1
|
Stange K, Röntgen M. Myotube Formation and Cellular Fusion Are Diminished Due to Low Birth Weight in Piglets. Int J Mol Sci 2025; 26:2847. [PMID: 40243453 PMCID: PMC11989183 DOI: 10.3390/ijms26072847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Low birth weight (LBW) in various species leads to a pronounced skeletal muscle phenotype and can serve as a model to study muscle formation and draw conclusions for normal and pathological development. We aimed to elucidate in detail how the differentiation of muscular stem cells and their progeny are disturbed in piglets born with LBW. We isolated primary muscle cells from LBW piglets and their normal siblings with two different approaches: (1) single cells from two functionally divergent subpopulations (previously named "fast" and "slow") and (2) cells derived from isolated, intact myofibers. Subsequently, we analyzed their proliferative and differentiative capacity by determining proliferation rate, migration behavior, myotube formation, and myogenic gene and protein expression. LBW led to a decreased proliferation rate and migration potential in cells from the subpopulation fast group. Cells from LBW piglets were generally able to differentiate, but they formed smaller myotubes with less incorporated nuclei, leading to a diminished fusion rate. Myogenic gene expression was also significantly altered due to pig birth weight. Overall, early postnatal muscle development in LBW was disturbed at several crucial steps involving the establishment of a reserve stem cell pool, movement of cells towards existing myofibers, and the ability to form nascent myofibers.
Collapse
Affiliation(s)
| | - Monika Röntgen
- Working Group Cell Biology of Muscle Growth, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany;
| |
Collapse
|
2
|
Chinvattanachot G, Rivas D, Duque G. Mechanisms of muscle cells alterations and regeneration decline during aging. Ageing Res Rev 2024; 102:102589. [PMID: 39566742 DOI: 10.1016/j.arr.2024.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/27/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Skeletal muscles are essential for locomotion and body metabolism regulation. As muscles age, they lose strength, elasticity, and metabolic capability, leading to ineffective motion and metabolic derangement. Both cellular and extracellular alterations significantly influence muscle aging. Satellite cells (SCs), the primary muscle stem cells responsible for muscle regeneration, become exhausted, resulting in diminished population and functionality during aging. This decline in SC function impairs intercellular interactions as well as extracellular matrix production, further hindering muscle regeneration. Other muscle-resident cells, such as fibro-adipogenic progenitors (FAPs), pericytes, and immune cells, also deteriorate with age, reducing local growth factor activities and responsiveness to stress or injury. Systemic signaling, including hormonal changes, contributes to muscle cellular catabolism and disrupts muscle homeostasis. Collectively, these cellular and environmental components interact, disrupting muscle homeostasis and regeneration in advancing age. Understanding these complex interactions offers insights into potential regenerative strategies to mitigate age-related muscle degeneration.
Collapse
Affiliation(s)
- Guntarat Chinvattanachot
- Department of Orthopedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| | - Daniel Rivas
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Gustavo Duque
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Steele AP, Syroid AL, Mombo C, Raveetharan S, Rebalka IA, Hawke TJ. Isolation of a persistently quiescent muscle satellite cell population. Am J Physiol Cell Physiol 2024; 327:C415-C422. [PMID: 38912737 DOI: 10.1152/ajpcell.00231.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Although studies have identified characteristics of quiescent satellite cells (SCs), their isolation has been hampered by the fact that the isolation procedures result in the activation of these cells into their rapidly proliferating progeny (myoblasts). Thus, the use of myoblasts for therapeutic (regenerative medicine) or industrial applications (cellular agriculture) has been impeded by the limited proliferative and differentiative capacity of these myogenic progenitors. Here we identify a subpopulation of satellite cells isolated from mouse skeletal muscle using flow cytometry that is highly Pax7-positive, exhibit a very slow proliferation rate (7.7 ± 1.2 days/doubling), and are capable of being maintained in culture for at least 3 mo without a change in phenotype. These cells can be activated from quiescence using a p38 inhibitor or by exposure to freeze-thaw cycles. Once activated, these cells proliferate rapidly (22.7 ± 0.2 h/doubling), have reduced Pax7 expression (threefold decrease in Pax7 fluorescence vs. quiescence), and differentiate into myotubes with a high efficiency. Furthermore, these cells withstand freeze-thawing readily without a significant loss of viability (83.1 ± 2.1% live). The results presented here provide researchers with a method to isolate quiescent satellite cells, allowing for more detailed examinations of the factors affecting satellite cell quiescence/activation and providing a cell source that has a unique potential in the regenerative medicine and cellular agriculture fields.NEW & NOTEWORTHY We provide a method to isolate quiescent satellite cells from skeletal muscle. These cells are highly Pax7-positive, exhibit a very slow proliferation rate, and are capable of being maintained in culture for months without a change in phenotype. The use of these cells by muscle researchers will allow for more detailed examinations of the factors affecting satellite cell quiescence/activation and provide a novel cell source for the regenerative medicine and cellular agriculture fields.
