1
|
Gao LB, Dai D, Chen P, Zhang HJ, Wu SG, Qi GH, Wang J. Yeast culture promotes albumen quality by improving magnum protein secretion and intestinal microbiota in aged laying hens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40351228 DOI: 10.1002/jsfa.14364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND The supplementation of yeast culture (YC) has the potential to enhance egg quality in laying hens. However, most studies focus on eggshell quality. This study aimed to investigate the effects of dietary YC supplementation on the production performance, albumen quality, protein synthesis or secretion of the magnum and the cecal microbiota content of laying hens. RESULTS The results showed that dietary YC supplementation increased albumen height and Haugh unit (P ≤ 0.05). Besides, dietary 100 g kg-1 YC addition increased significantly the ridge width of the magnum and the relative expression of SEC23A in the magnum and decreased significantly the relative expression of OVOB in the magnum (P ≤ 0.05). Furthermore, the abundances of Butyricicoccus, Alistipes and Flavonifractor were increased significantly by 100 g kg-1 YC supplementation (P ≤ 0.05). The diet supplemented with 100 g kg-1 YC significantly increased the butyric acid and isobutyric acid of the cecum. CONCLUSION Dietary supplementation with YC improved protein secretion in the magnum and enhanced the beneficial cecal microbiota, thus improving the albumen quality of laying hens. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li-Bing Gao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dong Dai
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peng Chen
- Beijing Enhalor International Tech Co. Ltd, Beijing, China
| | - Hai-Jun Zhang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-Geng Wu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang-Hai Qi
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Zhao QP, Miao BL, Zhu JD, Li XK, Fu XL, Han MY, Wu QQ, Niu QH, Zhang X, Zhao X. Sec24C Participates in Cuticular Wax Transport by Facilitating Plasma Membrane Localization of ABCG5. PLANT, CELL & ENVIRONMENT 2025; 48:3012-3026. [PMID: 39676447 DOI: 10.1111/pce.15320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024]
Abstract
Cuticular waxes synthesised in the endoplasmic reticulum of epidermal cells must be exported to the outer surface of the epidermis to fulfil their barrier function. Beyond transmembrane trafficking mediated by ABC transporters, little is known about the movement of wax molecules. In this study, we characterise a mutant named sugar-associated vitrified 1 (sav1), which exhibits a vitrified phenotype and displays a reduced root length when cultivated on sugar-free medium. The mutation in SAV1, which encodes the protein Sec. 24C, leads to ultrastructural alterations in cuticle membranes, decreased deposition of epicuticular wax crystals, and modifications in the chemical composition of very-long-chain fatty acids in cuticular waxes. SAV1 is a membrane protein and expressed during the early stages of seedling development. The defective phenotype of sav1-1 in sugar-free medium resembles that of abcg5, which encodes an ATP-BINDING CASSETTE TRANSPORTER subfamily G 5 (ABCG5) protein involved in cuticle layer formation. Further investigations reveal that SAV1 interacts with ABCG5, influencing the membrane localisation of ABCG5. Collectively, our results suggest that SAV1 plays a critical role in wax transport by altering the subcellular localisation of ABCG5.
Collapse
Affiliation(s)
- Qing-Ping Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- College of Life Science, Nanyang Normal University, Nanyang, China
| | - Bai-Ling Miao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jin-Dong Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xing-Kun Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiang-Lin Fu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Meng-Yuan Han
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Qi-Qi Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiu-Hong Niu
- College of Life Science, Nanyang Normal University, Nanyang, China
| | - Xiao Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiang Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
3
|
Ye W, Meng X, Xu S. [Research progress on collagen secretion mechanisms in scarring]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2025; 54:266-278. [PMID: 40194913 PMCID: PMC12062945 DOI: 10.3724/zdxbyxb-2024-0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/12/2024] [Accepted: 02/22/2025] [Indexed: 04/09/2025]
Abstract
Scar formation is characterized by dynamic alterations in collagen secretion, which critically determine scar morphology and pathological progression. In fibroblasts, collagen secretion is initiated through the activation of cytokine- and integrin-mediated signaling pathways, which promote collagen gene transcription. The procollagen polypeptide α chains undergo extensive post-translational modifications, including hydroxylation and glycosylation, within the endoplasmic reticulum (ER), followed by folding and assembly into triple-helical procollagen. Subsequent intracellular trafficking involves the sequential transport of procollagen through the ER, Golgi apparatus, and plasma membrane, accompanied by further structural refinements prior to extracellular secretion. Once secreted, procollagen is enzymatically processed to form mature collagen fibrils, which drive scar tissue remodeling. Recent advances in elucidating regulation of collagen secretion have identified pivotal molecular targets, such as transforming growth factor-beta 1 (TGF-β1), prolyl 4-hydroxylase (P4H), heat shock protein 47 (HSP47), and transport and Golgi organization protein 1 (TANGO1), providing novel therapeutic strategies to mitigate pathological scar hyperplasia and improve regenerative outcomes. This review provides a comprehensive analysis of the molecular mechanisms governing collagen secretion during scar formation, with emphasis on signaling cascades, procollagen biosynthesis, intracellular transport dynamics, and post-translational modifications, thereby offering a framework for developing targeted anti-scar therapies.
Collapse
Affiliation(s)
- Wenkai Ye
- Center of Stem Cell and Regenerative Medicine, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Xinan Meng
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, International Institutes of Medicine, Zhejiang University, Center for Membrane Receptors and Brain Medicine, International School of Medicine, Zhejiang University, Yiwu 322000, Zhejiang Province, China
| | - Suhong Xu
- Center of Stem Cell and Regenerative Medicine, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
4
|
Zhu J, Xie R, Ren Q, Zhou J, Chen C, Xie MX, Zhou Y, Zhang Y, Liu N, Wang J, Zhang Z, Liu X, Yan W, Gong Q, Dong L, Zhu J, Wang F, Xie Z. Asgard Arf GTPases can act as membrane-associating molecular switches with the potential to function in organelle biogenesis. Nat Commun 2025; 16:2622. [PMID: 40097441 PMCID: PMC11914678 DOI: 10.1038/s41467-025-57902-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Inward membrane budding, i.e., the bending of membrane towards the cytosol, is essential for forming and maintaining eukaryotic organelles. In eukaryotes, Arf GTPases initiate this inward budding. Our research shows that Asgard archaea genomes encode putative Arf proteins (AArfs). AArfs possess structural elements characteristic of their eukaryotic counterparts. When expressed in yeast and mammalian cells, some AArfs displayed GTP-dependent membrane targeting. In vitro, AArf associated with both eukaryotic and archaeal membranes. In yeast, AArfs interacted with and were regulated by key organelle biogenesis players. Expressing an AArf led to a massive proliferation of endomembrane organelles including the endoplasmic reticulum and Golgi. This AArf interacted with Sec23, a COPII vesicle coat component, in a GTP-dependent manner. These findings suggest certain AArfs are membrane-associating molecular switches with the functional potential to initiate organelle biogenesis, and the evolution of a functional coat could be the next critical step towards establishing eukaryotic cell architecture.
Collapse
Affiliation(s)
- Jing Zhu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, PR China
| | - Ruize Xie
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, and School of Oceanography, Shanghai Jiao Tong University, Shanghai, PR China
| | - Qiaoying Ren
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jiaming Zhou
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, and School of Oceanography, Shanghai Jiao Tong University, Shanghai, PR China
| | - Chen Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Meng-Xi Xie
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - You Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yan Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Ningjing Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jinchao Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, PR China
| | - Zhengwei Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xipeng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Wupeng Yan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Qingqiu Gong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China.
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Liang Dong
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, and School of Oceanography, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Jinwei Zhu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, PR China.
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Fengping Wang
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, and School of Oceanography, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Zhiping Xie
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China.
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
5
|
Wang Y, Ren Y, Teng X, Wang F, Chen Y, Duan E, Wang X, Pan T, Zhang B, Wan G, Zhang Y, Zhang P, Sun X, Yang W, Zhu Y, Chen Y, Zhao W, Han X, Lei C, Zhu S, Liu S, Wang Y, Wan J. Functional diversification of Sec13 isoforms for storage protein trafficking in rice endosperm cells. PLANT PHYSIOLOGY 2024; 196:2405-2421. [PMID: 39351808 DOI: 10.1093/plphys/kiae513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/30/2024] [Indexed: 12/14/2024]
Abstract
Coat protein complex II (COPII) vesicles play crucial roles in mediating the endoplasmic reticulum (ER) exit of newly synthesized proteins to the Golgi in eukaryotic cells. However, the molecular functions of COPII components and their functional diversifications in plant seeds remain obscure. Here, we showed that the rice (Oryza sativa) glutelin precursor accumulation12 (gpa12) mutant is defective in storage protein export from the ER, resulting in the formation of aggregated protein bodies. Map-based cloning revealed that GPA12 encodes a COPII outer layer protein, Sec13a, that mainly localizes to endoplasmic reticulum exit sites (ERES) and partially localizes to the Golgi. Biochemical experiments verified that Sec13a physically interacts with Sec31 and Sec16, and mutation in Sec13 compromises its interaction with Sec31 and Sec16, thereby affecting the membrane association of the inner complex components Sar1b and Sec23c. Apart from Sec13a, the rice genome encodes 2 other Sec13 isoforms, Sec13b and Sec13c. Notably, we observed an abnormal accumulation of globular ER structures in the sec13bc double mutant but not in the single mutants, suggesting a functional redundancy of Sec13b and Sec13c in modulating ER morphology. Taken together, our results substantiated that Sec13a plays an important role in regulating storage protein export from the ER, while Sec13b and Sec13c are required for maintaining ER morphology in rice endosperm cells. Our findings provide insights into the functional diversification of COPII components in plants.
