1
|
Erdogan E, Yetisgen A, Keskin L, Tanriverdi ES, Benk Ugur IG. Bacteriological profile of diabetic foot ulcers and analysis of serum meteorin levels. Mol Biol Rep 2025; 52:323. [PMID: 40100449 DOI: 10.1007/s11033-025-10427-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/10/2025] [Indexed: 03/20/2025]
Abstract
OBJECTIVE With the increase in the incidence of diabetes mellitus (DM) in recent years, diabetic foot ulcers (DFU), which are common and serious chronic complications of diabetes, have also become widespread. DFU is highly associated with a significant deterioration in quality of life as well as increased morbidity and mortality. Meteorin is a potent neurotrophic growth factor and shows antiangiogenic, antihyperalgesic, antinociceptive and neuroprotective effects. This study aimed to determine the possible relationship between meteorin, diabetes and diabetic foot ulcer by comparing the serum meteorin levels of healthy control group, DM patients and patients with diabetic foot ulcers. METHODS Our study included a total of 62 diabetic patients, 31 of whom had DFU, and 29 healthy individuals as a control group. Meteorin levels of the participants were measured using ELISA method in serum samples. Other laboratory and epidemiological data of the patients were obtained from the hospital database. RESULTS In the wound cultures taken from patients with DFU, the most commonly isolated bacteria were Staphylococcus aureus and Pseudomonas aeruginosa. Serum meteorin levels were found to be statistically significantly higher in diabetic patients as compared to the healthy control group, and among diabetic patients, those with DFU had significantly higher levels compared to those without DFU. A positive significant correlation was found between meteorin level and age, HbA1c, WBC, urea, sedimentation, CRP and ferritin. CONCLUSION The results of our study, aimed at better understanding the biological functions and potential clinical applications of meteorin, suggest that meteorin could potentially be used as a biomarker for the development of DFU.
Collapse
Affiliation(s)
- Esra Erdogan
- Department of Basic Pharmacy Sciences, Faculty of Pharmacy, Harran University, Sanliurfa, Türkiye.
| | - Azize Yetisgen
- Department of Infectious Diseases, Malatya Training and Research Hospital, Malatya, Türkiye
| | - Lezzan Keskin
- Department of Endocrinology, Faculty of Medicine, Turgut Ozal University, Malatya, Türkiye
| | - Elif Seren Tanriverdi
- Department of Medical Microbiology, Faculty of Medicine, Inonu University, Malatya, Türkiye
| | - Isilay Gokce Benk Ugur
- Department of Medical Microbiology, Faculty of Medicine, Turgut Ozal University, Malatya, Türkiye
| |
Collapse
|
2
|
Yeung TJ, Wilkinson DG. Short-range Fgf signalling patterns hindbrain progenitors to induce the neurogenesis-to-oligodendrogenesis switch. Development 2024; 151:dev204256. [PMID: 39575980 DOI: 10.1242/dev.204256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024]
Abstract
In the vertebrate nervous system, neurogenesis generally precedes gliogenesis. The mechanisms driving the switch in cell type production and generation of the correct proportion of cell types remain unclear. Here, we show that Fgf20 signalling patterns progenitors to induce the switch from neurogenesis to oligodendrogenesis in the zebrafish hindbrain. Fgf20 emanating from earlier-born neurons signals at a short range to downregulate proneural gene expression in the segment centre with high spatial precision along both anterior-posterior and dorsal-ventral axes. This signal induces oligodendrocytes in the segment centre by upregulating olig2 and sox10 expression in pre-patterned competent progenitors. We show that the magnitude of proneural gene downregulation and the quantity of oligodendrocyte precursor cells specified is dependent on the extent of Fgf20 signalling. Overexpression of fgf20a induces precocious specification and differentiation of oligodendrocytes among olig2+ progenitors, resulting in an increase in oligodendrocytes at the expense of neurogenesis. Thus, Fgf20 signalling defines the proportion of each cell type produced. Taken together, Fgf20 signalling from earlier-born neurons patterns hindbrain segments spatially and temporally to induce the neurogenesis-to-oligodendrogenesis switch.
Collapse
Affiliation(s)
- Tim J Yeung
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | |
Collapse
|
3
|
Wang L, Huang G, Xiao H, Leng X. A pan-cancer analysis of the association of METRN with prognosis and immune infiltration in human tumors. Heliyon 2024; 10:e37213. [PMID: 39296047 PMCID: PMC11408854 DOI: 10.1016/j.heliyon.2024.e37213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/16/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
Background Meteorin (METRN) is expressed predominantly in the central nervous system (CNS), where it functions by regulating glial cell differentiation and promoting axonal elongation. Nonetheless, its function within tumors is still not well understood. In this study, we focused on investigating its expression across various cancers and delving deeper into how METRN expression correlates with prognosis and immune infiltration. Methods We explored METRN expression patterns in pan-cancers utilizing data obtained from the UCSC Xena and TCGA. In addition, analyses of survival and clinical association were conducted for tumors where METRN could affect the prognosis. Subsequently, nomogram models were constructed for sarcoma (SARC) and prostate adenocarcinoma (PRAD) to verify METRN's prognostic value in tumors. Furthermore, we also discussed the link between METRN and immune infiltration. As far as mechanisms are concerned, functional enrichment analysis was conducted to analyze the functional components and signaling pathways involved in METRN. Results This study found that METRN was abnormally expressed in various tumors, closely connected with the prognosis and clinical characteristics of several tumors, and had good prognostic value. Moreover, analysis of immune infiltration revealed that METRN interacts with multiple immune cells, with alterations in the immune microenvironment potentially influencing tumor prognosis. Enrichment analysis indicates that METRN may influence tumorigenesis and progression through immune-related pathways. Conclusion To sum up, our study demonstrates that METRN can be a prospective predictive biomarker in diverse cancer types and a promising target for cancer immunotherapy for pan-cancer.
Collapse
Affiliation(s)
- Li Wang
- The Fifth Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Urumqi, China
| | - Guofu Huang
- Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Han Xiao
- The Fifth Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Urumqi, China
| | - Xiaoling Leng
- Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, China
| |
Collapse
|
4
|
Sheloukhova L, Watanabe H. Evolution of glial cells: a non-bilaterian perspective. Neural Dev 2024; 19:10. [PMID: 38907299 PMCID: PMC11193209 DOI: 10.1186/s13064-024-00184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/06/2024] [Indexed: 06/23/2024] Open
Abstract
Nervous systems of bilaterian animals generally consist of two cell types: neurons and glial cells. Despite accumulating data about the many important functions glial cells serve in bilaterian nervous systems, the evolutionary origin of this abundant cell type remains unclear. Current hypotheses regarding glial evolution are mostly based on data from model bilaterians. Non-bilaterian animals have been largely overlooked in glial studies and have been subjected only to morphological analysis. Here, we provide a comprehensive overview of conservation of the bilateral gliogenic genetic repertoire of non-bilaterian phyla (Cnidaria, Placozoa, Ctenophora, and Porifera). We overview molecular and functional features of bilaterian glial cell types and discuss their possible evolutionary history. We then examine which glial features are present in non-bilaterians. Of these, cnidarians show the highest degree of gliogenic program conservation and may therefore be crucial to answer questions about glial evolution.
Collapse
Affiliation(s)
- Larisa Sheloukhova
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan.
| |
Collapse
|
5
|
Shankar SS, Banarjee R, Jathar SM, Rajesh S, Ramasamy S, Kulkarni MJ. De novo structure prediction of meteorin and meteorin-like protein for identification of domains, functional receptor binding regions, and their high-risk missense variants. J Biomol Struct Dyn 2024; 42:4522-4536. [PMID: 37288801 DOI: 10.1080/07391102.2023.2220804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Meteorin (Metrn) and Meteorin-like (Metrnl) are homologous secreted proteins involved in neural development and metabolic regulation. In this study, we have performed de novo structure prediction and analysis of both Metrn and Metrnl using Alphafold2 (AF2) and RoseTTAfold (RF). Based on the domain and structural homology analysis of the predicted structures, we have identified that these proteins are composed of two functional domains, a CUB domain and an NTR domain, connected by a hinge/loop region. We have identified the receptor binding regions of Metrn and Metrnl using the machine-learning tools ScanNet and Masif. These were further validated by docking Metrnl with its reported KIT receptor, thus establishing the role of each domain in the receptor interaction. Also, we have studied the effect of non-synonymous SNPs on the structure and function of these proteins using an array of bioinformatics tools and selected 16 missense variants in Metrn and 10 in Metrnl that can affect the protein stability. This is the first study to comprehensively characterize the functional domains of Metrn and Metrnl at their structural level and identify the functional domains, and protein binding regions. This study also highlights the interaction mechanism of the KIT receptor and Metrnl. The predicted deleterious SNPs will allow further understanding of the role of these variants in modulating the plasma levels of these proteins in disease conditions such as diabetes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S Shiva Shankar
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Reema Banarjee
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Swaraj M Jathar
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - S Rajesh
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Sureshkumar Ramasamy
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Mahesh J Kulkarni
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Krylov A, Yu S, Veen K, Newton A, Ye A, Qin H, He J, Jusuf PR. Heterogeneity in quiescent Müller glia in the uninjured zebrafish retina drive differential responses following photoreceptor ablation. Front Mol Neurosci 2023; 16:1087136. [PMID: 37575968 PMCID: PMC10413128 DOI: 10.3389/fnmol.2023.1087136] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/23/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Loss of neurons in the neural retina is a leading cause of vision loss. While humans do not possess the capacity for retinal regeneration, zebrafish can achieve this through activation of resident Müller glia. Remarkably, despite the presence of Müller glia in humans and other mammalian vertebrates, these cells lack an intrinsic ability to contribute to regeneration. Upon activation, zebrafish Müller glia can adopt a stem cell-like state, undergo proliferation and generate new neurons. However, the underlying molecular mechanisms of this activation subsequent retinal regeneration remains unclear. Methods/Results To address this, we performed single-cell RNA sequencing (scRNA-seq) and report remarkable heterogeneity in gene expression within quiescent Müller glia across distinct dorsal, central and ventral retina pools of such cells. Next, we utilized a genetically driven, chemically inducible nitroreductase approach to study Müller glia activation following selective ablation of three distinct photoreceptor subtypes: long wavelength sensitive cones, short wavelength sensitive cones, and rods. There, our data revealed that a region-specific bias in activation of Müller glia exists in the zebrafish retina, and this is independent of the distribution of the ablated cell type across retinal regions. Notably, gene ontology analysis revealed that injury-responsive dorsal and central Müller glia express genes related to dorsal/ventral pattern formation, growth factor activity, and regulation of developmental process. Through scRNA-seq analysis, we identify a shared genetic program underlying initial Müller glia activation and cell cycle entry, followed by differences that drive the fate of regenerating neurons. We observed an initial expression of AP-1 and injury-responsive transcription factors, followed by genes involved in Notch signaling, ribosome biogenesis and gliogenesis, and finally expression of cell cycle, chromatin remodeling and microtubule-associated genes. Discussion Taken together, our findings document the regional specificity of gene expression within quiescent Müller glia and demonstrate unique Müller glia activation and regeneration features following neural ablation. These findings will improve our understanding of the molecular pathways relevant to neural regeneration in the retina.
