1
|
Hansen CE, Hollaus D, Kamermans A, de Vries HE. Tension at the gate: sensing mechanical forces at the blood-brain barrier in health and disease. J Neuroinflammation 2024; 21:325. [PMID: 39696463 PMCID: PMC11657007 DOI: 10.1186/s12974-024-03321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024] Open
Abstract
Microvascular brain endothelial cells tightly limit the entry of blood components and peripheral cells into the brain by forming the blood-brain barrier (BBB). The BBB is regulated by a cascade of mechanical and chemical signals including shear stress and elasticity of the adjacent endothelial basement membrane (BM). During physiological aging, but especially in neurological diseases including multiple sclerosis (MS), stroke, small vessel disease, and Alzheimer's disease (AD), the BBB is exposed to inflammation, rigidity changes of the BM, and disturbed cerebral blood flow (CBF). These altered forces lead to increased vascular permeability, reduced endothelial reactivity to vasoactive mediators, and promote leukocyte transmigration. Whereas the molecular players involved in leukocyte infiltration have been described in detail, the importance of mechanical signalling throughout this process has only recently been recognized. Here, we review relevant features of mechanical forces acting on the BBB under healthy and pathological conditions, as well as the endothelial mechanosensory elements detecting and responding to altered forces. We demonstrate the underlying complexity by focussing on the family of transient receptor potential (TRP) ion channels. A better understanding of these processes will provide insights into the pathogenesis of several neurological disorders and new potential leads for treatment.
Collapse
Affiliation(s)
- Cathrin E Hansen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
| | - David Hollaus
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Alwin Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Sakaguchi R, Takahashi N, Yoshida T, Ogawa N, Ueda Y, Hamano S, Yamaguchi K, Sawamura S, Yamamoto S, Hara Y, Kawamoto T, Suzuki R, Nakao A, Mori MX, Furukawa T, Shimizu S, Inoue R, Mori Y. Dynamic remodeling of TRPC5 channel-caveolin-1-eNOS protein assembly potentiates the positive feedback interaction between Ca 2+ and NO signals. J Biol Chem 2024; 300:107705. [PMID: 39178948 PMCID: PMC11420454 DOI: 10.1016/j.jbc.2024.107705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024] Open
Abstract
The cell signaling molecules nitric oxide (NO) and Ca2+ regulate diverse biological processes through their closely coordinated activities directed by signaling protein complexes. However, it remains unclear how dynamically the multicomponent protein assemblies behave within the signaling complexes upon the interplay between NO and Ca2+ signals. Here we demonstrate that TRPC5 channels activated by the stimulation of G-protein-coupled ATP receptors mediate Ca2+ influx, that triggers NO production from endothelial NO synthase (eNOS), inducing secondary activation of TRPC5 via cysteine S-nitrosylation and eNOS in vascular endothelial cells. Mutations in the caveolin-1-binding domains of TRPC5 disrupt its association with caveolin-1 and impair Ca2+ influx and NO production, suggesting that caveolin-1 serves primarily as the scaffold for TRPC5 and eNOS to assemble into the signal complex. Interestingly, during ATP receptor activation, eNOS is dissociated from caveolin-1 and in turn directly associates with TRPC5, which accumulates at the plasma membrane dependently on Ca2+ influx and calmodulin. This protein reassembly likely results in a relief of eNOS from the inhibitory action of caveolin-1 and an enhanced TRPC5 S-nitrosylation by eNOS localized in the proximity, thereby facilitating the secondary activation of Ca2+ influx and NO production. In isolated rat aorta, vasodilation induced by acetylcholine was significantly suppressed by the TRPC5 inhibitor AC1903. Thus, our study provides evidence that dynamic remodeling of the protein assemblies among TRPC5, eNOS, caveolin-1, and calmodulin determines the ensemble of Ca2+ mobilization and NO production in vascular endothelial cells.
Collapse
Affiliation(s)
- Reiko Sakaguchi
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan; Laboratory of Biomaterials and Chemistry, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Nobuaki Takahashi
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Advanced Biomedical Engineering Research Unit, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Division of Pharmacology, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan
| | - Nozomi Ogawa
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yoshifumi Ueda
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Satoshi Hamano
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kaori Yamaguchi
- Laboratory of Environmental Systems Biology, Department of Technology and Ecology, Hall of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Seishiro Sawamura
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Shinichiro Yamamoto
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Division of Pharmacology, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan
| | - Yuji Hara
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Department of Integrative Physiology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Tomoya Kawamoto
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Ryosuke Suzuki
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Akito Nakao
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Masayuki X Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Laboratory of Biomaterials and Chemistry, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Tetsushi Furukawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shunichi Shimizu
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan
| | - Ryuji Inoue
- Department of Physiology, Fukuoka University, Fukuoka, Japan
| | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan; Advanced Biomedical Engineering Research Unit, Kyoto University, Kyoto, Japan.
| |
Collapse
|
3
|
Guo Q, Qiu P, Pan K, Chen J, Wang B, Lin J. Construction and validation of a transient receptor potential-related long noncoding RNA signature for prognosis prediction in breast cancer patients. Medicine (Baltimore) 2023; 102:e35978. [PMID: 37986367 PMCID: PMC10659707 DOI: 10.1097/md.0000000000035978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/05/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed malignancy in women around the world. Accumulating evidence suggests that transient receptor potential (TRP) channels play a significant role in tumor progression and immune cell infiltration. Hence, we conducted the study to investigate the correlation between TRP-associated lncRNAs and the prognosis of breast carcinoma. In the current study, 33 TRP-associated genes were selected from a review published by Amrita Samanta et al, and the TRP-related lncRNAs were identified by Pearson analysis. Based on the sum of the expression levels of 12 lncRNAs provided by the Cancer Genome Atlas (TCGA), a TRP-associated lncRNA signature was established by using Cox regression analysis. According to the median value of the risk score in the training set, BC patients were separated into high- and low-risk groups. Subsequently, functional enrichment analysis was conducted on the differential expression genes (DEGs) between different risk groups. The Estimation of Stromal and Immune Cells in Malignant Tumor Tissues Using Expression (ESTIMATE) Score was calculated by ESTIMATE, and the immune cell infiltration was evaluated by ssGSEA. Finally, the immune checkpoint gene expression levels, microsatellite instability (MSI), and immunophenoscore (IPS) were further assessed. The high-risk groups exhibited lower survival rates, while the low-risk groups showed higher survival rates. As a result, the DEGs between different risk groups were highly enriched in immune cell activation and immunoregulation. Besides, the ESTIMATE scores of patients in low-risk groups were higher than those in high-risk groups. The infiltration levels of several immune cells were remarkably elevated in low-risk groups, and various immune signatures were activated with a decreased risk score. Eventually, the TRP-associated lncRNA signature was confirmed with a highly potential ability to evaluate the immunotherapy response in breast carcinoma patients. The outcomes of the current study indicated that the 12-TRP-associated-lncRNA risk model was an independent prognostic risk factor for BC patients. This risk model could be closely related to the tumor immune microenvironment in BC. Our findings will provide new insights for future immunotherapy for BC treatment.
Collapse
Affiliation(s)
- Qiaonan Guo
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Pengjun Qiu
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Kelun Pan
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jianpeng Chen
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Baiwei Wang
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jianqing Lin
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
4
|
The store-operated Ca 2+ channel Orai1α is required for agonist-evoked NF-κB activation by a mechanism dependent on PKCβ2. J Biol Chem 2023; 299:102882. [PMID: 36623731 PMCID: PMC9922819 DOI: 10.1016/j.jbc.2023.102882] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023] Open
Abstract
Store-operated Ca2+ entry is a ubiquitous mechanism for Ca2+ influx in mammalian cells that regulates a variety of physiological processes. The identification of two forms of Orai1, the predominant store-operated channel, Orai1α and Orai1β, raises the question whether they differentially regulate cell function. Orai1α is the full-length Orai1, containing 301 amino acids, whereas Orai1β lacks the N-terminal 63 amino acids. Here, using a combination of biochemistry and imaging combined with the use of human embryonic kidney 293 KO cells, missing the native Orai1, transfected with plasmids encoding for either Orai1α or Orai1β, we show that Orai1α plays a relevant role in agonist-induced NF-κB transcriptional activity. In contrast, functional Orai1β is not required for the activation of these transcription factors. The role of Orai1α in the activation of NF-κB is entirely dependent on Ca2+ influx and involves PKCβ activation. Our results indicate that Orai1α interacts with PKCβ2 by a mechanism involving the Orai1α exclusive AKAP79 association region, which strongly suggests a role for AKAP79 in this process. These findings provide evidence of the role of Orai1α in agonist-induced NF-κB transcriptional activity and reveal functional differences between Orai1 variants.
Collapse
|
5
|
Sakaguchi T, Okumura R, Ono C, Okuzaki D, Kawai T, Okochi Y, Tanimura N, Murakami M, Kayama H, Umemoto E, Kioka H, Ohtani T, Sakata Y, Miyake K, Okamura Y, Baba Y, Takeda K. TRPM5 Negatively Regulates Calcium-Dependent Responses in Lipopolysaccharide-Stimulated B Lymphocytes. Cell Rep 2021; 31:107755. [PMID: 32521253 DOI: 10.1016/j.celrep.2020.107755] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/16/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
B cells produce high amounts of cytokines and immunoglobulins in response to lipopolysaccharide (LPS) stimulation. Calcium signaling cascades are critically involved in cytokine production of T cells, and the cytosolic calcium concentration is regulated by calcium-activated monovalent cation channels (CAMs). Calcium signaling is also implicated in B cell activation; however, its involvement in the cytokine production of LPS-stimulated B cells remains less well characterized. Here, we show that the transient receptor potential melastatin 5 channel (TRPM5), which is one of the CAMs, negatively modulates calcium signaling, thereby regulating LPS-induced proliferative and inflammatory responses by B cells. LPS-stimulated B cells of Trpm5-deficient mice exhibit an increased cytosolic calcium concentration, leading to enhanced proliferation and the production of the inflammatory cytokines interleukin-6 and CXCL10. Furthermore, Trpm5-deficient mice show an exacerbation of endotoxic shock with high mortality. Our findings demonstrate the importance of TRPM5-dependent regulatory mechanisms in LPS-induced calcium signaling of splenic B cells.
Collapse
Affiliation(s)
- Taiki Sakaguchi
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan; Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Ryu Okumura
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Chisato Ono
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Takafumi Kawai
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yoshifumi Okochi
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Natsuko Tanimura
- Department of Pharmacology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Mari Murakami
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan; Institute for Advanced Co-Creation Studies, Osaka University, Suita, Japan
| | - Eiji Umemoto
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Hidetaka Kioka
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tomohito Ohtani
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasushi Okamura
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.
| |
Collapse
|
6
|
Froghi S, Grant CR, Tandon R, Quaglia A, Davidson B, Fuller B. New Insights on the Role of TRP Channels in Calcium Signalling and Immunomodulation: Review of Pathways and Implications for Clinical Practice. Clin Rev Allergy Immunol 2021; 60:271-292. [PMID: 33405100 PMCID: PMC7985118 DOI: 10.1007/s12016-020-08824-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/14/2022]
Abstract
Calcium is the most abundant mineral in the human body and is central to many physiological processes, including immune system activation and maintenance. Studies continue to reveal the intricacies of calcium signalling within the immune system. Perhaps the most well-understood mechanism of calcium influx into cells is store-operated calcium entry (SOCE), which occurs via calcium release-activated channels (CRACs). SOCE is central to the activation of immune system cells; however, more recent studies have demonstrated the crucial role of other calcium channels, including transient receptor potential (TRP) channels. In this review, we describe the expression and function of TRP channels within the immune system and outline associations with murine models of disease and human conditions. Therefore, highlighting the importance of TRP channels in disease and reviewing potential. The TRP channel family is significant, and its members have a continually growing number of cellular processes. Within the immune system, TRP channels are involved in a diverse range of functions including T and B cell receptor signalling and activation, antigen presentation by dendritic cells, neutrophil and macrophage bactericidal activity, and mast cell degranulation. Not surprisingly, these channels have been linked to many pathological conditions such as inflammatory bowel disease, chronic fatigue syndrome and myalgic encephalomyelitis, atherosclerosis, hypertension and atopy.
