1
|
Matskova L, Zheng S, Kashuba E, Ernberg I, Aspenström P. MTSS1: beyond the integration of actin and membrane dynamics. Cell Mol Life Sci 2024; 81:472. [PMID: 39625546 PMCID: PMC11615175 DOI: 10.1007/s00018-024-05511-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 12/06/2024]
Abstract
MTSS1 is a ubiquitously expressed intracellular protein known mainly for its involvement in basic cellular processes, such as the regulation of actin organization and membrane architecture. MTSS1 has attracted much attention for its role as a tumor suppressor, being absent or expressed at reduced levels in advanced and metastasizing cancers. Occasionally, MTSS1 is, instead, upregulated in metastasis and, in some cases, even in primary tumors. In addition to these well-established functions of MTSS1 linked to its I-BAR- and WH2-domains, the protein is involved in modulating cell-cell contacts, cell differentiation, lipid metabolism, and vesicle formation and acts as a scaffolding protein for several E3 ubiquitin ligases. MTSS1 is classified as a housekeeping protein and is never mutated despite the several pathologic phenotypes linked to its dysregulation. Despite MTSS1's involvement in fundamental signaling pathways, MTSS1 gene ablation is not ubiquitously lethal, although it affects embryonic development. Due to MTSS1´s involvement in many seemingly disparate processes, with many cases lacking mechanistic explanations, we found it timely to review the recent data on MTSS1's role at the cellular level, as well as in health and disease, to direct further studies on this interesting multifunctional protein.
Collapse
Affiliation(s)
- Liudmila Matskova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, FE 280, 17177, Sweden
| | - Shixing Zheng
- ENT Institute, Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Elena Kashuba
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, FE 280, 17177, Sweden
- RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of National Academy of Sciences of Ukraine, Kyiv, 03022, Ukraine
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, FE 280, 17177, Sweden.
| | - Pontus Aspenström
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, 75185, Sweden.
| |
Collapse
|
2
|
Janssen V, Huveneers S. Cell-cell junctions in focus - imaging junctional architectures and dynamics at high resolution. J Cell Sci 2024; 137:jcs262041. [PMID: 39480660 DOI: 10.1242/jcs.262041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Studies utilizing electron microscopy and live fluorescence microscopy have significantly enhanced our understanding of the molecular mechanisms that regulate junctional dynamics during homeostasis, development and disease. To fully grasp the enormous complexity of cell-cell adhesions, it is crucial to study the nanoscale architectures of tight junctions, adherens junctions and desmosomes. It is important to integrate these junctional architectures with the membrane morphology and cellular topography in which the junctions are embedded. In this Review, we explore new insights from studies using super-resolution and volume electron microscopy into the nanoscale organization of these junctional complexes as well as the roles of the junction-associated cytoskeleton, neighboring organelles and the plasma membrane. Furthermore, we provide an overview of junction- and cytoskeletal-related biosensors and optogenetic probes that have contributed to these advances and discuss how these microscopy tools enhance our understanding of junctional dynamics across cellular environments.
Collapse
Affiliation(s)
- Vera Janssen
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands
| | - Stephan Huveneers
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Podieh F, Overboom MC, Knol JC, Piersma SR, Goeij-de Haas R, Pham TV, Jimenez CR, Hordijk PL. AAMP and MTSS1 Are Novel Negative Regulators of Endothelial Barrier Function Identified in a Proteomics Screen. Cells 2024; 13:1609. [PMID: 39404373 PMCID: PMC11476176 DOI: 10.3390/cells13191609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Cell-cell adhesion in endothelial monolayers is tightly controlled and crucial for vascular integrity. Recently, we reported on the importance of fast protein turnover for maintenance of endothelial barrier function. Specifically, continuous ubiquitination and degradation of the Rho GTPase RhoB is crucial to preserve quiescent endothelial integrity. Here, we sought to identify other barrier regulators, which are characterized by a short half-life, using a proteomics approach. Following short-term inhibition of ubiquitination with E1 ligase inhibitor MLN7243 or Cullin E3 ligase inhibitor MLN4924 in primary human endothelial cells, we identified sixty significantly differentially expressed proteins. Intriguingly, our data showed that AAMP and MTSS1 are novel negative regulators of endothelial barrier function and that their turnover is tightly controlled by ubiquitination. Mechanistically, AAMP regulates the stability and activity of RhoA and RhoB, and colocalizes with F-actin and cortactin at membrane ruffles, possibly regulating F-actin dynamics. Taken together, these findings demonstrate the critical role of protein turnover of specific proteins in the regulation of endothelial barrier function, contributing to our options to target dysregulation of vascular permeability.
Collapse
Affiliation(s)
- Fabienne Podieh
- Department of Physiology, Microcirculation, Amsterdam Cardiovascular Science, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands; (F.P.)
| | - Max C. Overboom
- Department of Physiology, Microcirculation, Amsterdam Cardiovascular Science, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands; (F.P.)
| | - Jaco C. Knol
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands (C.R.J.)
| | - Sander R. Piersma
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands (C.R.J.)
| | - Richard Goeij-de Haas
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands (C.R.J.)
| | - Thang V. Pham
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands (C.R.J.)
| | - Connie R. Jimenez
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands (C.R.J.)
| | - Peter L. Hordijk
- Department of Physiology, Microcirculation, Amsterdam Cardiovascular Science, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands; (F.P.)
| |
Collapse
|
4
|
An YC, Hung KS, Liang CS, Tsai CK, Tsai CL, Chen SJ, Lin YK, Lin GY, Yeh PK, Yang FC. Genetic variants associated with response to anti-CGRP monoclonal antibody therapy in a chronic migraine Han Chinese population. J Headache Pain 2024; 25:149. [PMID: 39266962 PMCID: PMC11391721 DOI: 10.1186/s10194-024-01850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/22/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Anti-calcitonin gene-related peptide (CGRP) monoclonal antibodies have emerged as promising therapeutic options for the treatment of chronic migraine. However, treatment response varies considerably among individuals, suggesting a potential role for genetic factors. This study aimed to identify genetic variants affecting the efficacy of anti-CGRP monoclonal antibody therapy in chronic migraine among the Han Chinese population in Taiwan to enhance treatment precision and to understand the genetic architecture of migraine. METHODS We conducted a quantitative trait locus (QTL) association study in patients with chronic migraines from a tertiary medical center in Taiwan using the Taiwan Precision Medicine Array Chip. The patients received fremanezumab or galcanezumab for at least 12 weeks. Treatment efficacy was assessed based on the improvement rate in monthly migraine days. Genetic variants were identified, and their associations with treatment efficacy were examined through quantitative trait loci analysis, linkage disequilibrium studies, and functional annotations using the Gene Ontology database. RESULTS Six single nucleotide polymorphisms (SNPs) relative variants were significantly associated with anti-CGRP therapy response (p < 1 × 10- 7): rs116870564, rs75244870, rs56216870, rs12938101, rs74655790, and rs149540851. These variants are located in or near genes, including LRRC4C, ATAD2B, and OXR1, which are involved in neuronal development, DNA-dependent ATPase activity, and oxidation-reduction processes, respectively. The rs116870564 variant in LRRC4C showed the strongest association (β = -0.551, p = 6.65 × 10- 9). The functional impact of these variants is attributed to their regulatory effects on gene expression, which are influenced by intron splicing regulation, transcription factors, and changes in chromatin structure. CONCLUSION The identification of key genetic markers associated with response to anti-CGRP therapy emphasizes the importance of genetic variability in treatment efficacy. This could lead to more personalized chronic migraine management strategies and tailored therapeutic approaches based on individual genetic profiles. Further research in larger, diverse populations is warranted to validate these findings and refine our understanding of the role of CGRP in chronic migraine pathophysiology. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Yu-Chin An
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Department of Emergency, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Sheng Hung
- Center for Precision Medicine and Genomics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Sung Liang
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Kuang Tsai
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Lin Tsai
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Sy-Jou Chen
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Department of Emergency, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Kai Lin
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Guan-Yu Lin
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Department of Neurology, Songshan Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Po-Kuan Yeh
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Fu-Chi Yang
- School of Medicine, National Defense Medical Center, Taipei, Taiwan.
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
5
|
Madrigal T, Ortega-Bernal D, Herrera LA, González-De la Rosa CH, Domínguez-Gómez G, Aréchaga-Ocampo E, Díaz-Chávez J. Mutant p53 Gain-of-Function Induces Migration and Invasion through Overexpression of miR-182-5p in Cancer Cells. Cells 2023; 12:2506. [PMID: 37887350 PMCID: PMC10605582 DOI: 10.3390/cells12202506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
The master-key TP53 gene is a tumor suppressor that is mutated in more than 50% of human cancers. Some p53 mutants lose their tumor suppressor activity and acquire new oncogenic functions, known as a gain of function (GOF). Recent studies have shown that p53 mutants can exert oncogenic effects through specific miRNAs. We identified the differentially expressed miRNA profiles of the three most frequent p53 mutants (p53R273C, p53R248Q, and p53R175H) after their transfection into the Saos-2 cell line (null p53) as compared with p53WT transfected cells. The associations between these miRNAs and the signaling pathways in which they might participate were identified with miRPath Software V3.0. QRT-PCR was employed to validate the miRNA profiles. We observed that p53 mutants have an overall negative effect on miRNA expression. In the global expression profile of the human miRNome regulated by the p53R273C mutant, 72 miRNAs were underexpressed and 35 overexpressed; in the p53R175H miRNAs profile, our results showed the downregulation of 93 and upregulation of 10 miRNAs; and in the miRNAs expression profile regulated by the p53R248Q mutant, we found 167 decreased and 6 increased miRNAs compared with p53WT. However, we found overexpression of some miRNAs, like miR-182-5p, in association with processes such as cell migration and invasion. In addition, we explored whether the induction of cell migration and invasion by the p53R48Q mutant was dependent on miR-182-5p because we found overexpression of miR-182-5p, which is associated with processes such as cell migration and invasion. Inhibition of mutant p53R248Q and miR-182-5p increased FOXF2-MTSS1 levels and decreased cell migration and invasion. In summary, our results suggest that p53 mutants increase the expression of miR-182-5p, and this miRNA is necessary for the p53R248Q mutant to induce cell migration and invasion in a cancer cell model.
Collapse
Affiliation(s)
- Tzitzijanik Madrigal
- Unidad de Investigación en Cáncer, Instituto de Investigaciones Biomédicas-Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, San Fernando 22, Sección XVI, Tlalpan, CDMX, Mexico City 14080, Mexico; (T.M.); (L.A.H.)
- Departamento de Ciencias Biológicas y de la Salud, UAM Iztapalapa, Mexico City 09340, Mexico
| | - Daniel Ortega-Bernal
- Departamento de Atención a la Salud, UAM Xochimilco, Mexico City 04960, Mexico;
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autonóma Metropolitana, Mexico City 05348, Mexico; (C.H.G.-D.l.R.); (E.A.-O.)
| | - Luis A. Herrera
- Unidad de Investigación en Cáncer, Instituto de Investigaciones Biomédicas-Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, San Fernando 22, Sección XVI, Tlalpan, CDMX, Mexico City 14080, Mexico; (T.M.); (L.A.H.)
- Escuela de Medicina y Ciencias de la Salud-Tecnológico de Monterrey, Mexico City 14380, Mexico
| | - Claudia Haydée González-De la Rosa
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autonóma Metropolitana, Mexico City 05348, Mexico; (C.H.G.-D.l.R.); (E.A.-O.)
| | - Guadalupe Domínguez-Gómez
- Subdirección de Investigación Clínica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico;
| | - Elena Aréchaga-Ocampo
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autonóma Metropolitana, Mexico City 05348, Mexico; (C.H.G.-D.l.R.); (E.A.-O.)
| | - José Díaz-Chávez
- Unidad de Investigación en Cáncer, Instituto de Investigaciones Biomédicas-Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, San Fernando 22, Sección XVI, Tlalpan, CDMX, Mexico City 14080, Mexico; (T.M.); (L.A.H.)
| |
Collapse
|
6
|
Chen M, Dong Y, Tian L, Zhou J, Zhu E, Yuan H, Li X, Wang B. Metastasis suppressor 1 interacts with protein tyrosine phosphatase receptor-δ to regulate adipogenesis. FASEB J 2023; 37:e22857. [PMID: 36906292 DOI: 10.1096/fj.202201322r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 02/07/2023] [Accepted: 02/22/2023] [Indexed: 03/13/2023]
Abstract
Adipogenesis is a finely controlled process and its dysfunction may contribute to metabolic disorders such as obesity. Metastasis suppressor 1 (MTSS1) is a player in tumorigenesis and metastasis of various types of cancers. To date, it is not known whether and how MTSS1 plays a role in adipocyte differentiation. In the current study, we found that MTSS1 was upregulated during adipogenic differentiation of established mesenchymal cell lines and primary cultured bone marrow stromal cells. Gain-of-function and loss-of-function experiments uncovered that MTSS1 facilitated adipocyte differentiation from mesenchymal progenitor cells. Mechanistic explorations revealed that MTSS1 bound and interacted with FYN, a member of Src family of tyrosine kinases (SFKs), and protein tyrosine phosphatase receptor-δ (PTPRD). We demonstrated that PTPRD was capable of inducing the differentiation of adipocytes. Overexpression of PTPRD attenuated the impaired adipogenesis induced by the siRNA targeting MTSS1. Both MTSS1 and PTPRD activated SFKs by suppressing the phosphorylation of SFKs at Tyr530 and inducing the phosphorylation of FYN at Tyr419. Further investigation showed that MTSS1 and PTPRD were able to activate FYN. Collectively, our study has for the first time unraveled that MTSS1 plays a role in adipocyte differentiation in vitro through interacting with PTPRD and thereby activating SFKs such as FYN tyrosine kinase.
