1
|
Kadokura H, Harada N, Yamaki S, Hirai N, Tsukuda R, Azuma K, Amagai Y, Nakamura D, Yanagitani K, Taguchi H, Kohno K, Inaba K. Development of luciferase-based highly sensitive reporters that detect ER-associated protein biogenesis abnormalities. iScience 2024; 27:111189. [PMID: 39555403 PMCID: PMC11564982 DOI: 10.1016/j.isci.2024.111189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/01/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Localization to the endoplasmic reticulum (ER) and subsequent disulfide bond formation are crucial processes governing the biogenesis of secretory pathway proteins in eukaryotes. Hence, comprehending the mechanisms underlying these processes is important. Here, we have engineered firefly luciferase (FLuc) as a tool to detect deficiencies in these processes within mammalian cells. To achieve this, we introduced multiple cysteine substitutions into FLuc and targeted it to the ER. The reporter exhibited FLuc activity in response to defects in protein localization or disulfide bond formation within the ER. Notably, this system exhibited outstanding sensitivity, reproducibility, and convenience in detecting abnormalities in these processes. We applied this system to observe a protein translocation defect induced by an inhibitor of HIV receptor biogenesis. Moreover, utilizing the system, we showed that modulating LMF1 levels dramatically impacted the ER's redox environment, confirming that LMF1 plays some critical role in the redox control of the ER.
Collapse
Affiliation(s)
- Hiroshi Kadokura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Kanagawa 226-8501, Japan
| | - Nanshi Harada
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Satoshi Yamaki
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Naoya Hirai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Kanagawa 226-8501, Japan
| | - Ryusuke Tsukuda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Kota Azuma
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Yuta Amagai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Daisuke Nakamura
- Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kota Yanagitani
- Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hideki Taguchi
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Kanagawa 226-8501, Japan
| | - Kenji Kohno
- Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Graduate School of Science, University of Hyogo, Harima Science Garden City, Hyogo 678-1297, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
2
|
Pedre B. A guide to genetically-encoded redox biosensors: State of the art and opportunities. Arch Biochem Biophys 2024; 758:110067. [PMID: 38908743 DOI: 10.1016/j.abb.2024.110067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Genetically-encoded redox biosensors have become invaluable tools for monitoring cellular redox processes with high spatiotemporal resolution, coupling the presence of the redox-active analyte with a change in fluorescence signal that can be easily recorded. This review summarizes the available fluorescence recording methods and presents an in-depth classification of the redox biosensors, organized by the analytes they respond to. In addition to the fluorescent protein-based architectures, this review also describes the recent advances on fluorescent, chemigenetic-based redox biosensors and other emerging chemigenetic strategies. This review examines how these biosensors are designed, the biosensors sensing mechanism, and their practical advantages and disadvantages.
Collapse
Affiliation(s)
- Brandán Pedre
- Biochemistry, Molecular and Structural Biology Unit, Department of Chemistry, KU Leuven, Belgium.
| |
Collapse
|
3
|
Lin H, Wang L, Jiang X, Wang J. Glutathione dynamics in subcellular compartments and implications for drug development. Curr Opin Chem Biol 2024; 81:102505. [PMID: 39053236 PMCID: PMC11722958 DOI: 10.1016/j.cbpa.2024.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Glutathione (GSH) is a pivotal tripeptide antioxidant essential for maintaining cellular redox homeostasis and regulating diverse cellular processes. Subcellular compartmentalization of GSH underscores its multifaceted roles across various organelles including the cytosol, mitochondria, endoplasmic reticulum, and nucleus, each exhibiting distinct regulatory mechanisms. Perturbations in GSH dynamics contribute to pathophysiological conditions, emphasizing the clinical significance of understanding its intricate regulation. This review consolidates current knowledge on subcellular GSH dynamics, highlighting its implications in drug development, particularly in covalent drug design and antitumor strategies targeting intracellular GSH levels. Challenges and future directions in deciphering subcellular GSH dynamics are discussed, advocating for innovative methodologies to advance our comprehension and facilitate the development of precise therapeutic interventions based on GSH modulation.
Collapse
Affiliation(s)
- Hanfeng Lin
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lingfei Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiqian Jiang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jin Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Marchetti M, Ronda L, Cozzi M, Bettati S, Bruno S. Genetically Encoded Biosensors for the Fluorescence Detection of O 2 and Reactive O 2 Species. SENSORS (BASEL, SWITZERLAND) 2023; 23:8517. [PMID: 37896609 PMCID: PMC10611200 DOI: 10.3390/s23208517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/07/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
The intracellular concentrations of oxygen and reactive oxygen species (ROS) in living cells represent critical information for investigating physiological and pathological conditions. Real-time measurement often relies on genetically encoded proteins that are responsive to fluctuations in either oxygen or ROS concentrations. The direct binding or chemical reactions that occur in their presence either directly alter the fluorescence properties of the binding protein or alter the fluorescence properties of fusion partners, mostly consisting of variants of the green fluorescent protein. Oxygen sensing takes advantage of several mechanisms, including (i) the oxygen-dependent hydroxylation of a domain of the hypoxia-inducible factor-1, which, in turn, promotes its cellular degradation along with fluorescent fusion partners; (ii) the naturally oxygen-dependent maturation of the fluorophore of green fluorescent protein variants; and (iii) direct oxygen binding by proteins, including heme proteins, expressed in fusion with fluorescent partners, resulting in changes in fluorescence due to conformational alterations or fluorescence resonance energy transfer. ROS encompass a group of highly reactive chemicals that can interconvert through various chemical reactions within biological systems, posing challenges for their selective detection through genetically encoded sensors. However, their general reactivity, and particularly that of the relatively stable oxygen peroxide, can be exploited for ROS sensing through different mechanisms, including (i) the ROS-induced formation of disulfide bonds in engineered fluorescent proteins or fusion partners of fluorescent proteins, ultimately leading to fluorescence changes; and (ii) conformational changes of naturally occurring ROS-sensing domains, affecting the fluorescence properties of fusion partners. In this review, we will offer an overview of these genetically encoded biosensors.
Collapse
Affiliation(s)
- Marialaura Marchetti
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.M.); (L.R.); (M.C.)
| | - Luca Ronda
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.M.); (L.R.); (M.C.)
- Institute of Biophysics, Italian National Research Council (CNR), 56124 Pisa, Italy
| | - Monica Cozzi
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.M.); (L.R.); (M.C.)
| | - Stefano Bettati
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.M.); (L.R.); (M.C.)
- Institute of Biophysics, Italian National Research Council (CNR), 56124 Pisa, Italy
| | - Stefano Bruno
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| |
Collapse
|
5
|
Belmas T, Liesa M, Shum M. Quantifying mitochondrial redox and bilirubin content in intact primary hepatocytes of obese mice using fluorescent reporters. STAR Protoc 2023; 4:102408. [PMID: 37393613 PMCID: PMC10336327 DOI: 10.1016/j.xpro.2023.102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/11/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Assessing the physiological role of H2O2 requires sensitive techniques to quantify H2O2 and antioxidants in live cells. Here, we present a protocol to assess the mitochondrial redox state and unconjugated bilirubin levels in intact live primary hepatocytes from obese mice. We described steps to quantify H2O2, GSSG/GSH, and bilirubin content in the mitochondrial matrix and the cytosol using the fluorescent reporters roGFP2-ORP1, GRX1-roGFP2, and UnaG, respectively. We detail hepatocyte isolation, plating, and transduction and live-cell imaging using a high-content imaging reader. For complete details on the use and execution of this protocol, please refer to Shum et al.1.
Collapse
Affiliation(s)
- Thomas Belmas
- Endocrinology - Nephrology Research Axis, CHU de Québec-Université Laval Research Center, Québec, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Marc Liesa
- Institut de Biología Molecular de Barcelona, IBMB, CSIC, Barcelona, Catalonia, Spain; Department of Medicine, Endocrinology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Michaël Shum
- Endocrinology - Nephrology Research Axis, CHU de Québec-Université Laval Research Center, Québec, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
6
|
Ferreira MJ, Rodrigues TA, Pedrosa AG, Gales L, Salvador A, Francisco T, Azevedo JE. The mammalian peroxisomal membrane is permeable to both GSH and GSSG - Implications for intraperoxisomal redox homeostasis. Redox Biol 2023; 63:102764. [PMID: 37257275 DOI: 10.1016/j.redox.2023.102764] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/14/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
Despite the large amounts of H2O2 generated in mammalian peroxisomes, cysteine residues of intraperoxisomal proteins are maintained in a reduced state. The biochemistry behind this phenomenon remains unexplored, and simple questions such as "is the peroxisomal membrane permeable to glutathione?" or "is there a thiol-disulfide oxidoreductase in the organelle matrix?" still have no answer. We used a cell-free in vitro system to equip rat liver peroxisomes with a glutathione redox sensor. The organelles were then incubated with glutathione solutions of different redox potentials and the oxidation/reduction kinetics of the redox sensor was monitored. The data suggest that the mammalian peroxisomal membrane is promptly permeable to both reduced and oxidized glutathione. No evidence for the presence of a robust thiol-disulfide oxidoreductase in the peroxisomal matrix could be found. Also, prolonged incubation of organelle suspensions with glutaredoxin 1 did not result in the internalization of the enzyme. To explore a potential role of glutathione in intraperoxisomal redox homeostasis we performed kinetic simulations. The results suggest that even in the absence of a glutaredoxin, glutathione is more important in protecting cysteine residues of matrix proteins from oxidation by H2O2 than peroxisomal catalase itself.
Collapse
Affiliation(s)
- Maria J Ferreira
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Tony A Rodrigues
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Ana G Pedrosa
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Luís Gales
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Armindo Salvador
- Coimbra Chemistry Center-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal; CNC-Center for Neuroscience and Cell Biology, 3004-504, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Tânia Francisco
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Jorge E Azevedo
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
7
|
Varone E, Chernorudskiy A, Cherubini A, Cattaneo A, Bachi A, Fumagalli S, Erol G, Gobbi M, Lenardo MJ, Borgese N, Zito E. ERO1 alpha deficiency impairs angiogenesis by increasing N-glycosylation of a proangiogenic VEGFA. Redox Biol 2022; 56:102455. [PMID: 36063727 PMCID: PMC9463388 DOI: 10.1016/j.redox.2022.102455] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
N-glycosylation and disulfide bond formation are two essential steps in protein folding that occur in the endoplasmic reticulum (ER) and reciprocally influence each other. Here, to analyze crosstalk between N-glycosylation and oxidation, we investigated how the protein disulfide oxidase ERO1-alpha affects glycosylation of the angiogenic VEGF121, a key regulator of vascular homeostasis. ERO1 deficiency, while retarding disulfide bond formation in VEGF121, increased utilization of its single N-glycosylation sequon, which lies close to an intra-polypeptide disulfide bridge, and concomitantly slowed its secretion. Unbiased mass-spectrometric analysis revealed interactions between VEGF121 and N-glycosylation pathway proteins in ERO1-knockout (KO), but not wild-type cells. Notably, MAGT1, a thioredoxin-containing component of the post-translational oligosaccharyltransferase complex, was a major hit exclusive to ERO1-deficient cells. Thus, both a reduced rate of formation of disulfide bridges, and the increased trapping potential of MAGT1 may increase N-glycosylation of VEGF121. Extending our investigation to tissues, we observed altered lectin staining of ERO1 KO breast tumor xenografts, implicating ERO1 as a physiologic regulator of protein N-glycosylation. Our study, highlighting the effect of ERO1 loss on N-glycosylation of proteins, is particularly relevant not only to angiogenesis but also to other cancer patho-mechanisms in light of recent findings suggesting a close causal link between alterations in protein glycosylation and cancer development.
