1
|
Dufrancais O, Verdys P, Plozza M, Métais A, Juzans M, Sanchez T, Bergert M, Halper J, Panebianco CJ, Mascarau R, Gence R, Arnaud G, Neji MB, Maridonneau-Parini I, Cabec VL, Boerckel JD, Pavlos NJ, Diz-Muñoz A, Lagarrigue F, Blin-Wakkach C, Carréno S, Poincloux R, Burkhardt JK, Raynaud-Messina B, Vérollet C. Moesin controls cell-cell fusion and osteoclast function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593799. [PMID: 38798563 PMCID: PMC11118517 DOI: 10.1101/2024.05.13.593799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Cell-cell fusion is an evolutionarily conserved process that is essential for many functions, including fertilisation and the formation of placenta, muscle and osteoclasts, multinucleated cells that are unique in their ability to resorb bone. The mechanisms of osteoclast multinucleation involve dynamic interactions between the actin cytoskeleton and the plasma membrane that are still poorly characterized. Here, we found that moesin, a cytoskeletal linker protein member of the Ezrin/Radixin/Moesin (ERM) protein family, is activated during osteoclast maturation and plays an instrumental role in both osteoclast fusion and function. In mouse and human osteoclast precursors, moesin inhibition favors their ability to fuse into multinucleated osteoclasts. Accordingly, we demonstrated that moesin depletion decreases membrane-to-cortex attachment and enhances the formation of tunneling nanotubes (TNTs), F-actin-based intercellular bridges that we reveal here to trigger cell-cell fusion. Moesin also controls HIV-1- and inflammation-induced cell fusion. In addition, moesin regulates the formation of the sealing zone, the adhesive structure determining osteoclast bone resorption area, and thus controls bone degradation, via a β3-integrin/RhoA/SLK pathway. Supporting our results, moesin - deficient mice present a reduced density of trabecular bones and increased osteoclast abundance and activity. These findings provide a better understanding of the regulation of cell-cell fusion and osteoclast biology, opening new opportunities to specifically target osteoclast activity in bone disease therapy.
Collapse
|
2
|
Yang X, Chen M, Wang S, Hu X, Zhou J, Yuan H, Zhu E, Wang B. Cortactin controls bone homeostasis through regulating the differentiation of osteoblasts and osteoclasts. Stem Cells 2024; 42:662-674. [PMID: 38655781 DOI: 10.1093/stmcls/sxae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Cortactin (CTTN), a cytoskeletal protein and substrate of Src kinase, is implicated in tumor aggressiveness. However, its role in bone cell differentiation remains unknown. The current study revealed that CTTN was upregulated during osteoblast and adipocyte differentiation. Functional experiments demonstrated that CTTN promoted the in vitro differentiation of mesenchymal stem/progenitor cells into osteogenic and adipogenic lineages. Mechanistically, CTTN was able to stabilize the protein level of mechanistic target of rapamycin kinase (mTOR), leading to the activation of mTOR signaling. In-depth investigation revealed that CTTN could bind with casitas B lineage lymphoma-c (c-CBL) and counteract the function of c-CBL, a known E3 ubiquitin ligase responsible for the proteasomal degradation of mTOR. Silencing c-Cbl alleviated the impaired differentiation of osteoblasts and adipocytes caused by CTTN siRNA, while silencing mTOR mitigated the stimulation of osteoblast and adipocyte differentiation induced by CTTN overexpression. Notably, transplantation of CTTN-silenced bone marrow stromal cells (BMSCs) into the marrow of mice led to a reduction in trabecular bone mass, accompanied by a decrease in osteoblasts and an increase in osteoclasts. Furthermore, CTTN-silenced BMSCs expressed higher levels of receptor activator of nuclear factor κB ligand (RANKL) than control BMSCs did and promoted osteoclast differentiation when cocultured with bone marrow-derived osteoclast precursor cells. This study provides evidence that CTTN favors osteoblast differentiation by counteracting the c-CBL-induced degradation of mTOR and inhibits osteoclast differentiation by downregulating the expression of RANKL. It also suggests that maintaining an appropriate level of CTTN expression may be advantageous for maintaining bone homeostasis.
Collapse
Affiliation(s)
- Xiaoli Yang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, People's Republic of China
| | - Meng Chen
- Department of hematology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Shuang Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, People's Republic of China
| | - Xingli Hu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, People's Republic of China
| | - Jie Zhou
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, People's Republic of China
| | - Hairui Yuan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, People's Republic of China
| | - Endong Zhu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, People's Republic of China
| | - Baoli Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, People's Republic of China
| |
Collapse
|
3
|
Gandhi N, Omer S, Harrison RE. In Vitro Cell Culture Model for Osteoclast Activation during Estrogen Withdrawal. Int J Mol Sci 2024; 25:6134. [PMID: 38892322 PMCID: PMC11173070 DOI: 10.3390/ijms25116134] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Estrogen (17β-estradiol) deficiency post-menopause alters bone homeostasis whereby bone resorption by osteoclasts exceeds bone formation by osteoblasts, leading to osteoporosis in females. We established an in vitro model to examine the consequences of estrogen withdrawal (E2-WD) on osteoclasts derived from the mouse macrophage RAW 264.7 cell line and utilized it to investigate the mechanism behind the enhanced osteoclast activity post-menopause. We found that a greater population of osteoclasts that underwent E2-WD contained a podosome belt necessary for osteoclasts to adhere and resorb bone and possessed elevated resorptive activity compared to osteoclasts exposed to estrogen (E2) continuously. Our results show that compared to osteoclasts that received E2 continuously, those that underwent E2-WD had a faster rate of microtubule (MT) growth, reduced RhoA activation, and shorter podosome lifespan. Thus, altered podosome and MT dynamics induced by the withdrawal of estrogen supports podosome belt assembly/stability in osteoclasts, which may explain their enhanced bone resorption activity.
Collapse
Affiliation(s)
- Nisha Gandhi
- Department of Cell & Systems Biology, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada;
| | - Safia Omer
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada;
| | - Rene E. Harrison
- Department of Cell & Systems Biology, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada;
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada;
| |
Collapse
|
4
|
Chen ZH, Wu JJ, Guo DY, Li YY, Chen MN, Zhang ZY, Yuan ZD, Zhang KW, Chen WW, Tian F, Ye JX, Li X, Yuan FL. Physiological functions of podosomes: From structure and function to therapy implications in osteoclast biology of bone resorption. Ageing Res Rev 2023; 85:101842. [PMID: 36621647 DOI: 10.1016/j.arr.2023.101842] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/09/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
With increasing age, bone tissue undergoes significant alterations in composition, architecture, and metabolic functions, probably causing senile osteoporosis. Osteoporosis possess the vast majority of bone disease and associates with a reduction in bone mass and increased fracture risk. Bone loss is on account of the disorder in osteoblast-induced bone formation and osteoclast-induced bone resorption. As a unique bone resorptive cell type, mature bone-resorbing osteoclasts exhibit dynamic actin-based cytoskeletal structures called podosomes that participate in cell-matrix adhesions specialized in the degradation of mineralized bone matrix. Podosomes share many of the same molecular constitutions as focal adhesions, but they have a unique structural organization, with a central core abundant in F-actin and encircled by scaffolding proteins, kinases and integrins. Here, we conclude recent advancements in our knowledge of the architecture and the functions of podosomes. We also discuss the regulatory pathways in osteoclast podosomes, providing a reference for future research on the podosomes of osteoclasts and considering podosomes as a therapeutic target for inhibiting bone resorption.
Collapse
Affiliation(s)
- Zhong-Hua Chen
- Affiliated Hospital 3 of Nantong University, Nantong University, Jiangsu, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Dan-Yang Guo
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Yue-Yue Li
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Meng-Nan Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Zhen-Yu Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Kai-Wen Zhang
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei-Wei Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Fan Tian
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Jun-Xing Ye
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Xia Li
- Affiliated Hospital 3 of Nantong University, Nantong University, Jiangsu, China; Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China.
| | - Feng-Lai Yuan
- Affiliated Hospital 3 of Nantong University, Nantong University, Jiangsu, China; Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China.
| |
Collapse
|
5
|
Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. Int J Mol Sci 2021; 23:ijms23010146. [PMID: 35008569 PMCID: PMC8745566 DOI: 10.3390/ijms23010146] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer progression with uncontrolled tumor growth, local invasion, and metastasis depends largely on the proteolytic activity of numerous matrix metalloproteinases (MMPs), which affect tissue integrity, immune cell recruitment, and tissue turnover by degrading extracellular matrix (ECM) components and by releasing matrikines, cell surface-bound cytokines, growth factors, or their receptors. Among the MMPs, MMP-14 is the driving force behind extracellular matrix and tissue destruction during cancer invasion and metastasis. MMP-14 also influences both intercellular as well as cell-matrix communication by regulating the activity of many plasma membrane-anchored and extracellular proteins. Cancer cells and other cells of the tumor stroma, embedded in a common extracellular matrix, interact with their matrix by means of various adhesive structures, of which particularly invadopodia are capable to remodel the matrix through spatially and temporally finely tuned proteolysis. As a deeper understanding of the underlying functional mechanisms is beneficial for the development of new prognostic and predictive markers and for targeted therapies, this review examined the current knowledge of the interplay of the various MMPs in the cancer context on the protein, subcellular, and cellular level with a focus on MMP14.
Collapse
|
6
|
Dufrançais O, Mascarau R, Poincloux R, Maridonneau-Parini I, Raynaud-Messina B, Vérollet C. Cellular and molecular actors of myeloid cell fusion: podosomes and tunneling nanotubes call the tune. Cell Mol Life Sci 2021; 78:6087-6104. [PMID: 34296319 PMCID: PMC8429379 DOI: 10.1007/s00018-021-03875-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/25/2021] [Accepted: 06/05/2021] [Indexed: 12/22/2022]
Abstract
Different types of multinucleated giant cells (MGCs) of myeloid origin have been described; osteoclasts are the most extensively studied because of their importance in bone homeostasis. MGCs are formed by cell-to-cell fusion, and most types have been observed in pathological conditions, especially in infectious and non-infectious chronic inflammatory contexts. The precise role of the different MGCs and the mechanisms that govern their formation remain poorly understood, likely due to their heterogeneity. First, we will introduce the main populations of MGCs derived from the monocyte/macrophage lineage. We will then discuss the known molecular actors mediating the early stages of fusion, focusing on cell-surface receptors involved in the cell-to-cell adhesion steps that ultimately lead to multinucleation. Given that cell-to-cell fusion is a complex and well-coordinated process, we will also describe what is currently known about the evolution of F-actin-based structures involved in macrophage fusion, i.e., podosomes, zipper-like structures, and tunneling nanotubes (TNT). Finally, the localization and potential role of the key fusion mediators related to the formation of these F-actin structures will be discussed. This review intends to present the current status of knowledge of the molecular and cellular mechanisms supporting multinucleation of myeloid cells, highlighting the gaps still existing, and contributing to the proposition of potential disease-specific MGC markers and/or therapeutic targets.
Collapse
Affiliation(s)
- Ophélie Dufrançais
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Rémi Mascarau
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina
| | - Renaud Poincloux
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France
| | - Brigitte Raynaud-Messina
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France.
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina.
| | - Christel Vérollet
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France.