Collapse
Affiliation(s)
- Meng Chen
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yuan Dong
- College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lijie Tian
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jie Zhou
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Endong Zhu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Hairui Yuan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xiaoxia Li
- College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Baoli Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
7
|
Senju Y, Mushtaq T, Vihinen H, Manninen A, Saarikangas J, Ven K, Engel U, Varjosalo M, Jokitalo E, Lappalainen P. Actin-rich lamellipodia-like protrusions contribute to the integrity of epithelial cell-cell junctions. J Biol Chem 2023; 299:104571. [PMID: 36871754 PMCID: PMC10173786 DOI: 10.1016/j.jbc.2023.104571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/11/2023] [Accepted: 02/01/2023] [Indexed: 03/06/2023] Open
Abstract
Metastasis-suppressor 1 (MTSS1) is a membrane-interacting scaffolding protein that regulates the integrity of epithelial cell-cell junctions and functions as a tumor suppressor in a wide range of carcinomas. MTSS1 binds phosphoinositide-rich membranes through its I-BAR domain, and is capable of sensing and generating negative membrane curvature in vitro. However, the mechanisms by which MTSS1 localizes to intercellular junctions in epithelial cells, and contributes to their integrity and maintenance have remained elusive. By carrying out electron microscopy and live-cell imaging on cultured Madin-Darby canine kidney (MDCK) cell monolayers, we provide evidence that adherens junctions of epithelial cells harbor lamellipodia-like, dynamic actin-driven membrane folds, which exhibit high negative membrane curvature at their distal edges. BioID proteomics and imaging experiments demonstrated that MTSS1 associates with an Arp2/3 complex activator, the WAVE-2 complex, in dynamic actin-rich protrusions at cell-cell junctions. Inhibition of Arp2/3 or WAVE-2 suppressed actin filament assembly at adherens junctions, decreased the dynamics of junctional membrane protrusions, and led to defects in epithelial integrity. Together, these results support a model in which membrane-associated MTSS1, together with the WAVE-2 and Arp2/3 complexes, promotes the formation of dynamic lamellipodia-like actin protrusions that contribute to the integrity of cell-cell junctions in epithelial monolayers.
Collapse
Affiliation(s)
- Yosuke Senju
- Research Institute for Interdisciplinary Science (RIIS), Okayama University, Japan.
| | - Toiba Mushtaq
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Finland
| | - Helena Vihinen
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Finland
| | - Aki Manninen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Finland
| | - Juha Saarikangas
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, Neuroscience Center, University of Helsinki, Finland
| | - Katharina Ven
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Finland
| | - Ulrike Engel
- Nikon Imaging Center and Centre for Organismal Studies, Heidelberg University, Germany
| | - Markku Varjosalo
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Finland
| | - Eija Jokitalo
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Finland
| | - Pekka Lappalainen
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Finland
| |
Collapse
|
8
|
Wang Y, Jia Z, Liang C, He Y, Cong M, Wu Q, Tian P, He D, Miao X, Sun B, Yin Y, Peng C, Yao F, Fu D, Liang Y, Zhang P, Xiong H, Hu G. MTSS1 curtails lung adenocarcinoma immune evasion by promoting AIP4-mediated PD-L1 monoubiquitination and lysosomal degradation. Cell Discov 2023; 9:20. [PMID: 36810288 PMCID: PMC9944270 DOI: 10.1038/s41421-022-00507-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/07/2022] [Indexed: 02/23/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapy targeting PD-1/PD-L1 has shown durable clinical benefits in lung cancer. However, many patients respond poorly to ICB treatment, underscoring an incomplete understanding of PD-L1 regulation and therapy resistance. Here, we find that MTSS1 is downregulated in lung adenocarcinoma, leading to PD-L1 upregulation, impairment of CD8+ lymphocyte function, and enhanced tumor progression. MTSS1 downregulation correlates with improved ICB efficacy in patients. Mechanistically, MTSS1 interacts with the E3 ligase AIP4 for PD-L1 monoubiquitination at Lysine 263, leading to PD-L1 endocytic sorting and lysosomal degradation. In addition, EGFR-KRAS signaling in lung adenocarcinoma suppresses MTSS1 and upregulates PD-L1. More importantly, combining AIP4-targeting via the clinical antidepressant drug clomipramine and ICB treatment improves therapy response and effectively suppresses the growth of ICB-resistant tumors in immunocompetent mice and humanized mice. Overall, our study discovers an MTSS1-AIP4 axis for PD-L1 monoubiquitination and reveals a potential combinatory therapy with antidepressants and ICB.
Collapse
Affiliation(s)
- Yuan Wang
- grid.410726.60000 0004 1797 8419Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhenchang Jia
- grid.410726.60000 0004 1797 8419Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chenxi Liang
- grid.410726.60000 0004 1797 8419Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yunfei He
- grid.410726.60000 0004 1797 8419Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Cong
- grid.410726.60000 0004 1797 8419Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiuyao Wu
- grid.410726.60000 0004 1797 8419Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pu Tian
- grid.410726.60000 0004 1797 8419Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dasa He
- grid.410726.60000 0004 1797 8419Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Miao
- grid.410726.60000 0004 1797 8419Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Beibei Sun
- grid.16821.3c0000 0004 0368 8293Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yue Yin
- grid.9227.e0000000119573309National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Chao Peng
- grid.9227.e0000000119573309National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Feng Yao
- grid.16821.3c0000 0004 0368 8293Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Da Fu
- grid.412538.90000 0004 0527 0050Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293General Surgery, Ruijin Hospital & Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yajun Liang
- grid.410726.60000 0004 1797 8419Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peiyuan Zhang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Guohong Hu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
9
|
Tholen LE, Schigt H, Kleuskens SGE, Bos C, Spruijt CG, Willemsen B, Vermeulen M, Hoenderop JGJ, de Baaij JHF. HNF1β-associated cyst development and electrolyte disturbances are not explained by BAIAP2L2 expression. FASEB J 2023; 37:e22696. [PMID: 36520027 DOI: 10.1096/fj.202201121r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/21/2022] [Accepted: 11/28/2022] [Indexed: 12/16/2022]
Abstract
Mutations or deletions in transcription factor hepatocyte nuclear factor 1 homeobox β (HNF1β) cause renal cysts and/or malformation, maturity-onset diabetes of the young and electrolyte disturbances. Here, we applied a comprehensive bioinformatic approach on ChIP-seq, RNA-seq, and gene expression array studies to identify novel transcriptional targets of HNF1β explaining the kidney phenotype of HNF1β patients. We identified BAR/IMD Domain Containing Adaptor Protein 2 Like 2 (BAIAP2L2), as a novel transcriptional target of HNF1β and validated direct transcriptional activation of the BAIAP2L2 promoter by a reporter luciferase assay. Using mass spectrometry analysis, we show that BAIAP2L2 binds to other members of the I-BAR domain-containing family: BAIAP2 and BAIAP2L1. Subsequently, the role of BAIAP2L2 in maintaining epithelial cell integrity in the kidney was assessed using Baiap2l2 knockout cell and mouse models. Kidney epithelial cells lacking functional BAIAP2L2 displayed normal F-actin distribution at cell-cell contacts and formed polarized three-dimensional spheroids with a lumen. In vivo, Baiap2l2 knockout mice displayed normal kidney and colon tissue morphology and serum and urine electrolyte concentrations were not affected. Altogether, our study is the first to characterize the function of BAIAP2L2 in the kidney in vivo and we report that mice lacking BAIAP2L2 exhibit normal electrolyte homeostasis and tissue morphology under physiological conditions.
Collapse
Affiliation(s)
- Lotte E Tholen
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heidi Schigt
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sanne G E Kleuskens
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caro Bos
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cornelia G Spruijt
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Brigith Willemsen
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
10
|
LINC00491 Facilitates Tumor Progression of Lung Adenocarcinoma via Wnt/β-Catenin-Signaling Pathway by Regulating MTSS1 Ubiquitination. Cells 2022; 11:cells11233737. [PMID: 36496997 PMCID: PMC9738320 DOI: 10.3390/cells11233737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Long non-coding RNAs have been reported to be involved in tumorigenesis and progression through different regulatory mechanisms. It has been reported that aberrantly expressed long non-coding RNA LINC00491 promotes malignancy in multiple tumors, while the role of LINC00491 in lung adenocarcinoma (LUAD) is little reported and the mechanism for regulating tumor progression has not been elucidated. Methods: RNA sequencing and the TCGA database were combined to screen differentially expressed lncRNAs that facilitate tumor progression. The expression level of LINC00491 was examined in LUAD clinical samples and in cell lines using RT-qPCR. In vitro experiments including colony formation assay, EdU assay, cell migration and invasion assay and wound healing assay, and in vivo experiments including xenografting subcutaneous tumors and lung metastasis models were performed to investigate the function of LINC00491 in LUAD tumor progressions. RNA pull-down, mass spectrometry, RIP assays and truncation experiments were carried out to explore the proteins binding to LINC00491 and the specific interactions between the RNA-protein complex. Results: Our results showed that LINC0491 was significantly upregulated in LUAD and positively correlated with poor survival. High LINC00491 expression promoted proliferation, migration and invasion, and resulted in a high metastatic burden in LUAD. Using pull-down assay and mass spectrometry, MTSS1 was found binding to LINC00491, and the conducted experiments verified the direct interaction between LINC00491 and MTSS1. Meanwhile, LINC00491 was found to regulate MTSS1 degradation by promoting the MTSS1 ubiquitination level and then activating the Wnt/β-catenin-signaling pathway. LINC00491/MTSS1/β-catenin may act as a complex to facilitate tumor progression. Conclusions: In summary, our results found a novel mechanism in which LINC00491 directly interacts with MTSS1 by affecting its ubiquitination modification to promote LUAD proliferation, migration and invasion, then activating the Wnt/β-catenin-signaling pathway, demonstrating its significant role in tumor progression and suggesting that the LINC00491/MTSS1/Wnt/β-catenin-signaling pathway could serve as a potential therapeutic target for lung adenocarcinoma in the future.
Collapse
|
11
|
Mukiibi R, Peñaloza C, Gutierrez A, Yáñez JM, Houston RD, Robledo D. The impact of Piscirickettsia salmonis infection on genome-wide DNA methylation profile in Atlantic Salmon. Genomics 2022; 114:110503. [PMID: 36244592 DOI: 10.1016/j.ygeno.2022.110503] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 11/04/2022]
Abstract
Salmon rickettsial septicaemia (SRS), caused by the bacteria Piscirickettsia salmonis (P. salmonis), is responsible for significant mortality in farmed Atlantic salmon in Chile. Currently there are no effective treatments or preventive measures for this disease, although genetic selection or genome engineering to increase salmon resistance to SRS are promising strategies. The accuracy and efficiency of these strategies are usually influenced by the available biological background knowledge of the disease. The aim of this study was to investigate DNA methylation changes in response to P. salmonis infection in the head kidney and liver tissue of Atlantic salmon, and the interaction between gene expression and DNA methylation in the same tissues. The head kidney and liver methylomes of 66 juvenile salmon were profiled using reduced representation bisulphite sequencing (RRBS), and compared between P. salmonis infected animals (3 and 9 days post infection) and uninfected controls, and between SRS resistant and susceptible fish. Methylation was correlated with matching RNA-Seq data from the same animals, revealing that methylation in the first exon leads to an important repression of gene expression. Head kidney methylation showed a clear response to the infection, associated with immunological processes such as actin cytoskeleton regulation, phagocytosis, endocytosis and pathogen associated pattern receptor signaling. Our results contribute to the growing understanding of the role of methylation in regulation of gene expression and response to infectious diseases and could inform the incorporation of epigenetic markers into genomic selection for disease resistant and the design of diagnostic epigenetic markers to better manage fish health in salmon aquaculture.
Collapse
Affiliation(s)
- Robert Mukiibi
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Edinburgh, UK
| | - Carolina Peñaloza
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Edinburgh, UK
| | - Alejandro Gutierrez
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Edinburgh, UK; Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile; Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Chile
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Edinburgh, UK.
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
12
|
Wurz AI, Bunner WP, Szatmari EM, Hughes RM. CRY-BARs: Versatile light-gated molecular tools for the remodeling of membrane architectures. J Biol Chem 2022; 298:102388. [PMID: 35987384 PMCID: PMC9530617 DOI: 10.1016/j.jbc.2022.102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022] Open
Abstract
BAR (Bin, Amphiphysin and Rvs) protein domains are responsible for the generation of membrane curvature and represent a critical mechanical component of cellular functions. Thus, BAR domains have great potential as components of membrane-remodeling tools for cell biologists. In this work, we describe the design and implementation of a family of versatile light-gated I-BAR (inverse-BAR) domain containing tools derived from the fusion of the A. thaliana Cryptochrome 2 photoreceptor and I-BAR protein domains ('CRY-BARs') with applications in the remodeling of membrane architectures and the control of cellular dynamics. By taking advantage of the intrinsic membrane binding propensity of the I-BAR domain, CRY-BARs can be used for spatial and temporal control of cellular processes that require induction of membrane protrusions. Using cell lines and primary neuron cultures, we demonstrate here that the CRY-BAR optogenetic tool evokes membrane dynamics changes associated with cellular activity. Moreover, we provide evidence that ezrin, an actin and PIP2 binding protein, acts as a relay between the plasma membrane and the actin cytoskeleton and therefore is an important mediator of switch function. Overall, we propose that CRY-BARs hold promise as a useful addition to the optogenetic toolkit to study membrane remodeling in live cells.
