1
|
Ferreira G, Cardozo R, Chavarria L, Santander A, Sobrevia L, Chang W, Gundersen G, Nicolson GL. The LINC complex in blood vessels: from physiology to pathological implications in arterioles. J Physiol 2025. [PMID: 39898417 DOI: 10.1113/jp285906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
The LINC (linker of nucleoskeleton and cytoskeleton) complex is a critical component of the cellular architecture that bridges the nucleoskeleton and cytoskeleton and mediates mechanotransduction to and from the nucleus. Though it plays important roles in all blood vessels, it is in arterioles that this complex plays a pivotal role in maintaining endothelial cell integrity, regulating vascular tone, forming new microvessels and modulating responses to mechanical and biochemical stimuli. It is also important in vascular smooth muscle cells and fibroblasts, where it possibly plays a role in the contractile to secretory phenotypic transformation during atherosclerosis and vascular ageing, and in fibroblasts' migration and inflammatory responses in the adventitia. Physiologically, the LINC complex contributes to the stability of arteriolar structure, adaptations to changes in blood flow and injury repair mechanisms. Pathologically, dysregulation or mutations in LINC complex components can lead to compromised endothelial function, vascular remodelling and exacerbation of cardiovascular diseases such as atherosclerosis (arteriolosclerosis). This review summarizes our current understanding of the roles of the LINC complex in cells from arterioles, highlighting its most important physiological functions, exploring its implications for vascular pathology and emphasizing some of its functional characteristics in endothelial cells. By elucidating the LINC complex's role in health and disease, we aim to provide insights that could improve future therapeutic strategies targeting LINC complex-related vascular disorders.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Romina Cardozo
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Luisina Chavarria
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Axel Santander
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- Medical School (Faculty of Medicine), Sao Paulo State University (UNESP), Sao Paulo, Brazil
- Faculty of Medicine and Biomedical Sciences, University of Queensland Centre for Clinical Research (UQCCR), University of Queensland, QLD, Herston, Queensland, Australia
- Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Wakam Chang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Gregg Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Garth L Nicolson
- Department of Molecular Pathology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| |
Collapse
|
2
|
Kim S, Phan S, Tran HT, Shaw TR, Shahmoradian SH, Ellisman MH, Veatch SL, Barmada SJ, Pappas SS, Dauer WT. TorsinA is essential for neuronal nuclear pore complex localization and maturation. Nat Cell Biol 2024; 26:1482-1495. [PMID: 39117796 PMCID: PMC11542706 DOI: 10.1038/s41556-024-01480-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
As lifelong interphase cells, neurons face an array of unique challenges. A key challenge is regulating nuclear pore complex (NPC) biogenesis and localization, the mechanisms of which are largely unknown. Here we identify neuronal maturation as a period of strongly upregulated NPC biogenesis. We demonstrate that the AAA+ protein torsinA, whose dysfunction causes the neurodevelopmental movement disorder DYT-TOR1A dystonia and co-ordinates NPC spatial organization without impacting total NPC density. We generated an endogenous Nup107-HaloTag mouse line to directly visualize NPC organization in developing neurons and find that torsinA is essential for proper NPC localization. In the absence of torsinA, the inner nuclear membrane buds excessively at sites of mislocalized nascent NPCs, and the formation of complete NPCs is delayed. Our work demonstrates that NPC spatial organization and number are independently determined and identifies NPC biogenesis as a process vulnerable to neurodevelopmental disease insults.
Collapse
Affiliation(s)
- Sumin Kim
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sébastien Phan
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems, Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hung Tri Tran
- Peter O'Donnell Jr. Brain Institute, UT Southwestern, Dallas, TX, USA
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern, Dallas, TX, USA
| | - Thomas R Shaw
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
- Program in Applied Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Sarah H Shahmoradian
- Peter O'Donnell Jr. Brain Institute, UT Southwestern, Dallas, TX, USA
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern, Dallas, TX, USA
- Department of Biophysics, UT Southwestern, Dallas, TX, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems, Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sarah L Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
- Program in Applied Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Sami J Barmada
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA.
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| | - Samuel S Pappas
- Peter O'Donnell Jr. Brain Institute, UT Southwestern, Dallas, TX, USA.
- Department of Neurology, UT Southwestern, Dallas, TX, USA.
| | - William T Dauer
- Peter O'Donnell Jr. Brain Institute, UT Southwestern, Dallas, TX, USA.
- Department of Neurology, UT Southwestern, Dallas, TX, USA.
- Department of Neuroscience, UT Southwestern, Dallas, TX, USA.
| |
Collapse
|
3
|
Fan Y, Si Z, Wang L, Zhang L. DYT- TOR1A dystonia: an update on pathogenesis and treatment. Front Neurosci 2023; 17:1216929. [PMID: 37638318 PMCID: PMC10448058 DOI: 10.3389/fnins.2023.1216929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
DYT-TOR1A dystonia is a neurological disorder characterized by involuntary muscle contractions and abnormal movements. It is a severe genetic form of dystonia caused by mutations in the TOR1A gene. TorsinA is a member of the AAA + family of adenosine triphosphatases (ATPases) involved in a variety of cellular functions, including protein folding, lipid metabolism, cytoskeletal organization, and nucleocytoskeletal coupling. Almost all patients with TOR1A-related dystonia harbor the same mutation, an in-frame GAG deletion (ΔGAG) in the last of its 5 exons. This recurrent variant results in the deletion of one of two tandem glutamic acid residues (i.e., E302/303) in a protein named torsinA [torsinA(△E)]. Although the mutation is hereditary, not all carriers will develop DYT-TOR1A dystonia, indicating the involvement of other factors in the disease process. The current understanding of the pathophysiology of DYT-TOR1A dystonia involves multiple factors, including abnormal protein folding, signaling between neurons and glial cells, and dysfunction of the protein quality control system. As there are currently no curative treatments for DYT-TOR1A dystonia, progress in research provides insight into its pathogenesis, leading to potential therapeutic and preventative strategies. This review summarizes the latest research advances in the pathogenesis, diagnosis, and treatment of DYT-TOR1A dystonia.
Collapse
Affiliation(s)
- Yuhang Fan
- Department of Neurology, the Second Hospital of Jilin University, Changchun, China
| | - Zhibo Si
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, China
| | - Linlin Wang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lei Zhang
- Department of Neurology, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Sharma R, Hetzer MW. Disulfide bond in SUN2 regulates dynamic remodeling of LINC complexes at the nuclear envelope. Life Sci Alliance 2023; 6:e202302031. [PMID: 37188462 PMCID: PMC10193101 DOI: 10.26508/lsa.202302031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023] Open
Abstract
The LINC complex tethers the cell nucleus to the cytoskeleton to regulate mechanical forces during cell migration, differentiation, and various diseases. The function of LINC complexes relies on the interaction between highly conserved SUN and KASH proteins that form higher-order assemblies capable of load bearing. These structural details have emerged from in vitro assembled LINC complexes; however, the principles of in vivo assembly remain obscure. Here, we report a conformation-specific SUN2 antibody as a tool to visualize LINC complex dynamics in situ. Using imaging, biochemical, and cellular methods, we find that conserved cysteines in SUN2 undergo KASH-dependent inter- and intra-molecular disulfide bond rearrangements. Disruption of the SUN2 terminal disulfide bond compromises SUN2 localization, turnover, LINC complex assembly in addition to cytoskeletal organization and cell migration. Moreover, using pharmacological and genetic perturbations, we identify components of the ER lumen as SUN2 cysteines redox state regulators. Overall, we provide evidence for SUN2 disulfide bond rearrangement as a physiologically relevant structural modification that regulates LINC complex functions.
Collapse
Affiliation(s)
- Rahul Sharma
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
5
|
Saffari A, Lau T, Tajsharghi H, Karimiani EG, Kariminejad A, Efthymiou S, Zifarelli G, Sultan T, Toosi MB, Sedighzadeh S, Siu VM, Ortigoza-Escobar JD, AlShamsi AM, Ibrahim S, Al-Sannaa NA, Al-Hertani W, Sandra W, Tarnopolsky M, Alavi S, Li C, Day-Salvatore DL, Martínez-González MJ, Levandoski KM, Bedoukian E, Madan-Khetarpal S, Idleburg MJ, Menezes MJ, Siddharth A, Platzer K, Oppermann H, Smitka M, Collins F, Lek M, Shahrooei M, Ghavideldarestani M, Herman I, Rendu J, Faure J, Baker J, Bhambhani V, Calderwood L, Akhondian J, Imannezhad S, Mirzadeh HS, Hashemi N, Doosti M, Safi M, Ahangari N, Torbati PN, Abedini S, Salpietro V, Gulec EY, Eshaghian S, Ghazavi M, Pascher MT, Vogel M, Abicht A, Moutton S, Bruel AL, Rieubland C, Gallati S, Strom TM, Lochmüller H, Mohammadi MH, Alvi JR, Zackai EH, Keena BA, Skraban CM, Berger SI, Andrew EH, Rahimian E, Morrow MM, Wentzensen IM, Millan F, Henderson LB, Dafsari HS, Jungbluth H, Gomez-Ospina N, McRae A, Peter M, Veltra D, Marinakis NM, Sofocleous C, Ashrafzadeh F, Pehlivan D, Lemke JR, Melki J, Benezit A, Bauer P, Weis D, Lupski JR, Senderek J, Christodoulou J, Chung WK, Goodchild R, Offiah AC, Moreno-De-Luca A, Suri M, Ebrahimi-Fakhari D, Houlden H, et alSaffari A, Lau T, Tajsharghi H, Karimiani EG, Kariminejad A, Efthymiou S, Zifarelli G, Sultan T, Toosi MB, Sedighzadeh S, Siu VM, Ortigoza-Escobar JD, AlShamsi AM, Ibrahim S, Al-Sannaa NA, Al-Hertani W, Sandra W, Tarnopolsky M, Alavi S, Li C, Day-Salvatore DL, Martínez-González MJ, Levandoski KM, Bedoukian E, Madan-Khetarpal S, Idleburg MJ, Menezes MJ, Siddharth A, Platzer K, Oppermann H, Smitka M, Collins F, Lek M, Shahrooei M, Ghavideldarestani M, Herman I, Rendu J, Faure J, Baker J, Bhambhani V, Calderwood L, Akhondian J, Imannezhad S, Mirzadeh HS, Hashemi N, Doosti M, Safi M, Ahangari N, Torbati PN, Abedini S, Salpietro V, Gulec EY, Eshaghian S, Ghazavi M, Pascher MT, Vogel M, Abicht A, Moutton S, Bruel AL, Rieubland C, Gallati S, Strom TM, Lochmüller H, Mohammadi MH, Alvi JR, Zackai EH, Keena BA, Skraban CM, Berger SI, Andrew EH, Rahimian E, Morrow MM, Wentzensen IM, Millan F, Henderson LB, Dafsari HS, Jungbluth H, Gomez-Ospina N, McRae A, Peter M, Veltra D, Marinakis NM, Sofocleous C, Ashrafzadeh F, Pehlivan D, Lemke JR, Melki J, Benezit A, Bauer P, Weis D, Lupski JR, Senderek J, Christodoulou J, Chung WK, Goodchild R, Offiah AC, Moreno-De-Luca A, Suri M, Ebrahimi-Fakhari D, Houlden H, Maroofian R. The clinical and genetic spectrum of autosomal-recessive TOR1A-related disorders. Brain 2023; 146:3273-3288. [PMID: 36757831 PMCID: PMC10393417 DOI: 10.1093/brain/awad039] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/20/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
In the field of rare diseases, progress in molecular diagnostics led to the recognition that variants linked to autosomal-dominant neurodegenerative diseases of later onset can, in the context of biallelic inheritance, cause devastating neurodevelopmental disorders and infantile or childhood-onset neurodegeneration. TOR1A-associated arthrogryposis multiplex congenita 5 (AMC5) is a rare neurodevelopmental disorder arising from biallelic variants in TOR1A, a gene that in the heterozygous state is associated with torsion dystonia-1 (DYT1 or DYT-TOR1A), an early-onset dystonia with reduced penetrance. While 15 individuals with AMC5-TOR1A have been reported (less than 10 in detail), a systematic investigation of the full disease-associated spectrum has not been conducted. Here, we assess the clinical, radiological and molecular characteristics of 57 individuals from 40 families with biallelic variants in TOR1A. Median age at last follow-up was 3 years (0-24 years). Most individuals presented with severe congenital flexion contractures (95%) and variable developmental delay (79%). Motor symptoms were reported in 79% and included lower limb spasticity and pyramidal signs, as well as gait disturbances. Facial dysmorphism was an integral part of the phenotype, with key features being a broad/full nasal tip, narrowing of the forehead and full cheeks. Analysis of disease-associated manifestations delineated a phenotypic spectrum ranging from normal cognition and mild gait disturbance to congenital arthrogryposis, global developmental delay, intellectual disability, absent speech and inability to walk. In a subset, the presentation was consistent with foetal akinesia deformation sequence with severe intrauterine abnormalities. Survival was 71%, with higher mortality in males. Death occurred at a median age of 1.2 months (1 week-9 years), due to respiratory failure, cardiac arrest or sepsis. Analysis of brain MRI studies identified non-specific neuroimaging features, including a hypoplastic corpus callosum (72%), foci of signal abnormality in the subcortical and periventricular white matter (55%), diffuse white matter volume loss (45%), mega cisterna magna (36%) and arachnoid cysts (27%). The molecular spectrum included 22 distinct variants, defining a mutational hotspot in the C-terminal domain of the Torsin-1A protein. Genotype-phenotype analysis revealed an association of missense variants in the 3-helix bundle domain to an attenuated phenotype, while missense variants near the Walker A/B motif as well as biallelic truncating variants were linked to early death. In summary, this systematic cross-sectional analysis of a large cohort of individuals with biallelic TOR1A variants across a wide age-range delineates the clinical and genetic spectrum of TOR1A-related autosomal-recessive disease and highlights potential predictors for disease severity and survival.
