1
|
Newell S, van der Watt PJ, Leaner VD. Therapeutic targeting of nuclear export and import receptors in cancer and their potential in combination chemotherapy. IUBMB Life 2024; 76:4-25. [PMID: 37623925 PMCID: PMC10952567 DOI: 10.1002/iub.2773] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/03/2023] [Indexed: 08/26/2023]
Abstract
Systemic modalities are crucial in the management of disseminated malignancies and liquid tumours. However, patient responses and tolerability to treatment are generally poor and those that enter remission often return with refractory disease. Combination therapies provide a methodology to overcome chemoresistance mechanisms and address dose-limiting toxicities. A deeper understanding of tumorigenic processes at the molecular level has brought a targeted therapy approach to the forefront of cancer research, and novel cancer biomarkers are being identified at a rapid rate, with some showing potential therapeutic benefits. The Karyopherin superfamily of proteins is soluble receptors that mediate nucleocytoplasmic shuttling of proteins and RNAs, and recently, nuclear transport receptors have been recognized as novel anticancer targets. Inhibitors against nuclear export have been approved for clinical use against certain cancer types, whereas inhibitors against nuclear import are in preclinical stages of investigation. Mechanistically, targeting nucleocytoplasmic shuttling has shown to abrogate oncogenic signalling and restore tumour suppressor functions through nuclear sequestration of relevant proteins and mRNAs. Hence, nuclear transport inhibitors display broad spectrum anticancer activity and harbour potential to engage in synergistic interactions with a wide array of cytotoxic agents and other targeted agents. This review is focussed on the most researched nuclear transport receptors in the context of cancer, XPO1 and KPNB1, and highlights how inhibitors targeting these receptors can enhance the therapeutic efficacy of standard of care therapies and novel targeted agents in a combination therapy approach. Furthermore, an updated review on the therapeutic targeting of lesser characterized karyopherin proteins is provided and resistance to clinically approved nuclear export inhibitors is discussed.
Collapse
Affiliation(s)
- Stella Newell
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Pauline J. van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Diseases and Molecular Medicine, University of Cape TownCape TownSouth Africa
| | - Virna D. Leaner
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- UCT/SAMRC Gynaecological Cancer Research CentreUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
2
|
García de Herreros A. Dual role of Snail1 as transcriptional repressor and activator. Biochim Biophys Acta Rev Cancer 2024; 1879:189037. [PMID: 38043804 DOI: 10.1016/j.bbcan.2023.189037] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Snail1 transcriptional factor plays a key role in the control of epithelial to mesenchymal transition, a process that remodels tumor cells increasing their invasion and chemo-resistance as well as reprograms their metabolism and provides stemness properties. During this transition, Snail1 acts as a transcriptional repressor and, as growing evidences have demonstrated, also as a direct activator of mesenchymal genes. In this review, I describe the different proteins that interact with Snail1 and are responsible for these two different functions on gene expression; I focus on the transcriptional factors that associate to Snail1 in their target promoters, both activated and repressed. I also present working models for Snail1 action both as repressor and activator and raise some issues that still need to be investigated.
Collapse
Affiliation(s)
- Antonio García de Herreros
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Unidad Asociada al CSIC, Barcelona, Spain; Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
3
|
Herceg S, Janoštiak R. Diagnostic and Prognostic Profiling of Nucleocytoplasmic Shuttling Genes in Hepatocellular Carcinoma. Folia Biol (Praha) 2023; 69:133-148. [PMID: 38410971 DOI: 10.14712/fb2023069040133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
One of the key features of eukaryotic cells is the separation of nuclear and cytoplasmic compartments by a double-layer nuclear envelope. This separation is crucial for timely regulation of gene expression, mRNA biogenesis, cell cycle, and differentiation. Since transcription takes place in the nucleus and the major part of translation in the cytoplasm, proper distribution of biomolecules between these two compartments is ensured by nucleocytoplasmic shuttling proteins - karyopherins. Karyopherins transport biomolecules through nuclear pores bidirectionally in collaboration with Ran GTPases and utilize GTP as the source of energy. Different karyopherins transport different cargo molecules that play important roles in the regulation of cell physiology. In cancer cells, this nucleocytoplasmic transport is significantly dysregulated to support increased demands for the import of cell cycle-promoting biomolecules and export of cell cycle inhibitors and mRNAs. Here, we analysed genomic, transcriptomic and proteomic data from published datasets to comprehensively profile karyopherin genes in hepatocellular carcinoma. We have found out that expression of multiple karyopherin genes is increased in hepatocellular carcinoma in comparison to the normal liver, with importin subunit α-1, exportin 2, importin subunit β-1 and importin 9 being the most over-expressed. More-over, we have found that increased expression of these genes is associated with higher neoplasm grade as well as significantly worse overall survival of liver cancer patients. Taken together, our bioinformatic data-mining analysis provides a comprehensive geno-mic and transcriptomic landscape of karyopherins in hepatocellular carcinoma and identifies potential members that could be targeted in order to develop new treatment regimens.
Collapse
Affiliation(s)
- Samuel Herceg
- BIOCEV - First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Radoslav Janoštiak
- BIOCEV - First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
4
|
Saitoh M. Epithelial–Mesenchymal Transition by Synergy between Transforming Growth Factor-β and Growth Factors in Cancer Progression. Diagnostics (Basel) 2022; 12:diagnostics12092127. [PMID: 36140527 PMCID: PMC9497767 DOI: 10.3390/diagnostics12092127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) plays a crucial role in appropriate embryonic development, as well as wound healing, organ fibrosis, and cancer progression. During cancer progression, EMT is associated with the invasion, metastasis, and generation of circulating tumor cells and cancer stem cells, as well as resistance to chemo- and radiation therapy. EMT is induced by several transcription factors, known as EMT transcription factors (EMT-TFs). In nearly all cases, EMT-TFs appear to be regulated by growth factors or cytokines and extracellular matrix components. Among these factors, transforming growth factor (TGF)-β acts as the key mediator for EMT during physiological and pathological processes. TGF-β can initiate and maintain EMT by activating intracellular/intercellular signaling pathways and transcriptional factors. Recent studies have provided new insights into the molecular mechanisms underlying sustained EMT in aggressive cancer cells, EMT induced by TGF-β, and crosstalk between TGF-β and growth factors.
Collapse
Affiliation(s)
- Masao Saitoh
- Center for Medical Education and Sciences, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-City, Yamanashi 409-3898, Japan
| |
Collapse
|
5
|
Kupp R, Ruff L, Terranova S, Nathan E, Ballereau S, Stark R, Sekhar Reddy Chilamakuri C, Hoffmann N, Wickham-Rahrmann K, Widdess M, Arabzade A, Zhao Y, Varadharajan S, Zheng T, Murugesan M, Pfister SM, Kawauchi D, Pajtler KW, Deneen B, Mack SC, Masih KE, Gryder BE, Khan J, Gilbertson RJ. ZFTA Translocations Constitute Ependymoma Chromatin Remodeling and Transcription Factors. Cancer Discov 2021; 11:2216-2229. [PMID: 33741711 PMCID: PMC8918067 DOI: 10.1158/2159-8290.cd-20-1052] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/06/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022]
Abstract
ZFTA (C11orf95)-a gene of unknown function-partners with a variety of transcriptional coactivators in translocations that drive supratentorial ependymoma, a frequently lethal brain tumor. Understanding the function of ZFTA is key to developing therapies that inhibit these fusion proteins. Here, using a combination of transcriptomics, chromatin immunoprecipitation sequencing, and proteomics, we interrogated a series of deletion-mutant genes to identify a tripartite transformation mechanism of ZFTA-containing fusions, including: spontaneous nuclear translocation, extensive chromatin binding, and SWI/SNF, SAGA, and NuA4/Tip60 HAT chromatin modifier complex recruitment. Thereby, ZFTA tethers fusion proteins across the genome, modifying chromatin to an active state and enabling its partner transcriptional coactivators to promote promiscuous expression of a transforming transcriptome. Using mouse models, we validate further those elements of ZFTA-fusion proteins that are critical for transformation-including ZFTA zinc fingers and partner gene transactivation domains-thereby unmasking vulnerabilities for therapeutic targeting. SIGNIFICANCE: Ependymomas are hard-to-treat brain tumors driven by translocations between ZFTA and a variety of transcriptional coactivators. We dissect the transforming mechanism of these fusion proteins and identify protein domains indispensable for tumorigenesis, thereby providing insights into the molecular basis of ependymoma tumorigenesis and vulnerabilities for therapeutic targeting.This article is highlighted in the In This Issue feature, p. 2113.
Collapse
Affiliation(s)
- Robert Kupp
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England
| | - Lisa Ruff
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England
| | - Sabrina Terranova
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England
| | - Erica Nathan
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England
| | - Stephane Ballereau
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England
| | - Rory Stark
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England
| | | | - Nadin Hoffmann
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England
| | | | - Marcus Widdess
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England
| | - Amir Arabzade
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Yanhua Zhao
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Srinidhi Varadharajan
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Tuyu Zheng
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mohankumar Murugesan
- Centre for Stem Cell Research, Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu, India
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daisuke Kawauchi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Kristian W Pajtler
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benjamin Deneen
- Cancer and Cell Biology Program, Baylor College of Medicine, Dan L. Duncan Cancer Center, Houston, Texas
| | - Stephen C Mack
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Katherine E Masih
- Genetics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Berkley E Gryder
- Genetics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Richard J Gilbertson
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England.
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, England
| |
Collapse
|
6
|
Ding B, Sepehrimanesh M. Nucleocytoplasmic Transport: Regulatory Mechanisms and the Implications in Neurodegeneration. Int J Mol Sci 2021; 22:4165. [PMID: 33920577 PMCID: PMC8072611 DOI: 10.3390/ijms22084165] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleocytoplasmic transport (NCT) across the nuclear envelope is precisely regulated in eukaryotic cells, and it plays critical roles in maintenance of cellular homeostasis. Accumulating evidence has demonstrated that dysregulations of NCT are implicated in aging and age-related neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer's disease (AD), and Huntington disease (HD). This is an emerging research field. The molecular mechanisms underlying impaired NCT and the pathogenesis leading to neurodegeneration are not clear. In this review, we comprehensively described the components of NCT machinery, including nuclear envelope (NE), nuclear pore complex (NPC), importins and exportins, RanGTPase and its regulators, and the regulatory mechanisms of nuclear transport of both protein and transcript cargos. Additionally, we discussed the possible molecular mechanisms of impaired NCT underlying aging and neurodegenerative diseases, such as ALS/FTD, HD, and AD.