Collapse
Affiliation(s)
- Anna I Wurz
- Department of Chemistry, East Carolina University, Greenville, North Carolina, United States
| | - Wyatt Paul Bunner
- Department of Physical Therapy, East Carolina University, Greenville, North Carolina, United States
| | - Erzsebet M Szatmari
- Department of Physical Therapy, East Carolina University, Greenville, North Carolina, United States
| | - Robert M Hughes
- Department of Chemistry, East Carolina University, Greenville, North Carolina, United States.
| |
Collapse
|
13
|
Mallik B, Bhat S, Kumar V. Role of Bin‐Amphiphysin‐Rvs (BAR) domain proteins in mediating neuronal signaling and disease. Synapse 2022; 76:e22248. [DOI: 10.1002/syn.22248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/13/2022] [Accepted: 07/18/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Bhagaban Mallik
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Bhopal Indore Bypass Road Bhopal Madhya Pradesh 462 066 India
| | - Sajad Bhat
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Bhopal Indore Bypass Road Bhopal Madhya Pradesh 462 066 India
| | - Vimlesh Kumar
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Bhopal Indore Bypass Road Bhopal Madhya Pradesh 462 066 India
| |
Collapse
|
14
|
Chen M, Shan L, Gan Y, Tian L, Zhou J, Zhu E, Yuan H, Li X, Wang B. Metastasis suppressor 1 controls osteoblast differentiation and bone homeostasis through regulating Src-Wnt/β-catenin signaling. Cell Mol Life Sci 2022; 79:107. [PMID: 35094173 PMCID: PMC11072310 DOI: 10.1007/s00018-022-04147-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 12/29/2022]
Abstract
Metastasis suppressor 1 (MTSS1) plays an inhibitory role in tumorigenesis and metastasis of a variety of cancers. To date, the function of MTSS1 in the differentiation of marrow stromal progenitor cells remains to be explored. In the current study, we investigated whether and how MTSS1 has a role in osteoblast differentiation and bone homeostasis. Our data showed that MTSS1 mRNA was upregulated during osteoblast differentiation and downregulated in the osteoblastic lineage cells of ovariectomized and aged mice. Functional studies revealed that MTSS1 promoted the osteogenic differentiation from marrow stromal progenitor cells. Mechanistic explorations uncovered that the inactivation of Src and afterward activation of canonical Wnt signaling were involved in osteoblast differentiation induced by MTSS1. The enhanced osteogenic differentiation induced by MTSS1 overexpression was attenuated when Src was simultaneously overexpressed, and conversely, the inhibition of osteogenic differentiation by MTSS1 siRNA was rescued when the Src inhibitor was supplemented to the culture. Finally, the in vivo transfection of MTSS1 siRNA to the marrow of mice significantly reduced the trabecular bone mass, along with the reduction of trabecular osteoblasts, the accumulation of marrow adipocytes, and the increase of phospho-Src-positive cells on the trabeculae. No change in the number of osteoclasts was observed. This study has unraveled that MTSS1 contributes to osteoblast differentiation and bone homeostasis through regulating Src-Wnt/β-catenin signaling. It also suggests the potential of MTSS1 as a new target for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Meng Chen
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Liying Shan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Ying Gan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Lijie Tian
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Jie Zhou
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Endong Zhu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Hairui Yuan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Xiaoxia Li
- College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Baoli Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China.
| |
Collapse
|
15
|
Liang L, Liang X, Jiang P, Zhou L, Zhong L, Wang M, Lin S, Guo Z, Yu J, Yang C, Chen Y, Zhuo C, Chen P, Wang Y. Metastasis suppressor 1 interacts with α-actinin 4 to affect its localization and regulate formation of membrane ruffling. Cytoskeleton (Hoboken) 2021; 78:337-348. [PMID: 34435464 DOI: 10.1002/cm.21686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 01/21/2023]
Abstract
Membrane ruffling plays an important role in the directed cell migration and escape of tumor cells from the monolayer. Metastasis suppressor 1 (MTSS1), also known as missing in metastasis, has been implicated in cell morphology, motility, metastasis, and development. Here, the dynamic interaction proteins associated with MTSS1 and involved in membrane ruffling were determined by cross-linking and mass spectrometry analysis. We identified α-actinin 4 (ACTN4) as an interacting protein and confirmed a direct interaction between MTSS1 and ACTN4. Moreover, co-expression of MTSS1 in fibroblasts recruited cytoplasmic ACTN4 to the cell periphery, at which point ruffling became thick and rigid. In MCF-7 cells, MTSS1 knockdown did not show an obvious effect on the cell shape or the distribution of endogenous ACTN4; however, ACTN4 overexpression transformed cell morphology from an epidermal- to a fibroblast-like shape, and further MTSS1 depletion significantly increased the ratio of fibroblast cells exhibiting prominent ruffling. Furthermore, biochemical data suggested that MTSS1 cross-linking with ACTN4 induced the formation of actin fiber bundles into more organized structures in vitro. These data indicated that MTSS1 might recruit cytoplasmic ACTN4 to the cell periphery and regulate cytoskeleton dynamics to restrict its performance in membrane ruffling.
Collapse
Affiliation(s)
- Lijun Liang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiaoping Liang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Peng Jiang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lu Zhou
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Luanluan Zhong
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Mei Wang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shuyun Lin
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhen Guo
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Juan Yu
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Changcheng Yang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yu Chen
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chengjie Zhuo
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ping Chen
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ying Wang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
16
|
Bisi S, Marchesi S, Rizvi A, Carra D, Beznoussenko GV, Ferrara I, Deflorian G, Mironov A, Bertalot G, Pisati F, Oldani A, Cattaneo A, Saberamoli G, Pece S, Viale G, Bachi A, Tripodo C, Scita G, Disanza A. IRSp53 controls plasma membrane shape and polarized transport at the nascent lumen in epithelial tubules. Nat Commun 2020; 11:3516. [PMID: 32665580 PMCID: PMC7360740 DOI: 10.1038/s41467-020-17091-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
It is unclear whether the establishment of apical–basal cell polarity during the generation of epithelial lumens requires molecules acting at the plasma membrane/actin interface. Here, we show that the I-BAR-containing IRSp53 protein controls lumen formation and the positioning of the polarity determinants aPKC and podocalyxin. Molecularly, IRSp53 acts by regulating the localization and activity of the small GTPase RAB35, and by interacting with the actin capping protein EPS8. Using correlative light and electron microscopy, we further show that IRSp53 ensures the shape and continuity of the opposing plasma membrane of two daughter cells, leading to the formation of a single apical lumen. Genetic removal of IRSp53 results in abnormal renal tubulogenesis, with altered tubular polarity and architectural organization. Thus, IRSp53 acts as a membrane curvature-sensing platform for the assembly of multi-protein complexes that control the trafficking of apical determinants and the integrity of the luminal plasma membrane. The I-BAR protein IRSp53 senses membrane curvature but its physiological role is unclear. Here, the authors show that during early lumen morphogenesis, IRSp53 controls the shape of the apical plasma membrane and polarized trafficking and ensures the correct epithelial tubular architecture and if deleted, affects renal tubules morphogenesis in various organisms.
Collapse
Affiliation(s)
- Sara Bisi
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Stefano Marchesi
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Abrar Rizvi
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Davide Carra
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Galina V Beznoussenko
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Ines Ferrara
- Department of Health Sciences, Human Pathology Section, University of Palermo School of Medicine, Via del Vespro 129, 90127, Palermo, Italy
| | | | - Alexander Mironov
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Giovanni Bertalot
- European Institute of Oncology (IEO) IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | | | - Amanda Oldani
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | | | - Ghazaleh Saberamoli
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Salvatore Pece
- European Institute of Oncology (IEO) IRCCS, Via Ripamonti 435, 20141, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milan, Via Santa Sofia 9/1, 20122, Milan, Italy
| | - Giuseppe Viale
- European Institute of Oncology (IEO) IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Angela Bachi
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Claudio Tripodo
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy.,Department of Health Sciences, Human Pathology Section, University of Palermo School of Medicine, Via del Vespro 129, 90127, Palermo, Italy
| | - Giorgio Scita
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy. .,Department of Oncology and Haemato-Oncology, University of Milan, Via Santa Sofia 9/1, 20122, Milan, Italy.
| | - Andrea Disanza
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| |
Collapse
|
17
|
Sarapulov AV, Petrov P, Hernández-Pérez S, Šuštar V, Kuokkanen E, Cords L, Samuel RVM, Vainio M, Fritzsche M, Carrasco YR, Mattila PK. Missing-in-Metastasis/Metastasis Suppressor 1 Regulates B Cell Receptor Signaling, B Cell Metabolic Potential, and T Cell-Independent Immune Responses. Front Immunol 2020; 11:599. [PMID: 32373113 PMCID: PMC7176992 DOI: 10.3389/fimmu.2020.00599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/16/2020] [Indexed: 11/13/2022] Open
Abstract
Efficient generation of antibodies by B cells is one of the prerequisites of protective immunity. B cell activation by cognate antigens via B cell receptors (BCRs), or pathogen-associated molecules through pattern-recognition receptors, such as Toll-like receptors (TLRs), leads to transcriptional and metabolic changes that ultimately transform B cells into antibody-producing plasma cells or memory cells. BCR signaling and a number of steps downstream of it rely on coordinated action of cellular membranes and the actin cytoskeleton, tightly controlled by concerted action of multiple regulatory proteins, some of them exclusive to B cells. Here, we dissect the role of Missing-In-Metastasis (MIM), or Metastasis suppressor 1 (MTSS1), a cancer-associated membrane and actin cytoskeleton regulating protein, in B cell-mediated immunity by taking advantage of MIM knockout mouse strain. We show undisturbed B cell development and largely normal composition of B cell compartments in the periphery. Interestingly, we found that MIM-/- B cells are defected in BCR signaling in response to surface-bound antigens but, on the other hand, show increased metabolic activity after stimulation with LPS or CpG. In vivo, MIM knockout animals exhibit impaired IgM antibody responses to immunization with T cell-independent antigen. This study provides the first comprehensive characterization of MIM in B cells, demonstrates its regulatory role for B cell-mediated immunity, as well as proposes new functions for MIM in tuning receptor signaling and cellular metabolism, processes, which may also contribute to the poorly understood functions of MIM in cancer.
Collapse
Affiliation(s)
- Alexey V. Sarapulov
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Petar Petrov
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Sara Hernández-Pérez
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Vid Šuštar
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
| | - Elina Kuokkanen
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
| | - Lena Cords
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Rufus V. M. Samuel
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
| | - Marika Vainio
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Marco Fritzsche
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, United Kingdom
- Rosalind Franklin Institute, Didcot, United Kingdom
| | - Yolanda R. Carrasco
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Pieta K. Mattila
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
18
|
Cong M, Wang Y, Yang Y, Lian C, Zhuang X, Li X, Zhang P, Liu Y, Tang J, Yang Q, Zhang X, Xiong H, Hu R, Hu G. MTSS1 suppresses mammary tumor-initiating cells by enhancing RBCK1-mediated p65 ubiquitination. NATURE CANCER 2020; 1:222-234. [PMID: 35122005 DOI: 10.1038/s43018-019-0021-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022]
Abstract
Tumor-initiating cells (TICs) are considered the culprits of cancer development and progression. Dysregulation of metastasis suppressor protein 1 (MTSS1) has been widely observed in tumor metastasis, but its functional contribution and mechanism in cancer is poorly understood. Here we report a role of MTSS1 in suppressing TICs in breast cancer. Mtss1 knockout (KO) enhances the mammary epithelial TIC subpopulation in both luminal and basal-like breast cancer mouse models. MTSS1 also suppresses tumorsphere formation in breast cancer cells. Mechanistically, MTSS1 interacts with the E3 ligase RanBP2-type and C3HC4-type zinc finger containing 1 (RBCK1) to facilitate RBCK1-mediated p65 ubiquitination and degradation, thus suppressing the NF-κB signaling pathway and tumorigenesis. In addition, actin beta-like 2 (ACTBL2) competes with RBCK1 for MTSS1 binding, leading to p65 stabilization. Importantly, MTSS1 silencing promotes patient-derived organoid formation and xenograft growth. MTSS1 downregulation in clinical tumors is also linked to worse prognosis. Overall our data reveal a new paradigm of NF-κB regulation and may have important implications in therapeutics targeting TICs.
Collapse
Affiliation(s)
- Min Cong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yang Yang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai, China
| | - Cheng Lian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xueqian Zhuang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxun Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peiyuan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yingjie Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jun Tang
- State Key Laboratory of Oncology in South China; Department of Breast Oncology, Sun Yat-Sen University, Guangzhou, China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Ji'nan, China
| | - Xue Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| | - Ronggui Hu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai, China.
| | - Guohong Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
19
|
Brown AS, Meera P, Quinones G, Magri J, Otis TS, Pulst SM, Oro AE. Receptor protein tyrosine phosphatases control Purkinje neuron firing. Cell Cycle 2020; 19:153-159. [PMID: 31876231 PMCID: PMC6961678 DOI: 10.1080/15384101.2019.1695995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/23/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022] Open
Abstract
Spinocerebellar ataxias (SCA) are a genetically heterogeneous family of cerebellar neurodegenerative diseases characterized by abnormal firing of Purkinje neurons and degeneration. We recently demonstrated the slowed firing rates seen in several SCAs share a common etiology of hyper-activation of the Src family of non-receptor tyrosine kinases (SFKs). However, the lack of clinically available neuroactive SFK inhibitors lead us to investigate alternative mechanisms to modulate SFK activity. Previous studies demonstrate that SFK activity can be enhanced by the removal of inhibitory phospho-marks by receptor-protein-tyrosine phosphatases (RPTPs). In this Extra View we show that MTSS1 inhibits SFK activity through the binding and inhibition of a subset of the RPTP family members, and lowering RPTP activity in cerebellar slices with peptide inhibitors increases the suppressed Purkinje neuron basal firing rates seen in two different SCA models. Together these results identify RPTPs as novel effectors of Purkinje neuron basal firing, extending the MTSS1/SFK regulatory circuit we previously described and expanding the therapeutic targets for SCA patients.