Collapse
Affiliation(s)
- Alexandra P Steele
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Anika L Syroid
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Cassandra Mombo
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Shathana Raveetharan
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Irena A Rebalka
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
4
|
Kitajima Y, Yoshioka K, Mikumo Y, Ohki S, Maehara K, Ohkawa Y, Ono Y. Loss of Tob1 promotes muscle regeneration through muscle stem cell expansion. J Cell Sci 2024; 137:jcs261886. [PMID: 39037211 DOI: 10.1242/jcs.261886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Muscle stem cells (MuSCs) play an indispensable role in postnatal muscle growth and hypertrophy in adults. MuSCs also retain a highly regenerative capacity and are therefore considered a promising stem cell source for regenerative therapy for muscle diseases. In this study, we identify tumor-suppressor protein Tob1 as a Pax7 target protein that negatively controls the population expansion of MuSCs. Tob1 protein is undetectable in the quiescent state but is upregulated during activation in MuSCs. Tob1 ablation in mice accelerates MuSC population expansion and boosts muscle regeneration. Moreover, inactivation of Tob1 in MuSCs ameliorates the efficiency of MuSC transplantation in a murine muscular dystrophy model. Collectively, selective targeting of Tob1 might be a therapeutic option for the treatment of muscular diseases, including muscular dystrophy and age-related sarcopenia.
Collapse
Affiliation(s)
- Yasuo Kitajima
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, 860-0811, Japan
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Kiyoshi Yoshioka
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Yoko Mikumo
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Shun Ohki
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, 860-0811, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Division of Biological Regulation, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
- Muscle Biology Laboratory, Research Team for Aging Science, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Tokyo, 173-0015, Japan
| |
Collapse
|
5
|
Guilhot C, Catenacci M, Lofaro S, Rudnicki MA. The satellite cell in skeletal muscle: A story of heterogeneity. Curr Top Dev Biol 2024; 158:15-51. [PMID: 38670703 DOI: 10.1016/bs.ctdb.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Skeletal muscle is a highly represented tissue in mammals and is composed of fibers that are extremely adaptable and capable of regeneration. This characteristic of muscle fibers is made possible by a cell type called satellite cells. Adjacent to the fibers, satellite cells are found in a quiescent state and located between the muscle fibers membrane and the basal lamina. These cells are required for the growth and regeneration of skeletal muscle through myogenesis. This process is known to be tightly sequenced from the activation to the differentiation/fusion of myofibers. However, for the past fifteen years, researchers have been interested in examining satellite cell heterogeneity and have identified different subpopulations displaying distinct characteristics based on localization, quiescence state, stemness capacity, cell-cycle progression or gene expression. A small subset of satellite cells appears to represent multipotent long-term self-renewing muscle stem cells (MuSC). All these distinctions led us to the hypothesis that the characteristics of myogenesis might not be linear and therefore may be more permissive based on the evidence that satellite cells are a heterogeneous population. In this review, we discuss the different subpopulations that exist within the satellite cell pool to highlight the heterogeneity and to gain further understanding of the myogenesis progress. Finally, we discuss the long term self-renewing MuSC subpopulation that is capable of dividing asymmetrically and discuss the molecular mechanisms regulating MuSC polarization during health and disease.