Collapse
Affiliation(s)
- Saied Froghi
- Department of HPB & Liver Transplantation, Royal Free Hospital, Pond St, Hampstead, London, NW3 2QG, UK. .,Division of Surgery & Interventional Sciences/University College London (UCL), Royal Free Hospital, Pond Street, Hampstead, London, NW3 2QG, UK. .,HCA Senior Clinical Fellow (HPB & Liver Transplant), Wellington Hospital, St Johns Wood, London, UK.
| | - Charlotte R Grant
- Department of HPB & Liver Transplantation, Royal Free Hospital, Pond St, Hampstead, London, NW3 2QG, UK
| | - Radhika Tandon
- Sheffield Medical School, Beech Hill Road, Sheffield, UK, S10 2RX
| | - Alberto Quaglia
- Department of Pathology, Royal Free Hospital, Pond Street, Hampstead, London, NW3 2QG, UK
| | - Brian Davidson
- Department of HPB & Liver Transplantation, Royal Free Hospital, Pond St, Hampstead, London, NW3 2QG, UK.,Division of Surgery & Interventional Sciences/University College London (UCL), Royal Free Hospital, Pond Street, Hampstead, London, NW3 2QG, UK
| | - Barry Fuller
- Division of Surgery & Interventional Sciences/University College London (UCL), Royal Free Hospital, Pond Street, Hampstead, London, NW3 2QG, UK
| |
Collapse
|
7
|
Berditchevski F, Fennell E, Murray PG. Calcium-dependent signalling in B-cell lymphomas. Oncogene 2021; 40:6321-6328. [PMID: 34625709 PMCID: PMC8585665 DOI: 10.1038/s41388-021-02025-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 11/20/2022]
Abstract
Induced waves of calcium fluxes initiate multiple signalling pathways that play an important role in the differentiation and maturation of B-cells. Finely tuned transient Ca+2 fluxes from the endoplasmic reticulum in response to B-cell receptor (BCR) or chemokine receptor activation are followed by more sustained calcium influxes from the extracellular environment and contribute to the mechanisms responsible for the proliferation of B-cells, their migration within lymphoid organs and their differentiation. Dysregulation of these well-balanced mechanisms in B-cell lymphomas results in uncontrolled cell proliferation and resistance to apoptosis. Consequently, several cytotoxic drugs (and anti-proliferative compounds) used in standard chemotherapy regimens for the treatment of people with lymphoma target calcium-dependent pathways. Furthermore, ~10% of lymphoma associated mutations are found in genes with functions in calcium-dependent signalling, including those affecting B-cell receptor signalling pathways. In this review, we provide an overview of the Ca2+-dependent signalling network and outline the contribution of its key components to B cell lymphomagenesis. We also consider how the oncogenic Epstein-Barr virus, which is causally linked to the pathogenesis of a number of B-cell lymphomas, can modify Ca2+-dependent signalling.
Collapse
Affiliation(s)
- Fedor Berditchevski
- grid.6572.60000 0004 1936 7486Institute of Cancer and Genomic Sciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT UK
| | - Eanna Fennell
- grid.10049.3c0000 0004 1936 9692Health Research Institute, University of Limerick, Castletroy, Limerick, V94 T9PX Ireland
| | - Paul G. Murray
- grid.10049.3c0000 0004 1936 9692Health Research Institute, University of Limerick, Castletroy, Limerick, V94 T9PX Ireland ,grid.6572.60000 0004 1936 7486Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT UK
| |
Collapse
|
8
|
Merino-Cortés SV, Gardeta SR, Roman-Garcia S, Martínez-Riaño A, Pineau J, Liebana R, Merida I, Dumenil AML, Pierobon P, Husson J, Alarcon B, Carrasco YR. Diacylglycerol kinase ζ promotes actin cytoskeleton remodeling and mechanical forces at the B cell immune synapse. Sci Signal 2020; 13:13/627/eaaw8214. [PMID: 32291315 DOI: 10.1126/scisignal.aaw8214] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Diacylglycerol kinases (DGKs) limit antigen receptor signaling in immune cells by consuming the second messenger diacylglycerol (DAG) to generate phosphatidic acid (PA). Here, we showed that DGKζ promotes lymphocyte function-associated antigen 1 (LFA-1)-mediated adhesion and F-actin generation at the immune synapse of B cells with antigen-presenting cells (APCs), mostly in a PA-dependent manner. Measurement of single-cell mechanical force generation indicated that DGKζ-deficient B cells exerted lower forces at the immune synapse than did wild-type B cells. Nonmuscle myosin activation and translocation of the microtubule-organizing center (MTOC) to the immune synapse were also impaired in DGKζ-deficient B cells. These functional defects correlated with the decreased ability of B cells to present antigen and activate T cells in vitro. The in vivo germinal center response of DGKζ-deficient B cells was also reduced compared with that of wild-type B cells, indicating that loss of DGKζ in B cells impaired T cell help. Together, our data suggest that DGKζ shapes B cell responses by regulating actin remodeling, force generation, and antigen uptake-related events at the immune synapse. Hence, an appropriate balance in the amounts of DAG and PA is required for optimal B cell function.
Collapse
Affiliation(s)
- Sara V Merino-Cortés
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Sofia R Gardeta
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Sara Roman-Garcia
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Ana Martínez-Riaño
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC-UAM, Madrid, Spain
| | - Judith Pineau
- Institut Curie, PSL Research University, INSERM U932, Paris, France.,Université de Paris, 75006, Paris, France
| | - Rosa Liebana
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Isabel Merida
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | | | - Paolo Pierobon
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Julien Husson
- Laboratoire d'Hydrodynamique (LadHyx), Ecole polytechnique, CNRS, Institut Polytechnique de Paris, Paris, France
| | - Balbino Alarcon
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC-UAM, Madrid, Spain
| | - Yolanda R Carrasco
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain.
| |
Collapse
|
9
|
Mahtani T, Treanor B. Beyond the CRAC: Diversification of ion signaling in B cells. Immunol Rev 2020; 291:104-122. [PMID: 31402507 PMCID: PMC6851625 DOI: 10.1111/imr.12770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022]
Abstract
Although calcium signaling and the important role of calcium release–activated calcium channels is well recognized in the context of immune cell signaling, there is a vast diversity of ion channels and transporters that regulate the entry of ions beyond calcium, including magnesium, zinc, potassium, sodium, and chloride. These ions play a critical role in numerous metabolic and cellular processes. The importance of ions in human health and disease is illustrated by the identification of primary immunodeficiencies in patients with mutations in genes encoding ion channels and transporters, as well as the immunological defects observed in individuals with nutritional ion deficiencies. Despite progress in identifying the important role of ions in immune cell development and activation, we are still in the early stages of exploring the diversity of ion channels and transporters and mechanistically understanding the role of these ions in immune cell biology. Here, we review the biology of ion signaling in B cells and the identification of critical ion channels and transporters in B‐cell development, activation, and differentiation into effector cells. Elucidating the role of ion channels and transporters in immune cell signaling is critical for expanding the repertoire of potential therapeutics for the treatment of immune disorders. Moreover, increased understanding of the role of ions in immune cell function will enhance our understanding of the potentially serious consequences of ion deficiencies in human health and disease.
Collapse
Affiliation(s)
- Trisha Mahtani
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Bebhinn Treanor
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Nishida M, Tanaka T, Mangmool S, Nishiyama K, Nishimura A. Canonical Transient Receptor Potential Channels and Vascular Smooth Muscle Cell Plasticity. J Lipid Atheroscler 2020; 9:124-139. [PMID: 32821726 PMCID: PMC7379077 DOI: 10.12997/jla.2020.9.1.124] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) play a pivotal role in the stability and tonic regulation of vascular homeostasis. VSMCs can switch back and forth between highly proliferative (synthetic) and fully differentiated (contractile) phenotypes in response to changes in the vessel environment. Abnormal phenotypic switching of VSMCs is a distinctive characteristic of vascular disorders, including atherosclerosis, pulmonary hypertension, stroke, and peripheral artery disease; however, how the control of VSMC phenotypic switching is dysregulated under pathological conditions remains obscure. Canonical transient receptor potential (TRPC) channels have attracted attention as a key regulator of pathological phenotype switching in VSMCs. Several TRPC subfamily member proteins—especially TRPC1 and TRPC6—are upregulated in pathological VSMCs, and pharmacological inhibition of TRPC channel activity has been reported to improve hypertensive vascular remodeling in rodents. This review summarizes the current understanding of the role of TRPC channels in cardiovascular plasticity, including our recent finding that TRPC6 participates in aberrant VSMC phenotype switching under ischemic conditions, and discusses the therapeutic potential of TRPC channels.
Collapse
Affiliation(s)
- Motohiro Nishida
- National Institute for Physiological Sciences and Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi 444-8787, Japan.,Center for Novel Science Initiatives (CNSI), NINS, Tokyo 105-0001, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomohiro Tanaka
- National Institute for Physiological Sciences and Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi 444-8787, Japan.,Center for Novel Science Initiatives (CNSI), NINS, Tokyo 105-0001, Japan
| | | | - Kazuhiro Nishiyama
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Akiyuki Nishimura
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
11
|
Novice T, Kariminia A, Del Bel KL, Lu H, Sharma M, Lim CJ, Read J, Lugt MV, Hannibal MC, O'Dwyer D, Hosler M, Scharnitz T, Rizzo JM, Zacur J, Priatel J, Abdossamadi S, Bohm A, Junker A, Turvey SE, Schultz KR, Rozmus J. A Germline Mutation in the C2 Domain of PLCγ2 Associated with Gain-of-Function Expands the Phenotype for PLCG2-Related Diseases. J Clin Immunol 2019; 40:267-276. [PMID: 31853824 PMCID: PMC7086538 DOI: 10.1007/s10875-019-00731-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
We report three new cases of a germline heterozygous gain-of-function missense (p.(Met1141Lys)) mutation in the C2 domain of phospholipase C gamma 2 (PLCG2) associated with symptoms consistent with previously described auto-inflammation and phospholipase Cγ2 (PLCγ2)-associated antibody deficiency and immune dysregulation (APLAID) syndrome and pediatric common variable immunodeficiency (CVID). Functional evaluation showed platelet hyper-reactivity, increased B cell receptor-triggered calcium influx and ERK phosphorylation. Expression of the altered p.(Met1141Lys) variant in a PLCγ2-knockout DT40 cell line showed clearly enhanced BCR-triggered influx of external calcium when compared to control-transfected cells. Our results further expand the molecular basis of pediatric CVID and phenotypic spectrum of PLCγ2-related defects.
Collapse
Affiliation(s)
- Taylor Novice
- University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Amina Kariminia
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
| | - Kate L Del Bel
- Department of Pediatrics, BC Children's Hospital Research Institute, Vancouver, Canada
| | - Henry Lu
- Department of Pediatrics, BC Children's Hospital Research Institute, Vancouver, Canada
| | - Mehul Sharma
- Department of Pediatrics, BC Children's Hospital Research Institute, Vancouver, Canada
| | - Chinten J Lim
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
| | - Jay Read
- Department of Pediatrics, Mott Children's Hospital, University of Michigan, Ann Arbor, MI, USA
| | - Mark Vander Lugt
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Mott Children's Hospital, University of Michigan, Ann Arbor, MI, USA
| | - Mark C Hannibal
- Division of Pediatric Genetics, Metabolism & Genomic Medicine, Mott Children's Hospital, University of Michigan, Ann Arbor, MI, USA
| | - David O'Dwyer
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mirie Hosler
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Thomas Scharnitz
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Jason M Rizzo
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer Zacur
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - John Priatel
- Department of Pediatrics, BC Children's Hospital Research Institute, Vancouver, Canada
| | - Sayeh Abdossamadi
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
| | - Alexandra Bohm
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
| | - Anne Junker
- Division of Clinical Immunology & Allergy, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, Canada
| | - Stuart E Turvey
- Division of Clinical Immunology & Allergy, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, Canada
| | - Kirk R Schultz
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Division of Pediatric Hematology/Oncology and Bone Marrow Transplant, Department of Pediatrics, BC Children's Hospital, University of British Columbia, 4480 Oak Street, Vancouver, Canada
| | - Jacob Rozmus
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, Canada.
- Division of Pediatric Hematology/Oncology and Bone Marrow Transplant, Department of Pediatrics, BC Children's Hospital, University of British Columbia, 4480 Oak Street, Vancouver, Canada.
| |
Collapse
|
12
|
Fenninger F, Jefferies WA. What's Bred in the Bone: Calcium Channels in Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2019; 202:1021-1030. [PMID: 30718290 DOI: 10.4049/jimmunol.1800837] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/22/2018] [Indexed: 12/30/2022]
Abstract
Calcium (Ca2+) is an important second messenger in lymphocytes and is essential in regulating various intracellular pathways that control critical cell functions. Ca2+ channels are located in the plasma membrane and intracellular membranes, facilitating Ca2+ entry into the cytoplasm. Upon Ag receptor stimulation, Ca2+ can enter the lymphocyte via the Ca2+ release-activated Ca2+ channel found in the plasma membrane. The increase of cytosolic Ca2+ modulates signaling pathways, resulting in the transcription of target genes implicated in differentiation, activation, proliferation, survival, and apoptosis of lymphocytes. Along with Ca2+ release-activated Ca2+ channels, several other channels have been found in the membranes of T and B lymphocytes contributing to key cellular events. Among them are the transient receptor potential channels, the P2X receptors, voltage-dependent Ca2+ channels, and the inositol 1,4,5-trisphosphate receptor as well as the N-methyl-d-aspartate receptors. In this article, we review the contributions of these channels to mediating Ca2+ currents that drive specific lymphocyte functions.