Collapse
Affiliation(s)
- Baojin Ding
- Department of Biology, University of Louisiana at Lafayette, 410 East Saint Mary Boulevard, Lafayette, LA 70503, USA;
| | | |
Collapse
|
7
|
Kang E, Seo J, Yoon H, Cho S. The Post-Translational Regulation of Epithelial-Mesenchymal Transition-Inducing Transcription Factors in Cancer Metastasis. Int J Mol Sci 2021; 22:3591. [PMID: 33808323 PMCID: PMC8037257 DOI: 10.3390/ijms22073591] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is generally observed in normal embryogenesis and wound healing. However, this process can occur in cancer cells and lead to metastasis. The contribution of EMT in both development and pathology has been studied widely. This transition requires the up- and down-regulation of specific proteins, both of which are regulated by EMT-inducing transcription factors (EMT-TFs), mainly represented by the families of Snail, Twist, and ZEB proteins. This review highlights the roles of key EMT-TFs and their post-translational regulation in cancer metastasis.
Collapse
Affiliation(s)
| | | | | | - Sayeon Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (E.K.); (J.S.); (H.Y.)
| |
Collapse
|
8
|
Li HM, Bi YR, Li Y, Fu R, Lv WC, Jiang N, Xu Y, Ren BX, Chen YD, Xie H, Wang S, Lu T, Wu ZQ. A potent CBP/p300-Snail interaction inhibitor suppresses tumor growth and metastasis in wild-type p53-expressing cancer. SCIENCE ADVANCES 2020; 6:eaaw8500. [PMID: 32494626 PMCID: PMC7176418 DOI: 10.1126/sciadv.aaw8500] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/06/2020] [Indexed: 05/06/2023]
Abstract
The zinc finger transcription factor Snail is aberrantly activated in many human cancers and associated with poor prognosis. Therefore, targeting Snail is expected to exert therapeutic benefit in patients with cancer. However, Snail has traditionally been considered "undruggable," and no effective pharmacological inhibitors have been identified. Here, we found a small-molecule compound CYD19 that forms a high-affinity interaction with the evolutionarily conserved arginine-174 pocket of Snail protein. In aggressive cancer cells, CYD19 binds to Snail and thus disrupts Snail's interaction with CREB-binding protein (CBP)/p300, which consequently impairs CBP/p300-mediated Snail acetylation and then promotes its degradation through the ubiquitin-proteasome pathway. Moreover, CYD19 restores Snail-dependent repression of wild-type p53, thus reducing tumor growth and survival in vitro and in vivo. In addition, CYD19 reverses Snail-mediated epithelial-mesenchymal transition (EMT) and impairs EMT-associated tumor invasion and metastasis. Our findings demonstrate that pharmacologically targeting Snail by CYD19 may exert potent therapeutic effects in patients with cancer.
Collapse
Affiliation(s)
- Hong-Mei Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yan-Ran Bi
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yang Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Rong Fu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wen-Cong Lv
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Nan Jiang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ying Xu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Bo-Xue Ren
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ya-Dong Chen
- State Key Laboratory of Natural Medicines, Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Xie
- Division of Breast Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210036, China
| | - Shui Wang
- Division of Breast Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210036, China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing 211198, China
- Corresponding author. (Z.-Q.W.); (T.L.)
| | - Zhao-Qiu Wu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Corresponding author. (Z.-Q.W.); (T.L.)
| |
Collapse
|
9
|
Epithelial-Mesenchymal Plasticity in Cancer Progression and Metastasis. Dev Cell 2020; 49:361-374. [PMID: 31063755 DOI: 10.1016/j.devcel.2019.04.010] [Citation(s) in RCA: 668] [Impact Index Per Article: 133.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/17/2019] [Accepted: 04/07/2019] [Indexed: 02/06/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) and its reversed process, mesenchymal-to-epithelial transition (MET), are fundamental processes in embryonic development and tissue repair but confer malignant properties to carcinoma cells, including invasive behavior, cancer stem cell activity, and greater resistance to chemotherapy and immunotherapy. Understanding the molecular and cellular basis of EMT provides fundamental insights into the etiology of cancer and may, in the long run, lead to new therapeutic strategies. Here, we discuss the regulatory mechanisms and pathological roles of epithelial-mesenchymal plasticity, with a focus on recent insights into the complexity and dynamics of this phenomenon in cancer.
Collapse
|
10
|
Roles of the Phosphorylation of Transcriptional Factors in Epithelial-Mesenchymal Transition. JOURNAL OF ONCOLOGY 2019; 2019:5810465. [PMID: 31275381 PMCID: PMC6582791 DOI: 10.1155/2019/5810465] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/03/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is the first step in the development of the invasive and migratory properties of cancer metastasis. Since the transcriptional reprogramming of a number of genes occurs in EMT, the regulation of EMT transcription factors has been intensively investigated. EMT transcriptional factors are commonly classified by the direct or indirect repression of E-cadherin because one of hallmarks of EMT is the loss of E-cadherin. This facilitates the expression of genes for EMT, tumor invasion, and metastasis. The posttranslational modification of EMT transcriptional factors, such as Snail and Slug, directly regulates their functions, including their stability, nuclear localization, protein-protein interaction, and ubiquitination for the promotion or termination of EMT at the specific points. Here, we discuss how posttranslational modifications regulate gene expression in a dynamic and reversible manner by modifying upstream signaling pathways, focusing in particular on the posttranslational modifications of Snail, Slug, ZEB1, ZEB2, and TWIST1. This review demonstrates that EMT transcription factors regulate metastasis through their posttranslational modifications and that the flexibility and reversibility of EMT can be modified by phosphorylation.
Collapse
|
11
|
Baulida J, Díaz VM, Herreros AGD. Snail1: A Transcriptional Factor Controlled at Multiple Levels. J Clin Med 2019; 8:jcm8060757. [PMID: 31141910 PMCID: PMC6616578 DOI: 10.3390/jcm8060757] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/27/2022] Open
Abstract
Snail1 transcriptional factor plays a key role in the control of epithelial to mesenchymal transition and fibroblast activation. As a consequence, Snail1 expression and function is regulated at multiple levels from gene transcription to protein modifications, affecting its interaction with specific cofactors. In this review, we describe the different elements that control Snail1 expression and its activity both as transcriptional repressor or activator.
Collapse
Affiliation(s)
- Josep Baulida
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada al CSIC, 08003 Barcelona, Spain.
| | - Víctor M Díaz
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada al CSIC, 08003 Barcelona, Spain.
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada al CSIC, 08003 Barcelona, Spain.
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| |
Collapse
|
12
|
Li L, Zhou H, Zhu R, Liu Z. USP26 promotes esophageal squamous cell carcinoma metastasis through stabilizing Snail. Cancer Lett 2019; 448:52-60. [DOI: 10.1016/j.canlet.2019.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 01/15/2023]
|
13
|
Zhu ZC, Liu JW, Li K, Zheng J, Xiong ZQ. KPNB1 inhibition disrupts proteostasis and triggers unfolded protein response-mediated apoptosis in glioblastoma cells. Oncogene 2018; 37:2936-2952. [PMID: 29520102 PMCID: PMC5978811 DOI: 10.1038/s41388-018-0180-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 11/28/2017] [Accepted: 02/02/2018] [Indexed: 12/29/2022]
Abstract
The nuclear import receptor karyopherin β1 (KPNB1) is involved in the nuclear import of most proteins and in the regulation of multiple mitotic events. Upregulation of KPNB1 has been observed in cancers including glioblastoma. Depletion of KPNB1 induces mitotic arrest and apoptosis in cancer cells, but the underlying mechanism is not clearly elucidated. Here, we found that downregulation and functional inhibition of KPNB1 in glioblastoma cells induced growth arrest and apoptosis without apparent mitotic arrest. KPNB1 inhibition upregulated Puma and Noxa and freed Mcl-1-sequestered Bax and Bak, leading to mitochondrial outer membrane permeabilization (MOMP) and apoptosis. Moreover, combination of Bcl-xL inhibitors and KPNB1 inhibition enhanced apoptosis in glioblastoma cells. KPNB1 inhibition promoted cytosolic retention of its cargo and impaired cellular proteostasis, resulting in elevated polyubiquitination, formation of aggresome-like-induced structure (ALIS), and unfolded protein response (UPR). Ubiquitination elevation and UPR activation in KPNB1-deficient cells were reversed by KPNB1 overexpression or inhibitors of protein synthesis but aggravated by inhibitors of autophagy-lysosome or proteasome, indicating that rebalance of cytosolic/nuclear protein distribution and alleviation of protein overload favor proteostasis and cell survival. Chronic activation of eIF2α/ATF4 cascade of UPR was responsible for the upregulation of Puma and Noxa, apoptosis and ABT-263 sensitivity. Taken together, our findings demonstrate that KPNB1 is required for proteostasis maintenance and its inhibition induces apoptosis in glioblastoma cells through UPR-mediated deregulation of Bcl-2 family members.
Collapse
Affiliation(s)
- Zhi-Chuan Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Ji-Wei Liu
- School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Kui Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Jing Zheng
- School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Zhi-Qi Xiong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031, Shanghai, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
14
|
Lin CY, Lin LY. The conserved basic residues and the charged amino acid residues at the α-helix of the zinc finger motif regulate the nuclear transport activity of triple C2H2 zinc finger proteins. PLoS One 2018; 13:e0191971. [PMID: 29381770 PMCID: PMC5790263 DOI: 10.1371/journal.pone.0191971] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/15/2018] [Indexed: 11/19/2022] Open
Abstract
Zinc finger (ZF) motifs on proteins are frequently recognized as a structure for DNA binding. Accumulated reports indicate that ZF motifs contain nuclear localization signal (NLS) to facilitate the transport of ZF proteins into nucleus. We investigated the critical factors that facilitate the nuclear transport of triple C2H2 ZF proteins. Three conserved basic residues (hot spots) were identified among the ZF sequences of triple C2H2 ZF proteins that reportedly have NLS function. Additional basic residues can be found on the α-helix of the ZFs. Using the ZF domain (ZFD) of Egr-1 as a template, various mutants were constructed and expressed in cells. The nuclear transport activity of various mutants was estimated by analyzing the proportion of protein localized in the nucleus. Mutation at any hot spot of the Egr-1 ZFs reduced the nuclear transport activity. Changes of the basic residues at the α-helical region of the second ZF (ZF2) of the Egr-1 ZFD abolished the NLS activity. However, this activity can be restored by substituting the acidic residues at the homologous positions of ZF1 or ZF3 with basic residues. The restored activity dropped again when the hot spots at ZF1 or the basic residues in the α-helix of ZF3 were mutated. The variations in nuclear transport activity are linked directly to the binding activity of the ZF proteins with importins. This study was extended to other triple C2H2 ZF proteins. SP1 and KLF families, similar to Egr-1, have charged amino acid residues at the second (α2) and the third (α3) positions of the α-helix. Replacing the amino acids at α2 and α3 with acidic residues reduced the NLS activity of the SP1 and KLF6 ZFD. The reduced activity can be restored by substituting the α3 with histidine at any SP1 and KLF6 ZFD. The results show again the interchangeable role of ZFs and charge residues in the α-helix in regulating the NLS activity of triple C2H2 ZF proteins.