Collapse
Affiliation(s)
- Afshin Saffari
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Child Neurology and Inherited Metabolic Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Tracy Lau
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
| | - Homa Tajsharghi
- School of Health Sciences, Division of Biomedicine, University of Skovde, Skovde, Sweden
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace, London, UK
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | | | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
| | | | - Tipu Sultan
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
| | - Mehran Beiraghi Toosi
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Sedighzadeh
- Department of Biological Sciences, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- KaryoGen, Isfahan, Iran
| | - Victoria Mok Siu
- Division of Medical Genetics, Department of Pediatrics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Juan Darío Ortigoza-Escobar
- Movement Disorders Unit, Pediatric Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Aisha M AlShamsi
- Genetic Division, Pediatrics Department, Tawam Hospital, Al Ain, UAE
| | - Shahnaz Ibrahim
- Department of pediatrics and child Health, Aga Khan University, Karachi, Pakistan
| | | | - Walla Al-Hertani
- Harvard Medical School, Boston Children's Hospital, Department of Pediatrics, Division of Genetics and Genomics, Boston, MA, USA
| | - Whalen Sandra
- APHP UF de Génétique Clinique, Centre de Référence des Anomalies du Développement et Syndromes Malformatifs, APHP, Hôpital Armand Trousseau, ERN ITHACA, Sorbonne Université, Paris, France
| | - Mark Tarnopolsky
- Department of Pediatrics (MT – Neuromuscular and Neurometabolics, CL – Medical Genetics), McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Shahryar Alavi
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
| | - Chumei Li
- Department of Pediatrics (MT – Neuromuscular and Neurometabolics, CL – Medical Genetics), McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Debra-Lynn Day-Salvatore
- The Department of Medical Genetics and Genomic Medicine at Saint Peter's University Hospital, New Brunswick, NJ, USA
| | | | - Kristin M Levandoski
- The Department of Medical Genetics and Genomic Medicine at Saint Peter's University Hospital, New Brunswick, NJ, USA
| | - Emma Bedoukian
- Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Suneeta Madan-Khetarpal
- Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michaela J Idleburg
- Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Minal Juliet Menezes
- Department of Anaesthesia, the Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, and Specialty of Genomic Medicine, Sydney Medical School, Sydney University, Sydney, NSW, Australia
| | - Aishwarya Siddharth
- Harvard Medical School, Boston Children's Hospital, Department of Pediatrics, Division of Genetics and Genomics, Boston, MA, USA
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Henry Oppermann
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Martin Smitka
- Department of Neuropediatrics, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Felicity Collins
- Discipline of Child and Adolescent Health, and Specialty of Genomic Medicine, Sydney Medical School, Sydney University, Sydney, NSW, Australia
- Department of Clinical Genetics, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mohmmad Shahrooei
- Medical Laboratory of Dr. Shahrooei, Tehran, Iran
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
| | | | - Isabella Herman
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Division of Pediatric Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - John Rendu
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Julien Faure
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Janice Baker
- Division of Genetics and Genomic Medicine, Children's Hospital and Clinics of Minnesota, Minneapolis, Minnesota, USA
| | - Vikas Bhambhani
- Division of Genetics and Genomic Medicine, Children's Hospital and Clinics of Minnesota, Minneapolis, Minnesota, USA
| | - Laurel Calderwood
- Lucile Packard Children's Hospital Stanford, Palo Alto, CA, USA
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Javad Akhondian
- Pediatric Neurology Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Imannezhad
- Department of Pediatric Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Sadat Mirzadeh
- Department of Pediatric Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Hashemi
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Doosti
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Mojtaba Safi
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Najmeh Ahangari
- Innovative medical research centre, Mashhad branch, Islamic Azad University, Mashhad, Iran
| | | | - Soheila Abedini
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
| | - Vincenzo Salpietro
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
| | - Elif Yilmaz Gulec
- Istanbul Medeniyet University Medical School, Department of Medical Genetics, Istanbul, Turkey
| | | | - Mohammadreza Ghazavi
- Department of Pediatric Neurology, Imam Hossein Children's Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael T Pascher
- Friedrich-Baur-Institute at the Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Marina Vogel
- Friedrich-Baur-Institute at the Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Angela Abicht
- Friedrich-Baur-Institute at the Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- Medizinisch Genetisches Zentrum, Munich, German
| | - Sébastien Moutton
- Multidisciplinary Center for Prenatal Diagnosis, Pôle Mère Enfant, Maison de Santé Protestante Bordeaux Bagatelle, Talence, France
| | - Ange-Line Bruel
- Équipe Génétique des Anomalies du Développement (GAD), INSERM UMR1231, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - Claudine Rieubland
- Division of Human Genetics, Department of Pediatrics, Inselspital, University of Bern, Switzerland
| | - Sabina Gallati
- Division of Human Genetics, Department of Pediatrics, Inselspital, University of Bern, Switzerland
| | - Tim M Strom
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | | | - Javeria Raza Alvi
- Department of Pediatric Neurology, The Children's Hospital and the University of Child Health Sciences, Lahore, Pakistan
| | - Elaine H Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Beth A Keena
- Division of Human Genetics, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Cara M Skraban
- Division of Human Genetics, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Seth I Berger
- Children's National Research Institute, Washington DC, USA
| | - Erin H Andrew
- Children's National Research Institute, Washington DC, USA
| | | | | | | | | | | | - Hormos Salimi Dafsari
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Max-Planck-Institute for Biology of Ageing and CECAD, Cologne, Germany
- Department of Paediatric Neurology - Neuromuscular Service, Evelina London Children's Hospital, Guy's & St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Heinz Jungbluth
- Department of Paediatric Neurology - Neuromuscular Service, Evelina London Children's Hospital, Guy's & St Thomas' Hospital NHS Foundation Trust, London, UK
- Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, UK
| | | | - Anne McRae
- Division of Genetics, Genomics, and Metabolism, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, USA
| | - Merlene Peter
- Division of Genetics, Genomics, and Metabolism, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, USA
| | - Danai Veltra
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, Athens, Greece
| | - Nikolaos M Marinakis
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, Athens, Greece
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, Athens, Greece
| | - Farah Ashrafzadeh
- Department of Pediatric Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Davut Pehlivan
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Judith Melki
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195, Université Paris Saclay, Le Kremlin Bicêtre, 94276, Paris, France
| | - Audrey Benezit
- Neurologie et réanimation pédiatrique, Hôpital Raymond Poincaré, APHP, Garches, France
| | - Peter Bauer
- CENTOGENE GmbH, Am Strande 7, 18055 Rostock, Germany
| | - Denisa Weis
- Department of Medical Genetics, Kepler University Hospital, Johann Kepler University, Linz, Austria
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jan Senderek
- Friedrich-Baur-Institute at the Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - John Christodoulou
- Discipline of Child and Adolescent Health, and Specialty of Genomic Medicine, Sydney Medical School, Sydney University, Sydney, NSW, Australia
- Murdoch Children's Research Institute, Melbourne and Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| | - Wendy K Chung
- Department of Pediatrics and Medicine, Columbia University New York, NY, USA
| | - Rose Goodchild
- KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
- VIB-KU Leuven Center for Brain and Disease Research, Laboratory for Dystonia Research, Leuven, Belgium
| | - Amaka C Offiah
- Department of Oncology & Metabolism, University of Sheffield, UK
| | - Andres Moreno-De-Luca
- Autism & Developmental Medicine Institute, Genomic Medicine Institute, Department of Radiology, Diagnostic Medicine Institute, Geisinger, Danville, PA, USA
| | - Mohnish Suri
- Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Movement Disorders Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Intellectual and Developmental Disabilities Research Center, Boston Children's Hospital, Boston, MA, USA
| | - Henry Houlden
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
| | - Reza Maroofian
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
6
|
Kim S, Phan S, Shaw TR, Ellisman MH, Veatch SL, Barmada SJ, Pappas SS, Dauer WT. TorsinA is essential for the timing and localization of neuronal nuclear pore complex biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538491. [PMID: 37162852 PMCID: PMC10168336 DOI: 10.1101/2023.04.26.538491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nuclear pore complexes (NPCs) regulate information transfer between the nucleus and cytoplasm. NPC defects are linked to several neurological diseases, but the processes governing NPC biogenesis and spatial organization are poorly understood. Here, we identify a temporal window of strongly upregulated NPC biogenesis during neuronal maturation. We demonstrate that the AAA+ protein torsinA, whose loss of function causes the neurodevelopmental movement disorder DYT-TOR1A (DYT1) dystonia, coordinates NPC spatial organization during this period without impacting total NPC density. Using a new mouse line in which endogenous Nup107 is Halo-Tagged, we find that torsinA is essential for correct localization of NPC formation. In the absence of torsinA, the inner nuclear membrane buds excessively at sites of mislocalized, nascent NPCs, and NPC assembly completion is delayed. Our work implies that NPC spatial organization and number are independently regulated and suggests that torsinA is critical for the normal localization and assembly kinetics of NPCs.
Collapse
Affiliation(s)
- Sumin Kim
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Sébastien Phan
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems, Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA
| | - Thomas R. Shaw
- Department of Biophysics, University of Michigan, Ann Arbor, MI
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems, Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA
| | - Sarah L. Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, MI
| | - Sami J. Barmada
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Samuel S. Pappas
- Peter O’Donnell Jr. Brain Institute, UT Southwestern, Dallas, TX
- Department of Neurology, UT Southwestern, Dallas, TX
| | - William T. Dauer
- Peter O’Donnell Jr. Brain Institute, UT Southwestern, Dallas, TX
- Department of Neurology, UT Southwestern, Dallas, TX
- Department of Neuroscience, UT Southwestern, Dallas, TX
| |
Collapse
|
7
|
Echarri A. A Multisensory Network Drives Nuclear Mechanoadaptation. Biomolecules 2022; 12:biom12030404. [PMID: 35327596 PMCID: PMC8945967 DOI: 10.3390/biom12030404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/03/2022] Open
Abstract
Cells have adapted to mechanical forces early in evolution and have developed multiple mechanisms ensuring sensing of, and adaptation to, the diversity of forces operating outside and within organisms. The nucleus must necessarily adapt to all types of mechanical signals, as its functions are essential for virtually all cell processes, many of which are tuned by mechanical cues. To sense forces, the nucleus is physically connected with the cytoskeleton, which senses and transmits forces generated outside and inside the cell. The nuclear LINC complex bridges the cytoskeleton and the nuclear lamina to transmit mechanical information up to the chromatin. This system creates a force-sensing macromolecular complex that, however, is not sufficient to regulate all nuclear mechanoadaptation processes. Within the nucleus, additional mechanosensitive structures, including the nuclear envelope and the nuclear pore complex, function to regulate nuclear mechanoadaptation. Similarly, extra nuclear mechanosensitive systems based on plasma membrane dynamics, mechanotransduce information to the nucleus. Thus, the nucleus has the intrinsic structural components needed to receive and interpret mechanical inputs, but also rely on extra nuclear mechano-sensors that activate nuclear regulators in response to force. Thus, a network of mechanosensitive cell structures ensures that the nucleus has a tunable response to mechanical cues.