Collapse
Affiliation(s)
- Aaron Krylov
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Shuguang Yu
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Kellie Veen
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Axel Newton
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Aojun Ye
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Huiwen Qin
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jie He
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Patricia R. Jusuf
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
7
|
Sankaranarayanan I, Tavares-Ferreira D, He L, Kume M, Mwirigi JM, Madsen TM, Petersen KA, Munro G, Price TJ. Meteorin Alleviates Paclitaxel-Induced Peripheral Neuropathic Pain in Mice. THE JOURNAL OF PAIN 2023; 24:555-567. [PMID: 36336327 PMCID: PMC10079550 DOI: 10.1016/j.jpain.2022.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
Abstract
Chemotherapy-induced peripheral neuropathy is a challenging condition to treat, and arises due to severe, dose-limiting toxicity of chemotherapeutic drugs such as paclitaxel. This often results in debilitating sensory and motor deficits that are not effectively prevented or alleviated by existing therapeutic interventions. Recent studies have demonstrated the therapeutic effects of Meteorin, a neurotrophic factor, in reversing neuropathic pain in rodent models of peripheral nerve injury induced by physical trauma. Here, we sought to investigate the potential antinociceptive effects of recombinant mouse Meteorin (rmMeteorin) using a paclitaxel-induced peripheral neuropathy model in male and female mice. Paclitaxel treatment (4 × 4 mg/kg, i.p.) induced hind paw mechanical hypersensitivity by day 8 after treatment. Thereafter, in a reversal dosing paradigm, five repeated injections of rmMeteorin (.5 and 1.8 mg/kg s.c. respectively) administered over 9 days produced a significant and long-lasting attenuation of mechanical hypersensitivity in both sexes. Additionally, administration of rmMeteorin ( .5 and 1.8 mg/kg), initiated before and during paclitaxel treatment (prevention dosing paradigm), reduced the establishment of hind paw mechanical hypersensitivity. Repeated systemic administration of rmMeteorin in both dosing paradigms decreased histochemical signs of satellite glial cell reactivity as measured by glutamine synthetase and connexin 43 protein expression in the dorsal root ganglion. Additionally, in the prevention administration paradigm rmMeteorin had a protective effect against paclitaxel-induced loss of intraepidermal nerve fibers. Our findings indicate that rmMeteorin has a robust and sustained antinociceptive effect in the paclitaxel-induced peripheral neuropathy model and the development of recombinant human Meteorin could be a novel and effective therapeutic for chemotherapy-induced peripheral neuropathy treatment. PERSPECTIVE: Chemotherapy neuropathy is a major clinical problem that decreases quality of life for cancer patients and survivors. Our experiments demonstrate that Meteorin treatment alleviates pain-related behaviors, and signs of neurotoxicity in a mouse model of paclitaxel neuropathy.
Collapse
Affiliation(s)
- Ishwarya Sankaranarayanan
- Pain Neurobiology Research Group, Department of Neuroscience, Center for Advanced Pain Studies, School of Behavioural and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Diana Tavares-Ferreira
- Pain Neurobiology Research Group, Department of Neuroscience, Center for Advanced Pain Studies, School of Behavioural and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Lucy He
- Pain Neurobiology Research Group, Department of Neuroscience, Center for Advanced Pain Studies, School of Behavioural and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Moeno Kume
- Pain Neurobiology Research Group, Department of Neuroscience, Center for Advanced Pain Studies, School of Behavioural and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Juliet M Mwirigi
- Pain Neurobiology Research Group, Department of Neuroscience, Center for Advanced Pain Studies, School of Behavioural and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | | | | | | | - Theodore J Price
- Pain Neurobiology Research Group, Department of Neuroscience, Center for Advanced Pain Studies, School of Behavioural and Brain Sciences, University of Texas at Dallas, Richardson, Texas.
| |
Collapse
|
8
|
Kumar S, Mehan S, Narula AS. Therapeutic modulation of JAK-STAT, mTOR, and PPAR-γ signaling in neurological dysfunctions. J Mol Med (Berl) 2023; 101:9-49. [PMID: 36478124 DOI: 10.1007/s00109-022-02272-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/10/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Abstract
The cytokine-activated Janus kinase (JAK)-signal transducer and activator of transcription (STAT) cascade is a pleiotropic pathway that involves receptor subunit multimerization. The mammalian target of rapamycin (mTOR) is a ubiquitously expressed serine-threonine kinase that perceives and integrates a variety of intracellular and environmental stimuli to regulate essential activities such as cell development and metabolism. Peroxisome proliferator-activated receptor-gamma (PPARγ) is a prototypical metabolic nuclear receptor involved in neural differentiation and axon polarity. The JAK-STAT, mTOR, and PPARγ signaling pathways serve as a highly conserved signaling hub that coordinates neuronal activity and brain development. Additionally, overactivation of JAK/STAT, mTOR, and inhibition of PPARγ signaling have been linked to various neurocomplications, including neuroinflammation, apoptosis, and oxidative stress. Emerging research suggests that even minor disruptions in these cellular and molecular processes can have significant consequences manifested as neurological and neuropsychiatric diseases. Of interest, target modulators have been proven to alleviate neuronal complications associated with acute and chronic neurological deficits. This research-based review explores the therapeutic role of JAK-STAT, mTOR, and PPARγ signaling modulators in preventing neuronal dysfunctions in preclinical and clinical investigations.
Collapse
Affiliation(s)
- Sumit Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Punjab, Moga, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Punjab, Moga, India.
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| |
Collapse
|
9
|
Puebla M, Tapia PJ, Espinoza H. Key Role of Astrocytes in Postnatal Brain and Retinal Angiogenesis. Int J Mol Sci 2022; 23:ijms23052646. [PMID: 35269788 PMCID: PMC8910249 DOI: 10.3390/ijms23052646] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 01/27/2023] Open
Abstract
Angiogenesis is a key process in various physiological and pathological conditions in the nervous system and in the retina during postnatal life. Although an increasing number of studies have addressed the role of endothelial cells in this event, the astrocytes contribution in angiogenesis has received less attention. This review is focused on the role of astrocytes as a scaffold and in the stabilization of the new blood vessels, through different molecules release, which can modulate the angiogenesis process in the brain and in the retina. Further, differences in the astrocytes phenotype are addressed in glioblastoma, one of the most devastating types of brain cancer, in order to provide potential targets involved in the cross signaling between endothelial cells, astrocytes and glioma cells, that mediate tumor progression and pathological angiogenesis. Given the relevance of astrocytes in angiogenesis in physiological and pathological conditions, future studies are required to better understand the interrelation between endothelial and astrocyte signaling pathways during this process.
Collapse
Affiliation(s)
- Mariela Puebla
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina-Clínica Alemana, Universidad del Desarrollo, Av. Plaza 680, Las Condes, Santiago 7550000, Chile;
| | - Pablo J. Tapia
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Av. Lota 2465, Providencia, Santiago 7500000, Chile;
- Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Av. República 71, Santiago 8320000, Chile
| | - Hilda Espinoza
- Facultad de Ciencias de la Salud, Universidad del Alba, Av. Ejército Libertador 171, Santiago 8320000, Chile
- Correspondence:
| |
Collapse
|
10
|
Kikel-Coury NL, Brandt JP, Correia IA, O’Dea MR, DeSantis DF, Sterling F, Vaughan K, Ozcebe G, Zorlutuna P, Smith CJ. Identification of astroglia-like cardiac nexus glia that are critical regulators of cardiac development and function. PLoS Biol 2021; 19:e3001444. [PMID: 34793438 PMCID: PMC8601506 DOI: 10.1371/journal.pbio.3001444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/18/2021] [Indexed: 01/09/2023] Open
Abstract
Glial cells are essential for functionality of the nervous system. Growing evidence underscores the importance of astrocytes; however, analogous astroglia in peripheral organs are poorly understood. Using confocal time-lapse imaging, fate mapping, and mutant genesis in a zebrafish model, we identify a neural crest-derived glial cell, termed nexus glia, which utilizes Meteorin signaling via Jak/Stat3 to drive differentiation and regulate heart rate and rhythm. Nexus glia are labeled with gfap, glast, and glutamine synthetase, markers that typically denote astroglia cells. Further, analysis of single-cell sequencing datasets of human and murine hearts across ages reveals astrocyte-like cells, which we confirm through a multispecies approach. We show that cardiac nexus glia at the outflow tract are critical regulators of both the sympathetic and parasympathetic system. These data establish the crucial role of glia on cardiac homeostasis and provide a description of nexus glia in the PNS.
Collapse
Affiliation(s)
- Nina L. Kikel-Coury
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jacob P. Brandt
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Isabel A. Correia
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Michael R. O’Dea
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Dana F. DeSantis
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Felicity Sterling
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Kevin Vaughan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Gulberk Ozcebe
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Cody J. Smith
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
11
|
Delaunay K, Sellam A, Dinet V, Moulin A, Zhao M, Gelizé E, Canonica J, Naud MC, Crisanti-Lassiaz P, Behar-Cohen F. Meteorin Is a Novel Therapeutic Target for Wet Age-Related Macular Degeneration. J Clin Med 2021; 10:jcm10132973. [PMID: 34279457 PMCID: PMC8268911 DOI: 10.3390/jcm10132973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to evaluate the potential anti-angiogenic effect of MTRN (meteorin) in the laser-induced CNV rat model and explore its mechanisms of action. MTRN, thrompospondin-1, glial cell markers (GFAP, vimentin), and phalloidin were immuno-stained in non-human primate flat-mounted retinas and human retina cross sections. The effect of MTRN at different doses and time points was evaluated on laser-induced CNV at 14 days using in vivo fluorescein angiography and ex vivo quantification of CNV. A pan transcriptomic analysis of the retina and the RPE/choroid complex was used to explore MTRN effects mechanisms. In human retina, MTRN is enriched in the macula, expressed in and secreted by glial cells, and located in photoreceptor cells, including in nuclear bodies. Intravitreal MTRN administered preventively reduced CNV angiographic scores and CNV size in a dose-dependent manner. The highest dose, administered at day 7, also reduced CNV. MTRN, which is regulated by mineralocorticoid receptor modulators in the rat retina, regulates pathways associated with angiogenesis, oxidative stress, and neuroprotection. MTRN is a potential novel therapeutic candidate protein for wet AMD.