Collapse
Affiliation(s)
- Chih-Ying Lin
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Lih-Yuan Lin
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
- * E-mail:
| |
Collapse
|
15
|
Burton LJ, Henderson V, Liburd L, Odero-Marah VA. Snail transcription factor NLS and importin β1 regulate the subcellular localization of Cathepsin L and Cux1. Biochem Biophys Res Commun 2017; 491:59-64. [PMID: 28698143 PMCID: PMC5568889 DOI: 10.1016/j.bbrc.2017.07.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/07/2017] [Indexed: 11/16/2022]
Abstract
Several recent studies have highlighted an additional unexpected localization and site of action for Cathepsin L (Cat L) protease within the nucleus in breast, colon and prostate cancer, however, its role in the nucleus was unclear. It was proposed to mediate proteolytic processing of the transcription factor CCAAT-displacement protein/cut homeobox transcription factor (Cux1) from the full-length p200 isoform to generate the p110 and p90 isoforms, of which the p110 isoform was shown to act as a cell cycle regulator to accelerate entry into the S phase. The p110 isoform has also been shown to bind to the promoter regions of Snail and E-cadherin to activate Snail and inactivate E-cadherin transcription, thus promoting epithelial mesenchymal transition (EMT). Mechanistic studies on what drives Cat L nuclear localization have not been reported. Our hypothesis is that Snail shuttles into the nucleus with Cat L through binding to importin-β. Snail knockdown with siRNA in MDA-MB-468 breast cancer cells led to nuclear to cytoplasmic shuttling of Cat L and decreased levels of Cux1, while overexpression of Snail in MCF-7 breast cancer cells or HEK-293 human embryonic kidney cells led to increased nuclear expression of both Cat L and Cux1. Additionally, transient transfection of Snail NLS mutants not only abrogated Snail nuclear localization but also nuclear localization of Cat L and Cux1. Interestingly, importin β1 knockdown with siRNA decreased Snail and Cux1 levels, as well as nuclear localization of Cat L. Therefore, we show for the first time that the nuclear localization of Cat L and its substrate Cux1can be positively regulated by Snail NLS and importin β1, suggesting that Snail, Cat L and Cux1 all utilize importin β1 for nuclear import.
Collapse
Affiliation(s)
- Liza J Burton
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
| | - Veronica Henderson
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
| | - Latiffa Liburd
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
| | - Valerie A Odero-Marah
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA.
| |
Collapse
|
16
|
Gudey SK, Sundar R, Heldin CH, Bergh A, Landström M. Pro-invasive properties of Snail1 are regulated by sumoylation in response to TGFβ stimulation in cancer. Oncotarget 2017; 8:97703-97726. [PMID: 29228645 PMCID: PMC5716685 DOI: 10.18632/oncotarget.20097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/19/2017] [Indexed: 01/11/2023] Open
Abstract
Transforming growth factor β (TGFβ) is a key regulator of epithelial-to-mesenchymal transition (EMT) during embryogenesis and in tumors. The effect of TGFβ, on ΕΜΤ, is conveyed by induction of the pro-invasive transcription factor Snail1. In this study, we report that TGFβ stimulates Snail1 sumoylation in aggressive prostate, breast and lung cancer cells. Sumoylation of Snail1 lysine residue 234 confers its transcriptional activity, inducing the expression of classical EMT genes, as well as TGFβ receptor I (TβRI) and the transcriptional repressor Hes1. Mutation of Snail1 lysine residue 234 to arginine (K234R) abolished sumoylation of Snail1, as well as its migratory and invasive properties in human prostate cancer cells. An increased immunohistochemical expression of Snail1, Sumo1, TβRI, Hes1, and c-Jun was observed in aggressive prostate cancer tissues, consistent with their functional roles in tumorigenesis.
Collapse
Affiliation(s)
| | - Reshma Sundar
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Carl-Henrik Heldin
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Marene Landström
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| |
Collapse
|
17
|
Abstract
The significant parallels between cell plasticity during embryonic development and carcinoma progression have helped us understand the importance of the epithelial-mesenchymal transition (EMT) in human disease. Our expanding knowledge of EMT has led to a clarification of the EMT program as a set of multiple and dynamic transitional states between the epithelial and mesenchymal phenotypes, as opposed to a process involving a single binary decision. EMT and its intermediate states have recently been identified as crucial drivers of organ fibrosis and tumor progression, although there is some need for caution when interpreting its contribution to metastatic colonization. Here, we discuss the current state-of-the-art and latest findings regarding the concept of cellular plasticity and heterogeneity in EMT. We raise some of the questions pending and identify the challenges faced in this fast-moving field.
Collapse
|
18
|
Zhou W, Mo X, Cui W, Zhang Z, Li D, Li L, Xu L, Yao H, Gao J. Nrf2 inhibits epithelial-mesenchymal transition by suppressing snail expression during pulmonary fibrosis. Sci Rep 2016; 6:38646. [PMID: 27982105 PMCID: PMC5159829 DOI: 10.1038/srep38646] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/10/2016] [Indexed: 12/17/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a phenotype conversion that plays a critical role in the development of pulmonary fibrosis (PF). It is known that snail could regulate the progression of EMT. Nuclear factor erythroid 2 related factor 2 (Nrf2), a key regulator of antioxidant defense system, protects cells against oxidative stress. However, it is not known whether Nrf2 regulates snail thereby modulating the development of PF. Here, bleomycin (BLM) was intratracheally injected into both Nrf2-knockout (Nrf2-/-) and wild-type mice to compare the development of PF. Rat type II alveolar epithelial cells (RLE-6TN) were treated with a specific Nrf2 activator sulforaphane, or transfected with Nrf2 and snail siRNAs to determine their effects on transforming growth factor β1 (TGF-β1)-induced EMT. We found that BLM-induced EMT and lung fibrosis were more severe in Nrf2-/- mice compared to wild-type mice. In vitro, sulforaphane treatment attenuated TGF-β1-induced EMT, accompanied by the down-regulation of snail. Inversely, silencing Nrf2 by siRNA enhanced TGF-β1-induced EMT along with increased expression of snail. Interestingly, when snail was silenced by siRNA, sulforaphane treatment was unable to reduce the progression of EMT in RLE-6TN cells. These findings suggest that Nrf2 attenuates EMT and fibrosis process by regulating the expression of snail in PF.
Collapse
Affiliation(s)
- Wencheng Zhou
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xiaoting Mo
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Wenhui Cui
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China.,The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Zhihui Zhang
- The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Delin Li
- Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Liucheng Li
- The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Liang Xu
- The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hongwei Yao
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Jian Gao
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| |
Collapse
|
19
|
Snail/Slug binding interactions with YAP/TAZ control skeletal stem cell self-renewal and differentiation. Nat Cell Biol 2016; 18:917-29. [PMID: 27479603 PMCID: PMC5007193 DOI: 10.1038/ncb3394] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 06/30/2016] [Indexed: 12/16/2022]
Abstract
Bone marrow-derived skeletal stem/stromal cell (SSC) self-renewal and function are critical to skeletal development, homeostasis and repair. Nevertheless, the mechanisms controlling SSC behavior, particularly bone formation, remain ill-defined. Using knockout mouse models that target the zinc-finger transcription factors, Snail, Slug or Snail and Slug combined, a regulatory axis has been uncovered wherein Snail and Slug cooperatively control SSC self-renewal, osteoblastogenesis and bone formation. Mechanistically, Snail/Slug regulate SSC function by forming complexes with the transcriptional co-activators, YAP and TAZ, in tandem with the inhibition of the Hippo pathway-dependent regulation of YAP/TAZ signaling cascades. In turn, the Snail/Slug-YAP/TAZ axis activates a series of YAP/TAZ/TEAD and Runx2 downstream targets that control SSC homeostasis and osteogenesis. Together, these results demonstrate that SSCs mobilize Snail/Slug-YAP/TAZ complexes to control stem cell function.
Collapse
|
20
|
Tunbak H, Georgiou C, Guan C, Richardson WD, Chittka A. Zinc fingers 1, 2, 5 and 6 of transcriptional regulator, PRDM4, are required for its nuclear localisation. Biochem Biophys Res Commun 2016; 474:388-394. [PMID: 27125459 DOI: 10.1016/j.bbrc.2016.04.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/24/2016] [Indexed: 11/17/2022]
Abstract
PRDM4 is a member of the PRDM family of transcriptional regulators which control various aspects of cellular differentiation and proliferation. PRDM proteins exert their biological functions both in the cytosol and the nucleus of cells. All PRDM proteins are characterised by the presence of two distinct structural motifs, the PR/SET domain and the zinc finger (ZF) motifs. We previously observed that deletion of all six zinc fingers found in PRDM4 leads to its accumulation in the cytosol, whereas overexpressed full length PRDM4 is found predominantly in the nucleus. Here, we investigated the requirements for single zinc fingers in the nuclear localisation of PRDM4. We demonstrate that ZF's 1, 2, 5 and 6 contribute to the accumulation of PRDM4 in the nucleus. Their effect is additive as deleting either ZF1-2 or ZF 5-6 redistributes PRDM4 protein from being almost exclusively nuclear to cytosolic and nuclear. We investigated the potential mechanism of nuclear shuttling of PRDM4 via the importin α/β-mediated pathway and find that PRDM4 nuclear targeting is independent of α/β-mediated nuclear import.