Collapse
Affiliation(s)
- Yongfei Wang
- Stake Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Nanjing Agricultural University, Nanjing 210095, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuan Teng
- Stake Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Nanjing Agricultural University, Nanjing 210095, China
| | - Fan Wang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanyu Chen
- Stake Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Nanjing Agricultural University, Nanjing 210095, China
| | - Erchao Duan
- Stake Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Wang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tian Pan
- Stake Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Nanjing Agricultural University, Nanjing 210095, China
| | - Binglei Zhang
- Stake Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Gexing Wan
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yu Zhang
- Stake Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengcheng Zhang
- Stake Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiejun Sun
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenkun Yang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yun Zhu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yu Chen
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenjie Zhao
- Stake Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohang Han
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shanshan Zhu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shijia Liu
- Stake Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihua Wang
- Stake Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianmin Wan
- Stake Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
6
|
Liu X, Li Y, Gao Y, El Wakil A, Moussian B, Zhang J. RNA interference-mediated silencing of coat protein II (COPII) genes affects the gut homeostasis and cuticle development in Locusta migratoria. Int J Biol Macromol 2024; 266:131137. [PMID: 38537854 DOI: 10.1016/j.ijbiomac.2024.131137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/08/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
The coat protein II (COPII) complex consists of five primary soluble proteins, namely the small GTP-binding protein Sar1, the inner coat Sec23/Sec24 heterodimers, and the outer coat Sec13/Sec31 heterotetramers. COPII is essential for cellular protein and lipid trafficking through cargo sorting and vesicle formation at the endoplasmic reticulum. However, the roles of COPII assembly genes remain unknown in insects. In present study, we identified five COPII assembly genes (LmSar1, LmSec23, LmSec24, LmSec13 and LmSec31) in Locusta migratoria. RT-qPCR results revealed that these genes showed different expression patterns in multiple tissues and developmental days of fifth-instar nymphs. Injection of double-stranded RNA against each LmCOPII gene induced a high RNAi efficiency, and considerably suppressed feeding, and increased mortality to 100 %. Results from the micro-sectioning and hematoxylin-eosin staining of midguts showed that the brush border was severely damaged and the number of columnar cells was significantly reduced in dsLmCOPII-injected nymphs, as compared with the control. The dilated endoplasmic reticulum phenotype of columnar cells was observed by transmission electron microscopy. RT-qPCR results further indicated that silencing any of the five genes responsible for COPII complex assembly repressed the expression of genes involved in insulin/mTOR-associated nutritional pathway. Therefore, COPII assembly genes could be promising RNAi targets for insect pest management by disrupting gut and cuticle development.
Collapse
Affiliation(s)
- Xiaojian Liu
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yao Li
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Ya Gao
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Abeer El Wakil
- Faculty of Education, Department of Biological and Geological Sciences, Alexandria University, Alexandria, Egypt
| | - Bernard Moussian
- INRAE, CNRS, Université Côte d'Azur, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Jianzhen Zhang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
7
|
Robinson CM, Duggan A, Forrester A. ER exit in physiology and disease. Front Mol Biosci 2024; 11:1352970. [PMID: 38314136 PMCID: PMC10835805 DOI: 10.3389/fmolb.2024.1352970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
The biosynthetic secretory pathway is comprised of multiple steps, modifications and interactions that form a highly precise pathway of protein trafficking and secretion, that is essential for eukaryotic life. The general outline of this pathway is understood, however the specific mechanisms are still unclear. In the last 15 years there have been vast advancements in technology that enable us to advance our understanding of this complex and subtle pathway. Therefore, based on the strong foundation of work performed over the last 40 years, we can now build another level of understanding, using the new technologies available. The biosynthetic secretory pathway is a high precision process, that involves a number of tightly regulated steps: Protein folding and quality control, cargo selection for Endoplasmic Reticulum (ER) exit, Golgi trafficking, sorting and secretion. When deregulated it causes severe diseases that here we categorise into three main groups of aberrant secretion: decreased, excess and altered secretion. Each of these categories disrupts organ homeostasis differently, effecting extracellular matrix composition, changing signalling events, or damaging the secretory cells due to aberrant intracellular accumulation of secretory proteins. Diseases of aberrant secretion are very common, but despite this, there are few effective therapies. Here we describe ER exit sites (ERES) as key hubs for regulation of the secretory pathway, protein quality control and an integratory hub for signalling within the cell. This review also describes the challenges that will be faced in developing effective therapies, due to the specificity required of potential drug candidates and the crucial need to respect the fine equilibrium of the pathway. The development of novel tools is moving forward, and we can also use these tools to build our understanding of the acute regulation of ERES and protein trafficking. Here we review ERES regulation in context as a therapeutic strategy.
Collapse
Affiliation(s)
- Claire M Robinson
- School of Medicine, Health Sciences Centre, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Aislinn Duggan
- School of Medicine, Health Sciences Centre, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Alison Forrester
- Research Unit of Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| |
Collapse
|
8
|
Kumar R, Chhillar N, Gupta DS, Kaur G, Singhal S, Chauhan T. Cholesterol Homeostasis, Mechanisms of Molecular Pathways, and Cardiac Health: A Current Outlook. Curr Probl Cardiol 2024; 49:102081. [PMID: 37716543 DOI: 10.1016/j.cpcardiol.2023.102081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
The metabolism of lipoproteins, which regulate the transit of the lipid to and from tissues, is crucial to maintaining cholesterol homeostasis. Cardiac remodeling is referred to as a set of molecular, cellular, and interstitial changes that, following injury, affect the size, shape, function, mass, and geometry of the heart. Acetyl coenzyme A (acetyl CoA), which can be made from glucose, amino acids, or fatty acids, is the precursor for the synthesis of cholesterol. In this article, the authors explain concepts behind cardiac remodeling, its clinical ramifications, and the pathophysiological roles played by numerous various components, such as cell death, neurohormonal activation, oxidative stress, contractile proteins, energy metabolism, collagen, calcium transport, inflammation, and geometry. The levels of cholesterol are traditionally regulated by 2 biological mechanisms at the transcriptional stage. First, the SREBP transcription factor family regulates the transcription of crucial rate-limiting cholesterogenic and lipogenic proteins, which in turn limits cholesterol production. Immune cells become activated, differentiated, and divided, during an immune response with the objective of eradicating the danger signal. In addition to creating ATP, which is used as energy, this process relies on metabolic reprogramming of both catabolic and anabolic pathways to create metabolites that play a crucial role in regulating the response. Because of changes in signal transduction, malfunction of the sarcoplasmic reticulum and sarcolemma, impairment of calcium handling, increases in cardiac fibrosis, and progressive loss of cardiomyocytes, oxidative stress appears to be the primary mechanism that causes the transition from cardiac hypertrophy to heart failure. De novo cholesterol production, intestinal cholesterol absorption, and biliary cholesterol output are consequently crucial processes in cholesterol homeostasis. In the article's final section, the pharmacological management of cardiac remodeling is explored. The route of treatment is explained in different steps: including, promising, and potential strategies. This chapter offers a brief overview of the history of the study of cholesterol absorption as well as the different potential therapeutic targets.
Collapse
Affiliation(s)
| | - Neelam Chhillar
- Deparetment of Biochemistry, School of Medicine, DY Patil University, Navi Mumbai, India
| | - Dhruv Sanjay Gupta
- Department of Pharmacology, SPP School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Ginpreet Kaur
- Department of Pharmacology, SPP School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Shailey Singhal
- Cluster of Applied Sciences, University of Petroleum and Energy Studies, Dehradun, India
| | - Tanya Chauhan
- Division of Forensic Biology, National Forensic Sciences University, Delhi Campus (LNJN NICFS) Delhi, India
| |
Collapse
|
9
|
Artlett CM, Connolly LM. TANGO1 Dances to Export of Procollagen from the Endoplasmic Reticulum. FIBROSIS (HONG KONG, CHINA) 2023; 1:10008. [PMID: 38650832 PMCID: PMC11034787 DOI: 10.35534/fibrosis.2023.10008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The endoplasmic reticulum (ER) to Golgi secretory pathway is an elegantly complex process whereby protein cargoes are manufactured, folded, and distributed from the ER to the cisternal layers of the Golgi stack before they are delivered to their final destinations. The export of large bulky cargoes such as procollagen and its trafficking to the Golgi is a sophisticated mechanism requiring TANGO1 (Transport ANd Golgi Organization protein 1. It is also called MIA3 (Melanoma Inhibitory Activity protein 3). TANGO1 has two prominent isoforms, TANGO1-Long and TANGO1-Short, and each isoform has specific functions. On the luminal side, TANGO1-Long has an HSP47 recruitment domain and uses this protein to collect collagen. It can also tether its paralog isoforms cTAGE5 and TALI and along with these proteins enlarges the vesicle to accommodate procollagen. Recent studies show that TANGO1-Long combines retrograde membrane flow with anterograde cargo transport. This complex mechanism is highly activated in fibrosis and promotes the excessive deposition of collagen in the tissues. The therapeutic targeting of TANGO1 may prove successful in the control of fibrotic disorders. This review focuses on TANGO1 and its complex interaction with other procollagen export factors that modulate increased vesicle size to accommodate the export of procollagen.
Collapse
Affiliation(s)
- Carol M. Artlett
- Drexel University College of Medicine, Drexel University, Philadelphia, PA 19129, USA
| | - Lianne M. Connolly
- Drexel University College of Medicine, Drexel University, Philadelphia, PA 19129, USA
| |
Collapse
|
10
|
Pihlström S, Richardt S, Määttä K, Pekkinen M, Olkkonen VM, Mäkitie O, Mäkitie RE. SGMS2 in primary osteoporosis with facial nerve palsy. Front Endocrinol (Lausanne) 2023; 14:1224318. [PMID: 37886644 PMCID: PMC10598846 DOI: 10.3389/fendo.2023.1224318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
Pathogenic heterozygous variants in SGMS2 cause a rare monogenic form of osteoporosis known as calvarial doughnut lesions with bone fragility (CDL). The clinical presentations of SGMS2-related bone pathology range from childhood-onset osteoporosis with low bone mineral density and sclerotic doughnut-shaped lesions in the skull to a severe spondylometaphyseal dysplasia with neonatal fractures, long-bone deformities, and short stature. In addition, neurological manifestations occur in some patients. SGMS2 encodes sphingomyelin synthase 2 (SMS2), an enzyme involved in the production of sphingomyelin (SM). This review describes the biochemical structure of SM, SM metabolism, and their molecular actions in skeletal and neural tissue. We postulate how disrupted SM gradient can influence bone formation and how animal models may facilitate a better understanding of SGMS2-related osteoporosis.
Collapse
Affiliation(s)
- Sandra Pihlström
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sampo Richardt
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kirsi Määttä
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Minna Pekkinen
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children´s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Vesa M. Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children´s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Riikka E. Mäkitie
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Otorhinolaryngology – Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Gao L, Cao J, Gong S, Hao N, Du Y, Wang C, Wu T. The COPII subunit CsSEC23 mediates fruit glossiness in cucumber. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:524-540. [PMID: 37460197 DOI: 10.1111/tpj.16389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
To improve our understanding of the mechanism underlying cucumber glossiness regulation, a novel cucumber mutant with a glossy peel (Csgp) was identified. MutMap, genotyping, and gene editing results demonstrated that CsSEC23, which is the core component of COPII vesicles, mediates the glossiness of cucumber fruit peel. CsSEC23 is functionally conserved and located in the Golgi and endoplasmic reticulum. CsSEC23 could interact with CsSEC31, but this interaction was absent in the Csgp mutant, which decreased the efficiency of COPII vesicle transportation. Genes related to wax and cutin transport were upregulated in the Csgp mutant, and the cuticle structure of the Csgp-mutant peel became thinner. Moreover, the wax and cutin contents were also changed due to CsSEC23 mutation. Taken together, the results obtained from this study revealed that CsSEC23 mediates cucumber glossiness, and this mediating might be affected by COPII vesicle transportation.