Collapse
Affiliation(s)
- Corentin Guilhot
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Marie Catenacci
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Stephanie Lofaro
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael A Rudnicki
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
6
|
Bachman JF, Chakkalakal JV. Satellite cells in the growth and maintenance of muscle. Curr Top Dev Biol 2024; 158:1-14. [PMID: 38670701 DOI: 10.1016/bs.ctdb.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Embryonic skeletal muscle growth is contingent upon a population of somite derived satellite cells, however, the contribution of these cells to early postnatal skeletal muscle growth remains relatively high. As prepubertal postnatal development proceeds, the activity and contribution of satellite cells to skeletal muscle growth diminishes. Eventually, at around puberty, a population of satellite cells escapes terminal commitment, continues to express the paired box transcription factor Pax7, and reside in a quiescent state orbiting the myofiber periphery adjacent to the basal lamina. After adolescence, some satellite cell contributions to muscle maintenance and adaptation occur, however, their necessity is reduced relative to embryonic, early postnatal, and prepubertal growth.
Collapse
Affiliation(s)
| | - Joe V Chakkalakal
- Departments of Orthopedic Surgery and Cell Biology, Duke University School of Medicine, Durham NC, USA.
| |
Collapse
|
7
|
Martins B, Bister A, Dohmen RGJ, Gouveia MA, Hueber R, Melzener L, Messmer T, Papadopoulos J, Pimenta J, Raina D, Schaeken L, Shirley S, Bouchet BP, Flack JE. Advances and Challenges in Cell Biology for Cultured Meat. Annu Rev Anim Biosci 2024; 12:345-368. [PMID: 37963400 DOI: 10.1146/annurev-animal-021022-055132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Cultured meat is an emerging biotechnology that aims to produce meat from animal cell culture, rather than from the raising and slaughtering of livestock, on environmental and animal welfare grounds. The detailed understanding and accurate manipulation of cell biology are critical to the design of cultured meat bioprocesses. Recent years have seen significant interest in this field, with numerous scientific and commercial breakthroughs. Nevertheless, these technologies remain at a nascent stage, and myriad challenges remain, spanning the entire bioprocess. From a cell biological perspective, these include the identification of suitable starting cell types, tuning of proliferation and differentiation conditions, and optimization of cell-biomaterial interactions to create nutritious, enticing foods. Here, we discuss the key advances and outstanding challenges in cultured meat, with a particular focus on cell biology, and argue that solving the remaining bottlenecks in a cost-effective, scalable fashion will require coordinated, concerted scientific efforts. Success will also require solutions to nonscientific challenges, including regulatory approval, consumer acceptance, and market feasibility. However, if these can be overcome, cultured meat technologies can revolutionize our approach to food.
Collapse
Affiliation(s)
- Beatriz Martins
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Arthur Bister
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Richard G J Dohmen
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Maria Ana Gouveia
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Rui Hueber
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Lea Melzener
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Tobias Messmer
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Joanna Papadopoulos
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Joana Pimenta
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Dhruv Raina
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Lieke Schaeken
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Sara Shirley
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Benjamin P Bouchet
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands;
| | - Joshua E Flack
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| |
Collapse
|
8
|
Girolamo DD, Benavente-Diaz M, Murolo M, Grimaldi A, Lopes PT, Evano B, Kuriki M, Gioftsidi S, Laville V, Tinevez JY, Letort G, Mella S, Tajbakhsh S, Comai G. Extraocular muscle stem cells exhibit distinct cellular properties associated with non-muscle molecular signatures. Development 2024; 151:dev202144. [PMID: 38240380 DOI: 10.1242/dev.202144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/27/2023] [Indexed: 02/22/2024]
Abstract
Skeletal muscle stem cells (MuSCs) are recognised as functionally heterogeneous. Cranial MuSCs are reported to have greater proliferative and regenerative capacity when compared with those in the limb. A comprehensive understanding of the mechanisms underlying this functional heterogeneity is lacking. Here, we have used clonal analysis, live imaging and single cell transcriptomic analysis to identify crucial features that distinguish extraocular muscle (EOM) from limb muscle stem cell populations. A MyogeninntdTom reporter showed that the increased proliferation capacity of EOM MuSCs correlates with deferred differentiation and lower expression of the myogenic commitment gene Myod. Unexpectedly, EOM MuSCs activated in vitro expressed a large array of extracellular matrix components typical of mesenchymal non-muscle cells. Computational analysis underscored a distinct co-regulatory module, which is absent in limb MuSCs, as driver of these features. The EOM transcription factor network, with Foxc1 as key player, appears to be hardwired to EOM identity as it persists during growth, disease and in vitro after several passages. Our findings shed light on how high-performing MuSCs regulate myogenic commitment by remodelling their local environment and adopting properties not generally associated with myogenic cells.