Collapse
Affiliation(s)
- Franz Fenninger
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Wilfred A Jefferies
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada; .,Department of Microbiology and Immunology, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada.,Vancouver Prostate Centre, University of British Columbia, Vancouver V6H 3Z6, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada; and.,Department of Zoology, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| |
Collapse
|
13
|
Nishiyama K, Numaga-Tomita T, Fujimoto Y, Tanaka T, Toyama C, Nishimura A, Yamashita T, Matsunaga N, Koyanagi S, Azuma YT, Ibuki Y, Uchida K, Ohdo S, Nishida M. Ibudilast attenuates doxorubicin-induced cytotoxicity by suppressing formation of TRPC3 channel and NADPH oxidase 2 protein complexes. Br J Pharmacol 2019; 176:3723-3738. [PMID: 31241172 DOI: 10.1111/bph.14777] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/30/2019] [Accepted: 06/14/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Doxorubicin is a highly effective anticancer agent but eventually induces cardiotoxicity associated with increased production of ROS. We previously reported that a pathological protein interaction between TRPC3 channels and NADPH oxidase 2 (Nox2) contributed to doxorubicin-induced cardiac atrophy in mice. Here we have investigated the effects of ibudilast, a drug already approved for clinical use and known to block doxorubicin-induced cytotoxicity, on the TRPC3-Nox2 complex. We specifically sought evidence that this drug attenuated doxorubicin-induced systemic tissue wasting in mice. EXPERIMENTAL APPROACH We used the RAW264.7 macrophage cell line to screen 1,271 clinically approved chemical compounds, evaluating functional interactions between TRPC3 channels and Nox2, by measuring Nox2 protein stability and ROS production, with and without exposure to doxorubicin. In male C57BL/6 mice, samples of cardiac and gastrocnemius muscle were taken and analysed with morphometric, immunohistochemical, RT-PCR and western blot methods. In the passive smoking model, cells were exposed to DMEM containing cigarette sidestream smoke. KEY RESULTS Ibudilast, an anti-asthmatic drug, attenuated ROS-mediated muscle toxicity induced by doxorubicin treatment or passive smoking, by inhibiting the functional interactions between TRPC3 channels and Nox2, without reducing TRPC3 channel activity. CONCLUSIONS AND IMPLICATIONS These results indicate a common mechanism underlying induction of systemic tissue wasting by doxorubicin. They also suggest that ibudilast could be repurposed to prevent muscle toxicity caused by anticancer drugs or passive smoking.
Collapse
Affiliation(s)
- Kazuhiro Nishiyama
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuro Numaga-Tomita
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), NINS, Okazaki, Japan.,Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki, Japan
| | - Yasuyuki Fujimoto
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki, Japan.,Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - Tomohiro Tanaka
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki, Japan.,Center for Novel Science Initiatives (CNSI), National Institutes of Natural Sciences, Tokyo, Japan
| | - Chiemi Toyama
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Akiyuki Nishimura
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), NINS, Okazaki, Japan
| | - Tomohiro Yamashita
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoya Matsunaga
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoru Koyanagi
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasu-Taka Azuma
- Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Koji Uchida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigehiro Ohdo
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Motohiro Nishida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), NINS, Okazaki, Japan.,Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki, Japan
| |
Collapse
|
14
|
Sudi SB, Tanaka T, Oda S, Nishiyama K, Nishimura A, Sunggip C, Mangmool S, Numaga-Tomita T, Nishida M. TRPC3-Nox2 axis mediates nutritional deficiency-induced cardiomyocyte atrophy. Sci Rep 2019; 9:9785. [PMID: 31278358 PMCID: PMC6611789 DOI: 10.1038/s41598-019-46252-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/25/2019] [Indexed: 01/29/2023] Open
Abstract
Myocardial atrophy, characterized by the decreases in size and contractility of cardiomyocytes, is caused by severe malnutrition and/or mechanical unloading. Extracellular adenosine 5′-triphosphate (ATP), known as a danger signal, is recognized to negatively regulate cell volume. However, it is obscure whether extracellular ATP contributes to cardiomyocyte atrophy. Here, we report that ATP induces atrophy of neonatal rat cardiomyocytes (NRCMs) without cell death through P2Y2 receptors. ATP led to overproduction of reactive oxygen species (ROS) through increased amount of NADPH oxidase (Nox) 2 proteins, due to increased physical interaction between Nox2 and canonical transient receptor potential 3 (TRPC3). This ATP-mediated formation of TRPC3-Nox2 complex was also pathophysiologically involved in nutritional deficiency-induced NRCM atrophy. Strikingly, knockdown of either TRPC3 or Nox2 suppressed nutritional deficiency-induced ATP release, as well as ROS production and NRCM atrophy. Taken together, we propose that TRPC3-Nox2 axis, activated by extracellular ATP, is the key component that mediates nutritional deficiency-induced cardiomyocyte atrophy.
Collapse
Affiliation(s)
- Suhaini Binti Sudi
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan.,Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu, 88400, Malaysia
| | - Tomohiro Tanaka
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan.,Center for Novel Science Initiatives (CNSI), National Institutes of Natural Sciences, Tokyo, 105-0001, Japan
| | - Sayaka Oda
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Kazuhiro Nishiyama
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Akiyuki Nishimura
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Caroline Sunggip
- Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu, 88400, Malaysia
| | | | - Takuro Numaga-Tomita
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Motohiro Nishida
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan. .,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan. .,Center for Novel Science Initiatives (CNSI), National Institutes of Natural Sciences, Tokyo, 105-0001, Japan. .,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan. .,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
15
|
Canales J, Morales D, Blanco C, Rivas J, Díaz N, Angelopoulos I, Cerda O. A TR(i)P to Cell Migration: New Roles of TRP Channels in Mechanotransduction and Cancer. Front Physiol 2019; 10:757. [PMID: 31275168 PMCID: PMC6591513 DOI: 10.3389/fphys.2019.00757] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022] Open
Abstract
Cell migration is a key process in cancer metastasis, allowing malignant cells to spread from the primary tumor to distant organs. At the molecular level, migration is the result of several coordinated events involving mechanical forces and cellular signaling, where the second messenger Ca2+ plays a pivotal role. Therefore, elucidating the regulation of intracellular Ca2+ levels is key for a complete understanding of the mechanisms controlling cellular migration. In this regard, understanding the function of Transient Receptor Potential (TRP) channels, which are fundamental determinants of Ca2+ signaling, is critical to uncovering mechanisms of mechanotransduction during cell migration and, consequently, in pathologies closely linked to it, such as cancer. Here, we review recent studies on the association between TRP channels and migration-related mechanotransduction events, as well as in the involvement of TRP channels in the migration-dependent pathophysiological process of metastasis.
Collapse
Affiliation(s)
- Jimena Canales
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Diego Morales
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Constanza Blanco
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - José Rivas
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Nicolás Díaz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Ioannis Angelopoulos
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile.,The Wound Repair, Treatment and Health (WoRTH) Initiative, Santiago, Chile
| |
Collapse
|
16
|
Numaga-Tomita T, Shimauchi T, Oda S, Tanaka T, Nishiyama K, Nishimura A, Birnbaumer L, Mori Y, Nishida M. TRPC6 regulates phenotypic switching of vascular smooth muscle cells through plasma membrane potential-dependent coupling with PTEN. FASEB J 2019; 33:9785-9796. [PMID: 31162976 DOI: 10.1096/fj.201802811r] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Vascular smooth muscle cells (VSMCs) play critical roles in the stability and tonic regulation of vascular homeostasis. VSMCs can switch back and forth between highly proliferative synthetic and fully differentiated contractile phenotypes in response to changes in the vessel environment. Although abnormal phenotypic switching of VSMCs is a hallmark of vascular disorders such as atherosclerosis and restenosis after angioplasty, how control of VSMC phenotypic switching is dysregulated in pathologic conditions remains obscure. We found that inhibition of canonical transient receptor potential 6 (TRPC6) channels facilitated contractile differentiation of VSMCs through plasma membrane hyperpolarization. TRPC6-deficient VSMCs exhibited more polarized resting membrane potentials and higher protein kinase B (Akt) activity than wild-type VSMCs in response to TGF-β1 stimulation. Ischemic stress elicited by oxygen-glucose deprivation suppressed TGF-β1-induced hyperpolarization and VSMC differentiation, but this effect was abolished by TRPC6 deletion. TRPC6-mediated Ca2+ influx and depolarization coordinately promoted the interaction of TRPC6 with lipid phosphatase and tensin homolog deleted from chromosome 10 (PTEN), a negative regulator of Akt activation. Given the marked up-regulation of TRPC6 observed in vascular disorders, our findings suggest that attenuation of TRPC6 channel activity in pathologic VSMCs could be a rational strategy to maintain vascular quality control by fine-tuning of VSMC phenotypic switching.-Numaga-Tomita, T., Shimauchi, T., Oda, S., Tanaka, T., Nishiyama, K., Nishimura, A., Birnbaumer, L., Mori, Y., Nishida, M. TRPC6 regulates phenotypic switching of vascular smooth muscle cells through plasma membrane potential-dependent coupling with PTEN.
Collapse
Affiliation(s)
- Takuro Numaga-Tomita
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan.,SOKENDAI, School of Life Science, The Graduate University for Advanced Studies, Aichi, Japan
| | - Tsukasa Shimauchi
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sayaka Oda
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan.,SOKENDAI, School of Life Science, The Graduate University for Advanced Studies, Aichi, Japan
| | - Tomohiro Tanaka
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan
| | - Kazuhiro Nishiyama
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Akiyuki Nishimura
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Lutz Birnbaumer
- National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health, Research Triangle Park, North Carolina, USA.,Institute for Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, Argentina
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Motohiro Nishida
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan.,SOKENDAI, School of Life Science, The Graduate University for Advanced Studies, Aichi, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
17
|
TRPC channels in exercise-mimetic therapy. Pflugers Arch 2018; 471:507-517. [PMID: 30298191 PMCID: PMC6515694 DOI: 10.1007/s00424-018-2211-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 11/21/2022]
Abstract
Physical exercise yields beneficial effects on all types of muscle cells, which are essential for the maintenance of cardiovascular homeostasis and good blood circulation. Daily moderate exercise increases systemic antioxidative capacity, which can lead to the prevention of the onset and progression of oxidative stress-related diseases. Therefore, exercise is now widely accepted as one of the best therapeutic strategies for the treatment of ischemic (hypoxic) diseases. Canonical transient receptor potential (TRPC) proteins are non-selective cation channels activated by mechanical stress and/or stimulation of phospholipase C-coupled surface receptors. TRPC channels, especially diacylglycerol-activated TRPC channels (TRPC3 and TRPC6; TRPC3/6), play a key role in the development of cardiovascular remodeling. We have recently found that physical interaction between TRPC3 and NADPH oxidase (Nox) 2 under hypoxic stress promotes Nox2-dependent reactive oxygen species (ROS) production and mediates rodent cardiac plasticity, and inhibition of the TRPC3-Nox2 protein complex results in enhancement of myocardial compliance and flexibility similar to that observed in exercise-treated hearts. In this review, we describe current understanding of the roles of TRPC channels in striated muscle (patho)physiology and propose that targeting TRPC-based protein complexes could be a new strategy to imitate exercise therapy.
Collapse
|
18
|
STIM- and Orai-mediated calcium entry controls NF-κB activity and function in lymphocytes. Cell Calcium 2018; 74:131-143. [PMID: 30048879 DOI: 10.1016/j.ceca.2018.07.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 12/24/2022]
Abstract
The central role of Ca2+ signaling in the development of functional immunity and tolerance is well established. These signals are initiated by antigen binding to cognate receptors on lymphocytes that trigger store operated Ca2+ entry (SOCE). The underlying mechanism of SOCE in lymphocytes involves TCR and BCR mediated activation of Stromal Interaction Molecule 1 and 2 (STIM1/2) molecules embedded in the ER membrane leading to their activation of Orai channels in the plasma membrane. STIM/Orai dependent Ca2+ signals guide key antigen induced lymphocyte development and function principally through direct regulation of Ca2+ dependent transcription factors. The role of Ca2+ signaling in NFAT activation and signaling is well known and has been studied extensively, but a wide appreciation and mechanistic understanding of how Ca2+ signals also shape the activation and specificity of NF-κB dependent gene expression has lagged. Here we discuss and interpret what is known about Ca2+ dependent mechanisms of NF-kB activation, including what is known and the gaps in our understanding of how these signals control lymphocyte development and function.