Collapse
Affiliation(s)
- Asier Echarri
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Mechanoadaptation and Caveolae Biology Laboratory, Areas of Cell & Developmental Biology, Calle Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| |
Collapse
|
8
|
Viegas D, Pereira CD, Martins F, Mateus T, da Cruz e Silva OAB, Herdeiro MT, Rebelo S. Nuclear Envelope Alterations in Myotonic Dystrophy Type 1 Patient-Derived Fibroblasts. Int J Mol Sci 2022; 23:522. [PMID: 35008948 PMCID: PMC8745202 DOI: 10.3390/ijms23010522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a hereditary and multisystemic disease characterized by myotonia, progressive distal muscle weakness and atrophy. The molecular mechanisms underlying this disease are still poorly characterized, although there are some hypotheses that envisage to explain the multisystemic features observed in DM1. An emergent hypothesis is that nuclear envelope (NE) dysfunction may contribute to muscular dystrophies, particularly to DM1. Therefore, the main objective of the present study was to evaluate the nuclear profile of DM1 patient-derived and control fibroblasts and to determine the protein levels and subcellular distribution of relevant NE proteins in these cell lines. Our results demonstrated that DM1 patient-derived fibroblasts exhibited altered intracellular protein levels of lamin A/C, LAP1, SUN1, nesprin-1 and nesprin-2 when compared with the control fibroblasts. In addition, the results showed an altered location of these NE proteins accompanied by the presence of nuclear deformations (blebs, lobes and/or invaginations) and an increased number of nuclear inclusions. Regarding the nuclear profile, DM1 patient-derived fibroblasts had a larger nuclear area and a higher number of deformed nuclei and micronuclei than control-derived fibroblasts. These results reinforce the evidence that NE dysfunction is a highly relevant pathological characteristic observed in DM1.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sandra Rebelo
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (D.V.); (C.D.P.); (F.M.); (T.M.); (O.A.B.d.C.e.S.); (M.T.H.)
| |
Collapse
|
9
|
The Role of Emerin in Cancer Progression and Metastasis. Int J Mol Sci 2021; 22:ijms222011289. [PMID: 34681951 PMCID: PMC8537873 DOI: 10.3390/ijms222011289] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/27/2022] Open
Abstract
It is commonly recognized in the field that cancer cells exhibit changes in the size and shape of their nuclei. These features often serve as important biomarkers in the diagnosis and prognosis of cancer patients. Nuclear size can significantly impact cell migration due to its incredibly large size. Nuclear structural changes are predicted to regulate cancer cell migration. Nuclear abnormalities are common across a vast spectrum of cancer types, regardless of tissue source, mutational spectrum, and signaling dependencies. The pervasiveness of nuclear alterations suggests that changes in nuclear structure may be crucially linked to the transformation process. The factors driving these nuclear abnormalities, and the functional consequences, are not completely understood. Nuclear envelope proteins play an important role in regulating nuclear size and structure in cancer. Altered expression of nuclear lamina proteins, including emerin, is found in many cancers and this expression is correlated with better clinical outcomes. A model is emerging whereby emerin, as well as other nuclear lamina proteins, binding to the nucleoskeleton regulates the nuclear structure to impact metastasis. In this model, emerin and lamins play a central role in metastatic transformation, since decreased emerin expression during transformation causes the nuclear structural defects required for increased cell migration, intravasation, and extravasation. Herein, we discuss the cellular functions of nuclear lamina proteins, with a particular focus on emerin, and how these functions impact cancer progression and metastasis.
Collapse
|
10
|
Abstract
The nuclear envelope and nucleoskeleton are emerging as signaling centers that regulate how physical information from the extracellular matrix is biochemically transduced into the nucleus, affecting chromatin and controlling cell function. Bone is a mechanically driven tissue that relies on physical information to maintain its physiological function and structure. Disorder that present with musculoskeletal and cardiac symptoms, such as Emery-Dreifuss muscular dystrophies and progeria, correlate with mutations in nuclear envelope proteins including Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, Lamin A/C, and emerin. However, the role of nuclear envelope mechanobiology on bone function remains underexplored. The mesenchymal stem cell (MSC) model is perhaps the most studied relationship between bone regulation and nuclear envelope function. MSCs maintain the musculoskeletal system by differentiating into multiple cell types including osteocytes and adipocytes, thus supporting the bone's ability to respond to mechanical challenge. In this review, we will focus on how MSC function is regulated by mechanical challenges both in vitro and in vivo within the context of bone function specifically focusing on integrin, β-catenin and YAP/TAZ signaling. The importance of the nuclear envelope will be explored within the context of musculoskeletal diseases related to nuclear envelope protein mutations and nuclear envelope regulation of signaling pathways relevant to bone mechanobiology in vitro and in vivo.
Collapse
Affiliation(s)
- Scott Birks
- Boise State University, Micron School of Materials Science and Engineering, United States of America
| | - Gunes Uzer
- Boise State University, Mechanical and Biomedical Engineering, United States of America.
| |
Collapse
|
11
|
DYT-TOR1A subcellular proteomics reveals selective vulnerability of the nuclear proteome to cell stress. Neurobiol Dis 2021; 158:105464. [PMID: 34358617 DOI: 10.1016/j.nbd.2021.105464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 07/07/2021] [Accepted: 08/02/2021] [Indexed: 11/23/2022] Open
Abstract
TorsinA is a AAA+ ATPase that shuttles between the ER lumen and outer nuclear envelope in an ATP-dependent manner and is functionally implicated in nucleocytoplasmic transport. We hypothesized that the DYT-TOR1A dystonia disease-causing variant, ΔE TorsinA, may therefore disrupt the normal subcellular distribution of proteins between the nuclear and cytosolic compartments. To test this hypothesis, we performed proteomic analysis on nuclear and cytosolic subcellular fractions from DYT-TOR1A and wildtype mouse embryonic fibroblasts (MEFs). We further examined the compartmental proteomes following exposure to thapsigargin (Tg), an endoplasmic reticulum (ER) stressor, because DYT-TOR1A dystonia models have previously shown abnormalities in cellular stress responses. Across both subcellular compartments, proteomes of DYT-TOR1A cells showed basal state disruptions consistent with an activated stress response, and in response to thapsigargin, a blunted stress response. However, the DYT-TOR1A nuclear proteome under Tg cell stress showed the most pronounced and disproportionate degree of protein disruptions - 3-fold greater than all other conditions. The affected proteins extended beyond those typically associated with stress responses, including enrichments for processes critical for neuronal synaptic function. These findings highlight the advantage of subcellular proteomics to reveal events that localize to discrete subcellular compartments and refine thinking about the mechanisms and significance of cell stress in DYT-TOR1A pathogenesis.
Collapse
|
12
|
Jacquemyn J, Foroozandeh J, Vints K, Swerts J, Verstreken P, Gounko NV, Gallego SF, Goodchild R. Torsin and NEP1R1-CTDNEP1 phosphatase affect interphase nuclear pore complex insertion by lipid-dependent and lipid-independent mechanisms. EMBO J 2021; 40:e106914. [PMID: 34313336 PMCID: PMC8408595 DOI: 10.15252/embj.2020106914] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/30/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
The interphase nuclear envelope (NE) is extensively remodeled during nuclear pore complex (NPC) insertion. How this remodeling occurs and why it requires Torsin ATPases, which also regulate lipid metabolism, remains poorly understood. Here, we show that Drosophila Torsin (dTorsin) affects lipid metabolism via the NEP1R1‐CTDNEP1 phosphatase and the Lipin phosphatidic acid (PA) phosphatase. This includes that Torsins remove NEP1R1‐CTDNEP1 from the NE in fly and mouse cells, leading to subsequent Lipin exclusion from the nucleus. NEP1R1‐CTDNEP1 downregulation also restores nuclear pore membrane fusion in post‐mitotic dTorsinKO fat body cells. However, dTorsin‐associated nuclear pore defects do not correlate with lipidomic abnormalities and are not resolved by silencing of Lipin. Further testing confirmed that membrane fusion continues in cells with hyperactivated Lipin. It also led to the surprising finding that excessive PA metabolism inhibits recruitment of the inner ring complex Nup35 subunit, resulting in elongated channel‐like structures in place of mature nuclear pores. We conclude that the NEP1R1‐CTDNEP1 phosphatase affects interphase NPC biogenesis by lipid‐dependent and lipid‐independent mechanisms, explaining some of the pleiotropic effects of Torsins.
Collapse
Affiliation(s)
- Julie Jacquemyn
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Joyce Foroozandeh
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Katlijn Vints
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium.,VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, Leuven, Belgium
| | - Jef Swerts
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Natalia V Gounko
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium.,VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, Leuven, Belgium
| | - Sandra F Gallego
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Rose Goodchild
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Dorsch AD, Hölper JE, Franzke K, Zaeck LM, Mettenleiter TC, Klupp BG. Role of Vesicle-Associated Membrane Protein-Associated Proteins (VAP) A and VAPB in Nuclear Egress of the Alphaherpesvirus Pseudorabies Virus. Viruses 2021; 13:v13061117. [PMID: 34200728 PMCID: PMC8229525 DOI: 10.3390/v13061117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
The molecular mechanism affecting translocation of newly synthesized herpesvirus nucleocapsids from the nucleus into the cytoplasm is still not fully understood. The viral nuclear egress complex (NEC) mediates budding at and scission from the inner nuclear membrane, but the NEC is not sufficient for efficient fusion of the primary virion envelope with the outer nuclear membrane. Since no other viral protein was found to be essential for this process, it was suggested that a cellular machinery is recruited by viral proteins. However, knowledge on fusion mechanisms involving the nuclear membranes is rare. Recently, vesicle-associated membrane protein-associated protein B (VAPB) was shown to play a role in nuclear egress of herpes simplex virus 1 (HSV-1). To test this for the related alphaherpesvirus pseudorabies virus (PrV), we mutated genes encoding VAPB and VAPA by CRISPR/Cas9-based genome editing in our standard rabbit kidney cells (RK13), either individually or in combination. Single as well as double knockout cells were tested for virus propagation and for defects in nuclear egress. However, no deficiency in virus replication nor any effect on nuclear egress was obvious suggesting that VAPB and VAPA do not play a significant role in this process during PrV infection in RK13 cells.
Collapse
Affiliation(s)
- Anna D. Dorsch
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (A.D.D.); (J.E.H.); (L.M.Z.); (T.C.M.)
| | - Julia E. Hölper
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (A.D.D.); (J.E.H.); (L.M.Z.); (T.C.M.)
| | - Kati Franzke
- Institute of Infectology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany;
| | - Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (A.D.D.); (J.E.H.); (L.M.Z.); (T.C.M.)
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (A.D.D.); (J.E.H.); (L.M.Z.); (T.C.M.)
| | - Barbara G. Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (A.D.D.); (J.E.H.); (L.M.Z.); (T.C.M.)
