1
|
Steinbach A, Kun J, Urbán P, Palkovics T, Polgár B, Schneider G. Molecular Responses of the Eukaryotic Cell Line INT407 on the Internalized Campylobacter jejuni-The Other Side of the Coin. Pathogens 2024; 13:386. [PMID: 38787238 PMCID: PMC11124400 DOI: 10.3390/pathogens13050386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Campylobacter jejuni is a zoonotic bacterium with the capacity to invade the epithelial cells during the pathogenic process. Several bacterial factors have been identified to contribute to this process, but our knowledge is still very limited about the response of the host. To reveal the major routes of this response, a whole-transcriptome analysis (WTA) was performed where gene expressions were compared between the 1st and the 3rd hours of internalization in INT407 epithelial cells. From the 41,769 human genes tested, altogether, 19,060 genes were shown through WTA to be influenced to different extents. The genes and regulation factors of transcription (296/1052; 28%), signal transduction (215/1052; 21%), apoptosis (153/1052; 15%), immune responses (97/1052; 9%), transmembrane transport (64/1052; 6%), cell-cell signaling (32/1052; 3%), cell-cell adhesions (29/1052; 3%), and carbohydrate metabolism (28/1052; 3%) were the most affected biological functions. A striking feature of the gene expression of this stage of the internalization process is the activation of both immune functions and apoptosis, which convincingly outlines that the invaded cell faces a choice between death and survival. The seemingly balanced status quo between the invader and the host is the result of a complex process that also affects genes known to be associated with postinfectious pathological conditions. The upregulation of TLR3 (3.79×) and CD36 (2.73×), two general tumor markers, and SERPINEB9 (11.37×), FNDC1 (7.58×), and TACR2 (8.84×), three factors of tumorigenesis, confirms the wider pathological significance of this bacterium.
Collapse
Affiliation(s)
- Anita Steinbach
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7624 Pécs, Hungary; (A.S.); (T.P.); (B.P.)
| | - József Kun
- Hungarian Centre for Genomics and Bioinformatics, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (J.K.); (P.U.)
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Péter Urbán
- Hungarian Centre for Genomics and Bioinformatics, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (J.K.); (P.U.)
| | - Tamás Palkovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7624 Pécs, Hungary; (A.S.); (T.P.); (B.P.)
| | - Beáta Polgár
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7624 Pécs, Hungary; (A.S.); (T.P.); (B.P.)
| | - György Schneider
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7624 Pécs, Hungary; (A.S.); (T.P.); (B.P.)
| |
Collapse
|
2
|
Sakamuri SSVP, Sure VN, Oruganti L, Wisen W, Chandra PK, Liu N, Fonseca VA, Wang X, Klein J, Katakam PVG. Acute severe hypoglycemia alters mouse brain microvascular proteome. J Cereb Blood Flow Metab 2024; 44:556-572. [PMID: 37944245 PMCID: PMC10981402 DOI: 10.1177/0271678x231212961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/12/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
Hypoglycemia increases the risk related to stroke and neurodegenerative diseases, however, the underlying mechanisms are unclear. For the first time, we studied the effect of a single episode (acute) of severe (ASH) and mild (AMH) hypoglycemia on mouse brain microvascular proteome. After four-hour fasting, insulin was administered (i.p) to lower mean blood glucose in mice and induce ∼30 minutes of ASH (∼30 mg/dL) or AMH (∼75 mg/dL), whereas a similar volume of saline was given to control mice (∼130 mg/dL). Blood glucose was allowed to recover over 60 minutes either spontaneously or by 20% dextrose administration (i.p). Twenty-four hours later, the brain microvessels (BMVs) were isolated, and tandem mass tag (TMT)-based quantitative proteomics was performed using liquid chromatography-mass spectrometry (LC/MS). When compared to control, ASH significantly downregulated 13 proteins (p ≤ 0.05) whereas 23 proteins showed a strong trend toward decrease (p ≤ 0.10). When compared to AMH, ASH significantly induced the expression of 35 proteins with 13 proteins showing an increasing trend. AMH downregulated only 3 proteins. ASH-induced downregulated proteins are involved in actin cytoskeleton maintenance needed for cell shape and migration which are critical for blood-brain barrier maintenance and angiogenesis. In contrast, ASH-induced upregulated proteins are RNA-binding proteins involved in RNA splicing, transport, and stability. Thus, ASH alters BMV proteomics to impair cytoskeletal integrity and RNA processing which are critical for cerebrovascular function.
Collapse
Affiliation(s)
- Siva SVP Sakamuri
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Venkata N Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Lokanatha Oruganti
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - William Wisen
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Ning Liu
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Clinical Neuroscience Research Center, New Orleans, LA, USA
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Vivian A Fonseca
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Xiaoying Wang
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Clinical Neuroscience Research Center, New Orleans, LA, USA
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jennifer Klein
- Department of Biochemistry & Molecular Biology, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Prasad VG Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Clinical Neuroscience Research Center, New Orleans, LA, USA
| |
Collapse
|
3
|
Shen M, Cao S, Long X, Xiao L, Yang L, Zhang P, Li L, Chen F, Lei T, Gao H, Ye F, Bu H. DNAJC12 causes breast cancer chemotherapy resistance by repressing doxorubicin-induced ferroptosis and apoptosis via activation of AKT. Redox Biol 2024; 70:103035. [PMID: 38306757 PMCID: PMC10847378 DOI: 10.1016/j.redox.2024.103035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Chemotherapy is a primary treatment for breast cancer (BC), yet many patients develop resistance over time. This study aims to identify critical factors contributing to chemoresistance and their underlying molecular mechanisms, with a focus on reversing this resistance. METHODS We utilized samples from the Gene Expression Omnibus (GEO) and West China Hospital to identify and validate genes associated with chemoresistance. Functional studies were conducted using MDA-MB-231 and MCF-7 cell lines, involving gain-of-function and loss-of-function approaches. RNA sequencing (RNA-seq) identified potential mechanisms. We examined interactions between DNAJC12, HSP70, and AKT using co-immunoprecipitation (Co-IP) assays and established cell line-derived xenograft (CDX) models for in vivo validations. RESULTS Boruta analysis of four GEO datasets identified DNAJC12 as highly significant. Patients with high DNAJC12 expression showed an 8 % pathological complete response (pCR) rate, compared to 38 % in the low expression group. DNAJC12 inhibited doxorubicin (DOX)-induced cell death through both ferroptosis and apoptosis. Combining apoptosis and ferroptosis inhibitors completely reversed DOX resistance caused by DNAJC12 overexpression. RNA-seq suggested that DNAJC12 overexpression activated the PI3K-AKT pathway. Inhibition of AKT reversed the DOX resistance induced by DNAJC12, including reduced apoptosis and ferroptosis, restoration of cleaved caspase 3, and decreased GPX4 and SLC7A11 levels. Additionally, DNAJC12 was found to increase AKT phosphorylation in an HSP70-dependent manner, and inhibiting HSP70 also reversed the DOX resistance. In vivo studies confirmed that AKT inhibition reversed DNAJC12-induced DOX resistance in the CDX model. CONCLUSION DNAJC12 expression is closely linked to chemoresistance in BC. The DNAJC12-HSP70-AKT signaling axis is crucial in mediating resistance to chemotherapy by suppressing DOX-induced ferroptosis and apoptosis. Our findings suggest that targeting AKT and HSP70 activities may offer new therapeutic strategies to overcome chemoresistance in BC.
Collapse
Affiliation(s)
- Mengjia Shen
- Department of Pathology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China; Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shiyu Cao
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xinyi Long
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lin Xiao
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Libo Yang
- Department of Pathology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China; Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Peichuan Zhang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Fei Chen
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ting Lei
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Hongwei Gao
- Laboratory Medicine Center, Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Feng Ye
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China; Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Melikov A, Novák P. Heat Shock Protein Network: the Mode of Action, the Role in Protein Folding and Human Pathologies. Folia Biol (Praha) 2024; 70:152-165. [PMID: 39644110 DOI: 10.14712/fb2024070030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Protein folding is an extremely complicated process, which has been extensively tackled during the last decades. In vivo, a certain molecular machinery is responsible for assisting the correct folding of proteins and maintaining protein homeostasis: the members of this machinery are the heat shock proteins (HSPs), which belong among molecular chaperones. Mutations in HSPs are associated with several inherited diseases, and members of this group were also proved to be involved in neurodegenerative pathologies (e.g., Alzheimer and Parkinson diseases), cancer, viral infections, and antibiotic resistance of bacteria. Therefore, it is critical to understand the principles of HSP functioning and their exact role in human physiology and pathology. This review attempts to briefly describe the main chaperone families and the interplay between individual chaperones, as well as their general and specific functions in the context of cell physiology and human diseases.
Collapse
Affiliation(s)
- Aleksandr Melikov
- BIOCEV, Faculty of Science, Charles University, Prague, Czech Republic
- BIOCEV, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Novák
- BIOCEV, Faculty of Science, Charles University, Prague, Czech Republic.
- BIOCEV, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
5
|
Collins M, Clark MS, Truebano M. The environmental cellular stress response: the intertidal as a multistressor model. Cell Stress Chaperones 2023; 28:467-475. [PMID: 37129699 PMCID: PMC10469114 DOI: 10.1007/s12192-023-01348-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
The wild poses a multifaceted challenge to the maintenance of cellular function. Therefore, a multistressor approach is essential to predict the cellular mechanisms which promote homeostasis and underpin whole-organism tolerance. The intertidal zone is particularly dynamic, and thus, its inhabitants provide excellent models to assess mechanisms underpinning multistressor tolerance. Here, we critically review our current understanding of the regulation of the cellular stress response (CSR) under multiple abiotic stressors in intertidal organisms and consider to what extent a multistressor approach brings us closer to understanding responses in the wild. The function of the CSR has been well documented in laboratory and field exposures with a view to understanding single-stressor thermal effects. Multistressor studies still remain relatively limited in comparison but have applied three main approaches: (i) laboratory application of multiple stressors in isolation, (ii) multiple stressors applied in combination, and (iii) field-based correlation of multiple stressors against the CSR. The application of multiple stressors in isolation has allowed the identification of putative, shared stress pathways but overlooks non-additive stressor interactions on the CSR. Combined stressor studies are relatively limited in number but already highlight variable effects on the CSR dependent upon stressor type, timing, and magnitude. Field studies have allowed the identification of responsive components of the CSR to various stressors in situ but are correlative, not causative. A combined approach involving laboratory multistressor studies linking the CSR to whole-organism tolerance as well as field studies is required if we are to understand the role of the CSR in the natural environment.
Collapse
Affiliation(s)
- Michael Collins
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - Manuela Truebano
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| |
Collapse
|
6
|
Laura Francés J, Pagiatakis C, Di Mauro V, Climent M. Therapeutic Potential of EVs: Targeting Cardiovascular Diseases. Biomedicines 2023; 11:1907. [PMID: 37509546 PMCID: PMC10377624 DOI: 10.3390/biomedicines11071907] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Due to their different biological functions, extracellular vesicles (EVs) have great potential from a therapeutic point of view. They are released by all cell types, carrying and delivering different kinds of biologically functional cargo. Under pathological events, cells can increase their secretion of EVs and can release different amounts of cargo, thus making EVs great biomarkers as indicators of pathological progression. Moreover, EVs are also known to be able to transport and deliver cargo to different recipient cells, having an important role in cellular communication. Interestingly, EVs have recently been explored as biological alternatives for the delivery of therapeutics, being considered natural drug delivery carriers. Because cardiovascular disorders (CVDs) are the leading cause of death worldwide, in this review, we will discuss the up-to-date knowledge regarding the biophysical properties and biological components of EVs, focusing on myocardial infarction, diabetic cardiomyopathy, and sepsis-induced cardiomyopathy, three very different types of CVDs.