Collapse
Affiliation(s)
- Kimberley Delaunay
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (K.D.); (A.S.); (V.D.); (M.Z.); (E.G.); (J.C.); (M.-C.N.); (P.C.-L.)
| | - Alexandre Sellam
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (K.D.); (A.S.); (V.D.); (M.Z.); (E.G.); (J.C.); (M.-C.N.); (P.C.-L.)
| | - Virginie Dinet
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (K.D.); (A.S.); (V.D.); (M.Z.); (E.G.); (J.C.); (M.-C.N.); (P.C.-L.)
- Biology of Cardiovascular Diseases, INSERM U1034, Pessac, Université de Bordeaux, 33000 Bordeaux, France
| | - Alexandre Moulin
- Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile des Aveugles, 1000 Lausanne, Switzerland;
| | - Min Zhao
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (K.D.); (A.S.); (V.D.); (M.Z.); (E.G.); (J.C.); (M.-C.N.); (P.C.-L.)
| | - Emmanuelle Gelizé
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (K.D.); (A.S.); (V.D.); (M.Z.); (E.G.); (J.C.); (M.-C.N.); (P.C.-L.)
| | - Jérémie Canonica
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (K.D.); (A.S.); (V.D.); (M.Z.); (E.G.); (J.C.); (M.-C.N.); (P.C.-L.)
- Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile des Aveugles, 1000 Lausanne, Switzerland;
| | - Marie-Christine Naud
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (K.D.); (A.S.); (V.D.); (M.Z.); (E.G.); (J.C.); (M.-C.N.); (P.C.-L.)
| | - Patricia Crisanti-Lassiaz
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (K.D.); (A.S.); (V.D.); (M.Z.); (E.G.); (J.C.); (M.-C.N.); (P.C.-L.)
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (K.D.); (A.S.); (V.D.); (M.Z.); (E.G.); (J.C.); (M.-C.N.); (P.C.-L.)
- Hôpital Cochin Ophthalmopole, Assistance Publique—Hôpitaux de Paris, 75014 Paris, France
- INSERM UMR_S 1138, Team 17: From Physiopathology of Retinal Diseases to Clinical Advances, Centre de Recherche des Cordeliers, 75006 Paris, France
- Correspondence:
| |
Collapse
|
12
|
Involvement of the secreted protein Metrnl in human diseases. Acta Pharmacol Sin 2020; 41:1525-1530. [PMID: 32999412 DOI: 10.1038/s41401-020-00529-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/05/2020] [Indexed: 12/13/2022]
Abstract
Metrnl, a secreted protein expressed in white adipose tissue, has been identified as a novel adipokine. It is also highly expressed in barrier tissues, including the skin, intestinal and respiratory tract epithelium in both mice and humans. Research shows that its expression is upregulated by inflammation, chronic high-fat diets, exercise, cold exposure, etc., and it plays important roles in promoting neurite extension, enhancing white fat browning, improving insulin sensitivity, modulating lipid metabolism and regulating inflammatory response, the latter implying Metrnl is a new cytokine. These studies suggest that Metrnl could be a promising biomarker and a potential therapeutic target for the related diseases. For proving this, clinical studies need to be performed to bridge the gap between bench and bedside. In this paper, we summarize the progress in recent clinical research on Metrnl. Most of these clinical studies are designed to confirm the relationship between circulating Metrnl and metabolic or cardiovascular disease (type 2 diabetes and coronary heart disease), or immune inflammation-related diseases, such as colitis, psoriasis and arthritis. Although blood Metrnl seems to fluctuate and are affected by many factors, such as drugs, physical exercise, and cold exposure, these clinical studies provide reliable clues that Metrnl is associated with coronary heart disease, inflammation-related diseases, etc. Nevertheless, the roles of Metrnl in some diseases such as nervous system diseases remain unclear, and its putative involvement should be further clarified. These studies could promote the application of Metrnl in clinic as a new therapeutic target.
Collapse
|
13
|
Wei X, Jin XH, Meng XW, Hua J, Ji FH, Wang LN, Yang JP. Platelet-rich plasma improves chronic inflammatory pain by inhibiting PKM2-mediated aerobic glycolysis in astrocytes. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1456. [PMID: 33313201 PMCID: PMC7723564 DOI: 10.21037/atm-20-6502] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Astrocytes are highly glycolytic cells that play a crucial role in chronic pain. Recently it has been found that inflammation and metabolism are related to the inflammatory stimuli closely that cause cellular metabolic changes. Pyruvate kinase M2 (PKM2) is a critical metabolic kinase in aerobic glycolysis or the Warburg effect. Besides, it also plays a crucial role in cell proliferation and signal transduction, but its role in astrocytes is still unclear. Methods The chronic inflammatory pain model was set up by intraplantar injection of complete Freund’s adjuvant (CFA) in Sprague Dawley (SD) rats as well as the cell model was constructed by lipopolysaccharide-treated primary astrocytes. Von Frey filament stimulation was used to continuously observe the changes of pain behavior in rats after modeling. Then, immunofluorescence staining and Western blot tests were used to observe the expression levels of glial fibrillary acidic protein (GFAP), pyruvate kinase (PKM2), signal transducers and activators of transcription 3 (STAT3) and high mobility group box-1 protein (HMGB1). After that, specific kits measured lactate contents. Finally, we observed the platelet-rich plasma’s (PRP) effect on mechanical hyperalgesia in rats with inflammatory pain induced by CFA and its effect on related signal molecules. Results We found that in the CFA-induced inflammatory pain model, astrocytes were significantly activated, GFAP was increased, PKM2 was significantly up-regulated, and the glycolytic product lactate was increased. Also, intrathecal injection of PRP increased the pain threshold, inhibited the activation of astrocytes, and decreased the expression of PKM2 and aerobic glycolysis; in LPS-activated primary astrocytes as an in vitro model, we found PKM2 translocation activationSTAT3 signaling resulted in sustained activation of astrocyte marker GFAP, and the expression level and localization of p-STAT3 were correlated with PKM2. PRP could inhibit the activation of astrocytes, reduce the expression of PKM2 and the expression levels of glycolysis and GFAP, GLUT1, and p-STAT3 in astrocytes. Conclusions Our findings suggest PKM2 not only plays a glycolytic role in astrocytes, but also plays a crucial role in astrocyte-activated signaling pathways, and PRP attenuates CFA induced inflammatory pain by inhibiting aerobic glycolysis in astrocytes, providing a new therapeutic target for the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Xiang Wei
- Department of Anesthesiology and Pain Management, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Hong Jin
- Department of Anesthesiology and Pain Management, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Wen Meng
- Department of Anesthesiology and Pain Management, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Hua
- Department of Anesthesiology and Pain Management, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fu-Hai Ji
- Department of Anesthesiology and Pain Management, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Li-Na Wang
- Department of Anesthesiology and Pain Management, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian-Ping Yang
- Department of Anesthesiology and Pain Management, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
14
|
Tambalo M, Mitter R, Wilkinson DG. A single cell transcriptome atlas of the developing zebrafish hindbrain. Development 2020; 147:dev184143. [PMID: 32094115 PMCID: PMC7097387 DOI: 10.1242/dev.184143] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
Abstract
Segmentation of the vertebrate hindbrain leads to the formation of rhombomeres, each with a distinct anteroposterior identity. Specialised boundary cells form at segment borders that act as a source or regulator of neuronal differentiation. In zebrafish, there is spatial patterning of neurogenesis in which non-neurogenic zones form at boundaries and segment centres, in part mediated by Fgf20 signalling. To further understand the control of neurogenesis, we have carried out single cell RNA sequencing of the zebrafish hindbrain at three different stages of patterning. Analyses of the data reveal known and novel markers of distinct hindbrain segments, of cell types along the dorsoventral axis, and of the transition of progenitors to neuronal differentiation. We find major shifts in the transcriptome of progenitors and of differentiating cells between the different stages analysed. Supervised clustering with markers of boundary cells and segment centres, together with RNA-seq analysis of Fgf-regulated genes, has revealed new candidate regulators of cell differentiation in the hindbrain. These data provide a valuable resource for functional investigations of the patterning of neurogenesis and the transition of progenitors to neuronal differentiation.
Collapse
Affiliation(s)
- Monica Tambalo
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Richard Mitter
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David G Wilkinson
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
15
|
Wang H, Yao G, Li L, Ma Z, Chen J, Chen W. LncRNA-UCA1 inhibits the astrocyte activation in the temporal lobe epilepsy via regulating the JAK/STAT signaling pathway. J Cell Biochem 2020; 121:4261-4270. [PMID: 31909503 DOI: 10.1002/jcb.29634] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022]
Abstract
This article aimed to reveal the mechanism of long noncoding RNA (lncRNA) urothelial cancer-associated 1 (UCA1) regulated astrocyte activation in temporal lobe epilepsy (TLE) rats via mediating the activation of the JAK/STAT signaling pathway. A model of TLE was established based on rats via kainic acid (KA) injection. All rats were divided into the Sham group (without any treatments), KA group, normal control (NC; injection with empty vector) + KA group, and UCA1 + KA group. The Morris water maze was used to test the learning and memory ability of rats, and the expression of UCA1 in the hippocampus was determined by quantitative real time polymerase chain reaction (qRT-PCR). Surviving neurons were counted by Nissl staining, and expression levels of glial cells glial fibrillary acidic protein (GFAP), p-JAK1, and p-STAT3 and glutamate/aspartate transporter (GLAST) were analyzed by immunofluorescence and Western blot analysis. A rat model of TLE was established by intraperitoneal injection of KA. qRT-PCR and fluorescence analyses showed that UCA1 inhibited astrocyte activation in the hippocampus of epileptic rats. Meanwhile, the Morris water maze analysis indicated that UCA1 improved the learning and memory in epilepsy rats. Moreover, the Nissl staining showed that UCA1 might have a protective effect on neuronal injury induced by KA injection. Furthermore, the immunofluorescence and Western blot analysis revealed that the overexpression of UCA1 inhibited KA-induced abnormal elevation of GLAST, astrocyte activation of the JAK/STAT signaling pathway, as well as hippocampus of epilepsy rats. UCA1 inhibited hippocampal astrocyte activation and JAK/STAT/GLAST expression in TLE rats and improved the adverse reactions caused by epilepsy.