Collapse
Affiliation(s)
- Hale Tunbak
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| | - Christiana Georgiou
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| | - Cui Guan
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| | - William David Richardson
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| | - Alexandra Chittka
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
21
|
Llorens MC, Lorenzatti G, Cavallo NL, Vaglienti MV, Perrone AP, Carenbauer AL, Darling DS, Cabanillas AM. Phosphorylation Regulates Functions of ZEB1 Transcription Factor. J Cell Physiol 2016; 231:2205-17. [PMID: 26868487 DOI: 10.1002/jcp.25338] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 02/09/2016] [Indexed: 01/02/2023]
Abstract
ZEB1 transcription factor is important in both development and disease, including many TGFβ-induced responses, and the epithelial-to-mesenchymal transition (EMT) by which many tumors undergo metastasis. ZEB1 is differentially phosphorylated in different cell types; however the role of phosphorylation in ZEB1 activity is unknown. Luciferase reporter studies and electrophoresis mobility shift assays (EMSA) show that a decrease in phosphorylation of ZEB1 increases both DNA-binding and transcriptional repression of ZEB1 target genes. Functional analysis of ZEB1 phosphorylation site mutants near the second zinc finger domain (termed ZD2) show that increased phosphorylation (due to either PMA plus ionomycin, or IGF-1) can inhibit transcriptional repression by either a ZEB1-ZD2 domain clone, or full-length ZEB1. This approach identifies phosphosites that have a substantial effect regulating the transcriptional and DNA-binding activity of ZEB1. Immunoprecipitation with anti-ZEB1 antibodies followed by western analysis with a phospho-Threonine-Proline-specific antibody indicates that the ERK consensus site at Thr-867 is phosphorylated in ZEB1. In addition to disrupting in vitro DNA-binding measured by EMSA, IGF-1-induced MEK/ERK phosphorylation is sufficient to disrupt nuclear localization of GFP-ZEB1 fusion clones. These data suggest that phosphorylation of ZEB1 integrates TGFβ signaling with other signaling pathways such as IGF-1. J. Cell. Physiol. 231: 2205-2217, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- M Candelaria Llorens
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Guadalupe Lorenzatti
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Natalia L Cavallo
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Maria V Vaglienti
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Ana P Perrone
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Anne L Carenbauer
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Kentucky
- Center for Genetics and Molecular Medicine, University of Louisville, Kentucky
| | - Douglas S Darling
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Kentucky
- Center for Genetics and Molecular Medicine, University of Louisville, Kentucky
| | - Ana M Cabanillas
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| |
Collapse
|
22
|
Díaz VM, de Herreros AG. F-box proteins: Keeping the epithelial-to-mesenchymal transition (EMT) in check. Semin Cancer Biol 2016; 36:71-9. [DOI: 10.1016/j.semcancer.2015.10.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/01/2015] [Accepted: 10/17/2015] [Indexed: 12/22/2022]
|
23
|
Hepatitis C virus core protein interacts with Snail and histone deacetylases to promote the metastasis of hepatocellular carcinoma. Oncogene 2015; 35:3626-35. [PMID: 26549030 DOI: 10.1038/onc.2015.428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 09/14/2015] [Accepted: 09/28/2015] [Indexed: 12/20/2022]
Abstract
Downregulation of E-cadherin by the transcriptional repressor Snail is associated with acquisition of metastatic potential. Although hepatitis C virus (HCV) core protein has been implicated in hepatocarcinogenesis, it is unclear whether Snail is involved in HCV core-induced dysregulation of E-cadherin. Herein, we investigated the mechanism by which HCV core induces E-cadherin repression and the role of Snail in HCV core-mediated invasiveness and metastasis. We found that HCV infection, especially HCV core expression, effectively induced the epithelial-mesenchymal transition (EMT) in hepatoma cells by repressing E-cadherin. HCV core interacted with Snail and enhanced its binding to the E-box in the promoter region of E-cadherin, leading to decreased E-cadherin promoter activity. We found that HCV core, Snail, and the histone deacetylases HDAC1/HDAC2 formed a co-repressor complex at the E-cadherin promoter. Moreover, HCV core was shown to stabilize Snail through activation of the PI3K/Akt/GSK3β pathway. Silencing Snail expression restored E-cadherin expression and inhibited HCV core-promoted tumor growth and distant lung metastasis in vivo. Collectively, these results demonstrated that HCV core induced EMT by interacting with the transcriptional repressor complex Snail/HDACs at the E-cadherin promoter, which led to E-cadherin repression and increased invasiveness of hepatoma cells. These findings increase understanding of factors regulating metastasis in hepatoma and may ultimately lead to the development of novel treatment strategies for HCV-associated hepatocellular carcinoma.
Collapse
|
24
|
Heffern MC, Reichova V, Coomes JL, Harney AS, Bajema EA, Meade TJ. Tuning cobalt(III) Schiff base complexes as activated protein inhibitors. Inorg Chem 2015; 54:9066-74. [PMID: 26331337 PMCID: PMC4638226 DOI: 10.1021/acs.inorgchem.5b01415] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cobalt(III) Schiff base complexes ([Co(acacen)(L)2](+), where L = NH3) inhibit histidine-containing proteins through dissociative exchange of the labile axial ligands (L). This work investigates axial ligand exchange dynamics of [Co(acacen)(L)2](+) complexes toward the development of protein inhibitors that are activated by external triggers such as light irradiation. We sought to investigate ligand exchange dynamics to design a Co(III) complex that is substitutionally inert under normal physiological conditions for selective activation. Fluorescent imidazoles (C3Im) were prepared as axial ligands in [Co(acacen)(L)2](+) to produce complexes (CoC3Im) that could report on ligand exchange and, thus, complex stability. These fluorescent imidazole reporters guided the design of a new dinuclear Co(III) Schiff base complex containing bridging diimidazole ligands, which exhibits enhanced stability to ligand exchange with competing imidazoles and to hydrolysis within a biologically relevant pH range. These studies inform the design of biocompatible Co(III) Schiff base complexes that can be selectively activated for protein inhibition with spatial and temporal specificity.
Collapse
Affiliation(s)
| | | | - Joseph L. Coomes
- Departments of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Allison S. Harney
- Departments of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Elizabeth A. Bajema
- Departments of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Thomas J. Meade
- Departments of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
25
|
Domain analysis of the Nematostella vectensis SNAIL ortholog reveals unique nucleolar localization that depends on the zinc-finger domains. Sci Rep 2015; 5:12147. [PMID: 26190255 PMCID: PMC4507178 DOI: 10.1038/srep12147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/16/2015] [Indexed: 11/08/2022] Open
Abstract
SNAIL transcriptional factors are key regulators during development and disease. They arose early during evolution, and in cnidarians such as Nematostella vectensis, NvSNAILA/B are detected in invaginating tissues during gastrulation. The function of SNAIL proteins is well established in bilaterians but their roles in cnidarians remain unknown. The structure of NvSNAILA and B is similar to the human SNAIL1 and 2, including SNAG and zinc-finger domains. Here, we performed a molecular analysis on localization and mobility of NvSNAILA/B using mammalian cells and Nematostella embryos. NvSNAILA/B display nuclear localization and mobility similar to HsSNAIL1/2. Strikingly, NvSNAILA is highly enriched in the nucleoli and shuttles between the nucleoli and the nucleoplasm. Truncation of the N-terminal SNAG domain, reported to contain Nuclear Localization Signals, markedly reduces nucleolar levels, without effecting nuclear localization or mobility. Truncation of the C-terminal zinc-fingers, involved in DNA binding in higher organisms, significantly affects subcellular localization and mobility. Specifically, the zinc-finger domains are required for nucleolar enrichment of NvSNAILA. Differently from SNAIL transcriptional factors described before, NvSNAILA is specifically enriched in the nucleoli co-localizing with nucleolar markers even after nucleolar disruption. Our findings implicate additional roles for SNAG and zinc-finger domains, suggesting a role for NvSNAILA in the nucleolus.
Collapse
|
26
|
Yu C, Xin W, Zhen J, Liu Y, Javed A, Wang R, Wan Q. Human antigen R mediated post-transcriptional regulation of epithelial-mesenchymal transition related genes in diabetic nephropathy. J Diabetes 2015; 7:562-72. [PMID: 25265983 DOI: 10.1111/1753-0407.12220] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/04/2014] [Accepted: 09/08/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Human antigen R (HuR) is a ubiquitously expressed RNA-binding protein that modulates gene expression at the post-transcriptional level. While cytoplasmic HuR expression was identified as a marker in epithelial-mesenchymal transition (EMT) process of several types of cancer, its role in diabetic nephropathy (DN) remains unclear. METHODS Renal biopsies from Type 2 diabetic patients and STZ-induced DN rats were stained for HuR and EMT markers. Redistribution of HuR was detected by immunostaining and western blot in high glucose stimulated cells. RNAi was used to supress HuR expression. The binding affinity for EMT-related genes was evaluated by immunoprecipitation. RESULTS Cytoplasmic HuR expression was elevated in human and rat DN specimens along with EMT changes compared to normal controls. HuR shuttling between nucleus and cytoplasm facilitated epithelial to mesenchymal transition in renal epithelial cells. The suppression of HuR partially inhibited EMT of high glucose stimulated HK-2 cells. Furthermore, HuR bound to 3'-UTRs of critical cytokines or transcription factors mRNA involved in EMT process. CONCLUSION Acquired phenotypic traits of EMT were partially through the enhanced HuR-binding proteins and its post-transcriptional regulation role in DN.