Collapse
Affiliation(s)
- Alexander S. Brown
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Pratap Meera
- Department of Neurobiology, University of California, Los Angeles, CA, USA
| | - Gabe Quinones
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jessica Magri
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas S. Otis
- Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London, UK
| | - Stefan M. Pulst
- Department of Neurology, University of Utah Medical Center, Salt Lake City, UT, USA
| | - Anthony E. Oro
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
20
|
Rothschild SC, Tombes RM. Widespread Roles of CaMK-II in Developmental Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:519-535. [DOI: 10.1007/978-3-030-12457-1_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
21
|
Andersson C, Lin H, Liu C, Levy D, Mitchell GF, Larson MG, Vasan RS. Integrated Multiomics Approach to Identify Genetic Underpinnings of Heart Failure and Its Echocardiographic Precursors. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 12:e002489. [DOI: 10.1161/circgen.118.002489] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background:
Heart failure (HF) may arise from alterations in metabolic, structural, and signaling pathways, but its genetic architecture is incompletely understood. To elucidate potential genetic contributors to cardiac remodeling and HF, we integrated genome-wide single-nucleotide polymorphisms, gene expression, and DNA methylation using a transomics analytical approach.
Methods:
We used robust rank aggregation (where the position of a certain gene in a rank order list [based on statistical significance level] is tested against a randomly shuffled rank order list) to derive an integrative transomic score for each annotated gene associated with a HF trait.
Results:
We evaluated ≤8372 FHS (Framingham Heart Study) participants (54% women; mean age, 55±17 years). Of these, 62 (0.7%) and 35 (0.4%) had prevalent HF with reduced ejection fraction and HF with preserved left ventricular ejection fraction, respectively. During a mean follow-up of 8.5 years (minimum–maximum, 0.005–18.6 years), 223 (2.7%) and 234 (2.8%) individuals developed incident HF with reduced ejection fraction and HF with reduced ejection fraction, respectively. Top genes included
MMP20
and
MTSS1
(promotes actin assembly at intercellular junctions) for left ventricular systolic function;
ITGA9
(receptor for
VCAM1
[vascular cell protein 1]) and
C5
for left ventricular remodeling;
NUP210
(expressed during myogenic differentiation) and
ANK1
(cytoskeletal protein) for diastolic function;
TSPAN16
and
RAB11FIP3
(involved in regulation of actin cytoskeleton) for prevalent HF with reduced ejection fraction;
ANKRD13D
and
TRIM69
for incident HF with reduced ejection fraction;
HPCAL1
and
PTTG1IP
for prevalent HF with reduced ejection fraction; and
ZNF146
(close to the
COX7A1
enzyme) and
ZFP3
(close to
SLC52A1
—the riboflavin transporter) for incident HF with reduced ejection fraction. We tested the HF-related top single-nucleotide polymorphisms in the UK biobank, where
rs77059055
in
TPM1
(minor allele frequency, 0.023; odds ratio, 0.83;
P
=0.002) remained statistically significant upon Bonferroni correction.
Conclusions:
Our integrative transomics approach offers insights into potential molecular and genetic contributors to HF and its precursors. Although several of our candidate genes have been implicated in HF in animal models, independent replication is warranted.
Collapse
Affiliation(s)
- Charlotte Andersson
- Framingham Heart Study, MA (C.A., H.L., C.L., D.L., M.G.L., R.S.V.)
- Department of Cardiology, Herlev and Gentofte Hospital, Herlev, Denmark (C.A.)
| | - Honghuang Lin
- Framingham Heart Study, MA (C.A., H.L., C.L., D.L., M.G.L., R.S.V.)
- Section of Computational Biomedicine, Department of Medicine (H.L.), Boston University School of Medicine, MA
| | - Chunyu Liu
- Framingham Heart Study, MA (C.A., H.L., C.L., D.L., M.G.L., R.S.V.)
- Department of Biostatistics (C.L., M.G.L.), Boston University School of Public Health, MA
| | - Daniel Levy
- Framingham Heart Study, MA (C.A., H.L., C.L., D.L., M.G.L., R.S.V.)
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (D.L.)
| | | | - Martin G. Larson
- Framingham Heart Study, MA (C.A., H.L., C.L., D.L., M.G.L., R.S.V.)
- Department of Biostatistics (C.L., M.G.L.), Boston University School of Public Health, MA
| | - Ramachandran S. Vasan
- Framingham Heart Study, MA (C.A., H.L., C.L., D.L., M.G.L., R.S.V.)
- Sections of Preventive Medicine and Epidemiology and Cardiology, Department of Medicine (R.S.V.), Boston University School of Medicine, MA
- Department of Epidemiology (R.S.V.), Boston University School of Public Health, MA
| |
Collapse
|
22
|
Minkeviciene R, Hlushchenko I, Virenque A, Lahti L, Khanal P, Rauramaa T, Koistinen A, Leinonen V, Noe FM, Hotulainen P. MIM-Deficient Mice Exhibit Anatomical Changes in Dendritic Spines, Cortex Volume and Brain Ventricles, and Functional Changes in Motor Coordination and Learning. Front Mol Neurosci 2019; 12:276. [PMID: 31803019 PMCID: PMC6872969 DOI: 10.3389/fnmol.2019.00276] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 10/29/2019] [Indexed: 11/13/2022] Open
Abstract
In this study, we performed a comprehensive behavioral and anatomical analysis of the Missing in Metastasis (Mtss1/MIM) knockout (KO) mouse brain. We also analyzed the expression of MIM in different brain regions at different ages. MIM is an I-BAR containing membrane curving protein, shown to be involved in dendritic spine initiation and dendritic branching in Purkinje cells in the cerebellum. Behavioral analysis of MIM KO mice revealed defects in both learning and reverse-learning, alterations in anxiety levels and reduced dominant behavior, and confirmed the previously described deficiency in motor coordination and pre-pulse inhibition. Anatomically, we observed enlarged brain ventricles and decreased cortical volume. Although MIM expression was relatively low in hippocampus after early development, hippocampal pyramidal neurons exhibited reduced density of thin and stubby dendritic spines. Learning deficiencies can be connected to all detected anatomical changes. Both behavioral and anatomical findings are typical for schizophrenia mouse models.
Collapse
Affiliation(s)
| | - Iryna Hlushchenko
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Anaïs Virenque
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- HiLIFE - Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Lauri Lahti
- Department of Computer Science, Aalto University School of Science, Espoo, Finland
| | - Pushpa Khanal
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- HiLIFE - Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Tuomas Rauramaa
- Department of Clinical Pathology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Arto Koistinen
- SIB Labs Infrastructure Unit, University of Eastern Finland, Kuopio, Finland
| | - Ville Leinonen
- Neurosurgery of NeuroCenter, Kuopio University Hospital, University of Eastern Finland (UEF), Kuopio, Finland
- Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland
- Department of Neurosurgery, MRC Oulu, Oulu University Hospital, Oulu, Finland
| | - Francesco M. Noe
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- HiLIFE - Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| |
Collapse
|
23
|
Petrov P, Sarapulov AV, Eöry L, Scielzo C, Scarfò L, Smith J, Burt DW, Mattila PK. Computational analysis of the evolutionarily conserved Missing In Metastasis/Metastasis Suppressor 1 gene predicts novel interactions, regulatory regions and transcriptional control. Sci Rep 2019; 9:4155. [PMID: 30858428 PMCID: PMC6411742 DOI: 10.1038/s41598-019-40697-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 02/21/2019] [Indexed: 12/25/2022] Open
Abstract
Missing in Metastasis (MIM), or Metastasis Suppressor 1 (MTSS1), is a highly conserved protein, which links the plasma membrane to the actin cytoskeleton. MIM has been implicated in various cancers, however, its modes of action remain largely enigmatic. Here, we performed an extensive in silico characterisation of MIM to gain better understanding of its function. We detected previously unappreciated functional motifs including adaptor protein (AP) complex interaction site and a C-helix, pointing to a role in endocytosis and regulation of actin dynamics, respectively. We also identified new functional regions, characterised with phosphorylation sites or distinct hydrophilic properties. Strong negative selection during evolution, yielding high conservation of MIM, has been combined with positive selection at key sites. Interestingly, our analysis of intra-molecular co-evolution revealed potential regulatory hotspots that coincided with reduced potentially pathogenic polymorphisms. We explored databases for the mutations and expression levels of MIM in cancer. Experimentally, we focused on chronic lymphocytic leukaemia (CLL), where MIM showed high overall expression, however, downregulation on poor prognosis samples. Finally, we propose strong conservation of MTSS1 also on the transcriptional level and predict novel transcriptional regulators. Our data highlight important targets for future studies on the role of MIM in different tissues and cancers.
Collapse
Affiliation(s)
- Petar Petrov
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, Tykistökatu 6A, 20520, Turku, Finland.
| | - Alexey V Sarapulov
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| | - Lel Eöry
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Easter Bush campus, Midlothian, EH25 9RG, United Kingdom
| | - Cristina Scielzo
- Unit of B Cell Neoplasia, Division of Molecular Oncology, IRCCS, San Raffaele Scientific Institute, Milano, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Lydia Scarfò
- Unit of B Cell Neoplasia, Division of Molecular Oncology, IRCCS, San Raffaele Scientific Institute, Milano, Italy.,Università Vita-Salute San Raffaele, Milan, Italy.,Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS, San Raffaele Scientific Institute, Milano, Italy
| | - Jacqueline Smith
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Easter Bush campus, Midlothian, EH25 9RG, United Kingdom
| | - David W Burt
- University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Pieta K Mattila
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, Tykistökatu 6A, 20520, Turku, Finland.
| |
Collapse
|
24
|
Li L, Baxter SS, Zhao P, Gu N, Zhan X. Differential interactions of missing in metastasis and insulin receptor tyrosine kinase substrate with RAB proteins in the endocytosis of CXCR4. J Biol Chem 2019; 294:6494-6505. [PMID: 30808710 DOI: 10.1074/jbc.ra118.006071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/15/2019] [Indexed: 12/26/2022] Open
Abstract
Missing in metastasis (MIM), an inverse Bin-Amphiphysin-Rvs (I-BAR) domain protein, promotes endocytosis of C-X-C chemokine receptor 4 (CXCR4) in mammalian cells. In response to the CXCR4 ligand stromal cell-derived factor 1 (SDF-1 or CXCL12), MIM associates with RAS-related GTP-binding protein 7 (RAB7) 30 min after stimulation. However, RAB7's role in MIM function remains undefined. Here we show that RNAi-mediated suppression of RAB7 expression in human HeLa cells has little effect on the binding of MIM to RAB5 and on the recruitment of CXCR4 to early endosomes but effectively abolishes MIM-mediated CXCR4 degradation, chemotactic response, and sorting into late endosomes and lysosomes. To determine whether I-BAR domain proteins interact with RAB7, we examined cells expressing insulin receptor tyrosine kinase substrate (IRTKS), an I-BAR domain protein bearing an Src homology 3 (SH3) domain. We observed that both MIM and IRTKS interact with RAB5 at an early response to SDF-1 and that IRTKS binds poorly to RAB7 but strongly to RAB11 at a later time point. Moreover, IRTKS overexpression reduced CXCR4 internalization and enhanced the chemotactic response to SDF-1. Interestingly, deletion of the SH3 domain in IRTKS abolished the IRTKS-RAB11 interaction and promoted CXCR4 degradation. Furthermore, the SH3 domain was required for selective targeting of MIM-IRTKS fusion proteins by both RAB7 and RAB11. Hence, to the best of our knowledge, our results provide first evidence that the SH3 domain is critical in the regulation of specific endocytic pathways by I-BAR domain proteins.
Collapse
Affiliation(s)
- Lushen Li
- From the Center for Vascular and Inflammatory Diseases
| | | | - Peng Zhao
- the State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ning Gu
- the State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xi Zhan
- From the Center for Vascular and Inflammatory Diseases, .,Department of Pathology, and.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| |
Collapse
|
25
|
Monroe TO, Hill MC, Morikawa Y, Leach JP, Heallen T, Cao S, Krijger PHL, de Laat W, Wehrens XHT, Rodney GG, Martin JF. YAP Partially Reprograms Chromatin Accessibility to Directly Induce Adult Cardiogenesis In Vivo. Dev Cell 2019; 48:765-779.e7. [PMID: 30773489 DOI: 10.1016/j.devcel.2019.01.017] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/10/2018] [Accepted: 01/17/2019] [Indexed: 01/22/2023]
Abstract
Specialized adult somatic cells, such as cardiomyocytes (CMs), are highly differentiated with poor renewal capacity, an integral reason underlying organ failure in disease and aging. Among the least renewable cells in the human body, CMs renew approximately 1% annually. Consistent with poor CM turnover, heart failure is the leading cause of death. Here, we show that an active version of the Hippo pathway effector YAP, termed YAP5SA, partially reprograms adult mouse CMs to a more fetal and proliferative state. One week after induction, 19% of CMs that enter S-phase do so twice, CM number increases by 40%, and YAP5SA lineage CMs couple to pre-existing CMs. Genomic studies showed that YAP5SA increases chromatin accessibility and expression of fetal genes, partially reprogramming long-lived somatic cells in vivo to a primitive, fetal-like, and proliferative state.