Collapse
Affiliation(s)
- Hongxin Wang
- Department of Neurology, Jinan Central Hospital, Affiliated to Shandong University, Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guangyan Yao
- Department of Neurology, Jinan Central Hospital, Affiliated to Shandong University, Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lei Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, China
| | - Zhaoyin Ma
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Jing Chen
- Department of Neurology, Jinan Central Hospital, Affiliated to Shandong University, Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wen Chen
- Department of Neurology, Jinan Central Hospital, Affiliated to Shandong University, Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
16
|
Xu X, Zhang C, Xia Y, Yu J. Over expression of METRN predicts poor clinical prognosis in colorectal cancer. Mol Genet Genomic Med 2019; 8:e1102. [PMID: 31859449 PMCID: PMC7057108 DOI: 10.1002/mgg3.1102] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/12/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The role of meteorin (METRN) in colorectal cancer has not been reported previously. We aimed to explore the relationship between METRN and colorectal cancer (CRC) prognosis. METHODS Data were retrieved from the Gene Expression Omnibus database. Gene expression values were log2 transformed and normalized by quantile normalization. Missing values were imputed with the R impute package. Differentially expressed genes were analyzed using the R limma package. METRN expression was compared between normal and CRC tissues and among different stages and subtypes of CRC. We assessed the relationship between METRN and KRAS/BRAF mutations in CRC. Five-year overall (OS), disease-free (DFS), and disease-specific survival (DSS) rates were determined by Kaplan-Meier analysis and analyzed by log-rank test. RESULTS METRN was expressed at a higher level in CRC (p = .0011) than in normal tissues, especially in advanced stages (p = .0343). METRN expression levels were higher in the MSI (dMMR) subtype (p < .001) and usually with BRAF mutations (p < .0001). METRN overexpression was associated with poor prognosis and low OS (p = .01014), DFS (p = .0146), and DSS (p < .0001) rates. CONCLUSION METRN overexpression is a predictive factor for poor prognosis in patients with CRC.
Collapse
Affiliation(s)
- Xin Xu
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chihao Zhang
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Xia
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiwei Yu
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Baldauf C, Sondhi M, Shin BC, Ko YE, Ye X, Lee KW, Devaskar SU. Murine maternal dietary restriction affects neural Humanin expression and cellular profile. J Neurosci Res 2019; 98:902-920. [PMID: 31840315 DOI: 10.1002/jnr.24568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/06/2019] [Accepted: 11/15/2019] [Indexed: 11/10/2022]
Abstract
To understand the cellular basis for the neurodevelopmental effects of intrauterine growth restriction (IUGR), we examined the global and regional expression of various cell types within murine (Mus musculus) fetal brain. Our model employed maternal calorie restriction to 50% daily food intake from gestation day 10-19, producing IUGR offspring. Offspring had smaller head sizes with larger head:body ratios indicating a head sparing IUGR effect. IUGR fetuses at embryonic day 19 (E19) had reduced nestin (progenitors), β-III tubulin (immature neurons), Glial fibrillary acidic protein (astrocytes), and O4 (oligodendrocytes) cell lineages via immunofluorescence quantification and a 30% reduction in cortical thickness. No difference was found in Bcl-2 or Bax (apoptosis) between controls and IUGR, though qualitatively, immunoreactivity of doublecortin (migration) and Ki67 (proliferation) was decreased. In the interest of examining a potential therapeutic peptide, we next investigated a novel pro-survival peptide, mouse Humanin (mHN). Ontogeny examination revealed highest mHN expression at E19, diminishing by postnatal day 15 (P15), and nearly absent in adult (3 months). Subanalysis by sex at E19 yielded higher mHN expression among males during fetal life, without significant difference between sexes postnatally. Furthermore, female IUGR mice at E19 had a greater increase in cortical mHN versus the male fetus over their respective controls. We conclude that maternal dietary restriction-associated IUGR interferes with neural progenitors differentiating into the various cellular components populating the cerebral cortex, and reduces cerebral cortical size. mHN expression is developmental stage and sex specific, with IUGR, particularly in the females, adaptively increasing its expression toward mediating a pro-survival approach against nutritional adversity.
Collapse
Affiliation(s)
- Claire Baldauf
- Department of Pediatrics, Division of Neonatology & Developmental Biology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Monica Sondhi
- Department of Pediatrics, Division of Neonatology & Developmental Biology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Bo-Chul Shin
- Department of Pediatrics, Division of Neonatology & Developmental Biology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Young Eun Ko
- Department of Pediatrics, Division of Neonatology & Developmental Biology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Xin Ye
- Department of Pediatrics, Division of Neonatology & Developmental Biology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Kuk-Wha Lee
- Department of Pediatrics, Division of Endocrinology, Neonatal Research Center of the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Sherin U Devaskar
- Department of Pediatrics, Division of Neonatology & Developmental Biology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
18
|
White CL, Jayasekara WSN, Picard D, Chen J, Watkins DN, Cain JE, Remke M, Gough DJ. A Sexually Dimorphic Role for STAT3 in Sonic Hedgehog Medulloblastoma. Cancers (Basel) 2019; 11:cancers11111702. [PMID: 31683879 PMCID: PMC6895805 DOI: 10.3390/cancers11111702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 01/04/2023] Open
Abstract
Medulloblastoma is the most common malignant brain tumor in children and represents 20% of all pediatric central nervous system neoplasms. While advances in surgery, radiation and chemotherapy have improved overall survival, the lifelong sequelae of these treatments represent a major health care burden and have led to ongoing efforts to find effective targeted treatments. There is a well-recognized male bias in medulloblastoma diagnosis, although the mechanism remains unknown. Herein, we identify a sex-specific role for the transcription factor Signal Transducer and Activator of Transcription 3 (STAT3) in the Sonic Hedgehog (SHH) medulloblastoma subgroup. Specific deletion of Stat3 from granule cell precursors in a spontaneous mouse model of SHH medulloblastoma completely protects male, but not female mice from tumor initiation. Segregation of SHH medulloblastoma patients into high and low STAT3 expressing cohorts shows that low STAT3 expression correlates with improved overall survival in male patients. We observe sex specific changes in IL-10 and IL-6 expression and show that IL-6 stimulation enhances SHH-mediated gene transcription in a STAT3-dependent manner. Together these data identify STAT3 as a key molecule underpinning the sexual dimorphism in medulloblastoma.
Collapse
Affiliation(s)
- Christine L White
- Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | - W Samantha N Jayasekara
- Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | - Daniel Picard
- Department of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- German Cancer Consortium (DKTK), Partner Site Essen, 45147 Düsseldorf, Germany.
- Department of Pediatric Oncology, Hematology, Clinical Immunology, Institute of Neuropathology, Medical Faculty, University Hospital Düsseldorf, 40225 Düsseldorf, Germany.
| | - Jasmine Chen
- Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | - D Neil Watkins
- Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria 3800, Australia.
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada.
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Jason E Cain
- Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | - Marc Remke
- Department of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- German Cancer Consortium (DKTK), Partner Site Essen, 45147 Düsseldorf, Germany.
- Department of Pediatric Oncology, Hematology, Clinical Immunology, Institute of Neuropathology, Medical Faculty, University Hospital Düsseldorf, 40225 Düsseldorf, Germany.
| | - Daniel J Gough
- Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
19
|
Menezes GD, Faria-Melibeu AC, Serfaty CA, Campello-Costa P. In vivo effect of acute exposure to interleukin-6 on the developing visual system. Neurosci Lett 2019; 698:7-12. [PMID: 30611891 DOI: 10.1016/j.neulet.2019.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/10/2018] [Accepted: 01/02/2019] [Indexed: 01/12/2023]
Abstract
Interleukin-6 (IL-6) is involved in different processes of the central nervous system. Our aims were to investigate the effect of IL-6 on retinotectal topography and on different signaling pathways. Rats were submitted to an intravitreous injection of either IL-6 (50 ng/ml) or PBS (vehicle) at postnatal day 10 (PND10). At PND11 or PND14, different groups were processed for western blot, histochemistry or immunofluorescence analysis. IL-6 treatment leads to an increase in pSTAT-3 levels in the retina and a disruption in the retinotectal topographic map, suggesting that a transient increase in interleukin-6 levels may impact neural circuitry development.
Collapse
Affiliation(s)
- Grasielle Duarte Menezes
- Programa de Neurociências, Departamento de Neurobiologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - Adriana C Faria-Melibeu
- Programa de Neurociências, Departamento de Neurobiologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - Claudio Alberto Serfaty
- Programa de Neurociências, Departamento de Neurobiologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - Paula Campello-Costa
- Programa de Neurociências, Departamento de Neurobiologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| |
Collapse
|
20
|
Wang JJ, Liu C, Shan K, Liu BH, Li XM, Zhang SJ, Zhou RM, Dong R, Yan B, Sun XH. Circular RNA-ZNF609 regulates retinal neurodegeneration by acting as miR-615 sponge. Am J Cancer Res 2018; 8:3408-3415. [PMID: 29930739 PMCID: PMC6010990 DOI: 10.7150/thno.25156] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/11/2018] [Indexed: 12/25/2022] Open
Abstract
Glaucoma is a major cause of visual impairment characterized by progressive retinal neurodegeneration. Circular RNAs are a class of endogenous noncoding RNAs that regulate gene expression in eukaryotes. In this study, we investigated the role of cZNF609 in retinal neurodegeneration induced by glaucoma. Methods: qRT-PCR and Sanger sequencing were conducted to detect cZNF609 expression pattern during retinal neurodegeneration. Immunofluorescence staining was conducted to detect the effect of cZNF609 silencing on retinal neurodegeneration in vivo. MTT assay, Ki67 staining, and PI staining were conducted to detect the effect of cZNF609 silencing on retinal glial cells and RGC function in vitro. Bioinformatics analysis, RNA pull-down assays, and in vitro studies were conducted to reveal the mechanism of cZNF609-mediated retinal neurodegeneration. Results: cZNF609 expression was significantly up-regulated during retinal neurodegeneration. cZNF609 silencing reduced retinal reactive gliosis and glial cell activation, and facilitated RGC survival in vivo. cZNF609 silencing directly regulated Müller cell function but indirectly regulated RGC function in vitro. cZNF609 acted as an endogenous miR-615 sponge to sequester and inhibit miR-615 activity, which led to increased METRN. METRN overexpression could partially rescue cZNF609 silencing-mediated inhibitory effects on retinal glial cell proliferation. Conclusion: Intervention of cZNF609 expression is a promising therapeutic strategy for retinal neurodegeneration.
Collapse
|
21
|
Perfluorooctanesulfonate induces neuroinflammation through the secretion of TNF-α mediated by the JAK2/STAT3 pathway. Neurotoxicology 2018. [DOI: 10.1016/j.neuro.2018.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Liu B, Teschemacher AG, Kasparov S. Astroglia as a cellular target for neuroprotection and treatment of neuro-psychiatric disorders. Glia 2017; 65:1205-1226. [PMID: 28300322 PMCID: PMC5669250 DOI: 10.1002/glia.23136] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 12/12/2022]
Abstract
Astrocytes are key homeostatic cells of the central nervous system. They cooperate with neurons at several levels, including ion and water homeostasis, chemical signal transmission, blood flow regulation, immune and oxidative stress defense, supply of metabolites and neurogenesis. Astroglia is also important for viability and maturation of stem-cell derived neurons. Neurons critically depend on intrinsic protective and supportive properties of astrocytes. Conversely, all forms of pathogenic stimuli which disturb astrocytic functions compromise neuronal functionality and viability. Support of neuroprotective functions of astrocytes is thus an important strategy for enhancing neuronal survival and improving outcomes in disease states. In this review, we first briefly examine how astrocytic dysfunction contributes to major neurological disorders, which are traditionally associated with malfunctioning of processes residing in neurons. Possible molecular entities within astrocytes that could underpin the cause, initiation and/or progression of various disorders are outlined. In the second section, we explore opportunities enhancing neuroprotective function of astroglia. We consider targeting astrocyte-specific molecular pathways which are involved in neuroprotection or could be expected to have a therapeutic value. Examples of those are oxidative stress defense mechanisms, glutamate uptake, purinergic signaling, water and ion homeostasis, connexin gap junctions, neurotrophic factors and the Nrf2-ARE pathway. We propose that enhancing the neuroprotective capacity of astrocytes is a viable strategy for improving brain resilience and developing new therapeutic approaches.