Collapse
Affiliation(s)
- Che Yu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Wei Xin
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Junhui Zhen
- Department of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, China
| | - Yi Liu
- Department of Respiratory Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Akhtar Javed
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qiang Wan
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, China
| |
Collapse
|
27
|
Lovicu FJ, Shin EH, McAvoy JW. Fibrosis in the lens. Sprouty regulation of TGFβ-signaling prevents lens EMT leading to cataract. Exp Eye Res 2015; 142:92-101. [PMID: 26003864 DOI: 10.1016/j.exer.2015.02.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/22/2015] [Accepted: 02/03/2015] [Indexed: 12/22/2022]
Abstract
Cataract is a common age-related condition that is caused by progressive clouding of the normally clear lens. Cataract can be effectively treated by surgery; however, like any surgery, there can be complications and the development of a secondary cataract, known as posterior capsule opacification (PCO), is the most common. PCO is caused by aberrant growth of lens epithelial cells that are left behind in the capsular bag after surgical removal of the fiber mass. An epithelial-to-mesenchymal transition (EMT) is central to fibrotic PCO and forms of fibrotic cataract, including anterior/posterior polar cataracts. Transforming growth factor β (TGFβ) has been shown to induce lens EMT and consequently research has focused on identifying ways of blocking its action. Intriguingly, recent studies in animal models have shown that EMT and cataract developed when a class of negative-feedback regulators, Sprouty (Spry)1 and Spry2, were conditionally deleted from the lens. Members of the Spry family act as general antagonists of the receptor tyrosine kinase (RTK)-mediated MAPK signaling pathway that is involved in many physiological and developmental processes. As the ERK/MAPK signaling pathway is a well established target of Spry proteins, and overexpression of Spry can block aberrant TGFβ-Smad signaling responsible for EMT and anterior subcapsular cataract, this indicates a role for the ERK/MAPK pathway in TGFβ-induced EMT. Given this and other supporting evidence, a case is made for focusing on RTK antagonists, such as Spry, for cataract prevention. In addition, and looking to the future, this review also looks at possibilities for supplanting EMT with normal fiber differentiation and thereby promoting lens regenerative processes after cataract surgery. Whilst it is now known that the epithelial to fiber differentiation process is driven by FGF, little is known about factors that coordinate the precise assembly of fibers into a functional lens. However, recent research provides key insights into an FGF-activated mechanism intrinsic to the lens that involves interactions between the Wnt-Frizzled and Jagged/Notch signaling pathways. This reciprocal epithelial-fiber cell interaction appears to be critical for the assembly and maintenance of the highly ordered three-dimensional architecture that is central to lens function. This information is fundamental to defining the specific conditions and stimuli needed to recapitulate developmental programs and promote regeneration of lens structure and function after cataract surgery.
Collapse
Affiliation(s)
- F J Lovicu
- Discipline of Anatomy and Histology, Bosch Institute, School of Medical Sciences, University of Sydney, 2006, NSW, Australia; Save Sight Institute, University of Sydney, Sydney 2001, NSW, Australia.
| | - E H Shin
- Discipline of Anatomy and Histology, Bosch Institute, School of Medical Sciences, University of Sydney, 2006, NSW, Australia
| | - J W McAvoy
- Save Sight Institute, University of Sydney, Sydney 2001, NSW, Australia
| |
Collapse
|
28
|
Pioli PD, Weis JH. Snail transcription factors in hematopoietic cell development: a model of functional redundancy. Exp Hematol 2014; 42:425-30. [PMID: 24674754 DOI: 10.1016/j.exphem.2014.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 11/15/2022]
Abstract
Coordinated gene expression is crucial in facilitating proper lymphoid cell development and function. The precise patterns of gene expression during B- and T-cell development are regulated through a complex interplay between a multitude of transcriptional regulators, both activators and repressors. We have recently identified the Snail family of transcription factors as playing significant and overlapping roles in lymphoid cell development, in that deletion of both SNAI2 and SNAI3 was required to fully impact the generation of mature T and B cells. Analyses using compound heterozygote animals further demonstrated that SNAI2 and SNAI3 were partially haplosufficient and relatively equivalent in their ability to preserve B-cell generation in the bone marrow. In this review, we summarize studies elucidating the role of the Snail family in hematopoiesis, with a focus on lymphoid cell development. Using the Snail family as an example, we discuss the concepts of functional redundancy and strategies employed to assay transcription factor families for intramember compensation.
Collapse
Affiliation(s)
- Peter D Pioli
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - John H Weis
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
29
|
Choi S, Yamashita E, Yasuhara N, Song J, Son SY, Won YH, Hong HR, Shin YS, Sekimoto T, Park IY, Yoneda Y, Lee SJ. Structural basis for the selective nuclear import of the C2H2 zinc-finger protein Snail by importin β. ACTA ACUST UNITED AC 2014; 70:1050-60. [PMID: 24699649 DOI: 10.1107/s1399004714000972] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/14/2014] [Indexed: 01/22/2023]
Abstract
Snail contributes to the epithelial-mesenchymal transition by suppressing E-cadherin in transcription processes. The Snail C2H2-type zinc-finger (ZF) domain functions both as a nuclear localization signal which binds to importin β directly and as a DNA-binding domain. Here, a 2.5 Å resolution structure of four ZF domains of Snail1 complexed with importin β is presented. The X-ray structure reveals that the four ZFs of Snail1 are required for tight binding to importin β in the nuclear import of Snail1. The shape of the ZFs in the X-ray structure is reminiscent of a round snail, where ZF1 represents the head, ZF2-ZF4 the shell, showing a novel interaction mode, and the five C-terminal residues the tail. Although there are many kinds of C2H2-type ZFs which have the same fold as Snail, nuclear import by direct recognition of importin β is observed in a limited number of C2H2-type ZF proteins such as Snail, Wt1, KLF1 and KLF8, which have the common feature of terminating in ZF domains with a short tail of amino acids.
Collapse
Affiliation(s)
- Saehae Choi
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Noriko Yasuhara
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Jinsue Song
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Se-Young Son
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Young Han Won
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Hye Rim Hong
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Yoon Sik Shin
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Toshihiro Sekimoto
- Department of Biochemistry, Graduate School of Medicine, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Il Yeong Park
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Yoshihiro Yoneda
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Soo Jae Lee
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| |
Collapse
|
30
|
The B-subdomain of the Xenopus laevis XFIN KRAB-AB domain is responsible for its weaker transcriptional repressor activity compared to human ZNF10/Kox1. PLoS One 2014; 9:e87609. [PMID: 24498343 PMCID: PMC3912051 DOI: 10.1371/journal.pone.0087609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/23/2013] [Indexed: 12/12/2022] Open
Abstract
The Krüppel-associated box (KRAB) domain interacts with the nuclear hub protein TRIM28 to initiate or mediate chromatin-dependent processes like transcriptional repression, imprinting or suppression of endogenous retroviruses. The prototype KRAB domain initially identified in ZNF10/KOX1 encompasses two subdomains A and B that are found in hundreds of zinc finger transcription factors studied in human and murine genomes. Here we demonstrate for the first time transcriptional repressor activity of an amphibian KRAB domain. After sequence correction, the updated KRAB-AB domain of zinc finger protein XFIN from the frog Xenopus laevis was found to confer transcriptional repression in reporter assays in Xenopus laevis A6 kidney cells as well as in human HeLa, but not in the minnow Pimephales promelas fish cell line EPC. Binding of the XFIN KRAB-AB domain to human TRIM28 was demonstrated in a classical co-immunoprecipitation approach and visualized in a single-cell compartmentalization assay. XFIN-AB displayed reduced potency in repression as well as lower strength of interaction with TRIM28 compared to ZNF10 KRAB-AB. KRAB-B subdomain swapping between the two KRAB domains indicated that it was mainly the KRAB-B subdomain of XFIN that was responsible for its lower capacity in repression and binding to human TRIM28. In EPC fish cells, ZNF10 and XFIN KRAB repressor activity could be partially restored to low levels by adding exogenous human TRIM28. In contrast to XFIN, we did not find any transcriptional repression activity for the KRAB-like domain of human PRDM9 in HeLa cells. PRDM9 is thought to harbor an evolutionary older domain related to KRAB whose homologs even occur in invertebrates. Our results support the notion that functional bona fide KRAB domains which confer transcriptional repression and interact with TRIM28 most likely co-evolved together with TRIM28 at the beginning of tetrapode evolution.
Collapse
|
31
|
Díaz VM, Viñas-Castells R, García de Herreros A. Regulation of the protein stability of EMT transcription factors. Cell Adh Migr 2014; 8:418-28. [PMID: 25482633 PMCID: PMC4594480 DOI: 10.4161/19336918.2014.969998] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/10/2014] [Accepted: 07/21/2014] [Indexed: 12/20/2022] Open
Abstract
The epithelial to mesenchymal transition (EMT) consists of a rapid change of cell phenotype, characterized by the loss of epithelial characteristics and the acquisition of a more invasive phenotype. Transcription factors regulating EMT (Snail, Twist and Zeb) are extremely labile proteins, rapidly degraded by the proteasome system. In this review we analyze the current mechanisms controlling degradation of EMT transcription factors, focusing on the role of new E3 ubiquitin-ligases involved in EMT. We also summarize the regulation of the stability of these EMT transcription factors, specially observed in different stress conditions, such as hypoxia, chemotherapeutic drugs, oxidative stress or γ-irradiation.
Collapse
Affiliation(s)
- VM Díaz
- Programa de Recerca en Càncer; Institut Hospital del Mar d'Investigacions Mèdiques (IMIM); Parc de Recerca Biomèdica de Barcelona; Doctor Aiguader; Barcelona, Spain
- Departament de Ciències Experimentals i de la Salut; Universitat Pompeu Fabra; Barcelona, Spain
- Parc de Recerca Biomèdica de Barcelona; Barcelona, Spain
| | - R Viñas-Castells
- Programa de Recerca en Càncer; Institut Hospital del Mar d'Investigacions Mèdiques (IMIM); Parc de Recerca Biomèdica de Barcelona; Doctor Aiguader; Barcelona, Spain
| | - A García de Herreros
- Programa de Recerca en Càncer; Institut Hospital del Mar d'Investigacions Mèdiques (IMIM); Parc de Recerca Biomèdica de Barcelona; Doctor Aiguader; Barcelona, Spain
- Departament de Ciències Experimentals i de la Salut; Universitat Pompeu Fabra; Barcelona, Spain
- Parc de Recerca Biomèdica de Barcelona; Barcelona, Spain
| |
Collapse
|
32
|
Villarejo A, Cortés-Cabrera A, Molina-Ortíz P, Portillo F, Cano A. Differential role of Snail1 and Snail2 zinc fingers in E-cadherin repression and epithelial to mesenchymal transition. J Biol Chem 2013; 289:930-41. [PMID: 24297167 DOI: 10.1074/jbc.m113.528026] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Snail1 (Snail) and Snail2 (Slug) are transcription factors that share a similar DNA binding structure of four and five C2H2 zinc finger motifs (ZF), respectively. Both factors bind specifically to a subset of E-box motifs (E2-box: CAGGTG/CACCTG) in target promoters like the E-cadherin promoter and are key mediators of epithelial-to-mesenchymal transition (EMT). However, there are differences in the biological actions, in binding affinities to E-cadherin promoter, and in the target genes of Snail1 and Snail2, although the molecular bases are presently unknown. In particular, the role of each Snail1 and Snail2 ZF in the binding to E-boxes and in EMT induction has not been previously explored. We have approached this question by modeling Snail1 and Snail2 protein-DNA interactions and through mutational and functional assays of different ZFs. Results show that Snail1 efficient repression and binding to human and mouse E-cadherin promoter as well as EMT-inducing ability require intact ZF1 and ZF2, while for Snail2, either ZF3 or ZF4 is essential for those functions. Furthermore, the differential distribution of E2-boxes in mouse and human E-cadherin promoters also contributes to the differential Snail factor activity. These data indicate a non-equivalent role of Snail1 and Snail2 ZFs in gene repression, contributing to the elucidation of the molecular differences between these important EMT regulators.