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina.
| |
Collapse
|
7
|
Shalev M, Arman E, Stein M, Cohen-Sharir Y, Brumfeld V, Kapishnikov S, Royal I, Tuckermann J, Elson A. PTPRJ promotes osteoclast maturation and activity by inhibiting Cbl-mediated ubiquitination of NFATc1 in late osteoclastogenesis. FEBS J 2021; 288:4702-4723. [PMID: 33605542 DOI: 10.1111/febs.15778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/22/2021] [Accepted: 02/18/2021] [Indexed: 11/28/2022]
Abstract
Bone-resorbing osteoclasts (OCLs) are multinucleated phagocytes, whose central roles in regulating bone formation and homeostasis are critical for normal health and development. OCLs are produced from precursor monocytes in a multistage process that includes initial differentiation, cell-cell fusion, and subsequent functional and morphological maturation; the molecular regulation of osteoclastogenesis is not fully understood. Here, we identify the receptor-type protein tyrosine phosphatase PTPRJ as an essential regulator specifically of OCL maturation. Monocytes from PTPRJ-deficient (JKO) mice differentiate and fuse normally, but their maturation into functional OCLs and their ability to degrade bone are severely inhibited. In agreement, mice lacking PTPRJ throughout their bodies or only in OCLs exhibit increased bone mass due to reduced OCL-mediated bone resorption. We further show that PTPRJ promotes OCL maturation by dephosphorylating the M-CSF receptor (M-CSFR) and Cbl, thus reducing the ubiquitination and degradation of the key osteoclastogenic transcription factor NFATc1. Loss of PTPRJ increases ubiquitination of NFATc1 and reduces its amounts at later stages of osteoclastogenesis, thereby inhibiting OCL maturation. PTPRJ thus fulfills an essential and cell-autonomous role in promoting OCL maturation by balancing between the pro- and anti-osteoclastogenic activities of the M-CSFR and maintaining NFATc1 expression during late osteoclastogenesis.
Collapse
Affiliation(s)
- Moran Shalev
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Esther Arman
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Merle Stein
- Institute of Comparative Molecular Endocrinology, University of Ulm, Germany
| | - Yael Cohen-Sharir
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Vlad Brumfeld
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Kapishnikov
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot, Israel
| | - Isabelle Royal
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, QC, Canada.,Institut du Cancer de Montréal, QC, Canada.,Department of Medicine, University of Montreal, QC, Canada
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Germany
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Kerjouan A, Boyault C, Oddou C, Hiriart-Bryant E, Grichine A, Kraut A, Pezet M, Balland M, Faurobert E, Bonnet I, Coute Y, Fourcade B, Albiges-Rizo C, Destaing O. Control of SRC molecular dynamics encodes distinct cytoskeletal responses by specifying signaling pathway usage. J Cell Sci 2021; 134:237349. [PMID: 33495358 DOI: 10.1242/jcs.254599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/13/2020] [Indexed: 01/23/2023] Open
Abstract
Upon activation by different transmembrane receptors, the same signaling protein can induce distinct cellular responses. A way to decipher the mechanisms of such pleiotropic signaling activity is to directly manipulate the decision-making activity that supports the selection between distinct cellular responses. We developed an optogenetic probe (optoSRC) to control SRC signaling, an example of a pleiotropic signaling node, and we demonstrated its ability to generate different acto-adhesive structures (lamellipodia or invadosomes) upon distinct spatio-temporal control of SRC kinase activity. The occurrence of each acto-adhesive structure was simply dictated by the dynamics of optoSRC nanoclusters in adhesive sites, which were dependent on the SH3 and Unique domains of the protein. The different decision-making events regulated by optoSRC dynamics induced distinct downstream signaling pathways, which we characterized using time-resolved proteomic and network analyses. Collectively, by manipulating the molecular mobility of SRC kinase activity, these experiments reveal the pleiotropy-encoding mechanism of SRC signaling.
Collapse
Affiliation(s)
- Adèle Kerjouan
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Cyril Boyault
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Christiane Oddou
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Edwige Hiriart-Bryant
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Alexei Grichine
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | | | - Mylène Pezet
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Martial Balland
- Laboratoire Interdisciplinaire de Physique (Liphy), Université Grenoble Alpes, CNRS, 38000, 38402 Saint-Martin-d'Héres, France
| | - Eva Faurobert
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Isabelle Bonnet
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, Sorbonne University, UMR 168, 75005 Paris, France
| | - Yohann Coute
- Laboratoire EDYP, BIG-BGE, CEA, 38054 Grenoble, France
| | - Bertrand Fourcade
- Laboratoire Interdisciplinaire de Physique (Liphy), Université Grenoble Alpes, CNRS, 38000, 38402 Saint-Martin-d'Héres, France
| | - Corinne Albiges-Rizo
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Olivier Destaing
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| |
Collapse
|
9
|
Akisaka T, Yoshida A. Surface distribution of heterogenous clathrin assemblies in resorbing osteoclasts. Exp Cell Res 2020; 399:112433. [PMID: 33359468 DOI: 10.1016/j.yexcr.2020.112433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/06/2020] [Accepted: 12/12/2020] [Indexed: 01/04/2023]
Abstract
Osteoclasts seeded on either glass coverslips or apatite pellets have at least two morphologically distinct substrate adhesion sites: actin-based adhesion structures including podosome belts and sealing zones, and adjacent clathrin sheets. Clathrin-coated structures are exclusively localized at the podosome belts and sealing zone, in both of which the plasma membrane forms a tight attachment to the substrate surface. When cultured on apatite osteoclasts can degrade the apatite leading to the formation of resorption lacunae. The sealing zone divides the ventral membrane into different domains, outside and inside of the sealing zones. The former facing the smooth-surfaced intact apatite contains relatively solitary or networks of larger flat clathrin structures; and the latter, facing the rough-surfaced degraded apatite in the resorption lacunae contain clathrin in various shapes and sizes. Clathrin assemblies on the membrane domain facing not only a resorption lacuna, or trails but also intact apatite indeed were observed to be heterogeneous in size and intensity, suggesting that they appeared to follow variations in the surface topography of the apatite surface. These results provide a detailed insight into the flat clathrin sheets that have been suggested to be the sites of adhesion and mechanosensing in co-operation with podosomes.
Collapse
Affiliation(s)
- Toshitaka Akisaka
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Japan.
| | - Atsushi Yoshida
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Japan.
| |
Collapse
|
10
|
Jaumouillé V, Waterman CM. Physical Constraints and Forces Involved in Phagocytosis. Front Immunol 2020; 11:1097. [PMID: 32595635 PMCID: PMC7304309 DOI: 10.3389/fimmu.2020.01097] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/06/2020] [Indexed: 01/02/2023] Open
Abstract
Phagocytosis is a specialized process that enables cellular ingestion and clearance of microbes, dead cells and tissue debris that are too large for other endocytic routes. As such, it is an essential component of tissue homeostasis and the innate immune response, and also provides a link to the adaptive immune response. However, ingestion of large particulate materials represents a monumental task for phagocytic cells. It requires profound reorganization of the cell morphology around the target in a controlled manner, which is limited by biophysical constraints. Experimental and theoretical studies have identified critical aspects associated with the interconnected biophysical properties of the receptors, the membrane, and the actin cytoskeleton that can determine the success of large particle internalization. In this review, we will discuss the major physical constraints involved in the formation of a phagosome. Focusing on two of the most-studied types of phagocytic receptors, the Fcγ receptors and the complement receptor 3 (αMβ2 integrin), we will describe the complex molecular mechanisms employed by phagocytes to overcome these physical constraints.
Collapse
Affiliation(s)
- Valentin Jaumouillé
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Clare M Waterman
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
11
|
Mascarau R, Bertrand F, Labrousse A, Gennero I, Poincloux R, Maridonneau-Parini I, Raynaud-Messina B, Vérollet C. HIV-1-Infected Human Macrophages, by Secreting RANK-L, Contribute to Enhanced Osteoclast Recruitment. Int J Mol Sci 2020; 21:ijms21093154. [PMID: 32365752 PMCID: PMC7246503 DOI: 10.3390/ijms21093154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022] Open
Abstract
HIV-1 infection is frequently associated with low bone density, which can progress to osteoporosis leading to a high risk of fractures. Only a few mechanisms have been proposed to explain the enhanced osteolysis in the context of HIV-1 infection. As macrophages are involved in bone homeostasis and are critical host cells for HIV-1, we asked whether HIV-1-infected macrophages could participate in bone degradation. Upon infection, human macrophages acquired some osteoclast features: they became multinucleated, upregulated the osteoclast markers RhoE and β3 integrin, and organized their podosomes as ring superstructures resembling osteoclast sealing zones. However, HIV-1-infected macrophages were not fully differentiated in osteoclasts as they did not upregulate NFATc-1 transcription factor and were unable to degrade bone. Investigating whether infected macrophages participate indirectly to virus-induced osteolysis, we showed that they produce RANK-L, the key osteoclastogenic cytokine. RANK-L secreted by HIV-1-infected macrophages was not sufficient to stimulate multinucleation, but promoted the protease-dependent migration of osteoclast precursors. In conclusion, we propose that, by stimulating RANK-L secretion, HIV-1-infected macrophages contribute to create a microenvironment that favors the recruitment of osteoclasts, participating in bone disorders observed in HIV-1 infected patients.
Collapse
Affiliation(s)
- Rémi Mascarau
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS UMR 5089, Université Toulouse III Paul Sabatier, CEDEX 04, 31077 Toulouse, France; (R.M.); (F.B.); (A.L.); (R.P.); (I.M.-P.)
| | - Florent Bertrand
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS UMR 5089, Université Toulouse III Paul Sabatier, CEDEX 04, 31077 Toulouse, France; (R.M.); (F.B.); (A.L.); (R.P.); (I.M.-P.)
| | - Arnaud Labrousse
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS UMR 5089, Université Toulouse III Paul Sabatier, CEDEX 04, 31077 Toulouse, France; (R.M.); (F.B.); (A.L.); (R.P.); (I.M.-P.)
| | - Isabelle Gennero
- Centre de Physiopathologie de Toulouse-Purpan, INSERM-CNRS UMR 1043, Université Toulouse III Paul Sabatier, 31024 Toulouse, France;
- Institut Fédératif de Biologie, Centre Hospitalier Universitaire Toulouse, 31059 Toulouse, France
| | - Renaud Poincloux
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS UMR 5089, Université Toulouse III Paul Sabatier, CEDEX 04, 31077 Toulouse, France; (R.M.); (F.B.); (A.L.); (R.P.); (I.M.-P.)
- International Associated Laboratory (LIA) CNRS “IM-TB/HIV” (1167), 31077 Toulouse, France
- International Associated Laboratory (LIA) CNRS “IM-TB/HIV” (1167), Buenos Aires C1425AUM, Argentina
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS UMR 5089, Université Toulouse III Paul Sabatier, CEDEX 04, 31077 Toulouse, France; (R.M.); (F.B.); (A.L.); (R.P.); (I.M.-P.)
- International Associated Laboratory (LIA) CNRS “IM-TB/HIV” (1167), 31077 Toulouse, France
- International Associated Laboratory (LIA) CNRS “IM-TB/HIV” (1167), Buenos Aires C1425AUM, Argentina
| | - Brigitte Raynaud-Messina
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS UMR 5089, Université Toulouse III Paul Sabatier, CEDEX 04, 31077 Toulouse, France; (R.M.); (F.B.); (A.L.); (R.P.); (I.M.-P.)
- International Associated Laboratory (LIA) CNRS “IM-TB/HIV” (1167), 31077 Toulouse, France
- International Associated Laboratory (LIA) CNRS “IM-TB/HIV” (1167), Buenos Aires C1425AUM, Argentina
- Correspondence: (B.R.-M.); (C.V.)
| | - Christel Vérollet
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS UMR 5089, Université Toulouse III Paul Sabatier, CEDEX 04, 31077 Toulouse, France; (R.M.); (F.B.); (A.L.); (R.P.); (I.M.-P.)