Collapse
Affiliation(s)
- Tanner O Monroe
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Matthew C Hill
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yuka Morikawa
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA
| | - John P Leach
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Todd Heallen
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA
| | - Shuyi Cao
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW, Utrecht, the Netherlands; University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW, Utrecht, the Netherlands; University Medical Center Utrecht, Utrecht, the Netherlands
| | - Xander H T Wehrens
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - George G Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Cardiomyocyte Renewal Laboratory, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
26
|
MTSS1/Src family kinase dysregulation underlies multiple inherited ataxias. Proc Natl Acad Sci U S A 2018; 115:E12407-E12416. [PMID: 30530649 DOI: 10.1073/pnas.1816177115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The genetically heterogeneous spinocerebellar ataxias (SCAs) are caused by Purkinje neuron dysfunction and degeneration, but their underlying pathological mechanisms remain elusive. The Src family of nonreceptor tyrosine kinases (SFK) are essential for nervous system homeostasis and are increasingly implicated in degenerative disease. Here we reveal that the SFK suppressor Missing-in-metastasis (MTSS1) is an ataxia locus that links multiple SCAs. MTSS1 loss results in increased SFK activity, reduced Purkinje neuron arborization, and low basal firing rates, followed by cell death. Surprisingly, mouse models for SCA1, SCA2, and SCA5 show elevated SFK activity, with SCA1 and SCA2 displaying dramatically reduced MTSS1 protein levels through reduced gene expression and protein translation, respectively. Treatment of each SCA model with a clinically approved Src inhibitor corrects Purkinje neuron basal firing and delays ataxia progression in MTSS1 mutants. Our results identify a common SCA therapeutic target and demonstrate a key role for MTSS1/SFK in Purkinje neuron survival and ataxia progression.
Collapse
|
27
|
BAR domain proteins-a linkage between cellular membranes, signaling pathways, and the actin cytoskeleton. Biophys Rev 2018; 10:1587-1604. [PMID: 30456600 DOI: 10.1007/s12551-018-0467-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/17/2018] [Indexed: 12/23/2022] Open
Abstract
Actin filament assembly typically occurs in association with cellular membranes. A large number of proteins sit at the interface between actin networks and membranes, playing diverse roles such as initiation of actin polymerization, modulation of membrane curvature, and signaling. Bin/Amphiphysin/Rvs (BAR) domain proteins have been implicated in all of these functions. The BAR domain family of proteins comprises a diverse group of multi-functional effectors, characterized by their modular architecture. In addition to the membrane-curvature sensing/inducing BAR domain module, which also mediates antiparallel dimerization, most contain auxiliary domains implicated in protein-protein and/or protein-membrane interactions, including SH3, PX, PH, RhoGEF, and RhoGAP domains. The shape of the BAR domain itself varies, resulting in three major subfamilies: the classical crescent-shaped BAR, the more extended and less curved F-BAR, and the inverse curvature I-BAR subfamilies. Most members of this family have been implicated in cellular functions that require dynamic remodeling of the actin cytoskeleton, such as endocytosis, organelle trafficking, cell motility, and T-tubule biogenesis in muscle cells. Here, we review the structure and function of mammalian BAR domain proteins and the many ways in which they are interconnected with the actin cytoskeleton.
Collapse
|
28
|
Lin X, Wang H, Lou Z, Cao M, Zhang Z, Gu N. Roles of
PIP
2 in the membrane binding of
MIM
I‐
BAR
: insights from molecular dynamics simulations. FEBS Lett 2018; 592:2533-2542. [DOI: 10.1002/1873-3468.13186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/01/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Xubo Lin
- Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University China
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Sciences & Medical Engineering, Southeast University Nanjing China
| | - Hongyin Wang
- Department of Integrative Biology and Pharmacology McGovern Medical School The University of Texas Health Science Center at Houston TX USA
| | - Zhichao Lou
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Sciences & Medical Engineering, Southeast University Nanjing China
- College of Materials Science and Engineering Nanjing Forestry University China
| | - Meng Cao
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Sciences & Medical Engineering, Southeast University Nanjing China
- Collaborative Innovation Center of Suzhou Nano‐Science and Technology Suzhou Key Laboratory of Biomaterials and Technologies China
| | - Zuoheng Zhang
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Sciences & Medical Engineering, Southeast University Nanjing China
- Collaborative Innovation Center of Suzhou Nano‐Science and Technology Suzhou Key Laboratory of Biomaterials and Technologies China
| | - Ning Gu
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Sciences & Medical Engineering, Southeast University Nanjing China
- Collaborative Innovation Center of Suzhou Nano‐Science and Technology Suzhou Key Laboratory of Biomaterials and Technologies China
| |
Collapse
|
29
|
Rothschild SC, Lee HJ, Ingram SR, Mohammadi DK, Walsh GS, Tombes RM. Calcium signals act through histone deacetylase to mediate pronephric kidney morphogenesis. Dev Dyn 2018; 247:807-817. [PMID: 29633426 DOI: 10.1002/dvdy.24632] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 11/30/2017] [Accepted: 03/26/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease is the most common monogenetic kidney disorder and is linked to mutations in PKD1 and PKD2. PKD2, a Ca2+ -conducting TRP channel enriched in ciliated cells and gated by extracellular signals, is necessary to activate the multifunctional Ca2+/ calmodulin-dependent protein kinase type 2 (CaMK-II), enabling kidney morphogenesis and cilia stability. RESULTS In this study, antisense morpholino oligonucleotides and pharmacological compounds were employed to investigate the roles of class II HDAC family members (HDAC 4, 5, and 6) in Zebrafish kidney development. While all three class II HDAC genes were expressed throughout the embryo during early development, HDAC5-morphant embryos exhibited anterior cysts and destabilized cloacal cilia, similar to PKD2 and CaMK-II morphants. In contrast, HDAC4-morphant embryos exhibited elongated cloacal cilia and lacked anterior kidney defects. Suppression of HDAC4 partially reversed the cilia shortening and anterior convolution defects caused by CaMK-II deficiency, whereas HDAC5 loss exacerbated these defects. EGFP-HDAC4, but not EGFP-HDAC5, translocated into the nucleus upon CaMK-II suppression in pronephric kidney cells. CONCLUSIONS These results support a model by which activated CaMK-II sequesters HDAC4 in the cytosol to enable primary cilia formation and kidney morphogenesis. Developmental Dynamics 247:807-817, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Hunter J Lee
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Sarah R Ingram
- Life Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Daniel K Mohammadi
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Gregory S Walsh
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Robert M Tombes
- Life Sciences, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
30
|
Malinova TS, Huveneers S. Sensing of Cytoskeletal Forces by Asymmetric Adherens Junctions. Trends Cell Biol 2018; 28:328-341. [DOI: 10.1016/j.tcb.2017.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022]
|
31
|
MTSS1 and SCAMP1 cooperate to prevent invasion in breast cancer. Cell Death Dis 2018; 9:344. [PMID: 29497041 PMCID: PMC5832821 DOI: 10.1038/s41419-018-0364-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/10/2018] [Accepted: 01/30/2018] [Indexed: 12/24/2022]
Abstract
Cell-cell adhesions constitute the structural "glue" that retains cells together and contributes to tissue organisation and physiological function. The integrity of these structures is regulated by extracellular and intracellular signals and pathways that act on the functional units of cell adhesion such as the cell adhesion molecules/adhesion receptors, the extracellular matrix (ECM) proteins and the cytoplasmic plaque/peripheral membrane proteins. In advanced cancer, these regulatory pathways are dysregulated and lead to cell-cell adhesion disassembly, increased invasion and metastasis. The Metastasis suppressor protein 1 (MTSS1) plays a key role in the maintenance of cell-cell adhesions and its loss correlates with tumour progression in a variety of cancers. However, the mechanisms that regulate its function are not well-known. Using a system biology approach, we unravelled potential interacting partners of MTSS1. We found that the secretory carrier-associated membrane protein 1 (SCAMP1), a molecule involved in post-Golgi recycling pathways and in endosome cell membrane recycling, enhances Mtss1 anti-invasive function in HER2+/ER-/PR- breast cancer, by promoting its protein trafficking leading to elevated levels of RAC1-GTP and increased cell-cell adhesions. This was clinically tested in HER2 breast cancer tissue and shown that loss of MTSS1 and SCAMP1 correlates with reduced disease-specific survival. In summary, we provide evidence of the cooperative roles of MTSS1 and SCAMP1 in preventing HER2+/ER-/PR- breast cancer invasion and we show that the loss of Mtss1 and Scamp1 results in a more aggressive cancer cell phenotype.
Collapse
|
32
|
Weidle UH, Dickopf S, Hintermair C, Kollmorgen G, Birzele F, Brinkmann U. The Role of micro RNAs in Breast Cancer Metastasis: Preclinical Validation and Potential Therapeutic Targets. Cancer Genomics Proteomics 2018; 15:17-39. [PMID: 29275360 PMCID: PMC5822183 DOI: 10.21873/cgp.20062] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/18/2022] Open
Abstract
Despite the approval of several molecular therapies in the last years, breast cancer-associated death ranks as the second highest in women. This is due to metastatic disease, which represents a challenge for treatment. A better understanding of the molecular mechanisms of metastasis is, therefore, of paramount importance. In this review we summarize the role of micro RNAs (miRs) involved in metastasis of breast cancer. We present an overview on metastasis-promoting, -suppressing and context-dependent miRs with both activities. We have categorized the corresponding miRs according to their target classes, interaction with stromal cells or exosomes. The pathways affected by individual miRs are outlined in regard to in vitro properties, activity in metastasis-related in vivo models and clinical significance. Current approaches that may be suitable for therapeutic inhibition or restauration of miR activity are outlined. Finally, we discuss the delivery bottlenecks which present as a major challenge in nucleic acid (miR)-based therapies.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Steffen Dickopf
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | | | - Gwendlyn Kollmorgen
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
33
|
Huang XY, Huang ZL, Niu T, Wu ZQ, Xu B, Xu YH, Huang XY, Zheng Q, Zhou J, Chen Z, Tang ZY. Missing-in-metastasis B (MIM-B) combined with caveolin-1 promotes metastasis of hepatocellular carcinoma. Oncotarget 2017; 8:95450-95465. [PMID: 29221140 PMCID: PMC5707034 DOI: 10.18632/oncotarget.20735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 08/04/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Increasing amounts of evidence indicate that Missing in metastasis B (MIM-B) promotes cancer metastasis. Here, we sought to better understand the mechanism through which MIM-B promotes tumor metastasis in hepatocellular carcinoma (HCC). METHODS We performed confocal microscopy analysis to determine the distributions of MIM-B and caveolin-1 and conducted co-immunoprecipitation assays to detect the interactions between MIM-B and caveolin-1 in vitro. We performed transwell assays to analyze the invasive ability of HCC cells. Changes in the expression levels of key genes and some molecular makers were detected by immunohistochemistry and western blotting in HCC tissue samples. RESULTS We found that MIM-B co-localizes with caveolin-1 and demonstrated that MIM-B and caveolin-1 interact in vitro. Repressing MIM-B and caveolin-1 expression inhibited the epidermal growth factor receptor signaling pathway. We overexpressed MIM-B and caveolin-1 in Hep3B cells, which enhanced Hep3B cell invasiveness. Furthermore, MHCC97H cell invasiveness was significantly decreased in cells in which MIM-B and caveolin-1 expression was inhibited. Additionally, we found that MIM-B and caveolin-1 were expressed at higher levels in HCC tissues than in paired normal tissues. Moreover, HCC patients with MIM-B and caveolin-1 up-regulation experienced significantly worse outcomes than controls (P < 0.001), and HCC patients with high MIM-B and caveolin-1 expression levels often developed pulmonary metastasis (P < 0.001). CONCLUSIONS MIM-B combined with caveolin-1 promotes metastasis of HCC, and elevated MIM-B and caveolin-1 expression levels are associated with a poor prognosis in HCC patients; therefore, MIM-B and caveolin-1 may represent novel targets for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Xiu-Yan Huang
- Department of General Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Zi-Li Huang
- Department of Radiology, Xuhui Central Hospital, Shanghai, P.R. China
| | - Tao Niu
- Department of General Surgery, People's Hospital of Menghai County, Yunnan Province, P.R. China
| | - Zhen-Qian Wu
- Department of General Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Bin Xu
- Department of General Surgery, The Tenth People's Hospital of Tongji University, Shanghai, P.R. China
| | - Yong-Hua Xu
- Department of Radiology, Xuhui Central Hospital, Shanghai, P.R. China
| | - Xin-Yu Huang
- Department of General Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Qi Zheng
- Department of General Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Jian Zhou
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Zi Chen
- Thayer School of Engineering, Norris Cotton Cancer Center, Dartmouth College, Hanover, NH, USA
| | - Zhao-You Tang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
34
|
Wild PS, Felix JF, Schillert A, Teumer A, Chen MH, Leening MJ, Völker U, Großmann V, Brody JA, Irvin MR, Shah SJ, Pramana S, Lieb W, Schmidt R, Stanton AV, Malzahn D, Smith AV, Sundström J, Minelli C, Ruggiero D, Lyytikäinen LP, Tiller D, Smith JG, Monnereau C, Di Tullio MR, Musani SK, Morrison AC, Pers TH, Morley M, Kleber ME, AortaGen Consortium, Aragam J, Benjamin EJ, Bis JC, Bisping E, Broeckel U, CHARGE-Heart Failure Consortium, Cheng S, Deckers JW, Del Greco M F, Edelmann F, Fornage M, Franke L, Friedrich N, Harris TB, Hofer E, Hofman A, Huang J, Hughes AD, Kähönen M, investigators KNHI, Kruppa J, Lackner KJ, Lannfelt L, Laskowski R, Launer LJ, Leosdottir M, Lin H, Lindgren CM, Loley C, MacRae CA, Mascalzoni D, Mayet J, Medenwald D, Morris AP, Müller C, Müller-Nurasyid M, Nappo S, Nilsson PM, Nuding S, Nutile T, Peters A, Pfeufer A, Pietzner D, Pramstaller PP, Raitakari OT, Rice KM, Rivadeneira F, Rotter JI, Ruohonen ST, Sacco RL, Samdarshi TE, Schmidt H, Sharp AS, Shields DC, Sorice R, Sotoodehnia N, Stricker BH, Surendran P, Thom S, Töglhofer AM, Uitterlinden AG, Wachter R, Völzke H, Ziegler A, Münzel T, März W, Cappola TP, Hirschhorn JN, Mitchell GF, et alWild PS, Felix JF, Schillert A, Teumer A, Chen MH, Leening MJ, Völker U, Großmann V, Brody JA, Irvin MR, Shah SJ, Pramana S, Lieb W, Schmidt R, Stanton AV, Malzahn D, Smith AV, Sundström J, Minelli C, Ruggiero D, Lyytikäinen LP, Tiller D, Smith JG, Monnereau C, Di Tullio MR, Musani SK, Morrison AC, Pers TH, Morley M, Kleber ME, AortaGen Consortium, Aragam J, Benjamin EJ, Bis JC, Bisping E, Broeckel U, CHARGE-Heart Failure Consortium, Cheng S, Deckers JW, Del Greco M F, Edelmann F, Fornage M, Franke L, Friedrich N, Harris TB, Hofer E, Hofman A, Huang J, Hughes AD, Kähönen M, investigators KNHI, Kruppa J, Lackner KJ, Lannfelt L, Laskowski R, Launer LJ, Leosdottir M, Lin H, Lindgren CM, Loley C, MacRae CA, Mascalzoni D, Mayet J, Medenwald D, Morris AP, Müller C, Müller-Nurasyid M, Nappo S, Nilsson PM, Nuding S, Nutile T, Peters A, Pfeufer A, Pietzner D, Pramstaller PP, Raitakari OT, Rice KM, Rivadeneira F, Rotter JI, Ruohonen ST, Sacco RL, Samdarshi TE, Schmidt H, Sharp AS, Shields DC, Sorice R, Sotoodehnia N, Stricker BH, Surendran P, Thom S, Töglhofer AM, Uitterlinden AG, Wachter R, Völzke H, Ziegler A, Münzel T, März W, Cappola TP, Hirschhorn JN, Mitchell GF, Smith NL, Fox ER, Dueker ND, Jaddoe VW, Melander O, Russ M, Lehtimäki T, Ciullo M, Hicks AA, Lind L, Gudnason V, Pieske B, Barron AJ, Zweiker R, Schunkert H, Ingelsson E, Liu K, Arnett DK, Psaty BM, Blankenberg S, Larson MG, Felix SB, Franco OH, Zeller T, Vasan RS, Dörr M. Large-scale genome-wide analysis identifies genetic variants associated with cardiac structure and function. J Clin Invest 2017; 127:1798-1812. [PMID: 28394258 PMCID: PMC5409098 DOI: 10.1172/jci84840] [Show More Authors] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/16/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Understanding the genetic architecture of cardiac structure and function may help to prevent and treat heart disease. This investigation sought to identify common genetic variations associated with inter-individual variability in cardiac structure and function. METHODS A GWAS meta-analysis of echocardiographic traits was performed, including 46,533 individuals from 30 studies (EchoGen consortium). The analysis included 16 traits of left ventricular (LV) structure, and systolic and diastolic function. RESULTS The discovery analysis included 21 cohorts for structural and systolic function traits (n = 32,212) and 17 cohorts for diastolic function traits (n = 21,852). Replication was performed in 5 cohorts (n = 14,321) and 6 cohorts (n = 16,308), respectively. Besides 5 previously reported loci, the combined meta-analysis identified 10 additional genome-wide significant SNPs: rs12541595 near MTSS1 and rs10774625 in ATXN2 for LV end-diastolic internal dimension; rs806322 near KCNRG, rs4765663 in CACNA1C, rs6702619 near PALMD, rs7127129 in TMEM16A, rs11207426 near FGGY, rs17608766 in GOSR2, and rs17696696 in CFDP1 for aortic root diameter; and rs12440869 in IQCH for Doppler transmitral A-wave peak velocity. Findings were in part validated in other cohorts and in GWAS of related disease traits. The genetic loci showed associations with putative signaling pathways, and with gene expression in whole blood, monocytes, and myocardial tissue. CONCLUSION The additional genetic loci identified in this large meta-analysis of cardiac structure and function provide insights into the underlying genetic architecture of cardiac structure and warrant follow-up in future functional studies. FUNDING For detailed information per study, see Acknowledgments.