Collapse
Affiliation(s)
- Luyao Gao
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (vegetables, tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, 410128, China
- Yuelushan Lab, Changsha, 410128, China
| | - Jiajian Cao
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (vegetables, tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, 410128, China
- Yuelushan Lab, Changsha, 410128, China
- Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha, 410128, China
| | - Siyu Gong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Ning Hao
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Laboratory of Plant Nutrition and Fertilizers, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Yalin Du
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (vegetables, tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, 410128, China
- Yuelushan Lab, Changsha, 410128, China
- Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha, 410128, China
| | - Chunhua Wang
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (vegetables, tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, 410128, China
- Yuelushan Lab, Changsha, 410128, China
- Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha, 410128, China
| | - Tao Wu
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (vegetables, tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, 410128, China
- Yuelushan Lab, Changsha, 410128, China
- Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
12
|
Morón-Oset J, Fischer LKS, Jauré N, Zhang P, Jahn AJ, Supèr T, Pahl A, Isaacs AM, Grönke S, Partridge L. Repeat length of C9orf72-associated glycine-alanine polypeptides affects their toxicity. Acta Neuropathol Commun 2023; 11:140. [PMID: 37644512 PMCID: PMC10463776 DOI: 10.1186/s40478-023-01634-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/31/2023] Open
Abstract
G4C2 hexanucleotide repeat expansions in a non-coding region of the C9orf72 gene are the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). G4C2 insertion length is variable, and patients can carry up to several thousand repeats. Dipeptide repeat proteins (DPRs) translated from G4C2 transcripts are thought to be a main driver of toxicity. Experiments in model organisms with relatively short DPRs have shown that arginine-rich DPRs are most toxic, while polyGlycine-Alanine (GA) DPRs cause only mild toxicity. However, GA is the most abundant DPR in patient brains, and experimental work in animals has generally relied on the use of low numbers of repeats, with DPRs often tagged for in vivo tracking. Whether repeat length or tagging affect the toxicity of GA has not been systematically assessed. Therefore, we generated Drosophila fly lines expressing GA100, GA200 or GA400 specifically in adult neurons. Consistent with previous studies, expression of GA100 and GA200 caused only mild toxicity. In contrast, neuronal expression of GA400 drastically reduced climbing ability and survival of flies, indicating that long GA DPRs can be highly toxic in vivo. This toxicity could be abolished by tagging GA400. Proteomics analysis of fly brains showed a repeat-length-dependent modulation of the brain proteome, with GA400 causing earlier and stronger changes than shorter GA proteins. PolyGA expression up-regulated proteins involved in ER to Golgi trafficking, and down-regulated proteins involved in insulin signalling. Experimental down-regulation of Tango1, a highly conserved regulator of ER-to Golgi transport, partially rescued GA400 toxicity, suggesting that misregulation of this process contributes to polyGA toxicity. Experimentally increasing insulin signaling also rescued GA toxicity. In summary, our data show that long polyGA proteins can be highly toxic in vivo, and that they may therefore contribute to ALS/FTD pathogenesis in patients.
Collapse
Affiliation(s)
- Javier Morón-Oset
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | | | - Nathalie Jauré
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - Pingze Zhang
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - Annika Julia Jahn
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - Tessa Supèr
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - André Pahl
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Sebastian Grönke
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany.
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany.
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
13
|
Hu G, Yu Y, Sharma D, Pruett-Miller SM, Ren Y, Zhang GF, Karner CM. Glutathione limits RUNX2 oxidation and degradation to regulate bone formation. JCI Insight 2023; 8:e166888. [PMID: 37432749 PMCID: PMC10543723 DOI: 10.1172/jci.insight.166888] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
Reactive oxygen species (ROS) are natural products of mitochondrial oxidative metabolism and oxidative protein folding. ROS levels must be well controlled, since elevated ROS has been shown to have deleterious effects on osteoblasts. Moreover, excessive ROS is thought to underlie many of the skeletal phenotypes associated with aging and sex steroid deficiency in mice and humans. The mechanisms by which osteoblasts regulate ROS and how ROS inhibits osteoblasts are not well understood. Here, we demonstrate that de novo glutathione (GSH) biosynthesis is essential in neutralizing ROS and establish a proosteogenic reduction and oxidation reaction (REDOX) environment. Using a multifaceted approach, we demonstrate that reducing GSH biosynthesis led to acute degradation of RUNX2, impaired osteoblast differentiation, and reduced bone formation. Conversely, reducing ROS using catalase enhanced RUNX2 stability and promoted osteoblast differentiation and bone formation when GSH biosynthesis was limited. Highlighting the therapeutic implications of these findings, in utero antioxidant therapy stabilized RUNX2 and improved bone development in the Runx2+/- haplo-insufficient mouse model of human cleidocranial dysplasia. Thus, our data establish RUNX2 as a molecular sensor of the osteoblast REDOX environment and mechanistically clarify how ROS negatively impacts osteoblast differentiation and bone formation.
Collapse
Affiliation(s)
- Guoli Hu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yilin Yu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Deepika Sharma
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Yinshi Ren
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital for Children, Dallas, Texas, USA
| | - Guo-Fang Zhang
- Department of Medicine, Division of Endocrinology, Metabolism Nutrition, and
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Courtney M. Karner
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
14
|
Kasberg W, Luong P, Hanna MG, Minushkin K, Tsao A, Shankar R, Block S, Audhya A. The Sar1 GTPase is dispensable for COPII-dependent cargo export from the ER. Cell Rep 2023; 42:112635. [PMID: 37300835 PMCID: PMC10592460 DOI: 10.1016/j.celrep.2023.112635] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Coat protein complex II (COPII) plays an integral role in the packaging of secretory cargoes within membrane-enclosed transport carriers that leave the endoplasmic reticulum (ER) from discrete subdomains. Lipid bilayer remodeling necessary for this process is driven initially by membrane penetration mediated by the Sar1 GTPase and further stabilized by assembly of a multilayered complex of several COPII proteins. However, the relative contributions of these distinct factors to transport carrier formation and protein trafficking remain unclear. Here, we demonstrate that anterograde cargo transport from the ER continues in the absence of Sar1, although the efficiency of this process is dramatically reduced. Specifically, secretory cargoes are retained nearly five times longer at ER subdomains when Sar1 is depleted, but they ultimately remain capable of being translocated to the perinuclear region of cells. Taken together, our findings highlight alternative mechanisms by which COPII promotes transport carrier biogenesis.
Collapse
Affiliation(s)
- William Kasberg
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Peter Luong
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Michael G Hanna
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Kayla Minushkin
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Annabelle Tsao
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Raakhee Shankar
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Samuel Block
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.
| |
Collapse
|
15
|
El-Gazzar A, Voraberger B, Rauch F, Mairhofer M, Schmidt K, Guillemyn B, Mitulović G, Reiterer V, Haun M, Mayr MM, Mayr JA, Kimeswenger S, Drews O, Saraff V, Shaw N, Fratzl-Zelman N, Symoens S, Farhan H, Högler W. Bi-allelic mutation in SEC16B alters collagen trafficking and increases ER stress. EMBO Mol Med 2023; 15:e16834. [PMID: 36916446 PMCID: PMC10086588 DOI: 10.15252/emmm.202216834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a genetically and clinically heterogeneous disorder characterized by bone fragility and reduced bone mass generally caused by defects in type I collagen structure or defects in proteins interacting with collagen processing. We identified a homozygous missense mutation in SEC16B in a child with vertebral fractures, leg bowing, short stature, muscular hypotonia, and bone densitometric and histomorphometric features in keeping with OI with distinct ultrastructural features. In line with the putative function of SEC16B as a regulator of trafficking between the ER and the Golgi complex, we showed that patient fibroblasts accumulated type I procollagen in the ER and exhibited a general trafficking defect at the level of the ER. Consequently, patient fibroblasts exhibited ER stress, enhanced autophagosome formation, and higher levels of apoptosis. Transfection of wild-type SEC16B into patient cells rescued the collagen trafficking. Mechanistically, we show that the defect is a consequence of reduced SEC16B expression, rather than due to alterations in protein function. These data suggest SEC16B as a recessive candidate gene for OI.
Collapse
Affiliation(s)
- Ahmed El-Gazzar
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Barbara Voraberger
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Frank Rauch
- Shriners Hospital for Children-Canada, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Mario Mairhofer
- Department of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Linz, Austria
| | - Katy Schmidt
- Centre for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Brecht Guillemyn
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Goran Mitulović
- Clinical Department of Laboratory Medicine Proteomics Core Facility, Medical University Vienna, Vienna, Austria
| | - Veronika Reiterer
- Institute of Pathophysiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Margot Haun
- Institute of Pathophysiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela M Mayr
- Institute of Pathophysiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes A Mayr
- University Children's Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), Salzburg, Austria
| | | | - Oliver Drews
- Biomedical Mass Spectrometry, Center for Medical Research, Johannes Kepler University, Linz, Austria
| | - Vrinda Saraff
- Department of Endocrinology and Diabetes, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK.,Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Nick Shaw
- Department of Endocrinology and Diabetes, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK.,The Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Nadja Fratzl-Zelman
- 1st Medical Department Hanusch Hospital, Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | - Sofie Symoens
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Hesso Farhan
- Institute of Pathophysiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria.,Department of Endocrinology and Diabetes, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK.,The Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
16
|
Moretti T, Kim K, Tuladhar A, Kim J. KLHL12 can form large COPII structures in the absence of CUL3 neddylation. Mol Biol Cell 2023; 34:br4. [PMID: 36652337 PMCID: PMC10011723 DOI: 10.1091/mbc.e22-08-0383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CUL3-RING ubiquitin ligases (CRL3s) are involved in various cellular processes through different Bric-a-brac, Tramtrack, and Broad-complex (BTB)-domain proteins. KLHL12, a BTB-domain protein, is suggested to play an essential role in the export of large cargo molecules such as procollagen from the endoplasmic reticulum (ER). CRL3KLHL12 monoubiquitylates SEC31, leading to an increase in COPII vesicle dimension. Enlarged COPII vesicles can accommodate procollagen molecules. Thus, CRL3KLHL12 is essential for the assembly of large COPII structures and collagen secretion. CRL3s are activated by CUL3 neddylation. Here, we evaluated the importance of CUL3 neddylation in COPII assembly and collagen secretion. Unexpectedly, the assembly of large COPII-KLHL12 structures persisted and cellular collagen levels decreased on treatment with MLN4924, a potent inhibitor of NEDD8-activating enzyme. When we introduced mutations into KLHL12 at the CUL3 interface, these KLHL12 variants did not interact with neddylated CUL3, but one of them (Mut A) still supported large COPII-KLHL12 structures. Overexpression of wild-type KLHL12, but not Mut A, lowered cellular collagen levels most likely via lysosomal degradation. Our results suggest that CUL3 neddylation is not necessary for the formation of large COPII-KLHL12 structures, but active CRL3KLHL12 contributes to the maintenance of collagen levels in the cell.