- International Associated Laboratory (LIA) CNRS “IM-TB/HIV” (1167), 31077 Toulouse, France
- International Associated Laboratory (LIA) CNRS “IM-TB/HIV” (1167), Buenos Aires C1425AUM, Argentina
- Correspondence: (B.R.-M.); (C.V.)
| |
Collapse
|
12
|
Cell-Substrate Patterns Driven by Curvature-Sensitive Actin Polymerization: Waves and Podosomes. Cells 2020; 9:cells9030782. [PMID: 32210185 PMCID: PMC7140849 DOI: 10.3390/cells9030782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/14/2020] [Accepted: 03/17/2020] [Indexed: 12/20/2022] Open
Abstract
Cells adhered to an external solid substrate are observed to exhibit rich dynamics of actin structures on the basal membrane, which are distinct from those observed on the dorsal (free) membrane. Here we explore the dynamics of curved membrane proteins, or protein complexes, that recruit actin polymerization when the membrane is confined by the solid substrate. Such curved proteins can induce the spontaneous formation of membrane protrusions on the dorsal side of cells. However, on the basal side of the cells, such protrusions can only extend as far as the solid substrate and this constraint can convert such protrusions into propagating wave-like structures. We also demonstrate that adhesion molecules can stabilize localized protrusions that resemble some features of podosomes. This coupling of curvature and actin forces may underlie the differences in the observed actin-membrane dynamics between the basal and dorsal sides of adhered cells.
Collapse
|
13
|
Chellaiah MA, Moorer MC, Majumdar S, Aljohani H, Morley SC, Yingling V, Stains JP. L-Plastin deficiency produces increased trabecular bone due to attenuation of sealing ring formation and osteoclast dysfunction. Bone Res 2020; 8:3. [PMID: 31993243 PMCID: PMC6976634 DOI: 10.1038/s41413-019-0079-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022] Open
Abstract
Bone resorption requires the formation of complex, actin-rich cytoskeletal structures. During the early phase of sealing ring formation by osteoclasts, L-plastin regulates actin-bundling to form the nascent sealing zones (NSZ). Here, we show that L-plastin knockout mice produce osteoclasts that are deficient in the formation of NSZs, are hyporesorptive, and make superficial resorption pits in vitro. Transduction of TAT-fused full-length L-plastin peptide into osteoclasts from L-plastin knockout mice rescued the formation of nascent sealing zones and sealing rings in a time-dependent manner. This response was not observed with mutated full-length L-plastin (Ser-5 and -7 to Ala-5 and -7) peptide. In contrast to the observed defect in the NSZ, L-plastin deficiency did not affect podosome formation or adhesion of osteoclasts in vitro or in vivo. Histomorphometry analyses in 8- and 12-week-old female L-plastin knockout mice demonstrated a decrease in eroded perimeters and an increase in trabecular bone density, without a change in bone formation by osteoblasts. This decrease in eroded perimeters supports that osteoclast function is attenuated in L-plastin knockouts. Micro-CT analyses confirmed a marked increase in trabecular bone mass. In conclusion, female L-plastin knockout mice had increased trabecular bone density due to impaired bone resorption by osteoclasts. L-plastin could be a potential target for therapeutic interventions to treat trabecular bone loss.
Collapse
Affiliation(s)
- Meenakshi A. Chellaiah
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD USA
| | - Megan C. Moorer
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD USA
| | - Sunipa Majumdar
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD USA
| | - Hanan Aljohani
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD USA
| | - Sharon C. Morley
- Department of Pediatrics, Division of Infectious Diseases, and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO USA
| | - Vanessa Yingling
- Department of Kinesiology, California State University, East Bay, Hayward, CA USA
| | - Joseph P. Stains
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
14
|
Abstract
Phagocytosis is a specialized process that enables cellular ingestion and clearance of microbes, dead cells and tissue debris that are too large for other endocytic routes. As such, it is an essential component of tissue homeostasis and the innate immune response, and also provides a link to the adaptive immune response. However, ingestion of large particulate materials represents a monumental task for phagocytic cells. It requires profound reorganization of the cell morphology around the target in a controlled manner, which is limited by biophysical constraints. Experimental and theoretical studies have identified critical aspects associated with the interconnected biophysical properties of the receptors, the membrane, and the actin cytoskeleton that can determine the success of large particle internalization. In this review, we will discuss the major physical constraints involved in the formation of a phagosome. Focusing on two of the most-studied types of phagocytic receptors, the Fcγ receptors and the complement receptor 3 (αMβ2 integrin), we will describe the complex molecular mechanisms employed by phagocytes to overcome these physical constraints.
Collapse
Affiliation(s)
- Valentin Jaumouillé
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Clare M Waterman
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
15
|
Holliday LS, de Faria LP, Rody WJ. Actin and Actin-Associated Proteins in Extracellular Vesicles Shed by Osteoclasts. Int J Mol Sci 2019; 21:ijms21010158. [PMID: 31881680 PMCID: PMC6981389 DOI: 10.3390/ijms21010158] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are shed by all eukaryotic cells and have emerged as important intercellular regulators. EVs released by osteoclasts were recently identified as important coupling factors in bone remodeling. They are shed as osteoclasts resorb bone and stimulate osteoblasts to form bone to replace the bone resorbed. We reported the proteomic content of osteoclast EVs with data from two-dimensional, high resolution liquid chromatography/mass spectrometry. In this article, we examine in detail the actin and actin-associated proteins found in osteoclast EVs. Like EVs from other cell types, actin and various actin-associated proteins were abundant. These include components of the polymerization machinery, myosin mechanoenzymes, proteins that stabilize or depolymerize microfilaments, and actin-associated proteins that are involved in regulating integrins. The selective incorporation of actin-associated proteins into osteoclast EVs suggests that they have roles in the formation of EVs and/or the regulatory signaling functions of the EVs. Regulating integrins so that they bind extracellular matrix tightly, in order to attach EVs to the extracellular matrix at specific locations in organs and tissues, is one potential active role for actin-associated proteins in EVs.
Collapse
Affiliation(s)
- L. Shannon Holliday
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| | - Lorraine Perciliano de Faria
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo 01000, Brazil;
| | - Wellington J. Rody
- Department of Orthodontics and Pediatric Dentistry, Stony Brook University School of Dental Medicine, Stony Brook, NY 11794, USA;
| |
Collapse
|
16
|
Rui YN, Chen Y, Guo Y, Bock CE, Hagan JP, Kim DH, Xu Z. Podosome formation impairs endothelial barrier function by sequestering zonula occludens proteins. J Cell Physiol 2019; 235:4655-4666. [PMID: 31637713 DOI: 10.1002/jcp.29343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/30/2019] [Indexed: 01/09/2023]
Abstract
Podosomes and tight junctions (TJs) are subcellular compartments that both exist in endothelial cells and localize at cell surfaces. In contrast to the well-characterized role of TJs in maintaining cerebrovascular integrity, the specific function of endothelial podosomes remains unknown. Intriguingly, we discovered cross-talk between podosomes and TJs in human brain endothelial cells. Tight junction scaffold proteins ZO-1 and ZO-2 localize at podosomes in response to phorbol-12-myristate-13-acetate treatment. We found that both ZO proteins are essential for podosome formation and function. Rather than being derived from new protein synthesis, podosomal ZO-1 and ZO-2 are relocated from a pre-existing pool found at the peripheral plasma membrane with enhanced physical interaction with cortactin, a known protein marker for podosomes. Sequestration of ZO proteins in podosomes weakens tight junction complex formation, leading to increased endothelial cell permeability. This effect can be further attenuated by podosome inhibitor PP2. Altogether, our data revealed a novel cellular function of podosomes, specifically, their ability to negatively regulate tight junction and endothelial barrier integrity, which have been linked to a variety of cerebrovascular diseases.
Collapse
Affiliation(s)
- Yan-Ning Rui
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Yawen Chen
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yichen Guo
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Caroline E Bock
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - John P Hagan
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Dong H Kim
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Zhen Xu
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
17
|
Klapproth S, Bromberger T, Türk C, Krüger M, Moser M. A kindlin-3-leupaxin-paxillin signaling pathway regulates podosome stability. J Cell Biol 2019; 218:3436-3454. [PMID: 31537712 PMCID: PMC6781449 DOI: 10.1083/jcb.201903109] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/08/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
Kindlin-3 regulates podosome stability by recruiting leupaxin to podosomes, which in turn controls PTP-PEST activity and paxillin phosphorylation. Kindlin-3 deficiency allows formation of initial adhesion patches containing talin, vinculin, and paxillin, whereas paxillin family proteins are dispensable for podosome formation. Binding of kindlins to integrins is required for integrin activation, stable ligand binding, and subsequent intracellular signaling. How hematopoietic kindlin-3 contributes to the assembly and stability of the adhesion complex is not known. Here we report that kindlin-3 recruits leupaxin into podosomes and thereby regulates paxillin phosphorylation and podosome turnover. We demonstrate that the activity of the protein tyrosine phosphatase PTP-PEST, which controls paxillin phosphorylation, requires leupaxin. In contrast, despite sharing the same binding mode with leupaxin, paxillin recruitment into podosomes is kindlin-3 independent. Instead, we found paxillin together with talin and vinculin in initial adhesion patches of kindlin-3–null cells. Surprisingly, despite its presence in these early adhesion patches, podosomes can form in the absence of paxillin or any paxillin member. In conclusion, our findings show that kindlin-3 not only activates and clusters integrins into podosomes but also regulates their lifetime by recruiting leupaxin, which controls PTP-PEST activity and thereby paxillin phosphorylation and downstream signaling.
Collapse
Affiliation(s)
- Sarah Klapproth
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Thomas Bromberger
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Clara Türk
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - Markus Moser
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany .,Institute of Experimental Hematology, Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| |
Collapse
|
18
|
Rafiq NBM, Grenci G, Lim CK, Kozlov MM, Jones GE, Viasnoff V, Bershadsky AD. Forces and constraints controlling podosome assembly and disassembly. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180228. [PMID: 31431172 DOI: 10.1098/rstb.2018.0228] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Podosomes are a singular category of integrin-mediated adhesions important in the processes of cell migration, matrix degradation and cancer cell invasion. Despite a wealth of biochemical studies, the effects of mechanical forces on podosome integrity and dynamics are poorly understood. Here, we show that podosomes are highly sensitive to two groups of physical factors. First, we describe the process of podosome disassembly induced by activation of myosin-IIA filament assembly. Next, we find that podosome integrity and dynamics depends upon membrane tension and can be experimentally perturbed by osmotic swelling and deoxycholate treatment. We have also found that podosomes can be disrupted in a reversible manner by single or cyclic radial stretching of the substratum. We show that disruption of podosomes induced by osmotic swelling is independent of myosin-II filaments. The inhibition of the membrane sculpting protein, dynamin-II, but not clathrin, resulted in activation of myosin-IIA filament formation and disruption of podosomes. The effect of dynamin-II inhibition on podosomes was, however, independent of myosin-II filaments. Moreover, formation of organized arrays of podosomes in response to microtopographic cues (the ridges with triangular profile) was not accompanied by reorganization of myosin-II filaments. Thus, mechanical elements such as myosin-II filaments and factors affecting membrane tension/sculpting independently modulate podosome formation and dynamics, underlying a versatile response of these adhesion structures to intracellular and extracellular cues. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.