Collapse
Affiliation(s)
- Beihui Liu
- School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBS8 1TDUnited Kingdom
| | - Anja G. Teschemacher
- School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBS8 1TDUnited Kingdom
| | - Sergey Kasparov
- School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBS8 1TDUnited Kingdom
- Institute for Chemistry and BiologyBaltic Federal UniversityKaliningradRussian Federation
| |
Collapse
|
23
|
Wen D, Xiao Y, Vecchi MM, Gong BJ, Dolnikova J, Pepinsky RB. Determination of the Disulfide Structure of Murine Meteorin, a Neurotrophic Factor, by LC–MS and Electron Transfer Dissociation-High-Energy Collisional Dissociation Analysis of Proteolytic Fragments. Anal Chem 2017; 89:4021-4030. [DOI: 10.1021/acs.analchem.6b04600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dingyi Wen
- Department of Protein Drug
Discovery, Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Yongsheng Xiao
- Department of Protein Drug
Discovery, Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Malgorzata M. Vecchi
- Department of Protein Drug
Discovery, Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Bang Jian Gong
- Department of Protein Drug
Discovery, Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jana Dolnikova
- Department of Protein Drug
Discovery, Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - R. Blake Pepinsky
- Department of Protein Drug
Discovery, Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
24
|
Wright JL, Ermine CM, Jørgensen JR, Parish CL, Thompson LH. Over-Expression of Meteorin Drives Gliogenesis Following Striatal Injury. Front Cell Neurosci 2016; 10:177. [PMID: 27458346 PMCID: PMC4932119 DOI: 10.3389/fncel.2016.00177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/23/2016] [Indexed: 12/02/2022] Open
Abstract
A number of studies have shown that damage to brain structures adjacent to neurogenic regions can result in migration of new neurons from neurogenic zones into the damaged tissue. The number of differentiated neurons that survive is low, however, and this has led to the idea that the introduction of extrinsic signaling factors, particularly neurotrophic proteins, may augment the neurogenic response to a level that would be therapeutically relevant. Here we report on the impact of the relatively newly described neurotrophic factor, Meteorin, when over-expressed in the striatum following excitotoxic injury. Birth-dating studies using bromo-deoxy-uridine (BrdU) showed that Meteorin did not enhance injury-induced striatal neurogenesis but significantly increased the proportion of new cells with astroglial and oligodendroglial features. As a basis for comparison we found under the same conditions, glial derived neurotrophic factor significantly enhanced neurogenesis but did not effect gliogenesis. The results highlight the specificity of action of different neurotrophic factors in modulating the proliferative response to injury. Meteorin may be an interesting candidate in pathological settings involving damage to white matter, for example after stroke or neonatal brain injury.
Collapse
Affiliation(s)
- Jordan L Wright
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC Australia
| | - Charlotte M Ermine
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC Australia
| | | | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC Australia
| | - Lachlan H Thompson
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC Australia
| |
Collapse
|
25
|
Yang P, Shen WB, Reece EA, Chen X, Yang P. High glucose suppresses embryonic stem cell differentiation into neural lineage cells. Biochem Biophys Res Commun 2016; 472:306-12. [PMID: 26940741 DOI: 10.1016/j.bbrc.2016.02.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 02/28/2016] [Indexed: 12/11/2022]
Abstract
Abnormal neurogenesis occurs during embryonic development in human diabetic pregnancies and in animal models of diabetic embryopathy. Our previous studies in a mouse model of diabetic embryopathy have implicated that high glucose of maternal diabetes delays neurogenesis in the developing neuroepithelium leading to neural tube defects. However, the underlying process in high glucose-impaired neurogenesis is uncharacterized. Neurogenesis from embryonic stem (ES) cells provides a valuable model for understanding the abnormal neural lineage development under high glucose conditions. ES cells are commonly generated and maintained in high glucose (approximately 25 mM glucose). Here, the mouse ES cell line, E14, was gradually adapted to and maintained in low glucose (5 mM), and became a glucose responsive E14 (GR-E14) line. High glucose induced the endoplasmic reticulum stress marker, CHOP, in GR-E14 cells. Under low glucose conditions, the GR-E14 cells retained their pluripotency and capability to differentiate into neural lineage cells. GR-E14 cell differentiation into neural stem cells (Sox1 and nestin positive cells) was inhibited by high glucose. Neuron (Tuj1 positive cells) and glia (GFAP positive cells) differentiation from GR-E14 cells was also suppressed by high glucose. In addition, high glucose delayed GR-E14 differentiation into neural crest cells by decreasing neural crest markers, paired box 3 (Pax3) and paired box 7 (Pax7). Thus, high glucose impairs ES cell differentiation into neural lineage cells. The low glucose adapted and high glucose responsive GR-E14 cell line is a useful in vitro model for assessing the adverse effect of high glucose on the development of the central nervous system.
Collapse
Affiliation(s)
- Penghua Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wei-bin Shen
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - E Albert Reece
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xi Chen
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
26
|
Garcés MF, Sanchez E, Cardona LF, Simanca EL, González I, Leal LG, Mora JA, Bedoya A, Alzate JP, Sánchez ÁY, Eslava-Schmalbach JH, Franco-Vega R, Parra MO, Ruíz-Parra AI, Diéguez C, Nogueiras R, Caminos JE. Maternal Serum Meteorin Levels and the Risk of Preeclampsia. PLoS One 2015; 10:e0131013. [PMID: 26121675 PMCID: PMC4487999 DOI: 10.1371/journal.pone.0131013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 05/26/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Meteorin (METRN) is a recently described neutrophic factor with angiogenic properties. This is a nested case-control study in a longitudinal cohort study that describes the serum profile of METRN during different periods of gestation in healthy and preeclamptic pregnant women. Moreover, we explore the possible application of METRN as a biomarker. METHODS AND FINDINGS Serum METRN was measured by ELISA in a longitudinal prospective cohort study in 37 healthy pregnant women, 16 mild preeclamptic women, and 20 healthy non-pregnant women during the menstrual cycle with the aim of assessing serum METRN levels and its correlations with other metabolic parameters. Immunostaining for METRN protein was performed in placenta. A multivariate logistic regression model was proposed and a classifier model was formulated for predicting preeclampsia in early and middle pregnancy. The performance in classification was evaluated using measures such as sensitivity, specificity, and the receiver operating characteristic (ROC) curve. In healthy pregnant women, serum METRN levels were significantly elevated in early pregnancy compared to middle and late pregnancy. METRN levels are significantly lower only in early pregnancy in preeclamptic women when compared to healthy pregnant women. Decision trees that did not include METRN levels in the first trimester had a reduced sensitivity of 56% in the detection of preeclamptic women, compared to a sensitivity of 69% when METRN was included. CONCLUSIONS The joint measurements of circulating METRN levels in the first trimester and systolic blood pressure and weight in the second trimester significantly increase the probabilities of predicting preeclampsia.
Collapse
Affiliation(s)
- María F Garcés
- Department of Physiology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Elizabeth Sanchez
- Department of Physiology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Luisa F Cardona
- Department of Physiology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Elkin L Simanca
- Department of Physiology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Iván González
- Department of Physiology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Luis G Leal
- Department of Physiology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - José A Mora
- Department of Internal Medicine, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Andrés Bedoya
- Department of Internal Medicine, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Juan P Alzate
- Institute of Clinical Investigations, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Ángel Y Sánchez
- Department of Pathology School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Javier H Eslava-Schmalbach
- Institute of Clinical Investigations, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Roberto Franco-Vega
- Department of Internal Medicine, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Mario O Parra
- Department of Obstetrics and Gynecology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Ariel I Ruíz-Parra
- Department of Obstetrics and Gynecology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos Diéguez
- Department of Physiology (CIMUS), School of Medicine-Instituto de Investigaciones Sanitarias (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Rubén Nogueiras
- Department of Physiology (CIMUS), School of Medicine-Instituto de Investigaciones Sanitarias (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge E Caminos
- Department of Physiology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
27
|
Abstract
We have identified and characterized a spontaneous Brown Norway from Janvier rat strain (BN-J) presenting a progressive retinal degeneration associated with early retinal telangiectasia, neuronal alterations, and loss of retinal Müller glial cells resembling human macular telangiectasia type 2 (MacTel 2), which is a retinal disease of unknown cause. Genetic analyses showed that the BN-J phenotype results from an autosomal recessive indel novel mutation in the Crb1 gene, causing dislocalization of the protein from the retinal Müller glia (RMG)/photoreceptor cell junction. The transcriptomic analyses of primary RMG cultures allowed identification of the dysregulated pathways in BN-J rats compared with wild-type BN rats. Among those pathways, TGF-β and Kit Receptor Signaling, MAPK Cascade, Growth Factors and Inflammatory Pathways, G-Protein Signaling Pathways, Regulation of Actin Cytoskeleton, and Cardiovascular Signaling were found. Potential molecular targets linking RMG/photoreceptor interaction with the development of retinal telangiectasia are identified. This model can help us to better understand the physiopathologic mechanisms of MacTel 2 and other retinal diseases associated with telangiectasia.
Collapse
|
28
|
Lee HS, Lee SH, Cha JH, Seo JH, Ahn BJ, Kim KW. Meteorin is upregulated in reactive astrocytes and functions as a negative feedback effector in reactive gliosis. Mol Med Rep 2015; 12:1817-23. [PMID: 25873382 PMCID: PMC4464106 DOI: 10.3892/mmr.2015.3610] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/24/2015] [Indexed: 12/22/2022] Open
Abstract
Reactive gliosis is a glial response to a wide range of central nervous system insults, which results in cellular and molecular changes to resting glial cells. Despite its fundamental effect on neuropathologies, the identification and characterization of the molecular mechanisms underlying this process remain to be fully elucidated. The aim of the present study was to analyze the expression profile and functions of the astrocytic neurotrophic factor, meteorin, in the progression of reactive gliosis. A mouse model of photothrombotic ischemia, and a primary astrocyte culture were used in the present study. Reverse transcription quantitative polymerase chain reaction, western blotting and immunofluorescence staining were performed to examine the expression levels of meteorin and reactive gliosis markers. Increased expression levels of meteorin were observed in reactive astrocytes in a photothrombotic ischemia mouse model, as well as in cultured astrocytes, which were stimulated by transforming growth factor-β1. Exogenous treatment of the astrocytes with meteorin did not induce janus kinase-signal transducer and activator of transcription 3 signaling, however, silencing the expression of meteorin in the astrocytes resulted in an upregulation of reactive astrocyte markers, including glial fibrillary acidic protein and S100β, indicating that endogenous meteorin is required for the maintenance of astrocytic homeostasis. These results suggested a novel role for meteorin as a negative feedback effector in reactive gliosis.