Collapse
Affiliation(s)
| | - Christina Pagiatakis
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Vittoria Di Mauro
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
7
|
Jiao Y, Wai Tong CS, Rainer TH. An appraisal of studies using mouse models to assist the biomarker discovery for sepsis prognosis. Heliyon 2023; 9:e17770. [PMID: 37456011 PMCID: PMC10344760 DOI: 10.1016/j.heliyon.2023.e17770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Clinicians need reliable outcome predictors to improve the prognosis of septic patients. Mouse models are widely used in sepsis research. We aimed to review how mouse models were used to search for novel prognostic biomarkers of sepsis in order to optimize their use for future biomarker discovery. Methods We searched PubMed from 2012 to July 2022 using "((sepsis) AND (mice)) AND ((prognosis) OR (prognostic biomarker))". Results A total of 412 publications were retrieved. We selected those studies in which mouse sepsis was used to demonstrate prognostic potential of biomarker candidates and/or assist the subsequent evaluation in human sepsis for further appraisal. The most frequent models were lipopolysaccharide (LPS) injection and caecal ligation and puncture (CLP) using young male mice. Discovery technologies applied on mice include setting survival and nonsurvivable groups, detecting changes of biomarker levels and measuring physiological parameters during sepsis. None of the biomarkers achieved sufficient clinical performance for clinical use. Conclusions The number of studies and strategies using mouse models to discover prognostic biomarkers of sepsis are limited. Current mouse models need to be further optimized to better conform to human sepsis. Current biomarker platforms do not achieve predictive performance for clinical use.
Collapse
|
8
|
Mouawad N, Capasso G, Ruggeri E, Martinello L, Severin F, Visentin A, Facco M, Trentin L, Frezzato F. Is It Still Possible to Think about HSP70 as a Therapeutic Target in Onco-Hematological Diseases? Biomolecules 2023; 13:biom13040604. [PMID: 37189352 DOI: 10.3390/biom13040604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
The search for molecules to be targeted that are involved in apoptosis resistance/increased survival and pathogenesis of onco-hematological malignancies is ongoing since these diseases are still not completely understood. Over the years, a good candidate has been identified in the Heat Shock Protein of 70kDa (HSP70), a molecule defined as “the most cytoprotective protein ever been described”. HSP70 is induced in response to a wide variety of physiological and environmental insults, allowing cells to survive lethal conditions. This molecular chaperone has been detected and studied in almost all the onco-hematological diseases and is also correlated to poor prognosis and resistance to therapy. In this review, we give an overview of the discoveries that have led us to consider HSP70 as a therapeutic target for mono- or combination-therapies in acute and chronic leukemias, multiple myeloma and different types of lymphomas. In this excursus, we will also consider HSP70 partners, such as its transcription factor HSF1 or its co-chaperones whose druggability could indirectly affect HSP70. Finally, we will try to answer the question asked in the title of this review considering that, despite the effort made by research in this field, HSP70 inhibitors never reached the clinic.
Collapse
|
9
|
Huang Y, Peng C, Tang J, Wang S, Yang F, Wang Q, Zhou L, Yang L, Ju S. The expression of heat shock protein A12B (HSPA12B) in non-Hodgkin's lymphomas. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1462. [PMID: 34734014 PMCID: PMC8506729 DOI: 10.21037/atm-21-4185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/10/2021] [Indexed: 11/18/2022]
Abstract
Background Heat shock protein A12B (HSPA12B) plays a considerable protective role for cells, tissues, and organs against various noxious conditions. However, the expression of HSPA12B in cancer biology remains controversial. This study aimed to investigate the expression of HSPA12B and its role in cell adhesion mediated drug resistance (CAM-DR) of non-Hodgkin’s lymphoma (NHL). Methods In this study, the expression of HSPA12B in NHL was determined by immunohistochemical, and the effect of HSPA12B expression on the prognosis of NHL was analyzed by Kaplan–Meier curves. Then, the transfection technique was used to research the effect of HSPA12B in cell apoptosis. The most important was to study the expression changes of HSPA12B in the adhesion model and the effect of overexpression of HSPA12B on CAM-DR. Results We analyzed the relationship between the expression levels of HSPA12B and clinical parameters in NHL. The expression of HSPA12B was directly related to the different NHL variants. We overexpressed HSPA12B in 2 NHL cell lines and found a subsequent reduction in apoptosis. More specifically, we used an adhesion assay to demonstrate that HSPA12B expression was induced in NHL cells when they adhered to fibronectin (FN) or bone marrow stroma cells (BMSCs). Finally, it was revealed that HSPA12B overexpression enhances CAM-DR. Conclusions Our data suggest that HSPA12B may play a functional role in CAM-DR and is thus a potential novel target for NHL treatment.
Collapse
Affiliation(s)
- Yuejiao Huang
- Department of Medical Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong, China
| | - Chunlei Peng
- Department of Medical Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Jie Tang
- Medical School of Nantong University, Nantong, China
| | - Shitao Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Fan Yang
- Medical School of Nantong University, Nantong, China
| | - Qiufei Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Li Zhou
- Medical School of Nantong University, Nantong, China
| | - Lei Yang
- Department of Medical Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
10
|
Clark MS, Peck LS, Thyrring J. Resilience in Greenland intertidal Mytilus: The hidden stress defense. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144366. [PMID: 33434840 DOI: 10.1016/j.scitotenv.2020.144366] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 05/20/2023]
Abstract
The Arctic is experiencing particularly rapid rates of warming, consequently invasive boreal species are now able to survive the less extreme Arctic winter temperatures. Whilst persistence of intertidal and terrestrial species in the Arctic is primarily determined by their ability to tolerate the freezing winters, air temperatures in the Arctic summer can reach 36 °C in the intertidal, which is beyond the upper thermal limits of many marine species. This is normally lethal for the conspicuous ecosystem engineer Mytilus edulis. Transcriptomic analyses were undertaken on both in situ collected and experimentally warmed animals to understand whether M. edulis is able to tolerate these very high summer temperatures. Surprisingly there was no significant enrichment for Gene Ontology terms (GO) when comparing the inner and outer fjord intertidal animals with outer fjord subtidal (control) animals, representing animals collected at 27 °C, 19 °C and 3 °C respectively. This lack of differentiation indicated a wide acclimation ability in this species. Conversely, significant enrichment for processes such as signal transduction, cytoskeleton and cellular protein modification was identified in the expression profiles of the 22 °C and 32 °C experimentally heated animals. This difference in gene expression between in situ collected and experimentally warmed animals was almost certainly due to the former being acclimated to a fluctuating, but predictable, temperature regime, which has increased their thermal tolerances. Interestingly, there was no evidence for enrichment of the classical cellular stress response in any of the animals sampled. Identification of a massive expansion of the HSPA12 heat shock protein 70 kDa gene family presented the possibility of these genes acting as intertidal regulators underpinning thermal resilience. This expansion has resulted in a modified cellular stress response, as an evolutionary adaptation to the rigour of the invasive intertidal life style. Thus, M. edulis appear to have considerable capacity to withstand the current rates of Arctic warming, and the very large attendant thermal variation.
Collapse
Affiliation(s)
- Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK.
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Jakob Thyrring
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK; Department of Zoology, University of British Columbia, 4200 - 6270 University Blvd., V6T 1Z4 Vancouver, British Columbia, Canada; Department of Bioscience - Marine Ecology, Aarhus University, Vejlsøvej 25, Silkeborg 8600, Denmark
| |
Collapse
|
11
|
Fan M, Yang K, Wang X, Wang Y, Tu F, Ha T, Liu L, Williams DL, Li C. Endothelial cell HSPA12B and yes-associated protein cooperatively regulate angiogenesis following myocardial infarction. JCI Insight 2020; 5:139640. [PMID: 32790647 PMCID: PMC7526558 DOI: 10.1172/jci.insight.139640] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is essential for cardiac functional recovery after myocardial infarction (MI). HSPA12B is predominately expressed in endothelial cells and required for angiogenesis. Yes-associated protein (YAP) plays an important role in tumor angiogenesis. This study investigated the cooperative role of HSPA12B and YAP in angiogenesis after MI. Silencing of either HSPA12B or YAP impaired hypoxia-promoted endothelial cell proliferation and angiogenesis. Deficiency of HSPA12B suppressed YAP expression and nuclear translocation after hypoxia. Knockdown of YAP attenuated hypoxia-stimulated HSPA12B nuclear translocation and abrogated HSPA12B-promoted endothelial cell angiogenesis. Mechanistically, hypoxia induced an interaction between endothelial HSPA12B and YAP. ChIP assay showed that HSPA12B is a target gene of YAP/transcriptional enhanced associated domain 4 (TEAD4) and a coactivator in YAP-associated angiogenesis. In vivo studies using the MI model showed that endothelial cell-specific deficiency of HSPA12B (eHspa12b-/-) or YAP (eYap-/-) impaired angiogenesis and exacerbated cardiac dysfunction compared with WT mice. MI increased YAP expression and nuclear translocation in WT hearts but not eHspa12b-/- hearts. HSPA12B expression and nuclear translocation were upregulated in WT MI hearts but not eYap-/- MI myocardium. Our data demonstrate that endothelial HSPA12B is a target and coactivator for YAP/TEAD4 and cooperates with YAP to regulate endothelial angiogenesis after MI.
Collapse
Affiliation(s)
- Min Fan
- Department of Surgery and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, Tennessee, USA
| | - Kun Yang
- Department of Surgery and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, Tennessee, USA
| | - Xiaohui Wang
- Department of Surgery and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, Tennessee, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | | | - Fei Tu
- Department of Surgery and
| | - Tuanzhu Ha
- Department of Surgery and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, Tennessee, USA
| | - Li Liu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - David L. Williams
- Department of Surgery and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, Tennessee, USA
| | - Chuanfu Li
- Department of Surgery and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, Tennessee, USA
| |
Collapse
|
12
|
Ni Y, Wang J, Wang Z, Zhang X, Cao X, Ding Z. Alpha-lipoic acid inhibits proliferation and migration of human vascular endothelial cells through downregulating HSPA12B/VEGF signaling axis. Cell Stress Chaperones 2020; 25:455-466. [PMID: 32219685 PMCID: PMC7192994 DOI: 10.1007/s12192-020-01086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 11/30/2022] Open
Abstract
Endothelial cells play essential roles in angiogenesis. Heat shock protein A12B (HSPA12B), a novel member of the multigene Hsp70 family, expresses specifically in endothelial cells. Alpha-lipoic acid (LA) has been used for the treatment of human diabetic complications for more than 20 years. However, little is known whether LA impacts endothelial proliferation and migration. To address these questions, primary human umbilical vein endothelial cells (HUVECs) were isolated and treated with LA. We found that LA reduced viable HUVECs but not caused LDH leakage and nuclear condensation, suggesting an inhibitory effect of LA on HUVEC proliferation. We also noticed that LA impeded wound closure of HUVEC monolayers. The expressions of C-Myc, VEGF, and eNOS and phosphorylation of focal adhesion kinase were reduced by LA. Moreover, LA decreased the expression of heat shock protein A12B (HSPA12B). Notably, overexpression of HSPA12B in endothelial cells prevented the LA-induced loss of VEGF. More importantly, HSPA12B overexpression attenuated the LA-induced inhibition of endothelial proliferation and migration. Collectively, the results demonstrated that LA inhibited proliferative and migratory abilities in human vascular endothelial cells through the downregulation of the HSPA12B/VEGF signaling axis. The data suggest that besides the treatment in diabetic complications, LA might represent a viable therapeutic potential for human diseases that involve high angiogenic activities such as cancers.