Collapse
|
19
|
Gotru SK, Gil-Pulido J, Beyersdorf N, Diefenbach A, Becker IC, Vögtle T, Remer K, Chubanov V, Gudermann T, Hermanns HM, Nieswandt B, Kerkau T, Zernecke A, Braun A. Cutting Edge: Imbalanced Cation Homeostasis in MAGT1-Deficient B Cells Dysregulates B Cell Development and Signaling in Mice. THE JOURNAL OF IMMUNOLOGY 2018; 200:2529-2534. [PMID: 29581357 DOI: 10.4049/jimmunol.1701467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/27/2018] [Indexed: 11/19/2022]
Abstract
Cation homeostasis, in relation to various immune-suppressive diseases, is a novel field of investigation. Recently, patients with a loss-of-function mutation in magnesium transporter 1 (MAGT1) were reported to present a dysregulated Mg2+ homeostasis in T lymphocytes. Using Magt1-knockout mice (Magt1-/y ), we show that Mg2+ homeostasis was impaired in Magt1-/y B cells and Ca2+ influx was increased after BCR stimulation, whereas T and NK cell function was unaffected. Consequently, mutant B cells displayed an increased phosphorylation of BCR-related proteins differentially affecting protein kinase C activation. These in vitro findings translated into increased frequencies of CD19+ B cells and marginal zone B cells and decreased frequencies of plasma cells among CD45+ splenocytes in vivo. Altogether, our study demonstrates for the first time, to our knowledge, that abolished MAGT1 function causes imbalanced cation homeostasis and developmental responses in B cells. Therefore, this study might contribute to a further understanding of B cell-related pathologies.
Collapse
Affiliation(s)
- Sanjeev Kiran Gotru
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany.,Rudolf Virchow Centre, University of Würzburg, 97080 Würzburg, Germany
| | - Jesus Gil-Pulido
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Andreas Diefenbach
- Institute of Microbiology and Infection Immunology, Charité - University Medicine Berlin, 12203 Berlin, Germany
| | - Isabelle C Becker
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany.,Rudolf Virchow Centre, University of Würzburg, 97080 Würzburg, Germany
| | - Timo Vögtle
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany.,Rudolf Virchow Centre, University of Würzburg, 97080 Würzburg, Germany
| | - Katharina Remer
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany.,Rudolf Virchow Centre, University of Würzburg, 97080 Würzburg, Germany
| | - Vladimir Chubanov
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilian University of Munich, 80539 Munich, Germany; and
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilian University of Munich, 80539 Munich, Germany; and
| | - Heike M Hermanns
- Department of Hepatology, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany.,Rudolf Virchow Centre, University of Würzburg, 97080 Würzburg, Germany
| | - Thomas Kerkau
- Institute for Virology and Immunobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Attila Braun
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany; .,Rudolf Virchow Centre, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
20
|
Abdoul-Azize S, Dubus I, Vannier JP. Improvement of dexamethasone sensitivity by chelation of intracellular Ca2+ in pediatric acute lymphoblastic leukemia cells through the prosurvival kinase ERK1/2 deactivation. Oncotarget 2018; 8:27339-27352. [PMID: 28423696 PMCID: PMC5432339 DOI: 10.18632/oncotarget.16039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/15/2017] [Indexed: 01/08/2023] Open
Abstract
Previous studies have demonstrated that glucocorticoid hormones, including dexamethasone, induced alterations in intracellular calcium homeostasis in acute lymphoblastic leukemia (ALL) cells. However, the mechanism by which intracellular calcium homeostasis participates in dexamethasone sensitivity and resistance on ALL cells remains elusive. Here, we found that treatment of cells with dexamethasone resulted in increased intracellular calcium concentrations through store-operated calcium entry stimulation, which was curtailed by store-operated calcium channel blockers. We show that BAPTA-AM, an intracellular Ca2+ chelator, synergistically enhances dexamethasone lethality in two human ALL cell lines and in three primary specimens. This effect correlated with the inhibition of the prosurvival kinase ERK1/2 signaling pathway. Chelating intracellular calcium with Bapta-AM or inhibiting ERK1/2 with PD98059 significantly potentiated dexamethasone-induced mitochondrial membrane potential collapse, reactive oxygen species production, cytochrome c release, caspase-3 activity, and cell death. Moreover, we show that thapsigargin elevates intracellular free calcium ion level, and activates ERK1/2 signaling, resulting in the inhibition of dexamethasone-induced ALL cells apoptosis. Together, these results indicate that calcium-related ERK1/2 signaling pathway contributes to protect cells from dexamethasone sensitivity by limiting mitochondrial apoptotic pathway. This report provides a novel resistance pathway underlying the regulatory effect of dexamethasone on ALL cells.
Collapse
Affiliation(s)
- Souleymane Abdoul-Azize
- Micro-Environnement et Renouvellement Cellulaire Intégré, MERCI UPRES EA 3829, Faculté de Médecine et Pharmacie, Université de Rouen, 76183 Rouen Cedex, France.,Current address: Unité Inserm U1234/Université de Rouen/IRIB, Rouen, France
| | - Isabelle Dubus
- Micro-Environnement et Renouvellement Cellulaire Intégré, MERCI UPRES EA 3829, Faculté de Médecine et Pharmacie, Université de Rouen, 76183 Rouen Cedex, France.,Current address: Unité Inserm U1234/Université de Rouen/IRIB, Rouen, France
| | - Jean-Pierre Vannier
- Micro-Environnement et Renouvellement Cellulaire Intégré, MERCI UPRES EA 3829, Faculté de Médecine et Pharmacie, Université de Rouen, 76183 Rouen Cedex, France.,Service Immuno-Hémato-Oncologie Pédiatrique, CHU Charles Nicolle, 76031 ROUEN Cedex, France.,Current address: Unité Inserm U1234/Université de Rouen/IRIB, Rouen, France
| |
Collapse
|
21
|
Ma R, Liang J, Huang W, Guo L, Cai W, Wang L, Paul C, Yang HT, Kim HW, Wang Y. Electrical Stimulation Enhances Cardiac Differentiation of Human Induced Pluripotent Stem Cells for Myocardial Infarction Therapy. Antioxid Redox Signal 2018; 28:371-384. [PMID: 27903111 PMCID: PMC5770128 DOI: 10.1089/ars.2016.6766] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIMS Electrical stimulation (EleS) can promote cardiac differentiation, but the underlying mechanism is not well known. This study investigated the effect of EleS on cardiomyocyte (CM) differentiation of human induced pluripotent stem cells (hiPSCs) and evaluated the therapeutic effects for the treatment of myocardial infarction (MI). RESULTS Cardiac differentiation of hiPSCs was induced with EleS after embryoid body formation. Spontaneously beating hiPSCs were observed as early at 2 days when treated with EleS compared with control treatment. The cardiac differentiation efficiency of hiPSCs was significantly enhanced by EleS. In addition, the functional maturation of hiPSC-CMs under EleS was confirmed by calcium indicators, intracellular Ca2+ levels, and expression of structural genes. Mechanistically, EleS mediated cardiac differentiation of hiPSCs through activation of Ca2+/PKC/ERK pathways, as revealed by RNA sequencing, quantitative polymerase chain reaction, and Western blotting. After transplantation in immunodeficient MI mice, EleS-preconditioned hiPSC-derived cells significantly improved cardiac function and attenuated expansion of infarct size. The preconditioned hiPSC-derived CMs were functionally integrated with the host heart. INNOVATION We show EleS as an efficacious time-saving approach for CM generation. The global RNA profiling shows that EleS can accelerate cardiac differentiation of hiPSCs through activation of multiple pathways. The cardiac-mimetic electrical signals will provide a novel approach to generate functional CMs and facilitate cardiac tissue engineering for successful heart regeneration. CONCLUSION EleS can enhance efficiency of cardiac differentiation in hiPSCs and promote CM maturation. The EleS-preconditioned CMs emerge as a promising approach for clinical application in MI treatment. Antioxid. Redox Signal. 28, 371-384.
Collapse
Affiliation(s)
- Ruilian Ma
- 1 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Jialiang Liang
- 1 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Wei Huang
- 1 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Linlin Guo
- 1 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Wenfeng Cai
- 1 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Lei Wang
- 1 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Christian Paul
- 1 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Huang-Tian Yang
- 2 Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine (SJTUSM) , Shanghai, China
| | - Ha Won Kim
- 1 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Yigang Wang
- 1 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| |
Collapse
|
22
|
Wei L, Du Y, Jia L, Ma X, Chen Z, Lu J, Tian L, Duan Z, Dong F, Lv Z, Yao G, Fu R, Wang L. Therapeutic Effects of FK506 on IgA Nephropathy Rat. Kidney Blood Press Res 2017; 42:983-998. [PMID: 29179182 DOI: 10.1159/000485346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 11/16/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS FK506 is an immunosuppressive drug and a calcineurin inhibitor that has been widely used in kidney disease in recent years. FK506 shows a wide range of biological and pharmaceutical effects; however, the mechanism of its anti- proliferative effect has not been well elucidated. An IgA nephropathy (IgAN) model was used to generate a mesangial cell proliferation model. This study aims to examine the effect of FK506 on IgAN rats and the underlying mechanisms. METHODS Hematuria, proteinuria and renal function were measured. To observe the pathological conditions, we performed HE (hematoxylin - eosin) and PAS (periodic acid - schiff) staining. Transcription and protein expression levels were detected by qRT - PCR (quantitative real-time polymerase chain reaction) and Wb (western blotting). The location and semi-quantitative expression levels of TRPCs, CaN (Calcineurin) and α-SMA were examined by IHC (Immunohistochemical staining). RESULTS We found that FK506 could improve hematuria, proteinuria and renal function, especially in the HF (high-dose FK506) groups. Renal pathological changes were ameliorated in the treatment groups. FK506 could significantly decrease TRPCs, CaN, phosphorylation of ERK1/2 and α-SMA expression. CONCLUSION Taken together, these results suggest that the therapeutic effect of FK506 on IgAN might be partially associated with the down-regulated expression of TRPC channels, CaN and phosphorylation of ERK1/2.
Collapse
Affiliation(s)
- Linting Wei
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Du
- Department of Nephrology, the First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Lining Jia
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaotao Ma
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhao Chen
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiamei Lu
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lifang Tian
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhaoyang Duan
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fengming Dong
- Department of Nephrology, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Zhian Lv
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ganglian Yao
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rongguo Fu
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Wang
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
23
|
Moccia F, Lucariello A, Guerra G. TRPC3-mediated Ca 2+ signals as a promising strategy to boost therapeutic angiogenesis in failing hearts: The role of autologous endothelial colony forming cells. J Cell Physiol 2017; 233:3901-3917. [PMID: 28816358 DOI: 10.1002/jcp.26152] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022]
Abstract
Endothelial progenitor cells (EPCs) are a sub-population of bone marrow-derived mononuclear cells that are released in circulation to restore damaged endothelium during its physiological turnover or rescue blood perfusion after an ischemic insult. Additionally, they may be mobilized from perivascular niches located within larger arteries' wall in response to hypoxic conditions. For this reason, EPCs have been regarded as an effective tool to promote revascularization and functional recovery of ischemic hearts, but clinical application failed to exploit the full potential of patients-derived cells. Indeed, the frequency and biological activity of EPCs are compromised in aging individuals or in subjects suffering from severe cardiovascular risk factors. Rejuvenating the reparative phenotype of autologous EPCs through a gene transfer approach has, therefore, been put forward as an alternative approach to enhance their therapeutic potential in cardiovascular patients. An increase in intracellular Ca2+ concentration constitutes a pivotal signal for the activation of the so-called endothelial colony forming cells (ECFCs), the only known truly endothelial EPC subset. Studies from our group showed that the Ca2+ toolkit differs between peripheral blood- and umbilical cord blood (UCB)-derived ECFCs. In the present article, we first discuss how VEGF uses repetitive Ca2+ spikes to regulate angiogenesis in ECFCs and outline how VEGF-induced intracellular Ca2+ oscillations differ between the two ECFC subtypes. We then hypothesize about the possibility to rejuvenate the biological activity of autologous ECFCs by transfecting the cell with the Ca2+ -permeable channel Transient Receptor Potential Canonical 3, which selectively drives the Ca2+ response to VEGF in UCB-derived ECFCs.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Angela Lucariello
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, Universy of Campania "L. Vanvitelli", Naples, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
24
|
Numaga-Tomita T, Oda S, Shimauchi T, Nishimura A, Mangmool S, Nishida M. TRPC3 Channels in Cardiac Fibrosis. Front Cardiovasc Med 2017; 4:56. [PMID: 28936433 PMCID: PMC5594069 DOI: 10.3389/fcvm.2017.00056] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/21/2017] [Indexed: 01/18/2023] Open
Abstract
Cardiac stiffness, caused by interstitial fibrosis due to deposition of extracellular matrix proteins, is thought as a major clinical outcome of heart failure with preserved ejection fraction (HFpEF). Canonical transient receptor potential (TRPC) subfamily proteins are components of Ca2+-permeable non-selective cation channels activated by receptor stimulation and mechanical stress, and have been attracted attention as a key mediator of maladaptive cardiac remodeling. How TRPC-mediated local Ca2+ influx encodes a specific signal to induce maladaptive cardiac remodeling has been long obscure, but our recent studies suggest a pathophysiological significance of channel activity-independent function of TRPC proteins for amplifying redox signaling in heart. This review introduces the current understanding of the physiological and pathophysiological roles of TRPCs, especially focuses on the role of TRPC3 as a positive regulator of reactive oxygen species (PRROS) in heart. We have revealed that TRPC3 stabilizes NADPH oxidase 2 (Nox2), a membrane-bound reactive oxygen species (ROS)-generating enzyme, by forming stable protein complex with Nox2, which leads to amplification of mechanical stress-induced ROS signaling in cardiomyocytes, resulting in induction of fibrotic responses in cardiomyocytes and cardiac fibroblasts. Thus, the TRPC3 function as PRROS will offer a new therapeutic strategy for the prevention or treatment of HFpEF.