Collapse
Affiliation(s)
- Hye Shin Lee
- SNU‑Harvard Neurovascular Protection Research Center, Department of Pharmacy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151‑742, Republic of Korea
| | - Soon-Hee Lee
- SNU‑Harvard Neurovascular Protection Research Center, Department of Pharmacy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151‑742, Republic of Korea
| | - Jong-Ho Cha
- SNU‑Harvard Neurovascular Protection Research Center, Department of Pharmacy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151‑742, Republic of Korea
| | - Ji Hae Seo
- SNU‑Harvard Neurovascular Protection Research Center, Department of Pharmacy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151‑742, Republic of Korea
| | - Bum Ju Ahn
- SNU‑Harvard Neurovascular Protection Research Center, Department of Pharmacy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151‑742, Republic of Korea
| | - Kyu-Won Kim
- SNU‑Harvard Neurovascular Protection Research Center, Department of Pharmacy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151‑742, Republic of Korea
| |
Collapse
|
29
|
Qingnaoyizhi decoction suppresses the formation of glial fibrillary acidic protein-positive cells in cultured neural stem cells by inhibiting the Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway. J TRADIT CHIN MED 2015; 35:69-76. [PMID: 25842731 DOI: 10.1016/s0254-6272(15)30011-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Inactivation of the Janus kinase 2 in treated NSCs. Furthermore, QNYZD may play a direct role in suppressing the formation of GFAP-positive cells and enhancing neuronal differentiation by inhibiting JAK2/STAT3 activation. Overall, these results provide insights into the possible mechanism underlying QNYZD-mediated neurogenesis. (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling axis plays a crucial role in determining the fate of neural stem cells (NSCs). Qingnaoyizhi decoction (QNYZD) has been used for the treatment of vascular dementia and has shown to improve synaptic remodeling. The aim of this study was to evaluate the effect of cerebrospinal fluid (CSF) containing QNYZD (CSF-QNYZD) on the differentiation of cultured NSCs and the involvement of the JAK2/STAT3 pathway. METHODS The protein expression levels of glial fibrillary acidic protein (GFAP), tubulin, drosophila mothers against decapentaplegic protein (SMAD-1), STAT3, and phosphorylated-STAT3 were detected by western immunoblot analysis in the groups: control, CSF, JAK/STAT inhibitor (AG490), CSF-QNYZD, and CSF-XDZ (CSF-Xidezhen). The differentiation of NSCs was determined by immunofluorescence staining. The proliferation of NSCs was measured using the Cell Counting Kit-8 proliferation assay. RESULTS Compared with the control group, CSF-QNYZD and AG490 significantly increased the number and expression of tubulin-positive cells, reduced the number and expression of GFAP-positive cells, and down-regulated the expression of p-STAT3. However, CSF-QNYZD also decreased the expression of SMAD-1 and STAT3. CONCLUSION Enhanced neuronal differentiation may be associated with the down-regulation of glial differentiation instead of promoting proliferation in treated NSCs. Furthermore, QNYZD may play a direct role in suppressing the formation of GFAP-positive cells and enhancing neuronal differentiation by inhibiting JAK2/STAT3 activation. Overall, these results provide insights into the possible mechanism underlying QNYZD-mediated neurogenesis.
Collapse
|
30
|
|
31
|
Sun Y, Lehmbecker A, Kalkuhl A, Deschl U, Sun W, Rohn K, Tzvetanova ID, Nave KA, Baumgärtner W, Ulrich R. STAT3 represents a molecular switch possibly inducing astroglial instead of oligodendroglial differentiation of oligodendroglial progenitor cells in Theiler's murine encephalomyelitis. Neuropathol Appl Neurobiol 2015; 41:347-70. [DOI: 10.1111/nan.12133] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 03/02/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Yanyong Sun
- Department of Pathology; University of Veterinary Medicine Hannover; Hannover Germany
- Centre for Systems Neuroscience Hannover; Hannover Germany
| | - Annika Lehmbecker
- Department of Pathology; University of Veterinary Medicine Hannover; Hannover Germany
- Centre for Systems Neuroscience Hannover; Hannover Germany
| | - Arno Kalkuhl
- Department of Non-Clinical Drug Safety; Boehringer Ingelheim Pharma; Biberach (Riß) Germany
| | - Ulrich Deschl
- Department of Non-Clinical Drug Safety; Boehringer Ingelheim Pharma; Biberach (Riß) Germany
| | - Wenhui Sun
- Department of Pathology; University of Veterinary Medicine Hannover; Hannover Germany
- Centre for Systems Neuroscience Hannover; Hannover Germany
| | - Karl Rohn
- Department of Biometry, Epidemiology and Information Processing; University of Veterinary Medicine Hannover; Hannover Germany
| | - Iva D. Tzvetanova
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen Germany
| | - Wolfgang Baumgärtner
- Department of Pathology; University of Veterinary Medicine Hannover; Hannover Germany
- Centre for Systems Neuroscience Hannover; Hannover Germany
| | - Reiner Ulrich
- Department of Pathology; University of Veterinary Medicine Hannover; Hannover Germany
- Centre for Systems Neuroscience Hannover; Hannover Germany
| |
Collapse
|
32
|
Ushach I, Burkhardt AM, Martinez C, Hevezi PA, Gerber PA, Buhren BA, Schrumpf H, Valle-Rios R, Vazquez MI, Homey B, Zlotnik A. METEORIN-LIKE is a cytokine associated with barrier tissues and alternatively activated macrophages. Clin Immunol 2014; 156:119-27. [PMID: 25486603 DOI: 10.1016/j.clim.2014.11.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/19/2014] [Accepted: 11/22/2014] [Indexed: 01/16/2023]
Abstract
Cytokines are involved in many functions of the immune system including initiating, amplifying and resolving immune responses. Through bioinformatics analyses of a comprehensive database of gene expression (BIGE: Body Index of Gene Expression) we observed that a small secreted protein encoded by a poorly characterized gene called meteorin-like (METRNL), is highly expressed in mucosal tissues, skin and activated macrophages. Further studies indicate that Metrnl is produced by Alternatively Activated Macrophages (AAM) and M-CSF cultured bone marrow macrophages (M2-like macrophages). In the skin, METRNL is expressed by resting fibroblasts and IFNγ-treated keratinocytes. A screen of human skin-associated diseases showed significant over-expression of METRNL in psoriasis, prurigo nodularis, actinic keratosis and atopic dermatitis. METRNL is also up-regulated in synovial membranes of human rheumatoid arthritis. Taken together, these results indicate that Metrnl represents a novel cytokine, which is likely involved in both innate and acquired immune responses.
Collapse
Affiliation(s)
- Irina Ushach
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA; Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | - Amanda M Burkhardt
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA; Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | - Cynthia Martinez
- Department of Dermatology, School of Medicine, University of Duesseldorf, Duesseldorf, Germany
| | - Peter A Hevezi
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA; Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | - Peter Arne Gerber
- Department of Dermatology, School of Medicine, University of Duesseldorf, Duesseldorf, Germany
| | | | - Holger Schrumpf
- Department of Dermatology, School of Medicine, University of Duesseldorf, Duesseldorf, Germany
| | - Ricardo Valle-Rios
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA; Institute for Immunology, University of California Irvine, Irvine, CA, USA; Present address: Laboratory of Immunology and Proteomics, Children's Hospital of Mexico, Mexico, D.F. 06720, Mexico
| | - Monica I Vazquez
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA; Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | - Bernhard Homey
- Department of Dermatology, School of Medicine, University of Duesseldorf, Duesseldorf, Germany
| | - Albert Zlotnik
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA; Institute for Immunology, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
33
|
Kim YY, Moon JS, Kwon MC, Shin J, Im SK, Kim HA, Han JK, Kong YY. Meteorin regulates mesendoderm development by enhancing nodal expression. PLoS One 2014; 9:e88811. [PMID: 24558432 PMCID: PMC3928293 DOI: 10.1371/journal.pone.0088811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/12/2014] [Indexed: 01/01/2023] Open
Abstract
During gastrulation, distinct lineage specification into three germ layers, the mesoderm, endoderm and ectoderm, occurs through an elaborate harmony between signaling molecules along the embryonic proximo-distal and anterior-posterior axes, and Nodal signaling plays a key role in the early embryonic development governing embryonic axis formation, mesoderm and endoderm specification, and left-right asymmetry determination. However, the mechanism by which Nodal expression is regulated is largely unknown. Here, we show that Meteorin regulates Nodal expression and is required for mesendoderm development. It is highly expressed in the inner cell mass of blastocysts and further in the epiblast and extra-embryonic ectoderm during gastrulation. Genetic ablation of the Meteorin gene resulted in early embryonic lethality, presumably due to impaired lineage allocation and subsequent cell accumulation. Embryoid body culture using Meteorin-null embryonic stem (ES) cells showed reduced Nodal expression and concomitant impairment of mesendoderm specification. Meteorin-null embryos displayed reduced levels of Nodal transcripts before the gastrulation stage, and impaired expression of Goosecoid, a definitive endoderm marker, during gastrulation, while the proximo-distal and anterior-posterior axes and primitive streak formation were preserved. Our results show that Meteorin is a novel regulator of Nodal transcription and is required to maintain sufficient Nodal levels for endoderm formation, thereby providing new insights in the regulation of mesendoderm allocation.