- Correspondence:
| |
Collapse
|
14
|
Holla VV, Surisetti BK, Prasad S, Pal PK. Focal dystonia in a case of SYNE1 spastic-ataxia: Expanding the phenotypic spectrum. Parkinsonism Relat Disord 2021; 87:22-24. [PMID: 33933852 DOI: 10.1016/j.parkreldis.2021.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/02/2021] [Accepted: 04/11/2021] [Indexed: 11/24/2022]
Abstract
Synaptic nuclear envelope protein-1 (SYNE1) related cerebellar ataxia also called ARCA1 or SCAR8, manifests as a relatively pure cerebellar ataxia or with additional neurological involvement. Dystonia is rarely seen in SYNE1 ataxia and to the best of our knowledge, there are only three reports of dystonia in patients with SYNE1 ataxia. This report describes a 22-year-old woman with chronic progressive spastic-ataxia of 3-year duration with additional focal dystonia of the right upper limb. Patient had cerebellar atrophy on MRI brain and a novel pathogenic homozygous variant in exon 74 of the SYNE1 gene (p.Gln4047Ter).
Collapse
Affiliation(s)
- Vikram V Holla
- Department of Neurology, National Institute of Mental Health & Neurosciences, Hosur Road, Bengaluru, 560029, Karnataka, India
| | - Bharath Kumar Surisetti
- Department of Neurology, National Institute of Mental Health & Neurosciences, Hosur Road, Bengaluru, 560029, Karnataka, India
| | - Shweta Prasad
- Department of Neurology, National Institute of Mental Health & Neurosciences, Hosur Road, Bengaluru, 560029, Karnataka, India; Department of Clinical Neurosciences, National Institute of Mental Health & Neurosciences, Hosur Road, Bengaluru, 560029, Karnataka, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences, Hosur Road, Bengaluru, 560029, Karnataka, India.
| |
Collapse
|
15
|
Chakraborty S, Lan T, Tseng Y, Wong SWK. Bayesian analysis of coupled cellular and nuclear trajectories for cell migration. Biometrics 2021; 78:1209-1220. [PMID: 33813733 DOI: 10.1111/biom.13468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/23/2021] [Accepted: 03/31/2021] [Indexed: 01/02/2023]
Abstract
Cell migration, the process by which cells move from one location to another, plays crucial roles in many biological events. While much research has been devoted to understand the process, most statistical cell migration models rely on using time-lapse microscopy data from cell trajectories alone. However, the cell and its associated nucleus work together to orchestrate cell movement, which motivates a joint analysis of coupled cell-nucleus trajectories. In this paper, we propose a Bayesian hierarchical model for analyzing cell migration. We incorporate a bivariate angular distribution to handle the coupled cell-nucleus trajectories and introduce latent motility status indicators to model a cell's motility as a time-dependent characteristic. A Markov chain Monte Carlo algorithm is provided for practical implementation of our model, which is used on real experimental data from MDA-MB-231 and NIH 3T3 cells. Through the fitted models, deeper insights into the migratory patterns of these experimental cell populations are gained and their differences are quantified.
Collapse
Affiliation(s)
- Saptarshi Chakraborty
- Department of Biostatistics, State University of New York at Buffalo, Buffalo, New York, USA
| | - Tian Lan
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Yiider Tseng
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Samuel W K Wong
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
16
|
Ding B, Tang Y, Ma S, Akter M, Liu ML, Zang T, Zhang CL. Disease Modeling with Human Neurons Reveals LMNB1 Dysregulation Underlying DYT1 Dystonia. J Neurosci 2021; 41:2024-2038. [PMID: 33468570 PMCID: PMC7939088 DOI: 10.1523/jneurosci.2507-20.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 02/08/2023] Open
Abstract
DYT1 dystonia is a hereditary neurologic movement disorder characterized by uncontrollable muscle contractions. It is caused by a heterozygous mutation in Torsin A (TOR1A), a gene encoding a membrane-embedded ATPase. While animal models provide insights into disease mechanisms, significant species-dependent differences exist since animals with the identical heterozygous mutation fail to show pathology. Here, we model DYT1 by using human patient-specific cholinergic motor neurons (MNs) that are generated through either direct conversion of patients' skin fibroblasts or differentiation of induced pluripotent stem cells (iPSCs). These human MNs with the heterozygous TOR1A mutation show reduced neurite length and branches, markedly thickened nuclear lamina, disrupted nuclear morphology, and impaired nucleocytoplasmic transport (NCT) of mRNAs and proteins, whereas they lack the perinuclear "blebs" that are often observed in animal models. Furthermore, we uncover that the nuclear lamina protein LMNB1 is upregulated in DYT1 cells and exhibits abnormal subcellular distribution in a cholinergic MNs-specific manner. Such dysregulation of LMNB1 can be recapitulated by either ectopic expression of the mutant TOR1A gene or shRNA-mediated downregulation of endogenous TOR1A in healthy control MNs. Interestingly, downregulation of LMNB1 can largely ameliorate all the cellular defects in DYT1 MNs. These results reveal the value of disease modeling with human patient-specific neurons and indicate that dysregulation of LMNB1, a crucial component of the nuclear lamina, may constitute a major molecular mechanism underlying DYT1 pathology.SIGNIFICANCE STATEMENT Inaccessibility to patient neurons greatly impedes our understanding of the pathologic mechanisms for dystonia. In this study, we employ reprogrammed human patient-specific motor neurons (MNs) to model DYT1, the most severe hereditary form of dystonia. Our results reveal disease-dependent deficits in nuclear morphology and nucleocytoplasmic transport (NCT). Most importantly, we further identify LMNB1 dysregulation as a major contributor to these deficits, uncovering a new pathologic mechanism for DYT1 dystonia.
Collapse
Affiliation(s)
- Baojin Ding
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana 70503
| | - Yu Tang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Shuaipeng Ma
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Masuma Akter
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana 70503
| | - Meng-Lu Liu
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Tong Zang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Chun-Li Zhang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
17
|
Decreased mechanotransduction prevents nuclear collapse in a Caenorhabditis elegans laminopathy. Proc Natl Acad Sci U S A 2020; 117:31301-31308. [PMID: 33229589 PMCID: PMC7733798 DOI: 10.1073/pnas.2015050117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nuclear envelopathies are a complex group of human diseases caused by mutations in nuclear envelope proteins, including progeria, myopathy, and dystonia. Here, we used the Caenorhabditis elegans germline as a model system to investigate the function of the OOC-5/torsinA AAA+ ATPase, which localizes to the nuclear envelope and is mutated in early-onset DYT1 dystonia in humans. We show that OOC-5/torsinA promotes the function of the LINC complex, which spans the nuclear envelope and transmits forces to the nuclear lamina. Remarkably, decreasing the function of OOC-5/torsinA or the LINC complex prevents nuclear collapse in the absence of a functional nuclear lamina. Therapeutics targeting torsinA or the LINC complex might prevent nuclear damage from endogenous forces in certain nuclear envelopathies. The function of the nucleus depends on the integrity of the nuclear lamina, an intermediate filament network associated with the linker of nucleoskeleton and cytoskeleton (LINC) complex. The LINC complex spans the nuclear envelope and mediates nuclear mechanotransduction, the process by which mechanical signals and forces are transmitted across the nuclear envelope. In turn, the AAA+ ATPase torsinA is thought to regulate force transmission from the cytoskeleton to the nucleus. In humans, mutations affecting nuclear envelope-associated proteins cause laminopathies, including progeria, myopathy, and dystonia, though the extent to which endogenous mechanical stresses contribute to these pathologies is unclear. Here, we use the Caenorhabditis elegans germline as a model to investigate mechanisms that maintain nuclear integrity as germ cell nuclei progress through meiotic development and migrate for gametogenesis—processes that require LINC complex function. We report that decreasing the function of the C. elegans torsinA homolog, OOC-5, rescues the sterility and premature aging caused by a null mutation in the single worm lamin homolog. We show that decreasing OOC-5/torsinA activity prevents nuclear collapse in lamin mutants by disrupting the function of the LINC complex. At a mechanistic level, OOC-5/torsinA promotes the assembly or maintenance of the lamin-associated LINC complex and this activity is also important for interphase nuclear pore complex insertion into growing germline nuclei. These results demonstrate that LINC complex-transmitted forces damage nuclei with a compromised nuclear lamina. Thus, the torsinA–LINC complex nexus might comprise a therapeutic target for certain laminopathies by preventing damage from endogenous cellular forces.
Collapse
|
18
|
Mutant Allele-Specific CRISPR Disruption in DYT1 Dystonia Fibroblasts Restores Cell Function. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:1-12. [PMID: 32502938 PMCID: PMC7270506 DOI: 10.1016/j.omtn.2020.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/15/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022]
Abstract
Most individuals affected with DYT1 dystonia have a heterozygous 3-bp deletion in the TOR1A gene (c.907_909delGAG). The mutation appears to act through a dominant-negative mechanism compromising normal torsinA function, and it is proposed that reducing mutant torsinA may normalize torsinA activity. In this study, we used an engineered Cas9 variant from Streptococcus pyogenes (SpCas9-VRQR) to target the mutation in the TOR1A gene in order to disrupt mutant torsinA in DYT1 patient fibroblasts. Selective targeting of the DYT1 allele was highly efficient with most common non-homologous end joining (NHEJ) edits, leading to a predicted premature stop codon with loss of the torsinA C terminus (delta 302–332 aa). Structural analysis predicted a functionally inactive status of this truncated torsinA due to the loss of residues associated with ATPase activity and binding to LULL1. Immunoblotting showed a reduction of the torsinA protein level in Cas9-edited DYT1 fibroblasts, and a functional assay using HSV infection indicated a phenotypic recovery toward that observed in control fibroblasts. These findings suggest that the selective disruption of the mutant TOR1A allele using CRISPR-Cas9 inactivates mutant torsinA, allowing the remaining wild-type torsinA to exert normal function.
Collapse
|
19
|
Hölper JE, Klupp BG, Luxton GWG, Franzke K, Mettenleiter TC. Function of Torsin AAA+ ATPases in Pseudorabies Virus Nuclear Egress. Cells 2020; 9:cells9030738. [PMID: 32192107 PMCID: PMC7140721 DOI: 10.3390/cells9030738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023] Open
Abstract
Newly assembled herpesvirus nucleocapsids traverse the intact nuclear envelope by a vesicle-mediated nucleo-cytoplasmic transport for final virion maturation in the cytoplasm. For this, they bud at the inner nuclear membrane resulting in primary enveloped particles in the perinuclear space (PNS) followed by fusion of the primary envelope with the outer nuclear membrane (ONM). While the conserved viral nuclear egress complex orchestrates the first steps, effectors of fusion of the primary virion envelope with the ONM are still mostly enigmatic but might include cellular proteins like SUN2 or ESCRT-III components. Here, we analyzed the influence of the only known AAA+ ATPases located in the endoplasmic reticulum and the PNS, the Torsins (Tor), on nuclear egress of the alphaherpesvirus pseudorabies virus. For this overexpression of wild type and mutant proteins as well as CRISPR/Cas9 genome editing was applied. Neither single overexpression nor gene knockout (KO) of TorA or TorB had a significant impact. However, TorA/B double KO cells showed decreased viral titers at early time points of infection and an accumulation of primary virions in the PNS pointing to a delay in capsid release during nuclear egress.
Collapse
Affiliation(s)
- Julia E. Hölper
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (J.E.H.); (B.G.K.)
| | - Barbara G. Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (J.E.H.); (B.G.K.)
| | - G. W. Gant Luxton
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Kati Franzke
- Institute of Infectology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany;
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (J.E.H.); (B.G.K.)
- Correspondence: ; Tel.: +49-38351-71250; Fax: +49-38351-71151
| |
Collapse
|
20
|
A Glance at the Nuclear Envelope Spectrin Repeat Protein 3. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1651805. [PMID: 31828088 PMCID: PMC6886330 DOI: 10.1155/2019/1651805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/14/2019] [Indexed: 12/27/2022]
Abstract
Nuclear envelope spectrin repeat protein 3 (nesprin-3) is an evolutionarily-conserved structural protein, widely-expressed in vertebrate cells. Along with other nesprin family members, nesprin-3 acts as an essential component of the linker of nucleoskeleton and cytoskeleton (LINC) complex. Naturally, nesprin-3 shares many functions with LINC, including the localization of various cellular structures and bridging of the nucleoskeleton and cytoskeleton, observed in vitro. When nesprin-3 was knocked down in vivo, using zebrafish and mouse models, however, the animals were minimally affected. This paradoxical observation should not limit the physiological importance of nesprin-3, as recently, nesprin-3 has reignited the interest of the research community in studies on cancer cells migration. Moreover, nesprin-3 also plays an active role in certain developmental conditions such as adipogenesis and spermatogenesis, although more studies are needed. Meanwhile, the various protein binding partners of nesprin-3 should also be emphasized, as they are necessary for maintaining the structure of nesprin-3 and enabling it to carry out its various physiological and pathological functions. Nesprin-3 promises to further our understanding of these complex cellular events. Therefore, this review will focus on nesprin-3, examining it from a genetic, structural, and functional perspective. The final part of the review will in turn address the limitations of existing research and the future perspectives for the study of nesprin-3.