Collapse
Affiliation(s)
- Takuro Numaga-Tomita
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Sayaka Oda
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Tsukasa Shimauchi
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Akiyuki Nishimura
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Supachoke Mangmool
- Faculty of Pharmacy, Department of Pharmacology, Mahidol University, Bangkok, Thailand
| | - Motohiro Nishida
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
25
|
Oda S, Numaga-Tomita T, Kitajima N, Toyama T, Harada E, Shimauchi T, Nishimura A, Ishikawa T, Kumagai Y, Birnbaumer L, Nishida M. TRPC6 counteracts TRPC3-Nox2 protein complex leading to attenuation of hyperglycemia-induced heart failure in mice. Sci Rep 2017; 7:7511. [PMID: 28790356 PMCID: PMC5548754 DOI: 10.1038/s41598-017-07903-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/04/2017] [Indexed: 12/19/2022] Open
Abstract
Excess production of reactive oxygen species (ROS) caused by hyperglycemia is a major risk factor for heart failure. We previously reported that transient receptor potential canonical 3 (TRPC3) channel mediates pressure overload-induced maladaptive cardiac fibrosis by forming stably functional complex with NADPH oxidase 2 (Nox2). Although TRPC3 has been long suggested to form hetero-multimer channels with TRPC6 and function as diacylglycerol-activated cation channels coordinately, the role of TRPC6 in heart is still obscure. We here demonstrated that deletion of TRPC6 had no impact on pressure overload-induced heart failure despite inhibiting interstitial fibrosis in mice. TRPC6-deficient mouse hearts 1 week after transverse aortic constriction showed comparable increases in fibrotic gene expressions and ROS production but promoted inductions of inflammatory cytokines, compared to wild type hearts. Treatment of TRPC6-deficient mice with streptozotocin caused severe reduction of cardiac contractility with enhancing urinary and cardiac lipid peroxide levels, compared to wild type and TRPC3-deficient mice. Knockdown of TRPC6, but not TRPC3, enhanced basal expression levels of cytokines in rat cardiomyocytes. TRPC6 could interact with Nox2, but the abundance of TRPC6 was inversely correlated with that of Nox2. These results strongly suggest that Nox2 destabilization through disrupting TRPC3-Nox2 complex underlies attenuation of hyperglycemia-induced heart failure by TRPC6.
Collapse
Affiliation(s)
- Sayaka Oda
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (Okazaki Institute for Integrative Bioscience), National Institutes of Natural Sciences, Aichi, 444-8787, Japan.,Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, 444-8787, Japan
| | - Takuro Numaga-Tomita
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (Okazaki Institute for Integrative Bioscience), National Institutes of Natural Sciences, Aichi, 444-8787, Japan.,Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, 444-8787, Japan
| | - Naoyuki Kitajima
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (Okazaki Institute for Integrative Bioscience), National Institutes of Natural Sciences, Aichi, 444-8787, Japan.,Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takashi Toyama
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (Okazaki Institute for Integrative Bioscience), National Institutes of Natural Sciences, Aichi, 444-8787, Japan.,Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.,Environmental Biology Laboratory, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Eri Harada
- Ajinomoto Co. Inc., Tokyo, 104-8315, Japan.,EA Pharma Co., Ltd., Tokyo, 104-0042, Japan
| | - Tsukasa Shimauchi
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (Okazaki Institute for Integrative Bioscience), National Institutes of Natural Sciences, Aichi, 444-8787, Japan.,Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Akiyuki Nishimura
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (Okazaki Institute for Integrative Bioscience), National Institutes of Natural Sciences, Aichi, 444-8787, Japan.,Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, 444-8787, Japan
| | - Tatsuya Ishikawa
- Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.,Ajinomoto Co. Inc., Tokyo, 104-8315, Japan.,EA Pharma Co., Ltd., Tokyo, 104-0042, Japan
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Lutz Birnbaumer
- Laboratory of Neuroscience, NIEHS, NIH, Research Triangle Park, NC, 27709, USA.,Institute for Biomedical Research (BIOMED), Catholic University of Argentina, C1107AFF, Buenos, Aires, Argentina
| | - Motohiro Nishida
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (Okazaki Institute for Integrative Bioscience), National Institutes of Natural Sciences, Aichi, 444-8787, Japan. .,Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, 444-8787, Japan. .,Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan. .,PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
26
|
Shimauchi T, Numaga-Tomita T, Ito T, Nishimura A, Matsukane R, Oda S, Hoka S, Ide T, Koitabashi N, Uchida K, Sumimoto H, Mori Y, Nishida M. TRPC3-Nox2 complex mediates doxorubicin-induced myocardial atrophy. JCI Insight 2017; 2:93358. [PMID: 28768915 DOI: 10.1172/jci.insight.93358] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022] Open
Abstract
Myocardial atrophy is a wasting of cardiac muscle due to hemodynamic unloading. Doxorubicin is a highly effective anticancer agent but also induces myocardial atrophy through a largely unknown mechanism. Here, we demonstrate that inhibiting transient receptor potential canonical 3 (TRPC3) channels abolishes doxorubicin-induced myocardial atrophy in mice. Doxorubicin increased production of ROS in rodent cardiomyocytes through hypoxic stress-mediated upregulation of NADPH oxidase 2 (Nox2), which formed a stable complex with TRPC3. Cardiomyocyte-specific expression of TRPC3 C-terminal minipeptide inhibited TRPC3-Nox2 coupling and suppressed doxorubicin-induced reduction of myocardial cell size and left ventricular (LV) dysfunction, along with its upregulation of Nox2 and oxidative stress, without reducing hypoxic stress. Voluntary exercise, an effective treatment to prevent doxorubicin-induced cardiotoxicity, also downregulated the TRPC3-Nox2 complex and promoted volume load-induced LV compliance, as demonstrated in TRPC3-deficient hearts. These results illustrate the impact of TRPC3 on LV compliance and flexibility and, focusing on the TRPC3-Nox2 complex, provide a strategy for prevention of doxorubicin-induced cardiomyopathy.
Collapse
Affiliation(s)
- Tsukasa Shimauchi
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Aichi, Japan.,Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, and.,Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuro Numaga-Tomita
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Aichi, Japan.,School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Department of Physiological Sciences, Aichi, Japan
| | - Tomoya Ito
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Aichi, Japan
| | - Akiyuki Nishimura
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Aichi, Japan.,School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Department of Physiological Sciences, Aichi, Japan
| | - Ryosuke Matsukane
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Aichi, Japan.,Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, and
| | - Sayaka Oda
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Aichi, Japan.,School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Department of Physiological Sciences, Aichi, Japan
| | - Sumio Hoka
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Norimichi Koitabashi
- Department of Medicine and Biological Sciences, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Koji Uchida
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hideki Sumimoto
- Department of Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Motohiro Nishida
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Aichi, Japan.,Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, and.,School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Department of Physiological Sciences, Aichi, Japan.,PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama, Japan
| |
Collapse
|
27
|
Nishida M, Nishimura A, Matsunaga T, Motohashi H, Kasamatsu S, Akaike T. Redox regulation of electrophilic signaling by reactive persulfides in cardiac cells. Free Radic Biol Med 2017; 109:132-140. [PMID: 28109891 DOI: 10.1016/j.freeradbiomed.2017.01.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/14/2017] [Accepted: 01/15/2017] [Indexed: 12/30/2022]
Abstract
Maintaining a redox balance by means of precisely controlled systems that regulate production, and elimination, and metabolism of electrophilic substances (electrophiles) is essential for normal cardiovascular function. Electrophilic signaling is mainly regulated by endogenous electrophiles that are generated from reactive oxygen species, nitric oxide, and the derivative reactive species of nitric oxide during stress responses, as well as by exogenous electrophiles including compounds in foods and environmental pollutants. Among electrophiles formed endogenously, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) has unique cell signaling functions, and pathways for its biosynthesis, signaling mechanism, and metabolism in cells have been clarified. Reactive persulfide species such as cysteine persulfides and polysulfides that are endogenously produced in cells are likely to be involved in 8-nitro-cGMP metabolism. These new aspects of redox biology may stimulate innovative and multidisciplinary research in cardiovascular physiology and pathophysiology. In our review, we focus on the redox-dependent regulation of electrophilic signaling via reduction and metabolism of electrophiles by reactive persulfides in cardiac cells, and we include suggestions for a new therapeutic strategy for cardiovascular disease.
Collapse
Affiliation(s)
- Motohiro Nishida
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki 444-8787, Japan; Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; PRESTO, Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan.
| | - Akiyuki Nishimura
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki 444-8787, Japan
| | - Tetsuro Matsunaga
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Shingo Kasamatsu
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takaaki Akaike
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| |
Collapse
|
28
|
Tolstykh GP, Tarango M, Roth CC, Ibey BL. Nanosecond pulsed electric field induced dose dependent phosphatidylinositol-4,5-bisphosphate signaling and intracellular electro-sensitization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:438-445. [DOI: 10.1016/j.bbamem.2017.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/15/2016] [Accepted: 01/02/2017] [Indexed: 12/11/2022]
|
29
|
MORI Y, TAKAHASHI N, KUROKAWA T, KIYONAKA S. TRP channels in oxygen physiology: distinctive functional properties and roles of TRPA1 in O 2 sensing. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:464-482. [PMID: 28769017 PMCID: PMC5713176 DOI: 10.2183/pjab.93.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/20/2017] [Indexed: 05/22/2023]
Abstract
Transient Receptor Potential (TRP) proteins form cation channels characterized by a wide variety of activation triggers. Here, we overview a group of TRP channels that respond to reactive redox species to transduce physiological signals, with a focus on TRPA1 and its role in oxygen physiology. Our systematic evaluation of oxidation sensitivity using cysteine-selective reactive disulphides with different redox potentials reveals that TRPA1 has the highest sensitivity to oxidants/electrophiles among the TRP channels, which enables it to sense O2. Proline hydroxylation by O2-dependent hydroxylases also regulates the O2-sensing function by inhibiting TRPA1 in normoxia; TRPA1 is activated by hypoxia through relief from the inhibition and by hyperoxia through cysteine oxidation that overrides the inhibition. TRPA1 enhances neuronal discharges induced by hyperoxia and hypoxia in the vagus to underlie respiratory adaptation to changes in O2 availability. This importance of TRPA1 in non-carotid body O2 sensors can be extended to the universal significance of redox-sensitive TRP channels in O2 adaptation.
Collapse
Affiliation(s)
- Yasuo MORI
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Correspondence should be addressed: Y. Mori, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan (e-mail: )
| | - Nobuaki TAKAHASHI
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Tatsuki KUROKAWA
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Shigeki KIYONAKA
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| |
Collapse
|
30
|
Lee JM, Noguchi S. Calcium Dyshomeostasis in Tubular Aggregate Myopathy. Int J Mol Sci 2016; 17:ijms17111952. [PMID: 27879676 PMCID: PMC5133946 DOI: 10.3390/ijms17111952] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/15/2016] [Accepted: 11/15/2016] [Indexed: 11/16/2022] Open
Abstract
Calcium is a crucial mediator of cell signaling in skeletal muscles for basic cellular functions and specific functions, including contraction, fiber-type differentiation and energy production. The sarcoplasmic reticulum (SR) is an organelle that provides a large supply of intracellular Ca2+ in myofibers. Upon excitation, it releases Ca2+ into the cytosol, inducing contraction of myofibrils. During relaxation, it takes up cytosolic Ca2+ to terminate the contraction. During exercise, Ca2+ is cycled between the cytosol and the SR through a system by which the Ca2+ pool in the SR is restored by uptake of extracellular Ca2+ via a specific channel on the plasma membrane. This channel is called the store-operated Ca2+ channel or the Ca2+ release-activated Ca2+ channel. It is activated by depletion of the Ca2+ store in the SR by coordination of two main molecules: stromal interaction molecule 1 (STIM1) and calcium release-activated calcium channel protein 1 (ORAI1). Recently, myopathies with a dominant mutation in these genes have been reported and the pathogenic mechanism of such diseases have been proposed. This review overviews the calcium signaling in skeletal muscles and role of store-operated Ca2+ entry in calcium homeostasis. Finally, we discuss the phenotypes and the pathomechanism of myopathies caused by mutations in the STIM1 and ORAI1 genes.