Collapse
Affiliation(s)
- Tamara Moretti
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Kyungho Kim
- Targeted Therapy Branch, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
| | - Astha Tuladhar
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Jinoh Kim
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| |
Collapse
|
17
|
Ritter DJ, Choudhary D, Unlu G, Knapik EW. Rgp1 contributes to craniofacial cartilage development and Rab8a-mediated collagen II secretion. Front Endocrinol (Lausanne) 2023; 14:1120420. [PMID: 36843607 PMCID: PMC9947155 DOI: 10.3389/fendo.2023.1120420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Rgp1 was previously identified as a component of a guanine nucleotide exchange factor (GEF) complex to activate Rab6a-mediated trafficking events in and around the Golgi. While the role of Rgp1 in protein trafficking has been examined in vitro and in yeast, the role of Rgp1 during vertebrate embryogenesis and protein trafficking in vivo is unknown. Using genetic, CRISPR-induced zebrafish mutants for Rgp1 loss-of-function, we found that Rgp1 is required for craniofacial cartilage development. Within live rgp1-/- craniofacial chondrocytes, we observed altered movements of Rab6a+ vesicular compartments, consistent with a conserved mechanism described in vitro. Using transmission electron microscopy (TEM) and immunofluorescence analyses, we show that Rgp1 plays a role in the secretion of collagen II, the most abundant protein in cartilage. Our overexpression experiments revealed that Rab8a is a part of the post-Golgi collagen II trafficking pathway. Following loss of Rgp1, chondrocytes activate an Arf4b-mediated stress response and subsequently respond with nuclear DNA fragmentation and cell death. We propose that an Rgp1-regulated Rab6a-Rab8a pathway directs secretion of ECM cargoes such as collagen II, a pathway that may also be utilized in other tissues where coordinated trafficking and secretion of collagens and other large cargoes is required for normal development and tissue function.
Collapse
Affiliation(s)
- Dylan J. Ritter
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Dharmendra Choudhary
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Gokhan Unlu
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ela W. Knapik
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
18
|
Tang VT, Ginsburg D. Cargo selection in endoplasmic reticulum-to-Golgi transport and relevant diseases. J Clin Invest 2023; 133:163838. [PMID: 36594468 PMCID: PMC9797344 DOI: 10.1172/jci163838] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Most proteins destined for the extracellular space or various intracellular compartments must traverse the intracellular secretory pathway. The first step is the recruitment and transport of cargoes from the endoplasmic reticulum (ER) lumen to the Golgi apparatus by coat protein complex II (COPII), consisting of five core proteins. Additional ER transmembrane proteins that aid cargo recruitment are referred to as cargo receptors. Gene duplication events have resulted in multiple COPII paralogs present in the mammalian genome. Here, we review the functions of each COPII protein, human disorders associated with each paralog, and evidence for functional conservation between paralogs. We also provide a summary of current knowledge regarding two prototypical cargo receptors in mammals, LMAN1 and SURF4, and their roles in human health and disease.
Collapse
Affiliation(s)
- Vi T. Tang
- Department of Molecular and Integrative Physiology,,Life Sciences Institute
| | - David Ginsburg
- Life Sciences Institute,,Department of Internal Medicine,,Department of Human Genetics,,Department of Pediatrics and Communicable Diseases, and,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Park SY, Muschalik N, Chadwick J, Munro S. In vivo characterization of Drosophila golgins reveals redundancy and plasticity of vesicle capture at the Golgi apparatus. Curr Biol 2022; 32:4549-4564.e6. [PMID: 36103876 PMCID: PMC9849145 DOI: 10.1016/j.cub.2022.08.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/29/2022] [Accepted: 08/18/2022] [Indexed: 01/26/2023]
Abstract
The Golgi is the central sorting station in the secretory pathway and thus the destination of transport vesicles arriving from the endoplasmic reticulum and endosomes and from within the Golgi itself. Cell viability, therefore, requires that the Golgi accurately receives multiple classes of vesicle. One set of proteins proposed to direct vesicle arrival at the Golgi are the golgins, long coiled-coil proteins localized to specific parts of the Golgi stack. In mammalian cells, three of the golgins, TMF, golgin-84, and GMAP-210, can capture intra-Golgi transport vesicles when placed in an ectopic location. However, the individual golgins are not required for cell viability, and mouse knockout mutants only have defects in specific tissues. To further illuminate this system, we examine the Drosophila orthologs of these three intra-Golgi golgins. We show that ectopic forms can capture intra-Golgi transport vesicles, but strikingly, the cargo present in the vesicles captured by each golgin varies between tissues. Loss-of-function mutants show that the golgins are individually dispensable, although the loss of TMF recapitulates the male fertility defects observed in mice. However, the deletion of multiple golgins results in defects in glycosylation and loss of viability. Examining the vesicles captured by a particular golgin when another golgin is missing reveals that the vesicle content in one tissue changes to resemble that of a different tissue. This reveals a plasticity in Golgi organization between tissues, providing an explanation for why the Golgi is sufficiently robust to tolerate the loss of many of the individual components of its membrane traffic machinery.
Collapse
Affiliation(s)
- Sung Yun Park
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Nadine Muschalik
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jessica Chadwick
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
20
|
Malis Y, Hirschberg K, Kaether C. Hanging the coat on a collar: Same function but different localization and mechanism for COPII. Bioessays 2022; 44:e2200064. [DOI: 10.1002/bies.202200064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yehonathan Malis
- Department of Pathology, Sackler School of Medicine Tel‐Aviv University Tel Aviv Israel
| | - Koret Hirschberg
- Department of Pathology, Sackler School of Medicine Tel‐Aviv University Tel Aviv Israel
| | - Christoph Kaether
- Leibniz Institute for Age Research – Fritz Lipmann Institute Jena Germany
| |
Collapse
|
21
|
Zhai F, Li J, Ye M, Jin X. The functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination. Gene X 2022; 832:146562. [PMID: 35580799 DOI: 10.1016/j.gene.2022.146562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 02/09/2023] Open
Abstract
Ubiquitination of substrates usually have two fates: one is degraded by 26S proteasome, and the other is non-degradative ubiquitination modification which is associated with cell cycle regulation, chromosome inactivation, protein transportation, tumorigenesis, achondroplasia, and neurological diseases. Cullin3 (CUL3), a scaffold protein, binding with the Bric-a-Brac-Tramtrack-Broad-complex (BTB) domain of substrates recognition adaptor and RING-finger protein 1 (RBX1) form ubiquitin ligases (E3). Based on the current researches, this review has summarized the functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination.
Collapse
Affiliation(s)
- Fengguang Zhai
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jingyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| |
Collapse
|
22
|
Fine-tuning cell organelle dynamics during mitosis by small GTPases. Front Med 2022; 16:339-357. [PMID: 35759087 DOI: 10.1007/s11684-022-0926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/24/2022] [Indexed: 11/04/2022]
Abstract
During mitosis, the allocation of genetic material concurs with organelle transformation and distribution. The coordination of genetic material inheritance with organelle dynamics directs accurate mitotic progression, cell fate determination, and organismal homeostasis. Small GTPases belonging to the Ras superfamily regulate various cell organelles during division. Being the key regulators of membrane dynamics, the dysregulation of small GTPases is widely associated with cell organelle disruption in neoplastic and non-neoplastic diseases, such as cancer and Alzheimer's disease. Recent discoveries shed light on the molecular properties of small GTPases as sophisticated modulators of a remarkably complex and perfect adaptors for rapid structure reformation. This review collects current knowledge on small GTPases in the regulation of cell organelles during mitosis and highlights the mediator role of small GTPase in transducing cell cycle signaling to organelle dynamics during mitosis.
Collapse
|
23
|
Li B, Zeng Y, Jiang L. COPII vesicles in plant autophagy and endomembrane trafficking. FEBS Lett 2022; 596:2314-2323. [PMID: 35486434 DOI: 10.1002/1873-3468.14362] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/06/2022]
Abstract
In eukaryotes, the endomembrane system allows for spatiotemporal compartmentation of complicated cellular processes. The plant endomembrane system consists of the endoplasmic reticulum (ER), the Golgi apparatus (GA), the trans-Golgi network (TGN), the multivesicular body (MVB), and the vacuole. Anterograde traffic from the ER to GA is mediated by coat protein complex II (COPII) vesicles. Autophagy, an evolutionarily conserved catabolic process that turns over cellular materials upon nutrient deprivation or in adverse environments, exploits double-membrane autophagosomes to recycle unwanted constituents in the lysosome/vacuole. Accumulating evidence reveals novel functions of plant COPII vesicles in autophagy and their regulation by abiotic stresses. Here, we summarize current knowledge about plant COPII vesicles in the endomembrane trafficking and then highlight recent findings showing their distinct roles in modulating the autophagic flux and stress responses.
Collapse
Affiliation(s)
- Baiying Li
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, New Territories, Hong Kong, China.,CUHK Shenzhen Research Institute, Shenzhen, China.,Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
24
|
Hellewell AL, Heesom KJ, Jepson MA, Adams JC. PDIA3/ERp57 promotes a matrix-rich secretome that stimulates fibroblast adhesion through CCN2. Am J Physiol Cell Physiol 2022; 322:C624-C644. [PMID: 35196163 PMCID: PMC8977143 DOI: 10.1152/ajpcell.00258.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The matricellular glycoprotein thrombospondin1 (TSP1) has complex roles in the extracellular matrix and at cell surfaces, but relatively little is known about its intracellular associations prior to secretion. To search for novel intracellular interactions of TSP1 in situ, we carried out a biotin ligase-based TSP1 interactome screen and identified protein disulphide isomerase A3 (PDIA3/ERp57) as a novel candidate binding protein. In validation, TSP1 and PDIA3 were established to bind in vitro and to colocalise in the endoplasmic reticulum of human dermal fibroblasts (HDF). Loss of PDIA3 function, either by pharmacological inhibition in HDF or in Pdia3-/- mouse embryo fibroblasts (Pdia3-/-MEF), led to alterations in the composition of cell-derived ECM, involving changed abundance of fibronectin and TSP1, and was correlated with reduced cell spreading, altered organisation of F-actin and reduced focal adhesions. These cellular phenotypes of Pdia3-/-MEF were normalised by exposure to conditioned medium (WTCM) or extracellular matrix (WTECM) from wild-type (WT)-MEF. Rescue depended on PDIA3 activity in WT-MEF, and was not prevented by immunodepletion of fibronectin. Heparin-binding proteins in WTCM were found to be necessary for rescue. Comparative quantitative tandem-mass-tag proteomics and functional assays on the heparin-binding secretomes of WT-MEF and Pdia3-/- MEF identified multiple ECM and growth factor proteins to be down-regulated in the CM of Pdia3-/- MEF. Of these, CCN2 was identified to be necessary for the adhesion-promoting activity of WTCM on Pdia3-/- MEF and to bind TSP1. Thus, PDIA3 coordinates fibroblast production of an ECM-rich, pro-adhesive microenvironment, with implications for PDIA3 as a translational target.