Collapse
|
8
|
Ugalde JM, Aller I, Kudrjasova L, Schmidt RR, Schlößer M, Homagk M, Fuchs P, Lichtenauer S, Schwarzländer M, Müller-Schüssele SJ, Meyer AJ. Endoplasmic reticulum oxidoreductin provides resilience against reductive stress and hypoxic conditions by mediating luminal redox dynamics. THE PLANT CELL 2022; 34:4007-4027. [PMID: 35818121 PMCID: PMC9516139 DOI: 10.1093/plcell/koac202] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/05/2022] [Indexed: 05/28/2023]
Abstract
Oxidative protein folding in the endoplasmic reticulum (ER) depends on the coordinated action of protein disulfide isomerases and ER oxidoreductins (EROs). Strict dependence of ERO activity on molecular oxygen as the final electron acceptor implies that oxidative protein folding and other ER processes are severely compromised under hypoxia. Here, we isolated viable Arabidopsis thaliana ero1 ero2 double mutants that are highly sensitive to reductive stress and hypoxia. To elucidate the specific redox dynamics in the ER in vivo, we expressed the glutathione redox potential (EGSH) sensor Grx1-roGFP2iL-HDEL with a midpoint potential of -240 mV in the ER of Arabidopsis plants. We found EGSH values of -241 mV in wild-type plants, which is less oxidizing than previously estimated. In the ero1 ero2 mutants, luminal EGSH was reduced further to -253 mV. Recovery to reductive ER stress induced by dithiothreitol was delayed in ero1 ero2. The characteristic signature of EGSH dynamics in the ER lumen triggered by hypoxia was affected in ero1 ero2 reflecting a disrupted balance of reductive and oxidizing inputs, including nascent polypeptides and glutathione entry. The ER redox dynamics can now be dissected in vivo, revealing a central role of EROs as major redox integrators to promote luminal redox homeostasis.
Collapse
Affiliation(s)
| | - Isabel Aller
- INRES-Chemical Signalling, University of Bonn, D-53113 Bonn, Germany
| | - Lika Kudrjasova
- INRES-Chemical Signalling, University of Bonn, D-53113 Bonn, Germany
| | - Romy R Schmidt
- Plant Biotechnology, Bielefeld University, D-33615 Bielefeld, Germany
| | - Michelle Schlößer
- INRES-Chemical Signalling, University of Bonn, D-53113 Bonn, Germany
| | - Maria Homagk
- INRES-Chemical Signalling, University of Bonn, D-53113 Bonn, Germany
| | | | - Sophie Lichtenauer
- Institute for Biology and Biotechnology of Plants, University of Münster, D-48143 Münster, Germany
| | - Markus Schwarzländer
- Institute for Biology and Biotechnology of Plants, University of Münster, D-48143 Münster, Germany
| | - Stefanie J Müller-Schüssele
- INRES-Chemical Signalling, University of Bonn, D-53113 Bonn, Germany
- Molecular Botany, Department of Biology, TU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | | |
Collapse
|
9
|
Gansemer ER, Rutkowski DT. Pathways Linking Nicotinamide Adenine Dinucleotide Phosphate Production to Endoplasmic Reticulum Protein Oxidation and Stress. Front Mol Biosci 2022; 9:858142. [PMID: 35601828 PMCID: PMC9114485 DOI: 10.3389/fmolb.2022.858142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum (ER) lumen is highly oxidizing compared to other subcellular compartments, and maintaining the appropriate levels of oxidizing and reducing equivalents is essential to ER function. Both protein oxidation itself and other essential ER processes, such as the degradation of misfolded proteins and the sequestration of cellular calcium, are tuned to the ER redox state. Simultaneously, nutrients are oxidized in the cytosol and mitochondria to power ATP generation, reductive biosynthesis, and defense against reactive oxygen species. These parallel needs for protein oxidation in the ER and nutrient oxidation in the cytosol and mitochondria raise the possibility that the two processes compete for electron acceptors, even though they occur in separate cellular compartments. A key molecule central to both processes is NADPH, which is produced by reduction of NADP+ during nutrient catabolism and which in turn drives the reduction of components such as glutathione and thioredoxin that influence the redox potential in the ER lumen. For this reason, NADPH might serve as a mediator linking metabolic activity to ER homeostasis and stress, and represent a novel form of mitochondria-to-ER communication. In this review, we discuss oxidative protein folding in the ER, NADPH generation by the major pathways that mediate it, and ER-localized systems that can link the two processes to connect ER function to metabolic activity.
Collapse
Affiliation(s)
- Erica R. Gansemer
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - D. Thomas Rutkowski
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
10
|
Kurz FT, Breckwoldt MO. Automated Quantification and Network Analysis of Redox Dynamics in Neuronal Mitochondria. Methods Mol Biol 2022; 2399:261-274. [PMID: 35604561 DOI: 10.1007/978-1-0716-1831-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mitochondria are complex organelles with multifaceted roles in cell biology, acting as signaling hubs that implicate them in cellular physiology and pathology. Mitochondria are both the target and the origin of multiple signaling events, including redox processes and calcium signaling which are important for organellar function and homeostasis. One way to interrogate mitochondrial function is by live cell imaging. Elaborated approaches perform imaging of single mitochondrial dynamics in living cells and animals. Imaging mitochondrial signaling and function can be challenging due to the sheer number of mitochondria, and the speed, propagation, and potential short half-life of signals. Moreover, mitochondria are organized in functionally coupled interorganellar networks. Therefore, advanced analysis and postprocessing tools are needed to enable automated analysis to fully quantitate mitochondrial signaling events and decipher their complex spatiotemporal connectedness. Herein, we present a protocol for recording and automating analyses of signaling in neuronal mitochondrial networks.
Collapse
Affiliation(s)
- Felix T Kurz
- Heidelberg University Hospital, Department of Neuroradiology, Heidelberg, Germany.
- German Cancer Research Center, Department of Radiology, Heidelberg, Germany.
| | - Michael O Breckwoldt
- Heidelberg University Hospital, Department of Neuroradiology, Heidelberg, Germany.
| |
Collapse
|
11
|
Li H, Doric Z, Berthet A, Jorgens DM, Nguyen MK, Hsieh I, Margulis J, Fang R, Debnath J, Sesaki H, Finkbeiner S, Huang E, Nakamura K. Longitudinal tracking of neuronal mitochondria delineates PINK1/Parkin-dependent mechanisms of mitochondrial recycling and degradation. SCIENCE ADVANCES 2021; 7:7/32/eabf6580. [PMID: 34362731 PMCID: PMC8346224 DOI: 10.1126/sciadv.abf6580] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Altered mitochondrial quality control and dynamics may contribute to neurodegenerative diseases, including Parkinson's disease, but we understand little about these processes in neurons. We combined time-lapse microscopy and correlative light and electron microscopy to track individual mitochondria in neurons lacking the fission-promoting protein dynamin-related protein 1 (Drp1) and delineate the kinetics of PINK1-dependent pathways of mitochondrial quality control. Depolarized mitochondria recruit Parkin to the outer mitochondrial membrane, triggering autophagosome formation, rapid lysosomal fusion, and Parkin redistribution. Unexpectedly, these mitolysosomes are dynamic and persist for hours. Some are engulfed by healthy mitochondria, and others are deacidified before bursting. In other cases, Parkin is directly recruited to the matrix of polarized mitochondria. Loss of PINK1 blocks Parkin recruitment, causes LC3 accumulation within mitochondria, and exacerbates Drp1KO toxicity to dopamine neurons. These results define a distinct neuronal mitochondrial life cycle, revealing potential mechanisms of mitochondrial recycling and signaling relevant to neurodegeneration.
Collapse
Affiliation(s)
- Huihui Li
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Zak Doric
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Graduate Program in Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Amandine Berthet
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Danielle M Jorgens
- Electron Microscope Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mai K Nguyen
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ivy Hsieh
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Julia Margulis
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Rebecca Fang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Graduate Program in Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jayanta Debnath
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hiromi Sesaki
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Steve Finkbeiner
- Graduate Program in Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Center for Systems and Therapeutics, Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Eric Huang
- Graduate Program in Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA.
- Graduate Program in Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
12
|
Fuloria S, Subramaniyan V, Karupiah S, Kumari U, Sathasivam K, Meenakshi DU, Wu YS, Sekar M, Chitranshi N, Malviya R, Sudhakar K, Bajaj S, Fuloria NK. Comprehensive Review of Methodology to Detect Reactive Oxygen Species (ROS) in Mammalian Species and Establish Its Relationship with Antioxidants and Cancer. Antioxidants (Basel) 2021; 10:128. [PMID: 33477494 PMCID: PMC7831054 DOI: 10.3390/antiox10010128] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
Evidence suggests that reactive oxygen species (ROS) mediate tissue homeostasis, cellular signaling, differentiation, and survival. ROS and antioxidants exert both beneficial and harmful effects on cancer. ROS at different concentrations exhibit different functions. This creates necessity to understand the relation between ROS, antioxidants, and cancer, and methods for detection of ROS. This review highlights various sources and types of ROS, their tumorigenic and tumor prevention effects; types of antioxidants, their tumorigenic and tumor prevention effects; and abnormal ROS detoxification in cancer; and methods to measure ROS. We conclude that improving genetic screening methods and bringing higher clarity in determination of enzymatic pathways and scale-up in cancer models profiling, using omics technology, would support in-depth understanding of antioxidant pathways and ROS complexities. Although numerous methods for ROS detection are developing very rapidly, yet further modifications are required to minimize the limitations associated with currently available methods.
Collapse
Affiliation(s)
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur 42610, Malaysia; (V.S.); (Y.S.W.)
| | | | - Usha Kumari
- Faculty of Medicine, AIMST University, Kedah 08100, Malaysia;
| | | | | | - Yuan Seng Wu
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur 42610, Malaysia; (V.S.); (Y.S.W.)
| | - Mahendran Sekar
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh 30450, Malaysia;
| | - Nitin Chitranshi
- Faculty of Medicine and Human Sciences, Maquarie University, North Ryde, NSW 2109, Australia;
| | - Rishabha Malviya
- Department of Pharmacy, SMAS, Galgotias University, Greater Noida 203201, India;
| | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences (LIT-Pharmacy), Lovely Professional University, Jalandhar 144411, India;
| | - Sakshi Bajaj
- Delhi Institute of Pharmaceutical Science and Research, Pushp Vihar, New Delhi 110017, India;
| | | |
Collapse
|
13
|
Cao X, Lilla S, Cao Z, Pringle MA, Oka OBV, Robinson PJ, Szmaja T, van Lith M, Zanivan S, Bulleid NJ. The mammalian cytosolic thioredoxin reductase pathway acts via a membrane protein to reduce ER-localised proteins. J Cell Sci 2020; 133:jcs241976. [PMID: 32184267 PMCID: PMC7197872 DOI: 10.1242/jcs.241976] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/10/2020] [Indexed: 01/21/2023] Open
Abstract
Folding of proteins entering the mammalian secretory pathway requires the insertion of the correct disulfides. Disulfide formation involves both an oxidative pathway for their insertion and a reductive pathway to remove incorrectly formed disulfides. Reduction of these disulfides is crucial for correct folding and degradation of misfolded proteins. Previously, we showed that the reductive pathway is driven by NADPH generated in the cytosol. Here, by reconstituting the pathway using purified proteins and ER microsomal membranes, we demonstrate that the thioredoxin reductase system provides the minimal cytosolic components required for reducing proteins within the ER lumen. In particular, saturation of the pathway and its protease sensitivity demonstrates the requirement for a membrane protein to shuttle electrons from the cytosol to the ER. These results provide compelling evidence for the crucial role of the cytosol in regulating ER redox homeostasis, ensuring correct protein folding and facilitating the degradation of misfolded ER proteins.