Collapse
Affiliation(s)
- Yan Ni
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Juan Wang
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Zhuyao Wang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Xiaojin Zhang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Xiaofei Cao
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Zhengnian Ding
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
13
|
Zhang X, Wang X, Fan M, Tu F, Yang K, Ha T, Liu L, Kalbfleisch J, Williams D, Li C. Endothelial HSPA12B Exerts Protection Against Sepsis-Induced Severe Cardiomyopathy via Suppression of Adhesion Molecule Expression by miR-126. Front Immunol 2020; 11:566. [PMID: 32411123 PMCID: PMC7201039 DOI: 10.3389/fimmu.2020.00566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/12/2020] [Indexed: 11/21/2022] Open
Abstract
Heat shock protein A12B (HSPA12B) is predominately expressed in endothelial cells (ECs) and has been reported to protect against cardiac dysfunction from endotoxemia or myocardial infarction. This study investigated the mechanisms by which endothelial HSPA12B protects polymicrobial sepsis–induced cardiomyopathy. Wild-type (WT) and endothelial HSPA12B knockout (HSPA12B–/–) mice were subjected to polymicrobial sepsis induced by cecal ligation and puncture (CLP). Cecal ligation and puncture sepsis accelerated mortality and caused severe cardiac dysfunction in HSPA12B–/– mice compared with WT septic mice. The levels of adhesion molecules and the infiltrated immune cells in the myocardium of HSPA12B–/– septic mice were markedly greater than in WT septic mice. The levels of microRNA-126 (miR-126), which targets adhesion molecules, in serum exosomes from HSPA12B–/– septic mice were significantly lower than in WT septic mice. Transfection of ECs with adenovirus expressing HSPA12B significantly increased miR-126 levels. Increased miR-126 levels in ECs prevented LPS-stimulated expression of adhesion molecules. In vivo delivery of miR-126 carried by exosomes into the myocardium of HSPA12B–/– mice significantly attenuated CLP sepsis increased levels of adhesion molecules, and improved CLP sepsis–induced cardiac dysfunction. The data suggest that HSPA12B protects against sepsis-induced severe cardiomyopathy via regulating miR-126 expression which targets adhesion molecules, thus decreasing the accumulation of immune cells in the myocardium.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Xiaohui Wang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Min Fan
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Fei Tu
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Kun Yang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Tuanzhu Ha
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Li Liu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - John Kalbfleisch
- The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Biometry and Medical Computing, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - David Williams
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Chuanfu Li
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
14
|
Gasser A, Chen YW, Audebrand A, Daglayan A, Charavin M, Escoubet B, Karpov P, Tetko I, Chan MWY, Cardinale D, Désaubry L, Nebigil CG. Prokineticin Receptor-1 Signaling Inhibits Dose- and Time-Dependent Anthracycline-Induced Cardiovascular Toxicity Via Myocardial and Vascular Protection. JACC: CARDIOONCOLOGY 2019; 1:84-102. [PMID: 34396166 PMCID: PMC8352030 DOI: 10.1016/j.jaccao.2019.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023]
Abstract
Objectives This study investigated how different concentrations of doxorubicin (DOX) can affect the function of cardiac cells. This study also examined whether activation of prokineticin receptor (PKR)-1 by a nonpeptide agonist, IS20, prevents DOX-induced cardiovascular toxicity in mouse models. Background High prevalence of heart failure during and following cancer treatments remains a subject of intense research and therapeutic interest. Methods This study used cultured cardiomyocytes, endothelial cells (ECs), and epicardium-derived progenitor cells (EDPCs) for in vitro assays, tumor-bearing models, and acute and chronic toxicity mouse models for in vivo assays. Results Brief exposure to cardiomyocytes with high-dose DOX increased the accumulation of reactive oxygen species (ROS) by inhibiting a detoxification mechanism via stabilization of cytoplasmic nuclear factor, erythroid 2. Prolonged exposure to medium-dose DOX induced apoptosis in cardiomyocytes, ECs, and EDPCs. However, low-dose DOX promoted functional defects without inducing apoptosis in EDPCs and ECs. IS20 alleviated detrimental effects of DOX in cardiac cells by activating the serin threonin protein kinase B (Akt) or mitogen-activated protein kinase pathways. Genetic or pharmacological inactivation of PKR1 subdues these effects of IS20. In a chronic mouse model of DOX cardiotoxicity, IS20 normalized an elevated serum marker of cardiotoxicity and vascular and EDPC deficits, attenuated apoptosis and fibrosis, and improved the survival rate and cardiac function. IS20 did not interfere with the cytotoxicity or antitumor effects of DOX in breast cancer lines or in a mouse model of breast cancer, but it did attenuate the decreases in left ventricular diastolic volume induced by acute DOX treatment. Conclusions This study identified the molecular and cellular signature of dose-dependent, DOX-mediated cardiotoxicity and provided evidence that PKR-1 is a promising target to combat cardiotoxicity of cancer treatments.
Collapse
Key Words
- DMSO, dimethyl sulfoxide
- EC, endothelial cell
- EDPC, epicardium-derived progenitor cell
- EF, ejection fraction
- FS, fractional shortening
- GPCR, G-protein–coupled receptor
- HAEC, human aortic endothelial cell
- HF, heart failure
- HFrEF, heart failure with reduced ejection fraction
- MAPK, mitogen-activated protein kinase
- NRF2, nuclear factor, erythroid 2 like 2 (also known as NFE2L2)
- PECAM, platelet and endothelial cell adhesion molecule
- PKR1, prokineticin receptor-1 (also known as PROKR1)
- PKR1-KO, prokineticin receptor 1 knockout mice
- PROK1, prokineticin 1
- PROK2, prokineticin 2
- TUNEL, terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling
- breast cancer
- doxorubicin
- endothelial dysfunction
- epicardial progenitor cells
- heart failure
Collapse
Affiliation(s)
- Adeline Gasser
- Laboratory of Cardio-Oncology and Medicinal Chemistry, CNRS (FRE2033), Illkirch, France
| | - Yu-Wen Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Anais Audebrand
- Laboratory of Cardio-Oncology and Medicinal Chemistry, CNRS (FRE2033), Illkirch, France
| | - Ayhan Daglayan
- Laboratory of Cardio-Oncology and Medicinal Chemistry, CNRS (FRE2033), Illkirch, France
| | - Marine Charavin
- Laboratory of Cardio-Oncology and Medicinal Chemistry, CNRS (FRE2033), Illkirch, France
| | - Brigitte Escoubet
- FRIM UMS37, Hospital Bichat assistance public-Paris Hospital, University of Paris Diderot, PRES Paris Cité, DHU FIRE, Inserm U1138, Paris, France
| | - Pavel Karpov
- Institute of Structural Biology, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Igor Tetko
- Institute of Structural Biology, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Michael W Y Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Daniela Cardinale
- Cardioncology Unit, European Institute of Oncology, I.R.C.C.S., Milan Italy
| | - Laurent Désaubry
- Laboratory of Cardio-Oncology and Medicinal Chemistry, CNRS (FRE2033), Illkirch, France
| | - Canan G Nebigil
- Laboratory of Cardio-Oncology and Medicinal Chemistry, CNRS (FRE2033), Illkirch, France
| |
Collapse
|
15
|
Mechanisms of Antiulcer Effect of an Active Ingredient Group of Modified Xiao Chaihu Decoction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5498698. [PMID: 29849711 PMCID: PMC5932449 DOI: 10.1155/2018/5498698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 02/26/2018] [Accepted: 03/12/2018] [Indexed: 01/30/2023]
Abstract
The present study aimed to investigate the antiulcer activities and mechanisms of action of an active ingredient group (AIG) of Modified Xiao Chaihu Decoction (MXCD). The gastroprotective action of the AIG was studied in ethanol-induced, pylorus ligature-induced, and acetic acid-induced in vivo gastric ulcer models. The enzyme-linked immunoadsorbent assay (tumor necrosis factor-α (TNF-α), prostaglandin E2 (PGE2), and epidermal growth factor (EGF)), nitrate reductase assay (nitric oxide (NO)), western blot analysis (Bax, Bcl-2, cleaved-caspase-3, and cleaved-PARP (poly (ADP-Ribose) polymerase)), histological analysis (HE), and immunohistochemical analysis (HSP-70, p-AKT, and PCNA) were used to evaluate the anti-inflammatory, antiapoptotic, and healing properties of AIG. Numerous mechanisms are involved in the antiulcer activity of AIG, including the increase of PGE2, NO, and EGF content and a reduction in TNF-α levels. The upregulation of HSP-70, p-AKT, and PCNA seems to be directly linked to the healing effect of AIG. Bax, Bcl-2, cleaved-caspase-3, and cleaved-PARP also play a key role in this process. The AIG exerted gastroprotective effects by reducing antisecretory, anti-inflammatory, and antiapoptotic mechanisms. In addition, it promotes cell proliferation. Therefore, activation of the PI3K/AKT signaling pathway may play an important role in cell proliferation.
Collapse
|
16
|
Zhao Y, Liu C, Liu J, Kong Q, Mao Y, Cheng H, Li N, Zhang X, Li C, Li Y, Liu L, Ding Z. HSPA12B promotes functional recovery after ischaemic stroke through an eNOS-dependent mechanism. J Cell Mol Med 2018; 22:2252-2262. [PMID: 29411514 PMCID: PMC5867065 DOI: 10.1111/jcmm.13507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/23/2017] [Indexed: 02/01/2023] Open
Abstract
Stroke is the leading cause of disability worldwide. HSPA12B, a heat-shock protein recently identified expression specifically in endothelial cells, is able to promote angiogenesis. Here, we have investigated its effects on functional recovery at chronic phase of ischaemic stroke. Ischaemic stroke was induced by 60 min. of middle cerebral artery occlusion in transgenic mice with overexpression of HSPA12B (HSPA12B Tg) and wild-type littermates (WT). HSPA12B Tg mice demonstrated a significant higher survival rate than WT mice within 28 days post-stroke. Significant improved neurological functions, increased spontaneous locomotor activity and decreased anxiety were detected inHSPA12B Tg mice compared with WT controls within 21 days post-stroke. Stroke-induced hippocampal degeneration was attenuated in HSPA12B Tg mice examined at day 28 post-stroke. Interestingly, HSPA12B Tg mice showed enhanced peri-infarct angiogenesis (examined 28 days post-stroke) and hippocampal neurogenesis (examined 7 days post-stroke), respectively, compared to WT mice. The stroke-induced eNOS phosphorylation and TGF-β1 expression were augmented in HSPA12B Tg mice. However, administration with eNOS inhibitor L-NAME diminished the HSPA12B-induced protection in neurological functional recovery and mice survival post-stroke. The data suggest that HSPA12B promoted functional recovery and survival after stroke in an eNOS-dependent mechanism. Targeting HSPA12B expression may have a therapeutic potential for the stroke-evoked functional disability and mortality.