Collapse
Affiliation(s)
- Daniela Di Girolamo
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Maria Benavente-Diaz
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
- Sorbonne Universités, Complexité du Vivant, F-75005 Paris, France
| | - Melania Murolo
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Alexandre Grimaldi
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
- Sorbonne Universités, Complexité du Vivant, F-75005 Paris, France
| | - Priscilla Thomas Lopes
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Brendan Evano
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Mao Kuriki
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Stamatia Gioftsidi
- Université Paris-Est, 77420 Champs-sur- Marne, France
- Freie Universität Berlin, 14195 Berlin, Germany
- Inserm, IMRB U955-E10, 94000 Créteil, France
| | - Vincent Laville
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Jean-Yves Tinevez
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, 75015 Paris, France
| | - Gaëlle Letort
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr Roux, 75015 Paris, France
| | - Sebastian Mella
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Glenda Comai
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| |
Collapse
|
9
|
Guardiola O, Iavarone F, Nicoletti C, Ventre M, Rodríguez C, Pisapia L, Andolfi G, Saccone V, Patriarca EJ, Puri PL, Minchiotti G. CRIPTO-based micro-heterogeneity of mouse muscle satellite cells enables adaptive response to regenerative microenvironment. Dev Cell 2023; 58:2896-2913.e6. [PMID: 38056454 PMCID: PMC10855569 DOI: 10.1016/j.devcel.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 07/01/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
Skeletal muscle repair relies on heterogeneous populations of satellite cells (SCs). The mechanisms that regulate SC homeostasis and state transition during activation are currently unknown. Here, we investigated the emerging role of non-genetic micro-heterogeneity, i.e., intrinsic cell-to-cell variability of a population, in this process. We demonstrate that micro-heterogeneity of the membrane protein CRIPTO in mouse-activated SCs (ASCs) identifies metastable cell states that allow a rapid response of the population to environmental changes. Mechanistically, CRIPTO micro-heterogeneity is generated and maintained through a process of intracellular trafficking coupled with active shedding of CRIPTO from the plasma membrane. Irreversible perturbation of CRIPTO micro-heterogeneity affects the balance of proliferation, self-renewal, and myogenic commitment in ASCs, resulting in increased self-renewal in vivo. Our findings demonstrate that CRIPTO micro-heterogeneity regulates the adaptative response of ASCs to microenvironmental changes, providing insights into the role of intrinsic heterogeneity in preserving stem cell population diversity during tissue repair.
Collapse
Affiliation(s)
- Ombretta Guardiola
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy; Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy.
| | - Francescopaolo Iavarone
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy; Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy
| | - Chiara Nicoletti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Maurizio Ventre
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples "Federico II", Naples 80125, Italy; Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia, Naples 80125, Italy
| | - Cristina Rodríguez
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy; Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy
| | - Laura Pisapia
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy
| | - Gennaro Andolfi
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy; Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy
| | - Valentina Saccone
- IRCCS Fondazione Santa Lucia, Rome 00143, Italy; Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Eduardo J Patriarca
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy; Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy; Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy.