Collapse
Affiliation(s)
- Nisha Bte Mohd Rafiq
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.,Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Gianluca Grenci
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.,Biomedical Engineering Department, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Republic of Singapore
| | - Cheng Kai Lim
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Gareth E Jones
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.,CNRS UMI 3639, 5A Engineering Drive 1, Singapore 117411, Republic of Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Republic of Singapore
| | - Alexander D Bershadsky
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
19
|
Neugebauer J, Heilig J, Hosseinibarkooie S, Ross BC, Mendoza-Ferreira N, Nolte F, Peters M, Hölker I, Hupperich K, Tschanz T, Grysko V, Zaucke F, Niehoff A, Wirth B. Plastin 3 influences bone homeostasis through regulation of osteoclast activity. Hum Mol Genet 2019; 27:4249-4262. [PMID: 30204862 DOI: 10.1093/hmg/ddy318] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/03/2018] [Indexed: 12/22/2022] Open
Abstract
Over 200 million people suffer from osteoporosis worldwide, one third of which will develop osteoporotic bone fractures. Unfortunately, no effective cure exists. Mutations in plastin 3 (PLS3), an F-actin binding and bundling protein, cause X-linked primary osteoporosis in men and predisposition to osteoporosis in postmenopausal women. Moreover, the strongest association so far for osteoporosis in elderly women after menopause was connected to a rare SNP in PLS3, indicating a possible role of PLS3 in complex osteoporosis as well. Interestingly, 5% of the general population are overexpressing PLS3, with yet unknown consequences. Here, we studied ubiquitous Pls3 knockout and PLS3 overexpression in mice and demonstrate that both conditions influence bone remodeling and structure: while Pls3 knockout mice exhibit osteoporosis, PLS3 overexpressing mice show thickening of cortical bone and increased bone strength. We show that unbalanced PLS3 levels affect osteoclast development and function, by misregulating the NFκB pathway. We found upregulation of RELA (NFκB subunit p65) in PLS3 overexpressing mice-known to stimulate osteoclastogenesis-but strikingly reduced osteoclast resorption. We identify NFκB repressing factor (NKRF) as a novel PLS3 interactor, which increasingly translocates to the nucleus when PLS3 is overexpressed. We show that NKRF binds to the NFκB downstream target and master regulator of osteoclastogenesis nuclear factor of activated T cells 1 (Nfatc1), thereby reducing its transcription and suppressing osteoclast function. We found the opposite in Pls3 knockout osteoclasts, where decreased nuclear NKRF augmented Nfatc1 transcription, causing osteoporosis. Regulation of osteoclastogenesis and bone remodeling via the PLS3-NKRF-NFκB-NFATC1 axis unveils a novel possibility to counteract osteoporosis.
Collapse
Affiliation(s)
- Janine Neugebauer
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Juliane Heilig
- Institute of Biomechanics & Orthopaedics, German Sport University Cologne, Cologne Center for Musculoskeletal Biomechanics, University of Cologne, Cologne, Germany
| | - Seyyedmohsen Hosseinibarkooie
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Bryony C Ross
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Natalia Mendoza-Ferreira
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Franziska Nolte
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Miriam Peters
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany.,Endocrine Research Unit, Medical Clinic and Policlinic IV, Hospital of the University of Munich, Munich, Germany
| | - Irmgard Hölker
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Kristina Hupperich
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Theresa Tschanz
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Vanessa Grysko
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Frank Zaucke
- Orthopaedic University Hospital Friedrichsheim, Frankfurt am Main, Germany
| | - Anja Niehoff
- Institute of Biomechanics & Orthopaedics, German Sport University Cologne, Cologne Center for Musculoskeletal Biomechanics, University of Cologne, Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
20
|
Han G, Zuo J, Holliday LS. Specialized Roles for Actin in Osteoclasts: Unanswered Questions and Therapeutic Opportunities. Biomolecules 2019; 9:biom9010017. [PMID: 30634501 PMCID: PMC6359508 DOI: 10.3390/biom9010017] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 12/11/2022] Open
Abstract
Osteoclasts are cells of the hematopoietic lineage that are specialized to resorb bone. In osteoclasts, the actin cytoskeleton engages in at least two unusual activities that are required for resorption. First, microfilaments form a dynamic and structurally elaborate actin ring. Second, microfilaments bind vacuolar H⁺-ATPase (V-ATPase) and are involved in forming the V-ATPase-rich ruffled plasma membrane. The current review examines these two specialized functions with emphasis on the identification of new therapeutic opportunities. The actin ring is composed of substructures called podosomes that are interwoven to form a cohesive superstructure. Studies examining the regulation of the formation of actin rings and its constituent proteins are reviewed. Areas where there are gaps in the knowledge are highlighted. Microfilaments directly interact with the V-ATPase through an actin binding site in the B2-subunit of V-ATPase. This binding interaction is required for ruffled membrane formation. Recent studies show that an inhibitor of the interaction blocks bone resorption in pre-clinical animal models, including a model of post-menopausal osteoporosis. Because the unusual actin-based resorption complex is unique to osteoclasts and essential for bone resorption, it is likely that deeper understanding of its underlying mechanisms will lead to new approaches to treat bone disease.
Collapse
Affiliation(s)
- Guanghong Han
- Department of Stomatology, College and Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Jian Zuo
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA.
| | - Lexie Shannon Holliday
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA.
- Department of Anatomy & Cell Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
21
|
Cheng Y, Jiang S, Yuan J, Liu J, Simoncini T. Vascular endothelial growth factor C promotes cervical cancer cell invasiveness via regulation of microRNA-326/cortactin expression. Gynecol Endocrinol 2018; 34:853-858. [PMID: 29658350 DOI: 10.1080/09513590.2018.1458304] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Vascular endothelial growth factor C (VEGF-C) accelerates cervical cancer metastasis, while the detailed mechanism remains largely unknown. Recent evidence indicates that microRNA play a crucial role in controlling cancer cell invasiveness. In the present study, we investigated the role of miR-326 in VEGF-C-induced cervical cancer cell invasion. VEGF-C expression was higher and miR-326 was much lower in primary cervical cancer specimens than that in non-cancerous specimens, and a negative correlation between VEGF-C and miR-326 was found. On cervical carcinoma cell line SiHa cells, treatment with VEGF-C downregulated miR-326 level and increased cortactin protein expression. Transfection with miR-326 mimic reversed cortactin expression induced by VEGF-C, suggesting that VEGF-C increased cortactin via downregulation of miR-326. VEGF-C activated c-Src and c-Src inhibitor PP2 abolished VEGF-C effect on miR-326 and cortactin expression, implying that VEGF-C regulated miR-326/cortactin via c-Src signaling. VEGF-C promoted SiHa cell invasion index, which was largely inhibited by transfection with miR-326 antagonist or by siRNA against cortactin. In conclusion, our findings implied that VEGF-C reduced miR-326 expression and increased cortactin expression through c-Src signaling, leading to enhanced cervical cancer invasiveness. This may shed light on potential therapeutic strategies for cervical cancer therapy.
Collapse
Affiliation(s)
- Yang Cheng
- a Department of Gynecology and Obstetrics , Guangzhou First People's Hospital , Guangdong , Guangzhou , China
| | - Shuyi Jiang
- a Department of Gynecology and Obstetrics , Guangzhou First People's Hospital , Guangdong , Guangzhou , China
| | - Jin Yuan
- a Department of Gynecology and Obstetrics , Guangzhou First People's Hospital , Guangdong , Guangzhou , China
| | - Junxiu Liu
- b Department of Gynecology and Obstetrics , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , Guangdong Province , China
| | - Tommaso Simoncini
- c Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| |
Collapse
|
22
|
Ku B, Yun HY, Lee KW, Shin HC, Lee SR, Kim CH, Park H, Yi KY, Lee CH, Kim SJ. Identification of N-(5-(phenoxymethyl)-1,3,4-thiadiazol-2-yl)acetamide derivatives as novel protein tyrosine phosphatase epsilon inhibitors exhibiting anti-osteoclastic activity. Bioorg Med Chem 2018; 26:5204-5211. [PMID: 30249496 DOI: 10.1016/j.bmc.2018.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 01/06/2023]
Abstract
Cytosolic protein tyrosine phosphatase epsilon (cyt-PTPε) plays a central role in controlling differentiation and function of osteoclasts, whose overactivation causes osteoporosis. Based on our previous study reporting a number of cyt-PTPε inhibitory chemical compounds, we carried out a further and extended analysis of our compounds to examine their effects on cyt-PTPε-mediated dephosphorylation and on osteoclast organization and differentiation. Among five compounds showing target selectivity to cyt-PTPε over three other phosphatases in vitro, two compounds exhibited an inhibitory effect against the dephosphorylation of cellular Src protein, the cyt-PTPε substrate. Moreover, these two compounds caused destabilization of the podosome structure that is necessary for the bone-resorbing activity of osteoclasts, and also attenuated cellular differentiation of monocytes into osteoclasts, without affecting cell viability. Therefore, these findings not only verified anti-osteoclastic effects of our cyt-PTPε inhibitory compounds, but also showed that cyt-PTPε expressed in osteoclasts could be a putative therapeutic target worth considering.
Collapse
Affiliation(s)
- Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; Department of Bioscience, University of Science and Technology KRIBB School, Daejeon 34113, Republic of Korea
| | - Hye-Yeoung Yun
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; Department of Bioscience, University of Science and Technology KRIBB School, Daejeon 34113, Republic of Korea
| | - Kyung Won Lee
- Center for Information-Based Drug Research, Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea; Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Ho-Chul Shin
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Chang Hyen Kim
- Department of Oral and Maxillofacial Surgery, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Kyu Yang Yi
- Center for Information-Based Drug Research, Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Chang Hoon Lee
- Center for Information-Based Drug Research, Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea; Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; Department of Bioscience, University of Science and Technology KRIBB School, Daejeon 34113, Republic of Korea.
| |
Collapse
|
23
|
Lee J, Son HS, Lee HI, Lee GR, Jo YJ, Hong SE, Kim N, Kwon M, Kim NY, Kim HJ, Lee YJ, Seo EK, Jeong W. Skullcapflavone II inhibits osteoclastogenesis by regulating reactive oxygen species and attenuates the survival and resorption function of osteoclasts by modulating integrin signaling. FASEB J 2018; 33:2026-2036. [PMID: 30216110 DOI: 10.1096/fj.201800866rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many bone diseases, such as osteoporosis and rheumatoid arthritis, are attributed to an increase in osteoclast number or activity; therefore, control of osteoclasts has significant clinical implications. This study shows how skullcapflavone II (SFII), a flavonoid with anti-inflammatory activity, regulates osteoclast differentiation, survival, and function. SFII inhibited osteoclastogenesis with decreased activation of MAPKs, Src, and cAMP response element-binding protein (CREB), which have been known to be redox sensitive. SFII decreased reactive oxygen species by scavenging them or activating nuclear factor-erythroid 2-related factor 2 (Nrf2), and its effects were partially reversed by hydrogen peroxide cotreatment or Nrf2 deficiency. In addition, SFII attenuated survival, migration, and bone resorption, with a decrease in the expression of integrin β3, Src, and p130 Crk-associated substrate, and the activation of RhoA and Rac1 in differentiated osteoclasts. Furthermore, SFII inhibited osteoclast formation and bone loss in an inflammation- or ovariectomy-induced osteolytic mouse model. These findings suggest that SFII inhibits osteoclastogenesis through redox regulation of MAPKs, Src, and CREB and attenuates the survival and resorption function by modulating the integrin pathway in osteoclasts. SFII has therapeutic potential in the treatment and prevention of bone diseases caused by excessive osteoclast activity.-Lee, J., Son, H. S., Lee, H. I., Lee, G.-R., Jo, Y.-J., Hong, S.-E., Kim, N., Kwon, M., Kim, N. Y., Kim, H. J., Lee, Y. J., Seo, E. K., Jeong, W. Skullcapflavone II inhibits osteoclastogenesis by regulating reactive oxygen species and attenuates the survival and resorption function of osteoclasts by modulating integrin signaling.
Collapse
Affiliation(s)
- Jiae Lee
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Han Saem Son
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Hye In Lee
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Gong-Rak Lee
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - You-Jin Jo
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Seong-Eun Hong
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Narae Kim
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Minjeong Kwon
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Nam Young Kim
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Hyun Jin Kim
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Yoo Jin Lee
- College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Eun Kyoung Seo
- College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Woojin Jeong
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
24
|
Pereira M, Petretto E, Gordon S, Bassett JHD, Williams GR, Behmoaras J. Common signalling pathways in macrophage and osteoclast multinucleation. J Cell Sci 2018; 131:131/11/jcs216267. [PMID: 29871956 DOI: 10.1242/jcs.216267] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Macrophage cell fusion and multinucleation are fundamental processes in the formation of multinucleated giant cells (MGCs) in chronic inflammatory disease and osteoclasts in the regulation of bone mass. However, this basic cell phenomenon is poorly understood despite its pathophysiological relevance. Granulomas containing multinucleated giant cells are seen in a wide variety of complex inflammatory disorders, as well as in infectious diseases. Dysregulation of osteoclastic bone resorption underlies the pathogenesis of osteoporosis and malignant osteolytic bone disease. Recent reports have shown that the formation of multinucleated giant cells and osteoclast fusion display a common molecular signature, suggesting shared genetic determinants. In this Review, we describe the background of cell-cell fusion and the similar origin of macrophages and osteoclasts. We specifically focus on the common pathways involved in osteoclast and MGC fusion. We also highlight potential approaches that could help to unravel the core mechanisms underlying bone and granulomatous disorders in humans.