Collapse
Affiliation(s)
- Ana Villarejo
- From the Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Universidad Autónoma de Madrid (UAM), IdiPAZ, Arzobispo Morcillo, 2, 28029 Madrid, Spain and
| | | | | | | | | |
Collapse
|
33
|
Mingot JM, Vega S, Cano A, Portillo F, Nieto MA. eEF1A mediates the nuclear export of SNAG-containing proteins via the Exportin5-aminoacyl-tRNA complex. Cell Rep 2013; 5:727-37. [PMID: 24209753 DOI: 10.1016/j.celrep.2013.09.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/28/2013] [Accepted: 09/23/2013] [Indexed: 11/16/2022] Open
Abstract
Exportin5 mediates the nuclear export of double-stranded RNAs, including pre-microRNAs, adenoviral RNAs, and tRNAs. When tRNAs are aminoacylated, the Exportin5-aminoacyl (aa)-tRNA complex recruits and coexports the translation elongation factor eEF1A. Here, we show that eEF1A binds to Snail transcription factors when bound to their main target, the E-cadherin promoter, facilitating their export to the cytoplasm in association with the aa-tRNA-Exportin5 complex. Snail binds to eEF1A through the SNAG domain, a protein nuclear export signal present in several transcription factor families, and this binding is regulated by phosphorylation. Thus, we describe a nuclear role for eEF1A and provide a mechanism for protein nuclear export that attenuates the activity of SNAG-containing transcription factors.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Amino Acid Sequence
- Cadherins/genetics
- Cadherins/metabolism
- Cell Nucleus/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- HeLa Cells
- Humans
- Karyopherins/genetics
- Karyopherins/metabolism
- MCF-7 Cells
- Peptide Elongation Factor 1/genetics
- Peptide Elongation Factor 1/metabolism
- Promoter Regions, Genetic
- Protein Structure, Tertiary
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Snail Family Transcription Factors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Transfection
- Exportin 1 Protein
Collapse
Affiliation(s)
- José Manuel Mingot
- Instituto de Neurociencias, CSIC-UMH, Avda. Ramón y Cajal s/n, 03550 San Juan de Alicante, Spain.
| | | | | | | | | |
Collapse
|
34
|
Heffern MC, Kurutz JW, Meade TJ. Spectroscopic elucidation of the inhibitory mechanism of Cys2His2 zinc finger transcription factors by cobalt(III) Schiff base complexes. Chemistry 2013; 19:17043-53. [PMID: 24203451 DOI: 10.1002/chem.201301659] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 10/05/2013] [Indexed: 01/22/2023]
Abstract
Transcription factors are key regulators in both normal and pathological cell processes. Affecting the activity of these proteins is a promising strategy for understanding gene regulation and developing effective therapeutics. Co(III) Schiff base complexes ([Co(acacen)(L)2](+) where L=labile axial ligands) have been shown to be potent inhibitors of a number of zinc metalloproteins including Cys2His2 zinc finger transcription factors. Inhibition by [Co(acacen)(L)2](+) of the target protein is believed to occur through a dissociative exchange of the labile axial ligands for histidine (His) residues essential for function. Here, we report a series of spectroscopic investigations with model peptides of zinc fingers that elucidate the interaction between [Co(acacen)(L)2](+) complexes and zinc finger transcription factors. Observed changes in NMR chemical shifts and 2D (1)H-(1)H NOESY NMR spectra demonstrate the preference of [Co(acacen)(L)2](+) complexes to coordinate His residues over other amino acids. The conformation of [Co(acacen)(L)2](+) upon His coordination was characterized by (1)H NMR spectroscopy, near-UV CD, and electronic absorption. These studies reveal that the resulting His-coordinated [Co(acacen)(L)2](+) complex possesses an octahedral structure. The effects of [Co(acacen)(L)2](+) complexes on the zinc-finger structure were assessed by the degree of hydrogen bonding (probed by 2D NMR spectroscopy) and secondary-structure profiles measured by far-UV CD. These structural studies demonstrate the ability of [Co(acacen)(L)2](+) complexes to disrupt the ββα structure of zinc fingers, resulting in primarily random-coil conformations. A mechanism is described wherein [Co(acacen)(L)2](+) complexes inhibit zinc finger transcription factor activity through selectively coordinating His residues in the zinc finger by dissociative ligand exchange and disrupting the ββα structural motif required for gene regulation.
Collapse
Affiliation(s)
- Marie C Heffern
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, Illinois 60208-3113 (USA)
| | | | | |
Collapse
|
35
|
Viñas-Castells R, Frías Á, Robles-Lanuza E, Zhang K, Longmore GD, García de Herreros A, Díaz VM. Nuclear ubiquitination by FBXL5 modulates Snail1 DNA binding and stability. Nucleic Acids Res 2013; 42:1079-94. [PMID: 24157836 PMCID: PMC3902928 DOI: 10.1093/nar/gkt935] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The zinc finger transcription factor Snail1 regulates epithelial to mesenchymal transition, repressing epithelial markers and activating mesenchymal genes. Snail1 is an extremely labile protein degraded by the cytoplasmic ubiquitin-ligases β-TrCP1/FBXW1 and Ppa/FBXL14. Using a short hairpin RNA screening, we have identified FBXL5 as a novel Snail1 ubiquitin ligase. FBXL5 is located in the nucleus where it interacts with Snail1 promoting its polyubiquitination and affecting Snail1 protein stability and function by impairing DNA binding. Snail1 downregulation by FBXL5 is prevented by Lats2, a protein kinase that phosphorylates Snail1 precluding its nuclear export but not its polyubiquitination. Actually, although polyubiquitination by FBXL5 takes place in the nucleus, Snail1 is degraded in the cytosol. Finally, FBXL5 is highly sensitive to stress conditions and is downregulated by iron depletion and γ-irradiation, explaining Snail1 stabilization in these conditions. These results characterize a novel nuclear ubiquitin ligase controlling Snail1 protein stability and provide the molecular basis for understanding how radiotherapy upregulates the epithelial to mesenchymal transition-inducer Snail1.
Collapse
Affiliation(s)
- Rosa Viñas-Castells
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Parc de Recerca Biomèdica de Barcelona, Doctor Aiguader, 88, E-08003, Barcelona, Spain, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain, BRIGHT Institute, Washington University, St. Louis, MO 63110 USA, Departments of Cell Biology and Physiology, Washington University, St. Louis, MO 63110 USA and Department of Medicine, Washington University, St. Louis, MO 63110 USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Choi S, Song J, Son SY, Park IY, Yamashita E, Lee SJ. Crystallization and preliminary X-ray diffraction analysis of human importin β-Snail zinc finger domain complex. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1049-51. [PMID: 23989161 DOI: 10.1107/s1744309113023038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/15/2013] [Indexed: 11/10/2022]
Abstract
Snail is a C2H2-type zinc finger transcriptional repressor that induces epithelial-mesenchymal transition by repression of E-cadherin expression levels during embryonic development and tumour progression. Snail is imported into the nucleus by importin β through direct binding with its four zinc finger domain. The complex between importin β and Snail four zinc finger domain was crystallized in order to understand the nuclear transport mechanism of Snail. The constituents of the complex were separately expressed and were then co-purified and crystallized by the hanging-drop vapour-diffusion method. The crystals belonged to space group C2, with unit-cell parameters a = 228.2, b = 77.5, c = 72.0 Å, β = 100.9° and diffracted to 2.5 Å resolution.
Collapse
Affiliation(s)
- Saehae Choi
- College of Pharmacy, Chungbuk National University, 410 Seungbong, Heungduk, Cheongju 361-763, Republic of Korea
| | | | | | | | | | | |
Collapse
|
37
|
Paul V, Tonchev AB, Henningfeld KA, Pavlakis E, Rust B, Pieler T, Stoykova A. Scratch2 modulates neurogenesis and cell migration through antagonism of bHLH proteins in the developing neocortex. ACTA ACUST UNITED AC 2012. [PMID: 23180754 DOI: 10.1093/cercor/bhs356] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Scratch genes (Scrt) are neural-specific zinc-finger transcription factors (TFs) with an unknown function in the developing brain. Here, we show that, in addition to the reported expression of mammalian Scrt2 in postmitotic differentiating and mature neurons in the developing and early postnatal brain, Scrt2 is also localized in subsets of mitotic and neurogenic radial glial (RGP) and intermediate (IP) progenitors, as well as in their descendants-postmitotic IPs and differentiating neurons at the border subventricular/intermediate zone. Conditional activation of transgenic Scrt2 in cortical progenitors in mice promotes neuronal differentiation by favoring the direct mode of neurogenesis of RGPs at the onset of neurogenesis, at the expense of IP generation. Neuronal amplification via indirect IP neurogenesis is thereby extenuated, leading to a mild postnatal reduction of cortical thickness. Forced in vivo overexpression of Scrt2 suppressed the generation of IPs from RGPs and caused a delay in the radial migration of upper layer neurons toward the cortical plate. Mechanistically, our results indicate that Scrt2 negatively regulates the transcriptional activation of the basic helix loop helix TFs Ngn2/NeuroD1 on E-box containing common target genes, including Rnd2, a well-known major effector for migrational defects in developing cortex. Altogether, these findings reveal a modulatory role of Scrt2 protein in cortical neurogenesis and neuronal migration.