Collapse
Affiliation(s)
- Yoon-Young Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea ; Division of Molecular and Life Science, Department of Life Sciences, POSTECH, Pohang, South Korea
| | - Jin-Sook Moon
- Division of Molecular and Life Science, Department of Life Sciences, POSTECH, Pohang, South Korea
| | - Min-chul Kwon
- Division of Molecular and Life Science, Department of Life Sciences, POSTECH, Pohang, South Korea
| | - Juhee Shin
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea ; Division of Molecular and Life Science, Department of Life Sciences, POSTECH, Pohang, South Korea
| | - Sun-Kyoung Im
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea ; Division of Molecular and Life Science, Department of Life Sciences, POSTECH, Pohang, South Korea
| | - Hyun-A Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Jin-Kwan Han
- Division of Molecular and Life Science, Department of Life Sciences, POSTECH, Pohang, South Korea
| | - Young-Yun Kong
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
34
|
Lalli G. Extracellular Signals Controlling Neuroblast Migration in the Postnatal Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 800:149-80. [DOI: 10.1007/978-94-007-7687-6_9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Adornetto A, Pagliara V, Renzo GD, Arcone R. Polychlorinated biphenyls impair dibutyryl cAMP-induced astrocytic differentiation in rat C6 glial cell line. FEBS Open Bio 2013; 3:459-66. [PMID: 24251112 PMCID: PMC3829991 DOI: 10.1016/j.fob.2013.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/20/2013] [Accepted: 10/22/2013] [Indexed: 02/04/2023] Open
Abstract
In the central nervous system, alteration of glial cell differentiation can affect brain functions. Polychlorinated biphenyls (PCBs) are persistent environmental chemical contaminants that exert neurotoxic effects in glial and neuronal cells. We examined the effects of a commercial mixture of PCBs, Aroclor1254 (A1254) on astrocytic differentiation of glial cells, using the rat C6 cell line as in vitro model. The exposure for 24 h to sub-toxic concentrations of A1254 (3 or 9 μM) impaired dibutyryl cAMP-induced astrocytic differentiation as showed by the decrease of glial fibrillary acidic protein (GFAP) protein levels and inhibition in change of cell morphology toward an astrocytic phenotype. The A1254 inhibition was restored by the addition of a protein kinase C (PKC) inhibitor, bisindolylmaleimide (bis), therefore indicating that PCBs disturbed the cAMP-induced astrocytic differentiation of C6 cells via the PKC pathway. The phosphorylation of signal transducer and activator of transcription 3 (STAT3) is essential for cAMP-induced transcription of GFAP promoter in C6 cells. Our results indicated that the exposure to A1254 (3 or 9 μM) for 24 h suppressed cAMP-induced STAT3 phosphorylation. Moreover, A1254 reduced cAMP-dependent phosphorylation of STAT3 requires inhibition of PKC activity. Together, our results suggest that PCBs induce perturbation in cAMP/PKA and PKC signaling pathway during astrocytic differentiation of glial cells.
Collapse
Key Words
- A1254, Aroclor 1254
- Aroclor1254
- Astrocytic differentiation
- C6 glial cell line
- CNS, central nervous system
- CRE, cAMP responsive element
- CREB, cAMP-response element binding protein
- DAPI, 4′,6-diamidino-2-phenylindole
- DMEM, Dulbecco’s Modified Eagle’s Medium
- DMSO, dimethyl sulfoxide
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- GFAP, glial fibrillary acidic protein
- Glial fibrillary acidic protein (GFAP)
- MTT, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide
- NMDA, N-methyl-d-aspartate
- PCBs, polychlorinated biphenyls
- PKA, protein kinase A
- PKC, protein kinase C
- Protein kinase C (PKC)
- ROS, reactive oxygen species
- STAT3, signal transducer and activator of transcription 3
- Signal transducer and activator of transcription 3 (STAT3)
- TRE, CRE transcriptional response element
- bis, 2-[1-(3-dimethylamino-propyl)indol-3-yl]-3-(indol-3-yl) maleimide
- dbcAMP, N6,2′-O-dibutyryl cAMP
- nNOS, neuronal nitric oxide
Collapse
Affiliation(s)
- Annagrazia Adornetto
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende, Cosenza (CS) 87036, Italy
| | | | | | | |
Collapse
|
36
|
Schneider L, Pellegatta S, Favaro R, Pisati F, Roncaglia P, Testa G, Nicolis SK, Finocchiaro G, d'Adda di Fagagna F. DNA damage in mammalian neural stem cells leads to astrocytic differentiation mediated by BMP2 signaling through JAK-STAT. Stem Cell Reports 2013; 1:123-38. [PMID: 24052948 PMCID: PMC3757751 DOI: 10.1016/j.stemcr.2013.06.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 01/17/2023] Open
Abstract
The consequences of DNA damage generation in mammalian somatic stem cells, including neural stem cells (NSCs), are poorly understood despite their potential relevance for tissue homeostasis. Here, we show that, following ionizing radiation-induced DNA damage, NSCs enter irreversible proliferative arrest with features of cellular senescence. This is characterized by increased cytokine secretion, loss of stem cell markers, and astrocytic differentiation. We demonstrate that BMP2 is necessary to induce expression of the astrocyte marker GFAP in irradiated NSCs via a noncanonical signaling pathway engaging JAK-STAT. This is promoted by ATM and antagonized by p53. Using a SOX2-Cre reporter mouse model for cell-lineage tracing, we demonstrate irradiation-induced NSC differentiation in vivo. Furthermore, glioblastoma assays reveal that irradiation therapy affects the tumorigenic potential of cancer stem cells by ablating self-renewal and inducing astroglial differentiation.
Collapse
Affiliation(s)
- Leonid Schneider
- IFOM Foundation-The FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Vezyraki A, Kapelouzouc S, Fotiadisb N, Theofilogiannakosa MS, Gerou E. WITHDRAWN: Identification of meteorin and metrnl as two novel pro-differentiative adipokines: Possible roles in controlling adipogenesis and insulin sensitivity. Biochem Biophys Res Commun 2013:S0006-291X(13)01148-0. [PMID: 23860268 DOI: 10.1016/j.bbrc.2013.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 06/02/2023]
Abstract
BBRC has been targeted by a scheme to defraud our editors, reviewers and readers with submission of a manuscript with falsified author and institutional information and therefore wholly unverifiable scientific claims. The manuscript has been withdrawn. We consider such abuse of the editorial and peer review system with the submission of fictional content unethical and it wastes the valuable time of all those who contributed to the evaluation of this manuscript. We are currently exploring which local authorities would have jurisdiction, and will with such authorities explore the question of whether this also constitutes a criminal case of internet fraud and we anticipate turning over to them all of the information we have been able to attain from EES regarding the source of the fraudulent submission.
Collapse
Affiliation(s)
- Alkistis Vezyraki
- School of Health Sciences, University of Thessaly, Karies, Trikala, Greece
| | | | | | | | | |
Collapse
|
38
|
Paschaki M, Schneider C, Rhinn M, Thibault-Carpentier C, Dembélé D, Niederreither K, Dollé P. Transcriptomic analysis of murine embryos lacking endogenous retinoic acid signaling. PLoS One 2013; 8:e62274. [PMID: 23638021 PMCID: PMC3634737 DOI: 10.1371/journal.pone.0062274] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/19/2013] [Indexed: 11/30/2022] Open
Abstract
Retinoic acid (RA), an active derivative of the liposoluble vitamin A (retinol), acts as an important signaling molecule during embryonic development, regulating phenomenons as diverse as anterior-posterior axial patterning, forebrain and optic vesicle development, specification of hindbrain rhombomeres, pharyngeal arches and second heart field, somitogenesis, and differentiation of spinal cord neurons. This small molecule directly triggers gene activation by binding to nuclear receptors (RARs), switching them from potential repressors to transcriptional activators. The repertoire of RA-regulated genes in embryonic tissues is poorly characterized. We performed a comparative analysis of the transcriptomes of murine wild-type and Retinaldehyde Dehydrogenase 2 null-mutant (Raldh2−/−) embryos — unable to synthesize RA from maternally-derived retinol — using Affymetrix DNA microarrays. Transcriptomic changes were analyzed in two embryonic regions: anterior tissues including forebrain and optic vesicle, and posterior (trunk) tissues, at early stages preceding the appearance of overt phenotypic abnormalities. Several genes expected to be downregulated under RA deficiency appeared in the transcriptome data (e.g. Emx2, Foxg1 anteriorly, Cdx1, Hoxa1, Rarb posteriorly), whereas reverse-transcriptase-PCR and in situ hybridization performed for additional selected genes validated the changes identified through microarray analysis. Altogether, the affected genes belonged to numerous molecular pathways and cellular/organismal functions, demonstrating the pleiotropic nature of RA-dependent events. In both tissue samples, genes upregulated were more numerous than those downregulated, probably due to feedback regulatory loops. Bioinformatic analyses highlighted groups (clusters) of genes displaying similar behaviors in mutant tissues, and biological functions most significantly affected (e.g. mTOR, VEGF, ILK signaling in forebrain tissues; pyrimidine and purine metabolism, calcium signaling, one carbon metabolism in posterior tissues). Overall, these data give an overview of the gene expression changes resulting from embryonic RA deficiency, and provide new candidate genes and pathways that may help understanding retinoid-dependent molecular events.
Collapse
Affiliation(s)
- Marie Paschaki
- Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (Unité Mixte de Recherche 7104), Institut National de la Santé et de la Recherche Médicale (Unité 964), Université de Strasbourg, Illkirch-Strasbourg, France
| | - Carole Schneider
- Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (Unité Mixte de Recherche 7104), Institut National de la Santé et de la Recherche Médicale (Unité 964), Université de Strasbourg, Illkirch-Strasbourg, France
| | - Muriel Rhinn
- Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (Unité Mixte de Recherche 7104), Institut National de la Santé et de la Recherche Médicale (Unité 964), Université de Strasbourg, Illkirch-Strasbourg, France
| | - Christelle Thibault-Carpentier
- Biochips platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (Unité Mixte de Recherche 7104), Institut National de la Santé et de la Recherche Médicale (Unité 964), Université de Strasbourg, Illkirch-Strasbourg, France
| | - Doulaye Dembélé
- Biochips platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (Unité Mixte de Recherche 7104), Institut National de la Santé et de la Recherche Médicale (Unité 964), Université de Strasbourg, Illkirch-Strasbourg, France
| | - Karen Niederreither
- Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (Unité Mixte de Recherche 7104), Institut National de la Santé et de la Recherche Médicale (Unité 964), Université de Strasbourg, Illkirch-Strasbourg, France
| | - Pascal Dollé
- Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (Unité Mixte de Recherche 7104), Institut National de la Santé et de la Recherche Médicale (Unité 964), Université de Strasbourg, Illkirch-Strasbourg, France
- * E-mail:
| |
Collapse
|
39
|
Fragoso MA, Patel AK, Nakamura REI, Yi H, Surapaneni K, Hackam AS. The Wnt/β-catenin pathway cross-talks with STAT3 signaling to regulate survival of retinal pigment epithelium cells. PLoS One 2012; 7:e46892. [PMID: 23056515 PMCID: PMC3464242 DOI: 10.1371/journal.pone.0046892] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 09/10/2012] [Indexed: 12/23/2022] Open
Abstract
Wnt/β-catenin signaling is an essential pathway that regulates numerous cellular processes, including cell survival. The molecular mechanisms contributing to pro-survival Wnt signaling are mostly unknown. Signal transducer and activator of transcription proteins (STATs) are a well-described family of transcription factors. STAT3 induces expression of anti-apoptotic genes in many tissues and is a downstream mediator of protective growth factors and cytokines. In this study, we investigated whether pro-survival Wnt signaling is mediated by STAT3. The Wnt3a ligand activated Wnt signaling in the retinal pigment epithelium ARPE-19 cell line and significantly increased the viability of cells exposed to oxidative stress. Furthermore, Wnt3a increased STAT3 activation and nuclear translocation, as measured by an antibody against phosphorylated STAT3. Reducing STAT3 levels with siRNA eliminated Wnt3a-dependent protection from oxidative stress. Together, these data demonstrate a previously unknown link between Wnt3a-mediated activation of STAT3 and cell survival, and indicate cross-talk between two important pro-survival signaling pathways.