Collapse
Affiliation(s)
- Philipp S. Wild
- Preventive Cardiology and Preventive Medicine, Department of Medicine 2, and
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- DZHK (German Centre for Cardiovascular Research), partner site RhineMain, Mainz, Germany
| | - Janine F. Felix
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Arne Schillert
- Institute for Medical Biometry and Statistics, University Lübeck, University Medical Center Schleswig-Holstein, Lübeck, Germany
- DZHK, partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK, partner site Greifswald, Greifswald, Germany
| | - Ming-Huei Chen
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Maarten J.G. Leening
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Uwe Völker
- DZHK, partner site Greifswald, Greifswald, Germany
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Vera Großmann
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Marguerite R. Irvin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sanjiv J. Shah
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Setia Pramana
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Wolfgang Lieb
- Institute of Epidemiology and Popgen Biobank, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Reinhold Schmidt
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Graz, Austria
| | - Alice V. Stanton
- Blood Pressure Unit, Beaumont Hospital, Dublin, Ireland
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Dörthe Malzahn
- Department of Genetic Epidemiology, University Medical Center, Georg-August University, Göttingen, Germany
| | - Albert Vernon Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Johan Sundström
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Cosetta Minelli
- Population Health and Occupational Disease, National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
| | - Daniela Ruggiero
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Daniel Tiller
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - J. Gustav Smith
- Department of Cardiology, Lund University and Skåne University Hospital, Lund, Sweden
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Center for Human Genetic Research and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Claire Monnereau
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- The Generation R Study Group and
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marco R. Di Tullio
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Solomon K. Musani
- Jackson Heart Study, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Alanna C. Morrison
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Tune H. Pers
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children’s Hospital, Boston, Massachusetts, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Statens Serum Institut, Department of Epidemiology Research, Copenhagen, Denmark
| | - Michael Morley
- Penn Cardiovascular Institute and Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marcus E. Kleber
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - AortaGen Consortium
- Members of the AortaGen Consortium and their affiliations are detailed in the Supplemental Acknowledgments
| | - Jayashri Aragam
- Harvard Medical School, Boston, Massachusetts, USA
- Veteran’s Administration Hospital, West Roxbury, Boston, Massachusetts, USA
| | - Emelia J. Benjamin
- National Heart, Lung, and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts, USA
- Sections of Cardiology, Preventive Medicine and Epidemiology, Department of Medicine, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, USA
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Egbert Bisping
- Department of Cardiology, Medical University Graz, Graz, Austria
| | | | | | - Susan Cheng
- National Heart, Lung, and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts, USA
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jaap W. Deckers
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Fabiola Del Greco M
- Center for Biomedicine, European Academy of Bolzano/Bozen, Bolzano, Italy – Affiliated institute of the University of Lübeck, Lübeck, Germany
| | - Frank Edelmann
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Myriam Fornage
- University of Texas Health Science Center, Houston, Texas, USA
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Nele Friedrich
- DZHK, partner site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Tamara B. Harris
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, NIH, Bethesda, Maryland, USA
| | - Edith Hofer
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Graz, Austria
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jie Huang
- Boston VA Research Institute, Boston, Massachusetts, USA
- Brigham and Women’s Hospital Division of Aging, Harvard Medical School, Boston, Massachusetts, USA
| | - Alun D. Hughes
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
- Department of Clinical Physiology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - KNHI investigators
- KNHI investigators and their affiliations are detailed in the Supplemental Acknowledgments
| | - Jochen Kruppa
- Institute for Medical Biometry and Statistics, University Lübeck, University Medical Center Schleswig-Holstein, Lübeck, Germany
- University of Veterinary Medicine, Foundation Institute of Veterinary Medicine and Genetics, Hannover, Germany
| | - Karl J. Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
| | - Lars Lannfelt
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Rafael Laskowski
- Department of Medicine 2, University Medical Center Mainz, Mainz, Germany
| | - Lenore J. Launer
- Neuroepidemiology Section, National Institute on Aging, NIH, Bethesda, Maryland, USA
| | - Margrét Leosdottir
- Department of Cardiology, Lund University, and Skåne University Hospital, Malmö, Sweden
| | - Honghuang Lin
- National Heart, Lung, and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts, USA
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Cecilia M. Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Christina Loley
- Institute for Medical Biometry and Statistics, University Lübeck, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Calum A. MacRae
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Deborah Mascalzoni
- Center for Biomedicine, European Academy of Bolzano/Bozen, Bolzano, Italy – Affiliated institute of the University of Lübeck, Lübeck, Germany
| | - Jamil Mayet
- International Centre for Circulatory Health, Hammersmith Hospital, London, United Kingdom
- NHLI, Imperial College London, London, United Kingdom
| | - Daniel Medenwald
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Andrew P. Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Department of Biostatistics, University of Liverpool, Liverpool, United Kingdom
| | - Christian Müller
- Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - Martina Müller-Nurasyid
- Department of Medicine I, Ludwig-Maximilians-University Munich, Munich, Germany
- DZHK, partner site Munich Heart Alliance, Munich, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefania Nappo
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Peter M. Nilsson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Sebastian Nuding
- Department of Medicine III, University Clinics Halle (Saale), Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Teresa Nutile
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Annette Peters
- DZHK, partner site Munich Heart Alliance, Munich, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Arne Pfeufer
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Diana Pietzner
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Peter P. Pramstaller
- Center for Biomedicine, European Academy of Bolzano/Bozen, Bolzano, Italy – Affiliated institute of the University of Lübeck, Lübeck, Germany
- Department of Neurology, General Central Hospital, Bolzano, Italy
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Olli T. Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Kenneth M. Rice
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- The Generation R Study Group and
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Saku T. Ruohonen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Ralph L. Sacco
- Department of Neurology and
- McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Departments of Public Health Sciences and Human Genomics, University of Miami, Miami, Florida, USA
| | - Tandaw E. Samdarshi
- Division of Cardiology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Helena Schmidt
- Institute of Molecular Biology and Biochemistry, Medical University Graz, Graz, Austria
| | - Andrew S.P. Sharp
- Department of Cardiology, Royal Devon and Exeter Hospital and University of Exeter, Exeter, United Kingdom
| | - Denis C. Shields
- UCD Conway Institute of Biomolecular and Biomedical Research and
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Rossella Sorice
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
- Division of Cardiology, University of Washington, Seattle, Washington, USA
| | - Bruno H. Stricker
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Inspectorate for Health Care, Utrecht, Netherlands
| | - Praveen Surendran
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Simon Thom
- International Centre for Circulatory Health, Hammersmith Hospital, London, United Kingdom
- NHLI, Imperial College London, London, United Kingdom
| | - Anna M. Töglhofer
- Institute of Molecular Biology and Biochemistry, Medical University Graz, Graz, Austria
| | - André G. Uitterlinden
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rolf Wachter
- Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August University, Göttingen, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK, partner site Greifswald, Greifswald, Germany
| | - Andreas Ziegler
- Institute for Medical Biometry and Statistics, University Lübeck, University Medical Center Schleswig-Holstein, Lübeck, Germany
- DZHK, partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
- Zentrum für Klinische Studien, Universität Lübeck, Lübeck, Germany
| | - Thomas Münzel
- DZHK (German Centre for Cardiovascular Research), partner site RhineMain, Mainz, Germany
- Department of Medicine 2, University Medical Center Mainz, Mainz, Germany
| | - Winfried März
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Synlab Academy, Synlab Services GmbH, Mannheim, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Thomas P. Cappola
- Penn Cardiovascular Institute and Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joel N. Hirschhorn
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Nicholas L. Smith
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Group Health Research Institute, Group Health Cooperative, Seattle, Washington, USA
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, Washington, USA
| | - Ervin R. Fox
- Division of Cardiology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Nicole D. Dueker
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Vincent W.V. Jaddoe
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- The Generation R Study Group and
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Olle Melander
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Martin Russ
- Department of Medicine III, University Clinics Halle (Saale), Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- Helios-Amperklinikum Dachau, Dachau, Germany
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Marina Ciullo
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Andrew A. Hicks
- Center for Biomedicine, European Academy of Bolzano/Bozen, Bolzano, Italy – Affiliated institute of the University of Lübeck, Lübeck, Germany
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Burkert Pieske
- Department of Cardiology, Medical University Graz, Graz, Austria
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- German Heart Institute Berlin DHZB, Department of Internal Medicine/Cardiology, Berlin, Germany
| | - Anthony J. Barron
- International Centre for Circulatory Health, Hammersmith Hospital, London, United Kingdom
- NHLI, Imperial College London, London, United Kingdom
| | - Robert Zweiker
- Department of Cardiology, Medical University Graz, Graz, Austria
| | - Heribert Schunkert
- DZHK, partner site Munich Heart Alliance, Munich, Germany
- Deutsches Herzzentrum, Technische Universität München, Munich, Germany
| | - Erik Ingelsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Kiang Liu
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Donna K. Arnett
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bruce M. Psaty
- Group Health Research Institute, Group Health Cooperative, Seattle, Washington, USA
- Cardiovacular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, Washington, USA
| | - Stefan Blankenberg
- DZHK, partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - Martin G. Larson
- Biostatistics Department, Boston University School of Public Health, Boston, Massachusetts, USA
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA
| | - Stephan B. Felix
- DZHK, partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Oscar H. Franco
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Tanja Zeller
- DZHK, partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - Ramachandran S. Vasan
- National Heart, Lung, and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts, USA
- Sections of Cardiology, Preventive Medicine and Epidemiology, Department of Medicine, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, USA
| | - Marcus Dörr
- DZHK, partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
35
|
Li L, Baxter SS, Gu N, Ji M, Zhan X. Missing-in-metastasis protein downregulates CXCR4 by promoting ubiquitylation and interaction with small Rab GTPases. J Cell Sci 2017; 130:1475-1485. [PMID: 28264927 DOI: 10.1242/jcs.198937] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/27/2017] [Indexed: 01/09/2023] Open
Abstract
Surface expression of chemokine receptor CXCR4 is downregulated by missing-in-metastasis protein (MIM; also known as MTSS1), a member of the inverse BAR (I-BAR)-domain protein family that recognizes and generates membranes with negative curvature. Yet, the mechanism for the regulation is unknown. Here, we show that MIM forms a complex with CXCR4 by binding to E3 ubiquitin ligase AIP4 (also known as ITCH) in response to stromal cell-derived factor 1 (SDF-1; also known as CXCL12). Overexpression of MIM promoted CXCR4 ubiquitylation, inhibited cellular response to SDF-1, caused accumulation and aggregation of multivesicular bodies (MVBs) in the cytoplasm, and promoted CXCR4 sorting into MVBs in a manner depending on binding to AIP4. In response to SDF-1, MIM also bound transiently to the small GTPase Rab5 at 5 min and to Rab7 at 30 min. Binding to Rab7 requires an N-terminal coiled-coil motif, deletion of which abolished MIM-mediated MVB formation and CXCR4 internalization. Our results unveil a previously unknown property of MIM that establishes the linkage of protein ubiquitylation with Rab-guided trafficking of CXCR4 in endocytic vesicles.