Collapse
|
21
|
Gonzalez-Alegre P. Advances in molecular and cell biology of dystonia: Focus on torsinA. Neurobiol Dis 2019; 127:233-241. [DOI: 10.1016/j.nbd.2019.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/20/2019] [Accepted: 03/09/2019] [Indexed: 12/15/2022] Open
|
22
|
Gill NK, Ly C, Kim PH, Saunders CA, Fong LG, Young SG, Luxton GWG, Rowat AC. DYT1 Dystonia Patient-Derived Fibroblasts Have Increased Deformability and Susceptibility to Damage by Mechanical Forces. Front Cell Dev Biol 2019; 7:103. [PMID: 31294022 PMCID: PMC6606767 DOI: 10.3389/fcell.2019.00103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/27/2019] [Indexed: 12/24/2022] Open
Abstract
DYT1 dystonia is a neurological movement disorder that is caused by a loss-of-function mutation in the DYT1/TOR1A gene, which encodes torsinA, a conserved luminal ATPases-associated with various cellular activities (AAA+) protein. TorsinA is required for the assembly of functional linker of nucleoskeleton and cytoskeleton (LINC) complexes, and consequently the mechanical integration of the nucleus and the cytoskeleton. Despite the potential implications of altered mechanobiology in dystonia pathogenesis, the role of torsinA in regulating cellular mechanical phenotype, or mechanotype, in DYT1 dystonia remains unknown. Here, we define the deformability of mouse fibroblasts lacking functional torsinA as well as human fibroblasts isolated from DYT1 dystonia patients. We find that the deletion of torsinA or the expression of torsinA containing the DYT1 dystonia-causing ΔE302/303 (ΔE) mutation results in more deformable cells. We observe a similar increased deformability of mouse fibroblasts that lack lamina-associated polypeptide 1 (LAP1), which interacts with and stimulates the ATPase activity of torsinA in vitro, as well as with the absence of the LINC complex proteins, Sad1/UNC-84 1 (SUN1) and SUN2, lamin A/C, or lamin B1. Consistent with these findings, we also determine that DYT1 dystonia patient-derived fibroblasts are more compliant than fibroblasts isolated from unafflicted individuals. DYT1 dystonia patient-derived fibroblasts also exhibit increased nuclear strain and decreased viability following mechanical stretch. Taken together, our results establish the foundation for future mechanistic studies of the role of cellular mechanotype and LINC-dependent nuclear-cytoskeletal coupling in regulating cell survival following exposure to mechanical stresses.
Collapse
Affiliation(s)
- Navjot Kaur Gill
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Chau Ly
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Paul H Kim
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cosmo A Saunders
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States
| | - Loren G Fong
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States.,Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
23
|
Chalfant M, Barber KW, Borah S, Thaller D, Lusk CP. Expression of TorsinA in a heterologous yeast system reveals interactions with lumenal domains of LINC and nuclear pore complex components. Mol Biol Cell 2019; 30:530-541. [PMID: 30625036 PMCID: PMC6589686 DOI: 10.1091/mbc.e18-09-0585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
DYT1 dystonia is caused by an in-frame deletion of a glutamic acid codon in the gene encoding the AAA+ ATPase TorsinA (TorA). TorA localizes within the lumen of the nuclear envelope/endoplasmic reticulum and binds to a membrane-spanning cofactor, lamina associated polypeptide 1 (LAP1) or lumenal domain like LAP1 (LULL1), to form an ATPase; the substrate(s) of TorA remains ill-defined. Here we use budding yeast, which lack Torsins, to interrogate TorA function. We show that TorA accumulates at nuclear envelope-embedded spindle pole bodies (SPBs) in a way that requires its oligomerization and the SUN (Sad1 and UNc-84)-domain protein, Mps3. We further show that TorA physically interacts with human SUN1/2 within this system, supporting the physiological relevance of these interactions. Consistent with the idea that TorA acts on a SPB substrate, its binding to SPBs is modulated by the ATPase-stimulating activity of LAP1. TorA and TorA-ΔE reduce the fitness of cells expressing mps3 alleles, whereas TorA alone inhibits growth of cells lacking Pom152, a component of the nuclear pore complex. This genetic specificity is mirrored biochemically as TorA, but not TorA-ΔE, binds Pom152. Thus, TorA–nucleoporin interactions might be abrogated by TorA-ΔE, suggesting new experimental avenues to interrogate the molecular basis behind nuclear envelope herniations seen in mammalian cells lacking TorA function.
Collapse
Affiliation(s)
| | - Karl W. Barber
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT 06520
- Systems Biology Institute, Yale University, West Haven, CT 06477
| | - Sapan Borah
- Department of Cell Biology, Yale University, New Haven, CT 06520
| | - David Thaller
- Department of Cell Biology, Yale University, New Haven, CT 06520
| | - C. Patrick Lusk
- Department of Cell Biology, Yale University, New Haven, CT 06520
| |
Collapse
|
24
|
Dominguez Gonzalez B, Billion K, Rous S, Pavie B, Lange C, Goodchild R. Excess LINC complexes impair brain morphogenesis in a mouse model of recessive TOR1A disease. Hum Mol Genet 2019; 27:2154-2170. [PMID: 29868845 DOI: 10.1093/hmg/ddy125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/06/2018] [Indexed: 01/08/2023] Open
Abstract
Heterozygosity for the TOR1A-Δgag mutation causes semi-penetrant childhood-onset dystonia (OMIM #128100). More recently, homozygous TOR1A mutations were shown to cause severe neurological dysfunction in infants. However, there is little known about the recessive cases, including whether existing reports define the full spectrum of recessive TOR1A disease. Here we describe abnormal brain morphogenesis in ∼30% of Tor1a-/- mouse embryos while, in contrast, this is not found in Tor1aΔgag/Δgag mice. The abnormal Tor1a-/- brains contain excess neural tissue, as well as proliferative zone cytoarchitectural defects related to radial glial cell polarity and cytoskeletal organization. In cultured cells torsinA effects the linker of nucleoskeleton and cytoskeleton (LINC) complex that couples the nucleus and cytoskeleton. Here we identify that torsinA loss elevates LINC complex levels in the proliferative zone, and that genetic reduction of LINC complexes prevents abnormal brain morphogenesis in Tor1a-/- embryos. These data show that Tor1a affects radial glial cells via a LINC complex mediated mechanism. They also predict human TOR1A disease will include incompletely penetrant defects in embryonic brain morphogenesis in cases where mutations ablate TOR1A function.
Collapse
Affiliation(s)
- Beatriz Dominguez Gonzalez
- VIB & KU Leuven Centre for Brain & Disease Research, Campus Gasthuisberg, 3000 Leuven, Belgium.,Department of Neurosciences, Campus Gasthuisberg, KU Leuven, 3000 Leuven, Belgium
| | - Karolien Billion
- VIB & KU Leuven Centre for Brain & Disease Research, Campus Gasthuisberg, 3000 Leuven, Belgium.,Department of Neurosciences, Campus Gasthuisberg, KU Leuven, 3000 Leuven, Belgium
| | - Stef Rous
- VIB & KU Leuven Centre for Brain & Disease Research, Campus Gasthuisberg, 3000 Leuven, Belgium.,Department of Neurosciences, Campus Gasthuisberg, KU Leuven, 3000 Leuven, Belgium
| | - Benjamin Pavie
- VIB & KU Leuven Centre for Brain & Disease Research, Campus Gasthuisberg, 3000 Leuven, Belgium.,VIB Bio Imaging Core, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Christian Lange
- DFG-Research Center and Cluster of Excellence for Regenerative Therapies (CRTD), Technische Universität Dresden, Fetscherstr. 105, D-01307, Dresden, Germany
| | - Rose Goodchild
- VIB & KU Leuven Centre for Brain & Disease Research, Campus Gasthuisberg, 3000 Leuven, Belgium.,Department of Neurosciences, Campus Gasthuisberg, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
25
|
Combined loss of LAP1B and LAP1C results in an early onset multisystemic nuclear envelopathy. Nat Commun 2019; 10:605. [PMID: 30723199 PMCID: PMC6363790 DOI: 10.1038/s41467-019-08493-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 01/10/2019] [Indexed: 01/23/2023] Open
Abstract
Nuclear envelopathies comprise a heterogeneous group of diseases caused by mutations in genes encoding nuclear envelope proteins. Mutations affecting lamina-associated polypeptide 1 (LAP1) result in two discrete phenotypes of muscular dystrophy and progressive dystonia with cerebellar atrophy. We report 7 patients presenting at birth with severe progressive neurological impairment, bilateral cataract, growth retardation and early lethality. All the patients are homozygous for a nonsense mutation in the TOR1AIP1 gene resulting in the loss of both protein isoforms LAP1B and LAP1C. Patient-derived fibroblasts exhibit changes in nuclear envelope morphology and large nuclear-spanning channels containing trapped cytoplasmic organelles. Decreased and inefficient cellular motility is also observed in these fibroblasts. Our study describes the complete absence of both major human LAP1 isoforms, underscoring their crucial role in early development and organogenesis. LAP1-associated defects may thus comprise a broad clinical spectrum depending on the availability of both isoforms in the nuclear envelope throughout life.
Collapse
|
26
|
Serrano JB, Martins F, Pereira CD, van Pelt AMM, da Cruz E Silva OAB, Rebelo S. TorsinA Is Functionally Associated with Spermatogenesis. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:221-228. [PMID: 30246678 DOI: 10.1017/s1431927618015179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
TorsinA is a member of the AAA+ superfamily of adenosine triphosphatases. These AAA+ proteins have numerous biological functions, including vesicle fusion, cytoskeleton dynamics, intracellular trafficking, protein folding, and degradation as well as organelle biogenesis. Of particular interest is torsinA, which is mainly located in the endoplasmic reticulum (ER) and nuclear envelope (NE). Interestingly, mutations in the TOR1A gene (the gene encoding torsinA) are associated with DYT1 dystonia and with the preferential localization of mutated torsinA at the NE, where it is associated with lamina-associated polypeptide 1. A bioinformatics study of the torsinA interactome revealed reproductive processes to be highly relevant, as proteins in this class were found to interact with the former. Interestingly, the torsin protein family had never been previously described to be associated with the mammalian spermatogenic process. Histological staining of torsinA in human testis tissue revealed a granular cytoplasmic localization in mid- and late spermatocytes. We further sought to understand this newly discovered expression of torsinA in the meiotic phase of human spermatogenesis by studying its specific subcellular distribution. TorsinA is not present in the ER as commonly described. The proposal that torsinA might relocate to the pro-acrosomal vesicles in the Golgi apparatus is discussed.