Collapse
Affiliation(s)
- Jong-Mok Lee
- Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Neuropsychiatry, Kodaira, Tokyo 187-8551, Japan.
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Neuropsychiatry, Kodaira, Tokyo 187-8502, Japan.
| | - Satoru Noguchi
- Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Neuropsychiatry, Kodaira, Tokyo 187-8551, Japan.
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Neuropsychiatry, Kodaira, Tokyo 187-8502, Japan.
| |
Collapse
|
31
|
TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling. Sci Rep 2016; 6:37001. [PMID: 27833156 PMCID: PMC5105134 DOI: 10.1038/srep37001] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/20/2016] [Indexed: 01/28/2023] Open
Abstract
Reactive oxygen species (ROS) produced by NADPH oxidase 2 (Nox2) function as key mediators of mechanotransduction during both physiological adaptation to mechanical load and maladaptive remodeling of the heart. This is despite low levels of cardiac Nox2 expression. The mechanism underlying the transition from adaptation to maladaptation remains obscure, however. We demonstrate that transient receptor potential canonical 3 (TRPC3), a Ca2+-permeable channel, acts as a positive regulator of ROS (PRROS) in cardiomyocytes, and specifically regulates pressure overload-induced maladaptive cardiac remodeling in mice. TRPC3 physically interacts with Nox2 at specific C-terminal sites, thereby protecting Nox2 from proteasome-dependent degradation and amplifying Ca2+-dependent Nox2 activation through TRPC3-mediated background Ca2+ entry. Nox2 also stabilizes TRPC3 proteins to enhance TRPC3 channel activity. Expression of TRPC3 C-terminal polypeptide abolished TRPC3-regulated ROS production by disrupting TRPC3-Nox2 interaction, without affecting TRPC3-mediated Ca2+ influx. The novel TRPC3 function as a PRROS provides a mechanistic explanation for how diastolic Ca2+ influx specifically encodes signals to induce ROS-mediated maladaptive remodeling and offers new therapeutic possibilities.
Collapse
|
32
|
Lin BH, Tsai MH, Lii CK, Wang TS. IP3 and calcium signaling involved in the reorganization of the actin cytoskeleton and cell rounding induced by cigarette smoke extract in human endothelial cells. ENVIRONMENTAL TOXICOLOGY 2016; 31:1293-1306. [PMID: 25758670 DOI: 10.1002/tox.22133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/09/2015] [Accepted: 02/15/2015] [Indexed: 06/04/2023]
Abstract
Smoking increases the risk of cardiovascular disorders and leads to damage caused by inflammation and oxidative stress. The actin cytoskeleton is a key player in the response to inflammatory stimuli and is an early target of cellular oxidative stress. The purpose of this study was to investigate the changes in actin cytoskeleton dynamics in human endothelial EA.hy926 cells exposed to cigarette smoke extract (CSE). Immunostaining revealed that CSE exposure resulted in modification of the actin cytoskeleton and led to cell rounding in a dose- and time-dependent manner. In addition, the intracellular calcium concentration was increased by treatment with CSE. Pretreatment with antioxidants (lipoic acid, glutathione, N-acetyl cysteine, aminoguanidine, α-tocopherol, and vitamin C) significantly attenuated the CSE-induced actin cytoskeleton reorganization and cell rounding. Calcium ion chelators (EGTA, BAPTA-AM AM) and a potent store-operated calcium channel inhibitor (MRS 1845) also reduced CSE-induced intracellular calcium changes and attenuated actin cytoskeleton reorganization and cell morphology change. Moreover, the CSE-induced intracellular calcium increase was suppressed by pretreatment with the inositol trisphosphate receptor (IP3R) inhibitor xestospongin C, the phospholipase C (PLC) inhibitor U-73122, and the protein kinase C (PKC) inhibitor GF109203X. These results suggest that reactive oxygen species production and intracellular calcium increase play an essential role in CSE-induced actin disorganization and cell rounding through a PLC-IP3-PKC signaling pathway. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1293-1306, 2016.
Collapse
Affiliation(s)
- Bo-Hong Lin
- School of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Hsuan Tsai
- School of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Tsu-Shing Wang
- School of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
33
|
Nguyen CH, Brenner S, Huttary N, Li Y, Atanasov AG, Dirsch VM, Holzner S, Stadler S, Riha J, Krieger S, Milovanovic D, Fristiohardy A, Simonitsch-Klupp I, Dolznig H, Saiko P, Szekeres T, Giessrigl B, Jäger W, Krupitza G. 12(S)-HETE increases intracellular Ca2+ in lymph-endothelial cells disrupting their barrier function in vitro; stabilization by clinical drugs impairing calcium supply. Cancer Lett 2016; 380:174-83. [DOI: 10.1016/j.canlet.2016.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023]
|
34
|
Abdoul-Azize S, Buquet C, Vannier JP, Dubus I. Pyr3, a TRPC3 channel blocker, potentiates dexamethasone sensitivity and apoptosis in acute lymphoblastic leukemia cells by disturbing Ca(2+) signaling, mitochondrial membrane potential changes and reactive oxygen species production. Eur J Pharmacol 2016; 784:90-8. [PMID: 27179991 DOI: 10.1016/j.ejphar.2016.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 01/02/2023]
Abstract
Dexamethasone (Dex) is used as a chemotherapeutic drug in the treatment of acute lymphoblastic leukemia (ALL) because of its capacity to induce apoptosis. However, some ALL patients acquire resistance to glucocorticoids (GC). Thus, it is important to explore new agents to overcome GC resistance. The aim of the present work was to assess the ability of Pyr3, a selective inhibitor of transient receptor potential canonical 3 (TRPC3), to sensitize human ALL cells to Dex. We show here, for the first time, that Pyr3 enhances Dex sensitivity through the distraction of Dex-mediated Ca(2+) signaling in ALL cells (in vitro) and primary blasts (ex vivo) associated with mitochondrial-mediated reactive oxygen species production in ALL cells. Pyr3 alone induced Ca(2+) signaling via only endoplasmic reticulum-released Ca(2+) and exerted inhibitory effect on store-operated Ca(2+) entry in dose-dependent manner in ALL cell lines. Pre-incubation of cells with Pyr3 significantly curtailed the thapsigargin- and Dex-evoked Ca(2+) signaling in ALL cell lines. Pyr3 synergistically potentiated Dex lethality, as shown by the induction of cell mortality, G2/M cell cycle arrest and apoptosis in ALL cell lines. Moreover, Pyr3 disrupted Dex-mediated Ca(2+) signaling and increased the sensitivity of Dex-induced cell death in primary blasts from ALL patients. Additional analysis showed that co-treatment with Dex and Pyr3 results in mitochondrial membrane potential depolarization and reactive oxygen species production in ALL cells. Together, Pyr3 exhibited potential therapeutic benefit in combination with Dex to inverse glucocorticoid resistance in human ALL and probably in other lymphoid malignancies.
Collapse
Affiliation(s)
- Souleymane Abdoul-Azize
- Groupe de Recherche "Micro-Environnement et Renouvellement Cellulaire Intégré" MERCI UPRES EA 3829, Faculté de Médecine et Pharmacie, Université de Rouen, 76183 Rouen Cedex, France.
| | - Catherine Buquet
- Groupe de Recherche "Micro-Environnement et Renouvellement Cellulaire Intégré" MERCI UPRES EA 3829, Faculté de Médecine et Pharmacie, Université de Rouen, 76183 Rouen Cedex, France
| | - Jean-Pierre Vannier
- Groupe de Recherche "Micro-Environnement et Renouvellement Cellulaire Intégré" MERCI UPRES EA 3829, Faculté de Médecine et Pharmacie, Université de Rouen, 76183 Rouen Cedex, France; Service Immuno-Hémato-Oncologie Pédiatrique, CHU Charles Nicolle, 76031 Rouen Cedex, France
| | - Isabelle Dubus
- Groupe de Recherche "Micro-Environnement et Renouvellement Cellulaire Intégré" MERCI UPRES EA 3829, Faculté de Médecine et Pharmacie, Université de Rouen, 76183 Rouen Cedex, France
| |
Collapse
|
35
|
Grandclément C, Pick H, Vogel H, Held W. NK Cells Respond to Haptens by the Activation of Calcium Permeable Plasma Membrane Channels. PLoS One 2016; 11:e0151031. [PMID: 26963818 PMCID: PMC4786276 DOI: 10.1371/journal.pone.0151031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/23/2016] [Indexed: 01/07/2023] Open
Abstract
Natural Killer (NK) cells mediate innate immunity to infected and transformed cells. Yet, NK cells can also mount hapten-specific recall responses thereby contributing to contact hypersensitivity (CHS). However, since NK cells lack antigen receptors that are used by the adaptive immune system to recognize haptens, it is not clear if NK cells respond directly to haptens and, if so, what mediates these responses. Here we show that among four haptens the two that are known to induce NK cell-dependent CHS trigger the rapid influx of extracellular Ca2+ into NK cells and lymphocyte cell lines. Thus lymphocytes can respond to haptens independent of antigen presentation and antigen receptors. We identify the Ca2+-permeable cation channel TRPC3 as a component of the lymphocyte response to one of these haptens. These data suggest that the response to the second hapten is based on a distinct mechanism, consistent with the capacity of NK cells to discriminate haptens. These findings raise the possibility that antigen-receptor independent activation of immune cells contributes to CHS.
Collapse
Affiliation(s)
- Camille Grandclément
- Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, Epalinges, Switzerland
| | - Horst Pick
- Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Horst Vogel
- Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Werner Held
- Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, Epalinges, Switzerland
- * E-mail:
| |
Collapse
|
36
|
Sawamura S, Hatano M, Takada Y, Hino K, Kawamura T, Tanikawa J, Nakagawa H, Hase H, Nakao A, Hirano M, Rotrattanadumrong R, Kiyonaka S, Mori MX, Nishida M, Hu Y, Inoue R, Nagata R, Mori Y. Screening of Transient Receptor Potential Canonical Channel Activators Identifies Novel Neurotrophic Piperazine Compounds. Mol Pharmacol 2016; 89:348-63. [PMID: 26733543 DOI: 10.1124/mol.115.102863] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/04/2016] [Indexed: 12/23/2022] Open
Abstract
Transient receptor potential canonical (TRPC) proteins form Ca(2+)-permeable cation channels activated upon stimulation of metabotropic receptors coupled to phospholipase C. Among the TRPC subfamily, TRPC3 and TRPC6 channels activated directly by diacylglycerol (DAG) play important roles in brain-derived neurotrophic factor (BDNF) signaling, promoting neuronal development and survival. In various disease models, BDNF restores neurologic deficits, but its therapeutic potential is limited by its poor pharmacokinetic profile. Elucidation of a framework for designing small molecules, which elicit BDNF-like activity via TRPC3 and TRPC6, establishes a solid basis to overcome this limitation. We discovered, through library screening, a group of piperazine-derived compounds that activate DAG-activated TRPC3/TRPC6/TRPC7 channels. The compounds [4-(5-chloro-2-methylphenyl)piperazin-1-yl](3-fluorophenyl)methanone (PPZ1) and 2-[4-(2,3-dimethylphenyl)piperazin-1-yl]-N-(2-ethoxyphenyl)acetamide (PPZ2) activated, in a dose-dependent manner, recombinant TRPC3/TRPC6/TRPC7 channels, but not other TRPCs, in human embryonic kidney cells. PPZ2 activated native TRPC6-like channels in smooth muscle cells isolated from rabbit portal vein. Also, PPZ2 evoked cation currents and Ca(2+) influx in rat cultured central neurons. Strikingly, both compounds induced BDNF-like neurite growth and neuroprotection, which were abolished by a knockdown or inhibition of TRPC3/TRPC6/TRPC7 in cultured neurons. Inhibitors of Ca(2+) signaling pathways, except calcineurin, impaired neurite outgrowth promotion induced by PPZ compounds. PPZ2 increased activation of the Ca(2+)-dependent transcription factor, cAMP response element-binding protein. These findings suggest that Ca(2+) signaling mediated by activation of DAG-activated TRPC channels underlies neurotrophic effects of PPZ compounds. Thus, piperazine-derived activators of DAG-activated TRPC channels provide important insights for future development of a new class of synthetic neurotrophic drugs.
