016/j.bbadis.2015.03.015] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/16/2015] [Accepted: 03/31/2015] [Indexed: 12/30/2022]
Abstract
Oxidative stress and endoplasmic reticulum (ER) stress have been associated with Alzheimer's disease (AD) progression. In this study we analyzed whether oxidative stress involving changes in Nrf2 and ER stress may constitute early events in AD pathogenesis by using human peripheral blood cells and an AD transgenic mouse model at different disease stages. Increased oxidative stress and increased phosphorylated Nrf2 (p(Ser40)Nrf2) were observed in human peripheral blood mononuclear cells (PBMCs) isolated from individuals with mild cognitive impairment (MCI). Moreover, we observed impaired ER Ca2+ homeostasis and increased ER stress markers in PBMCs from MCI individuals and mild AD patients. Evidence of early oxidative stress defense mechanisms in AD was substantiated by increased p(Ser40)Nrf2 in 3month-old 3xTg-AD male mice PBMCs, and also with increased nuclear Nrf2 levels in brain cortex. However, SOD1 protein levels were decreased in human MCI PBMCs and in 3xTg-AD mice brain cortex; the latter further correlated with reduced SOD1 mRNA levels. Increased ER stress was also detected in the brain cortex of young female and old male 3xTg-AD mice. We demonstrate oxidative stress and early Nrf2 activation in AD human and mouse models, which fails to regulate some of its targets, leading to repressed expression of antioxidant defenses (e.g., SOD-1), and extending to ER stress. Results suggest markers of prodromal AD linked to oxidative stress associated with Nrf2 activation and ER stress that may be followed in human peripheral blood mononuclear cells.
Collapse
Affiliation(s)
- Sandra I Mota
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Portugal
| | - Rui O Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Portugal
| | - Ildete L Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Portugal
| | - Isabel Santana
- Faculty of Medicine, University of Coimbra, Portugal; Neurology Unit of Coimbra University Hospital Center, Coimbra, Portugal
| | - Gladys L Caldeira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Carmela Padovano
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Ana C Fonseca
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Inês Baldeiras
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Portugal
| | - Catarina Cunha
- Neurology Unit of Coimbra University Hospital Center, Coimbra, Portugal
| | - Liliana Letra
- Neurology Unit of Coimbra University Hospital Center, Coimbra, Portugal
| | - Catarina R Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Portugal
| | - Cláudia M F Pereira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Portugal.
| | - Ana Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Portugal.
| |
Collapse
|
45
|
Kim K, Oh IK, Yoon KS, Ha J, Kang I, Choe W. Antioxidant activity is required for the protective effects of cyclophilin A against oxidative stress. Mol Med Rep 2015; 12:712-8. [PMID: 25738284 DOI: 10.3892/mmr.2015.3392] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 01/07/2015] [Indexed: 11/06/2022] Open
Abstract
Cyclophilin (Cyp) belongs to a group of proteins that have peptidyl-prolyl cis-trans isomerase (PPIase) activity. CypA is the major cellular target for the immunosuppressive drug cyclosporin A and mediates its actions. Previous studies have demonstrated that CypA has diverse cellular functions and have suggested that CypA may function as an antioxidant. The present study investigated the antioxidant activity of CypA and its association with PPIase activity. The purified CypA/wild-type (WT) and CypA/P16S mutant proteins were active in PPIase assays. A total antioxidant capacity assay revealed that the purified CypA/WT protein had significantly higher antioxidant activity, whereas the CypA/P16S mutant was defective in its antioxidant activity. To confirm the importance of CypA antioxidant activity, CypA/P16S was overexpressed in Chang human liver cells and the rate of cell death was measured following treatment with cisplatin or H2O2. Overexpression of CypA/WT protected the cells against cisplatin or H2O2-induced oxidative damage, however, the CypA/P16S mutant had no effect. These findings suggested that CypA exhibits a protective antioxidant effect.