Collapse
Affiliation(s)
- Yanlin Zhao
- Department of GeriatricsJiangsu Provincial Key Laboratory of GeriatricsThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Chang Liu
- Departments of PharmacologyChina Pharmaceutical UniversityNanjingChina
| | - Jiali Liu
- Department of GeriatricsJiangsu Provincial Key Laboratory of GeriatricsThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Qiuyue Kong
- Departments of AnesthesiologyThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Yu Mao
- Department of GeriatricsJiangsu Provincial Key Laboratory of GeriatricsThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Hao Cheng
- Departments of AnesthesiologyThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Nan Li
- Departments of AnesthesiologyThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Xioajin Zhang
- Department of GeriatricsJiangsu Provincial Key Laboratory of GeriatricsThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Chuanfu Li
- Departments of SurgeryEast Tennessee State UniversityJohnson CityTNUSA
| | - Yuehua Li
- Department of PathophysiologyNanjing Medical UniversityNanjingChina
- Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjingChina
| | - Li Liu
- Department of GeriatricsJiangsu Provincial Key Laboratory of GeriatricsThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
- Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjingChina
| | - Zhengnian Ding
- Departments of AnesthesiologyThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| |
Collapse
|
17
|
Abstract
Heat shock protein A12A (HSPA12A) is a newly discovered member of the Hsp70 family. The biological characteristics and functional roles of HSPA12A are poorly understood. This study investigated the effects of HSPA12A on ischaemic stroke in mice. Ischaemic stroke was induced by left middle cerebral artery occlusion for 1 h followed by blood reperfusion. We observed that HSPA12A was highly expressed in brain neurons, and neuronal HSPA12A expression was downregulated by ischaemic stroke and stroke-associated risk factors (aging, obesity and hyperglycaemia). To investigate the functional requirement of HSPA12A in protecting ischaemic brain injury, HSPA12A knockout mice (Hspa12a-/-) were generated. Hspa12a-/- mice exhibited an enlarged infarct volume and aggravated neurological deficits compared to their wild-type (WT) littermates after stroke. These aggravations in Hspa12a-/- mice were accompanied by more apoptosis and severer hippocampal morphological abnormalities in ischaemic hemispheres. Long-term examination revealed impaired motor function recovery and neurogenesis in stroke-affected Hspa12a-/- mice compared to stroke-affected WT controls. Significant reduced activation of GSK-3β/mTOR/p70S6K signalling was also observed in ischaemic hemispheres of Hspa12a-/- mice compared to WT controls. Administration with lithium (non-selective GSK-3β inhibitor) activated GSK-3β/mTOR/p70S6K signalling in stroke-affected Hspa12a-/- mice. Notably, lithium administration attenuated the HSPA12A deficiency-induced aggravation in infarct size, neurological deficits and neuronal death in Hspa12a-/- mice after stroke. Altogether, the findings suggest that HSPA12A expression encodes a critical novel prosurvival pathway during ischaemic stroke. We identified HSPA12A as a novel neuroprotective target for stroke patients.
Collapse
|
18
|
Abstract
Heat shock protein 70 (Hsp70) is the most ubiquitous stress-inducible chaperone. It accumulates in the cells in response to a wide variety of physiological and environmental insults including anticancer chemotherapy, thus allowing the cell to survive to lethal conditions. Intracellular Hsp70 is viewed as a cytoprotective protein. Indeed, this protein can inhibit key effectors of the apoptotic and autophagy machineries. In cancer cells, the expression of Hsp70 is abnormally high, and Hsp70 may participate in oncogenesis and in resistance to chemotherapy. In rodent models, Hsp70 overexpression increases tumor growth and metastatic potential. Depletion or inhibition of Hsp70 frequently reduces the size of the tumors and can even cause their complete involution. However, HSP70 is also found in the extra-cellular space where it may signal via membrane receptors or endosomes to alter gene transcription and cellular function. Overall, Hsp70 extracellular function is believed to be immnunogenic and the term chaperokine to define the extracellular chaperones such as Hsp70 has been advanced. In this chapter the knowledge to date, as well as some emerging paradigms about the intra- and extra-cellular functions of Hsp70, are presented. The strategies targeting Hsp70 that are being developed in cancer therapy will also be discussed.
Collapse
Affiliation(s)
- Christophe Boudesco
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
- INSERM, LNC UMR1231, Dijon, France
- Equipe Labellisée par la Ligue Nationale Contre le Cancer, INSERM, LNC UMR1231, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne Franche-Comté, Dijon, France
| | - Sebastien Cause
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
- INSERM, LNC UMR1231, Dijon, France
- Equipe Labellisée par la Ligue Nationale Contre le Cancer, INSERM, LNC UMR1231, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne Franche-Comté, Dijon, France
| | - Gaëtan Jego
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.
- INSERM, LNC UMR1231, Dijon, France.
- Equipe Labellisée par la Ligue Nationale Contre le Cancer, INSERM, LNC UMR1231, Dijon, France.
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne Franche-Comté, Dijon, France.
| | - Carmen Garrido
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.
- INSERM, LNC UMR1231, Dijon, France.
- Equipe Labellisée par la Ligue Nationale Contre le Cancer, INSERM, LNC UMR1231, Dijon, France.
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
19
|
Selvaraju V, Suresh SC, Thirunavukkarasu M, Mannu J, Foye JLC, Mathur PP, Palesty JA, Sanchez JA, McFadden DW, Maulik N. Regulation of A-Kinase-Anchoring Protein 12 by Heat Shock Protein A12B to Prevent Ventricular Dysfunction Following Acute Myocardial Infarction in Diabetic Rats. J Cardiovasc Transl Res 2017; 10:209-220. [PMID: 28281242 DOI: 10.1007/s12265-017-9734-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 01/29/2017] [Indexed: 10/20/2022]
Abstract
We examined the effects of overexpressing HSPA12B on angiogenesis and myocardial function by intramyocardial administration of adenovirus encoding HSPA12B (Ad. HSPA12B) in a streptozotocin-induced diabetic rat subjected to myocardial infarction. Rats were divided randomly into six groups: control sham (CS) + Ad.LacZ, control myocardial infarction (CMI) + Ad.LacZ, control MI + Ad.HSPA12B, diabetic sham (DS) + Ad.LacZ, diabetic MI + Ad.LacZ and diabetic MI + Ad.HSPA12B. Following MI or sham surgery, the respective groups received either Ad.LacZ or Ad.HSPA12B via intramyocardial injections. We observed increased capillary and arteriolar density along with reduced fibrosis and preserved heart functions in DMI-AdHSPA12B compared to DMI-AdLacZ group. Western blot analysis demonstrated enhanced HSPA12B, vascular endothelial growth factor (VEGF), thioredoxin-1 (Trx-1) expression along with decreased expression of thioredoxin interacting protein (TXNIP) and A kinase anchoring protein 12 (AKAP12) in the DMI-AdHSPA12B compared to DMI-AdLacZ group. Our findings reveal that HSPA12B overexpression interacts with AKAP12 and downregulate TXNIP in diabetic rats following acute MI.
Collapse
Affiliation(s)
- Vaithinathan Selvaraju
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington, CT, USA
| | - Sumanth C Suresh
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington, CT, USA
| | - Mahesh Thirunavukkarasu
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington, CT, USA
| | - Jayakanthan Mannu
- Centre for Bioinformatics, Pondicherry University, Pondicherry, India
| | | | - Premendu P Mathur
- Centre for Bioinformatics, Pondicherry University, Pondicherry, India.,KIIT University, Bhubaneshwar, India
| | | | - Juan A Sanchez
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington, CT, USA
| | - David W McFadden
- Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington, CT, USA
| | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington, CT, USA.
| |
Collapse
|
20
|
Kong Q, Dai L, Wang Y, Zhang X, Li C, Jiang S, Li Y, Ding Z, Liu L. HSPA12B Attenuated Acute Myocardial Ischemia/reperfusion Injury via Maintaining Endothelial Integrity in a PI3K/Akt/mTOR-dependent Mechanism. Sci Rep 2016; 6:33636. [PMID: 27644317 PMCID: PMC5028890 DOI: 10.1038/srep33636] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/31/2016] [Indexed: 12/22/2022] Open
Abstract
Endothelial damage is a critical mediator of myocardial ischemia/reperfusion (I/R) injury. HSPA12B is an endothelial-cell-specifically expressed heat shock protein. However, the roles of HSPA12B in acute myocardial I/R injury is unknown. Here we reported that myocardial I/R upregulated HSPA12B expression in ventricular tissues, and endothelial overexpression of HSPA12B in transgenic mice (Tg) limited infarct size, attenuated cardiac dysfunction and improved cardiomyocyte survival compared with their wild type littermates. These improvements were accompanied with the diminished myocardial no-reflow phenomenon, decreased microvascular leakage, and better maintained endothelial tight junctions. The I/R-evoked neutrophil infiltration was also suppressed in Tg hearts compared with its wild type (WT) littermates. Moreover, Tg hearts exhibited the enhanced activation of PI3K/Akt//mTOR signaling following I/R challenge. However, pharmacological inhibition of PI3K abolished the HSPA12B-induced cardioprotection against myocardial I/R injury. The data demonstrate for the first time that the endothelial HSPA12B protected hearts against myocardial I/R injury. This cardioprotective action of HSPA12B was mediated, at least in part, by improving endothelial integrity in a PI3K/Akt/mTOR-dependent mechanism. Our study suggests that targeting endothelial HSPA12B could be an alternative approach for the management of patients with myocardial I/R injury.
Collapse
Affiliation(s)
- Qiuyue Kong
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Leyang Dai
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Yana Wang
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Xiaojin Zhang
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Chuanfu Li
- Departments of Surgery, East Tennessee State University, Johnson City, TN37614, USA
| | - Surong Jiang
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Yuehua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing 210029, China
| | - Zhengnian Ding
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Li Liu
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
21
|
Butler LM, Hallström BM, Fagerberg L, Pontén F, Uhlén M, Renné T, Odeberg J. Analysis of Body-wide Unfractionated Tissue Data to Identify a Core Human Endothelial Transcriptome. Cell Syst 2016; 3:287-301.e3. [PMID: 27641958 DOI: 10.1016/j.cels.2016.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/23/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022]
Abstract
Endothelial cells line blood vessels and regulate hemostasis, inflammation, and blood pressure. Proteins critical for these specialized functions tend to be predominantly expressed in endothelial cells across vascular beds. Here, we present a systems approach to identify a panel of human endothelial-enriched genes using global, body-wide transcriptomics data from 124 tissue samples from 32 organs. We identified known and unknown endothelial-enriched gene transcripts and used antibody-based profiling to confirm expression across vascular beds. The majority of identified transcripts could be detected in cultured endothelial cells from various vascular beds, and we observed maintenance of relative expression in early passage cells. In summary, we describe a widely applicable method to determine cell-type-specific transcriptome profiles in a whole-organism context, based on differential abundance across tissues. We identify potential vascular drug targets or endothelial biomarkers and highlight candidates for functional studies to increase understanding of the endothelium in health and disease.
Collapse
Affiliation(s)
- Lynn Marie Butler
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Clinical Chemistry and Blood Coagulation, Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden.
| | - Björn Mikael Hallström
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden
| | - Linn Fagerberg
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden
| | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden
| | - Thomas Renné
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Clinical Chemistry and Blood Coagulation, Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Jacob Odeberg
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden; Coagulation Unit, Centre for Hematology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
22
|
Overexpression of HSPA1A enhances the osteogenic differentiation of bone marrow mesenchymal stem cells via activation of the Wnt/β-catenin signaling pathway. Sci Rep 2016; 6:27622. [PMID: 27279016 PMCID: PMC4899801 DOI: 10.1038/srep27622] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/23/2016] [Indexed: 12/04/2022] Open
Abstract
HSPA1A, which encodes cognate heat shock protein 70, plays important roles in various cellular metabolic pathways. To investigate its effects on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), its expression level was compared between undifferentiated and differentiated BMSCs. Rat HSPA1A overexpression in BMSCs increased osteoblast-specific gene expression, alkaline phosphatase activity, and mineral deposition in vitro. Moreover, it upregulated β-catenin and downregulated DKK1 and SOST. The enhanced osteogenesis due to HSPA1A overexpression was partly rescued by a Wnt/β-catenin inhibitor. Additionally, using a rat tibial fracture model, a sheet of HSPA1A-overexpressing BMSCs improved bone fracture healing, as determined by imaging and histological analysis. Taken together, these findings suggest that HSPA1A overexpression enhances osteogenic differentiation of BMSCs, partly through Wnt/β-catenin.