Collapse
Affiliation(s)
- Joana B Serrano
- 1Neuroscience and Signalling Laboratory,Department of Medical Sciences,Institute of Biomedicine (iBiMED),University of Aveiro,3810-193 Aveiro,Portugal
| | - Filipa Martins
- 1Neuroscience and Signalling Laboratory,Department of Medical Sciences,Institute of Biomedicine (iBiMED),University of Aveiro,3810-193 Aveiro,Portugal
| | - Cátia D Pereira
- 1Neuroscience and Signalling Laboratory,Department of Medical Sciences,Institute of Biomedicine (iBiMED),University of Aveiro,3810-193 Aveiro,Portugal
| | - Ans M M van Pelt
- 2Center for Reproductive Medicine, Research Institute Reproduction and Development, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Odete A B da Cruz E Silva
- 1Neuroscience and Signalling Laboratory,Department of Medical Sciences,Institute of Biomedicine (iBiMED),University of Aveiro,3810-193 Aveiro,Portugal
| | - Sandra Rebelo
- 1Neuroscience and Signalling Laboratory,Department of Medical Sciences,Institute of Biomedicine (iBiMED),University of Aveiro,3810-193 Aveiro,Portugal
| |
Collapse
|
27
|
Pappas SS, Liang CC, Kim S, Rivera CO, Dauer WT. TorsinA dysfunction causes persistent neuronal nuclear pore defects. Hum Mol Genet 2019; 27:407-420. [PMID: 29186574 DOI: 10.1093/hmg/ddx405] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/15/2017] [Indexed: 01/09/2023] Open
Abstract
A critical challenge to deciphering the pathophysiology of neurodevelopmental disease is identifying which of the myriad abnormalities that emerge during CNS maturation persist to contribute to long-term brain dysfunction. Childhood-onset dystonia caused by a loss-of-function mutation in the AAA+ protein torsinA exemplifies this challenge. Neurons lacking torsinA develop transient nuclear envelope (NE) malformations during CNS maturation, but no NE defects are described in mature torsinA null neurons. We find that during postnatal CNS maturation torsinA null neurons develop mislocalized and dysfunctional nuclear pore complexes (NPC) that lack NUP358, normally added late in NPC biogenesis. SUN1, a torsinA-related molecule implicated in interphase NPC biogenesis, also exhibits localization abnormalities. Whereas SUN1 and associated nuclear membrane abnormalities resolve in juvenile mice, NPC defects persist into adulthood. These findings support a role for torsinA function in NPC biogenesis during neuronal maturation and implicate altered NPC function in dystonia pathophysiology.
Collapse
Affiliation(s)
| | | | - Sumin Kim
- Cellular and Molecular Biology Program
| | | | - William T Dauer
- Department of Neurology.,Cellular and Molecular Biology Program.,Department of Cell and Developmental Biology.,VA Ann Arbor Health System, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
28
|
Richardson L, Menon R. Proliferative, Migratory, and Transition Properties Reveal Metastate of Human Amnion Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2004-2015. [PMID: 29981743 PMCID: PMC6119821 DOI: 10.1016/j.ajpath.2018.05.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 05/17/2018] [Indexed: 11/19/2022]
Abstract
Amnion epithelial cell (AEC) shedding causes microfractures in human placental membranes during gestation. However, microfractures are healed to maintain membrane integrity. To better understand the cellular mechanisms of healing and tissue remodeling, scratch assays were performed using primary AECs derived from normal term not in labor membranes. AECs were grown under different conditions: i) normal cultures (control), ii) oxidative stress (OS) induction by cigarette smoke extract (CSE), iii) co-treatment of CSE and antioxidant N-acetyl-l-cysteine, and iv) treatment with amniotic fluid (AF). Cell migration time and distance, changes in intermediate filament (cytokeratin-18 and vimentin) expressions, and cellular senescence were determined. Control AECs in culture exhibited a metastate with the expression of both cytokeratin-18 and vimentin. During healing, AECs proliferated, migrated, and transitioned from epithelial to mesenchymal phenotype with increased vimentin. Wound healing was associated with mesenchymal to epithelial transition (MET). CSE-induced OS and senescence prevented wound healing in which cells sustained mesenchymal state. N-acetyl-l-cysteine reversed CSE's effect to aid wound closure through MET. AF accelerated cellular transitions and healing. Our data suggest that AECs undergo epithelial to mesenchymal transition during proliferation and migration and MET at the injury site to promote healing. AF accelerated whereas OS diminished cellular transitions and healing. OS-inducing pregnancy risk factors may diminish remodeling capacity contributing to membrane dysfunction, leading to preterm birth.
Collapse
Affiliation(s)
- Lauren Richardson
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas; Department of Neuroscience, Cell Biology and Anatomy, The University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas.
| |
Collapse
|
29
|
Ji Y, Jiang J, Huang L, Feng W, Zhang Z, Jin L, Xing X. Sperm‑associated antigen 4 (SPAG4) as a new cancer marker interacts with Nesprin3 to regulate cell migration in lung carcinoma. Oncol Rep 2018; 40:783-792. [PMID: 29901114 PMCID: PMC6072301 DOI: 10.3892/or.2018.6473] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 04/17/2018] [Indexed: 01/08/2023] Open
Abstract
Lung cancer is the most common cause of cancer-related deaths, and early diagnosis and targeted therapy are extremely important in the treatment of this disease. Sperm-associated antigen 4 (SPAG4) was recently found to be a novel cancer biomarker. In the present study, the expression of SPAG4 was revealed to be high in lung adenocarcinoma tissues as determined by western blotting and immunohistochemistry. SPAG4 knockdown by RNAi efficiently reduced the migration of the lung cancer A549 cells in vitro. Mechanistically, SPAG4 exerted its tumor promoting functions by interacting with Nesprin3 as determined by co-immunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC) techniques. In addition, immunofluorescence revealed that the level of SPAG4 in lung cancer cells could affect the location and expression of Nesprin3. Furthermore, silencing of Nesprin3 reduced the migration of A549 cells and we provided evidence to demonstrate that SPAG4 acted as a positive regulator of Nesprin3. The results revealed that SPAG4, in cooperation with Nesprin3, has a fundamental pathological function in the migration of lung carcinoma cells, and the SPAG4 gene may be useful for the clinical diagnosis and new treatment strategies in patients with lung cancer.
Collapse
Affiliation(s)
- Ying Ji
- Department of Cardiothoracic Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jinquan Jiang
- Department of Cardiothoracic Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Lihua Huang
- Center for Medical Experiments, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Wei Feng
- Department of Cardiothoracic Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhang Zhang
- Department of Cardiothoracic Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Longyu Jin
- Department of Cardiothoracic Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiaowei Xing
- Center for Medical Experiments, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
30
|
Graham DM, Andersen T, Sharek L, Uzer G, Rothenberg K, Hoffman BD, Rubin J, Balland M, Bear JE, Burridge K. Enucleated cells reveal differential roles of the nucleus in cell migration, polarity, and mechanotransduction. J Cell Biol 2018; 217:895-914. [PMID: 29351995 PMCID: PMC5839789 DOI: 10.1083/jcb.201706097] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/16/2017] [Accepted: 12/14/2017] [Indexed: 01/11/2023] Open
Abstract
The nucleus has long been postulated to play a critical physical role during cell polarization and migration, but that role has not been defined or rigorously tested. Here, we enucleated cells to test the physical necessity of the nucleus during cell polarization and directed migration. Using enucleated mammalian cells (cytoplasts), we found that polarity establishment and cell migration in one dimension (1D) and two dimensions (2D) occur without the nucleus. Cytoplasts directionally migrate toward soluble (chemotaxis) and surface-bound (haptotaxis) extracellular cues and migrate collectively in scratch-wound assays. Consistent with previous studies, migration in 3D environments was dependent on the nucleus. In part, this likely reflects the decreased force exerted by cytoplasts on mechanically compliant substrates. This response is mimicked both in cells with nucleocytoskeletal defects and upon inhibition of actomyosin-based contractility. Together, our observations reveal that the nucleus is dispensable for polarization and migration in 1D and 2D but critical for proper cell mechanical responses.
Collapse
Affiliation(s)
- David M Graham
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Tomas Andersen
- Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes, Grenoble, France
| | - Lisa Sharek
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Gunes Uzer
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID
| | | | | | - Janet Rubin
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Martial Balland
- Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes, Grenoble, France
| | - James E Bear
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Keith Burridge
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
31
|
Mutant torsinA in the heterozygous DYT1 state compromises HSV propagation in infected neurons and fibroblasts. Sci Rep 2018; 8:2324. [PMID: 29396398 PMCID: PMC5797141 DOI: 10.1038/s41598-018-19865-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/09/2018] [Indexed: 12/18/2022] Open
Abstract
Most cases of early onset torsion dystonia (DYT1) are caused by a 3-base pair deletion in one allele of the TOR1A gene causing loss of a glutamate in torsinA, a luminal protein in the nuclear envelope. This dominantly inherited neurologic disease has reduced penetrance and no other medical manifestations. It has been challenging to understand the neuronal abnormalities as cells and mouse models which are heterozygous (Het) for the mutant allele are quite similar to wild-type (WT) controls. Here we found that patient fibroblasts and mouse neurons Het for this mutation showed significant differences from WT cells in several parameters revealed by infection with herpes simplex virus type 1 (HSV) which replicates in the nucleus and egresses out through the nuclear envelope. Using a red fluorescent protein capsid to monitor HSV infection, patient fibroblasts showed decreased viral plaque formation as compared to controls. Mouse Het neurons had a decrease in cytoplasmic, but not nuclear HSV fluorescence, and reduced numbers of capsids entering axons as compared to infected WT neurons. These findings point to altered dynamics of the nuclear envelope in cells with the patient genotype, which can provide assays to screen for therapeutic agents that can normalize these cells.
Collapse
|
32
|
Weisheit CE, Pappas SS, Dauer WT. Inherited dystonias: clinical features and molecular pathways. HANDBOOK OF CLINICAL NEUROLOGY 2018; 147:241-254. [PMID: 29325615 DOI: 10.1016/b978-0-444-63233-3.00016-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent decades have witnessed dramatic increases in understanding of the genetics of dystonia - a movement disorder characterized by involuntary twisting and abnormal posture. Hampered by a lack of overt neuropathology, researchers are investigating isolated monogenic causes to pinpoint common molecular mechanisms in this heterogeneous disease. Evidence from imaging, cellular, and murine work implicates deficiencies in dopamine neurotransmission, transcriptional dysregulation, and selective vulnerability of distinct neuronal populations to disease mutations. Studies of genetic forms of dystonia are also illuminating the developmental dependence of disease symptoms that is typical of many forms of the disease. As understanding of monogenic forms of dystonia grows, a clearer picture will develop of the abnormal motor circuitry behind this relatively common phenomenology. This chapter focuses on the current data covering the etiology and epidemiology, clinical presentation, and pathogenesis of four monogenic forms of isolated dystonia: DYT-TOR1A, DYT-THAP1, DYT-GCH1, and DYT-GNAL.
Collapse
Affiliation(s)
- Corinne E Weisheit
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Samuel S Pappas
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - William T Dauer
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
33
|
Zhu R, Liu C, Gundersen GG. Nuclear positioning in migrating fibroblasts. Semin Cell Dev Biol 2017; 82:41-50. [PMID: 29241691 DOI: 10.1016/j.semcdb.2017.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 01/09/2023]
Abstract
The positioning and movement of the nucleus has recently emerged as an important aspect of cell migration. Understanding of nuclear positioning and movement has reached an apogee in studies of fibroblast migration. Specific nuclear positioning and movements have been described in the polarization of fibroblast for cell migration and in active migration in 2D and 3D environments. Here, we review recent studies that have uncovered novel molecular mechanisms that contribute to these events in fibroblasts. Many of these involve a connection between the nucleus and the cytoskeleton through the LINC complex composed of outer nuclear membrane nesprins and inner nuclear membrane SUN proteins. We consider evidence that appropriate nuclear positioning contributes to efficient fibroblast polarization and migration and the possible mechanism through which the nucleus affects cell migration.