Collapse
Affiliation(s)
- Marie Pereira
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| | - Enrico Petretto
- Duke-NUS Medical School, Singapore 169857, Republic of Singapore
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City 33302, Taiwan.,Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Jacques Behmoaras
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| |
Collapse
|
25
|
Bone degradation machinery of osteoclasts: An HIV-1 target that contributes to bone loss. Proc Natl Acad Sci U S A 2018; 115:E2556-E2565. [PMID: 29463701 DOI: 10.1073/pnas.1713370115] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bone deficits are frequent in HIV-1-infected patients. We report here that osteoclasts, the cells specialized in bone resorption, are infected by HIV-1 in vivo in humanized mice and ex vivo in human joint biopsies. In vitro, infection of human osteoclasts occurs at different stages of osteoclastogenesis via cell-free viruses and, more efficiently, by transfer from infected T cells. HIV-1 infection markedly enhances adhesion and osteolytic activity of human osteoclasts by modifying the structure and function of the sealing zone, the osteoclast-specific bone degradation machinery. Indeed, the sealing zone is broader due to F-actin enrichment of its basal units (i.e., the podosomes). The viral protein Nef is involved in all HIV-1-induced effects partly through the activation of Src, a regulator of podosomes and of their assembly as a sealing zone. Supporting these results, Nef-transgenic mice exhibit an increased osteoclast density and bone defects, and osteoclasts derived from these animals display high osteolytic activity. Altogether, our study evidences osteoclasts as host cells for HIV-1 and their pathological contribution to bone disorders induced by this virus, in part via Nef.
Collapse
|
26
|
Abstract
Actin remodeling plays an essential role in diverse cellular processes such as cell motility, vesicle trafficking or cytokinesis. The scaffold protein and actin nucleation promoting factor Cortactin is present in virtually all actin-based structures, participating in the formation of branched actin networks. It has been involved in the control of endocytosis, and vesicle trafficking, axon guidance and organization, as well as adhesion, migration and invasion. To migrate and invade through three-dimensional environments, cells have developed specialized actin-based structures called invadosomes, a generic term to designate invadopodia and podosomes. Cortactin has emerged as a critical regulator of invadosome formation, function and disassembly. Underscoring this role, Cortactin is frequently overexpressed in several types of invasive cancers. Herein we will review the roles played by Cortactin in these specific invasive structures.
Collapse
Affiliation(s)
- Pauline Jeannot
- CRCT INSERM UMR1037, Université Toulouse III Paul Sabatier , CNRS ERL5294, Toulouse, France.,Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester , Manchester M20 4BX, UK
| | - Arnaud Besson
- CRCT INSERM UMR1037, Université Toulouse III Paul Sabatier , CNRS ERL5294, Toulouse, France.,LBCMCP , Centre de Biologie Intégrative, Université de Toulouse , CNRS, UPS, Toulouse Cedex, France
| |
Collapse
|
27
|
Castillo LM, Guerrero CA, Acosta O. Expression of typical osteoclast markers by PBMCs after PEG-induced fusion as a model for studying osteoclast differentiation. J Mol Histol 2017; 48:169-185. [PMID: 28343338 DOI: 10.1007/s10735-017-9717-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/20/2017] [Indexed: 01/27/2023]
Abstract
Bone is a metabolically active organ subjected to continuous remodeling process that involves resorption by osteoclast and subsequent formation by osteoblasts. Osteoclast involvement in this physiological event is regulated by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor κB ligand (RANKL). Fusion of mono-nuclear pre-osteoclasts is a critical event for osteoclast differentiation and for bone resorption. Here we show that PBMCs can be successfully fused with polyethylenglicol (PEG) in order to generated viable osteoclast-like cells that exhibit tartrate-resistant acid phosphatase (TRAP) and bone resorptive activities. PEG-fused PBMCs expressed additional markers compatible with osteoclastogenic differentiation such as carbonic anhydrase II (CAII), calcitonin receptor (CR), cathepsin K (Cat K), vacuolar ATPase (V-ATPase) subunit C1 (V-ATPase), integrin β3, RANK and cell surface aminopeptidase N/CD13. Actin redistribution in PEG-fused cells was found to be affected by cell cycle synchronization at G0/G1 or G2/M phases. PEG-induced fusion also led to expression of tyrosine kinases c-Src and Syk in their phosphorylated state. Scanning electron microscopy images showed morphological features typical of osteoclast-like cells. The results here shown allow concluding that PEG-induced fusion of PBMCs provides a suitable model system for understanding the mechanisms involved in osteoclastogenesis and for assaying new therapeutic strategies.
Collapse
Affiliation(s)
- Luz M Castillo
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos A Guerrero
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Orlando Acosta
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
28
|
Yun H, Ku B, Lee HS, Shin H, Park J, Kim CH, Kim SJ. The Discovery of Novel Protein Tyrosine Phosphatase ε Inhibitors Using a High‐throughput Screening Approach. B KOREAN CHEM SOC 2017; 38:44-53. [DOI: 10.1002/bkcs.11044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein tyrosine phosphatase epsilon (PTPε) is important for signal transduction in osteoclasts, and is considered to be an attractive drug target for the treatment of osteoporosis. We identified 11 potent PTPε inhibitors based on three chemical scaffolds through the high‐throughput screening of a chemical library. As these compounds are structurally diverse with high bioavailability, they warrant further investigation in the near future. The discovery of these inhibitors and the relationship between their structure and inhibitory activity toward PTPε is discussed in detail.
Collapse
Affiliation(s)
- Hye‐Yeoung Yun
- Disease Target Structure Research Center Korea Research Institute of Bioscience and Biotechnology Daejeon 34141 Republic of Korea
- Department of Bio‐Analytical Science University of Science and Technology Daejeon 34113 Republic of Korea
| | - Bonsu Ku
- Disease Target Structure Research Center Korea Research Institute of Bioscience and Biotechnology Daejeon 34141 Republic of Korea
- Department of Bio‐Analytical Science University of Science and Technology Daejeon 34113 Republic of Korea
| | - Hye Seon Lee
- Disease Target Structure Research Center Korea Research Institute of Bioscience and Biotechnology Daejeon 34141 Republic of Korea
| | - Ho‐Chul Shin
- Disease Target Structure Research Center Korea Research Institute of Bioscience and Biotechnology Daejeon 34141 Republic of Korea
| | - Jun‐Beom Park
- Department of Periodontics, Seoul St Mary's Hospital The Catholic University of Korea Seoul 137‐701 Republic of Korea
| | - Chang Hyen Kim
- Department of Oral and Maxillofacial Surgery, Seoul St Mary's Hospital The Catholic University of Korea Seoul 137‐701 Republic of Korea
| | - Seung Jun Kim
- Disease Target Structure Research Center Korea Research Institute of Bioscience and Biotechnology Daejeon 34141 Republic of Korea
- Department of Bio‐Analytical Science University of Science and Technology Daejeon 34113 Republic of Korea
| |
Collapse
|
29
|
Zalli D, Neff L, Nagano K, Shin NY, Witke W, Gori F, Baron R. The Actin-Binding Protein Cofilin and Its Interaction With Cortactin Are Required for Podosome Patterning in Osteoclasts and Bone Resorption In Vivo and In Vitro. J Bone Miner Res 2016; 31:1701-12. [PMID: 27064822 PMCID: PMC5070801 DOI: 10.1002/jbmr.2851] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/29/2016] [Accepted: 04/08/2016] [Indexed: 11/08/2022]
Abstract
The adhesion of osteoclasts (OCs) to bone and bone resorption require the assembly of specific F-actin adhesion structures, the podosomes, and their dense packing into a sealing zone. The OC-specific formation of the sealing zone requires the interaction of microtubule (MT) + ends with podosomes. Here, we deleted cofilin, a cortactin (CTTN)- and actin-binding protein highly expressed in OCs, to determine if it acts downstream of the MT-CTTN axis to regulate actin polymerization in podosomes. Conditional deletion of cofilin in OCs in mice, driven by the cathepsin K promoter (Ctsk-Cre), impaired bone resorption in vivo, increasing bone density. In vitro, OCs were not able to organize podosomes into peripheral belts. The MT network was disorganized, MT stability was decreased, and cell migration impaired. Active cofilin stabilizes MTs and allows podosome belt formation, whereas MT disruption deactivates cofilin via phosphorylation. Cofilin interacts with CTTN in podosomes and phosphorylation of either protein disrupts this interaction, which is critical for belt stabilization and for the maintenance of MT dynamic instability. Accordingly, active cofilin was required to rescue the OC cytoskeletal phenotype in vitro. These findings suggest that the patterning of podosomes into a sealing zone involves the dynamic interaction between cofilin, CTTN, and the MTs + ends. This interaction is critical for the functional organization of OCs and for bone resorption. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Detina Zalli
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Lynn Neff
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Kenichi Nagano
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Nah Young Shin
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Walter Witke
- Institut für Genetik, Universität Bonn, Bonn, Germany
| | - Francesca Gori
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Roland Baron
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
30
|
Significance of kinase activity in the dynamic invadosome. Eur J Cell Biol 2016; 95:483-492. [PMID: 27465307 DOI: 10.1016/j.ejcb.2016.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 12/19/2022] Open
Abstract
Invadosomes are actin rich protrusive structures that facilitate invasive migration in multiple cell types. Comprised of invadopodia and podosomes, these highly dynamic structures adhere to and degrade the extracellular matrix, and are also thought to play a role in mechanosensing. Many extracellular signals have been implicated in invadosome stimulation, activating complex signalling cascades to drive the formation, activity and turnover of invadosomes. While the structural components of invadosomes have been well studied, the regulation of invadosome dynamics is still poorly understood. Protein kinases are essential to this regulation, affecting all stages of invadosome dynamics and allowing tight spatiotemporal control of their activity. Invadosome organisation and function have been linked to pathophysiological states such as cancer invasion and metastasis; therapeutic targeting of invadosome regulatory components is thus warranted. In this review, we discuss the involvement of kinase signalling in every stage of the invadosome life cycle and evaluate its significance.
Collapse
|
31
|
Kim KJ, Yeon JT, Choi SW, Moon SH, Ryu BJ, Yu R, Park SJ, Kim SH, Son YJ. Decursin inhibits osteoclastogenesis by downregulating NFATc1 and blocking fusion of pre-osteoclasts. Bone 2015. [PMID: 26208796 DOI: 10.1016/j.bone.2015.07.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bone sustains its structure through dynamic interaction between osteoblastic cells and osteoclastic cells. But imbalance may lead to osteoporosis caused by overactivated osteoclast cells that have bone-resorbing function. Recently, herbs have been researched as major sources of medicines in many countries. In vitro and in vivo anti-osteoclastogenic activity of Angelica gigas NAKAI have been reported, but the biological activity of decursin, its major component in osteoclast differentiation is still unknown. Therefore, in this study, we explored whether decursin could affect RANKL-mediated osteoclastogenesis. The results showed that decursin efficiently inhibited RANKL-activated osteoclast differentiation by inhibiting transcriptional and translational expression of NFATc1, a major factor in RANKL-mediated osteoclastogenesis. Furthermore, decursin decreased fusion and migration of pre-osteoclasts by downregulating mRNA expression levels of DC-STAMP and β3 integrin, respectively. In addition, decursin prevents lipopolysaccharide (LPS)-induced bone erosion in vivo. In summary, decursin could prevent osteoclastogenesis and inflammatory bone loss via blockage of NFATc1 activity and fusion and migration of pre-osteoclasts, and it could be developed as a potent phytochemical candidate for treating pathologies of bone diseases.