Collapse
|
23
|
Impact of Heat Shock Protein A 12B Overexpression on Spinal Astrocyte Survival Against Oxygen-Glucose-Serum Deprivation/Restoration in Primary Cultured Astrocytes. J Mol Neurosci 2016; 59:511-20. [PMID: 27179807 DOI: 10.1007/s12031-016-0768-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/21/2015] [Indexed: 12/12/2022]
Abstract
Heat shock protein A 12B (HSPA12B) is a newly discovered member of the heat shock protein 70 family. Preclinical evidence indicates that HSPA12B helps protect the brain from ischemic injury, although its specific function remains unclear. The aim of this study is to investigate whether HSPA12B overexpression can protect astrocytes from oxygen-glucose-serum deprivation/restoration (OGD/R) injury. We analyzed the effects of HSPA12B overexpression on spinal cord ischemia-reperfusion injury and spinal astrocyte survival. After ischemia-reperfusion injury, we found that HSPA12B overexpression decreased spinal cord water content and infarct volume. MTT assay showed that HSPA12B overexpression increased astrocyte survival after OGD/R treatment. Flow cytometry results showed a marked inhibition of OGD/R-induced astrocyte apoptosis. Western blot assay showed that HSPA12B overexpression significantly increased regulatory protein B-cell lymphocyte 2 (Bcl-2) levels, whereas it decreased expression of the Bax protein, which forms a heterodimer with Bcl-2. Measurements of the level of activation of caspase-3 by Caspase-Glo®3/7 Assay kit showed that HSPA12B overexpression markedly inhibited caspase-3 activation. Notably, we demonstrated that the effects of HSPA12B on spinal astrocyte survival depended on activation of the PI3K/Akt signal pathway. These findings indicate that HSPA12B protects against spinal cord ischemia-reperfusion injury and may represent a potential treatment target.
Collapse
|
24
|
Radons J. The human HSP70 family of chaperones: where do we stand? Cell Stress Chaperones 2016; 21:379-404. [PMID: 26865365 PMCID: PMC4837186 DOI: 10.1007/s12192-016-0676-6] [Citation(s) in RCA: 391] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 01/23/2023] Open
Abstract
The 70-kDa heat shock protein (HSP70) family of molecular chaperones represents one of the most ubiquitous classes of chaperones and is highly conserved in all organisms. Members of the HSP70 family control all aspects of cellular proteostasis such as nascent protein chain folding, protein import into organelles, recovering of proteins from aggregation, and assembly of multi-protein complexes. These chaperones augment organismal survival and longevity in the face of proteotoxic stress by enhancing cell viability and facilitating protein damage repair. Extracellular HSP70s have a number of cytoprotective and immunomodulatory functions, the latter either in the context of facilitating the cross-presentation of immunogenic peptides via major histocompatibility complex (MHC) antigens or in the context of acting as "chaperokines" or stimulators of innate immune responses. Studies have linked the expression of HSP70s to several types of carcinoma, with Hsp70 expression being associated with therapeutic resistance, metastasis, and poor clinical outcome. In malignantly transformed cells, HSP70s protect cells from the proteotoxic stress associated with abnormally rapid proliferation, suppress cellular senescence, and confer resistance to stress-induced apoptosis including protection against cytostatic drugs and radiation therapy. All of the cellular activities of HSP70s depend on their adenosine-5'-triphosphate (ATP)-regulated ability to interact with exposed hydrophobic surfaces of proteins. ATP hydrolysis and adenosine diphosphate (ADP)/ATP exchange are key events for substrate binding and Hsp70 release during folding of nascent polypeptides. Several proteins that bind to distinct subdomains of Hsp70 and consequently modulate the activity of the chaperone have been identified as HSP70 co-chaperones. This review focuses on the regulation, function, and relevance of the molecular Hsp70 chaperone machinery to disease and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Jürgen Radons
- Scientific Consulting International, Mühldorfer Str. 64, 84503, Altötting, Germany.
| |
Collapse
|
25
|
Kumar S, Stokes J, Singh UP, Scissum Gunn K, Acharya A, Manne U, Mishra M. Targeting Hsp70: A possible therapy for cancer. Cancer Lett 2016; 374:156-166. [PMID: 26898980 PMCID: PMC5553548 DOI: 10.1016/j.canlet.2016.01.056] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/28/2016] [Accepted: 01/31/2016] [Indexed: 01/13/2023]
Abstract
In all organisms, heat-shock proteins (HSPs) provide an ancient defense system. These proteins act as molecular chaperones by assisting proper folding and refolding of misfolded proteins and aid in the elimination of old and damaged cells. HSPs include Hsp100, Hsp90, Hsp70, Hsp40, and small HSPs. Through its substrate-binding domains, Hsp70 interacts with wide spectrum of molecules, ranging from unfolded to natively folded and aggregated proteins, and provides cytoprotective role against various cellular stresses. Under pathophysiological conditions, the high expression of Hsp70 allows cells to survive with lethal injuries. Increased Hsp70, by interacting at several points on apoptotic signaling pathways, leads to inhibition of apoptosis. Elevated expression of Hsp70 in cancer cells may be responsible for tumorigenesis and for tumor progression by providing resistance to chemotherapy. In contrast, inhibition or knockdown of Hsp70 reduces the size of tumors and can cause their complete regression. Moreover, extracellular Hsp70 acts as an immunogen that participates in cross presentation of MHC-I molecules. The goals of this review are to examine the roles of Hsp70 in cancer and to present strategies targeting Hsp70 in the development of cancer therapeutics.
Collapse
Affiliation(s)
- Sanjay Kumar
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36101, USA
| | - James Stokes
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36101, USA
| | - Udai P Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Karyn Scissum Gunn
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36101, USA
| | - Arbind Acharya
- Centre of Advance Study in Zoology, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Manoj Mishra
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36101, USA.
| |
Collapse
|
26
|
Ma H, Lu T, Zhang X, Li C, Xiong J, Huang L, Liu P, Li Y, Liu L, Ding Z. HSPA12B: a novel facilitator of lung tumor growth. Oncotarget 2016; 6:9924-36. [PMID: 25909170 PMCID: PMC4496407 DOI: 10.18632/oncotarget.3533] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/17/2015] [Indexed: 12/21/2022] Open
Abstract
Lung tumor progression is regulated by proangiogenic factors. Heat shock protein A12B (HSPA12B) is a recently identified regulator of expression of proangiogenic factors. However, whether HSPA12B plays a role in lung tumor growth is unknown. To address this question, transgenic mice overexpressing HSPA12B (Tg) and wild-type littermates (WT) were implanted with Lewis lung cancer cells to induce lung tumorigenesis. Tg mice showed significantly higher number and bigger size of tumors than WT mice. Tg tumors exhibited increased angiogenesis and proliferation while reduced apoptosis compared with WT tumors. Interestingly, a significantly enhanced upregulation of Cox-2 was detected in Tg tumors than in WT tumors. Also, Tg tumors demonstrated upregulation of VEGF and angiopoietin-1, downregulation of AKAP12, and increased eNOS phosphorylation compared with WT tumors. Celecoxib, a selective Cox-2 inhibitor, suppressed the HSPA12B-induced increase in lung tumor burden. Moreover, celecoxib decreased angiogenesis and proliferation whereas increased apoptosis in Tg tumors. Additionally, celecoxib reduced angiopoietin-1 expression and eNOS phosphorylation but increased AKAP12 levels in Tg tumors. Our results indicate that HSPA12B stimulates lung tumor growth via a Cox-2-dependent mechanism. The present study identified HSPA12B as a novel facilitator of lung tumor growth and a potential therapeutic target for the treatment of lung cancer.
Collapse
Affiliation(s)
- He Ma
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Ting Lu
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xiaojin Zhang
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Chuanfu Li
- Department of Surgery, East Tennessee State University, Johnson City, TN, USA
| | - Jingwei Xiong
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Lei Huang
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Ping Liu
- Department of Oncology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yuehua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Li Liu
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Zhengnian Ding
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Bellipanni G, Cappello F, Scalia F, Conway de Macario E, Macario AJ, Giordano A. Zebrafish as a Model for the Study of Chaperonopathies. J Cell Physiol 2016; 231:2107-14. [DOI: 10.1002/jcp.25319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Gianfranco Bellipanni
- Sbarro Institute for Cancer Research and Molecular Medicine; Philadelphia Pennsylvania
- Department of Biology; College of Science and Technology, Temple University; Philadelphia Pennsylvania
- Euro-Mediterranean Institute of Science and Technology (IEMEST); Palermo Italy
| | - Francesco Cappello
- Department of Biology; College of Science and Technology, Temple University; Philadelphia Pennsylvania
- Euro-Mediterranean Institute of Science and Technology (IEMEST); Palermo Italy
- Department of Experimental Biomedicine and Clinical Neuroscience; University of Palermo; Palermo Italy
| | - Federica Scalia
- Department of Experimental Biomedicine and Clinical Neuroscience; University of Palermo; Palermo Italy
| | - Everly Conway de Macario
- Department of Microbiology and Immunology; School of Medicine, University of Maryland at Baltimore and IMET; Baltimore Maryland
| | - Alberto J.L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST); Palermo Italy
- Department of Microbiology and Immunology; School of Medicine, University of Maryland at Baltimore and IMET; Baltimore Maryland
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine; Philadelphia Pennsylvania
- Department of Biology; College of Science and Technology, Temple University; Philadelphia Pennsylvania
| |
Collapse
|
28
|
Kang Q, Chen Y, Zhang X, Yu G, Wan X, Wang J, Bo L, Zhu K. Heat shock protein A12B protects against sepsis-induced impairment in vascular endothelial permeability. J Surg Res 2015; 202:87-94. [PMID: 27083952 DOI: 10.1016/j.jss.2015.12.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/09/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND As a common and life-threatening infectious syndrome, sepsis contributes significantly to morbidity and mortality in clinical settings. Vascular endothelial injury and hyperpermeability play an important role in the development of sepsis-induced organ dysfunction. Heat shock protein A12B (HSPA12B) is one of the HSP70 superfamily members and is mainly expressed in vascular endothelial cells. The present study was performed to investigate the role of HSPA12B in endothelial barrier dysfunction during sepsis. METHODS Human umbilical vein endothelial cells (HUVECs) were stimulated with 1 μg/mL of lipopolysaccharide (LPS) and harvested at 0, 3, 6, 9, 12, and 24 h. The messenger RNA and protein levels of HSPA12B were detected by Real Time-polymerase chain reaction and Western blot. Upregulation of HSPA12B was induced by transfection of pIRES2-EGFP plasmid carrying the HSPA12B complementary DNA. The in vitro effect of HSPA12B overexpression on endothelial permeability was manifested by the transendothelial electrical resistance value, expression of the adhesion molecules VE-cadherin, and the level of permeability-related kinase myosin light chain, SRC, and CDC42. Mice received cecal ligation and puncture surgery followed by nasal inhalation of nano-polymer-mediated siRNA. Lung endothelial permeability was assessed via intrajugular vein injection of Evans Blue 30 h after cecal ligation and puncture. RESULTS After LPS induction, the messenger RNA and protein level of HSPA12B in HUVECs increased and peaked at 12 h, whereas they returned to the baseline level at 24 h. Overexpression of HSPA12B can reduce the permeability of HUVEC stimulated by LPS in vitro, while increasing the expression of VE-Cadherin, myosin light chain, and CDC42. On the other hand, downregulating the expression of HSPA12B can significantly increase lung permeability in mice with sepsis-induced vascular injury. CONCLUSIONS HSPA12B plays a protective role in vascular endothelial barrier dysfunction by preserving the endothelial permeability during sepsis.