Collapse
Affiliation(s)
- Ruijun Zhu
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Chenshu Liu
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
34
|
Ponterio G, Tassone A, Sciamanna G, Vanni V, Meringolo M, Santoro M, Mercuri NB, Bonsi P, Pisani A. Enhanced mu opioid receptor-dependent opioidergic modulation of striatal cholinergic transmission in DYT1 dystonia. Mov Disord 2017; 33:310-320. [PMID: 29150865 DOI: 10.1002/mds.27212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/27/2017] [Accepted: 10/06/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Mu opioid receptor activation modulates acetylcholine release in the dorsal striatum, an area deeply involved in motor function, habit formation, and reinforcement learning as well as in the pathophysiology of different movement disorders, such as dystonia. Although the role of opioids in drug reward and addiction is well established, their involvement in motor dysfunction remains largely unexplored. METHODS We used a multidisciplinary approach to investigate the responses to mu activation in 2 mouse models of DYT1 dystonia (Tor1a+/Δgag mice, Tor1a+/- torsinA null mice, and their respective wild-types). We performed electrophysiological recordings to characterize the pharmacological effects of receptor activation in cholinergic interneurons as well as the underlying ionic currents. In addition, an analysis of the receptor expression was performed both at the protein and mRNA level. RESULTS In mutant mice, selective mu receptor activation caused a stronger G-protein-dependent, dose-dependent inhibition of firing activity in cholinergic interneurons when compared with controls. In Tor1a+/- mice, our electrophysiological analysis showed an abnormal involvement of calcium-activated potassium channels. Moreover, in both models we found increased levels of mu receptor protein. In addition, both total mRNA and the mu opioid receptor splice variant 1S (MOR-1S) splice variant of the mu receptor gene transcript, specifically enriched in striatum, were selectively upregulated. CONCLUSION Mice with the DYT1 dystonia mutation exhibit an enhanced response to mu receptor activation, dependent on selective receptor gene upregulation. Our data suggest a novel role for striatal opioid signaling in motor control, and more important, identify mu opioid receptors as potential targets for pharmacological intervention in dystonia. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Giulia Ponterio
- Department of Systems Medicine, University of Rome "Tor Vergata,", Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Neurophysiology and Plasticity Lab, Rome, Italy
| | - Annalisa Tassone
- Department of Systems Medicine, University of Rome "Tor Vergata,", Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Neurophysiology and Plasticity Lab, Rome, Italy
| | - Giuseppe Sciamanna
- Department of Systems Medicine, University of Rome "Tor Vergata,", Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Neurophysiology and Plasticity Lab, Rome, Italy
| | - Valentina Vanni
- Department of Systems Medicine, University of Rome "Tor Vergata,", Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Neurophysiology and Plasticity Lab, Rome, Italy
| | - Maria Meringolo
- Department of Systems Medicine, University of Rome "Tor Vergata,", Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Neurophysiology and Plasticity Lab, Rome, Italy
| | | | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata,", Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Neurophysiology and Plasticity Lab, Rome, Italy
| | - Paola Bonsi
- Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Neurophysiology and Plasticity Lab, Rome, Italy
| | - Antonio Pisani
- Department of Systems Medicine, University of Rome "Tor Vergata,", Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Neurophysiology and Plasticity Lab, Rome, Italy
| |
Collapse
|
35
|
|
36
|
Abstract
Starr and Rose discuss work by Saunders et al. demonstrating that torsinA and LAP1 regulate nuclear movement during fibroblast polarization. How LINC complexes are regulated to connect nuclei to the cytoskeleton during nuclear migration is unknown. Saunders et al. (2017. J. Cell Biol.https://doi.org/10.1083/jcb.201507113) show that the AAA+ ATPase torsinA and its partner LAP1 are required for nuclear migration during fibroblast polarization by mediating the dynamics of LINC complexes.
Collapse
Affiliation(s)
- Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Lesilee S Rose
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| |
Collapse
|
37
|
Saunders CA, Harris NJ, Willey PT, Woolums BM, Wang Y, McQuown AJ, Schoenhofen A, Worman HJ, Dauer WT, Gundersen GG, Luxton GWG. TorsinA controls TAN line assembly and the retrograde flow of dorsal perinuclear actin cables during rearward nuclear movement. J Cell Biol 2017; 216:657-674. [PMID: 28242745 PMCID: PMC5350507 DOI: 10.1083/jcb.201507113] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/04/2016] [Accepted: 12/21/2016] [Indexed: 12/29/2022] Open
Abstract
The nucleus is positioned toward the rear of most migratory cells. In fibroblasts and myoblasts polarizing for migration, retrograde actin flow moves the nucleus rearward, resulting in the orientation of the centrosome in the direction of migration. In this study, we report that the nuclear envelope-localized AAA+ (ATPase associated with various cellular activities) torsinA (TA) and its activator, the inner nuclear membrane protein lamina-associated polypeptide 1 (LAP1), are required for rearward nuclear movement during centrosome orientation in migrating fibroblasts. Both TA and LAP1 contributed to the assembly of transmembrane actin-associated nuclear (TAN) lines, which couple the nucleus to dorsal perinuclear actin cables undergoing retrograde flow. In addition, TA localized to TAN lines and was necessary for the proper mobility of EGFP-mini-nesprin-2G, a functional TAN line reporter construct, within the nuclear envelope. Furthermore, TA and LAP1 were indispensable for the retrograde flow of dorsal perinuclear actin cables, supporting the recently proposed function for the nucleus in spatially organizing actin flow and cytoplasmic polarity. Collectively, these results identify TA as a key regulator of actin-dependent rearward nuclear movement during centrosome orientation.
Collapse
Affiliation(s)
- Cosmo A Saunders
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Nathan J Harris
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Patrick T Willey
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Brian M Woolums
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Yuexia Wang
- Department of Medicine, Columbia University, New York, NY 10032.,Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Alex J McQuown
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Amy Schoenhofen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Howard J Worman
- Department of Medicine, Columbia University, New York, NY 10032.,Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - William T Dauer
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109.,Department of Neurology, University of Michigan, Ann Arbor, MI 48109
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
38
|
Cascalho A, Jacquemyn J, Goodchild RE. Membrane defects and genetic redundancy: Are we at a turning point for DYT1 dystonia? Mov Disord 2016; 32:371-381. [PMID: 27911022 DOI: 10.1002/mds.26880] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/24/2016] [Accepted: 10/29/2016] [Indexed: 12/11/2022] Open
Abstract
Heterozygosity for a 3-base pair deletion (ΔGAG) in TOR1A/torsinA is one of the most common causes of hereditary dystonia. In this review, we highlight current understanding of how this mutation causes disease from research spanning structural biochemistry, cell science, neurobiology, and several model organisms. We now know that homozygosity for ΔGAG has the same effects as Tor1aKO , implicating a partial loss of function mechanism in the ΔGAG/+ disease state. In addition, torsinA loss specifically affects neurons in mice, even though the gene is broadly expressed, apparently because of differential expression of homologous torsinB. Furthermore, certain neuronal subtypes are more severely affected by torsinA loss. Interestingly, these include striatal cholinergic interneurons that display abnormal responses to dopamine in several Tor1a animal models. There is also progress on understanding torsinA molecular cell biology. The structural basis of how ΔGAG inhibits torsinA ATPase activity is defined, although mutant torsinAΔGAG protein also displays some characteristics suggesting it contributes to dystonia by a gain-of-function mechanism. Furthermore, a consistent relationship is emerging between torsin dysfunction and membrane biology, including an evolutionarily conserved regulation of lipid metabolism. Considered together, these findings provide major advances toward understanding the molecular, cellular, and neurobiological pathologies of DYT1/TOR1A dystonia that can hopefully be exploited for new approaches to treat this disease. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ana Cascalho
- Vlaams Instituut voor Biotechnologie Centre for the Biology of Disease, Leuven, Belgium.,KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Julie Jacquemyn
- Vlaams Instituut voor Biotechnologie Centre for the Biology of Disease, Leuven, Belgium.,KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Rose E Goodchild
- Vlaams Instituut voor Biotechnologie Centre for the Biology of Disease, Leuven, Belgium.,KU Leuven, Department of Human Genetics, Leuven, Belgium
| |
Collapse
|
39
|
Camargos S, Cardoso F. Understanding dystonia: diagnostic issues and how to overcome them. ARQUIVOS DE NEURO-PSIQUIATRIA 2016; 74:921-936. [DOI: 10.1590/0004-282x20160140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/07/2016] [Indexed: 03/05/2025]
Abstract
ABSTRACT The diagnosis and treatment of dystonia are challenging. This is likely due to gaps in the complete understanding of its pathophysiology, lack of animal models for translational studies, absence of a consistent pathological substrate and highly variable phenotypes and genotypes. The aim of this review article is to provide an overview of the clinical, neurophysiological and genetic features of dystonia that can help in the identification of this movement disorder, as well as in the differential diagnosis of the main forms of genetic dystonia. The variation of penetrance, age of onset, and topographic distribution of the disease in carriers of the same genetic mutation indicates that other factors – either genetic or environmental – might be involved in the development of symptoms. The growing knowledge of cell dysfunction in mutants may give insights into more effective therapeutic targets.
Collapse
|
40
|
Laudermilch E, Tsai PL, Graham M, Turner E, Zhao C, Schlieker C. Dissecting Torsin/cofactor function at the nuclear envelope: a genetic study. Mol Biol Cell 2016; 27:3964-3971. [PMID: 27798237 PMCID: PMC5156537 DOI: 10.1091/mbc.e16-07-0511] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 01/12/2023] Open
Abstract
Torsins are essential, disease-relevant ATPases, but their function is unknown. Monitoring of nuclear envelope morphology after deletion of multiple Torsins or their cofactors reveals a robust inner nuclear membrane–blebbing phenotype in HeLa cells. Nucleoporins and ubiquitin are defining molecular components of these omega-shaped blebs. The human genome encodes four Torsin ATPases, the functions of which are poorly understood. In this study, we use CRISPR/Cas9 engineering to delete all four Torsin ATPases individually and in combination. Using nuclear envelope (NE) blebbing as a phenotypic measure, we establish a direct correlation between the number of inactivated Torsin alleles and the occurrence of omega-shaped herniations within the lumen of the NE. A similar, although not identical, redundancy is observed for LAP1 and LULL1, which serve as regulatory cofactors for a subset of Torsin ATPases. Unexpectedly, deletion of Tor2A in a TorA/B/3A-deficient background results in a stark increase of bleb formation, even though Tor2A does not respond to LAP1/LULL1 stimulation. The robustness of the observed phenotype in Torsin-deficient cells enables a structural analysis via electron microscopy tomography and a compositional analysis via immunogold labeling. Ubiquitin and nucleoporins were identified as distinctively localizing components of the omega-shaped bleb structure. These findings suggest a functional link between the Torsin/cofactor system and NE/nuclear pore complex biogenesis or homeostasis and establish a Torsin-deficient cell line as a valuable experimental platform with which to decipher Torsin function.
Collapse
Affiliation(s)
- Ethan Laudermilch
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Pei-Ling Tsai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Morven Graham
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | - Elizabeth Turner
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Chenguang Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Christian Schlieker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520 .,Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
41
|
Tanabe LM, Liang CC, Dauer WT. Neuronal Nuclear Membrane Budding Occurs during a Developmental Window Modulated by Torsin Paralogs. Cell Rep 2016; 16:3322-3333. [PMID: 27653693 PMCID: PMC5061049 DOI: 10.1016/j.celrep.2016.08.044] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/19/2016] [Accepted: 08/14/2016] [Indexed: 01/26/2023] Open
Abstract
DYT1 dystonia is a neurodevelopmental disease that manifests during a discrete period of childhood. The disease is caused by impaired function of torsinA, a protein linked to nuclear membrane budding. The relationship of NE budding to neural development and CNS function is unclear, however, obscuring its potential role in dystonia pathogenesis. We find NE budding begins and resolves during a discrete neurodevelopmental window in torsinA null neurons in vivo. The developmental resolution of NE budding corresponds to increased torsinB protein, while ablating torsinB from torsinA null neurons prevents budding resolution and causes lethal neural dysfunction. Developmental changes in torsinB also correlate with NE bud formation in differentiating DYT1 embryonic stem cells, and overexpression of torsinA or torsinB rescues NE bud formation in this system. These findings identify a torsinA neurodevelopmental window that is essential for normal CNS function and have important implications for dystonia pathogenesis and therapeutics.
Collapse
Affiliation(s)
- Lauren M Tanabe
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chun-Chi Liang
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William T Dauer
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
42
|
Abstract
Most DNA viruses replicate in the nucleus and exit it either by passing through the nuclear pores or by rupturing the nuclear envelope. Unusually, herpesviruses have evolved a complex mechanism of nuclear escape whereby nascent capsids bud at the inner nuclear membrane to form perinuclear virions that subsequently fuse with the outer nuclear membrane, releasing capsids into the cytosol. Although this general scheme is accepted in the field, the players and their roles are still debated. Recent studies illuminated critical mechanistic features of this enigmatic process and uncovered surprising parallels with a novel cellular nuclear export process. This review summarizes our current understanding of nuclear egress in herpesviruses, examines the experimental evidence and models, and outlines outstanding questions with the goal of stimulating new research in this area.