Collapse
Affiliation(s)
- Miryam A. Fragoso
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Amit K. Patel
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Rei E. I. Nakamura
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Hyun Yi
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Krishna Surapaneni
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Abigail S. Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
40
|
Krishnan G, Chatterjee N. Endocannabinoids alleviate proinflammatory conditions by modulating innate immune response in muller glia during inflammation. Glia 2012; 60:1629-45. [DOI: 10.1002/glia.22380] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/05/2012] [Indexed: 12/29/2022]
|
41
|
Meteorin reverses hypersensitivity in rat models of neuropathic pain. Exp Neurol 2012; 237:260-6. [PMID: 22766205 DOI: 10.1016/j.expneurol.2012.06.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/22/2012] [Accepted: 06/24/2012] [Indexed: 01/22/2023]
Abstract
Neuropathic pain is caused by a lesion or disease to the somatosensory nervous system and current treatment merely reduces symptoms. Here, we investigate the potential therapeutic effect of the neurotrophic factor Meteorin on multiple signs of neuropathic pain in two distinct rat models. In a first study, two weeks of intermittent systemic administration of recombinant Meteorin led to a dose-dependent reversal of established mechanical and cold hypersensitivity in rats after photochemically-induced sciatic nerve injury. Moreover, analgesic efficacy lasted for at least one week after treatment cessation. In rats with a chronic constriction injury (CCI) of the sciatic nerve, five systemic injections of Meteorin over 9 days dose-dependently reversed established mechanical and thermal hypersensitivity as well as weight bearing deficits taken as a surrogate marker of spontaneous pain. The beneficial effects of systemic Meteorin were sustained for at least three weeks after treatment ended and no adverse side effects were observed. Pharmacokinetic analysis indicated that plasma Meteorin exposure correlated well with dosing and was no longer detectable after 24 hours. This pharmacokinetic profile combined with a delayed time of onset and prolonged duration of analgesic efficacy on multiple parameters suggests a disease-modifying mechanism rather than symptomatic pain relief. In sciatic nerve lesioned rats, delivery of recombinant Meteorin by intrathecal injection was also efficacious in reversing mechanical and cold hypersensitivity. Together, these data demonstrate that Meteorin represents a novel treatment strategy for the effective and long lasting relief from the debilitating consequences of neuropathic pain.
Collapse
|
42
|
Jackson C, Ruzevick J, Amin AG, Lim M. Potential role for STAT3 inhibitors in glioblastoma. Neurosurg Clin N Am 2012; 23:379-89. [PMID: 22748651 DOI: 10.1016/j.nec.2012.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor. Signal transducers and activators of transcription 3 (STAT3) is a transcription factor that translocates to the nucleus to modulate the expression of a variety of genes associated with cell survival, differentiation, proliferation, angiogenesis, and immune function. Several cancers induce constitutive STAT3 activation. Most studies have reported that STAT3 inhibition has antineoplastic activity; however, emerging evidence suggests that the role of STAT3 activity in GBM may be more nuanced than initially appreciated. The authors review the roles of STAT3 in GBM and discuss potential strategies for targeting STAT3.
Collapse
Affiliation(s)
- Christopher Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
43
|
Wang Z, Andrade N, Torp M, Wattananit S, Arvidsson A, Kokaia Z, Jørgensen JR, Lindvall O. Meteorin is a chemokinetic factor in neuroblast migration and promotes stroke-induced striatal neurogenesis. J Cereb Blood Flow Metab 2012; 32:387-98. [PMID: 22044868 PMCID: PMC3272610 DOI: 10.1038/jcbfm.2011.156] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/24/2011] [Accepted: 09/22/2011] [Indexed: 12/19/2022]
Abstract
Ischemic stroke affecting the adult brain causes increased progenitor proliferation in the subventricular zone (SVZ) and generation of neuroblasts, which migrate into the damaged striatum and differentiate to mature neurons. Meteorin (METRN), a newly discovered neurotrophic factor, is highly expressed in neural progenitor cells and immature neurons during development, suggesting that it may be involved in neurogenesis. Here, we show that METRN promotes migration of neuroblasts from SVZ explants of postnatal rats and stroke-subjected adult rats via a chemokinetic mechanism, and reduces N-methyl-D-asparate-induced apoptotic cell death in SVZ cells in vitro. Stroke induced by middle cerebral artery occlusion upregulates the expression of endogenous METRN in cells with neuronal phenotype in striatum. Recombinant METRN infused into the stroke-damaged brain stimulates cell proliferation in SVZ, promotes neuroblast migration, and increases the number of immature and mature neurons in the ischemic striatum. Our findings identify METRN as a new factor promoting neurogenesis both in vitro and in vivo by multiple mechanisms. Further work will be needed to translate METRN's actions on endogenous neurogenesis into improved recovery after stroke.
Collapse
Affiliation(s)
- Zhaolu Wang
- Laboratory of Neurogenesis and Cell Therapy, Wallenberg Neuroscience Center, Lund, Sweden
| | - Nuno Andrade
- Laboratory of Neurogenesis and Cell Therapy, Wallenberg Neuroscience Center, Lund, Sweden
| | | | | | - Andreas Arvidsson
- Laboratory of Neurogenesis and Cell Therapy, Wallenberg Neuroscience Center, Lund, Sweden
| | - Zaal Kokaia
- Laboratory of Neural Stem Cell Biology and Therapy, Lund, Sweden
- Lund Stem Cell Center, University Hospital, Lund, Sweden
| | | | - Olle Lindvall
- Laboratory of Neurogenesis and Cell Therapy, Wallenberg Neuroscience Center, Lund, Sweden
- Lund Stem Cell Center, University Hospital, Lund, Sweden
| |
Collapse
|
44
|
Jørgensen JR, Fransson A, Fjord-Larsen L, Thompson LH, Houchins JP, Andrade N, Torp M, Kalkkinen N, Andersson E, Lindvall O, Ulfendahl M, Brunak S, Johansen TE, Wahlberg LU. Cometin is a novel neurotrophic factor that promotes neurite outgrowth and neuroblast migration in vitro and supports survival of spiral ganglion neurons in vivo. Exp Neurol 2011; 233:172-81. [PMID: 21985865 DOI: 10.1016/j.expneurol.2011.09.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/31/2011] [Accepted: 09/20/2011] [Indexed: 12/22/2022]
Abstract
Neurotrophic factors are secreted proteins responsible for migration, growth and survival of neurons during development, and for maintenance and plasticity of adult neurons. Here we present a novel secreted protein named Cometin which together with Meteorin defines a new evolutionary conserved protein family. During early mouse development, Cometin is found exclusively in the floor plate and from E13.5 also in dorsal root ganglions and inner ear but apparently not in the adult nervous system. In vitro, Cometin promotes neurite outgrowth from dorsal root ganglion cells which can be blocked by inhibition of the Janus or MEK kinases. In this assay, additive effects of Cometin and Meteorin are observed indicating separate receptors. Furthermore, Cometin supports migration of neuroblasts from subventricular zone explants to the same extend as stromal cell derived factor 1a. Given the neurotrophic properties in vitro, combined with the restricted inner ear expression during development, we further investigated Cometin in relation to deafness. In neomycin deafened guinea pigs, two weeks intracochlear infusion of recombinant Cometin supports spiral ganglion neuron survival and function. In contrast to the control group receiving artificial perilymph, Cometin treated animals retain normal electrically-evoked brainstem response which is maintained several weeks after treatment cessation. Neuroprotection is also evident from stereological analysis of the spiral ganglion. Altogether, these studies show that Cometin is a potent new neurotrophic factor with therapeutic potential.
Collapse
|
45
|
Signal transducer and activator of transcription 3 (STAT3): a promising target for anticancer therapy. Future Med Chem 2011; 3:567-97. [PMID: 21526897 DOI: 10.4155/fmc.11.22] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is an oncogenic protein whose inhibition is sought for the prevention and treatment of cancer. In this review, the validated therapeutic strategy to block aberrant activity of STAT3 in many tumor cell lines is evaluated by presenting the most promising inhibitors to date. The compounds are discussed in classes based on their different mechanisms of action, which are critically explained. In addition, their future clinical development as anticancer agents is considered. Furthermore, the efforts devoted to the comprehension of the structure-activity relationships and to the identification of the biological effects are brought to attention. The synthetic and technological approaches recently developed to overcome the difficulties in the obtainment of clinically suitable drugs are also presented.
Collapse
|
46
|
Cheng PY, Lin YP, Chen YL, Lee YC, Tai CC, Wang YT, Chen YJ, Kao CF, Yu J. Interplay between SIN3A and STAT3 mediates chromatin conformational changes and GFAP expression during cellular differentiation. PLoS One 2011; 6:e22018. [PMID: 21779366 PMCID: PMC3136934 DOI: 10.1371/journal.pone.0022018] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 06/12/2011] [Indexed: 01/28/2023] Open
Abstract
Background Neurons and astrocytes are generated from common neural precursors, yet neurogenesis precedes astrocyte formation during embryogenesis. The mechanisms of neural development underlying suppression and de-suppression of differentiation- related genes for cell fate specifications are not well understood. Methodology/Principal Findings By using an in vitro system in which NTera-2 cells were induced to differentiate into an astrocyte-like lineage, we revealed a novel role for Sin3A in maintaining the suppression of GFAP in NTera-2 cells. Sin3A coupled with MeCP2 bound to the GFAP promoter and their occupancies were correlated with repression of GFAP transcription. The repression by Sin3A and MeCP2 may be an essential mechanism underlying the inhibition of cell differentiation. Upon commitment toward an astrocyte-like lineage, Sin3A- MeCP2 departed from the promoter and activated STAT3 simultaneously bound to the promoter and exon 1 of GFAP; meanwhile, olig2 was exported from nuclei to the cytoplasm. This suggested that a three-dimensional or higher-order structure was provoked by STAT3 binding between the promoter and proximal coding regions. STAT3 then recruited CBP/p300 to exon 1 and targeted the promoter for histone H3K9 and H3K14 acetylation. The CBP/p300-mediated histone modification further facilitates chromatin remodeling, thereby enhancing H3K4 trimethylation and recruitment of RNA polymerase II to activate GFAP gene transcription. Conclusions/Significance These results provide evidence that exchange of repressor and activator complexes and epigenetic modifications are critical strategies for cellular differentiation and lineage-specific gene expression.
Collapse
Affiliation(s)
- Pei-Yi Cheng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Ping Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ya-Ling Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ching Lee
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Chia-Chen Tai
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Yi-Ting Wang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- * E-mail: (JY); (CFK)
| | - John Yu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- * E-mail: (JY); (CFK)
| |
Collapse
|