Collapse
Affiliation(s)
- Xiaofei Cao
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Sergio Lilla
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Zhenbo Cao
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Marie Anne Pringle
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ojore B V Oka
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Philip J Robinson
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Tomasz Szmaja
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Marcel van Lith
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Neil J Bulleid
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
14
|
Lizák B, Birk J, Zana M, Kosztyi G, Kratschmar DV, Odermatt A, Zimmermann R, Geiszt M, Appenzeller-Herzog C, Bánhegyi G. Ca 2+ mobilization-dependent reduction of the endoplasmic reticulum lumen is due to influx of cytosolic glutathione. BMC Biol 2020; 18:19. [PMID: 32101139 PMCID: PMC7043043 DOI: 10.1186/s12915-020-0749-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/11/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The lumen of the endoplasmic reticulum (ER) acts as a cellular Ca2+ store and a site for oxidative protein folding, which is controlled by the reduced glutathione (GSH) and glutathione-disulfide (GSSG) redox pair. Although depletion of luminal Ca2+ from the ER provokes a rapid and reversible shift towards a more reducing poise in the ER, the underlying molecular basis remains unclear. RESULTS We found that Ca2+ mobilization-dependent ER luminal reduction was sensitive to inhibition of GSH synthesis or dilution of cytosolic GSH by selective permeabilization of the plasma membrane. A glutathione-centered mechanism was further indicated by increased ER luminal glutathione levels in response to Ca2+ efflux. Inducible reduction of the ER lumen by GSH flux was independent of the Ca2+-binding chaperone calreticulin, which has previously been implicated in this process. However, opening the translocon channel by puromycin or addition of cyclosporine A mimicked the GSH-related effect of Ca2+ mobilization. While the action of puromycin was ascribable to Ca2+ leakage from the ER, the mechanism of cyclosporine A-induced GSH flux was independent of calcineurin and cyclophilins A and B and remained unclear. CONCLUSIONS Our data strongly suggest that ER influx of cytosolic GSH, rather than inhibition of local oxidoreductases, is responsible for the reductive shift upon Ca2+ mobilization. We postulate the existence of a Ca2+- and cyclosporine A-sensitive GSH transporter in the ER membrane. These findings have important implications for ER redox homeostasis under normal physiology and ER stress.
Collapse
Affiliation(s)
- Beáta Lizák
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary.
| | - Julia Birk
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Melinda Zana
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- "Momentum" Peroxidase Enzyme Research Group of the Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergely Kosztyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Denise V Kratschmar
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, 66421, Homburg, Germany
| | - Miklós Geiszt
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- "Momentum" Peroxidase Enzyme Research Group of the Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary
| | - Christian Appenzeller-Herzog
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
- University Medical Library, University of Basel, Spiegelgasse 5, 4051, Basel, Switzerland.
| | - Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
15
|
Wei Z, Li H, Liu S, Wang W, Chen H, Xiao L, Ren C, Chen X. Carbon Dots as Fluorescent/Colorimetric Probes for Real-Time Detection of Hypochlorite and Ascorbic Acid in Cells and Body Fluid. Anal Chem 2019; 91:15477-15483. [DOI: 10.1021/acs.analchem.9b03272] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhenni Wei
- State Key Laboratory
of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Huiqing Li
- State Key Laboratory
of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Suibo Liu
- State Key Laboratory
of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Wei Wang
- State Key Laboratory
of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Hongli Chen
- State Key Laboratory
of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Lehui Xiao
- College of Chemistry, Nankai University, Tianjin, 300071, People’s Republic of China
| | - Cuiling Ren
- State Key Laboratory
of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Xingguo Chen
- State Key Laboratory
of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
16
|
Zhang X, Gibhardt CS, Will T, Stanisz H, Körbel C, Mitkovski M, Stejerean I, Cappello S, Pacheu‐Grau D, Dudek J, Tahbaz N, Mina L, Simmen T, Laschke MW, Menger MD, Schön MP, Helms V, Niemeyer BA, Rehling P, Vultur A, Bogeski I. Redox signals at the ER-mitochondria interface control melanoma progression. EMBO J 2019; 38:e100871. [PMID: 31304984 PMCID: PMC6669928 DOI: 10.15252/embj.2018100871] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen species (ROS) are emerging as important regulators of cancer growth and metastatic spread. However, how cells integrate redox signals to affect cancer progression is not fully understood. Mitochondria are cellular redox hubs, which are highly regulated by interactions with neighboring organelles. Here, we investigated how ROS at the endoplasmic reticulum (ER)-mitochondria interface are generated and translated to affect melanoma outcome. We show that TMX1 and TMX3 oxidoreductases, which promote ER-mitochondria communication, are upregulated in melanoma cells and patient samples. TMX knockdown altered mitochondrial organization, enhanced bioenergetics, and elevated mitochondrial- and NOX4-derived ROS. The TMX-knockdown-induced oxidative stress suppressed melanoma proliferation, migration, and xenograft tumor growth by inhibiting NFAT1. Furthermore, we identified NFAT1-positive and NFAT1-negative melanoma subgroups, wherein NFAT1 expression correlates with melanoma stage and metastatic potential. Integrative bioinformatics revealed that genes coding for mitochondrial- and redox-related proteins are under NFAT1 control and indicated that TMX1, TMX3, and NFAT1 are associated with poor disease outcome. Our study unravels a novel redox-controlled ER-mitochondria-NFAT1 signaling loop that regulates melanoma pathobiology and provides biomarkers indicative of aggressive disease.
Collapse
Affiliation(s)
- Xin Zhang
- Molecular PhysiologyInstitute of Cardiovascular PhysiologyUniversity Medical CenterGeorg‐August‐UniversityGöttingenGermany
- BiophysicsCIPMMSaarland UniversityHomburgGermany
| | - Christine S Gibhardt
- Molecular PhysiologyInstitute of Cardiovascular PhysiologyUniversity Medical CenterGeorg‐August‐UniversityGöttingenGermany
| | - Thorsten Will
- Center for BioinformaticsSaarland UniversitySaarbrückenGermany
| | - Hedwig Stanisz
- Department of Dermatology, Venereology and AllergologyUniversity Medical CenterGeorg‐August‐UniversityGöttingenGermany
| | - Christina Körbel
- Institute for Clinical and Experimental SurgerySaarland UniversityHomburgGermany
| | - Miso Mitkovski
- Light Microscopy FacilityMax Planck Institute for Experimental MedicineGöttingenGermany
| | - Ioana Stejerean
- Molecular PhysiologyInstitute of Cardiovascular PhysiologyUniversity Medical CenterGeorg‐August‐UniversityGöttingenGermany
| | - Sabrina Cappello
- Molecular PhysiologyInstitute of Cardiovascular PhysiologyUniversity Medical CenterGeorg‐August‐UniversityGöttingenGermany
| | - David Pacheu‐Grau
- Department of Cellular BiochemistryUniversity Medical CenterGeorg‐August‐UniversityGöttingenGermany
| | - Jan Dudek
- Department of Cellular BiochemistryUniversity Medical CenterGeorg‐August‐UniversityGöttingenGermany
| | - Nasser Tahbaz
- Department of Cell BiologyUniversity of AlbertaEdmontonABCanada
| | - Lucas Mina
- Department of Cell BiologyUniversity of AlbertaEdmontonABCanada
| | - Thomas Simmen
- Department of Cell BiologyUniversity of AlbertaEdmontonABCanada
| | - Matthias W Laschke
- Institute for Clinical and Experimental SurgerySaarland UniversityHomburgGermany
| | - Michael D Menger
- Institute for Clinical and Experimental SurgerySaarland UniversityHomburgGermany
| | - Michael P Schön
- Department of Dermatology, Venereology and AllergologyUniversity Medical CenterGeorg‐August‐UniversityGöttingenGermany
| | - Volkhard Helms
- Center for BioinformaticsSaarland UniversitySaarbrückenGermany
| | | | - Peter Rehling
- Department of Cellular BiochemistryUniversity Medical CenterGeorg‐August‐UniversityGöttingenGermany
- Max Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Adina Vultur
- Molecular PhysiologyInstitute of Cardiovascular PhysiologyUniversity Medical CenterGeorg‐August‐UniversityGöttingenGermany
| | - Ivan Bogeski
- Molecular PhysiologyInstitute of Cardiovascular PhysiologyUniversity Medical CenterGeorg‐August‐UniversityGöttingenGermany
- BiophysicsCIPMMSaarland UniversityHomburgGermany
| |
Collapse
|
17
|
Scirè A, Cianfruglia L, Minnelli C, Bartolini D, Torquato P, Principato G, Galli F, Armeni T. Glutathione compartmentalization and its role in glutathionylation and other regulatory processes of cellular pathways. Biofactors 2019; 45:152-168. [PMID: 30561781 DOI: 10.1002/biof.1476] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022]
Abstract
Glutathione is considered the major non-protein low molecular weight modulator of redox processes and the most important thiol reducing agent of the cell. The biosynthesis of glutathione occurs in the cytosol from its constituent amino acids, but this tripeptide is also present in the most important cellular districts, such as mitochondria, nucleus, and endoplasmic reticulum, thus playing a central role in several metabolic pathways and cytoprotection mechanisms. Indeed, glutathione is involved in the modulation of various cellular processes and, not by chance, it is a ubiquitous determinant for redox signaling, xenobiotic detoxification, and regulation of cell cycle and death programs. The balance between its concentration and redox state is due to a complex series of interactions between biosynthesis, utilization, degradation, and transport. All these factors are of great importance to understand the significance of cellular redox balance and its relationship with physiological responses and pathological conditions. The purpose of this review is to give an overview on glutathione cellular compartmentalization. Information on its subcellular distribution provides a deeper understanding of glutathione-dependent processes and reflects the importance of compartmentalization in the regulation of specific cellular pathways. © 2018 BioFactors, 45(2):152-168, 2019.
Collapse
Affiliation(s)
- Andrea Scirè
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Laura Cianfruglia
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Cristina Minnelli
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Desirée Bartolini
- Clinical Biochemistry and Human Nutrition Labs, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Pierangelo Torquato
- Clinical Biochemistry and Human Nutrition Labs, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Giovanni Principato
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Galli
- Clinical Biochemistry and Human Nutrition Labs, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Tatiana Armeni
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
18
|
Meyer AJ, Riemer J, Rouhier N. Oxidative protein folding: state-of-the-art and current avenues of research in plants. THE NEW PHYTOLOGIST 2019; 221:1230-1246. [PMID: 30230547 DOI: 10.1111/nph.15436] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Contents Summary 1230 I. Introduction 1230 II. Formation and isomerization of disulfides in the ER and the Golgi apparatus 1231 III. The disulfide relay in the mitochondrial intermembrane space: why are plants different? 1236 IV. Disulfide bond formation on luminal proteins in thylakoids 1240 V. Conclusion 1242 Acknowledgements 1242 References 1242 SUMMARY: Disulfide bonds are post-translational modifications crucial for the structure and function of thousands of proteins. Their formation and isomerization, referred to as oxidative folding, require specific protein machineries found in oxidizing subcellular compartments, namely the endoplasmic reticulum and the associated endomembrane system, the intermembrane space of mitochondria and the thylakoid lumen of chloroplasts. At least one protein component is required for transferring electrons from substrate proteins to an acceptor that is usually molecular oxygen. For oxidation reactions, incoming reduced substrates are oxidized by thiol-oxidoreductase proteins (or domains in case of chimeric proteins), which are usually themselves oxidized by a single thiol oxidase, the enzyme generating disulfide bonds de novo. By contrast, the description of the molecular actors and pathways involved in proofreading and isomerization of misfolded proteins, which require a tightly controlled redox balance, lags behind. Herein we provide a general overview of the knowledge acquired on the systems responsible for oxidative protein folding in photosynthetic organisms, highlighting their particularities compared to other eukaryotes. Current research challenges are discussed including the importance and specificity of these oxidation systems in the context of the existence of reducing systems in the same compartments.