| |
Collapse
|
10
|
Fujita R, Mizuno S, Sadahiro T, Hayashi T, Sugasawa T, Sugiyama F, Ono Y, Takahashi S, Ieda M. Generation of a MyoD knock-in reporter mouse line to study muscle stem cell dynamics and heterogeneity. iScience 2023; 26:106592. [PMID: 37250337 PMCID: PMC10214404 DOI: 10.1016/j.isci.2023.106592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/19/2023] [Accepted: 03/31/2023] [Indexed: 05/31/2023] Open
Abstract
Myoblast determination protein 1 (MyoD) dynamics define the activation status of muscle stem cells (MuSCs), aiding in muscle tissue regeneration after injury. However, the lack of experimental platforms to monitor MyoD dynamics in vitro and in vivo has hampered the investigation of fate determination and heterogeneity of MuSCs. Herein, we report a MyoD knock-in (MyoD-KI) reporter mouse expressing tdTomato at the endogenous MyoD locus. Expression of tdTomato in MyoD-KI mice recapitulated the endogenous MyoD expression dynamics in vitro and during the early phase of regeneration in vivo. Additionally, we showed that tdTomato fluorescence intensity defines MuSC activation status without immunostaining. Based on these features, we developed a high-throughput screening system to assess the effects of drugs on the behavior of MuSCs in vitro. Thus, MyoD-KI mice are an invaluable resource for studying the dynamics of MuSCs, including their fate decisions and heterogeneity, and for drug screening in stem cell therapy.
Collapse
Affiliation(s)
- Ryo Fujita
- Division of Regenerative Medicine, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
- Department of Cardiology, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Taketaro Sadahiro
- Department of Cardiology, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Takuto Hayashi
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Takehito Sugasawa
- Laboratory of Clinical Examination and Sports Medicine, Department of Clinical Medicine, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Masaki Ieda
- Department of Cardiology, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
11
|
de Morree A, Rando TA. Regulation of adult stem cell quiescence and its functions in the maintenance of tissue integrity. Nat Rev Mol Cell Biol 2023; 24:334-354. [PMID: 36922629 PMCID: PMC10725182 DOI: 10.1038/s41580-022-00568-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 03/18/2023]
Abstract
Adult stem cells are important for mammalian tissues, where they act as a cell reserve that supports normal tissue turnover and can mount a regenerative response following acute injuries. Quiescent stem cells are well established in certain tissues, such as skeletal muscle, brain, and bone marrow. The quiescent state is actively controlled and is essential for long-term maintenance of stem cell pools. In this Review, we discuss the importance of maintaining a functional pool of quiescent adult stem cells, including haematopoietic stem cells, skeletal muscle stem cells, neural stem cells, hair follicle stem cells, and mesenchymal stem cells such as fibro-adipogenic progenitors, to ensure tissue maintenance and repair. We discuss the molecular mechanisms that regulate the entry into, maintenance of, and exit from the quiescent state in mice. Recent studies revealed that quiescent stem cells have a discordance between RNA and protein levels, indicating the importance of post-transcriptional mechanisms, such as alternative polyadenylation, alternative splicing, and translation repression, in the control of stem cell quiescence. Understanding how these mechanisms guide stem cell function during homeostasis and regeneration has important implications for regenerative medicine.
Collapse
Affiliation(s)
- Antoine de Morree
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Thomas A Rando
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
- Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Hamaguchi H, Dohi K, Sakai T, Taoka M, Isobe T, Matsui TS, Deguchi S, Furuichi Y, Fujii NL, Manabe Y. PDGF-B secreted from skeletal muscle enhances myoblast proliferation and myotube maturation via activation of the PDGFR signaling cascade. Biochem Biophys Res Commun 2023; 639:169-175. [PMID: 36521377 DOI: 10.1016/j.bbrc.2022.11.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
Myokines, secreted factors from skeletal muscle, act locally on muscle cells or satellite cells, which is important in regulating muscle mass and function. Here, we found platelet-derived growth factor subunit B (PDGF-B) is constitutively secreted from muscle cells without muscle contraction. Furthermore, PDGF-B secretion increased with myoblast to myotube differentiation. To examine the role of PDGF-B as a paracrine or autocrine myokine, myoblasts or myotubes were treated with PDGF-B. As a result, myoblast proliferation was significantly enhanced via several signaling pathways. Intriguingly, myotubes treated with PDGF-B showed enhanced maturation as indicated by their increased myotube diameter, myosin heavy chain expression, and strengthened contractile force. These findings suggest that PDGF-B is constitutively secreted by myokines to enhance myoblast proliferation and myotube maturation, which may contribute to skeletal muscle regeneration.