Collapse
Affiliation(s)
- Vanessa Paul
- Research Group Molecular Developmental Neurobiology, Max-Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Sánchez-Tilló E, Liu Y, de Barrios O, Siles L, Fanlo L, Cuatrecasas M, Darling DS, Dean DC, Castells A, Postigo A. EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cell Mol Life Sci 2012; 69:3429-56. [PMID: 22945800 PMCID: PMC11115078 DOI: 10.1007/s00018-012-1122-2] [Citation(s) in RCA: 401] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/20/2012] [Accepted: 08/09/2012] [Indexed: 12/13/2022]
Abstract
Cancer is a complex multistep process involving genetic and epigenetic changes that eventually result in the activation of oncogenic pathways and/or inactivation of tumor suppressor signals. During cancer progression, cancer cells acquire a number of hallmarks that promote tumor growth and invasion. A crucial mechanism by which carcinoma cells enhance their invasive capacity is the dissolution of intercellular adhesions and the acquisition of a more motile mesenchymal phenotype as part of an epithelial-to-mesenchymal transition (EMT). Although many transcription factors can trigger it, the full molecular reprogramming occurring during an EMT is mainly orchestrated by three major groups of transcription factors: the ZEB, Snail and Twist families. Upregulated expression of these EMT-activating transcription factors (EMT-ATFs) promotes tumor invasiveness in cell lines and xenograft mice models and has been associated with poor clinical prognosis in human cancers. Evidence accumulated in the last few years indicates that EMT-ATFs also regulate an expanding set of cancer cell capabilities beyond tumor invasion. Thus, EMT-ATFs have been shown to cooperate in oncogenic transformation, regulate cancer cell stemness, override safeguard programs against cancer like apoptosis and senescence, determine resistance to chemotherapy and promote tumor angiogenesis. This article reviews the expanding portfolio of functions played by EMT-ATFs in cancer progression.
Collapse
Affiliation(s)
- Ester Sánchez-Tilló
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, 08036 Barcelona, Spain
- CIBERehd (Gastrointestinal and Pancreatic Oncology), IDIBAPS, 08036 Barcelona, Spain
| | - Yongqing Liu
- James Graham Brown Cancer Center, Louisville Health Science Center, Louisville, KY 40202 USA
- Department of Ophthalmology and Birth Defects Center, Louisville Health Science Center, Louisville, KY 40202 USA
| | - Oriol de Barrios
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, 08036 Barcelona, Spain
| | - Laura Siles
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, 08036 Barcelona, Spain
| | - Lucia Fanlo
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, 08036 Barcelona, Spain
- Master Program in Biomedical Research, University Pompeu Fabra, 08003 Barcelona, Spain
| | - Miriam Cuatrecasas
- Department of Pathology, Hospital Clinic and IDIBAPS’ Tumor Bank, 08036 Barcelona, Spain
| | - Douglas S. Darling
- Department of Oral Health and Rehabilitation, Center for Genetics and Molecular Medicine, University of Louisville, Louisville, KY 40202 USA
| | - Douglas C. Dean
- James Graham Brown Cancer Center, Louisville Health Science Center, Louisville, KY 40202 USA
- Department of Ophthalmology and Birth Defects Center, Louisville Health Science Center, Louisville, KY 40202 USA
| | - Antoni Castells
- CIBERehd (Gastrointestinal and Pancreatic Oncology), IDIBAPS, 08036 Barcelona, Spain
- Institute of Digestive and Metabolic Diseases, Hospital Clinic, 08036 Barcelona, Spain
| | - Antonio Postigo
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, 08036 Barcelona, Spain
- CIBERehd (Gastrointestinal and Pancreatic Oncology), IDIBAPS, 08036 Barcelona, Spain
- James Graham Brown Cancer Center, Louisville Health Science Center, Louisville, KY 40202 USA
- ICREA, 08010 Barcelona, Spain
| |
Collapse
|
39
|
Morgan MAJ, Mould AW, Li L, Robertson EJ, Bikoff EK. Alternative splicing regulates Prdm1/Blimp-1 DNA binding activities and corepressor interactions. Mol Cell Biol 2012; 32:3403-13. [PMID: 22733990 PMCID: PMC3422002 DOI: 10.1128/mcb.00174-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 06/16/2012] [Indexed: 01/14/2023] Open
Abstract
Prdm1/Blimp-1 is a master regulator of gene expression in diverse tissues of the developing embryo and adult organism. Its C-terminal zinc finger domain mediates nuclear import, DNA binding, and recruitment of the corepressors G9a and HDAC1/2. Alternatively spliced transcripts lacking exon 7 sequences encode a structurally divergent isoform (Blimp-1Δexon7) predicted to have distinct functions. Here we demonstrate that the short Blimp-1Δexon7 isoform lacks DNA binding activity and fails to bind G9a or HDAC1/2 but retains the ability to interact with PRMT5. To investigate functional roles of alternative splicing in vivo, we engineered novel mouse strains via embryonic stem (ES) cell technology. Like null mutants, embryos carrying a targeted deletion of exon 7 and exclusively expressing Blimp-1Δexon7 die at around embryonic day 10.5 (E10.5) due to placental defects. In heterozygous Δexon7 mice, there is no evidence of dominant-negative effects. Mice carrying a knock-in allele with an exon 6-exon 7 fusion express full-length Blimp-1 only, develop normally, are healthy and fertile as adults, and efficiently generate mature plasma cells. These findings strongly suggest that the short Blimp-1Δexon7 isoform is dispensable. We propose that developmentally regulated alternative splicing is influenced by chromatin structure at the locus and fine-tunes Blimp-1's functional capabilities.
Collapse
Affiliation(s)
- Marc A J Morgan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
40
|
Molina-Ortiz P, Villarejo A, MacPherson M, Santos V, Montes A, Souchelnytskyi S, Portillo F, Cano A. Characterization of the SNAG and SLUG domains of Snail2 in the repression of E-cadherin and EMT induction: modulation by serine 4 phosphorylation. PLoS One 2012; 7:e36132. [PMID: 22567133 PMCID: PMC3342263 DOI: 10.1371/journal.pone.0036132] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/26/2012] [Indexed: 11/18/2022] Open
Abstract
Snail1 and Snail2, two highly related members of the Snail superfamily, are direct transcriptional repressors of E-cadherin and EMT inducers. Previous comparative gene profiling analyses have revealed important differences in the gene expression pattern regulated by Snail1 and Snail2, indicating functional differences between both factors. The molecular mechanism of Snail1-mediated repression has been elucidated to some extent, but very little is presently known on the repression mediated by Snail2. In the present work, we report on the characterization of Snail2 repression of E-cadherin and its regulation by phosphorylation. Both the N-terminal SNAG and the central SLUG domains of Snail2 are required for efficient repression of the E-cadherin promoter. The co-repressor NCoR interacts with Snail2 through the SNAG domain, while CtBP1 is recruited through the SLUG domain. Interestingly, the SNAG domain is absolutely required for EMT induction while the SLUG domain plays a negative modulation of Snail2 mediated EMT. Additionally, we identify here novel in vivo phosphorylation sites at serine 4 and serine 88 of Snail2 and demonstrate the functional implication of serine 4 in the regulation of Snail2-mediated repressor activity of E-cadherin and in Snail2 induction of EMT.
Collapse
Affiliation(s)
- Patricia Molina-Ortiz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC-UAM, IdiPAZ, Madrid, Spain
| | - Ana Villarejo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC-UAM, IdiPAZ, Madrid, Spain
| | - Matthew MacPherson
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC-UAM, IdiPAZ, Madrid, Spain
| | - Vanesa Santos
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC-UAM, IdiPAZ, Madrid, Spain
| | - Amalia Montes
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC-UAM, IdiPAZ, Madrid, Spain
| | - Serhiy Souchelnytskyi
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Francisco Portillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC-UAM, IdiPAZ, Madrid, Spain
| | - Amparo Cano
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC-UAM, IdiPAZ, Madrid, Spain
- * E-mail:
| |
Collapse
|
41
|
Abstract
Drosophila cubitus interruptus (Ci) and its vertebrate homologues, the glioblastoma (Gli) protein family, are the transcription factors belonging to the metazoan Gli/Glis/Zic ZF protein superfamily that shares similar five tandemly repeated C2H2-type zinc finger (ZF) motifs. Nuclear transport of Gli/Ci proteins is regulated by hedgehog (Hh) signaling and is an essential part of the Hh signal transduction pathway. Gli/Ci proteins possess a nuclear localization signal (NLS) and a nuclear export signal (NES), both of which are key signatures for controlling nucleocytoplasmic shuttling. The NLS of the Gli/Ci proteins has been mapped to the fifth ZF domain and its C-terminal side. It contains two clusters of basic residues (classical bipartite-type), which are conserved in metazoan Gli/Ci homologues, but which partially deviate from the intra-ZF domain NLSs in the Glis and Zic proteins. Recently, Importin α3 was identified as a nuclear transport protein for Ci. When we modeled the 3D structure of the Gli NLS-Importin α complex, the two basic clusters were predicted to fit in the two binding interfaces of Importin α. The mechanisms controlling the function of NLSs and NESs involve the elimination of the NES by Hh signaling-dependent protein cleavage in the Ci and the Gli3 proteins, and the phosphorylation of a threonine residue close to the NLS in Gli1. Both processes depend on the activity of protein kinase A, which has a critical role in Hh signaling in fly wing discs. In addition, the Roadkill protein, a substrate recognition component of E3 ubiquitin ligase, competes with the Ci protein to interact with Importin α3 resulting in inhibition of Ci protein nuclear import.