Collapse
Affiliation(s)
- Kwang-Jin Kim
- Department of Pharmacy, Sunchon National University, Suncheon 540-742, Republic of Korea
| | - Jeong-Tae Yeon
- Research Institute of Basic Science, Sunchon National University, Suncheon 540-742, Republic of Korea
| | - Sik-Won Choi
- Laboratory of Translational Therapeutics, Pharmacology Research Center, Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, Daejeon 305-600, Republic of Korea
| | - Seong-Hee Moon
- Laboratory of Translational Therapeutics, Pharmacology Research Center, Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, Daejeon 305-600, Republic of Korea; Department of Biology, Chungnam National University, Daejeon 305-510, Republic of Korea
| | - Byung Jun Ryu
- Laboratory of Translational Therapeutics, Pharmacology Research Center, Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, Daejeon 305-600, Republic of Korea
| | - Ri Yu
- College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Sang-Joon Park
- College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Seong Hwan Kim
- Laboratory of Translational Therapeutics, Pharmacology Research Center, Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, Daejeon 305-600, Republic of Korea.
| | - Young-Jin Son
- Department of Pharmacy, Sunchon National University, Suncheon 540-742, Republic of Korea.
| |
Collapse
|
32
|
Levaot N, Ottolenghi A, Mann M, Guterman-Ram G, Kam Z, Geiger B. Osteoclast fusion is initiated by a small subset of RANKL-stimulated monocyte progenitors, which can fuse to RANKL-unstimulated progenitors. Bone 2015; 79:21-8. [PMID: 26008608 DOI: 10.1016/j.bone.2015.05.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/09/2015] [Accepted: 05/15/2015] [Indexed: 10/23/2022]
Abstract
Osteoclasts are multinucleated, bone-resorbing cells formed via fusion of monocyte progenitors, a process triggered by prolonged stimulation with RANKL, the osteoclast master regulator cytokine. Monocyte fusion into osteoclasts has been shown to play a key role in bone remodeling and homeostasis; therefore, aberrant fusion may be involved in a variety of bone diseases. Indeed, research in the last decade has led to the discovery of genes regulating osteoclast fusion; yet the basic cellular regulatory mechanism underlying the fusion process is poorly understood. Here, we applied a novel approach for tracking the fusion processes, using live-cell imaging of RANKL-stimulated and non-stimulated progenitor monocytes differentially expressing dsRED or GFP, respectively. We show that osteoclast fusion is initiated by a small (~2.4%) subset of precursors, termed "fusion founders", capable of fusing either with other founders or with non-stimulated progenitors (fusion followers), which alone, are unable to initiate fusion. Careful examination indicates that the fusion between a founder and a follower cell consists of two distinct phases: an initial pairing of the two cells, typically lasting 5-35 min, during which the cells nevertheless maintain their initial morphology; and the fusion event itself. Interestingly, during the initial pre-fusion phase, a transfer of the fluorescent reporter proteins from nucleus to nucleus was noticed, suggesting crosstalk between the founder and follower progenitors via the cytoplasm that might directly affect the fusion process, as well as overall transcriptional regulation in the developing heterokaryon.
Collapse
Affiliation(s)
- Noam Levaot
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Aner Ottolenghi
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Mati Mann
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Gali Guterman-Ram
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Zvi Kam
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
33
|
Georgess D, Machuca-Gayet I, Blangy A, Jurdic P. Podosome organization drives osteoclast-mediated bone resorption. Cell Adh Migr 2015; 8:191-204. [PMID: 24714644 DOI: 10.4161/cam.27840] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Osteoclasts are the cells responsible for physiological bone resorption. A specific organization of their most prominent cytoskeletal structures, podosomes, is crucial for the degradation of mineralized bone matrix. Each podosome is constituted of an F-actin-enriched central core surrounded by a loose F-actin network, called the podosome cloud. In addition to intrinsic actin dynamics, podosomes are defined by their adhesion to the extracellular matrix, mainly via core-linking CD44 and cloud-linking integrins. These properties allow podosomes to collectively evolve into different patterns implicated in migration and bone resorption. Indeed, to resorb bone, osteoclasts polarize, actively secrete protons, and proteases into the resorption pit where these molecules are confined by a podosome-containing sealing zone. Here, we review recent advancements on podosome structure and regulatory pathways in osteoclasts. We also discuss the distinct functions of different podosome patterns during the lifespan of a single osteoclast.
Collapse
Affiliation(s)
- Dan Georgess
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Ecole Normale Supérieure de Lyon; Lyon, France
| | - Irma Machuca-Gayet
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Ecole Normale Supérieure de Lyon; Lyon, France
| | - Anne Blangy
- Centre de Recherche de Biochimie Macromoléculaire; CNRS UMR 5237; Montpellier University; Montpellier, France
| | - Pierre Jurdic
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Ecole Normale Supérieure de Lyon; Lyon, France
| |
Collapse
|
34
|
Jiang H, Sui Y, Cui Y, Lin P, Li W, Xing S, Wang D, Hu M, Fu X. Expression, purification, and characterization of human osteoclastic protein-tyrosine phosphatase catalytic domain in Escherichia coli. Protein Expr Purif 2015; 107:7-12. [DOI: 10.1016/j.pep.2014.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/10/2014] [Accepted: 11/16/2014] [Indexed: 10/24/2022]
|
35
|
Itzstein C, Coxon FP, Rogers MJ. The regulation of osteoclast function and bone resorption by small GTPases. Small GTPases 2014; 2:117-130. [PMID: 21776413 DOI: 10.4161/sgtp.2.3.16453] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/22/2011] [Accepted: 05/10/2011] [Indexed: 01/11/2023] Open
Abstract
Osteoclasts are multinucleated cells that are responsible for resorption of bone, and increased activity of these cells is associated with several common bone diseases, including postmenopausal osteoporosis. Upon adhesion to bone, osteoclasts become polarized and reorganise their cytoskeleton and membrane to form unique domains including the sealing zone (SZ), which is a dense ring of F-actin-rich podosomes delimiting the ruffled border (RB), where protons and proteases are secreted to demineralise and degrade the bone matrix, respectively. These processes are dependent on the activity of small GTPases. Rho GTPases are well known to control the organization of F-actin and adhesion structures of different cell types, affecting subsequently their migration. In osteoclasts, RhoA, Rac, Cdc42, RhoU and also Arf6 regulate podosome assembly and their organization into the SZ. By contrast, the formation of the RB involves vesicular trafficking pathways that are regulated by the Rab family of GTPases, in particular lysosomal Rab7. Finally, osteoclast survival is dependent on the activity of Ras GTPases. The correct function of almost all these GTPases is absolutely dependent on post-translational prenylation, which enables them to localize to specific target membranes. Bisphosphonate drugs, which are widely used in the treatment of bone diseases such as osteoporosis, act by preventing the prenylation of small GTPases, resulting in the loss of the SZ and RB and therefore inhibition of osteoclast activity, as well as inducing osteoclast apoptosis. In this review we summarize current understanding of the role of specific prenylated small GTPases in osteoclast polarization, function and survival.
Collapse
Affiliation(s)
- Cecile Itzstein
- Musculoskeletal Research Programme; Institute of Medical Sciences; University of Aberdeen; Aberdeen, Scotland UK
| | | | | |
Collapse
|
36
|
Song R, Gu J, Liu X, Zhu J, Wang Q, Gao Q, Zhang J, Cheng L, Tong X, Qi X, Yuan Y, Liu Z. Inhibition of osteoclast bone resorption activity through osteoprotegerin-induced damage of the sealing zone. Int J Mol Med 2014; 34:856-62. [PMID: 25017214 DOI: 10.3892/ijmm.2014.1846] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 07/02/2014] [Indexed: 11/06/2022] Open
Abstract
Bone remodeling is dependent on the dynamic equilibrium between osteoclast-mediated bone resorption and osteoblast-mediated osteogenesis. The sealing zone is an osteoclast-specific cytoskeletal structure, the integrity of which is critical for osteoclast-mediated bone resorption. To date, studies have focused mainly on the osteoprotegerin (OPG)‑induced inhibition of osteoclast differentiation through the OPG/receptor activator of the nuclear factor kappa-B ligand (RANKL)/RANK system, which affects the bone resorption of osteoclasts. However, the effects of OPG on the sealing zone have not been reported to date. In this study, the formation of the sealing zone was observed by Hoffman modulation contrast (HMC) microscopy and confocal laser scanning microscopy. The effects of OPG on the existing sealing zone and osteoclast-mediated bone resorption activity, as well as the regulatory role of genes involved in the formation of the sealing zone were examined by immunofluorescence staining, HMC microscopy, quantitative reverse transcription polymerase chain reaction (RT-qPCR), western blot analysis and scanning electron microscopy. The sealing zone was formed on day 5, with belt-like protuberances at the cell edge and scattered distribution of cell nuclei, but no filopodia. The sealing zone was intact in the untreated control group. However, defects in the sealing zone were observed in the OPG-treated group (20 ng/ml) and the structure was absent in the groups treated with 40 and 80 ng/ml OPG. The podosomes showed a scattered or clustered distribution between the basal surface of the osteoclasts and the well surface. Furthermore, resorption lacunae were not detected in the 20 ng/ml OPG-treated group, indicating the loss of osteoclast-mediated bone resorption activity. Treatment with OPG resulted in a significant decrease in the expression of Arhgef8/Net1 and DOCK5 Rho guanine nucleotide exchange factors (RhoGEFs), 10 of 18 RhoGTPases (RhoA, RhoB, cdc42v1, cdc42v2, RhoU/Wrch1, RhoF/Rif, Rac2, RhoG, Rnd1 and RhoBTB1), ROCK1 and ROCK2. In conclusion, podosome distribution was affected by the OPG-induced inhibition of the expression of genes in the RhoGTPase signaling pathway. This resulted in damage to or destruction of the sealing zone, thus inhibiting osteoclast-mediated bone resorption activity.
Collapse
Affiliation(s)
- Ruilong Song
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Qichao Wang
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Qian Gao
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Jiaming Zhang
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Laiyang Cheng
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Xishuai Tong
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Xinyi Qi
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| |
Collapse
|
37
|
Finkelshtein E, Lotinun S, Levy-Apter E, Arman E, den Hertog J, Baron R, Elson A. Protein tyrosine phosphatases ε and α perform nonredundant roles in osteoclasts. Mol Biol Cell 2014; 25:1808-18. [PMID: 24694598 PMCID: PMC4038506 DOI: 10.1091/mbc.e14-03-0788] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The closely related tyrosine phosphatases PTPa and PTPe fulfill distinct roles in osteoclasts. The various effects of each PTP on podosome organization in osteoclasts are caused by their distinct N-termini. The function of PTPe in these cells requires the presence of its 12 N-terminal residues, in particular serine 2. Female mice lacking protein tyrosine phosphatase ε (PTP ε) are mildly osteopetrotic. Osteoclasts from these mice resorb bone matrix poorly, and the structure, stability, and cellular organization of their podosomal adhesion structures are abnormal. Here we compare the role of PTP ε with that of the closely related PTP α in osteoclasts. We show that bone mass and bone production and resorption, as well as production, structure, function, and podosome organization of osteoclasts, are unchanged in mice lacking PTP α. The varying effects of either PTP on podosome organization in osteoclasts are caused by their distinct N-termini. Osteoclasts express the receptor-type PTP α (RPTPa), which is absent from podosomes, and the nonreceptor form of PTP ε (cyt-PTPe), which is present in these structures. The presence of the unique 12 N-terminal residues of cyt-PTPe is essential for podosome regulation; attaching this sequence to the catalytic domains of PTP α enables them to function in osteoclasts. Serine 2 within this sequence regulates cyt-PTPe activity and its effects on podosomes. We conclude that PTPs α and ε play distinct roles in osteoclasts and that the N-terminus of cyt-PTPe, in particular serine 2, is critical for its function in these cells.