Collapse
Affiliation(s)
- Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, 53113, Bonn, Germany
| | - Jan Riemer
- Institute of Biochemistry, University of Cologne, 50674, Cologne, Germany
| | | |
Collapse
|
19
|
Oestreicher J, Morgan B. Glutathione: subcellular distribution and membrane transport 1. Biochem Cell Biol 2018; 97:270-289. [PMID: 30427707 DOI: 10.1139/bcb-2018-0189] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Glutathione (γ-l-glutamyl-l-cysteinylglycine) is a small tripeptide found at millimolar concentrations in nearly all eukaryotes as well as many prokaryotic cells. Glutathione synthesis is restricted to the cytosol in animals and fungi and to the cytosol and plastids in plants. Nonetheless, glutathione is found in virtually all subcellular compartments. This implies that transporters must exist that facilitate glutathione transport into and out of the various subcellular compartments. Glutathione may also be exported and imported across the plasma membrane in many cells. However, in most cases, the molecular identity of these transporters remains unclear. Whilst glutathione transport is essential for the supply and replenishment of subcellular glutathione pools, recent evidence supports a more active role for glutathione transport in the regulation of subcellular glutathione redox homeostasis. However, our knowledge of glutathione redox homeostasis at the level of specific subcellular compartments remains remarkably limited and the role of glutathione transport remains largely unclear. In this review, we discuss how new tools and techniques have begun to yield insights into subcellular glutathione distribution and glutathione redox homeostasis. In particular, we discuss the known and putative glutathione transporters and examine their contribution to the regulation of subcellular glutathione redox homeostasis.
Collapse
Affiliation(s)
- Julian Oestreicher
- a Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany.,b Institute of Biochemistry, Center of Human and Molecular Biology (ZHMB), University of the Saarland, Campus B 2.2, D-66123 Saarbrücken, Germany
| | - Bruce Morgan
- a Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany.,b Institute of Biochemistry, Center of Human and Molecular Biology (ZHMB), University of the Saarland, Campus B 2.2, D-66123 Saarbrücken, Germany
| |
Collapse
|
20
|
Biddau M, Bouchut A, Major J, Saveria T, Tottey J, Oka O, van-Lith M, Jennings KE, Ovciarikova J, DeRocher A, Striepen B, Waller RF, Parsons M, Sheiner L. Two essential Thioredoxins mediate apicoplast biogenesis, protein import, and gene expression in Toxoplasma gondii. PLoS Pathog 2018; 14:e1006836. [PMID: 29470517 PMCID: PMC5823475 DOI: 10.1371/journal.ppat.1006836] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/21/2017] [Indexed: 11/19/2022] Open
Abstract
Apicomplexan parasites are global killers, being the causative agents of diseases like toxoplasmosis and malaria. These parasites are known to be hypersensitive to redox imbalance, yet little is understood about the cellular roles of their various redox regulators. The apicoplast, an essential plastid organelle, is a verified apicomplexan drug target. Nuclear-encoded apicoplast proteins traffic through the ER and multiple apicoplast sub-compartments to their place of function. We propose that thioredoxins contribute to the control of protein trafficking and of protein function within these apicoplast compartments. We studied the role of two Toxoplasma gondiiapicoplast thioredoxins (TgATrx), both essential for parasite survival. By describing the cellular phenotypes of the conditional depletion of either of these redox regulated enzymes we show that each of them contributes to a different apicoplast biogenesis pathway. We provide evidence for TgATrx1’s involvement in ER to apicoplast trafficking and TgATrx2 in the control of apicoplast gene expression components. Substrate pull-down further recognizes gene expression factors that interact with TgATrx2. We use genetic complementation to demonstrate that the function of both TgATrxs is dependent on their disulphide exchange activity. Finally, TgATrx2 is divergent from human thioredoxins. We demonstrate its activity in vitro thus providing scope for drug screening. Our study represents the first functional characterization of thioredoxins in Toxoplasma, highlights the importance of redox regulation of apicoplast functions and provides new tools to study redox biology in these parasites. To survive, apicomplexan parasites must adjust to the redox insults they experience. These parasites undergo redox stresses induced by the host cell within which they live, by the host immune system, and by their own metabolic activities. Yet the myriad of cellular processes that are affected by redox changes and that may take part in maintaining the redox balance within the parasite are largely understudied. Thioredoxins are enzymes that link the redox state of subcellular environments to the functional state or the cellular trafficking of their substrate proteins. In this work, we identify two pathways that are controlled by two thioredoxins in the apicomplexan Toxoplasma gondii, and demonstrate that both are essential for parasite survival. We show that each of these enzymes contributes to the function of the apicomplexan plastid, the apicoplast, a unique parasite organelle with importance for drug discovery efforts. We thus highlight that part of the apicomplexan sensitivity to redox imbalance is specifically related to the apicoplast, and point at the importance of thioredoxins in mediating apicoplast biogenesis. Finally, our work raises the potential of apicoplast thioredoxins as new drug targets.
Collapse
Affiliation(s)
- Marco Biddau
- Wellcome Centre for Molecular Parasitology, University of Glasgow, 120 University Place Glasgow, United Kingdom
| | - Anne Bouchut
- Center for Infectious Disease Research, Seattle, WA, United States of America
| | - Jack Major
- Wellcome Centre for Molecular Parasitology, University of Glasgow, 120 University Place Glasgow, United Kingdom
| | - Tracy Saveria
- Center for Infectious Disease Research, Seattle, WA, United States of America
| | - Julie Tottey
- Wellcome Centre for Molecular Parasitology, University of Glasgow, 120 University Place Glasgow, United Kingdom
| | - Ojore Oka
- Institute of Molecular Cell and Systems Biology, Wolfson Link Building, University of Glasgow, Glasgow, United Kingdom
| | - Marcel van-Lith
- Institute of Molecular Cell and Systems Biology, Wolfson Link Building, University of Glasgow, Glasgow, United Kingdom
| | - Katherine Elizabeth Jennings
- Center for Tropical & Emerging Global Diseases, University of Georgia, Brooks Dr. Athens, GA, United States of America
| | - Jana Ovciarikova
- Wellcome Centre for Molecular Parasitology, University of Glasgow, 120 University Place Glasgow, United Kingdom
| | - Amy DeRocher
- Center for Infectious Disease Research, Seattle, WA, United States of America
| | - Boris Striepen
- Center for Tropical & Emerging Global Diseases, University of Georgia, Brooks Dr. Athens, GA, United States of America
| | | | - Marilyn Parsons
- Center for Infectious Disease Research, Seattle, WA, United States of America
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| | - Lilach Sheiner
- Wellcome Centre for Molecular Parasitology, University of Glasgow, 120 University Place Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Esposito S, Masala A, Sanna S, Rassu M, Pimxayvong V, Iaccarino C, Crosio C. Redox-sensitive GFP to monitor oxidative stress in neurodegenerative diseases. Rev Neurosci 2018; 28:133-144. [PMID: 28030361 DOI: 10.1515/revneuro-2016-0041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/02/2016] [Indexed: 02/06/2023]
Abstract
Redox processes are key events in the degenerative cascade of many adult-onset neurodegenerative diseases (NDs), but the biological relevance of a single redox change is often dependent on the redox couple involved and on its subcellular origin. The biosensors based on engineered fluorescent proteins (redox-sensitive GFP [roGFP]) offer a unique opportunity to monitor redox changes in both physiological and pathological contexts in living animals and plants. Here, we review the use of roGFPs to monitor oxidative stress in different three adult-onset NDs: Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Despite the many differences spanning from incidence to onset, the hypotheses on biological processes underlying both sporadic and familiar ND forms in humans outline a model in which noncompeting mechanisms are likely to converge in various unsuccessful patterns to mediate the selective degeneration of a specific neuronal population. roGFPs, targeted to different cell compartments, are successfully used as specific markers of cell toxicity, induced by expression of causative genes linked to a determined ND. We also report the use of roGFP to monitor oxidative stress induced by the expression of the ALS-causative gene SOD1.
Collapse
|
22
|
Liu X, Kang J, Wang H, Huang T. Mitochondrial ROS contribute to oridonin-induced HepG2 apoptosis through PARP activation. Oncol Lett 2017; 15:2881-2888. [PMID: 29435014 PMCID: PMC5778846 DOI: 10.3892/ol.2017.7665] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 11/10/2017] [Indexed: 01/11/2023] Open
Abstract
Oridonin, the main active constituent of Rabdosia rubescens, is known to exert antitumor activity via the induction of apoptosis in numerous types of human cancer cells. However, the underlying regulatory mechanisms of mitochondrial ROS in oridonin-induced HepG2 apoptosis remain largely unknown, due to limitations of subcellular imaging resolution. Previously, it has been suggested that mitochondria serve a potential role in sensing and signaling cellular redox changes in vital biological processes such as cell death and the abiotic stress response, based on studies involving the mitochondrial-targeted redox-sensitive green fluorescent protein (GFP). To address this, a mitochondrial-targeted Grx1-roGFP2 (mtGrx1-roGFP2) biosensor was implemented to monitor real-time mitochondrial redox changes of HepG2 cells in response to either H2O2/DTT or oridonin/SS31 treatment. It was determined that oridonin caused a perturbation in mitochondrial redox status, which in turn contributed to oridonin-induced apoptosis. Furthermore, a novel mechanism underlying the regulation of mitochondrial redox changes in oridonin-induced HepG2 apoptosis, presumably dependent on PARP cleavage, was proposed. In conclusion, the present study provides evidence in support of mitochondrial redox changes as a potential mediator in the apoptotic activities of oridonin in HepG2 cells, which provides insight into the molecular mechanisms by which mitochondrial redox signaling regulates oridonin-induced apoptosis in cancer therapy, and the development of mitochondria-specific oridonin as a promising novel anticancer therapeutic strategy.