Collapse
Affiliation(s)
- Kiyoon Kim
- Department of Biochemistry and Molecular Biology, Medical Science and Engineering Research Center for Bioreaction to Reactive Oxygen Species, Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| | - In Kyung Oh
- Department of Biochemistry and Molecular Biology, Medical Science and Engineering Research Center for Bioreaction to Reactive Oxygen Species, Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| | - Kyung Sik Yoon
- Department of Biochemistry and Molecular Biology, Medical Science and Engineering Research Center for Bioreaction to Reactive Oxygen Species, Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, Medical Science and Engineering Research Center for Bioreaction to Reactive Oxygen Species, Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, Medical Science and Engineering Research Center for Bioreaction to Reactive Oxygen Species, Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, Medical Science and Engineering Research Center for Bioreaction to Reactive Oxygen Species, Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| |
Collapse
|
46
|
Choi AY, Choi JH, Hwang KY, Jeong YJ, Choe W, Yoon KS, Ha J, Kim SS, Youn JH, Yeo EJ, Kang I. Licochalcone A induces apoptosis through endoplasmic reticulum stress via a phospholipase Cγ1-, Ca(2+)-, and reactive oxygen species-dependent pathway in HepG2 human hepatocellular carcinoma cells. Apoptosis 2015; 19:682-97. [PMID: 24337903 DOI: 10.1007/s10495-013-0955-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Licochalcone A (LicA), an estrogenic flavonoid, induces apoptosis in multiple types of cancer cells. In this study, the molecular mechanisms underlying the anti-cancer effects of LicA were investigated in HepG2 human hepatocellular carcinoma cells. LicA induced apoptotic cell death, activation of caspase-4, -9, and -3, and expression of endoplasmic reticulum (ER) stress-associated proteins, including C/EBP homologous protein (CHOP). Inhibition of ER stress by CHOP knockdown or treatment with the ER stress inhibitors, salubrinal and 4-phenylbutyric acid, reduced LicA-induced cell death. LicA also induced reactive oxygen species (ROS) accumulation and the anti-oxidant N-acetylcysteine reduced LicA-induced cell death and CHOP expression. In addition, LicA increased the levels of cytosolic Ca(2+), which was blocked by 2-aminoethoxydiphenyl borate (an antagonist of inositol 1,4,5-trisphosphate receptor) and BAPTA-AM (an intracellular Ca(2+) chelator). 2-Aminoethoxydiphenyl borate and BAPTA-AM inhibited LicA-induced cell death. Interestingly, LicA induced phosphorylation of phospholipase Cγ1 (PLCγ1) and inhibition of PLCγ1 reduced cell death and ER stress. Moreover, the multi-targeted receptor tyrosine kinase inhibitors, sorafenib and sunitinib, reduced LicA-induced cell death, ER stress, and cytosolic Ca(2+) and ROS accumulation. Finally, LicA induced phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2) and c-Met receptor and inhibition of both receptors by co-transfection with VEGFR2 and c-Met siRNAs reversed LicA-induced cell death, Ca(2+) increase, and CHOP expression. Taken together, these findings suggest that induction of ER stress via a PLCγ1-, Ca(2+)-, and ROS-dependent pathway may be an important mechanism by which LicA induces apoptosis in HepG2 hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- A-Young Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Medical Research Center for Bioreaction to Reactive Oxygen Species, Biomedical Science Institute, Kyung Hee University, Seoul, 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Blair LJ, Baker JD, Sabbagh JJ, Dickey CA. The emerging role of peptidyl-prolyl isomerase chaperones in tau oligomerization, amyloid processing, and Alzheimer's disease. J Neurochem 2015; 133:1-13. [PMID: 25628064 DOI: 10.1111/jnc.13033] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/12/2014] [Accepted: 01/05/2015] [Indexed: 12/20/2022]
Abstract
Peptidyl-prolyl cis/trans isomerases (PPIases), a unique family of molecular chaperones, regulate protein folding at proline residues. These residues are abundant within intrinsically disordered proteins, like the microtubule-associated protein tau. Tau has been shown to become hyperphosphorylated and accumulate as one of the two main pathological hallmarks in Alzheimer's disease, the other being amyloid beta (Ab). PPIases, including Pin1, FK506-binding protein (FKBP) 52, FKBP51, and FKBP12, have been shown to interact with and regulate tau biology. This interaction is particularly important given the numerous proline-directed phosphorylation sites found on tau and the role phosphorylation has been found to play in pathogenesis. This regulation then affects downstream aggregation and oligomerization of tau. However, many PPIases have yet to be explored for their effects on tau biology, despite the high likelihood of interaction based on proline content. Moreover, Pin1, FKBP12, FKBP52, cyclophilin (Cyp) A, CypB, and CypD have been shown to also regulate Ab production or the toxicity associated with Ab pathology. Therefore, PPIases directly and indirectly regulate pathogenic protein multimerization in Alzheimer's disease and represent a family rich in targets for modulating the accumulation and toxicity.
Collapse
Affiliation(s)
- Laura J Blair
- Department of Molecular Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, Florida, USA
| | | | | | | |
Collapse
|
48
|
Ishikawa Y, Boudko S, Bächinger HP. Ziploc-ing the structure: Triple helix formation is coordinated by rough endoplasmic reticulum resident PPIases. Biochim Biophys Acta Gen Subj 2015; 1850:1983-93. [PMID: 25583561 DOI: 10.1016/j.bbagen.2014.12.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/26/2014] [Accepted: 12/29/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Protein folding is crucial for proteins' specific functions and is facilitated by various types of enzymes and molecular chaperones. The peptidyl prolyl cis/trans isomerases (PPIase) are one of these families of enzymes. They ubiquitously exist inside the cell and there are eight PPIases in the rough endoplasmic reticulum (rER), a compartment where the folding of most secreted proteins occurs. SCOPE OF REVIEW We review the functional and structural aspects of individual rER resident PPIases. Furthermore, we specifically discuss the role of these PPIases during collagen biosynthesis, since collagen is the most abundant protein in humans, is synthesized in the rER, and contains a proportionally high number of proline residues. MAJOR CONCLUSIONS The rER resident PPIases recognize different sets of substrates and facilitate their folding. Although they are clearly catalysts for protein folding, they also have more broad and multifaceted functions. We propose that PPIases coordinate collagen biosynthesis in the rER. GENERAL SIGNIFICANCE This review expands our understanding of collagen biosynthesis by explaining the influence of novel indirect mechanisms of regulating folding and this is also explored for PPIases. We also suggest future directions of research to obtain a better understanding of collagen biosynthesis and functions of PPIases in the rER. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Yoshihiro Ishikawa
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA; Shriners Hospital for Children, Research Department, Portland, OR 97239, USA
| | - Sergei Boudko
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA; Shriners Hospital for Children, Research Department, Portland, OR 97239, USA
| | - Hans Peter Bächinger
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA; Shriners Hospital for Children, Research Department, Portland, OR 97239, USA.