Collapse
Affiliation(s)
- Eynat Finkelshtein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sutada Lotinun
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115
| | - Einat Levy-Apter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Esther Arman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jeroen den Hertog
- Hubrecht Institute-Koninklijke Nederlandse Akademie van Wetenschappen and University Medical Center Utrecht, 3584 CX Utrecht, NetherlandsInstitute of Biology Leiden, Leiden University, 2333 BE Leiden, Netherlands
| | - Roland Baron
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115
| | - Ari Elson
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
38
|
Burger KL, Learman BS, Boucherle AK, Sirintrapun SJ, Isom S, Díaz B, Courtneidge SA, Seals DF. Src-dependent Tks5 phosphorylation regulates invadopodia-associated invasion in prostate cancer cells. Prostate 2014; 74:134-48. [PMID: 24174371 PMCID: PMC4083496 DOI: 10.1002/pros.22735] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 09/05/2013] [Indexed: 11/07/2022]
Abstract
BACKGROUND The Src tyrosine kinase substrate and adaptor protein Tks5 had previously been implicated in the invasive phenotype of normal and transformed cell types via regulation of cytoskeletal structures called podosomes/invadopodia. The role of Src-Tks5 signaling in invasive prostate cancer, however, had not been previously evaluated. METHODS We measured the relative expression of Tks5 in normal (n = 20) and cancerous (n = 184, from 92 patients) prostate tissue specimens by immunohistochemistry using a commercially available tumor microarray. We also manipulated the expression and activity of wild-type and mutant Src and Tks5 constructs in the LNCaP and PC-3 prostate cancer cell lines in order to ascertain the role of Src-Tks5 signaling in invadopodia development, matrix-remodeling activity, motility, and invasion. RESULTS Our studies demonstrated that Src was activated and Tks5 upregulated in high Gleason score prostate tumor specimens and in invasive prostate cancer cell lines. Remarkably, overexpression of Tks5 in LNCaP cells was sufficient to induce invadopodia formation and associated matrix degradation. This Tks5-dependent increase in invasive behavior further depended on Src tyrosine kinase activity and the phosphorylation of Tks5 at tyrosine residues 557 and 619. In PC-3 cells we demonstrated that Tks5 phosphorylation at these sites was necessary and sufficient for invadopodia-associated matrix degradation and invasion. CONCLUSIONS Our results suggest a general role for Src-Tks5 signaling in prostate tumor progression and the utility of Tks5 as a marker protein for the staging of this disease.
Collapse
Affiliation(s)
- Karen L. Burger
- Department of Cancer Biology, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Brian S. Learman
- Department of Cancer Biology, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Amy K. Boucherle
- Department of Cancer Biology, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - S. Joseph Sirintrapun
- Department of Pathology, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Scott Isom
- Department of Biostatistical Sciences, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Begoña Díaz
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California
| | - Sara A. Courtneidge
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California
| | - Darren F. Seals
- Department of Biology, Appalachian State University, Boone, North Carolina
| |
Collapse
|
39
|
Nagai Y, Osawa K, Fukushima H, Tamura Y, Aoki K, Ohya K, Yasuda H, Hikiji H, Takahashi M, Seta Y, Seo S, Kurokawa M, Kato S, Honda H, Nakamura I, Maki K, Jimi E. p130Cas, Crk-associated substrate, plays important roles in osteoclastic bone resorption. J Bone Miner Res 2013; 28:2449-62. [PMID: 23526406 DOI: 10.1002/jbmr.1936] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/18/2013] [Accepted: 03/04/2013] [Indexed: 11/08/2022]
Abstract
p130Cas, Crk-associated substrate (Cas), is an adaptor/scaffold protein that plays a central role in actin cytoskeletal reorganization. We previously reported that p130Cas is not tyrosine-phosphorylated in osteoclasts derived from Src-deficient mice, which are congenitally osteopetrotic, suggesting that p130Cas serves as a downstream molecule of c-Src and is involved in osteoclastic bone resorption. However, the physiological role of p130Cas in osteoclasts has not yet been confirmed because the p130Cas-deficient mice displayed embryonic lethality. Osteoclast-specific p130Cas conditional knockout (p130Cas(ΔOCL-) ) mice exhibit a high bone mass phenotype caused by defect in multinucleation and cytoskeleton organization causing bone resorption deficiency. Bone marrow cells from p130Cas(ΔOCL-) mice were able to differentiate into osteoclasts and wild-type cells in vitro. However, osteoclasts from p130Cas(ΔOCL-) mice failed to form actin rings and resorb pits on dentine slices. Although the initial events of osteoclast attachment, such as β3-integrin or Src phosphorylation, were intact, the Rac1 activity that organizes the actin cytoskeleton was reduced, and its distribution was disrupted in p130Cas(ΔOCL-) osteoclasts. Dedicator of cytokinesis 5 (Dock5), a Rho family guanine nucleotide exchanger, failed to associate with Src or Pyk2 in osteoclasts in the absence of p130Cas. These results strongly indicate that p130Cas plays pivotal roles in osteoclastic bone resorption.
Collapse
Affiliation(s)
- Yoshie Nagai
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Fukuoka, Japan; Division of Developmental Stomatognathic Function Science, Department of Health Improvement, Kyushu Dental University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Georgess D, Mazzorana M, Terrado J, Delprat C, Chamot C, Guasch RM, Pérez-Roger I, Jurdic P, Machuca-Gayet I. Comparative transcriptomics reveals RhoE as a novel regulator of actin dynamics in bone-resorbing osteoclasts. Mol Biol Cell 2013; 25:380-96. [PMID: 24284899 PMCID: PMC3907278 DOI: 10.1091/mbc.e13-07-0363] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Two-step transcriptomic profiling of bone-resorbing OCs versus nonresorbing MGCs generated a list of 115 genes potentially involved in bone resorption. Of these, RhoE was investigated. Its role in podosome dynamics is central for OC migration, SZ formation, and, ultimately, bone resorption. The function of osteoclasts (OCs), multinucleated giant cells (MGCs) of the monocytic lineage, is bone resorption. To resorb bone, OCs form podosomes. These are actin-rich adhesive structures that pattern into rings that drive OC migration and into “sealing-zones” (SZs) that confine the resorption lacuna. Although changes in actin dynamics during podosome patterning have been documented, the mechanisms that regulate these changes are largely unknown. From human monocytic precursors, we differentiated MGCs that express OC degradation enzymes but are unable to resorb the mineral matrix. We demonstrated that, despite exhibiting bona fide podosomes, these cells presented dysfunctional SZs. We then performed two-step differential transcriptomic profiling of bone-resorbing OCs versus nonresorbing MGCs to generate a list of genes implicated in bone resorption. From this list of candidate genes, we investigated the role of Rho/Rnd3. Using primary RhoE-deficient OCs, we demonstrated that RhoE is indispensable for OC migration and bone resorption by maintaining fast actin turnover in podosomes. We further showed that RhoE activates podosome component cofilin by inhibiting its Rock-mediated phosphorylation. We conclude that the RhoE-Rock-cofilin pathway, by promoting podosome dynamics and patterning, is central for OC migration, SZ formation, and, ultimately, bone resorption.
Collapse
Affiliation(s)
- Dan Georgess
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, Lyon Cedex 07, France Laboratoire de Biologie Moléculaire de la Cellule, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, Lyon Cedex 07, France Departamento Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad CEU Cardenal Herrera, 46115 Alfara del Patriarca, Valencia, Spain Plateau Technique Imagerie/Microscopie Facility, SFR Biosciences (UMS3444/US8), Ecole Normale Supérieure de Lyon, Lyon Cedex 07, France Laboratory of Cellular Pathology, 46012 Valencia, Spain Departamento Ciencias Biomédicas-Seminario Salud, 46113 Moncada, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Microtubule dynamic instability controls podosome patterning in osteoclasts through EB1, cortactin, and Src. Mol Cell Biol 2013; 34:16-29. [PMID: 24144981 DOI: 10.1128/mcb.00578-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In osteoclasts (OCs) podosomes are organized in a belt, a feature critical for bone resorption. Although microtubules (MTs) promote the formation and stability of the belt, the MT and/or podosome molecules that mediate the interaction of the two systems are not identified. Because the growing "plus" ends of MTs point toward the podosome belt, plus-end tracking proteins (+TIPs) might regulate podosome patterning. Among the +TIPs, EB1 increased as OCs matured and was enriched in the podosome belt, and EB1-positive MTs targeted podosomes. Suppression of MT dynamic instability, displacement of EB1 from MT ends, or EB1 depletion resulted in the loss of the podosome belt. We identified cortactin as an Src-dependent interacting partner of EB1. Cortactin-deficient OCs presented a defective MT targeting to, and patterning of, podosomes and reduced bone resorption. Suppression of MT dynamic instability or EB1 depletion increased cortactin phosphorylation, decreasing its acetylation and affecting its interaction with EB1. Thus, dynamic MTs and podosomes interact to control bone resorption.
Collapse
|
42
|
Schachtner H, Calaminus SDJ, Thomas SG, Machesky LM. Podosomes in adhesion, migration, mechanosensing and matrix remodeling. Cytoskeleton (Hoboken) 2013; 70:572-89. [PMID: 23804547 DOI: 10.1002/cm.21119] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/07/2013] [Accepted: 06/13/2013] [Indexed: 12/30/2022]
Abstract
Cells use various actin-based motile structures to allow them to move across and through matrix of varying density and composition. Podosomes are actin cytoskeletal structures that form in motile cells and that mediate adhesion to substrate, migration, and other specialized functions such as transmigration through cell and matrix barriers. The podosome is a unique and interesting entity, which appears in the light microscope as an individual punctum, but is linked to other podosomes like a node on a network of the underlying cytoskeleton. Here, we discuss the signals that control podosome assembly and dynamics in different cell types and the actin organising proteins that regulate both the inner actin core and integrin-rich surrounding ring structures. We review the structure and composition of podosomes and also their functions in various cell types of both myeloid and endothelial lineage. We also discuss the emerging idea that podosomes can sense matrix stiffness and enable cells to respond to their environment.
Collapse
Affiliation(s)
- Hannah Schachtner
- CRUK Beatson Institute for Cancer Research and College of Medical, Veterinary and Life Sciences, Glasgow University, Garscube Campus, Switchback Rd., Bearsden, Glasgow, United Kingdom
| | | | | | | |
Collapse
|
43
|
Vérollet C, Gallois A, Dacquin R, Lastrucci C, Pandruvada SNM, Ortega N, Poincloux R, Behar A, Cougoule C, Lowell C, Al Saati T, Jurdic P, Maridonneau-Parini I. Hck contributes to bone homeostasis by controlling the recruitment of osteoclast precursors. FASEB J 2013; 27:3608-18. [PMID: 23742809 DOI: 10.1096/fj.13-232736] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In osteoclasts, Src controls podosome organization and bone degradation, which leads to an osteopetrotic phenotype in src(-/-) mice. Since this phenotype was even more severe in src(-/-)hck(-/-) mice, we examined the individual contribution of Hck in bone homeostasis. Compared to wt mice, hck(-/-) mice exhibited an osteopetrotic phenotype characterized by an increased density of trabecular bone and decreased bone degradation, although osteoclastogenesis was not impaired. Podosome organization and matrix degradation were found to be defective in hck(-/-) osteoclast precursors (preosteoclast) but were normal in mature hck(-/-) osteoclasts, probably through compensation by Src, which was specifically overexpressed in mature osteoclasts. As a consequence of podosome defects, the 3-dimensional migration of hck(-/-) preosteoclasts was strongly affected in vitro. In vivo, this translated by altered bone homing of preosteoclasts in hck(-/-) mice: in metatarsals of 1-wk-old mice, when bone formation strongly depends on the recruitment of these cells, reduced numbers of osteoclasts and abnormal developing trabecular bone were observed. This phenotype was still detectable in adults. In summmary, Hck is one of the very few effectors of preosteoclast recruitment described to date and thereby plays a critical role in bone remodeling.