Collapse
Affiliation(s)
| | - Kate J Heesom
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Mark A Jepson
- Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
25
|
Liu Z, Yan M, Lei W, Jiang R, Dai W, Chen J, Wang C, Li L, Wu M, Nian X, Li D, Sun D, Lv X, Wang C, Xie C, Yao L, Wu C, Hu J, Xiao N, Mo W, Wang Z, Zhang L. Sec13 promotes oligodendrocyte differentiation and myelin repair through autocrine pleiotrophin signaling. J Clin Invest 2022; 132:155096. [PMID: 35143418 PMCID: PMC8970680 DOI: 10.1172/jci155096] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Dysfunction of protein trafficking has been intensively associated with neurological diseases, including neurodegeneration, but whether and how protein transport contributes to oligodendrocyte (OL) maturation and myelin repair in white matter injury remains unclear. ER-to-Golgi trafficking of newly synthesized proteins is mediated by coat protein complex II (COPII). Here, we demonstrate that the COPII component Sec13 was essential for OL differentiation and postnatal myelination. Ablation of Sec13 in the OL lineage prevented OPC differentiation and inhibited myelination and remyelination after demyelinating injury in the central nervous system (CNS), while improving protein trafficking by tauroursodeoxycholic acid (TUDCA) or ectopic expression of COPII components accelerated myelination. COPII components were upregulated in OL lineage cells after demyelinating injury. Loss of Sec13 altered the secretome of OLs and inhibited the secretion of pleiotrophin (PTN), which was found to function as an autocrine factor to promote OL differentiation and myelin repair. These data suggest that Sec13-dependent protein transport is essential for OL differentiation and that Sec13-mediated PTN autocrine signaling is required for proper myelination and remyelination.
Collapse
Affiliation(s)
- Zhixiong Liu
- Department of Neuroscience, Institute of Neurosurgery, and Department of Neurosurgery, The First Affiliated Hospital, State Key Laboratory of Cellular Stress Biology, School of Medicine
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Minbiao Yan
- Department of Neuroscience, Institute of Neurosurgery, and Department of Neurosurgery, The First Affiliated Hospital, State Key Laboratory of Cellular Stress Biology, School of Medicine
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Wanying Lei
- Department of Neuroscience, Institute of Neurosurgery, and Department of Neurosurgery, The First Affiliated Hospital, State Key Laboratory of Cellular Stress Biology, School of Medicine
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Rencai Jiang
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Wenxiu Dai
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Jialin Chen
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Chaomeng Wang
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Li Li
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Mei Wu
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Ximing Nian
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Daopeng Li
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Di Sun
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Xiaoqi Lv
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Chaoying Wang
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Changchuan Xie
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Luming Yao
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Caiming Wu
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Jin Hu
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Naian Xiao
- Department of Neurology, The First Affiliated Hospital, Xiamen University, Fujian, China
| | - Wei Mo
- Department of Neuroscience, Institute of Neurosurgery, and Department of Neurosurgery, The First Affiliated Hospital, State Key Laboratory of Cellular Stress Biology, School of Medicine
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| | - Zhanxiang Wang
- Department of Neuroscience, Institute of Neurosurgery, and Department of Neurosurgery, The First Affiliated Hospital, State Key Laboratory of Cellular Stress Biology, School of Medicine
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital
| | - Liang Zhang
- Department of Neuroscience, Institute of Neurosurgery, and Department of Neurosurgery, The First Affiliated Hospital, State Key Laboratory of Cellular Stress Biology, School of Medicine
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital
- School of Life Sciences, Innovation Center for Cell Signaling Network, and
| |
Collapse
|
26
|
Marí-Beffa M, Mesa-Román AB, Duran I. Zebrafish Models for Human Skeletal Disorders. Front Genet 2021; 12:675331. [PMID: 34490030 PMCID: PMC8418114 DOI: 10.3389/fgene.2021.675331] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
In 2019, the Nosology Committee of the International Skeletal Dysplasia Society provided an updated version of the Nosology and Classification of Genetic Skeletal Disorders. This is a reference list of recognized diseases in humans and their causal genes published to help clinician diagnosis and scientific research advances. Complementary to mammalian models, zebrafish has emerged as an interesting species to evaluate chemical treatments against these human skeletal disorders. Due to its versatility and the low cost of experiments, more than 80 models are currently available. In this article, we review the state-of-art of this “aquarium to bedside” approach describing the models according to the list provided by the Nosology Committee. With this, we intend to stimulate research in the appropriate direction to efficiently meet the actual needs of clinicians under the scope of the Nosology Committee.
Collapse
Affiliation(s)
- Manuel Marí-Beffa
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
| | - Ana B Mesa-Román
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain
| | - Ivan Duran
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
| |
Collapse
|
27
|
McCaughey J, Stevenson NL, Mantell JM, Neal CR, Paterson A, Heesom K, Stephens DJ. A general role for TANGO1, encoded by MIA3, in secretory pathway organization and function. J Cell Sci 2021; 134:jcs259075. [PMID: 34350936 PMCID: PMC8524724 DOI: 10.1242/jcs.259075] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 11/25/2022] Open
Abstract
Complex machinery is required to drive secretory cargo export from the endoplasmic reticulum (ER), which is an essential process in eukaryotic cells. In vertebrates, the MIA3 gene encodes two major forms of transport and Golgi organization protein 1 (TANGO1S and TANGO1L), which have previously been implicated in selective trafficking of procollagen. Using genome engineering of human cells, light microscopy, secretion assays, genomics and proteomics, we show that disruption of the longer form, TANGO1L, results in relatively minor defects in secretory pathway organization and function, including having limited impacts on procollagen secretion. In contrast, loss of both long and short forms results in major defects in cell organization and secretion. These include a failure to maintain the localization of ERGIC53 (also known as LMAN1) and SURF4 to the ER-Golgi intermediate compartment and dramatic changes to the ultrastructure of the ER-Golgi interface. Disruption of TANGO1 causes significant changes in early secretory pathway gene and protein expression, and impairs secretion not only of large proteins, but of all types of secretory cargo, including small soluble proteins. Our data support a general role for MIA3/TANGO1 in maintaining secretory pathway structure and function in vertebrate cells.
Collapse
Affiliation(s)
- Janine McCaughey
- Cell Biology Laboratories,
School of Biochemistry, Faculty of Life Sciences, University Walk,
University of Bristol, Bristol, BS8 1TD,
UK
| | - Nicola L. Stevenson
- Cell Biology Laboratories,
School of Biochemistry, Faculty of Life Sciences, University Walk,
University of Bristol, Bristol, BS8 1TD,
UK
| | - Judith M. Mantell
- Wolfson Bioimaging Facility, Faculty of Life
Sciences, University Walk, University of
Bristol, Bristol, BS8 1TD,
UK
| | - Chris R. Neal
- Wolfson Bioimaging Facility, Faculty of Life
Sciences, University Walk, University of
Bristol, Bristol, BS8 1TD,
UK
| | | | - Kate Heesom
- Proteomics Facility, Faculty of Life
Sciences, University Walk, University of
Bristol, Bristol, BS8 1TD,
UK
| | - David J. Stephens
- Cell Biology Laboratories,
School of Biochemistry, Faculty of Life Sciences, University Walk,
University of Bristol, Bristol, BS8 1TD,
UK
| |
Collapse
|
28
|
Chang X, Qiu K, Wang J, Zhang H, You S, Mi S, Qi G, Wu S. The Evaluation of UPro as a New Nutrient on High-Quality Egg Production From the Perspective of Egg Properties, Intestinal Histomorphology, and Oviduct Function of Laying Hens. Front Nutr 2021; 8:706067. [PMID: 34490324 PMCID: PMC8418077 DOI: 10.3389/fnut.2021.706067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022] Open
Abstract
This study was to investigate the effects of UPro as a new nutritive fortifier on high-quality egg production from the perspective of egg properties, intestinal histomorphology, and oviduct function of laying hens. Four hundred thirty-two Hy-Line Brown laying hens aged 56 weeks were allocated to four groups. Layers were given a basal diet or supplemented with different levels of small peptides (0.2, 0.4, and 0.8%) to replace soybean meal. After 1-week adaptation period, the feeding trial was conducted for 12 weeks. The results showed that UPro addition significantly decreased (P < 0.05) the hardness, stickiness, and chewiness of albumen of layers on weeks 12. A linear elevation (P < 0.05) in the albumen height, Haugh unit (HU), and crude protein content of albumen of layers were noted on week 12 along with dietary UPro addition increasing, and the villus height (VH) and villus height-to-crypt depth radio (VCR) of jejunum also linearly increasing (P < 0.05). In addition, there were linear elevations (P < 0.05) in the relative mRNA expression of Sec23 homolog A (Sec23A) and protein-O-mannosyltransferase1 (POMT1) in layers as dietary UPro addition increased. In conclusion, dietary UPro addition could improve intestinal health, increase the absorption of nutrients, and improve egg quality of laying hens. The possible mechanism underlying UPro improving the quality and processing characteristics of albumen is up-regulating Sec23A and POMT1 expression of magnum. These findings will promote the application of UPro as a new nutritional additive in the production of high-quality eggs.
Collapse
Affiliation(s)
- Xinyu Chang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai Qiu
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haijun Zhang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shizhou You
- Changzhou Yayuan Biochemical Technology Co., Ltd, Jiangsu, China
| | - Shuichao Mi
- Changzhou Yayuan Biochemical Technology Co., Ltd, Jiangsu, China
| | - Guanghai Qi
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shugeng Wu
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
29
|
Hutchings J, Stancheva VG, Brown NR, Cheung ACM, Miller EA, Zanetti G. Structure of the complete, membrane-assembled COPII coat reveals a complex interaction network. Nat Commun 2021; 12:2034. [PMID: 33795673 PMCID: PMC8016994 DOI: 10.1038/s41467-021-22110-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/12/2021] [Indexed: 01/02/2023] Open
Abstract
COPII mediates Endoplasmic Reticulum to Golgi trafficking of thousands of cargoes. Five essential proteins assemble into a two-layer architecture, with the inner layer thought to regulate coat assembly and cargo recruitment, and the outer coat forming cages assumed to scaffold membrane curvature. Here we visualise the complete, membrane-assembled COPII coat by cryo-electron tomography and subtomogram averaging, revealing the full network of interactions within and between coat layers. We demonstrate the physiological importance of these interactions using genetic and biochemical approaches. Mutagenesis reveals that the inner coat alone can provide membrane remodelling function, with organisational input from the outer coat. These functional roles for the inner and outer coats significantly move away from the current paradigm, which posits membrane curvature derives primarily from the outer coat. We suggest these interactions collectively contribute to coat organisation and membrane curvature, providing a structural framework to understand regulatory mechanisms of COPII trafficking and secretion.