Collapse
Affiliation(s)
- Seishiro Sawamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Masahiko Hatano
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Yoshinori Takada
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Kyosuke Hino
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Tetsuya Kawamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Jun Tanikawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Hiroshi Nakagawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Hideharu Hase
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Akito Nakao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Mitsuru Hirano
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Rachapun Rotrattanadumrong
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Shigeki Kiyonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Masayuki X Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Motohiro Nishida
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Yaopeng Hu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Ryuji Inoue
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Ryu Nagata
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| |
Collapse
|
37
|
Parenti A, De Logu F, Geppetti P, Benemei S. What is the evidence for the role of TRP channels in inflammatory and immune cells? Br J Pharmacol 2016; 173:953-69. [PMID: 26603538 DOI: 10.1111/bph.13392] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/25/2015] [Accepted: 11/10/2015] [Indexed: 12/11/2022] Open
Abstract
A complex network of many interacting mechanisms orchestrates immune and inflammatory responses. Among these, the cation channels of the transient receptor potential (TRP) family expressed by resident tissue cells, inflammatory and immune cells and distinct subsets of primary sensory neurons, have emerged as a novel and interrelated system to detect and respond to harmful agents. TRP channels, by means of their direct effect on the intracellular levels of cations and/or through the indirect modulation of a large series of intracellular pathways, orchestrate a range of cellular processes, such as cytokine production, cell differentiation and cytotoxicity. The contribution of TRP channels to the transition of inflammation and immune responses from a defensive early response to a chronic and pathological condition is also emerging as a possible underlying mechanism in various diseases. This review discusses the roles of TRP channels in inflammatory and immune cell function and provides an overview of the effects of inflammatory and immune TRP channels on the pathogenesis of human diseases.
Collapse
Affiliation(s)
- A Parenti
- Clinical Pharmacology and Oncology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - F De Logu
- Clinical Pharmacology and Oncology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - P Geppetti
- Clinical Pharmacology and Oncology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - S Benemei
- Clinical Pharmacology and Oncology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
38
|
TRPC3 amplifies B-cell receptor-induced ERK signalling via protein kinase D-dependent Rap1 activation. Biochem J 2015; 473:201-10. [PMID: 26554024 DOI: 10.1042/bj20150596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/09/2015] [Indexed: 11/17/2022]
Abstract
Sustained activation of extracellular-signal-regulated kinase (ERK) has an important role in the decision regarding the cell fate of B-lymphocytes. Recently, we demonstrated that the diacylglycerol-activated non-selective cation channel canonical transient receptor potential 3 (TRPC3) is required for the sustained ERK activation induced by the B-cell receptor. However, the signalling mechanism underlying TRPC3-mediated ERK activation remains elusive. In the present study, we have shown that TRPC3 mediates Ca(2+) influx to sustain activation of protein kinase D (PKD) in a protein kinase C-dependent manner in DT40 B-lymphocytes. The later phase of ERK activation depends on the small G-protein Rap1, known as a downstream target of PKD, whereas the earlier phase of ERK activation depends on the Ras protein. It is of interest that sustained ERK phosphorylation is required for the full induction of the immediate early gene Egr-1 (early growth response 1). These results suggest that TRPC3 reorganizes the BCR signalling complex by switching the subtype of small G-proteins to sustain ERK activation in B-lymphocytes.
Collapse
|
39
|
Moccia F, Guerra G. Ca2+Signalling in Endothelial Progenitor Cells: Friend or Foe? J Cell Physiol 2015; 231:314-27. [DOI: 10.1002/jcp.25126] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/04/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology; Department of Biology and Biotechnology “Lazzaro Spallanzani”; University of Pavia; Pavia Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences “Vincenzo Tiberio”; University of Molise; Campobasso Italy
| |
Collapse
|
40
|
Saliba Y, Karam R, Smayra V, Aftimos G, Abramowitz J, Birnbaumer L, Farès N. Evidence of a Role for Fibroblast Transient Receptor Potential Canonical 3 Ca2+ Channel in Renal Fibrosis. J Am Soc Nephrol 2015; 26:1855-76. [PMID: 25479966 PMCID: PMC4520158 DOI: 10.1681/asn.2014010065] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 09/23/2014] [Indexed: 01/04/2023] Open
Abstract
Transient receptor potential canonical (TRPC) Ca(2+)-permeant channels, especially TRPC3, are increasingly implicated in cardiorenal diseases. We studied the possible role of fibroblast TRPC3 in the development of renal fibrosis. In vitro, a macromolecular complex formed by TRPC1/TRPC3/TRPC6 existed in isolated cultured rat renal fibroblasts. However, specific blockade of TRPC3 with the pharmacologic inhibitor pyr3 was sufficient to inhibit both angiotensin II- and 1-oleoyl-2-acetyl-sn-glycerol-induced Ca(2+) entry in these cells, which was detected by fura-2 Ca(2+) imaging. TRPC3 blockade or Ca(2+) removal inhibited fibroblast proliferation and myofibroblast differentiation by suppressing the phosphorylation of extracellular signal-regulated kinase (ERK1/2). In addition, pyr3 inhibited fibrosis and inflammation-associated markers in a noncytotoxic manner. Furthermore, TRPC3 knockdown by siRNA confirmed these pharmacologic findings. In adult male Wistar rats or wild-type mice subjected to unilateral ureteral obstruction, TRPC3 expression increased in the fibroblasts of obstructed kidneys and was associated with increased Ca(2+) entry, ERK1/2 phosphorylation, and fibroblast proliferation. Both TRPC3 blockade in rats and TRPC3 knockout in mice inhibited ERK1/2 phosphorylation and fibroblast activation as well as myofibroblast differentiation and extracellular matrix remodeling in obstructed kidneys, thus ameliorating tubulointerstitial damage and renal fibrosis. In conclusion, TRPC3 channels are present in renal fibroblasts and control fibroblast proliferation, differentiation, and activation through Ca(2+)-mediated ERK signaling. TRPC3 channels might constitute important therapeutic targets for improving renal remodeling in kidney disease.
Collapse
Affiliation(s)
- Youakim Saliba
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine and
| | - Ralph Karam
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine and
| | - Viviane Smayra
- Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Georges Aftimos
- Department of Anatomopathology, National Institute of Pathology, Baabda, Lebanon; and
| | - Joel Abramowitz
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Lutz Birnbaumer
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Nassim Farès
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine and
| |
Collapse
|
41
|
Pippel A, Beßler B, Klapperstück M, Markwardt F. Inhibition of antigen receptor-dependent Ca(2+) signals and NF-AT activation by P2X7 receptors in human B lymphocytes. Cell Calcium 2015; 57:275-89. [PMID: 25678443 DOI: 10.1016/j.ceca.2015.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 12/22/2022]
Abstract
One of the first intracellular signals after antigen binding by the antigen receptor of B lymphocytes is the increased intracellular Ca(2+) concentration ([Ca(2+)]i), which is followed by several intracellular signaling events like the nuclear translocation of the transcription factor NF-AT controlling the fate of B lymphocytes after their activation. Extracellular ATP, which is released from cells under several pathological conditions, is considered a danger-associated signal serving as an immunomodulator. We investigated the interaction of antigen receptor (BCR) and P2X7 receptor (P2X7R) activation on [Ca(2+)]i signaling and on nuclear translocation of the transcription factor NF-AT in human B lymphocytes. Although the P2X7R is an ATP-gated Ca(2+)-permeable ion channel, P2X7R activation inhibits the BCR-mediated [Ca(2+)]i responses. This effect is mimicked by cell membrane depolarization induced by an increase in the extracellular K(+) concentration or by application of the Na(+) ionophore gramicidin, but is abolished by stabilization of the membrane potential using the K(+) ionophore valinomycin, by extracellular Mg(2+), which is known to inhibit P2X7R-dependent effects, or by replacing Na(+) by the less P2X7R-permeable Tris(+) ion. Furthermore, P2X7R activation by ATP inhibits the BCR-dependent translocation of the transcription factor NF-ATc1 to the nucleus. We therefore conclude that extracellular ATP via the P2X7R mediates inhibitory effects on B cell activation. This may be of relevance for understanding of the activation of the BCR under pathological conditions and for the development of therapeutic strategies targeting human B lymphocytes or P2X7 receptors.
Collapse
Affiliation(s)
- Anja Pippel
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle, Magdeburger Straße 6, D-06097 Halle (Saale), Germany
| | - Björn Beßler
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle, Magdeburger Straße 6, D-06097 Halle (Saale), Germany
| | - Manuela Klapperstück
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle, Magdeburger Straße 6, D-06097 Halle (Saale), Germany
| | - Fritz Markwardt
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle, Magdeburger Straße 6, D-06097 Halle (Saale), Germany.
| |
Collapse
|
42
|
Baba Y, Kurosaki T. Role of Calcium Signaling in B Cell Activation and Biology. Curr Top Microbiol Immunol 2015; 393:143-174. [PMID: 26369772 DOI: 10.1007/82_2015_477] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increase in intracellular levels of calcium ions (Ca2+) is one of the key triggering signals for the development of B cell response to the antigen. The diverse Ca2+ signals finely controlled by multiple factors participate in the regulation of gene expression, B cell development, and effector functions. B cell receptor (BCR)-initiated Ca2+ mobilization is sourced from two pathways: one is the release of Ca2+ from the intracellular stores, endoplasmic reticulum (ER), and other is the prolonged influx of extracellular Ca2+ induced by depleting the stores via store-operated calcium entry (SOCE) and calcium release-activated calcium (CRAC) channels. The identification of stromal interaction molecule 1(STIM1), the ER Ca2+ sensor, and Orai1, a key subunit of the CRAC channel pore, has now provided the tools to understand the mode of Ca2+ influx regulation and physiological relevance. Herein, we discuss our current understanding of the molecular mechanisms underlying BCR-triggered Ca2+ signaling as well as its contribution to the B cell biological processes and diseases.
Collapse
Affiliation(s)
- Yoshihiro Baba
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan. .,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Yokohama, 230-0045, Japan.
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan.,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Yokohama, 230-0045, Japan
| |
Collapse
|
43
|
Liu D, Xiong S, Zhu Z. Imbalance and dysfunction of transient receptor potential channels contribute to the pathogenesis of hypertension. SCIENCE CHINA-LIFE SCIENCES 2014; 57:818-25. [DOI: 10.1007/s11427-014-4713-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/11/2014] [Indexed: 10/24/2022]
|
44
|
Chaigne-Delalande B, Lenardo MJ. Divalent cation signaling in immune cells. Trends Immunol 2014; 35:332-44. [PMID: 24932518 DOI: 10.1016/j.it.2014.05.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/13/2014] [Accepted: 05/04/2014] [Indexed: 01/12/2023]
Abstract
Divalent cations of two alkaline earth metals Ca(2+) and Mg(2+) and the transition metal Zn(2+) play vital roles in the immune system, and several immune disorders are associated with disturbances of their function. Until recently only Ca(2+) was considered to serve as a second messenger. However, signaling roles for Mg(2+) and Zn(2+) have been recently described, leading to a reevaluation of their role as potential second messengers. We review here the roles of these cations as second messengers in light of recent advances in Ca(2+), Mg(2+), and Zn(2+) signaling in the immune system. Developing a better understanding of these signaling cations may lead to new therapeutic strategies for immune disorders.
Collapse
Affiliation(s)
- Benjamin Chaigne-Delalande
- Molecular Development of the Immune System Section, Lymphocyte Molecular Genetics Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Lymphocyte Molecular Genetics Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
45
|
Role of 8-nitro-cGMP and its redox regulation in cardiovascular electrophilic signaling. J Mol Cell Cardiol 2014; 73:10-7. [PMID: 24530900 DOI: 10.1016/j.yjmcc.2014.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 12/11/2022]
Abstract
Structural and morphological changes of the cardiovascular systems (cardiovascular remodeling) are a major clinical outcome of cardiovascular diseases. Many lines of evidences have implied that transfiguration of reduction/oxidation (redox) homeostasis due to excess production of reactive oxygen species (ROS) and/or ROS-derived electrophilic metabolites (electrophiles) is the main cause of cardiovascular remodeling. Gasotransmitters, such as nitric oxide (NO) and endogenous electrophiles, are considered major bioactive species and have been extensively studied in the context of physiological and pathological cardiovascular events. We have recently found that hydrogen sulfide-related reactive species function as potent nucleophiles to eliminate electrophilic modification of signaling proteins induced by NO-derived electrophilic byproducts (e.g., 8-nitroguanosine 3',5'-cyclic monophosphate and nitro-oleic acid). In this review, we discuss the current understanding of redox control of cardiovascular pathophysiology by electrophiles and nucleophiles. We propose that modulation of electrophile-mediated post-translational modification of protein cysteine thiols may be a new therapeutic strategy of cardiovascular diseases. This article is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System".