Collapse
Affiliation(s)
- Christel Vérollet
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5089, Institut de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Oikawa T, Kuroda Y, Matsuo K. Regulation of osteoclasts by membrane-derived lipid mediators. Cell Mol Life Sci 2013; 70:3341-53. [PMID: 23296124 PMCID: PMC3753467 DOI: 10.1007/s00018-012-1238-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/05/2012] [Accepted: 12/10/2012] [Indexed: 12/22/2022]
Abstract
Osteoclasts are bone-resorbing cells of monocytic origin. An imbalance between bone formation and resorption can lead to osteoporosis or osteopetrosis. Osteoclastogenesis is triggered by RANKL- and IP3-induced Ca2+ influx followed by activation of NFATc1, a master transcription factor for osteoclastogenic gene regulation. During differentiation, osteoclasts undergo cytoskeletal remodeling to migrate and attach to the bone surface. Simultaneously, they fuse with each other to form multinucleated cells. These processes require PI3-kinase-dependent cytoskeletal protein activation to initiate cytoskeletal remodeling, resulting in the formation of circumferential podosomes and fusion-competent protrusions. In multinucleated osteoclasts, circumferential podosomes mature into stabilized actin rings, which enables the formation of a ruffled border where intensive membrane trafficking is executed. Membrane lipids, especially phosphoinositides, are key signaling molecules that regulate osteoclast morphology and act as second messengers and docking sites for multiple important effectors. We examine the critical roles of phosphoinositides in the signaling cascades that regulate osteoclast functions.
Collapse
Affiliation(s)
- Tsukasa Oikawa
- Laboratory of Cell and Tissue Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | | | | |
Collapse
|
45
|
Siddiqui TA, Lively S, Vincent C, Schlichter LC. Regulation of podosome formation, microglial migration and invasion by Ca(2+)-signaling molecules expressed in podosomes. J Neuroinflammation 2012; 9:250. [PMID: 23158496 PMCID: PMC3551664 DOI: 10.1186/1742-2094-9-250] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/25/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Microglia migrate during brain development and after CNS injury, but it is not known how they degrade the extracellular matrix (ECM) to accomplish this. Podosomes are tiny structures with the unique ability to adhere to and dissolve ECM. Podosomes have a two-part architecture: a core that is rich in F-actin and actin-regulatory molecules (for example, Arp2/3), surrounded by a ring with adhesion and structural proteins (for example, talin, vinculin). We recently discovered that the lamellum at the leading edge of migrating microglia contains a large F-actin-rich superstructure ('podonut') composed of many podosomes. Microglia that expressed podosomes could degrade ECM molecules. Finely tuned Ca(2+) signaling is important for cell migration, cell-substrate adhesion and contraction of the actomyosin network. Here, we hypothesized that podosomes contain Ca(2+)-signaling machinery, and that podosome expression and function depend on Ca(2+) influx and specific ion channels. METHODS High-resolution immunocytochemistry was used on rat microglia to identify podosomes and novel molecular components. A pharmacological toolbox was applied to functional assays. We analyzed roles of Ca(2+)-entry pathways and ion channels in podosome expression, microglial migration into a scratch-wound, transmigration through pores in a filter, and invasion through Matrigel™-coated filters. RESULTS Microglial podosomes were identified using well-known components of the core (F-actin, Arp2) and ring (talin, vinculin). We discovered four novel podosome components related to Ca(2+) signaling. The core contained calcium release activated calcium (CRAC; Orai1) channels, calmodulin, small-conductance Ca(2+)-activated SK3 channels, and ionized Ca(2+) binding adapter molecule 1 (Iba1), which is used to identify microglia in the CNS. The Orai1 accessory molecule, STIM1, was also present in and around podosomes. Podosome formation was inhibited by removing external Ca(2+) or blocking CRAC channels. Blockers of CRAC channels inhibited migration and invasion, and SK3 inhibition reduced invasion. CONCLUSIONS Microglia podosome formation, migration and/or invasion require Ca(2+) influx, CRAC, and SK3 channels. Both channels were present in microglial podosomes along with the Ca(2+)-regulated molecules, calmodulin, Iba1 and STIM1. These results suggest that the podosome is a hub for sub-cellular Ca(2+)-signaling to regulate ECM degradation and cell migration. The findings have broad implications for understanding migration mechanisms of cells that adhere to, and dissolve ECM.
Collapse
Affiliation(s)
- Tamjeed A Siddiqui
- Toronto Western Research Institute, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada
| | | | | | | |
Collapse
|
46
|
Hendriks WJAJ, Elson A, Harroch S, Pulido R, Stoker A, den Hertog J. Protein tyrosine phosphatases in health and disease. FEBS J 2012; 280:708-30. [DOI: 10.1111/febs.12000] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 08/17/2012] [Accepted: 08/28/2012] [Indexed: 01/06/2023]
Affiliation(s)
| | - Ari Elson
- Department of Molecular Genetics; The Weizmann Institute of Science; Rehovot; Israel
| | - Sheila Harroch
- Department of Neuroscience; Institut Pasteur; Paris; France
| | - Rafael Pulido
- Centro de Investigación Príncipe Felipe; Valencia; Spain
| | - Andrew Stoker
- Neural Development Unit; Institute of Child Health; University College London; UK
| | | |
Collapse
|
47
|
Blangy A, Touaitahuata H, Cres G, Pawlak G. Cofilin activation during podosome belt formation in osteoclasts. PLoS One 2012; 7:e45909. [PMID: 23049890 PMCID: PMC3457939 DOI: 10.1371/journal.pone.0045909] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/23/2012] [Indexed: 12/02/2022] Open
Abstract
Podosomes are dynamic actin-based structures found constitutively in cells of monocytic origin such as macrophages, dendritic cells and osteoclasts. They have been involved in osteoclast cell adhesion, motility and matrix degradation, and all these functions rely on the ability of podosomes to form supra-molecular structures called podosome belts or sealing zones on mineralized substrates. Podosomes contain two distinct domains, an actin-rich core enriched in actin polymerization regulators, surrounded by a ring of signaling and plaque molecules. The organization of podosome arrays into belts is linked to actin dynamics. Cofilin is an actin-severing protein that is known to regulate cytoskeleton architecture and cell migration. Cofilin is present in lamellipodia and invadopodia where it regulates actin polymerization. In this report, we show that cofilin is a novel component of the podosome belt, the mature osteoclast adhesion structure. Time-course analysis demonstrated that cofilin is activated during primary osteoclast differentiation, at the time of podosome belt assembly. Immunofluorescence studies reveal a localization of active cofilin in the podosome core structure, whereas phosphorylated, inactive cofilin is concentrated in the podosome cloud. Pharmacological studies unraveled the role of a specific cofilin phosphatase to achieve cofilin activation during osteoclast differentiation. We ruled out the implication of PP1/PP2A and PTEN in this process, and rather provided evidence for the involvement of SSH1. In summary, our data involve cofilin as a regulator of podosome organization that is activated during osteoclast differentiation by a RANKL-mediated signaling pathway targeting the SSH1 phosphatase.
Collapse
Affiliation(s)
- Anne Blangy
- Centre de Recherche de Biochimie Macromoleculaire, Montpellier University, CNRS UMR 5237, Montpellier, France.
| | | | | | | |
Collapse
|
48
|
Ray BJ, Thomas K, Huang CS, Gutknecht MF, Botchwey EA, Bouton AH. Regulation of osteoclast structure and function by FAK family kinases. J Leukoc Biol 2012; 92:1021-8. [PMID: 22941736 DOI: 10.1189/jlb.0512259] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Osteoclasts are highly specialized cells that resorb bone and contribute to bone remodeling. Diseases such as osteoporosis and osteolytic bone metastasis occur when osteoclast-mediated bone resorption takes place in the absence of concurrent bone synthesis. Considerable effort has been placed on identifying molecules that regulate the bone resorption activity of osteoclasts. To this end, we investigated unique and overlapping functions of members of the FAK family (FAK and Pyk2) in osteoclast functions. With the use of a conditional knockout mouse model, in which FAK is selectively targeted for deletion in osteoclast precursors (FAK(Δmyeloid)), we found that loss of FAK resulted in reduced bone resorption by osteoclasts in vitro, coincident with impaired signaling through the CSF-1R. However, bone architecture appeared normal in FAK(Δmyeloid) mice, suggesting that Pyk2 might functionally compensate for reduced FAK levels in vivo. This was supported by data showing that podosome adhesion structures, which are essential for bone degradation, were significantly more impaired in osteoclasts when FAK and Pyk2 were reduced than when either molecule was depleted individually. We conclude that FAK contributes to cytokine signaling and bone resorption in osteoclasts and partially compensates for the absence of Pyk2 to maintain proper adhesion structures in these cells.
Collapse
Affiliation(s)
- Brianne J Ray
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
49
|
Luxenburg C, Winograd-Katz S, Addadi L, Geiger B. Involvement of actin polymerization in podosome dynamics. J Cell Sci 2012; 125:1666-72. [PMID: 22328507 DOI: 10.1242/jcs.075903] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Podosomes, which are formed by different monocyte derivatives, are small adhesion structures whose coordinated dynamics and cytoskeletal reorganization drive their motile and invasive features. Using live-cell microscopy, we explored the temporal molecular steps of the de novo assembly and disassembly of podosomes in cultured osteoclasts. We demonstrate here that the earliest visible step in podosome assembly is the local accumulation of the plaque protein paxillin, along with cortactin, which stabilizes actin networks, followed by robust polymerization of actin filaments and their association with α-actinin. Only then is a local increase in integrin β3 levels apparent in the podosome ring domain. Thus, local actin polymerization in cortactin- and paxillin-rich locations nucleates podosome assembly before the local accumulation of β3 integrin. We further show that actin polymerization is also important for the recruitment and maintenance of plaque proteins in the mature podosome ring domain. Our model implies that core bundle dynamics play a central role in regulating podosome stability.
Collapse
Affiliation(s)
- Chen Luxenburg
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
50
|
Boateng LR, Cortesio CL, Huttenlocher A. Src-mediated phosphorylation of mammalian Abp1 (DBNL) regulates podosome rosette formation in transformed fibroblasts. J Cell Sci 2012; 125:1329-41. [PMID: 22303001 DOI: 10.1242/jcs.096529] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Podosomes are dynamic actin-based structures that mediate adhesion to the extracellular matrix and localize matrix degradation to facilitate cell motility and invasion. Drebrin-like protein (DBNL), which is homologous to yeast mAbp1 and is therefore known as mammalian actin-binding protein 1 (mAbp1), has been implicated in receptor-mediated endocytosis, vesicle recycling and dorsal ruffle formation. However, it is not known whether mAbp1 regulates podosome formation or cell invasion. In this study, we found that mAbp1 localizes to podosomes and is necessary for the formation of podosome rosettes in Src-transformed fibroblasts. Despite their structural similarity, mAbp1 and cortactin play distinct roles in podosome regulation. Cortactin was necessary for the formation of podosome dots, whereas mAbp1 was necessary for the formation of organized podosome rosettes in Src-transformed cells. We identified specific Src phosphorylation sites, Tyr337 and Tyr347 of mAbp1, which mediate the formation of podosome rosettes and degradation of the ECM. In contrast to dorsal ruffles, the interaction of mAbp1 with WASP-interacting protein (WIP) was not necessary for the formation of podosome rosettes. Finally, we showed that depletion of mAbp1 increased invasive cell migration, suggesting that mAbp1 differentially regulates matrix degradation and cell invasion. Collectively, our findings identify a role for mAbp1 in podosome rosette formation and cell invasion downstream of Src.
Collapse
Affiliation(s)
- Lindsy R Boateng
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|