Collapse
Affiliation(s)
- Minoru Hatayama
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| | | |
Collapse
|
42
|
Zhang K, Rodriguez-Aznar E, Yabuta N, Owen RJ, Mingot JM, Nojima H, Nieto MA, Longmore GD. Lats2 kinase potentiates Snail1 activity by promoting nuclear retention upon phosphorylation. EMBO J 2011; 31:29-43. [PMID: 21952048 DOI: 10.1038/emboj.2011.357] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 09/05/2011] [Indexed: 01/24/2023] Open
Abstract
Snail1 is a central regulator of epithelial cell adhesion and movement in epithelial-to-mesenchymal transitions (EMTs) during embryo development; a process reactivated during cancer metastasis. While induction of Snail1 transcription precedes EMT induction, post-translational regulation of Snail1 is also critical for determining Snail1's protein level, subcellular localization, and capacity to induce EMT. To identify novel post-translational regulators of Snail1, we developed a live cell, bioluminescence-based screen. From a human kinome RNAi screen, we have identified Lats2 kinase as a novel regulator of Snail1 protein level, subcellular localization, and thus, activity. We show that Lats2 interacts with Snail1 and directly phosphorylates Snail1 at residue T203. This occurs in the nucleus and serves to retain Snail1 in the nucleus thereby enhancing its stability. Lats2 was found to positively influence cellular EMT and tumour cell invasion, in a Snail1-dependent manner. Indeed during TGFβ-induced EMT Lats2 is activated and Snail1 phosphorylated at T203. Analysis in mouse and zebrafish embryo development confirms that Lats2 acts as a positive modulator of Snail1 protein level and potentiates its in vivo EMT activity.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Medicine, The BRIGHT Institute, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Nieto MA. The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu Rev Cell Dev Biol 2011; 27:347-76. [PMID: 21740232 DOI: 10.1146/annurev-cellbio-092910-154036] [Citation(s) in RCA: 567] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The epithelial to mesenchymal transition (EMT) converts epithelial cells into migratory and invasive cells and is a fundamental event in morphogenesis. Although its relevance in the progression of cancer and organ fibrosis had been debated until recently, the EMT is now established as an important step in the metastatic cascade of epithelial tumors. The similarities between pathological and developmental EMTs validate the embryo as the best model to understand the molecular and cellular mechanisms involved in this process, identifying those that are hijacked during the progression of cancer and organ degeneration. Our ever-increasing understanding of how transcription factors regulate the EMT has revealed complex regulatory loops coupled to posttranscriptional and epigenetic regulatory programs. The EMT is now integrated into the systemic activities of whole organisms, establishing links with cell survival, stemness, inflammation, and immunity. In addition, the EMT now constitutes a promising target for the treatment of cancer and organ-degenerative diseases.
Collapse
Affiliation(s)
- M Angela Nieto
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, San Juan de Alicante 03550, Spain.
| |
Collapse
|
44
|
Sekimoto T, Miyamoto Y, Arai S, Yoneda Y. Importin alpha protein acts as a negative regulator for Snail protein nuclear import. J Biol Chem 2011; 286:15126-31. [PMID: 21454664 DOI: 10.1074/jbc.m110.213579] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Snail, a zinc finger-containing transcriptional regulator, migrates into the nucleus where it controls gene expression. We demonstrated previously that importin β1 directly recognizes the zinc finger domain of Snail and transports it into the nucleus. Here, using in vitro and in vivo assays, we show that importin α, an adaptor protein for importin β1, negatively regulates the nuclear import of Snail mediated by importin β1. In vitro binding assays indicated that importin α interacted with the zinc finger domain of Snail to compete with the binding of importin β1 and that Snail did not form a ternary complex with importin α/importin β1. Overexpression of importin α in A549 cells reduced the endogenous Snail protein level, which was restored by inhibitors of the proteasome and glycogen synthase kinase 3β. Furthermore, knockdown of importin α by siRNA treatment increased the endogenous Snail protein level in several cancer cell lines. This study provides a novel regulatory mechanism of the nuclear protein import process by importin α and gives an implication to control Snail activity by inhibiting its nuclear localization.
Collapse
Affiliation(s)
- Toshihiro Sekimoto
- Department of Biochemistry, Graduate School of Medicine, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
45
|
Gu L, Tsuji T, Jarboui MA, Yeo GP, Sheehy N, Hall WW, Gautier VW. Intermolecular masking of the HIV-1 Rev NLS by the cellular protein HIC: novel insights into the regulation of Rev nuclear import. Retrovirology 2011; 8:17. [PMID: 21401918 PMCID: PMC3062594 DOI: 10.1186/1742-4690-8-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 03/14/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The HIV-1 regulatory protein Rev, which is essential for viral replication, mediates the nuclear export of unspliced viral transcripts. Rev nuclear function requires active nucleocytoplasmic shuttling, and Rev nuclear import is mediated by the recognition of its Nuclear Localisation Signal (NLS) by multiple import factors, which include transportin and importin β. However, it remains unclear which nuclear import pathway(s) predominate in vivo, and the cellular environment that modulates Rev nucleocytoplasmic shuttling remains to be characterised. RESULTS In our study, we have identified the cellular protein HIC (Human I-mfa domain-Containing protein) as a novel interactor of HIV-1 Rev. We demonstrate that HIC selectively interferes with Rev NLS interaction with importin β and impedes its nuclear import and function, but does not affect Rev nuclear import mediated by transportin. Hence, the molecular determinants mediating Rev-NLS recognition by importin β and transportin appear to be distinct. Furthermore, we have employed HIC and M9 M, a peptide specifically designed to inhibit the transportin-mediated nuclear import pathway, to characterise Rev nuclear import pathways within different cellular environments. Remarkably, we could show that in 293T, HeLa, COS7, Jurkat, U937, THP-1 and CEM cells, Rev nuclear import is cell type specific and alternatively mediated by transportin or importin β, in a mutually exclusive fashion. CONCLUSIONS Rev cytoplasmic sequestration by HIC may represent a novel mechanism for the control of Rev function. These studies highlight that the multivalent nature of the Rev NLS for different import receptors enables Rev to adapt its nuclear trafficking strategy.
Collapse
Affiliation(s)
- Lili Gu
- UCD-Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The zinc finger transcription factor Slug (Snai2) serves a wide variety of functions in the epidermis, with roles in skin development, hair growth, wound healing, skin cancer, and sunburn. Slug is expressed in basal keratinocytes and hair follicles where it is important in maintaining epidermal homeostasis. Slug also helps coordinate the skin response to exogenous stimuli. Slug is rapidly induced by a variety of growth factors and injurious agents and Slug controls, directly or indirectly, a variety of keratinocyte responses, including changes in differentiation, adhesion, motility, and production of inflammatory mediators. Slug thus modulates the interactions of the keratinocyte with its environment and with surrounding cells. The function of Slug in the epidermis appears to be distinct from that of the closely related Snail transcription factor.
Collapse
Affiliation(s)
- Stephanie H Shirley
- Department of Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park Research Division, Smithville, Texas 78957, USA
| | | | | | | |
Collapse
|
47
|
Lindert U, Cramer M, Meuli M, Georgiev O, Schaffner W. Metal-responsive transcription factor 1 (MTF-1) activity is regulated by a nonconventional nuclear localization signal and a metal-responsive transactivation domain. Mol Cell Biol 2009; 29:6283-93. [PMID: 19797083 PMCID: PMC2786702 DOI: 10.1128/mcb.00847-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 07/25/2009] [Accepted: 09/12/2009] [Indexed: 01/10/2023] Open
Abstract
Metal-responsive transcription factor 1 (MTF-1) mediates both basal and heavy metal-induced transcription of metallothionein genes and also regulates other genes involved in the cell stress response and in metal homeostasis. In resting cells, MTF-1 localizes to both the cytoplasm and the nucleus but quantitatively accumulates in the nucleus upon metal load and under other stress conditions. Here we show that within the DNA-binding domain, a region spanning zinc fingers 1 to 3 (amino acids [aa] 137 to 228 in human MTF-1) harbors a nonconventional nuclear localization signal. This protein segment confers constitutive nuclear localization to a cytoplasmic marker protein. The deletion of the three zinc fingers impairs nuclear localization. The export of MTF-1 to the cytoplasm is controlled by a classical nuclear export signal (NES) embedded in the acidic activation domain. We show that this activation domain confers metal inducibility in distinct cell types when fused to a heterologous DNA-binding domain. Furthermore, the cause of a previously described stronger inducibility of human versus mouse MTF-1 could be narrowed down to a 3-aa difference in the NES; "humanizing" mouse MTF-1 at these three positions enhanced its metal inducibility to the level of human MTF-1.
Collapse
Affiliation(s)
- Uschi Lindert
- Institute of Molecular Biology, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland, Zurich Ph.D. Program in Molecular Life Sciences, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Mirjam Cramer
- Institute of Molecular Biology, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland, Zurich Ph.D. Program in Molecular Life Sciences, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Michael Meuli
- Institute of Molecular Biology, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland, Zurich Ph.D. Program in Molecular Life Sciences, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Oleg Georgiev
- Institute of Molecular Biology, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland, Zurich Ph.D. Program in Molecular Life Sciences, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Walter Schaffner
- Institute of Molecular Biology, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland, Zurich Ph.D. Program in Molecular Life Sciences, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
48
|
MacPherson MR, Molina P, Souchelnytskyi S, Wernstedt C, Martin-Pérez J, Portillo F, Cano A. Phosphorylation of serine 11 and serine 92 as new positive regulators of human Snail1 function: potential involvement of casein kinase-2 and the cAMP-activated kinase protein kinase A. Mol Biol Cell 2009; 21:244-53. [PMID: 19923321 PMCID: PMC2808231 DOI: 10.1091/mbc.e09-06-0504] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
New phosphorylation sites in Snail1 have been identified with functional implications. Serines 11 and 92 participate in the control of Snail1 stability and positively regulate Snail1 repressive function and its interaction with mSin3A co-repressor. Furthermore, serines 11 and 92 are required for Snail1-mediated EMT and cell viability, respectively. Snail1 is a major factor for epithelial-mesenchymal transition (EMT), an important event in tumor metastasis and in other pathologies. Snail1 is tightly regulated at transcriptional and posttranscriptional levels. Control of Snail1 protein stability and nuclear export by GSK3β phosphorylation is important for Snail1 functionality. Stabilization mechanisms independent of GSK3β have also been reported, including interaction with LOXL2 or regulation of the COP9 signalosome by inflammatory signals. To get further insights into the role of Snail1 phosphorylation, we have performed an in-depth analysis of in vivo human Snail1 phosphorylation combined with mutational studies. We identify new phosphorylation sites at serines 11, 82, and 92 and confirmed previously suggested phosphorylations at serine 104 and 107. Serines 11 and 92 participate in the control of Snail1 stability and positively regulate Snail1 repressive function and its interaction with mSin3A corepressor. Furthermore, serines 11 and 92 are required for Snail1-mediated EMT and cell viability, respectively. PKA and CK2 have been characterized as the main kinases responsible for in vitro Snail1 phosphorylation at serine 11 and 92, respectively. These results highlight serines 11 and 92 as new players in Snail1 regulation and suggest the participation of CK2 and PKA in the modulation of Snail1 functionality.
Collapse
Affiliation(s)
- Matthew Reid MacPherson
- Departamento de Bioquímica, UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
49
|
Barrallo-Gimeno A, Nieto MA. Evolutionary history of the Snail/Scratch superfamily. Trends Genet 2009; 25:248-52. [DOI: 10.1016/j.tig.2009.04.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Revised: 04/06/2009] [Accepted: 04/08/2009] [Indexed: 01/09/2023]
|