Collapse
|
46
|
Moccia F, Dragoni S, Cinelli M, Montagnani S, Amato B, Rosti V, Guerra G, Tanzi F. How to utilize Ca²⁺ signals to rejuvenate the repairative phenotype of senescent endothelial progenitor cells in elderly patients affected by cardiovascular diseases: a useful therapeutic support of surgical approach? BMC Surg 2013; 13 Suppl 2:S46. [PMID: 24267290 PMCID: PMC3851045 DOI: 10.1186/1471-2482-13-s2-s46] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Endothelial dysfunction or loss is the early event that leads to a host of severe cardiovascular diseases, such as atherosclerosis, hypertension, brain stroke, myocardial infarction, and peripheral artery disease. Ageing is regarded among the most detrimental risk factor for vascular endothelium and predisposes the subject to atheroscleorosis and inflammatory states even in absence of traditional comorbid conditions. Standard treatment to restore blood perfusion through stenotic arteries are surgical or endovascular revascularization. Unfortunately, ageing patients are not the most amenable candidates for such interventions, due to high operative risk or unfavourable vascular involvement. It has recently been suggested that the transplantation of autologous bone marrow-derived endothelial progenitor cells (EPCs) might constitute an alternative and viable therapeutic option for these individuals. Albeit pre-clinical studies demonstrated the feasibility of EPC-based therapy to recapitulate the diseased vasculature of young and healthy animals, clinical studies provided less impressive results in old ischemic human patients. One hurdle associated to this kind of approach is the senescence of autologous EPCs, which are less abundant in peripheral blood and display a reduced pro-angiogenic activity. Conversely, umbilical cord blood (UCB)-derived EPCs are more suitable for cellular therapeutics due to their higher frequency and sensitivity to growth factors, such as vascular endothelial growth factor (VEGF). An increase in intracellular Ca2+ concentration is central to EPC activation by VEGF. We have recently demonstrated that the Ca2+ signalling machinery driving the oscillatory Ca2+ response to this important growth factor is different in UCB-derived EPCs as compared to their peripheral counterparts. In particular, we focussed on the so-called endothelial colony forming cells (ECFCs), which are the only EPC population belonging to the endothelial lineage and able to form capillary-like structures in vitro and stably integrate with host vasculature in vivo. The present review provides a brief description of how exploiting the Ca2+ toolkit of juvenile EPCs to restore the repairative phenotype of senescent EPCs to enhance their regenerative outcome in therapeutic settings.
Collapse
|
47
|
Pdx-1 activates islet α- and β-cell proliferation via a mechanism regulated by transient receptor potential cation channels 3 and 6 and extracellular signal-regulated kinases 1 and 2. Mol Cell Biol 2013; 33:4017-29. [PMID: 23938296 DOI: 10.1128/mcb.00469-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The homeodomain transcription factor Pdx-1 has important roles in pancreatic development and β-cell function and survival. In the present study, we demonstrate that adenovirus-mediated overexpression of Pdx-1 in rat or human islets also stimulates cell replication. Moreover, cooverexpression of Pdx-1 with another homeodomain transcription factor, Nkx6.1, has an additive effect on proliferation compared to either factor alone, implying discrete activating mechanisms. Consistent with this, Nkx6.1 stimulates mainly β-cell proliferation, whereas Pdx-1 stimulates both α- and β-cell proliferation. Furthermore, cyclins D1/D2 are upregulated by Pdx-1 but not by Nkx6.1, and inhibition of cdk4 blocks Pdx-1-stimulated but not Nkx6.1-stimulated islet cell proliferation. Genes regulated by Pdx-1 but not Nkx6.1 were identified by microarray analysis. Two members of the transient receptor potential cation (TRPC) channel family, TRPC3 and TRPC6, are upregulated by Pdx-1 overexpression, and small interfering RNA (siRNA)-mediated knockdown of TRPC3/6 or TRPC6 alone inhibits Pdx-1-induced but not Nkx6.1-induced islet cell proliferation. Pdx-1 also stimulates extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation, an effect partially blocked by knockdown of TRPC3/6, and blockade of ERK1/2 activation with a MEK1/2 inhibitor partially impairs Pdx-1-stimulated proliferation. These studies define a pathway by which overexpression of Pdx-1 activates islet cell proliferation that is distinct from and additive to a pathway activated by Nkx6.1.
Collapse
|
48
|
Dragoni S, Laforenza U, Bonetti E, Lodola F, Bottino C, Guerra G, Borghesi A, Stronati M, Rosti V, Tanzi F, Moccia F. Canonical transient receptor potential 3 channel triggers vascular endothelial growth factor-induced intracellular Ca2+ oscillations in endothelial progenitor cells isolated from umbilical cord blood. Stem Cells Dev 2013; 22:2561-80. [PMID: 23682725 DOI: 10.1089/scd.2013.0032] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Endothelial colony-forming cells (ECFCs) are the only endothelial progenitor cells (EPCs) that are capable of acquiring a mature endothelial phenotype. ECFCs are mainly mobilized from bone marrow to promote vascularization and represent a promising tool for cell-based therapy of severe ischemic diseases. Vascular endothelial growth factor (VEGF) stimulates the proliferation of peripheral blood-derived ECFCs (PB-ECFCs) through oscillations in intracellular Ca(2+) concentration ([Ca(2+)]i). VEGF-induced Ca(2+) spikes are driven by the interplay between inositol-1,4,5-trisphosphate (InsP3)-dependent Ca(2+) release and store-operated Ca(2+) entry (SOCE). The therapeutic potential of umbilical cord blood-derived ECFCs (UCB-ECFCs) has also been shown in recent studies. However, VEGF-induced proliferation of UCB-ECFCs is faster compared with their peripheral counterpart. Unlike PB-ECFCs, UCB-ECFCs express canonical transient receptor potential channel 3 (TRPC3) that mediates diacylglycerol-dependent Ca(2+) entry. The present study aimed at investigating whether the higher proliferative potential of UCB-ECFCs was associated to any difference in the molecular underpinnings of their Ca(2+) response to VEGF. We found that VEGF induces oscillations in [Ca(2+)]i that are patterned by the interaction between InsP3-dependent Ca(2+) release and SOCE. Unlike PB-ECFCs, VEGF-evoked Ca(2+) oscillations do not arise in the absence of extracellular Ca(2+) entry and after pharmacological (with Pyr3 and flufenamic acid) and genetic (by employing selective small interference RNA) suppression of TRPC3. VEGF-induced UCB-ECFC proliferation is abrogated on inhibition of the intracellular Ca(2+) spikes. Therefore, the Ca(2+) response to VEGF in UCB-ECFCs is shaped by a different Ca(2+) machinery as compared with PB-ECFCs, and TRPC3 stands out as a promising target in EPC-based treatment of ischemic pathologies.
Collapse
Affiliation(s)
- Silvia Dragoni
- 1 Department of Biology and Biotechnology "Lazzaro Spallanzani,", University of Pavia , Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Taniguchi M, Fukunaka A, Hagihara M, Watanabe K, Kamino S, Kambe T, Enomoto S, Hiromura M. Essential role of the zinc transporter ZIP9/SLC39A9 in regulating the activations of Akt and Erk in B-cell receptor signaling pathway in DT40 cells. PLoS One 2013; 8:e58022. [PMID: 23505453 PMCID: PMC3591455 DOI: 10.1371/journal.pone.0058022] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/29/2013] [Indexed: 01/08/2023] Open
Abstract
The essential trace element zinc is important for all living organisms. Zinc functions not only as a nutritional factor, but also as a second messenger. However, the effects of intracellular zinc on the B cell-receptor (BCR) signaling pathway remain poorly understood. Here, we present data indicating that the increase in intracellular zinc level induced by ZIP9/SLC39A9 (a ZIP Zrt-/Irt-like protein) plays an important role in the activation of Akt and Erk in response to BCR activation. In DT40 cells, the enhancement of Akt and Erk phosphorylation following BCR activation requires intracellular zinc. To clarify this event, we used chicken ZnT5/6/7-gene-triple-knockout DT40 (TKO) cells and chicken Zip9-knockout DT40 (cZip9KO) cells. The levels of Akt and ERK phosphorylation significantly decreased in cZip9KO cells. In addition, the enzymatic activity of protein tyrosine phosphatase (PTPase) increased in cZip9KO cells. These biochemical events were restored by overexpressing the human Zip9 (hZip9) gene. Moreover, we found that the increase in intracellular zinc level depends on the expression of ZIP9. This observation is in agreement with the increased levels of Akt and Erk phosphorylation and the inhibition of total PTPase activity. We concluded that ZIP9 regulates cytosolic zinc level, resulting in the enhancement of Akt and Erk phosphorylation. Our observations provide new mechanistic insights into the BCR signaling pathway underlying the regulation of intracellular zinc level by ZIP9 in response to the BCR activation.
Collapse
Affiliation(s)
- Masanari Taniguchi
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Multiple Molecular Imaging Research Laboratory, RIKEN Center for Molecular Imaging Science, Kobe, Japan
| | - Ayako Fukunaka
- Multiple Molecular Imaging Research Laboratory, RIKEN Center for Molecular Imaging Science, Kobe, Japan
| | - Mitsue Hagihara
- Multiple Molecular Imaging Research Laboratory, RIKEN Center for Molecular Imaging Science, Kobe, Japan
| | - Keiko Watanabe
- Multiple Molecular Imaging Research Laboratory, RIKEN Center for Molecular Imaging Science, Kobe, Japan
| | - Shinichiro Kamino
- Multiple Molecular Imaging Research Laboratory, RIKEN Center for Molecular Imaging Science, Kobe, Japan
| | - Taiho Kambe
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shuichi Enomoto
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Multiple Molecular Imaging Research Laboratory, RIKEN Center for Molecular Imaging Science, Kobe, Japan
| | - Makoto Hiromura
- Multiple Molecular Imaging Research Laboratory, RIKEN Center for Molecular Imaging Science, Kobe, Japan
| |
Collapse
|
50
|
Harada M, Luo X, Qi XY, Tadevosyan A, Maguy A, Ordog B, Ledoux J, Kato T, Naud P, Voigt N, Shi Y, Kamiya K, Murohara T, Kodama I, Tardif JC, Schotten U, Van Wagoner DR, Dobrev D, Nattel S. Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation. Circulation 2012; 126:2051-64. [PMID: 22992321 DOI: 10.1161/circulationaha.112.121830] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Fibroblast proliferation and differentiation are central in atrial fibrillation (AF)-promoting remodeling. Here, we investigated fibroblast regulation by Ca(2+)-permeable transient receptor potential canonical-3 (TRPC3) channels. METHODS AND RESULTS Freshly isolated rat cardiac fibroblasts abundantly expressed TRPC3 and had appreciable nonselective cation currents (I(NSC)) sensitive to a selective TPRC3 channel blocker, pyrazole-3 (3 μmol/L). Pyrazole-3 suppressed angiotensin II-induced Ca(2+) influx, proliferation, and α-smooth muscle actin protein expression in fibroblasts. Ca(2+) removal and TRPC3 blockade suppressed extracellular signal-regulated kinase phosphorylation, and extracellular signal-regulated kinase phosphorylation inhibition reduced fibroblast proliferation. TRPC3 expression was upregulated in atria from AF patients, goats with electrically maintained AF, and dogs with tachypacing-induced heart failure. TRPC3 knockdown (based on short hairpin RNA [shRNA]) decreased canine atrial fibroblast proliferation. In left atrial fibroblasts freshly isolated from dogs kept in AF for 1 week by atrial tachypacing, TRPC3 protein expression, currents, extracellular signal-regulated kinase phosphorylation, and extracellular matrix gene expression were all significantly increased. In cultured left atrial fibroblasts from AF dogs, proliferation rates, α-smooth muscle actin expression, and extracellular signal-regulated kinase phosphorylation were increased and were suppressed by pyrazole-3. MicroRNA-26 was downregulated in canine AF atria; experimental microRNA-26 knockdown reproduced AF-induced TRPC3 upregulation and fibroblast activation. MicroRNA-26 has NFAT (nuclear factor of activated T cells) binding sites in the 5' promoter region. NFAT activation increased in AF fibroblasts, and NFAT negatively regulated microRNA-26 transcription. In vivo pyrazole-3 administration suppressed AF while decreasing fibroblast proliferation and extracellular matrix gene expression. CONCLUSIONS TRPC3 channels regulate cardiac fibroblast proliferation and differentiation, likely by controlling the Ca(2+) influx that activates extracellular signal-regulated kinase signaling. AF increases TRPC3 channel expression by causing NFAT-mediated downregulation of microRNA-26 and causes TRPC3-dependent enhancement of fibroblast proliferation and differentiation. In vivo, TRPC3 blockade prevents AF substrate development in a dog model of electrically maintained AF. TRPC3 likely plays an important role in AF by promoting fibroblast pathophysiology and is a novel potential therapeutic target.
Collapse
Affiliation(s)
- Masahide Harada
- Department of Medicine and Research Center, Montreal Heart Institute and Universite´ de Montre´al, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|