Collapse
Affiliation(s)
- Xiaoning Liu
- Department of Biochemistry, School of Medicine, Huanghe College of Science and Technology, Zhengzhou, Henan 450063, P.R. China
| | - Jingjing Kang
- Department of Biochemistry, School of Medicine, Huanghe College of Science and Technology, Zhengzhou, Henan 450063, P.R. China
| | - Hui Wang
- Department of Biochemistry, School of Medicine, Huanghe College of Science and Technology, Zhengzhou, Henan 450063, P.R. China
| | - Tao Huang
- Department of Biochemistry, School of Medicine, Huanghe College of Science and Technology, Zhengzhou, Henan 450063, P.R. China
| |
Collapse
|
23
|
Delaunay-Moisan A, Ponsero A, Toledano MB. Reexamining the Function of Glutathione in Oxidative Protein Folding and Secretion. Antioxid Redox Signal 2017; 27:1178-1199. [PMID: 28791880 DOI: 10.1089/ars.2017.7148] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE Disturbance of glutathione (GSH) metabolism is a hallmark of numerous diseases, yet GSH functions are poorly understood. One key to this question is to consider its functional compartmentation. GSH is present in the endoplasmic reticulum (ER), where it competes with substrates for oxidation by the oxidative folding machinery, composed in eukaryotes of the thiol oxidase Ero1 and proteins from the disulfide isomerase family (protein disulfide isomerase). Yet, whether GSH is required for proper ER oxidative protein folding is a highly debated question. Recent Advances: Oxidative protein folding has been thoroughly dissected over the past decades, and its actors and their mode of action elucidated. Genetically encoded GSH probes have recently provided an access to subcellular redox metabolism, including the ER. CRITICAL ISSUES Of the few often-contradictory models of the role of GSH in the ER, the most popular suggest it serves as reducing power. Yet, as a reductant, GSH also activates Ero1, which questions how GSH can nevertheless support protein reduction. Hence, whether GSH operates in the ER as a reductant, an oxidant, or just as a "blank" compound mirroring ER/periplasm redox activity is a highly debated question, which is further stimulated by the puzzling occurrence of GSH in the Escherichia coli periplasmic "secretory" compartment, aside from the Dsb thiol-reducing and oxidase pathways. FUTURE DIRECTIONS Addressing the mechanisms controlling GSH traffic in and out of the ER/periplasm and its recycling will help address GSH function in secretion. In addition, as thioredoxin reductase was recently implicated in ER oxidative protein folding, the relative contribution of each of these two reducing pathways should now be addressed. Antioxid. Redox Signal. 27, 1178-1199.
Collapse
Affiliation(s)
- Agnès Delaunay-Moisan
- Institute for Integrative Biology of the Cell (I2BC), LSOC, SBIGEM, CEA, CNRS, Université Paris-Sud , Université Paris-Saclay, Gif-sur-Yvette, France
| | - Alise Ponsero
- Institute for Integrative Biology of the Cell (I2BC), LSOC, SBIGEM, CEA, CNRS, Université Paris-Sud , Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michel B Toledano
- Institute for Integrative Biology of the Cell (I2BC), LSOC, SBIGEM, CEA, CNRS, Université Paris-Sud , Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
24
|
Reaction-based small-molecule fluorescent probes for dynamic detection of ROS and transient redox changes in living cells and small animals. J Mol Cell Cardiol 2017; 110:96-108. [DOI: 10.1016/j.yjmcc.2017.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/15/2017] [Accepted: 07/20/2017] [Indexed: 01/28/2023]
|
25
|
Abstract
Cysteine thiols are among the most reactive functional groups in proteins, and their pairing in disulfide linkages is a common post-translational modification in proteins entering the secretory pathway. This modest amino acid alteration, the mere removal of a pair of hydrogen atoms from juxtaposed cysteine residues, contrasts with the substantial changes that characterize most other post-translational reactions. However, the wide variety of proteins that contain disulfides, the profound impact of cross-linking on the behavior of the protein polymer, the numerous and diverse players in intracellular pathways for disulfide formation, and the distinct biological settings in which disulfide bond formation can take place belie the simplicity of the process. Here we lay the groundwork for appreciating the mechanisms and consequences of disulfide bond formation in vivo by reviewing chemical principles underlying cysteine pairing and oxidation. We then show how enzymes tune redox-active cofactors and recruit oxidants to improve the specificity and efficiency of disulfide formation. Finally, we discuss disulfide bond formation in a cellular context and identify important principles that contribute to productive thiol oxidation in complex, crowded, dynamic environments.
Collapse
Affiliation(s)
- Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 7610001, Israel
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| |
Collapse
|
26
|
Chio IIC, Tuveson DA. ROS in Cancer: The Burning Question. Trends Mol Med 2017; 23:411-429. [PMID: 28427863 PMCID: PMC5462452 DOI: 10.1016/j.molmed.2017.03.004] [Citation(s) in RCA: 370] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 02/07/2023]
Abstract
An unanswered question in human health is whether antioxidation prevents or promotes cancer. Antioxidation has historically been viewed as chemopreventive, but emerging evidence suggests that antioxidants may be supportive of neoplasia. We posit this contention to be rooted in the fact that ROS do not operate as one single biochemical entity, but as diverse secondary messengers in cancer cells. This cautions against therapeutic strategies to increase ROS at a global level. To leverage redox alterations towards the development of effective therapies necessitates the application of biophysical and biochemical approaches to define redox dynamics and to functionally elucidate specific oxidative modifications in cancer versus normal cells. An improved understanding of the sophisticated workings of redox biology is imperative to defeating cancer.
Collapse
Affiliation(s)
- Iok In Christine Chio
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA.
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
27
|
Melo EP, Lopes C, Gollwitzer P, Lortz S, Lenzen S, Mehmeti I, Kaminski CF, Ron D, Avezov E. TriPer, an optical probe tuned to the endoplasmic reticulum tracks changes in luminal H 2O 2. BMC Biol 2017; 15:24. [PMID: 28347335 PMCID: PMC5368998 DOI: 10.1186/s12915-017-0367-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/14/2017] [Indexed: 11/27/2022] Open
Abstract
Background The fate of hydrogen peroxide (H2O2) in the endoplasmic reticulum (ER) has been inferred indirectly from the activity of ER-localized thiol oxidases and peroxiredoxins, in vitro, and the consequences of their genetic manipulation, in vivo. Over the years hints have suggested that glutathione, puzzlingly abundant in the ER lumen, might have a role in reducing the heavy burden of H2O2 produced by the luminal enzymatic machinery for disulfide bond formation. However, limitations in existing organelle-targeted H2O2 probes have rendered them inert in the thiol-oxidizing ER, precluding experimental follow-up of glutathione’s role in ER H2O2 metabolism. Results Here we report on the development of TriPer, a vital optical probe sensitive to changes in the concentration of H2O2 in the thiol-oxidizing environment of the ER. Consistent with the hypothesized contribution of oxidative protein folding to H2O2 production, ER-localized TriPer detected an increase in the luminal H2O2 signal upon induction of pro-insulin (a disulfide-bonded protein of pancreatic β-cells), which was attenuated by the ectopic expression of catalase in the ER lumen. Interfering with glutathione production in the cytosol by buthionine sulfoximine (BSO) or enhancing its localized destruction by expression of the glutathione-degrading enzyme ChaC1 in the lumen of the ER further enhanced the luminal H2O2 signal and eroded β-cell viability. Conclusions A tri-cysteine system with a single peroxidatic thiol enables H2O2 detection in oxidizing milieux such as that of the ER. Tracking ER H2O2 in live pancreatic β-cells points to a role for glutathione in H2O2 turnover. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0367-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eduardo Pinho Melo
- University of Cambridge, Cambridge Institute for Medical Research, the Wellcome Trust MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK.,Centre for Biomedical Research, Universidade do Algarve, Faro, Portugal
| | - Carlos Lopes
- Centre for Biomedical Research, Universidade do Algarve, Faro, Portugal
| | - Peter Gollwitzer
- University of Cambridge, Cambridge Institute for Medical Research, the Wellcome Trust MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Stephan Lortz
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Sigurd Lenzen
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Ilir Mehmeti
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB2 3RA, UK
| | - David Ron
- University of Cambridge, Cambridge Institute for Medical Research, the Wellcome Trust MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK.
| | - Edward Avezov
- University of Cambridge, Cambridge Institute for Medical Research, the Wellcome Trust MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
28
|
Dionne B, Mishra N, Butler M. A low redox potential affects monoclonal antibody assembly and glycosylation in cell culture. J Biotechnol 2017; 246:71-80. [DOI: 10.1016/j.jbiotec.2017.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/08/2017] [Accepted: 01/27/2017] [Indexed: 11/29/2022]
|
29
|
Poet GJ, Oka OB, van Lith M, Cao Z, Robinson PJ, Pringle MA, Arnér ES, Bulleid NJ. Cytosolic thioredoxin reductase 1 is required for correct disulfide formation in the ER. EMBO J 2017; 36:693-702. [PMID: 28093500 PMCID: PMC5331760 DOI: 10.15252/embj.201695336] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 11/09/2022] Open
Abstract
Folding of proteins entering the secretory pathway in mammalian cells frequently requires the insertion of disulfide bonds. Disulfide insertion can result in covalent linkages found in the native structure as well as those that are not, so-called non-native disulfides. The pathways for disulfide formation are well characterized, but our understanding of how non-native disulfides are reduced so that the correct or native disulfides can form is poor. Here, we use a novel assay to demonstrate that the reduction in non-native disulfides requires NADPH as the ultimate electron donor, and a robust cytosolic thioredoxin system, driven by thioredoxin reductase 1 (TrxR1 or TXNRD1). Inhibition of this reductive pathway prevents the correct folding and secretion of proteins that are known to form non-native disulfides during their folding. Hence, we have shown for the first time that mammalian cells have a pathway for transferring reducing equivalents from the cytosol to the ER, which is required to ensure correct disulfide formation in proteins entering the secretory pathway.
Collapse
Affiliation(s)
- Greg J Poet
- The Institute of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Glasgow, UK
| | - Ojore Bv Oka
- The Institute of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Glasgow, UK
| | - Marcel van Lith
- The Institute of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Glasgow, UK
| | - Zhenbo Cao
- The Institute of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Glasgow, UK
| | - Philip J Robinson
- The Institute of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Glasgow, UK
| | - Marie Anne Pringle
- The Institute of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Glasgow, UK
| | - Elias Sj Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, Stockholm, Sweden
| | - Neil J Bulleid
- The Institute of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Glasgow, UK
| |
Collapse
|
30
|
Pendin D, Greotti E, Lefkimmiatis K, Pozzan T. Exploring cells with targeted biosensors. J Gen Physiol 2016; 149:1-36. [PMID: 28028123 PMCID: PMC5217087 DOI: 10.1085/jgp.201611654] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/26/2016] [Accepted: 12/01/2016] [Indexed: 01/10/2023] Open
Abstract
Cellular signaling networks are composed of multiple pathways, often interconnected, that form complex networks with great potential for cross-talk. Signal decoding depends on the nature of the message as well as its amplitude, temporal pattern, and spatial distribution. In addition, the existence of membrane-bound organelles, which are both targets and generators of messages, add further complexity to the system. The availability of sensors that can localize to specific compartments in live cells and monitor their targets with high spatial and temporal resolution is thus crucial for a better understanding of cell pathophysiology. For this reason, over the last four decades, a variety of strategies have been developed, not only to generate novel and more sensitive probes for ions, metabolites, and enzymatic activity, but also to selectively deliver these sensors to specific intracellular compartments. In this review, we summarize the principles that have been used to target organic or protein sensors to different cellular compartments and their application to cellular signaling.