Collapse
Affiliation(s)
- Lushen Li
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.,Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shaneen S Baxter
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ning Gu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Min Ji
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xi Zhan
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA .,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
36
|
Mtss1 promotes maturation and maintenance of cerebellar neurons via splice variant-specific effects. Brain Struct Funct 2017; 222:2787-2805. [DOI: 10.1007/s00429-017-1372-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 01/17/2017] [Indexed: 11/26/2022]
|
37
|
Fahrenkamp D, Herrmann O, Koschmieder S, Brümmendorf TH, Schemionek M. Mtss1 (CSC156) mutant mice fail to display efficient Mtss1 protein depletion. Leukemia 2017; 31:1017-1019. [PMID: 28167834 DOI: 10.1038/leu.2017.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- D Fahrenkamp
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - O Herrmann
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - S Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - T H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - M Schemionek
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
38
|
Luxen D, Gielen GH, Waha A, Isselstein L, Müller T, Koch P, Hammes J, Becker A, Simon M, Wurst P, Endl E, Pietsch T, Gessi M, Waha A. MTSS1 is epigenetically regulated in glioma cells and inhibits glioma cell motility. Transl Oncol 2017; 10:70-79. [PMID: 27988423 PMCID: PMC5167248 DOI: 10.1016/j.tranon.2016.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 12/23/2022] Open
Abstract
Epigenetic silencing by DNA methylation in brain tumors has been reported for many genes, however, their function on pathogenesis needs to be evaluated. We investigated the MTSS1 gene, identified as hypermethylated by differential methylation hybridization (DMH). Fifty-nine glioma tissue samples and seven glioma cell lines were examined for hypermethylation of the MTSS1 promotor, MTSS1 expression levels and gene dosage. GBM cell lines were treated with demethylating agents and interrogated for functional consequences of MTSS1 expression after transient transfection. Hypermethylation was significantly associated with IDH1/2 mutation. Comparative SNP analysis indicates higher incidence of loss of heterozygosity of MTSS1 in anaplastic astrocytomas and secondary glioblastomas as well as hypermethylation of the remaining allele. Reversal of promoter hypermethylation results in an increased MTSS1 expression. Cell motility was significantly inhibited by MTSS1 overexpression without influencing cell growth or apoptosis. Immunofluorescence analysis of MTSS1 in human astrocytes indicates co-localization with actin filaments. MTSS1 is down-regulated by DNA methylation in glioblastoma cell lines and is part of the G-CIMP phenotype in primary glioma tissues. Our data on normal astrocytes suggest a function of MTSS1 at focal contact structures with an impact on migratory capacity but no influence on apoptosis or cellular proliferation.
Collapse
Affiliation(s)
- Daniel Luxen
- Department of Neuropathology, University of Bonn, Germany
| | | | - Anke Waha
- Department of Neuropathology, University of Bonn, Germany
| | | | - Tim Müller
- Department of Neuropathology, University of Bonn, Germany
| | - Philipp Koch
- Institute of Reconstructive Neurobiology, LIFE & BRAIN, University of Bonn, Germany
| | | | - Albert Becker
- Department of Neuropathology, University of Bonn, Germany
| | | | - Peter Wurst
- Department of Molecular Medicine and Experimental Immunology, (Core Facility Flow Cytometry) University of Bonn, Germany
| | - Elmar Endl
- Department of Molecular Medicine and Experimental Immunology, (Core Facility Flow Cytometry) University of Bonn, Germany
| | | | - Marco Gessi
- Department of Neuropathology, University of Bonn, Germany
| | - Andreas Waha
- Department of Neuropathology, University of Bonn, Germany.
| |
Collapse
|
39
|
Redundant functions of I-BAR family members, IRSp53 and IRTKS, are essential for embryonic development. Sci Rep 2017; 7:40485. [PMID: 28067313 PMCID: PMC5220365 DOI: 10.1038/srep40485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/06/2016] [Indexed: 12/29/2022] Open
Abstract
The insulin receptor substrate of 53 kDa, IRSp53, is an adaptor protein that works with activated GTPases, Cdc42 and Rac, to modulate actin dynamics and generate membrane protrusions in response to cell signaling. Adult mice that lack IRSp53 fail to regulate synaptic plasticity and exhibit hippocampus-associated learning deficiencies. Here, we show that 60% of IRSp53 null embryos die at mid to late gestation, indicating a vital IRSp53 function in embryonic development. We find that IRSp53 KO embryos displayed pleiotropic phenotypes such as developmental delay, oligodactyly and subcutaneous edema, and died of severely impaired cardiac and placental development. We further show that double knockout of IRSp53 and its closest family member, IRTKS, resulted in exacerbated placental abnormalities, particularly in spongiotrophoblast differentiation and development, giving rise to complete embryonic lethality. Hence, our findings demonstrate a hitherto under-appreciated IRSp53 function in embryonic development, and further establish an essential genetic interaction between IRSp53 and IRTKS in placental formation.
Collapse
|
40
|
Yu J, Lin S, Wang M, Liang L, Zou Z, Zhou X, Wang M, Chen P, Wang Y. Metastasis suppressor 1 regulates neurite outgrowth in primary neuron cultures. Neuroscience 2016; 333:123-31. [DOI: 10.1016/j.neuroscience.2016.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 06/16/2016] [Accepted: 07/02/2016] [Indexed: 10/25/2022]
|
41
|
Zhan T, Cao C, Li L, Gu N, Civin CI, Zhan X. MIM regulates the trafficking of bone marrow cells via modulating surface expression of CXCR4. Leukemia 2016; 30:1327-34. [PMID: 26965284 PMCID: PMC4889520 DOI: 10.1038/leu.2016.39] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/15/2015] [Accepted: 02/15/2016] [Indexed: 12/21/2022]
Abstract
Missing in metastasis (MIM) is abundantly expressed in hematopoietic cells. Here we characterized the impact of MIM deficiency on murine bone marrow (BM) cells. Although MIM-/- cells proliferated similarly to wild type (WT), they exhibited stronger response to chemokine SDF-1, increase in surface expression of CXCR4, impaired CXCR4 internalization and constitutive activation of Rac, Cdc42 and p38. Transplantation of MIM-/- BM cells into lethally irradiated mice showed enhanced homing to BM, which was abolished when mice were pretreated with a p38 antagonist. Interestingly, MIM-/- BM cells, including hematopoietic stem and progenitor cells (HSPCs), showed 2 to 5-fold increase in mobilization into the peripheral blood upon treatment with AMD3100. In vitro, MIM-/- leukocytes were susceptible to AMD3100 and maintained increased response to AMD3100 for mobilization even after transfer into wild type mice. MIM-/- mice had also a higher level of SDF-1 in the circulation. Our data highlighted an unprecedented role of MIM in the homoeostasis of BM cells, including HSPCs, through modulation of the CXCR4/SDF-1 axis and interactions of BM leukocytes with their microenvironments.
Collapse
Affiliation(s)
- T Zhan
- Department of Pathology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - C Cao
- Department of Pathology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L Li
- Department of Pathology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA.,China Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| | - N Gu
- China Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| | - C I Civin
- Department of Pediatrics, Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Departments of Pediatrics and Physiology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - X Zhan
- Department of Pathology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA.,Departments of Pediatrics and Physiology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
42
|
Zhou L, Li J, Shao QQ, Guo JC, Liang ZY, Zhou WX, Zhang TP, You L, Zhao YP. Expression and Significances of MTSS1 in Pancreatic Cancer. Pathol Oncol Res 2016. [PMID: 26198729 DOI: 10.1007/s12253-015-9963-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Thus far, expression of metastasis suppressor 1 (MTSS1), its clinicopathologic and prognostic significances in pancreatic cancer (PC) remain unknown. Expression of MTSS1 was detected by Western blotting in PC cell lines, and by tissue microarray-based immunohistochemical staining in paired tumor and non-tumor samples from 242 patients with PC. Furthermore, the correlations between MTSS1 expression and clinicopathologic variables as well as overall survival were evaluated. In PC cell lines, MTSS1 was differentially expressed. In addition, MTSS1 expression was significantly lower in tumor than in non-tumor tissues (P < 0.001 in both McNemar and Mann-Whitney U tests). High tumoral expression of MTSS1 was closely associated with absence of lymph node metastasis (P = 0.023). Univariate analysis found that high MTSS1 expression in tumor tissues was a strong predictor of favorable overall survival in the whole cohort (P < 0.001). Besides, its impacts on prognosis were also observed in nine out of fourteen subgroups. Finally, MTSS1 expression was identified as an independent prognostic marker in the whole cohort (P = 0.031) as well as in six subgroups (P < 0.05), as shown by multivariate Cox regression test. Down-regulation of MTSS1 expression is evident in PC, and is associated with lymph node metastasis and poor prognosis.
Collapse
Affiliation(s)
- Li Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Jian Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Qian-Qian Shao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Jun-Chao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China.
| | - Zhi-Yong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Wei-Xun Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Tai-Ping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Yu-Pei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
43
|
Fanale D, Barraco N, Listì A, Bazan V, Russo A. Non-coding RNAs Functioning in Colorectal Cancer Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 937:93-108. [PMID: 27573896 DOI: 10.1007/978-3-319-42059-2_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, the hypothesis of the presence of tumor-initiating cancer stem cells (CSCs) has received a considerable support. This model suggested the existence of CSCs which, thanks to their self-renewal properties, are able to drive the expansion and the maintenance of malignant cell populations with invasive and metastatic potential in cancer. Increasing evidence showed the ability of such cells to acquire self-renewal, multipotency, angiogenic potential, immune evasion, symmetrical and asymmetrical divisions which, along with the presence of several DNA repair mechanisms, further enhance their oncogenic potential making them highly resistant to common anticancer treatments. The main signaling pathways involved in the homeostasis of colorectal (CRC) stem cells are the Wnt, Notch, Sonic Hedgehog, and Bone Morfogenic Protein (BMP) pathways, which are mostly responsible for all the features that have been widely referred to stem cells. The same pathways have been identified in colorectal cancer stem cells (CRCSCs), conferring a more aggressive phenotype compared to non-stem CRC cells. Recently, several evidences suggested that non-coding RNAs (ncRNAs) may play a crucial role in the regulation of different biological mechanisms in CRC, by modulating the expression of critical stem cell transcription factors that have been found active in CSCs. In this chapter, we will discuss the involvement of ncRNAs, especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in stemness acquisition and maintenance by CRCSCs, through the regulation of pathways modulating the CSC phenotype and growth, carcinogenesis, differentiation, and epithelial to mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Nadia Barraco
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Angela Listì
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Viviana Bazan
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy.
| |
Collapse
|
44
|
MIM-Induced Membrane Bending Promotes Dendritic Spine Initiation. Dev Cell 2015; 33:644-59. [PMID: 26051541 DOI: 10.1016/j.devcel.2015.04.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/28/2015] [Accepted: 04/21/2015] [Indexed: 11/21/2022]
Abstract
Proper morphogenesis of neuronal dendritic spines is essential for the formation of functional synaptic networks. However, it is not known how spines are initiated. Here, we identify the inverse-BAR (I-BAR) protein MIM/MTSS1 as a nucleator of dendritic spines. MIM accumulated to future spine initiation sites in a PIP2-dependent manner and deformed the plasma membrane outward into a proto-protrusion via its I-BAR domain. Unexpectedly, the initial protrusion formation did not involve actin polymerization. However, PIP2-dependent activation of Arp2/3-mediated actin assembly was required for protrusion elongation. Overexpression of MIM increased the density of dendritic protrusions and suppressed spine maturation. In contrast, MIM deficiency led to decreased density of dendritic protrusions and larger spine heads. Moreover, MIM-deficient mice displayed altered glutamatergic synaptic transmission and compatible behavioral defects. Collectively, our data identify an important morphogenetic pathway, which initiates spine protrusions by coupling phosphoinositide signaling, direct membrane bending, and actin assembly to ensure proper synaptogenesis.