| |
Collapse
|
49
|
Synthetic lethality of combined glutaminase and Hsp90 inhibition in mTORC1-driven tumor cells. Proc Natl Acad Sci U S A 2015; 112:E21-9. [PMID: 25524627 PMCID: PMC4291663 DOI: 10.1073/pnas.1417015112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) integrates multiple signals from growth factors, nutrients, and cellular energy status to control a wide range of metabolic processes, including mRNA biogenesis; protein, nucleotide, and lipid synthesis; and autophagy. Deregulation of the mTORC1 pathway is found in cancer as well as genetic disorders such as tuberous sclerosis complex (TSC) and sporadic lymphangioleiomyomatosis. Recent studies have shown that the mTORC1 inhibitor rapamycin and its analogs generally suppress proliferation rather than induce apoptosis. Therefore, it is critical to use alternative strategies to induce death of cells with activated mTORC1. In this study, a small-molecule screen has revealed that the combination of glutaminase (GLS) and heat shock protein 90 (Hsp90) inhibitors selectively triggers death of TSC2-deficient cells. At a mechanistic level, high mTORC1-driven translation rates in TSC1/2-deficient cells, unlike wild-type cells, sensitizes these cells to endoplasmic reticulum (ER) stress. Thus, Hsp90 inhibition drives accumulation of unfolded protein and ER stress. When combining proteotoxic stress with oxidative stress by depletion of the intracellular antioxidant glutathione by GLS inhibition, acute cell death is observed in cells with activated mTORC1 signaling. This study suggests that this combination strategy may have the potential to be developed into a therapeutic use for the treatment of mTORC1-driven tumors.
Collapse
|
50
|
Van den Hof WFPM, Ruiz-Aracama A, Van Summeren A, Jennen DGJ, Gaj S, Coonen MLJ, Brauers K, Wodzig WKWH, van Delft JHM, Kleinjans JCS. Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro 2015; 29:489-501. [PMID: 25562108 DOI: 10.1016/j.tiv.2014.12.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 12/08/2014] [Accepted: 12/24/2014] [Indexed: 02/01/2023]
Abstract
In order to improve attrition rates of candidate-drugs there is a need for a better understanding of the mechanisms underlying drug-induced hepatotoxicity. We aim to further unravel the toxicological response of hepatocytes to a prototypical cholestatic compound by integrating transcriptomic and metabonomic profiling of HepG2 cells exposed to Cyclosporin A. Cyclosporin A exposure induced intracellular cholesterol accumulation and diminished intracellular bile acid levels. Performing pathway analyses of significant mRNAs and metabolites separately and integrated, resulted in more relevant pathways for the latter. Integrated analyses showed pathways involved in cell cycle and cellular metabolism to be significantly changed. Moreover, pathways involved in protein processing of the endoplasmic reticulum, bile acid biosynthesis and cholesterol metabolism were significantly affected. Our findings indicate that an integrated approach combining metabonomics and transcriptomics data derived from representative in vitro models, with bioinformatics can improve our understanding of the mechanisms of action underlying drug-induced hepatotoxicity. Furthermore, we showed that integrating multiple omics and thereby analyzing genes, microRNAs and metabolites of the opposed model for drug-induced cholestasis can give valuable information about mechanisms of drug-induced cholestasis in vitro and therefore could be used in toxicity screening of new drug candidates at an early stage of drug discovery.
Collapse
Affiliation(s)
- Wim F P M Van den Hof
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| | - Ainhoa Ruiz-Aracama
- RIKILT, Institute of Food Safety, Wageningen University and Research Centre, Wageningen, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| | - Anke Van Summeren
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| | - Danyel G J Jennen
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| | - Stan Gaj
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| | - Maarten L J Coonen
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| | - Karen Brauers
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands.
| | - Will K W H Wodzig
- Department of Clinical Chemistry, Maastricht University Medical Center, Maastricht, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| | - Joost H M van Delft
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| | - Jos C S Kleinjans
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| |
Collapse
|