Collapse
Affiliation(s)
- Diana Pendin
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Elisa Greotti
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Konstantinos Lefkimmiatis
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Venetian Institute of Molecular Medicine, 35129 Padua, Italy
| | - Tullio Pozzan
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Venetian Institute of Molecular Medicine, 35129 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| |
Collapse
|
31
|
Griendling KK, Touyz RM, Zweier JL, Dikalov S, Chilian W, Chen YR, Harrison DG, Bhatnagar A. Measurement of Reactive Oxygen Species, Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular System: A Scientific Statement From the American Heart Association. Circ Res 2016; 119:e39-75. [PMID: 27418630 PMCID: PMC5446086 DOI: 10.1161/res.0000000000000110] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species and reactive nitrogen species are biological molecules that play important roles in cardiovascular physiology and contribute to disease initiation, progression, and severity. Because of their ephemeral nature and rapid reactivity, these species are difficult to measure directly with high accuracy and precision. In this statement, we review current methods for measuring these species and the secondary products they generate and suggest approaches for measuring redox status, oxidative stress, and the production of individual reactive oxygen and nitrogen species. We discuss the strengths and limitations of different methods and the relative specificity and suitability of these methods for measuring the concentrations of reactive oxygen and reactive nitrogen species in cells, tissues, and biological fluids. We provide specific guidelines, through expert opinion, for choosing reliable and reproducible assays for different experimental and clinical situations. These guidelines are intended to help investigators and clinical researchers avoid experimental error and ensure high-quality measurements of these important biological species.
Collapse
|
32
|
Couto N, Wood J, Barber J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic Biol Med 2016; 95:27-42. [PMID: 26923386 DOI: 10.1016/j.freeradbiomed.2016.02.028] [Citation(s) in RCA: 554] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 02/07/2023]
Abstract
In this review article we examine the role of glutathione reductase in the regulation, modulation and maintenance of cellular redox homoeostasis. Glutathione reductase is responsible for maintaining the supply of reduced glutathione; one of the most abundant reducing thiols in the majority of cells. In its reduced form, glutathione plays key roles in the cellular control of reactive oxygen species. Reactive oxygen species act as intracellular and extracellular signalling molecules and complex cross talk between levels of reactive oxygen species, levels of oxidised and reduced glutathione and other thiols, and antioxidant enzymes such as glutathione reductase determine the most suitable conditions for redox control within a cell or for activation of programmed cell death. Additionally, we discuss the translation and expression of glutathione reductase in a number of organisms including yeast and humans. In yeast and human cells, a single gene expresses more than one form of glutathione reductase, destined for residence in the cytoplasm or for translocation to different organelles; in plants, however, two genes encoding this protein have been described. In general, insects and kinetoplastids (a group of protozoa, including Plasmodia and Trypanosoma) do not express glutathione reductase or glutathione biosynthetic enzymes. Instead, they express either the thioredoxin system or the trypanothione system. The thioredoxin system is also present in organisms that have the glutathione system and there may be overlapping functions with cross-talk between the two systems. Finally we evaluate therapeutic targets to overcome oxidative stress associated cellular disorders.
Collapse
Affiliation(s)
- Narciso Couto
- Michael Barber Centre for Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Road, Manchester M1 7DN, UK; ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
| | - Jennifer Wood
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Jill Barber
- Michael Barber Centre for Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Road, Manchester M1 7DN, UK; Manchester Pharmacy School, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
33
|
Wages PA, Cheng WY, Gibbs-Flournoy E, Samet JM. Live-cell imaging approaches for the investigation of xenobiotic-induced oxidant stress. Biochim Biophys Acta Gen Subj 2016; 1860:2802-15. [PMID: 27208426 DOI: 10.1016/j.bbagen.2016.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Oxidant stress is arguably a universal feature in toxicology. Research studies on the role of oxidant stress induced by xenobiotic exposures have typically relied on the identification of damaged biomolecules using a variety of conventional biochemical and molecular techniques. However, there is increasing evidence that low-level exposure to a variety of toxicants dysregulates cellular physiology by interfering with redox-dependent processes. SCOPE OF REVIEW The study of events involved in redox toxicology requires methodology capable of detecting transient modifications at relatively low signal strength. This article reviews the advantages of live-cell imaging for redox toxicology studies. MAJOR CONCLUSIONS Toxicological studies with xenobiotics of supra-physiological reactivity require careful consideration when using fluorogenic sensors in order to avoid potential artifacts and false negatives. Fortunately, experiments conducted for the purpose of validating the use of these sensors in toxicological applications often yield unexpected insights into the mechanisms through which xenobiotic exposure induces oxidant stress. GENERAL SIGNIFICANCE Live-cell imaging using a new generation of small molecule and genetically encoded fluorophores with excellent sensitivity and specificity affords unprecedented spatiotemporal resolution that is optimal for redox toxicology studies. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.
Collapse
Affiliation(s)
- Phillip A Wages
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, NC, USA
| | - Wan-Yun Cheng
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - Eugene Gibbs-Flournoy
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - James M Samet
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA.
| |
Collapse
|
34
|
Schwarzländer M, Dick TP, Meyer AJ, Morgan B. Dissecting Redox Biology Using Fluorescent Protein Sensors. Antioxid Redox Signal 2016; 24:680-712. [PMID: 25867539 DOI: 10.1089/ars.2015.6266] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Fluorescent protein sensors have revitalized the field of redox biology by revolutionizing the study of redox processes in living cells and organisms. RECENT ADVANCES Within one decade, a set of fundamental new insights has been gained, driven by the rapid technical development of in vivo redox sensing. Redox-sensitive yellow and green fluorescent protein variants (rxYFP and roGFPs) have been the central players. CRITICAL ISSUES Although widely used as an established standard tool, important questions remain surrounding their meaningful use in vivo. We review the growing range of thiol redox sensor variants and their application in different cells, tissues, and organisms. We highlight five key findings where in vivo sensing has been instrumental in changing our understanding of redox biology, critically assess the interpretation of in vivo redox data, and discuss technical and biological limitations of current redox sensors and sensing approaches. FUTURE DIRECTIONS We explore how novel sensor variants may further add to the current momentum toward a novel mechanistic and integrated understanding of redox biology in vivo. Antioxid. Redox Signal. 24, 680-712.
Collapse
Affiliation(s)
- Markus Schwarzländer
- 1 Plant Energy Biology Lab, Department Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn , Bonn, Germany
| | - Tobias P Dick
- 2 Division of Redox Regulation, German Cancer Research Center (DKFZ) , DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Andreas J Meyer
- 3 Department Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn , Bonn, Germany
| | - Bruce Morgan
- 2 Division of Redox Regulation, German Cancer Research Center (DKFZ) , DKFZ-ZMBH Alliance, Heidelberg, Germany .,4 Cellular Biochemistry, Department of Biology, University of Kaiserslautern , Kaiserslautern, Germany
| |
Collapse
|
35
|
Development of a stable ERroGFP variant suitable for monitoring redox dynamics in the ER. Biosci Rep 2016; 36:BSR20160027. [PMID: 26934978 PMCID: PMC4832336 DOI: 10.1042/bsr20160027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/16/2016] [Indexed: 12/16/2022] Open
Abstract
We have created ERroGFP-S4, a novel ER redox probe suitable for monitoring redox dynamics in the oxidative environment of the ER. ERroGFP-S4 can be used for detection of aberrant ER redox states related to various physiological and pathological conditions. The endoplasmic reticulum (ER) is an essential organelle for cellular metabolic homeostasis including folding and maturation of secretory and membrane proteins. Disruption of ER proteostasis has been implicated in the pathogenesis of various diseases such as diabetes and neurodegenerative diseases. The ER redox state, which is an oxidative environment suitable for disulfide-bond formation, is essential for ER protein quality control. Hence, detection of the ER redox state, especially in living cells, is essential to understand the mechanism by which the redox state of the ER is maintained. However, methods to detect the redox state of the ER have not been well-established because of inefficient folding and stability of roGFP variants with oxidative redox potential like roGFP-iL. Here we have improved the folding efficiency of ER-targeted roGFP-iL (ERroGFP-iL) in cells by introducing superfolder GFP (sfGFP) mutations. Four specific amino acid substitutions (S30R, Y39N, T105N and I171V) greatly improved folding efficiency in Escherichia coli and in the ER of HeLa cells, as well as the thermostability of the purified proteins. Introduction of these mutations also enhanced the dynamic range for redox change both in vitro and in the ER of living cells. ER-targeted roGFP-S4 (ERroGFP-S4) possessing these four mutations could detect physiological redox changes within the ER. ERroGFP-S4 is therefore a novel probe suitable for monitoring redox change in the ER. ERroGFP-S4 can be applied to detect aberrant ER redox states associated with various pathological conditions and to identify the mechanisms used to maintain the redox state of the ER.
Collapse
|
36
|
Fan Y, Ai HW. Development of redox-sensitive red fluorescent proteins for imaging redox dynamics in cellular compartments. Anal Bioanal Chem 2016; 408:2901-11. [PMID: 26758595 DOI: 10.1007/s00216-015-9280-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/13/2015] [Accepted: 12/17/2015] [Indexed: 01/01/2023]
Abstract
We recently reported a redox-sensitive red fluorescent protein, rxRFP1, which is one of the first genetically encoded red-fluorescent probes for general redox states in living cells. As individual cellular compartments have different basal redox potentials, we hereby describe a group of rxRFP1 mutants, showing different midpoint redox potentials for detection of redox dynamics in various subcellular domains, such as mitochondria, the cell nucleus, and endoplasmic reticulum (ER). When these redox probes were expressed and subcellularly localized in human embryonic kidney (HEK) 293 T cells, they responded to membrane-permeable oxidants and reductants. In addition, a mitochondrially localized rxRFP1 mutant, Mito-rxRFP1.1, was used to detect mitochondrial oxidative stress induced by doxorubicin-a widely used cancer chemotherapy drug. Our work has expanded the fluorescent protein toolkit with new research tools for studying compartmentalized redox dynamics and oxidative stress under various pathophysiological conditions.
Collapse
Affiliation(s)
- Yichong Fan
- Environmental Toxicology Graduate Program, University of California Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Hui-wang Ai
- Environmental Toxicology Graduate Program, University of California Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA.
- Department of Chemistry, University of California Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA.
| |
Collapse
|
37
|
Konno T, Pinho Melo E, Lopes C, Mehmeti I, Lenzen S, Ron D, Avezov E. ERO1-independent production of H2O2 within the endoplasmic reticulum fuels Prdx4-mediated oxidative protein folding. J Cell Biol 2016; 211:253-9. [PMID: 26504166 PMCID: PMC4621842 DOI: 10.1083/jcb.201506123] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tracking the kinetics of equilibration of H2O2 between compartments reveals unexpected isolation of the endoplasmic reticulum and hints at a hitherto unsuspected local source of peroxide. The endoplasmic reticulum (ER)–localized peroxiredoxin 4 (PRDX4) supports disulfide bond formation in eukaryotic cells lacking endoplasmic reticulum oxidase 1 (ERO1). The source of peroxide that fuels PRDX4-mediated disulfide bond formation has remained a mystery, because ERO1 is believed to be a major producer of hydrogen peroxide (H2O2) in the ER lumen. We report on a simple kinetic technique to track H2O2 equilibration between cellular compartments, suggesting that the ER is relatively isolated from cytosolic or mitochondrial H2O2 pools. Furthermore, expression of an ER-adapted catalase to degrade lumenal H2O2 attenuated PRDX4-mediated disulfide bond formation in cells lacking ERO1, whereas depletion of H2O2 in the cytosol or mitochondria had no similar effect. ER catalase did not effect the slow residual disulfide bond formation in cells lacking both ERO1 and PRDX4. These observations point to exploitation of a hitherto unrecognized lumenal source of H2O2 by PRDX4 and a parallel slow H2O2-independent pathway for disulfide formation.