Collapse
Affiliation(s)
- Qiuxiang Kang
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Yi Chen
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Xu Zhang
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Guifang Yu
- Department of Anesthesiology, The Third People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojian Wan
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Jiafeng Wang
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Lulong Bo
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Keming Zhu
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, China.
| |
Collapse
|
29
|
Zhang X, Li J, Li C, Li Y, Zhu W, Zhou H, Ding Z, Liu L. HSPA12B attenuates acute lung injury during endotoxemia in mice. Int Immunopharmacol 2015; 29:599-606. [DOI: 10.1016/j.intimp.2015.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 01/24/2023]
|
30
|
Lüchmann KH, Clark MS, Bainy ACD, Gilbert JA, Craft JA, Chipman JK, Thorne MAS, Mattos JJ, Siebert MN, Schroeder DC. Key metabolic pathways involved in xenobiotic biotransformation and stress responses revealed by transcriptomics of the mangrove oyster Crassostrea brasiliana. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 166:10-20. [PMID: 26186662 DOI: 10.1016/j.aquatox.2015.06.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 06/04/2023]
Abstract
The Brazilian oyster Crassostrea brasiliana was challenged to three common environmental contaminants: phenanthrene, diesel fuel water-accommodated fraction (WAF) and domestic sewage. Total RNA was extracted from the gill and digestive gland, and cDNA libraries were sequenced using the 454 FLX platform. The assembled transcriptome resulted in ̃20,000 contigs, which were annotated to produce the first de novo transcriptome for C. brasiliana. Sequences were screened to identify genes potentially involved in the biotransformation of xenobiotics and associated antioxidant defence mechanisms. These gene families included those of the cytochrome P450 (CYP450), 70kDa heat shock, antioxidants, such as glutathione S-transferase, superoxide dismutase, catalase and also multi-drug resistance proteins. Analysis showed that the massive expansion of the CYP450 and HSP70 family due to gene duplication identified in the Crassostrea gigas genome also occurred in C. brasiliana, suggesting these processes form the base of the Crassostrea lineage. Preliminary expression analyses revealed several candidates biomarker genes that were up-regulated during each of the three treatments, suggesting the potential for environmental monitoring.
Collapse
Affiliation(s)
- Karim H Lüchmann
- Fishery Engineering Department, Santa Catarina State University, Laguna, Brazil.
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK.
| | - Afonso C D Bainy
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - Jack A Gilbert
- Biosciences Division (BIO), Argonne National Laboratory, Argonne, USA; Department of Ecology and Evolution, University of Chicago, Chicago, USA; Marine Biological Laboratory, Woods Hole, USA; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - John A Craft
- Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK.
| | - J Kevin Chipman
- School of Biological Sciences, The University of Birmingham, Birmingham, UK.
| | - Michael A S Thorne
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK.
| | - Jacó J Mattos
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - Marília N Siebert
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - Declan C Schroeder
- Marine Biological Association of the United Kingdom (MBA), Plymouth, UK.
| |
Collapse
|
31
|
Laughlin MH, Padilla J, Jenkins NT, Thorne PK, Martin JS, Rector RS, Akter S, Davis JW. Exercise-induced differential changes in gene expression among arterioles of skeletal muscles of obese rats. J Appl Physiol (1985) 2015; 119:583-603. [PMID: 26183477 DOI: 10.1152/japplphysiol.00316.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/10/2015] [Indexed: 02/01/2023] Open
Abstract
Using next-generation, transcriptome-wide RNA sequencing (RNA-Seq) technology we assessed the effects of exercise training on transcriptional profiles in skeletal muscle arterioles isolated from the soleus and gastrocnemius muscles of Otsuka Long Evans Tokushima Fatty (OLETF) rats that underwent an endurance exercise training program (EX; n = 13), interval sprint training program (SPRINT; n = 14), or remained sedentary (Sed; n = 12). We hypothesized that the greatest effects of exercise would be in the gastrocnemius arterioles. Results show that EX caused the largest number of changes in gene expression in the soleus and white gastrocnemius 2a arterioles with little to no changes in the feed arteries. In contrast, SPRINT caused substantial changes in gene expression in the feed arteries. IPA canonical pathway analysis revealed 18 pathways with significant changes in gene expression when analyzed across vessels and revealed that EX induces increased expression of the following genes in all arterioles examined: Shc1, desert hedgehog protein (Dhh), adenylate cyclase 4 (Adcy4), G protein binding protein, alpha (Gnat1), and Bcl2l1 and decreased expression of ubiquitin D (Ubd) and cAMP response element modulator (Crem). EX increased expression of endothelin converting enzyme (Ece1), Hsp90b, Fkbp5, and Cdcl4b in four of five arterioles. SPRINT had effects on expression of Crem, Dhh, Bcl2l1, and Ubd that were similar to EX. SPRINT also increased expression of Nfkbia, Hspa5, Tubb 2a and Tubb 2b, and Fkbp5 in all five arterioles and increased expression of Gnat1 in all but the soleus second-order arterioles. Many contractile and/or structural protein genes were increased by SPRINT in the gastrocnemius feed artery, but the same genes exhibited decreased expression in red gastrocnemius arterioles. We conclude that training-induced changes in arteriolar gene expression patterns differ by muscle fiber type composition and along the arteriolar tree.
Collapse
Affiliation(s)
- M Harold Laughlin
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Biomedical Sciences, University of Missouri, Columbia, Missouri; Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | | | - Pamela K Thorne
- Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Jeffrey S Martin
- Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, Alabama; Kinesiology, Auburn University, Auburn, Alabama
| | - R Scott Rector
- Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Research Service-Harry S Truman Memorial Veterans Affairs Medical Center, Columbia, Missouri; Medicine-Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri
| | - Sadia Akter
- Statistics, University of Missouri, Columbia, Missouri
| | - J Wade Davis
- Health Management and Informatics, University of Missouri, Columbia, Missouri; Statistics, University of Missouri, Columbia, Missouri; MU Informatics Institute, University of Missouri, Columbia, Missouri; and
| |
Collapse
|
32
|
Scavenger receptor class A member 5 (SCARA5) and suprabasin (SBSN) are hub genes of coexpression network modules associated with peripheral vein graft patency. J Vasc Surg 2015; 64:202-209.e6. [PMID: 25935274 DOI: 10.1016/j.jvs.2014.12.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/18/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Approximately 30% of autogenous vein grafts develop luminal narrowing and fail because of intimal hyperplasia or negative remodeling. We previously found that vein graft cells from patients who later develop stenosis proliferate more in vitro in response to growth factors than cells from patients who maintain patent grafts. To discover novel determinants of vein graft outcome, we have analyzed gene expression profiles of these cells using a systems biology approach to cluster the genes into modules by their coexpression patterns and to correlate the results with growth data from our prior study and with new studies of migration and matrix remodeling. METHODS RNA from 4-hour serum- or platelet-derived growth factor (PDGF)-BB-stimulated human saphenous vein cells obtained from the outer vein wall (20 cell lines) was used for microarray analysis of gene expression, followed by weighted gene coexpression network analysis. Cell migration in microchemotaxis chambers in response to PDGF-BB and cell-mediated collagen gel contraction in response to serum were also determined. Gene function was determined using short-interfering RNA to inhibit gene expression before subjecting cells to growth or collagen gel contraction assays. These cells were derived from samples of the vein grafts obtained at surgery, and the long-term fate of these bypass grafts was known. RESULTS Neither migration nor cell-mediated collagen gel contraction showed a correlation with graft outcome. Although 1188 and 1340 genes were differentially expressed in response to treatment with serum and PDGF, respectively, no single gene was differentially expressed in cells isolated from patients whose grafts stenosed compared with those that remained patent. Network analysis revealed four unique groups of genes, which we term modules, associated with PDGF responses, and 20 unique modules associated with serum responses. The "yellow" and "skyblue" modules, from PDGF and serum analyses, respectively, correlated with later graft stenosis (P = .005 and P = .02, respectively). In response to PDGF, yellow was also associated with increased cell growth. For serum, skyblue was also associated with inhibition of collagen gel contraction. The hub genes for yellow and skyblue (ie, the gene most connected to other genes in the module), scavenger receptor class A member 5 (SCARA5) and suprabasin (SBSN), respectively, were tested for effects on proliferation and collagen contraction. Knockdown of SCARA5 increased proliferation by 29.9% ± 7.8% (P < .01), whereas knockdown of SBSN had no effect. Knockdown of SBSN increased collagen gel contraction by 24.2% ± 8.6% (P < .05), whereas knockdown of SCARA5 had no effect. CONCLUSIONS Using weighted gene coexpression network analysis of cultured vein graft cell gene expression, we have discovered two small gene modules, which comprise 42 genes, that are associated with vein graft failure. Further experiments are needed to delineate the venous cells that express these genes in vivo and the roles these genes play in vein graft healing, starting with the module hub genes SCARA5 and SBSN, which have been shown to have modest effects on cell proliferation or collagen gel contraction.
Collapse
|
33
|
Wu J, Li X, Huang L, Jiang S, Tu F, Zhang X, Ma H, Li R, Li C, Li Y, Ding Z, Liu L. HSPA12B inhibits lipopolysaccharide-induced inflammatory response in human umbilical vein endothelial cells. J Cell Mol Med 2014; 19:544-54. [PMID: 25545050 PMCID: PMC4369812 DOI: 10.1111/jcmm.12464] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 09/09/2014] [Indexed: 01/23/2023] Open
Abstract
Heat shock protein A12B (HSPA12B) is a newly discovered member of the HSP70 protein family. This study investigated the effects of HSPA12B on lipopolysaccharide (LPS)-induced inflammatory responses in human umbilical vein endothelial cells (HUVECs) and the possible mechanisms involved. A HUVECs inflammatory model was induced by LPS. Overexpression of HSPA12B in HUVECs was achieved by infection with recombinant adenoviruses encoding green fluorescence protein-HSPA12B. Knockdown of HSPA12B was achieved by siRNA technique. Twenty four hours after virus infection or siRNA transfection, HUVECs were stimulated with 1 μg/ml LPS for 4 hrs. Endothelial cell permeability ability was determined by transwell permeability assay. The binding rate of human neutrophilic polymorphonuclear leucocytes (PMN) with HUVECs was examined using myeloperoxidase assay. Cell migrating ability was determined by the wound-healing assay. The mRNA and protein expression levels of interested genes were analyzed by RT-qPCR and Western blot, respectively. The release of cytokines interleukin-6 and tumour necrosis factor-α was measured by ELISA. HSPA12B suppressed LPS-induced HUVEC permeability and reduced PMN adhesion to HUVECs. HSPA12B also inhibited LPS-induced up-regulation of adhesion molecules and inflammatory cytokine expression. By contrast, knockdown of HSPA12B enhanced LPS-induced increases in the expression of adhesion molecules and inflammatory cytokines. Moreover, HSPA12B activated PI3K/Akt signalling pathway and pharmacological inhibition of this pathway by Wortmannin completely abrogated the protection of HSPA12B against inflammatory response in HUVECs. Our results suggest that HSPA12B attenuates LPS-induced inflammatory responses in HUVECs via activation of PI3K/Akt signalling pathway.
Collapse
Affiliation(s)
- Jun Wu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chi W, Meng F, Li Y, Li P, Wang G, Cheng H, Han S, Li J. Impact of microRNA-134 on neural cell survival against ischemic injury in primary cultured neuronal cells and mouse brain with ischemic stroke by targeting HSPA12B. Brain Res 2014; 1592:22-33. [DOI: 10.1016/j.brainres.2014.09.072] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 09/11/2014] [Accepted: 09/29/2014] [Indexed: 01/23/2023]
|
35
|
Yan Z, Wei H, Ren C, Yuan S, Fu H, Lv Y, Zhu Y, Zhang T. Gene expression of Hsps in normal and abnormal embryonic development of mouse hindlimbs. Hum Exp Toxicol 2014; 34:563-74. [PMID: 25352652 DOI: 10.1177/0960327114555927] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Heat shock proteins (Hsps), which have important biological functions, are a class of highly conserved genetic molecules with the capacity of protecting and promoting cells to repair themselves from damage caused by various stimuli. Our previous studies found that Hsp25, HspB2, HspB3, HspB7, Hsp20, HspB9, HspB10, and Hsp40 may be related to all-trans retinoic acid (atRA)-induced phocomelic and other abnormalities, while HspA12B, HspA14, Trap1, and Hsp105 may be forelimb development-related genes; Grp78 may play an important role in forelimb development. In this study, the embryonic phocomelic, oligodactylic model of both forelimbs and hindlimbs was developed by atRA administered per os to the pregnant mice on gestational day 11, and the expression of 36 members of Hsps family in normal and abnormal development of embryonic hindlimbs was measured by real-time fluorescent quantitative polymerase chain reaction (qRT-PCR). It is found that HspA1L, Hsp22, Hsp10, Hsp60, Hsp47, HspB2, HspB10, HspA12A, Apg1, HspB4, Grp78, and HspB9 probably performs a major function in limb development, and HspA13, Grp94 and Hsp110 may be hindlimb development-related genes.