Collapse
Affiliation(s)
- Joshua Hutchings
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Nick R Brown
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
- The Francis Crick Institute, London, UK
| | - Alan C M Cheung
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
- School of Biochemistry, University of Bristol, Bristol, UK
| | | | - Giulia Zanetti
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK.
| |
Collapse
|
30
|
Tang BL. Defects in early secretory pathway transport machinery components and neurodevelopmental disorders. Rev Neurosci 2021; 32:851-869. [PMID: 33781010 DOI: 10.1515/revneuro-2021-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022]
Abstract
The early secretory pathway, provisionally comprising of vesicular traffic between the endoplasmic reticulum (ER) and the Golgi apparatus, occurs constitutively in mammalian cells. Critical for a constant supply of secretory and plasma membrane (PM) materials, the pathway is presumably essential for general cellular function and survival. Neurons exhibit a high intensity in membrane dynamics and protein/lipid trafficking, with differential and polarized trafficking towards the somatodendritic and axonal PM domains. Mutations in genes encoding early secretory pathway membrane trafficking machinery components are known to result in neurodevelopmental or neurological disorders with disease manifestation in early life. Here, such rare disorders associated with autosomal recessive mutations in coat proteins, membrane tethering complexes and membrane fusion machineries responsible for trafficking in the early secretory pathway are summarily discussed. These mutations affected genes encoding subunits of coat protein complex I and II, subunits of transport protein particle (TRAPP) complexes, members of the YIP1 domain family (YIPF) and a SNAP receptor (SNARE) family member. Why the ubiquitously present and constitutively acting early secretory pathway machinery components could specifically affect neurodevelopment is addressed, with the plausible underlying disease etiologies and neuropathological mechanisms resulting from these mutations explored.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore117597, Singapore
| |
Collapse
|
31
|
Gomez-Navarro N, Melero A, Li XH, Boulanger J, Kukulski W, Miller EA. Cargo crowding contributes to sorting stringency in COPII vesicles. J Cell Biol 2021; 219:151777. [PMID: 32406500 PMCID: PMC7300426 DOI: 10.1083/jcb.201806038] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 03/11/2020] [Accepted: 04/24/2020] [Indexed: 02/05/2023] Open
Abstract
Accurate maintenance of organelle identity in the secretory pathway relies on retention and retrieval of resident proteins. In the endoplasmic reticulum (ER), secretory proteins are packaged into COPII vesicles that largely exclude ER residents and misfolded proteins by mechanisms that remain unresolved. Here we combined biochemistry and genetics with correlative light and electron microscopy (CLEM) to explore how selectivity is achieved. Our data suggest that vesicle occupancy contributes to ER retention: in the absence of abundant cargo, nonspecific bulk flow increases. We demonstrate that ER leakage is influenced by vesicle size and cargo occupancy: overexpressing an inert cargo protein or reducing vesicle size restores sorting stringency. We propose that cargo recruitment into vesicles creates a crowded lumen that drives selectivity. Retention of ER residents thus derives in part from the biophysical process of cargo enrichment into a constrained spherical membrane-bound carrier.
Collapse
Affiliation(s)
| | - Alejandro Melero
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Xiao-Han Li
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Jérôme Boulanger
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Wanda Kukulski
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
32
|
Clark EM, Link BA. Complementary and divergent functions of zebrafish Tango1 and Ctage5 in tissue development and homeostasis. Mol Biol Cell 2021; 32:391-401. [PMID: 33439675 PMCID: PMC8098853 DOI: 10.1091/mbc.e20-11-0745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 01/05/2023] Open
Abstract
Coat protein complex II (COPII) factors mediate cargo export from the endoplasmic reticulum (ER), but bulky collagens and lipoproteins are too large for traditional COPII vesicles. Mammalian CTAGE5 and TANGO1 have been well characterized individually as specialized cargo receptors at the ER that function with COPII coats to facilitate trafficking of bulky cargoes. Here, we present a genetic interaction study in zebrafish of deletions in ctage5, tango1, or both to investigate their distinct and complementary potential functions. We found that Ctage5 and Tango1 have different roles related to organogenesis, collagen versus lipoprotein trafficking, stress-pathway activation, and survival. While disruption of both ctage5 and tango1 compounded phenotype severity, mutation of either factor alone revealed novel tissue-specific defects in the building of heart, muscle, lens, and intestine, in addition to previously described roles in the development of neural and cartilage tissues. Together, our results demonstrate that Ctage5 and Tango1 have overlapping functions, but also suggest divergent roles in tissue development and homeostasis.
Collapse
Affiliation(s)
- Eric M. Clark
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Brian A. Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
33
|
Jheng JR, Chen YS, Horng JT. Regulation of the proteostasis network during enterovirus infection: A feedforward mechanism for EV-A71 and EV-D68. Antiviral Res 2021; 188:105019. [PMID: 33484748 DOI: 10.1016/j.antiviral.2021.105019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 10/25/2022]
Abstract
The proteostasis network guarantees successful protein synthesis, folding, transportation, and degradation. Mounting evidence has revealed that this network maintains proteome integrity and is linked to cellular physiology, pathology, and virus infection. Human enterovirus A71 (EV-A71) and EV-D68 are suspected causative agents of acute flaccid myelitis, a severe poliomyelitis-like neurologic syndrome with no known cure. In this context, further clarification of the molecular mechanisms underlying EV-A71 and EV-D68 infection is paramount. Here, we summarize the components of the proteostasis network that are intercepted by EV-A71 and EV-D68, as well as antivirals that target this network and may help develop improved antiviral drugs.
Collapse
Affiliation(s)
- Jia-Rong Jheng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Yuan-Siao Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Jim-Tong Horng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
34
|
Shomron O, Hirschberg K, Burakov A, Kamentseva R, Kornilova E, Nadezhdina E, Brodsky I. Positioning of endoplasmic reticulum exit sites around the Golgi depends on BicaudalD2 and Rab6 activity. Traffic 2020; 22:64-77. [PMID: 33314495 DOI: 10.1111/tra.12774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 01/22/2023]
Abstract
The endoplasmic reticulum (ER) is involved in biogenesis, modification and transport of secreted and membrane proteins. The ER membranes are spread throughout the cell cytoplasm as well as the export domains known as ER exit sites (ERES). A subpopulation of ERES is centrally localized proximal to the Golgi apparatus. The significance of this subpopulation on ER-to-Golgi transport remains unclear. Transport carriers (TCs) form at the ERES via a COPII-dependent mechanism and move to Golgi on microtubule (MT) tracks. It was shown previously that ERES are distributed along MTs and undergo chaotic short-range movements and sporadic rapid long-range movements. The long-range movements of ERES are impaired by either depolymerization of MTs or inhibition of dynein, suggesting that ERES central concentration is mediated by dynein activity. We demonstrate that the processive movements of ERES are frequently coupled with the TC departure. Using the Sar1a[H79G]-induced ERES clustering at the perinuclear region, we identified BicaudalD2 (BicD2) and Rab6 as components of the dynein adaptor complex which drives perinuclear ERES concentration at the cell center. BicD2 partially colocalized with ERES and with TC. Peri-Golgi ERES localization was significantly affected by inhibition of BicD2 function with its N-terminal fragment or inhibition of Rab6 function with its dominant-negative mutant. Golgi accumulation of secretory protein was delayed by inhibition of Rab6 and BicD2. Thus, we conclude that a BicD2/Rab6 dynein adaptor is required for maintenance of Golgi-associated ERES. We propose that Golgi-associated ERES may enhance the efficiency of the ER-to-Golgi transport.
Collapse
Affiliation(s)
- Olga Shomron
- Tel-Aviv University, Sackler School of Medicine, Tel Aviv, Israel
| | - Koret Hirschberg
- Tel-Aviv University, Sackler School of Medicine, Tel Aviv, Israel
| | - Anton Burakov
- Lomonosov Moscow State University, A. N. Belozersky Institute for Physico-Chemical Biology, Moscow, Russian Federation
| | - Rimma Kamentseva
- Division of Intracellular Signaling and Transport, Institute of Cytology of Russian Academy of Science, St.Petersburg, Russian Federation
| | - Elena Kornilova
- Division of Intracellular Signaling and Transport, Institute of Cytology of Russian Academy of Science, St.Petersburg, Russian Federation
| | - Elena Nadezhdina
- Division of Cell Biology, Institute of Protein Research of Russian Academy of Science, Moscow, Russian Federation
| | - Ilya Brodsky
- Lomonosov Moscow State University, A. N. Belozersky Institute for Physico-Chemical Biology, Moscow, Russian Federation
| |
Collapse
|
35
|
Cendrowski J, Kaczmarek M, Mazur M, Kuzmicz-Kowalska K, Jastrzebski K, Brewinska-Olchowik M, Kominek A, Piwocka K, Miaczynska M. Splicing variation of BMP2K balances abundance of COPII assemblies and autophagic degradation in erythroid cells. eLife 2020; 9:e58504. [PMID: 32795391 PMCID: PMC7473771 DOI: 10.7554/elife.58504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/13/2020] [Indexed: 12/26/2022] Open
Abstract
Intracellular transport undergoes remodeling upon cell differentiation, which involves cell type-specific regulators. Bone morphogenetic protein 2-inducible kinase (BMP2K) has been potentially implicated in endocytosis and cell differentiation but its molecular functions remained unknown. We discovered that its longer (L) and shorter (S) splicing variants regulate erythroid differentiation in a manner unexplainable by their involvement in AP-2 adaptor phosphorylation and endocytosis. However, both variants interact with SEC16A and could localize to the juxtanuclear secretory compartment. Variant-specific depletion approach showed that BMP2K isoforms constitute a BMP2K-L/S regulatory system that controls the distribution of SEC16A and SEC24B as well as SEC31A abundance at COPII assemblies. Finally, we found L to promote and S to restrict autophagic degradation and erythroid differentiation. Hence, we propose that BMP2K-L and BMP2K-S differentially regulate abundance and distribution of COPII assemblies as well as autophagy, possibly thereby fine-tuning erythroid differentiation.
Collapse
Affiliation(s)
- Jaroslaw Cendrowski
- Laboratory of Cell Biology, International Institute of Molecular and Cell BiologyWarsawPoland
| | - Marta Kaczmarek
- Laboratory of Cell Biology, International Institute of Molecular and Cell BiologyWarsawPoland
| | - Michał Mazur
- Laboratory of Cell Biology, International Institute of Molecular and Cell BiologyWarsawPoland
| | | | - Kamil Jastrzebski
- Laboratory of Cell Biology, International Institute of Molecular and Cell BiologyWarsawPoland
| | | | - Agata Kominek
- Laboratory of Cytometry, Nencki Institute of Experimental BiologyWarsawPoland
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental BiologyWarsawPoland
| | - Marta Miaczynska
- Laboratory of Cell Biology, International Institute of Molecular and Cell BiologyWarsawPoland
| |
Collapse
|
36
|
Changes in Proteome of Fibroblasts Isolated from Psoriatic Skin Lesions. Int J Mol Sci 2020; 21:ijms21155363. [PMID: 32731552 PMCID: PMC7432102 DOI: 10.3390/ijms21155363] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 11/16/2022] Open
Abstract
The dermal fibroblasts are in constant contact with the cells of the immune system and skin epidermis. Therefore, they are essential for the development of lesions in psoriasis. The aim of this study was to assess the changes in the proteomic profile of fibroblasts in the dermis of psoriasis patients, and to discuss the most significant changes and their potential consequences. The proteomic results indicate that fibroblast dysfunction arises from the upregulation of proinflammatory factors and antioxidant proteins, as well as those involved in signal transduction and participating in proteolytic processes. Moreover, downregulated proteins in psoriatic fibroblasts are mainly responsible for the transcription/translation processes, glycolysis/ adenosine triphosphate synthesis and structural molecules. These changes can directly affect intercellular signaling and promote the hyperproliferation of epidermal cells. A better understanding of the metabolic effects of the proteomic changes observed could guide the development of new pharmacotherapies for psoriasis.