Collapse
Affiliation(s)
- Tasuku Konno
- University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust Medical Research Council Institute of Metabolic Science and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0XY, UK
| | - Eduardo Pinho Melo
- Center for Biomedical Research, Universidade do Algarve, Faro, Portugal 8005-139
| | - Carlos Lopes
- Center for Biomedical Research, Universidade do Algarve, Faro, Portugal 8005-139
| | - Ilir Mehmeti
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Sigurd Lenzen
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - David Ron
- University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust Medical Research Council Institute of Metabolic Science and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0XY, UK
| | - Edward Avezov
- University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust Medical Research Council Institute of Metabolic Science and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0XY, UK
| |
Collapse
|
38
|
Ronzoni R, Berardelli R, Medicina D, Sitia R, Gooptu B, Fra AM. Aberrant disulphide bonding contributes to the ER retention of alpha1-antitrypsin deficiency variants. Hum Mol Genet 2015; 25:642-50. [PMID: 26647313 DOI: 10.1093/hmg/ddv501] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/03/2015] [Indexed: 01/07/2023] Open
Abstract
Mutations in alpha1-antitrypsin (AAT) can cause the protein to polymerise and be retained in the endoplasmic reticulum (ER) of hepatocytes. The ensuing systemic AAT deficiency leads to pulmonary emphysema, while intracellular polymers are toxic and cause chronic liver disease. The severity of this process varies considerably between individuals, suggesting the involvement of mechanistic co-factors and potential for therapeutically beneficial interventions. We show in Hepa1.6 cells that the mildly polymerogenic I (Arg39Cys) AAT mutant forms aberrant inter- and intra-molecular disulphide bonds involving the acquired Cys39 and the only cysteine residue in the wild-type (M) sequence (Cys232). Substitution of Cys39 to serine partially restores secretion, showing that disulphide bonding contributes to the intracellular retention of I AAT. Covalent homodimers mediated by inter-Cys232 bonding alone are also observed in cells expressing the common Z and other polymerising AAT variants where conformational behaviour is abnormal, but not in those expressing M AAT. Prevention of such disulphide linkage through the introduction of the Cys232Ser mutation or by treatment of cells with reducing agents increases Z AAT secretion. Our results reveal that disulphide interactions enhance intracellular accumulation of AAT mutants and implicate the oxidative ER state as a pathogenic co-factor. Redox modulation, e.g. by anti-oxidant strategies, may therefore be beneficial in AAT deficiency-associated liver disease.
Collapse
Affiliation(s)
- Riccardo Ronzoni
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Romina Berardelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | | | - Bibek Gooptu
- Institute of Structural and Molecular Biology/Crystallography, Birkbeck College, University of London, London, UK and Division of Asthma, Allergy and Lung Biology, King's College, London, UK
| | - Anna Maria Fra
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy,
| |
Collapse
|
39
|
Kirstein J, Morito D, Kakihana T, Sugihara M, Minnen A, Hipp MS, Nussbaum-Krammer C, Kasturi P, Hartl FU, Nagata K, Morimoto RI. Proteotoxic stress and ageing triggers the loss of redox homeostasis across cellular compartments. EMBO J 2015; 34:2334-49. [PMID: 26228940 DOI: 10.15252/embj.201591711] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 07/02/2015] [Indexed: 12/17/2022] Open
Abstract
The cellular proteostasis network integrates the protein folding and clearance machineries in multiple sub-cellular compartments of the eukaryotic cell. The endoplasmic reticulum (ER) is the site of synthesis and folding of membrane and secretory proteins. A distinctive feature of the ER is its tightly controlled redox homeostasis necessary for the formation of inter- and intra-molecular disulphide bonds. Employing genetically encoded in vivo sensors reporting on the redox state in an organelle-specific manner, we show in the nematode Caenorhabditis elegans that the redox state of the ER is subject to profound changes during worm lifetime. In young animals, the ER is oxidizing and this shifts towards reducing conditions during ageing, whereas in the cytosol the redox state becomes more oxidizing with age. Likewise, the redox state in the cytosol and the ER change in an opposing manner in response to proteotoxic challenges in C. elegans and in HeLa cells revealing conservation of redox homeostasis. Moreover, we show that organelle redox homeostasis is regulated across tissues within C. elegans providing a new measure for organismal fitness.
Collapse
Affiliation(s)
- Janine Kirstein
- Leibniz-Institute for Molecular Pharmacology (FMP) im Forschungsverbund Berlin, Berlin, Germany
| | - Daisuke Morito
- Laboratory of Molecular and Cellular Biology, Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
| | - Taichi Kakihana
- Laboratory of Molecular and Cellular Biology, Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
| | - Munechika Sugihara
- Laboratory of Molecular and Cellular Biology, Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
| | - Anita Minnen
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL, USA
| | - Mark S Hipp
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Carmen Nussbaum-Krammer
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL, USA
| | - Prasad Kasturi
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kazuhiro Nagata
- Laboratory of Molecular and Cellular Biology, Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
| | - Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL, USA
| |
Collapse
|
40
|
Margittai É, Enyedi B, Csala M, Geiszt M, Bánhegyi G. Composition of the redox environment of the endoplasmic reticulum and sources of hydrogen peroxide. Free Radic Biol Med 2015; 83:331-40. [PMID: 25678412 DOI: 10.1016/j.freeradbiomed.2015.01.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/30/2015] [Accepted: 01/31/2015] [Indexed: 12/22/2022]
Abstract
The endoplasmic reticulum (ER) is a metabolically active organelle, which has a central role in proteostasis by translating, modifying, folding, and occasionally degrading secretory and membrane proteins. The lumen of the ER represents a separate compartment of the eukaryotic cell, with a characteristic proteome and metabolome. Although the redox metabolome and proteome of the compartment have not been holistically explored, it is evident that proper redox conditions are necessary for the functioning of many luminal pathways. These redox conditions are defined by local oxidoreductases and the membrane transport of electron donors and acceptors. The main electron carriers of the compartment are identical with those of the other organelles: glutathione, pyridine and flavin nucleotides, ascorbate, and others. However, their composition, concentration, and redox state in the ER lumen can be different from those observed in other compartments. The terminal oxidases of oxidative protein folding generate and maintain an "oxidative environment" by oxidizing protein thiols and producing hydrogen peroxide. ER-specific mechanisms reutilize hydrogen peroxide as an electron acceptor of oxidative folding. These mechanisms, together with membrane and kinetic barriers, guarantee that redox systems in the reduced or oxidized state can be present simultaneously in the lumen. The present knowledge on the in vivo conditions of ER redox is rather limited; development of new genetically encoded targetable sensors for the measurement of the luminal state of redox systems other than thiol/disulfide will contribute to a better understanding of ER redox homeostasis.
Collapse
Affiliation(s)
- Éva Margittai
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest 1444, Hungary
| | - Balázs Enyedi
- Department of Physiology, Semmelweis University, Budapest 1444, Hungary
| | - Miklós Csala
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest 1444, Hungary
| | - Miklós Geiszt
- Department of Physiology, Semmelweis University, Budapest 1444, Hungary; "Lendület" Peroxidase Enzyme Research Group of Semmelweis University and the Hungarian Academy of Sciences, Semmelweis University, Budapest 1444, Hungary
| | - Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest 1444, Hungary.
| |
Collapse
|
41
|
Abstract
In an aerobic organism, reactive oxygen species (ROS) are an inevitable metabolic byproduct. Endogenously produced ROS have a significant role in physiological processes, but excess ROS can cause oxidative stress and can damage tissue. Cells possess elaborate mechanisms to regulate their internal redox status. The intracellular redox homeostasis plays an essential role in maintaining cellular function. However, moderate alterations in redox balance can accompany major transitions in a cell's life cycle. Because of the role of ROS in physiology and in pathology, researchers need new tools to study redox chemistry in biological systems.In recent years, researchers have made remarkable progress in developing new, highly sensitive and selective fluorescent probes that respond to redox changes, and in this Account we highlight related research, primarily from our own group. We present an overview of the design, photophysical properties, and fluorescence transduction mechanisms of reported molecules that probe redox changes. We have designed and synthesized a series of fluorescent probes for redox cycles in biological systems relying on the active center of glutathione peroxidase (GPx). We have also constructed probes based on the oxidation and reduction of hydroquinone and of 2,2,6,6-tetramethylpiperidinooxy (TEMPO). Most of these probes exhibit high sensitivity and good selectivity, absorb in the near-infrared, and respond rapidly. Such probes are useful for confocal fluorescence microscopy, a dynamic imaging technique that could allow researchers to observe biologically important ROS and antioxidants in real time. This technique and these probes provide potentially useful tools for exploring the generation, transport, physiological function, and pathogenic mechanisms of ROS and antioxidants.We also describe features that could improve the properties of redox-responsive fluorescent probes: greater photostability; rapid, dynamic, cyclic and ratiometric responses; and broader absorption in the near-IR region. In addition, fluorescent probes that include organochalcogens such as selenium and tellurium show promise for a new class of fluorescent redox probes that are both chemically stable and robustly reversible. However, further investigations of the chemical and fluorescence transduction mechanisms of selenium-based probes in response to ROS are needed.
Collapse
Affiliation(s)
- Zhangrong Lou
- State Key Laboratory of Molecular
Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Peng Li
- State Key Laboratory of Molecular
Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Keli Han
- State Key Laboratory of Molecular
Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| |
Collapse
|
42
|
Abstract
The formal oxidation state of carbon atoms in organic molecules depends on the covalent structure. In proteins, the average oxidation state of carbon (Z(C)) can be calculated as an elemental ratio from the chemical formula. To investigate oxidation-reduction (redox) patterns, groups of proteins from different subcellular locations and phylogenetic groups were selected for comparison. Extracellular proteins of yeast have a relatively high oxidation state of carbon, corresponding with oxidizing conditions outside of the cell. However, an inverse relationship between Z(C) and redox potential occurs between the endoplasmic reticulum and cytoplasm. This trend provides support for the hypothesis that protein transport and turnover are ultimately coupled to the maintenance of different glutathione redox potentials in subcellular compartments. There are broad changes in Z(C) in whole-genome protein compositions in microbes from different environments, and in Rubisco homologues, lower Z(C) tends to occur in organisms with higher optimal growth temperature. Energetic costs calculated from thermodynamic models are consistent with the notion that thermophilic organisms exhibit molecular adaptation to not only high temperature but also the reducing nature of many hydrothermal fluids. Further characterization of the material requirements of protein metabolism in terms of the chemical conditions of cells and environments may help to reveal other linkages among biochemical processes with implications for changes on evolutionary time scales.
Collapse
Affiliation(s)
- Jeffrey M Dick
- Department of Chemistry, Curtin University, Perth, Western Australia, Australia Department of Applied Geology, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
43
|
Abstract
The measurement of intracellular analytes has been key in understanding cellular processes and function, and the use of biological nanosensors has revealed the spatial and temporal variation in their concentrations. In particular, ratiometric nanosensors allow quantitative measurements of analyte concentrations. The present review focuses on the recent advances in ratiometric intracellular biological nanosensors, with an emphasis on their utility in measuring analytes that are important in cell function.