Collapse
Affiliation(s)
- Zhengli Yan
- Medical School, Hunan Normal University, Changsha, People's Republic of China
| | - Huimiao Wei
- Department of Health Toxicology, Second Military Medical University, Shanghai, People's Republic of China
| | - Chuanlu Ren
- Department of Laboratory, No.100 Hospital of CPLA, Suzhou, People's Republic of China
| | - Shishan Yuan
- Medical School, Hunan Normal University, Changsha, People's Republic of China
| | - Hu Fu
- Medical School, Hunan Normal University, Changsha, People's Republic of China
| | - Yuan Lv
- Medical School, Hunan Normal University, Changsha, People's Republic of China
| | - Yongfei Zhu
- Medical School, Hunan Normal University, Changsha, People's Republic of China
| | - Tianbao Zhang
- Department of Health Toxicology, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
36
|
Chi W, Meng F, Li Y, Wang Q, Wang G, Han S, Wang P, Li J. Downregulation of miRNA-134 protects neural cells against ischemic injury in N2A cells and mouse brain with ischemic stroke by targeting HSPA12B. Neuroscience 2014; 277:111-122. [PMID: 25003713 DOI: 10.1016/j.neuroscience.2014.06.062] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 10/25/2022]
Abstract
MicroRNAs (miRNAs) have emerged as a major regulator in neurological diseases, and understanding their molecular mechanism in modulating cerebral ischemic injury may provide potential therapeutic targets for ischemic stroke. However, as one of 19 differentially expressed miRNAs in mouse brain with middle cerebral artery occlusion (MCAO), the role of miR-134 in ischemic injury is not well understood. In this study, the miR-134 expression level was manipulated both in oxygen-glucose deprivation (OGD)-treated N2A neuroblastoma cells in vitro and mouse brain with MCAO-induced ischemic stroke in vivo, and its possible targets of heat shock protein A5 (HSPA5) and HSPA12B were determined by bioinformatics analysis and dual luciferase assay. The results showed that overexpression of miR-134 exacerbated cell death and apoptosis both in vitro and in vivo. Conversely, downregulating miR-134 levels reduced cell death and apoptosis. Furthermore, non-expression of miR-134 enhanced HSPA12B protein levels in OGD-treated N2A cells as well as in the ischemic region. It could attenuate brain infarction size and neural cell damage, and improve neurological outcomes in mice with ischemic stroke, whereas upregulation of miR-134 had the opposite effect. In addition, HSPA12B was validated to be a target of miR-134 and its short interfering RNAs (siRNAs) could block miR-134 inhibitor-induced neuroprotection in OGD-treated N2A cells. In conclusion, downregulation of miR-134 could induce neuroprotection against ischemic injury in vitro and in vivo by negatively upregulating HSPA12B protein expression.
Collapse
Affiliation(s)
- W Chi
- Department of Anesthesiology, Weifang Medical University, Weifang City 261053, Shangdong Province, PR China
| | - F Meng
- Department of Anesthesiology, Shandong University Affiliated Jinan City Central Hospital, Jinan 250013, PR China.
| | - Y Li
- Department of Anesthesiology, Shandong University Affiliated Jinan City Central Hospital, Jinan 250013, PR China
| | - Q Wang
- Department of Anesthesiology, Shandong University Affiliated Jinan City Central Hospital, Jinan 250013, PR China
| | - G Wang
- Department of Anesthesiology, Weifang Medical University, Weifang City 261053, Shangdong Province, PR China
| | - S Han
- Department of Neurobiology and Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, PR China
| | - P Wang
- Department of Neurobiology and Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, PR China
| | - J Li
- Department of Neurobiology and Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
37
|
Shi J, Yang D, Cong X, Li Y, Yang X, Liu Y. Expression of HSPA12B in acute cardiac allograft rejection in rats. Pathol Res Pract 2014; 211:20-6. [PMID: 25433995 DOI: 10.1016/j.prp.2014.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 05/24/2014] [Accepted: 06/19/2014] [Indexed: 01/21/2023]
Abstract
HSP70 may play a more important role in regulating antigen-specific immune response than other HSPs; however, HSPA12B production in transplanted heart remains obscure, which was identified as the newest member of the HSP70 family. In the current study, we performed a heart transplantation model in adult rats and investigated the dynamic changes of HSPA12B expression in the cardiac grafts. The cardiac grafts of allogeneic (Wistar-Lewis rat) and syngeneic (Lewis-Lewis rat) rat models were subjected to histopathological and immunohistochemical analyses for HSPA12B expression on days 0-7 after operation. We also examined the expression profiles of active caspase-3, whose changes were correlated with the expression profiles of HSPA12B. Our results demonstrated that HSPA12B protein exhibited biphasic patterns in transplanted heart. The first expression phase correlated with ischemical reperfusion injury over 2 days post-transplant. The second peak of HSPA12B expression was found only in allografts on day 5, concurrent with the expression of caspase-3. Immunohistochemical assay showed that compared with rare expression in isografts, there were significant protein expressions of HSPA12B and caspase-3 in heart allografts from day 5 to 7 post-transplant. Furthermore, double immunofluorescence staining for active caspase-3 and HSPA12B in isografts and allografts at day 5 post-transplant were analyzed and colocalization of HSPA12B/active caspase-3 was detected in allografts. In conclusion, this is the first description of HSPA12B expression in acute cardiac allograft rejection. Our results suggested that HSPA12B might play crucial roles in heart pathophysiology after transplantation.
Collapse
Affiliation(s)
- Jiahai Shi
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Dunpeng Yang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Xia Cong
- Department of Digestion, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Yangcheng Li
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Xuechao Yang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Yonghua Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu 226001, People's Republic of China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu Province 226001, People's Republic of China.
| |
Collapse
|
38
|
Zhang R, Wan XJ, Zhang X, Kang QX, Bian JJ, Yu GF, Wang JF, Zhu KM. Plasma HSPA12B is a potential predictor for poor outcome in severe sepsis. PLoS One 2014; 9:e101215. [PMID: 24977412 PMCID: PMC4076283 DOI: 10.1371/journal.pone.0101215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 06/04/2014] [Indexed: 12/29/2022] Open
Abstract
Introduction Endothelium-derived molecules may be predictive to organ injury. Heat shock protein (HSP) A12B is mainly located in endothelial cells, which can be detected in the plasma of septic patients. Whether it is correlated with prognosis of sepsis remains unclear. Methods Extracellular HSPA12B (eHSPA12B) was determined in plasma of septic mice at 6h, 12h, 24h and 48h after cecal ligation and puncture (CLP). It was also detected in plasma of patients with severe sepsis, sepsis, systemic inflammatory response syndrome and healthy volunteers. The predictive value for prognosis of severe sepsis was assessed by receiver operating curve (ROC) and Cox regression analyses. Results eHSPA12B was elevated in plasma of CLP mice at 6h and peaked at 24h after surgery. A total of 118 subjects were included in the clinical section, including 66 patients with severe sepsis, 21 patients with sepsis, 16 patients with SIRS and 15 volunteers. Plasma eHSPA12B was significantly higher in patients with severe sepsis than in patients with sepsis, SIRS and volunteers. The level of eHSPA12B was also higher in non-survivals than survivals with severe sepsis. The area under the curve (AUC) of eHSPA12B in predicting death among patients with severe sepsis was 0.782 (0.654–0.909) in ROC analysis, much higher than that of IL-6 and IL-10. Cox regression analysis showed that cardiovascular diseases, IL-6 and eHSPA12B were risk factors for mortality in patients with severe sepsis. Survival curve demonstrated a strikingly significant difference between 28-day survival rates of patients with an eHSPA12B lower or not lower than 1.466ng/ml. Conclusions Plasma eHSPA12B is elevated in both septic mice and patients. It may be a good predictor for poor outcome in patients with severe sepsis.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Xiao-jian Wan
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Xu Zhang
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Qiu-xiang Kang
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Jin-jun Bian
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Gui-fang Yu
- Department of Anesthesiology, the Third People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jia-feng Wang
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, the Second Military Medical University, Shanghai, China
- * E-mail: (JW); kmzhu @aliyun.com (KZ)
| | - Ke-ming Zhu
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, the Second Military Medical University, Shanghai, China
- * E-mail: (JW); kmzhu @aliyun.com (KZ)
| |
Collapse
|
39
|
Zhu J, Zhou Y, Wang GN, Tai G, Ye XS. Cell cycle arrest, apoptosis and autophagy induced by iminosugars on K562 cells. Eur J Pharmacol 2014; 731:65-72. [PMID: 24657462 DOI: 10.1016/j.ejphar.2014.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/27/2014] [Accepted: 03/01/2014] [Indexed: 11/27/2022]
Abstract
Iminosugars have gained a remarkable importance as new therapeutic agents since 1966. In this study, compounds A and B, two iminosugar analogs synthesized previously, showed an inhibition of the growth of K562 cells. They allowed cell cycle arrested at the G0/G1 phase, promoted apoptotic activities and also lowered the mitochondrial membrane potential. Further exploration of the apoptosis mechanism revealed that compound B significantly suppressed the expression of Hsp70, which is a major anti-apoptotic molecular chaperone. Significant decrease was also found in the expression of Akt, a serine/threonine-specific protein kinase with anti-apoptosis activities also known as protein kinase B (PKB). At mitochondria level in comparison with compound A, compound B brought a better promotion in the expression of pro-apoptotic protein Bad in Bcl-2 family. As a result of the promotion, the expression of anti-apoptotic protein Bcl-xL was down-regulated. Cytochrome c was released, activating the intrinsic signaling pathways of caspase and resulting in the occurrence of cascade reaction. In addition, compound B stimulated autophagy effectively by up-regulating Beclin 1, thus causing the conversion of LC3-I to LC3-II through Akt/mTOR signaling pathway. In summary, these results indicated that compounds A and B induced cell death through multiple pathways. The disclosed results not only provide an evidence of antitumor activity of iminosugars as a foundation for further studies, but also may find potential applications in chronic myeloid leukemia therapy as new heat shock protein inhibitors and autophagy inducer.
Collapse
Affiliation(s)
- Jingjing Zhu
- School of Life Sciences, Northeast Normal University, Changchun 130024, PR China; State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, PR China
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, Changchun 130024, PR China
| | - Guan-Nan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, PR China
| | - Guihua Tai
- School of Life Sciences, Northeast Normal University, Changchun 130024, PR China.
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, PR China.
| |
Collapse
|
40
|
Padilla J, Jenkins NT, Thorne PK, Martin JS, Rector RS, Davis JW, Laughlin MH. Transcriptome-wide RNA sequencing analysis of rat skeletal muscle feed arteries. II. Impact of exercise training in obesity. J Appl Physiol (1985) 2014; 116:1033-47. [PMID: 24408995 DOI: 10.1152/japplphysiol.01234.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We employed next-generation RNA sequencing (RNA-Seq) technology to determine the extent to which exercise training alters global gene expression in skeletal muscle feed arteries and aortic endothelial cells of obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Transcriptional profiles of the soleus and gastrocnemius muscle feed arteries (SFA and GFA, respectively) and aortic endothelial cell-enriched samples from rats that underwent an endurance exercise training program (EndEx; n = 12) or a interval sprint training program (IST; n = 12) or remained sedentary (Sed; n = 12) were examined. In response to EndEx, there were 39 upregulated (e.g., MANF) and 20 downregulated (e.g., ALOX15) genes in SFA and 1 upregulated (i.e., Wisp2) and 1 downregulated (i.e., Crem) gene in GFA [false discovery rate (FDR) < 10%]. In response to IST, there were 305 upregulated (e.g., MANF, HSPA12B) and 324 downregulated genes in SFA and 101 upregulated and 66 downregulated genes in GFA, with an overlap of 32 genes between arteries. Furthermore, in aortic endothelial cells, there were 183 upregulated (e.g., eNOS, SOD-3) and 141 downregulated (e.g., ATF3, Clec1b, npy, leptin) genes with EndEx and 71 upregulated and 69 downregulated genes with IST, with an overlap of 35 between exercise programs. Expression of only two genes (Tubb2b and Slc9a3r2) was altered (i.e., increased) by exercise in all three arteries. The finding that both EndEx and IST produced greater transcriptional changes in the SFA compared with the GFA is intriguing when considering the fact that treadmill bouts of exercise are associated with greater relative increases in blood flow to the gastrocnemius muscle compared with the soleus muscle.