Collapse
|
37
|
Matsui Y, Hirata Y, Wada I, Hosokawa N. Visualization of Procollagen IV Reveals ER-to-Golgi Transport by ERGIC-independent Carriers. Cell Struct Funct 2020; 45:107-119. [PMID: 32554938 PMCID: PMC10511052 DOI: 10.1247/csf.20025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/13/2020] [Indexed: 12/17/2023] Open
Abstract
Collagen is the most abundant protein in animal tissues and is critical for their proper organization. Nascent procollagens in the endoplasmic reticulum (ER) are considered too large to be loaded into coat protein complex II (COPII) vesicles, which have a diameter of 60-80 nm, for exit from the ER and transport to the Golgi complex. To study the transport mechanism of procollagen IV, which generates basement membranes, we introduced a cysteine-free GFP tag at the N-terminus of the triple helical region of the α1(IV) chain (cfSGFP2-col4a1), and examined the dynamics of this protein in HT-1080 cells, which produce endogenous collagen IV. cfSGFP2-col4a1 was transported from the ER to the Golgi by vesicles, which were a similar size as small cargo carriers. However, mCherry-ERGIC53 was recruited to α1-antitrypsin-containing vesicles, but not to cfSGFP2-col4a1-containing vesicles. Knockdown analysis revealed that Sar1 and SLY1/SCFD1 were required for transport of cfSGFP2-col4a1. TANGO1, CUL3, and KLHL12 were not necessary for the ER-to-Golgi trafficking of procollagen IV. Our data suggest that procollagen IV is exported from the ER via an enlarged COPII coat carrier and is transported to the Golgi by unique transport vesicles without recruitment of ER-Golgi intermediate compartment membranes.Key words: collagen, procollagen IV, endoplasmic reticulum, ER-to-Golgi transport, ERGIC.
Collapse
Affiliation(s)
- Yuto Matsui
- Laboratory of Molecular and Cellular Biology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yukihiro Hirata
- Laboratory of Molecular and Cellular Biology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Ikuo Wada
- Department of Cell Sciences, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Nobuko Hosokawa
- Laboratory of Molecular and Cellular Biology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
38
|
Zhao G, Sun H, Zhang T, Liu JX. Copper induce zebrafish retinal developmental defects via triggering stresses and apoptosis. Cell Commun Signal 2020; 18:45. [PMID: 32169084 PMCID: PMC7071659 DOI: 10.1186/s12964-020-00548-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background The disorder of copper homeostasis is linked with disease and developmental defects, and excess copper_nanoparticles (CuNPs) and ion (Cu2+) will induce developmental malformation and disease in organisms. However, little knowledge is available regarding its potential regulation mechanisms, and little study links excess copper with retinal developmental malformation and disease. Methods Embryos were stressed with copper (CuNPs and Cu2+), and cell proliferation and apoptosis assays, reactive oxygen species (ROS) and endoplasmic reticulum (ER) signaling detections, and genetic mutants cox17−/− and atp7a−/− application, were used to evaluate copper induced retinal developmental malformation and the underlying genetic and biological regulating mechanisms. Results Copper reduced retinal cells and down-regulated expression of retinal genes, damaged the structures of ER and mitochondria in retinal cells, up-regulated unfold protein responses (UPR) and ROS, and increased apoptosis in copper-stressed retinal cells. The copper induced retinal defects could be significantly neutralized by ROS scavengers reduced Glutathione (GSH) & N-acetylcysteine (NAC) and ER stress inhibitor 4- phenylbutyric acid (PBA). Blocking the transportation of copper to mitochondria, or to trans-Golgi network and to be exported into plasma, by deleting gene cox17 or atp7a, could alleviate retinal developmental defects in embryos under copper stresses. Conclusions This is probably the first report to reveal that copper nanoparticles and ions induce retinal developmental defects via upregulating UPR and ROS, leading to apoptosis in zebrafish embryonic retinal cells. Integrated function of copper transporter (Cox17 and Atp7a) is necessary for copper induced retinal defects. Graphical abstract ![]()
Collapse
Affiliation(s)
- Guang Zhao
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - HaoJie Sun
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ting Zhang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
39
|
Lu CL, Kim J. Consequences of mutations in the genes of the ER export machinery COPII in vertebrates. Cell Stress Chaperones 2020; 25:199-209. [PMID: 31970693 PMCID: PMC7058761 DOI: 10.1007/s12192-019-01062-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/14/2019] [Accepted: 12/13/2019] [Indexed: 11/28/2022] Open
Abstract
Coat protein complex II (COPII) plays an essential role in the export of cargo molecules such as secretory proteins, membrane proteins, and lipids from the endoplasmic reticulum (ER). In yeast, the COPII machinery is critical for cell viability as most COPII knockout mutants fail to survive. In mice and fish, homozygous knockout mutants of most COPII genes are embryonic lethal, reflecting the essentiality of the COPII machinery in the early stages of vertebrate development. In humans, COPII mutations, which are often hypomorphic, cause diseases having distinct clinical features. This is interesting as the fundamental cellular defect of these diseases, that is, failure of ER export, is similar. Analyses of humans and animals carrying COPII mutations have revealed clues to why a similar ER export defect can cause such different diseases. Previous reviews have focused mainly on the deficit of secretory or membrane proteins in the final destinations because of an ER export block. In this review, we also underscore the other consequence of the ER export block, namely ER stress triggered by the accumulation of cargo proteins in the ER.
Collapse
Affiliation(s)
- Chung-Ling Lu
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA, 50011, USA
| | - Jinoh Kim
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA, 50011, USA.
| |
Collapse
|
40
|
ER-to-Golgi Transport: A Sizeable Problem. Trends Cell Biol 2019; 29:940-953. [DOI: 10.1016/j.tcb.2019.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 11/16/2022]
|
41
|
Mironov AA, Beznoussenko GV. Models of Intracellular Transport: Pros and Cons. Front Cell Dev Biol 2019; 7:146. [PMID: 31440506 PMCID: PMC6693330 DOI: 10.3389/fcell.2019.00146] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022] Open
Abstract
Intracellular transport is one of the most confusing issues in the field of cell biology. Many different models and their combinations have been proposed to explain the experimental data on intracellular transport. Here, we analyse the data related to the mechanisms of endoplasmic reticulum-to-Golgi and intra-Golgi transport from the point of view of the main models of intracellular transport; namely: the vesicular model, the diffusion model, the compartment maturation–progression model, and the kiss-and-run model. This review initially describes our current understanding of Golgi function, while highlighting the recent progress that has been made. It then continues to discuss the outstanding questions and potential avenues for future research with regard to the models of these transport steps. To compare the power of these models, we have applied the method proposed by K. Popper; namely, the formulation of prohibitive observations according to, and the consecutive evaluation of, previous data, on the basis on the new models. The levels to which the different models can explain the experimental observations are different, and to date, the most powerful has been the kiss-and-run model, whereas the least powerful has been the diffusion model.
Collapse
Affiliation(s)
- Alexander A Mironov
- Department of Cell Biology, The FIRC Institute of Molecular Oncology, Milan, Italy
| | | |
Collapse
|
42
|
Blum A, Khalifa S, Nordström K, Simon M, Schulz MH, Schmitt MJ. Transcriptomics of a KDELR1 knockout cell line reveals modulated cell adhesion properties. Sci Rep 2019; 9:10611. [PMID: 31337861 PMCID: PMC6650600 DOI: 10.1038/s41598-019-47027-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/05/2019] [Indexed: 11/10/2022] Open
Abstract
KDEL receptors (KDELRs) represent transmembrane proteins of the secretory pathway which regulate the retention of soluble ER-residents as well as retrograde and anterograde vesicle trafficking. In addition, KDELRs are involved in the regulation of cellular stress response and ECM degradation. For a deeper insight into KDELR1 specific functions, we characterised a KDELR1-KO cell line (HAP1) through whole transcriptome analysis by comparing KDELR1-KO cells with its respective HAP1 wild-type. Our data indicate more than 300 significantly and differentially expressed genes whose gene products are mainly involved in developmental processes such as cell adhesion and ECM composition, pointing out to severe cellular disorders due to a loss of KDELR1. Impaired adhesion capacity of KDELR1-KO cells was further demonstrated through in vitro adhesion assays, while collagen- and/or laminin-coating nearly doubled the adhesion property of KDELR1-KO cells compared to wild-type, confirming a transcriptional adaptation to improve or restore the cellular adhesion capability. Perturbations within the secretory pathway were verified by an increased secretion of ER-resident PDI and decreased cell viability under ER stress conditions, suggesting KDELR1-KO cells to be severely impaired in maintaining cellular homeostasis.
Collapse
Affiliation(s)
- Andrea Blum
- Molecular and Cell Biology, Department of Biosciences (FR 8.3) and Center of Human and Molecular Biology (ZHMB), Saarland University, D-66123, Saarbrücken, Germany.
| | - Saleem Khalifa
- Cluster of Excellence, Multimodal Computing and Interaction, Saarland University and Department for Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
| | - Karl Nordström
- Genetics/Epigenetics, Center for Human and Molecular Biology, Saarland University, Saarbrücken, Germany
| | - Martin Simon
- Molecular Cell Biology and Microbiology, Wuppertal University, D-42097, Wuppertal, Germany
| | - Marcel H Schulz
- Cluster of Excellence, Multimodal Computing and Interaction, Saarland University and Department for Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany.,Institute for Cardiovascular Regeneration, Goethe University Frankfurt, 60590 Frankfurt am Main, Frankfurt, Germany
| | - Manfred J Schmitt
- Molecular and Cell Biology, Department of Biosciences (FR 8.3) and Center of Human and Molecular Biology (ZHMB), Saarland University, D-66123, Saarbrücken, Germany.
| |
Collapse
|
43
|
Coat flexibility in the secretory pathway: a role in transport of bulky cargoes. Curr Opin Cell Biol 2019; 59:104-111. [PMID: 31125831 PMCID: PMC7116127 DOI: 10.1016/j.ceb.2019.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 01/19/2023]
Abstract
Membrane trafficking in eukaryotic cells is a highly dynamic process, which needs to adapt to a variety of cargo proteins. The COPII coat mediates ER export of thousands of proteins with a wide range of sizes by generating coated membrane vesicles that incapsulate cargo. The process of assembly and disassembly of COPII, regulated by GTP hydrolysis, is a major determinant of the size and shape of transport carriers. Here, we analyse our knowledge of the COPII coat architecture and it assembly/disassembly dynamics, and link coat flexibility to the role of COPII in transport of large cargoes. We propose a common mechanism of action of regulatory factors that modulate COPII GTP hydrolysis cycle to promote budding.