Collapse
Affiliation(s)
- Janna M Bigalke
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111;
| | - Ekaterina E Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111;
| |
Collapse
|
43
|
Saunders CA, Luxton GWG. LINCing defective nuclear-cytoskeletal coupling and DYT1 dystonia. Cell Mol Bioeng 2016; 9:207-216. [PMID: 27499815 DOI: 10.1007/s12195-016-0432-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Mechanical forces generated by nuclear-cytoskeletal coupling through the LINC (linker of nucleoskeleton and cytoskeleton) complex, an evolutionarily conserved molecular bridge in the nuclear envelope (NE), are critical for the execution of wholesale nuclear positioning events in migrating and dividing cells, chromosome dynamics during meiosis, and mechanotransduction. LINC complexes consist of outer (KASH (Klarsicht, ANC-1, and Syne homology)) and inner (SUN (Sad1, UNC-84)) nuclear membrane proteins. KASH proteins interact with the cytoskeleton in the cytoplasm and SUN proteins in the perinuclear space of the NE. In the nucleoplasm, SUN proteins interact with A-type nuclear lamins and chromatin-binding proteins. Recent structural insights into the KASH-SUN interaction have generated several questions regarding how LINC complex assembly and function might be regulated within the perinuclear space. Here we discuss potential LINC regulatory mechanisms and focus on the potential role of AAA+ (ATPases associated with various cellular activities) protein, torsinA, as a LINC complex regulator within the NE. We also examine how defects in LINC complex regulation by torsinA may contribute to the pathogenesis of the human neurological movement disorder, DYT1 dystonia.
Collapse
Affiliation(s)
- Cosmo A Saunders
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
44
|
Abstract
Mechanoresponses in mesenchymal stem cells (MSCs) guide both differentiation and function. In this review, we focus on advances in0 our understanding of how the cytoplasmic cytoskeleton, nuclear envelope and nucleoskeleton, which are connected via LINC (Linker of Nucleoskeleton and Cytoskeleton) complexes, are emerging as an integrated dynamic signaling platform to regulate MSC mechanobiology. This dynamic interconnectivity affects mechanical signaling and transfer of signals into the nucleus. In this way, nuclear and LINC-mediated cytoskeletal connectivity play a critical role in maintaining mechanical signaling that affects MSC fate by serving as both mechanosensory and mechanoresponsive structures. We review disease and age related compromises of LINC complexes and nucleoskeleton that contribute to the etiology of musculoskeletal diseases. Finally we invite the idea that acquired dysfunctions of LINC might be a contributing factor to conditions such as aging, microgravity and osteoporosis and discuss potential mechanical strategies to modulate LINC connectivity to combat these conditions.
Collapse
|
45
|
Hellberg T, Paßvogel L, Schulz KS, Klupp BG, Mettenleiter TC. Nuclear Egress of Herpesviruses: The Prototypic Vesicular Nucleocytoplasmic Transport. Adv Virus Res 2016; 94:81-140. [PMID: 26997591 DOI: 10.1016/bs.aivir.2015.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herpesvirus particles mature in two different cellular compartments. While capsid assembly and packaging of the genomic linear double-stranded DNA occur in the nucleus, virion formation takes place in the cytoplasm by the addition of numerous tegument proteins as well as acquisition of the viral envelope by budding into cellular vesicles derived from the trans-Golgi network containing virally encoded glycoproteins. To gain access to the final maturation compartment, herpesvirus nucleocapsids have to cross a formidable barrier, the nuclear envelope (NE). Since the ca. 120 nm diameter capsids are unable to traverse via nuclear pores, herpesviruses employ a vesicular transport through both leaflets of the NE. This process involves proteins which support local dissolution of the nuclear lamina to allow access of capsids to the inner nuclear membrane (INM), drive vesicle formation from the INM and mediate inclusion of the capsid as well as scission of the capsid-containing vesicle (also designated as "primary virion"). Fusion of the vesicle membrane (i.e., the "primary envelope") with the outer nuclear membrane subsequently results in release of the nucleocapsid into the cytoplasm for continuing virion morphogenesis. While this process has long been thought to be unique for herpesviruses, a similar pathway for nuclear egress of macromolecular complexes has recently been observed in Drosophila. Thus, herpesviruses may have coopted a hitherto unrecognized cellular mechanism of vesicle-mediated nucleocytoplasmic transport. This could have far reaching consequences for our understanding of cellular functions as again unraveled by the study of viruses.
Collapse
Affiliation(s)
- Teresa Hellberg
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Lars Paßvogel
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Katharina S Schulz
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
46
|
Torsin ATPases: structural insights and functional perspectives. Curr Opin Cell Biol 2016; 40:1-7. [PMID: 26803745 DOI: 10.1016/j.ceb.2016.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/22/2015] [Accepted: 01/02/2016] [Indexed: 12/29/2022]
Abstract
Torsin ATPases are the only members of the AAA+ ATPase family that localize to the endoplasmic reticulum and contiguous perinuclear space. Accordingly, they are well positioned to perform essential work in these compartments, but their precise functions remain elusive. Recent studies have deciphered an unusual ATPase activation mechanism relying on Torsin-associated transmembrane cofactors, LAP1 or LULL1. These findings profoundly change our molecular view of the Torsin machinery and rationalize several human mutations in TorsinA or LAP1 leading to congenital disorders, symptoms of which have recently been recapitulated in mouse models. Here, we review these recent advances in the Torsin field and discuss the most pressing questions in relation to nuclear envelope dynamics.
Collapse
|
47
|
Demircioglu FE, Sosa BA, Ingram J, Ploegh HL, Schwartz TU. Structures of TorsinA and its disease-mutant complexed with an activator reveal the molecular basis for primary dystonia. eLife 2016; 5:e17983. [PMID: 27490483 PMCID: PMC4999309 DOI: 10.7554/elife.17983] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/03/2016] [Indexed: 01/07/2023] Open
Abstract
The most common cause of early onset primary dystonia, a neuromuscular disease, is a glutamate deletion (ΔE) at position 302/303 of TorsinA, a AAA+ ATPase that resides in the endoplasmic reticulum. While the function of TorsinA remains elusive, the ΔE mutation is known to diminish binding of two TorsinA ATPase activators: lamina-associated protein 1 (LAP1) and its paralog, luminal domain like LAP1 (LULL1). Using a nanobody as a crystallization chaperone, we obtained a 1.4 Å crystal structure of human TorsinA in complex with LULL1. This nanobody likewise stabilized the weakened TorsinAΔE-LULL1 interaction, which enabled us to solve its structure at 1.4 Å also. A comparison of these structures shows, in atomic detail, the subtle differences in activator interactions that separate the healthy from the diseased state. This information may provide a structural platform for drug development, as a small molecule that rescues TorsinAΔE could serve as a cure for primary dystonia.
Collapse
Affiliation(s)
- F Esra Demircioglu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Brian A Sosa
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Jessica Ingram
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Thomas U Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States,
| |
Collapse
|
48
|
Kim DI, Birendra KC, Roux KJ. Making the LINC: SUN and KASH protein interactions. Biol Chem 2015; 396:295-310. [PMID: 25720065 DOI: 10.1515/hsz-2014-0267] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/20/2015] [Indexed: 01/15/2023]
Abstract
Cell nuclei are physically integrated with the cytoskeleton through the linker of nucleoskeleton and cytoskeleton (LINC) complex, a structure that spans the nuclear envelope to link the nucleoskeleton and cytoskeleton. Outer nuclear membrane KASH domain proteins and inner nuclear membrane SUN domain proteins interact to form the core of the LINC complex. In this review, we provide a comprehensive analysis of the reported protein-protein interactions for KASH and SUN domain proteins. This critical structure, directly connecting the genome with the rest of the cell, contributes to a myriad of cellular functions and, when perturbed, is associated with human disease.
Collapse
|
49
|
Abstract
Torsin ATPases (Torsins) belong to the widespread AAA+ (ATPases associated with a variety of cellular activities) family of ATPases, which share structural similarity but have diverse cellular functions. Torsins are outliers in this family because they lack many characteristics of typical AAA+ proteins, and they are the only members of the AAA+ family located in the endoplasmic reticulum and contiguous perinuclear space. While it is clear that Torsins have essential roles in many, if not all metazoans, their precise cellular functions remain elusive. Studying Torsins has significant medical relevance since mutations in Torsins or Torsin-associated proteins result in a variety of congenital human disorders, the most frequent of which is early-onset torsion (DYT1) dystonia, a severe movement disorder. A better understanding of the Torsin system is needed to define the molecular etiology of these diseases, potentially enabling corrective therapy. Here, we provide a comprehensive overview of the Torsin system in metazoans, discuss functional clues obtained from various model systems and organisms and provide a phylogenetic and structural analysis of Torsins and their regulatory cofactors in relation to disease-causative mutations. Moreover, we review recent data that have led to a dramatically improved understanding of these machines at a molecular level, providing a foundation for investigating the molecular defects underlying the associated movement disorders. Lastly, we discuss our ideas on how recent progress may be utilized to inform future studies aimed at determining the cellular role(s) of these atypical molecular machines and their implications for dystonia treatment options.
Collapse
Affiliation(s)
- April E Rose
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA and
| | - Rebecca S H Brown
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA and
| | - Christian Schlieker
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA and.,b Department of Cell Biology , Yale School of Medicine , New Haven , CT , USA
| |
Collapse
|
50
|
Goodchild RE, Buchwalter AL, Naismith TV, Holbrook K, Billion K, Dauer WT, Liang CC, Dear ML, Hanson PI. Access of torsinA to the inner nuclear membrane is activity dependent and regulated in the endoplasmic reticulum. J Cell Sci 2015; 128:2854-65. [PMID: 26092934 DOI: 10.1242/jcs.167452] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/12/2015] [Indexed: 11/20/2022] Open
Abstract
TorsinA (also known as torsin-1A) is a membrane-embedded AAA+ ATPase that has an important role in the nuclear envelope lumen. However, most torsinA is localized in the peripheral endoplasmic reticulum (ER) lumen where it has a slow mobility that is incompatible with free equilibration between ER subdomains. We now find that nuclear-envelope-localized torsinA is present on the inner nuclear membrane (INM) and ask how torsinA reaches this subdomain. The ER system contains two transmembrane proteins, LAP1 and LULL1 (also known as TOR1AIP1 and TOR1AIP2, respectively), that reversibly co-assemble with and activate torsinA. Whereas LAP1 localizes on the INM, we show that LULL1 is in the peripheral ER and does not enter the INM. Paradoxically, interaction between torsinA and LULL1 in the ER targets torsinA to the INM. Native gel electrophoresis reveals torsinA oligomeric complexes that are destabilized by LULL1. Mutations in torsinA or LULL1 that inhibit ATPase activity reduce the access of torsinA to the INM. Furthermore, although LULL1 binds torsinA in the ER lumen, its effect on torsinA localization requires cytosolic-domain-mediated oligomerization. These data suggest that LULL1 oligomerizes to engage and transiently disassemble torsinA oligomers, and is thereby positioned to transduce cytoplasmic signals to the INM through torsinA.
Collapse
Affiliation(s)
- Rose E Goodchild
- VIB Centre for the Biology of Disease and KU Leuven, Department of Human Genetics, Campus Gasthuisberg, Leuven 3000, Belgium
| | - Abigail L Buchwalter
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Teresa V Naismith
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Kristen Holbrook
- Department of Biochemistry, Cell and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Karolien Billion
- VIB Centre for the Biology of Disease and KU Leuven, Department of Human Genetics, Campus Gasthuisberg, Leuven 3000, Belgium
| | - William T Dauer
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Chun-Chi Liang
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Mary Lynn Dear
- Department of Biochemistry, Cell and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Phyllis I Hanson
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| |
Collapse
|