Collapse
Affiliation(s)
- Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Cerebral cavernous malformation is a clinically well-defined microvascular disorder predisposing to stroke; however, the major phenotype observed in zebrafish is the cardiac defect, specifically an enlarged heart. Less effort has been made to explore this phenotypic discrepancy between human and zebrafish. Given the fact that the gene products from Ccm1/Ccm2 are nearly identical between the two species, the common sense has dictated that the zebrafish animal model would provide a great opportunity to dissect the detailed molecular function of Ccm1/Ccm2 during angiogenesis. We recently reported on the cellular role of the Ccm1 gene in biochemical processes that permit proper angiogenic microvascular development in the zebrafish model. In the course of this experimentation, we encountered a vast amount of recent research on the relationship between dysfunctional angiogenesis and cardiovascular defects in zebrafish. Here we compile the findings of our research with the most recent contributions in this field and glean conclusions about the effect of defective angiogenesis on the developing cardiovascular system. Our conclusion also serves as a bridge for the phenotypic discrepancy between humans and animal models, which might provide some insights into future translational research on human stroke.
Collapse
|
42
|
|
43
|
Li J, Zhang Y, Li C, Xie J, Liu Y, Zhu W, Zhang X, Jiang S, Liu L, Ding Z. HSPA12B attenuates cardiac dysfunction and remodelling after myocardial infarction through an eNOS-dependent mechanism. Cardiovasc Res 2013; 99:674-84. [PMID: 23729663 DOI: 10.1093/cvr/cvt139] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AIMS HSPA12B is a newly discovered and endothelial-cell-specifically expressed heat shock protein. We have reported recently that overexpression of HSPA12B increased endothelial nitric oxide synthase (eNOS) expression in mouse cardiac tissues during endotoxemia. Endothelial NOS has been shown to protect heart from ischaemic injury. We hypothesized that overexpression of HSPA12B will attenuate cardiac dysfunction and remodelling after myocardial infarction (MI) through an eNOS-dependant mechanism. METHODS AND RESULTS MI was induced by permanent ligation of the left anterior descending coronary artery in the transgenic mice (Tg) overexpressing hspa12b gene and its wild-type (WT) littermates. Echocardiographic analysis revealed that Tg mice exhibited improvements in cardiac dysfunction and remodelling at 1 and 4 weeks after MI. These improvements were accompanied by a significant decrease in cardiomyocyte apoptosis and increase in capillary and arteriolar densities. Significant up-regulation of eNOS, VEGF, Ang-1, and Bcl-2 was also observed in Tg hearts compared with WT hearts after MI. However, pharmacological inhibition of eNOS abolished the HSPA12B-induced decrease in cardiomyocyte apoptosis and increase in capillary formation after MI. Most importantly, inhibition of eNOS abrogated the protection of HSPA12B against cardiac dysfunction and remodelling after MI. CONCLUSIONS These data demonstrate for the first time that the overexpression of HSPA12B attenuates cardiac dysfunction and remodelling after MI. This action of HSPA12B was mediated, at least in part, by prevention of cardiomyocyte apoptosis and promotion of myocardial angiogenesis via an eNOS-dependent mechanism. HSPA12B could be a novel target for the management of patients with post-MI cardiac dysfunction and remodelling.
Collapse
Affiliation(s)
- Jingjin Li
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ma Y, Lu C, Li C, Li R, Zhang Y, Ma H, Zhang X, Ding Z, Liu L. Overexpression of HSPA12B protects against cerebral ischemia/reperfusion injury via a PI3K/Akt-dependent mechanism. Biochim Biophys Acta Mol Basis Dis 2013; 1832:57-66. [DOI: 10.1016/j.bbadis.2012.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 09/08/2012] [Accepted: 10/02/2012] [Indexed: 12/15/2022]
|
45
|
Zhu Y, Ren C, Wan X, Zhu Y, Zhu J, Zhou H, Zhang T. Gene expression of Hsp70, Hsp90 and Hsp110 families in normal palate and cleft palate during mouse embryogenesis. Toxicol Ind Health 2012; 29:915-30. [PMID: 22585935 DOI: 10.1177/0748233712446720] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Most previous studies focused on a small number of heat shock proteins (Hsps) and their relationships with embryogenesis, and the actual roles of these Hsps in normal and abnormal embryonic development remain unclear. It was found in the present systemic study that except for Grp170, whose expression was not detectable at GD18, all 19 Hsps of Hsp70, Hsp90 and Hsp110 families were expressed in the normal development of embryonic palate tissue in mice, but their expression patterns varied with different Hsps, presenting as a correlation with the developmental phases. In the treatment group by all-trans retinoic acid (atRA), the messenger RNA (mRNA) abundance of HspA1A, HspA1L, HspA8, HspA9, HspA12A, HspA12B, HspA13, HspA14, Hsp90AA1, Hsp90AB1, Grp94, Trap1, Hsp105, Hsp110 and Grp170 was higher in the palates at GD11 (the beginning of palate development), the mRNA abundance of HspA1A, HspA12A and HspA12B was higher at GD18 (before birth) and an mRNA expression peak of HspA1L, HspA8, HspA9, Hsp90AA1, Grp94, Hsp110 and Grp170 was observed at GD17. The mRNA abundance of most genes in atRA-induced cleft palates of the treatment group was different from that of the control group. Grp78, HspA14 and Hsp105 were closely associated with the normal palate development and cleft palate in mouse embryo, possibly as palate development-related genes. Except Grp170, the other genes may be closely associated with the development of mouse palates through participating in the stress response process and/or the antiapoptosis process.
Collapse
Affiliation(s)
- Yongfei Zhu
- 1School of Medicine, Hunan Normal University, Changsha, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
46
|
Zhu Y, Zhou H, Zhu Y, Wan X, Zhu J, Zhang T. Gene expression ofHsp70,Hsp90, andHsp110families in normal and abnormal embryonic development of mouse forelimbs. Drug Chem Toxicol 2011; 35:432-44. [DOI: 10.3109/01480545.2011.640683] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
White SJ, Hayes EM, Lehoux S, Jeremy JY, Horrevoets AJG, Newby AC. Characterization of the differential response of endothelial cells exposed to normal and elevated laminar shear stress. J Cell Physiol 2011; 226:2841-8. [PMID: 21302282 PMCID: PMC3412226 DOI: 10.1002/jcp.22629] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Most acute coronary events occur in the upstream region of stenotic atherosclerotic plaques that experience laminar shear stress (LSS) elevated above normal physiological levels. Many studies have described the atheroprotective effect on endothelial behavior of normal physiological LSS (approximately 15 dynes/cm2) compared to static or oscillatory shear stress (OSS), but it is unknown whether the levels of elevated shear stress imposed by a stenotic plaque would preserve, enhance or reverse this effect. Therefore we used transcriptomics and related functional analyses to compare human endothelial cells exposed to laminar shear stress of 15 (LSS15-normal) or 75 dynes/cm2 (LSS75-elevated). LSS75 upregulated expression of 145 and downregulated expression of 158 genes more than twofold relative to LSS15. Modulation of the metallothioneins (MT1-G, -M, -X) and NADPH oxidase subunits (NOX2, NOX4, NOX5, and p67phox) accompanied suppression of reactive oxygen species production at LSS75. Shear induced changes in dual specificity phosphatases (DUSPs 1, 5, 8, and 16 increasing and DUSPs 6 and 23 decreasing) were observed as well as reduced ERK1/2 but increased p38 MAP kinase phosphorylation. Amongst vasoactive substances, endothelin-1 expression decreased whereas vasoactive intestinal peptide (VIP) and prostacyclin expression increased, despite which intracellular cAMP levels were reduced. Promoter analysis by rVISTA identified a significant over representation of ATF and Nrf2 transcription factor binding sites in genes upregulated by LSS75 compared to LSS15. In summary, LSS75 induced a specific change in behavior, modifying gene expression, reducing ROS levels, altering MAP kinase signaling and reducing cAMP levels, opening multiple avenues for future study. J. Cell. Physiol. 226: 2841–2848, 2011. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Stephen J White
- Bristol Heart Institute, University of Bristol (Clinical Sciences South Bristol), Bristol, UK.
| | | | | | | | | | | |
Collapse
|
48
|
Chappell JC, Wiley DM, Bautch VL. How blood vessel networks are made and measured. Cells Tissues Organs 2011; 195:94-107. [PMID: 21996655 DOI: 10.1159/000331398] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tissue and organ viability depends on the proper systemic distribution of cells, nutrients, and oxygen through blood vessel networks. These networks arise in part via angiogenic sprouting. Vessel sprouting involves the precise coordination of several endothelial cell processes including cell-cell communication, cell migration, and proliferation. In this review, we discuss zebrafish and mammalian models of blood vessel sprouting and the quantification methods used to assess vessel sprouting and network formation in these models. We also review the mechanisms involved in angiogenic sprouting, and we propose that the process consists of distinct stages. Sprout initiation involves endothelial cell interactions with neighboring cells and the environment to establish a specialized tip cell responsible for leading the emerging sprout. Furthermore, local sprout guidance cues that spatially regulate this outward migration are discussed. We also examine subsequent events, such as sprout fusion and lumenization, that lead to maturation of a nascent sprout into a patent blood vessel.
Collapse
Affiliation(s)
- John C Chappell
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, N.C., USA
| | | | | |
Collapse
|
49
|
Rupik W, Jasik K, Bembenek J, Widłak W. The expression patterns of heat shock genes and proteins and their role during vertebrate's development. Comp Biochem Physiol A Mol Integr Physiol 2011; 159:349-66. [DOI: 10.1016/j.cbpa.2011.04.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 04/02/2011] [Accepted: 04/04/2011] [Indexed: 02/07/2023]
|
50
|
Ohta N, Horie T, Satoh N, Sasakura Y. Transposon-mediated enhancer detection reveals the location, morphology and development of the cupular organs, which are putative hydrodynamic sensors, in the ascidian Ciona intestinalis. Zoolog Sci 2011; 27:842-50. [PMID: 21039122 DOI: 10.2108/zsj.27.842] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The adult of the ascidian Ciona intestinalis has cupular organs, i.e., putative hydrodynamic sensors, at the atrial epithelium. The cupular organ consists of support cells and sensory neurons, and it extends a gelatinous matrix, known as a cupula, toward the atrial cavity. These characteristics are shared with sensory hair cells in the vertebrate inner ear and lateral line neuromasts in fish and amphibians, which suggests an evolutionary link between the cupular organ and these vertebrate hydrodynamic sensors. In the present study, we have isolated and investigated two transposon-mediated enhancer detection lines that showed GFP expression in support cells of the cupular organs. Using the enhancer detection lines and neuron marker transgenic lines, we describe the position, morphology, and development of the cupular organs. Cupular organs were found at the atrial epithelium, but not in the branchial epithelium. We found that cupular organs are also present along the dorsal fold and the gonoducts. The cells lining the pre-atrial opening in juveniles are presumably precursor cells of the cupular organ. To our knowledge, the present study is the first precise description of the ascidian cupular organ, providing evidence that may help to resolve discrepancies among previous studies on the organ.
Collapse
Affiliation(s)
- Naoyuki Ohta
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|