Collapse
|
44
|
Mironov AA, Dimov ID, Beznoussenko GV. Role of Intracellular Transport in the Centriole-Dependent Formation of Golgi Ribbon. Results Probl Cell Differ 2019; 67:49-79. [PMID: 31435792 DOI: 10.1007/978-3-030-23173-6_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The intracellular transport is the most confusing issue in the field of cell biology. The Golgi complex (GC) is the central station along the secretory pathway. It contains Golgi glycosylation enzymes, which are responsible for protein and lipid glycosylation, and in many cells, it is organized into a ribbon. Position and structure of the GC depend on the position and function of the centriole. Here, we analyze published data related to the role of centriole and intracellular transport (ICT) for the formation of Golgi ribbon and specifically stress the importance of the delivery of membranes containing cargo and membrane proteins to the cell centre where centriole/centrosome is localized. Additionally, we re-examined the formation of Golgi ribbon from the point of view of different models of ICT.
Collapse
Affiliation(s)
| | - Ivan D Dimov
- Department of Anatomy, Saint Petersburg State Paediatric Medical University, Saint Petersburg, Russia
| | | |
Collapse
|
45
|
Liu Z, Zhou J, Wang Z, Zhou Z. Analysis of SEC24D Gene in Breast Cancer Based on UALCAN Database. Open Life Sci 2019; 14:707-711. [PMID: 33817210 PMCID: PMC7874789 DOI: 10.1515/biol-2019-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 10/23/2019] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To analyze the expression and its clinical significance of the SEC24D gene in breast cancer. METHODS The dataset of breast cancer were searched in the UALCAN database, and the data obtained were mined and combined with literature analysis. RESULTS The mRNA expression of the SEC24D gene in breast cancer tissues was significantly higher than that of breast normal tissues from the UALCAN database (P < 0.05). The promoter methylation levels of the SEC24D gene in breast cancer tissues were lower than that of breast normal tissues (P < 0.05). Survival analysis showed that the relapse-free survival of breast cancer patients with a higher expression of SEC24D gene was significantly worse than those patients with a lower expression of SEC24D (P < 0.05). CONCLUSION The SEC24D gene has a high expression in breast cancer tissues and its expression level was related to the prognosis of breast cancer patients.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Radiology, Affiliated Hospital of North China University of Science and Technology, Tangshan063000, P.R. China
| | - Jing Zhou
- Department of Endocrinology, Tangshan Hospital of Traditional Chinese Medicine, Tangshan063000, P.R. China
| | - Zhibao Wang
- Department of Radiology, The No.2 Hospital of Baoding, Baoding071051, P.R. China
| | - Zhiqiang Zhou
- Department of Radiology, The No.2 Hospital of Baoding, Baoding071051, P.R. China
| |
Collapse
|
46
|
McCaughey J, Stevenson NL, Cross S, Stephens DJ. ER-to-Golgi trafficking of procollagen in the absence of large carriers. J Cell Biol 2018; 218:929-948. [PMID: 30587510 PMCID: PMC6400576 DOI: 10.1083/jcb.201806035] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/17/2018] [Accepted: 12/06/2018] [Indexed: 01/28/2023] Open
Abstract
Trafficking of procollagen is essential for normal cell function. Here, imaging of GFP-tagged type I procollagen reveals that it is transported from the endoplasmic reticulum to the Golgi, without the use of large carriers. Secretion and assembly of collagen are fundamental to the function of the extracellular matrix. Defects in the assembly of a collagen matrix lead to pathologies including fibrosis and osteogenesis imperfecta. Owing to the size of fibril-forming procollagen molecules it is assumed that they are transported from the endoplasmic reticulum to the Golgi in specialized large COPII-dependent carriers. Here, analyzing endogenous procollagen and a new engineered GFP-tagged form, we show that transport to the Golgi occurs in the absence of large (>350 nm) carriers. Large GFP-positive structures were observed occasionally, but these were nondynamic, are not COPII positive, and are labeled with markers of the ER. We propose a short-loop model of COPII-dependent ER-to-Golgi traffic that, while consistent with models of ERGIC-dependent expansion of COPII carriers, does not invoke long-range trafficking of large vesicular structures. Our findings provide an important insight into the process of procollagen trafficking and reveal a short-loop pathway from the ER to the Golgi, without the use of large carriers.
Collapse
Affiliation(s)
- Janine McCaughey
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Nicola L Stevenson
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Stephen Cross
- Wolfson Bioimaging Facility, Faculty of Biomedical Sciences, University of Bristol, Bristol, UK
| | - David J Stephens
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
47
|
Halperin D, Kadir R, Perez Y, Drabkin M, Yogev Y, Wormser O, Berman EM, Eremenko E, Rotblat B, Shorer Z, Gradstein L, Shelef I, Birk R, Abdu U, Flusser H, Birk OS. SEC31A mutation affects ER homeostasis, causing a neurological syndrome. J Med Genet 2018; 56:139-148. [PMID: 30464055 DOI: 10.1136/jmedgenet-2018-105503] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 11/03/2022]
Abstract
BACKGROUND Consanguineous kindred presented with an autosomal recessive syndrome of intrauterine growth retardation, marked developmental delay, spastic quadriplegia with profound contractures, pseudobulbar palsy with recurrent aspirations, epilepsy, dysmorphism, neurosensory deafness and optic nerve atrophy with no eye fixation. Affected individuals died by the age of 4. Brain MRI demonstrated microcephaly, semilobar holoprosencephaly and agenesis of corpus callosum. We aimed at elucidating the molecular basis of this disease. METHODS Genome-wide linkage analysis combined with whole exome sequencing were performed to identify disease-causing variants. Functional consequences were investigated in fruit flies null mutant for the Drosophila SEC31A orthologue. SEC31A knockout SH-SY5Y and HEK293T cell-lines were generated using CRISPR/Cas9 and studied through qRT-PCR, immunoblotting and viability assays. RESULTS Through genetic studies, we identified a disease-associated homozygous nonsense mutation in SEC31A. We demonstrate that SEC31A is ubiquitously expressed, and that the mutation triggers nonsense-mediated decay of its transcript, comprising a practical null mutation. Similar to the human disease phenotype, knockdown SEC31A flies had defective brains and early lethality. Moreover, in line with SEC31A encoding one of the two coating layers comprising the Coat protein complex II (COP-II) complex, trafficking newly synthesised proteins from the endoplasmic reticulum (ER) to the Golgi, CRISPR/Cas9-mediated SEC31A null mutant cells demonstrated reduced viability through upregulation of ER-stress pathways. CONCLUSION We demonstrate through human and Drosophila genetic and in vitro molecular studies, that a severe neurological syndrome is caused by a null mutation in SEC31A, reducing cell viability through enhanced ER-stress response, in line with SEC31A's role in the COP-II complex.
Collapse
Affiliation(s)
- Daniel Halperin
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Rotem Kadir
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yonatan Perez
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Max Drabkin
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yuval Yogev
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ohad Wormser
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Erez M Berman
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ekaterina Eremenko
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Zlotowski Center for Neuroscience, The National Institute of Biotechnology in the Negev; Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Barak Rotblat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Zamir Shorer
- Pediatric Neurology Unit, Division of Pediatrics, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Libe Gradstein
- Department of Ophthalmology, Clalit Health Services, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ilan Shelef
- Department of Imaging, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ruth Birk
- Department of Nutrition, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Hagit Flusser
- Zussman Child Development Center, Division of Pediatrics, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Genetics Institute, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
48
|
PAQR3 Regulates Endoplasmic Reticulum-to-Golgi Trafficking of COPII Vesicle via Interaction with Sec13/Sec31 Coat Proteins. iScience 2018; 9:382-398. [PMID: 30466064 PMCID: PMC6249397 DOI: 10.1016/j.isci.2018.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/06/2018] [Accepted: 10/29/2018] [Indexed: 11/20/2022] Open
Abstract
Endoplasmic reticulum (ER)-to-Golgi anterograde transport is driven by COPII vesicles mainly composed of a Sec23/Sec24 inner shell and a Sec13/Sec31 outer cage. How COPII vesicles are tethered to the Golgi is not completely understood. We demonstrated here that PAQR3 can facilitate tethering of COPII vesicles to the Golgi. Proximity labeling using PAQR3 fused with APEX2 identified that many proteins involved in intracellular transport are in close proximity to PAQR3. ER-to-Golgi trafficking of N-acetylgalactosaminyltransferase-2 on removal of brefeldin A is delayed by PAQR3 deletion. RUSH assay also revealed that ER-to-Golgi trafficking is affected by PAQR3. The N-terminal end of PAQR3 can interact with the WD domains of Sec13 and Sec31A. PAQR3 enhances Golgi localization of Sec13 and Sec31A. Furthermore, PAQR3 is localized in the ERGIC and cis-Golgi structures, the acceptor sites for COPII vesicles. Taken together, our study uncovers a role for PAQR3 as a player in regulating ER-to-Golgi transport of COPII vesicles.
Collapse
|
49
|
Suzuki A, Iwata J. Molecular Regulatory Mechanism of Exocytosis in the Salivary Glands. Int J Mol Sci 2018; 19:E3208. [PMID: 30336591 PMCID: PMC6214078 DOI: 10.3390/ijms19103208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022] Open
Abstract
Every day, salivary glands produce about 0.5 to 1.5 L of saliva, which contains salivary proteins that are essential for oral health. The contents of saliva, 0.3% proteins (1.5 to 4.5 g) in fluid, help prevent oral infections, provide lubrication, aid digestion, and maintain oral health. Acinar cells in the lobular salivary glands secrete prepackaged secretory granules that contain salivary components such as amylase, mucins, and immunoglobulins. Despite the important physiological functions of salivary proteins, we know very little about the regulatory mechanisms of their secretion via exocytosis, which is a process essential for the secretion of functional proteins, not only in salivary glands, but also in other secretory organs, including lacrimal and mammary glands, the pancreas, and prostate. In this review, we discuss recent findings that elucidate exocytosis by exocrine glands, especially focusing on the salivary glands, in physiological and pathological conditions.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Program of Biochemistry and Cell Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| |
Collapse
|
50
|
Aridor M. COPII gets in shape: Lessons derived from morphological aspects of early secretion. Traffic 2018; 19:823-839. [DOI: 10.1111/tra.12603] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/26/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Meir Aridor
- Department of Cell Biology; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| |
Collapse
|