Collapse
|
44
|
Abstract
The efficient folding, assembly and secretion of proteins from mammalian cells is a critically important process for normal cell physiology. Breakdown of the ability of cells to secrete functional proteins leads to disease pathologies caused by a lack of protein function or by cell death resulting from an aggravated stress response. Central to the folding of secreted proteins is the formation of disulfides which both aid folding and provide stability to the protein structure. For disulfides to form correctly necessitates the appropriate redox environment within the endoplasmic reticulum: too reducing and disulfides will not form, too oxidizing and non-native disulfides will not be resolved. How the endoplasmic reticulum maintains the correct redox balance is unknown. Although we have a good appreciation of the processes leading to a more oxidizing environment, our understanding of how any counterbalancing reductive pathway operates is limited. The present review looks at potential mechanisms for introducing reducing equivalents into the endoplasmic reticulum and discusses an approach to test these hypotheses.
Collapse
|
45
|
Determination of the topology of endoplasmic reticulum membrane proteins using redox-sensitive green-fluorescence protein fusions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1672-82. [PMID: 25889538 DOI: 10.1016/j.bbamcr.2015.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/30/2015] [Accepted: 04/02/2015] [Indexed: 02/01/2023]
Abstract
Membrane proteins of the endoplasmic reticulum (ER) are involved in a wide array of essential cellular functions. Identification of the topology of membrane proteins can provide significant insight into their mechanisms of action and biological roles. This is particularly important for membrane enzymes, since their topology determines the subcellular site where a biochemical reaction takes place and the dependence on luminal or cytosolic co-factor pools and substrates. The methods currently available for the determination of topology of proteins are rather laborious and require post-lysis or post-fixation manipulation of cells. In this work, we have developed a simple method for defining intracellular localization and topology of ER membrane proteins in living cells, based on the fusion of the respective protein with redox-sensitive green-fluorescent protein (roGFP). We validated the method and demonstrated that roGFP fusion proteins constitute a reliable tool for the study of ER membrane protein topology, using as control microsomal 11β-hydroxysteroid dehydrogenase (11β-HSD) proteins whose topology has been resolved, and comparing with an independent approach. We then implemented this method to determine the membrane topology of six microsomal members of the 17β-hydroxysteroid dehydrogenase (17β-HSD) family. The results revealed a luminal orientation of the catalytic site for three enzymes, i.e. 17β-HSD6, 7 and 12. Knowledge of the intracellular location of the catalytic site of these enzymes will enable future studies on their biological functions and on the role of the luminal co-factor pool.
Collapse
|
46
|
Lortz S, Lenzen S, Mehmeti I. N-glycosylation-negative catalase: a useful tool for exploring the role of hydrogen peroxide in the endoplasmic reticulum. Free Radic Biol Med 2015; 80:77-83. [PMID: 25499853 DOI: 10.1016/j.freeradbiomed.2014.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/07/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
Abstract
Disulfide bond formation during protein folding of nascent proteins is associated with the generation of H2O2 in the endoplasmic reticulum (ER). Approaches to quantifying H2O2 directly within the ER failed because of the oxidative environment in the ER lumen, and ER-specific catalase expression to detoxify high H2O2 concentrations resulted in an inactive protein owing to N-glycosylation. Therefore, the N-glycosylation motifs at asparagine-244 and -439 of the human catalase protein were deleted by site-directed mutagenesis. The ER-targeted expression of these variants revealed that the deletion of the N-glycosylation motif only at asparagine-244 (N244) was associated with the maintenance of full enzymatic activity in the ER. Expression of catalase N244 in the ER (ER-Catalase N244) was ER-specific and protected the cells significantly against exogenously added H2O2. With the expression of ER-Catalase N244, a highly effective H2O2 inactivation within the ER was achieved for the first time. Catalase has a high H2O2-inactivation capacity without the need of reducing cofactors, which might interfere with the ER redox homeostasis, and is not involved in protein folding. With these characteristics ER-Catalase N244 is an ideal tool to explore the impact of ER-generated H2O2 on the generation of disulfide bonds or to study the induction of ER-stress pathways through protein folding overload and accumulation of H2O2.
Collapse
Affiliation(s)
- S Lortz
- Institute of Clinical Biochemistry, Hannover Medical School, 30623 Hannover, Germany.
| | - S Lenzen
- Institute of Clinical Biochemistry, Hannover Medical School, 30623 Hannover, Germany
| | - I Mehmeti
- Institute of Clinical Biochemistry, Hannover Medical School, 30623 Hannover, Germany
| |
Collapse
|
47
|
Hudson DA, Gannon SA, Thorpe C. Oxidative protein folding: from thiol-disulfide exchange reactions to the redox poise of the endoplasmic reticulum. Free Radic Biol Med 2015; 80:171-82. [PMID: 25091901 PMCID: PMC4312752 DOI: 10.1016/j.freeradbiomed.2014.07.037] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/23/2014] [Indexed: 12/21/2022]
Abstract
This review examines oxidative protein folding within the mammalian endoplasmic reticulum (ER) from an enzymological perspective. In protein disulfide isomerase-first (PDI-first) pathways of oxidative protein folding, PDI is the immediate oxidant of reduced client proteins and then addresses disulfide mispairings in a second isomerization phase. In PDI-second pathways the initial oxidation is PDI-independent. Evidence for the rapid reduction of PDI by reduced glutathione is presented in the context of PDI-first pathways. Strategies and challenges are discussed for determination of the concentrations of reduced and oxidized glutathione and of the ratios of PDI(red):PDI(ox). The preponderance of evidence suggests that the mammalian ER is more reducing than first envisaged. The average redox state of major PDI-family members is largely to almost totally reduced. These observations are consistent with model studies showing that oxidative protein folding proceeds most efficiently at a reducing redox poise consistent with a stoichiometric insertion of disulfides into client proteins. After a discussion of the use of natively encoded fluorescent probes to report the glutathione redox poise of the ER, this review concludes with an elaboration of a complementary strategy to discontinuously survey the redox state of as many redox-active disulfides as can be identified by ratiometric LC-MS-MS methods. Consortia of oxidoreductases that are in redox equilibrium can then be identified and compared to the glutathione redox poise of the ER to gain a more detailed understanding of the factors that influence oxidative protein folding within the secretory compartment.
Collapse
Affiliation(s)
- Devin A Hudson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Shawn A Gannon
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
48
|
Redox sensor proteins for highly sensitive direct imaging of intracellular redox state. Biochem Biophys Res Commun 2015; 457:242-8. [DOI: 10.1016/j.bbrc.2014.12.095] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 12/21/2014] [Indexed: 11/24/2022]
|
49
|
Avezov E, Konno T, Zyryanova A, Chen W, Laine R, Crespillo-Casado A, Melo EP, Ushioda R, Nagata K, Kaminski CF, Harding HP, Ron D. Retarded PDI diffusion and a reductive shift in poise of the calcium depleted endoplasmic reticulum. BMC Biol 2015; 13:2. [PMID: 25575667 PMCID: PMC4316587 DOI: 10.1186/s12915-014-0112-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/23/2014] [Indexed: 11/26/2022] Open
Abstract
Background Endoplasmic reticulum (ER) lumenal protein thiol redox balance resists dramatic variation in unfolded protein load imposed by diverse physiological challenges including compromise in the key upstream oxidases. Lumenal calcium depletion, incurred during normal cell signaling, stands out as a notable exception to this resilience, promoting a rapid and reversible shift towards a more reducing poise. Calcium depletion induced ER redox alterations are relevant to physiological conditions associated with calcium signaling, such as the response of pancreatic cells to secretagogues and neuronal activity. The core components of the ER redox machinery are well characterized; however, the molecular basis for the calcium-depletion induced shift in redox balance is presently obscure. Results In vitro, the core machinery for generating disulfides, consisting of ERO1 and the oxidizing protein disulfide isomerase, PDI1A, was indifferent to variation in calcium concentration within the physiological range. However, ER calcium depletion in vivo led to a selective 2.5-fold decline in PDI1A mobility, whereas the mobility of the reducing PDI family member, ERdj5 was unaffected. In vivo, fluorescence resonance energy transfer measurements revealed that declining PDI1A mobility correlated with formation of a complex with the abundant ER chaperone calreticulin, whose mobility was also inhibited by calcium depletion and the calcium depletion-mediated reductive shift was attenuated in cells lacking calreticulin. Measurements with purified proteins confirmed that the PDI1A-calreticulin complex dissociated as Ca2+ concentrations approached those normally found in the ER lumen ([Ca2+]K0.5max = 190 μM). Conclusions Our findings suggest that selective sequestration of PDI1A in a calcium depletion-mediated complex with the abundant chaperone calreticulin attenuates the effective concentration of this major lumenal thiol oxidant, providing a plausible and simple mechanism for the observed shift in ER lumenal redox poise upon physiological calcium depletion. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0112-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Edward Avezov
- University of Cambridge, Cambridge Institute for Medical Research, Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, United Kingdom.
| | - Tasuku Konno
- University of Cambridge, Cambridge Institute for Medical Research, Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, United Kingdom.
| | - Alisa Zyryanova
- University of Cambridge, Cambridge Institute for Medical Research, Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, United Kingdom.
| | - Weiyue Chen
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB2 3RA, UK.
| | - Romain Laine
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB2 3RA, UK.
| | - Ana Crespillo-Casado
- University of Cambridge, Cambridge Institute for Medical Research, Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, United Kingdom.
| | - Eduardo Pinho Melo
- Center for Biomedical Research, Universidade do Algarve, Faro, Portugal.
| | - Ryo Ushioda
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-Ku, Kyoto-City, 603-8555, Japan.
| | - Kazuhiro Nagata
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-Ku, Kyoto-City, 603-8555, Japan.
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB2 3RA, UK.
| | - Heather P Harding
- University of Cambridge, Cambridge Institute for Medical Research, Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, United Kingdom.
| | - David Ron
- University of Cambridge, Cambridge Institute for Medical Research, Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, United Kingdom.
| |
Collapse
|
50
|
Kojer K, Peleh V, Calabrese G, Herrmann JM, Riemer J. Kinetic control by limiting glutaredoxin amounts enables thiol oxidation in the reducing mitochondrial intermembrane space. Mol Biol Cell 2014; 26:195-204. [PMID: 25392302 PMCID: PMC4294668 DOI: 10.1091/mbc.e14-10-1422] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Proteins of the mitochondrial intermembrane space are oxidatively folded by the incorporation of structural disulfide bonds. Efficient protein oxidation in this highly reducing compartment is possible only because glutaredoxins, which could translate the glutathione redox potential into that of protein thiols, are present at limiting levels. The mitochondrial intermembrane space (IMS) harbors an oxidizing machinery that drives import and folding of small cysteine-containing proteins without targeting signals. The main component of this pathway is the oxidoreductase Mia40, which introduces disulfides into its substrates. We recently showed that the IMS glutathione pool is maintained as reducing as that of the cytosol. It thus remained unclear how equilibration of protein disulfides with the IMS glutathione pool is prevented in order to allow oxidation-driven protein import. Here we demonstrate the presence of glutaredoxins in the IMS and show that limiting amounts of these glutaredoxins provide a kinetic barrier to prevent the thermodynamically feasible reduction of Mia40 substrates by the IMS glutathione pool. Moreover, they allow Mia40 to exist in a predominantly oxidized state. Consequently, overexpression of glutaredoxin 2 in the IMS results in a more reduced Mia40 redox state and a delay in oxidative folding and mitochondrial import of different Mia40 substrates. Our findings thus indicate that carefully balanced glutaredoxin amounts in the IMS ensure efficient oxidative folding in the reducing environment of this compartment.
Collapse
Affiliation(s)
- Kerstin Kojer
- Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Valentina Peleh
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Gaetano Calabrese
- Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | - Jan Riemer
- Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|