Collapse
|
45
|
Schemionek M, Kharabi Masouleh B, Klaile Y, Krug U, Hebestreit K, Schubert C, Dugas M, Büchner T, Wörmann B, Hiddemann W, Berdel WE, Brümmendorf TH, Müller-Tidow C, Koschmieder S. Identification of the Adapter Molecule MTSS1 as a Potential Oncogene-Specific Tumor Suppressor in Acute Myeloid Leukemia. PLoS One 2015; 10:e0125783. [PMID: 25996952 PMCID: PMC4440712 DOI: 10.1371/journal.pone.0125783] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/23/2015] [Indexed: 11/20/2022] Open
Abstract
The adapter protein metastasis suppressor 1 (MTSS1) is implicated as a tumor suppressor or tumor promoter, depending on the type of solid cancer. Here, we identified Mtss1 expression to be increased in AML subsets with favorable outcome, while suppressed in high risk AML patients. High expression of MTSS1 predicted better clinical outcome of patients with normal-karyotype AML. Mechanistically, MTSS1 expression was negatively regulated by FLT3-ITD signaling but enhanced by the AML1-ETO fusion protein. DNMT3B, a negative regulator of MTSS1, showed strong binding to the MTSS1 promoter in PML-RARA positive but not AML1-ETO positive cells, suggesting that AML1-ETO leads to derepression of MTSS1. Pharmacological treatment of AML cell lines carrying the FLT3-ITD mutation with the specific FLT3 inhibitor PKC-412 caused upregulation of MTSS1. Moreover, treatment of acute promyelocytic cells (APL) with all-trans retinoic acid (ATRA) increased MTSS1 mRNA levels. Taken together, our findings suggest that MTSS1 might have a context-dependent function and could act as a tumor suppressor, which is pharmacologically targetable in AML patients.
Collapse
Affiliation(s)
- Mirle Schemionek
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Behzad Kharabi Masouleh
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Yvonne Klaile
- Department of Urology, University of Muenster, Muenster, Germany
| | - Utz Krug
- Department of Medicine A, Hematology, Oncology, Pneumology, University of Muenster, Muenster, Germany
| | - Katja Hebestreit
- Institute for Medical Informatics, University of Muenster, Muenster, Germany
| | - Claudia Schubert
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Martin Dugas
- Institute for Medical Informatics, University of Muenster, Muenster, Germany
| | - Thomas Büchner
- Department of Medicine A, Hematology, Oncology, Pneumology, University of Muenster, Muenster, Germany
| | - Bernhard Wörmann
- Membership of the German Society of Hematology and Oncology (DGHO), Berlin, Germany
| | - Wolfgang Hiddemann
- Department of Internal Medicine III, University of Munich, Munich, Germany
- Clinical Cooperation Group Acute Myeloid Leukemia, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Munich, Germany
| | - Wolfgang E. Berdel
- Department of Medicine A, Hematology, Oncology, Pneumology, University of Muenster, Muenster, Germany
| | - Tim H. Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Carsten Müller-Tidow
- Department of Medicine A, Hematology, Oncology, Pneumology, University of Muenster, Muenster, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- * E-mail:
| |
Collapse
|
46
|
Morikawa Y, Zhang M, Heallen T, Leach J, Tao G, Xiao Y, Bai Y, Li W, Willerson JT, Martin JF. Actin cytoskeletal remodeling with protrusion formation is essential for heart regeneration in Hippo-deficient mice. Sci Signal 2015; 8:ra41. [PMID: 25943351 DOI: 10.1126/scisignal.2005781] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mammalian heart regenerates poorly, and damage commonly leads to heart failure. Hippo signaling is an evolutionarily conserved kinase cascade that regulates organ size during development and prevents adult mammalian cardiomyocyte regeneration by inhibiting the transcriptional coactivator Yap, which also responds to mechanical signaling in cultured cells to promote cell proliferation. To identify Yap target genes that are activated during cardiomyocyte renewal and regeneration, we performed Yap chromatin immunoprecipitation sequencing (ChIP-Seq) and mRNA expression profiling in Hippo signaling-deficient mouse hearts. We found that Yap directly regulated genes encoding cell cycle progression proteins, as well as genes encoding proteins that promote F-actin polymerization and that link the actin cytoskeleton to the extracellular matrix. Included in the latter group were components of the dystrophin glycoprotein complex, a large molecular complex that, when defective, results in muscular dystrophy in humans. Cardiomyocytes near the scar tissue of injured Hippo signaling-deficient mouse hearts showed cellular protrusions suggestive of cytoskeletal remodeling. The hearts of mdx mutant mice, which lack functional dystrophin and are a model for muscular dystrophy, showed impaired regeneration and cytoskeleton remodeling, but normal cardiomyocyte proliferation, after injury. Our data showed that, in addition to genes encoding cell cycle progression proteins, Yap regulated genes that enhance cytoskeletal remodeling. Thus, blocking the Hippo pathway input to Yap may tip the balance so that Yap responds to mechanical changes associated with heart injury to promote repair.
Collapse
Affiliation(s)
| | - Min Zhang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA. Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | | | - John Leach
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ge Tao
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yang Xiao
- Texas Heart Institute, Houston, TX 77030, USA. Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Yan Bai
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA. Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Wei Li
- Division of Biostatistics, Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - James F Martin
- Texas Heart Institute, Houston, TX 77030, USA. Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA. Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA. Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
47
|
Kedmi M, Ben-Chetrit N, Körner C, Mancini M, Ben-Moshe NB, Lauriola M, Lavi S, Biagioni F, Carvalho S, Cohen-Dvashi H, Schmitt F, Wiemann S, Blandino G, Yarden Y. EGF induces microRNAs that target suppressors of cell migration: miR-15b targets MTSS1 in breast cancer. Sci Signal 2015; 8:ra29. [PMID: 25783158 DOI: 10.1126/scisignal.2005866] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Growth factors promote tumor growth and metastasis. We found that epidermal growth factor (EGF) induced a set of 22 microRNAs (miRNAs) before promoting the migration of mammary cells. These miRNAs were more abundant in human breast tumors relative to the surrounding tissue, and their abundance varied among breast cancer subtypes. One of these miRNAs, miR-15b, targeted the 3' untranslated region of MTSS1 (metastasis suppressor protein 1). Although xenografts in which MTSS1 was knocked down grew more slowly in mice initially, longer-term growth was unaffected. Knocking down MTSS1 increased migration and Matrigel invasion of nontransformed mammary epithelial cells. Overexpressing MTSS1 in an invasive cell line decreased cell migration and invasiveness, decreased the formation of invadopodia and actin stress fibers, and increased the formation of cellular junctions. In tissues from breast cancer patients with the aggressive basal subtype, an inverse correlation occurred with the high expression of miRNA-15b and the low expression of MTSS1. Furthermore, low abundance of MTSS1 correlated with poor patient prognosis. Thus, growth factor-inducible miRNAs mediate mechanisms underlying the progression of cancer.
Collapse
Affiliation(s)
- Merav Kedmi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nir Ben-Chetrit
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Cindy Körner
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Maicol Mancini
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Noa Bossel Ben-Moshe
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mattia Lauriola
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sara Lavi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Francesca Biagioni
- Translational Oncogenomics Unit, Italian National Cancer Institute "Regina Elena," Rome 00144, Italy
| | - Silvia Carvalho
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hadas Cohen-Dvashi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Fernando Schmitt
- Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto and Department of Pathology, University Health Network, Toronto, Ontario M5C 2C4, Canada. IPATIMUP, University of Porto, Porto 4200-465, Portugal
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Giovanni Blandino
- Translational Oncogenomics Unit, Italian National Cancer Institute "Regina Elena," Rome 00144, Italy
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
48
|
Xu X, Ayub B, Liu Z, Serna VA, Qiang W, Liu Y, Hernando E, Zabludoff S, Kurita T, Kong B, Wei JJ. Anti-miR182 reduces ovarian cancer burden, invasion, and metastasis: an in vivo study in orthotopic xenografts of nude mice. Mol Cancer Ther 2014; 13:1729-39. [PMID: 24825857 DOI: 10.1158/1535-7163.mct-13-0982] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
High-grade serous ovarian carcinoma (HGSOC) is a fatal disease, and its grave outcome is largely because of widespread metastasis at the time of diagnosis. Current chemotherapies reduce tumor burden, but they do not provide long-term benefits for patients with cancer. The aggressive tumor growth and metastatic behavior characteristic of these tumors demand novel treatment options such as anti-microRNA treatment, which is emerging as a potential modality for cancer therapy. MicroRNA-182 (miR182) overexpression contributes to aggressive ovarian cancer, largely by its negative regulation of multiple tumor suppressor genes involved in tumor growth, invasion, metastasis, and DNA instability. In this study, we examined the therapeutic potential of anti-miR182 utilizing the animal orthotopic model to mimic human ovarian cancer using ovarian cancer cells SKOV3 (intrabursal xenografts) and OVCAR3 (intraperitoneal injection). These models provide a valuable model system for the investigation of ovarian cancer therapy in vivo. Through a combination of imaging, histological, and molecular analyses, we found that anti-miR182 treatment can significantly reduce tumor burden (size), local invasion, and distant metastasis compared with its control in both models. The bases of anti-miR182 treatment are mainly through the restoration of miR182 target expression, including but not limited to BRCA1, FOXO3a, HMGA2, and MTSS1. Overall, our results strongly suggest that anti-miR182 can potentially be used as a therapeutic modality in treating HGSOC.
Collapse
Affiliation(s)
- Xiaofei Xu
- Authors' Affiliations: Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University; Pathology and
| | | | - Zhaojian Liu
- Institute of Genetics, Shandong University School of Medicine, Jinan, Shandong, China; Departments of Pathology and
| | | | - Wenan Qiang
- Pathology and Obstetrics and Gynecology; Robert H. Lurie Comprehensive Cancer Center, Northwestern University School of Medicine, Chicago, Illinois
| | | | - Eva Hernando
- Department of Pathology, New York University, New York, New York; and
| | | | - Takeshi Kurita
- Obstetrics and Gynecology; Robert H. Lurie Comprehensive Cancer Center, Northwestern University School of Medicine, Chicago, Illinois
| | - Beihua Kong
- Authors' Affiliations: Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University;
| | - Jian-Jun Wei
- Pathology and Obstetrics and Gynecology; Robert H. Lurie Comprehensive Cancer Center, Northwestern University School of Medicine, Chicago, Illinois;
| |
Collapse
|
49
|
Mertz KD, Pathria G, Wagner C, Saarikangas J, Sboner A, Romanov J, Gschaider M, Lenz F, Neumann F, Schreiner W, Nemethova M, Glassmann A, Lappalainen P, Stingl G, Small JV, Fink D, Chin L, Wagner SN. MTSS1 is a metastasis driver in a subset of human melanomas. Nat Commun 2014; 5:3465. [PMID: 24632752 DOI: 10.1038/ncomms4465] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 02/18/2014] [Indexed: 12/21/2022] Open
Abstract
In cancers with a highly altered genome, distinct genetic alterations drive subsets rather than the majority of individual tumours. Here we use a sequential search across human tumour samples for transcript outlier data points with associated gene copy number variations that correlate with patient's survival to identify genes with pro-invasive functionality. Employing loss and gain of function approaches in vitro and in vivo, we show that one such gene, MTSS1, promotes the ability of melanocytic cells to metastasize and engages actin dynamics via Rho-GTPases and cofilin in this process. Indeed, high MTSS1 expression defines a subgroup of primary melanomas with unfavourable prognosis. These data underscore the biological, clinical and potential therapeutic implications of molecular subsets within genetically complex cancers.
Collapse
Affiliation(s)
- Kirsten D Mertz
- 1] Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria [2] [3]
| | - Gaurav Pathria
- 1] Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria [2]
| | - Christine Wagner
- 1] Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria [2]
| | - Juha Saarikangas
- 1] Institute of Biotechnology, University of Helsinki, 00100 Helsinki, Finland [2]
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York 10021, USA
| | - Julia Romanov
- Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Melanie Gschaider
- Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Florian Lenz
- Section for Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria
| | - Friederike Neumann
- Section for Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Schreiner
- Section for Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria
| | - Maria Nemethova
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | | | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, 00100 Helsinki, Finland
| | - Georg Stingl
- Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - J Victor Small
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Dieter Fink
- Institute for Laboratory Animal Sciences, Department of Biomedical Sciences, University for Veterinary Medicine, 1210 Vienna, Austria
| | - Lynda Chin
- Department of Genomic Medicine and Institute for Applied Cancer Science, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Stephan N Wagner
- 1] Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria [2] Center for Molecular Medicine (CeMM), Austrian Academy of Sciences, 1090 Vienna, Austria
| |
Collapse
|
50
|
Linkner J, Witte G, Zhao H, Junemann A, Nordholz B, Runge-Wollmann P, Lappalainen P, Faix J. The inverse BAR-domain protein IBARa drives membrane remodelling to control osmoregulation, phagocytosis and cytokinesis. J Cell Sci 2014; 127:1279-92. [DOI: 10.1242/jcs.140756] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Here, we analyzed the single I-BAR family member IBARa from D. discoideum. The X-ray structure of the N-terminal I-BAR domain solved at 2.2 Å resolution revealed an all-α helical structure that self-associates into a 165 Å zeppelin-shaped antiparallel dimer. The structural data are consistent with its shape in solution obtained by small-angle X-ray-scattering. Cosedimentation, fluorescence-anisotropy as well as fluorescence and electron microscopy revealed the I-BAR domain to bind preferentially to phosphoinositide-containing vesicles and drive the formation of negatively curved tubules. Immunofluorescence labelling further showed accumulation of endogenous IBARa at the tips of filopodia, the rim of constricting phagocytic cups, in foci connecting dividing cells during the final stage of cytokinesis, and most prominently at the osmoregulatory contractile vacuole (CV). Consistently, IBARa-null mutants displayed defects in CV formation and discharge, growth, phagocytosis and mitotic cell division, whereas filopodia formation was not compromised. Of note, IBARa-null mutants were also strongly impaired in cell spreading. Together, these data suggest IBARa to constitute an important regulator of numerous cellular processes intimately linked with the dynamic rearrangement of cellular membranes.
Collapse
|