Collapse
Affiliation(s)
- Hiroki Hamaguchi
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Kitora Dohi
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Takaomi Sakai
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, 192-0397, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, 192-0397, Japan
| | - Tsubasa S Matsui
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Yasuro Furuichi
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Nobuharu L Fujii
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Yasuko Manabe
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
13
|
Establishment of a system evaluating the contractile force of electrically stimulated myotubes from wrinkles formed on elastic substrate. Sci Rep 2022; 12:13818. [PMID: 35970858 PMCID: PMC9378739 DOI: 10.1038/s41598-022-17548-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022] Open
Abstract
Muscle weakness is detrimental not only to quality of life but also life expectancy. However, effective drugs have still not been developed to improve and prevent muscle weakness associated with aging or diseases. One reason for the delay in drug discovery is that no suitable in vitro screening system has been established to test whether drugs improve muscle strength. Here, we used a specific deformable silicone gel substrate to effectively and sensitively evaluate the contractile force generated by myotubes from wrinkles formed on the substrate. Using this system, it was found that the contractile force generated by an atrophic phenotype of myotubes induced by dexamethasone or cancer cell-conditioned medium treatment significantly decreased while that generated by hypertrophic myotubes induced by insulin-like growth factor-1 significantly increased. Notably, it was found that changes in the index related to contractile force can detect atrophic or hypertrophic phenotypes more sensitively than changes in myotube diameter or myosin heavy chain expression, both commonly used to evaluate myotube function. These results suggest that our proposed system will be an effective tool for assessing the contractile force-related state of myotubes, which are available for the development of drugs to prevent and/or treat muscle weakness.
Collapse
|
14
|
Larson AA, Shams AS, McMillin SL, Sullivan BP, Vue C, Roloff ZA, Batchelor E, Kyba M, Lowe DA. Estradiol deficiency reduces the satellite cell pool by impairing cell cycle progression. Am J Physiol Cell Physiol 2022; 322:C1123-C1137. [PMID: 35442828 PMCID: PMC9169829 DOI: 10.1152/ajpcell.00429.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/31/2022] [Accepted: 04/17/2022] [Indexed: 12/22/2022]
Abstract
The size of the satellite cell pool is reduced in estradiol (E2)-deficient female mice and humans. Here, we use a combination of in vivo and in vitro approaches to identify mechanisms, whereby E2 deficiency impairs satellite cell maintenance. By measuring satellite cell numbers in mice at several early time points postovariectomy (Ovx), we determine that satellite cell numbers decline by 33% between 10 and 14 days post-Ovx in tibialis anterior and gastrocnemius muscles. At 14 days post-Ovx, we demonstrate that satellite cells have a reduced propensity to transition from G0/G1 to S and G2/M phases, compared with cells from ovary-intact mice, associated with changes in two key satellite cell cycle regulators, ccna2 and p16INK4a. Further, freshly isolated satellite cells treated with E2 in vitro have 62% greater cell proliferation and require less time to complete the first division. Using clonal and differentiation assays, we measured 69% larger satellite cell colonies and enhanced satellite cell-derived myoblast differentiation with E2 treatment compared with vehicle-treated cells. Together, these results identify a novel mechanism for preservation of the satellite cell pool by E2 via promotion of satellite cell cycling.
Collapse
Affiliation(s)
- Alexie A Larson
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Ahmed S Shams
- Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota
- Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Shawna L McMillin
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Brian P Sullivan
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Cha Vue
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Zachery A Roloff
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Eric Batchelor
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Michael Kyba
- Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Dawn A Lowe
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
15
|
Bachman JF, Chakkalakal JV. Insights into muscle stem cell dynamics during postnatal development. FEBS J 2022; 289:2710-2722. [PMID: 33811430 PMCID: PMC9947813 DOI: 10.1111/febs.15856] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
During development, resident stem cell populations contribute to the growth and maturation of tissue and organs. In skeletal muscle, muscle stem cells, or satellite cells (SCs), are responsible for the maturation of postnatal myofibers. However, the role SCs play in later stages of postnatal growth, and thus, when they enter a mature quiescent state is controversial. Here, we discuss the current literature regarding the role SCs play in all stages of postnatal growth, from birth to puberty onset to young adulthood. We additionally highlight the implications of SC loss or dysfunction during developmental stages, both in the context of experimental paradigms and disease settings.
Collapse
Affiliation(s)
- John F Bachman
- Department of Pathology and Laboratory Medicine, Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester NY, United States.,Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester NY, United States
| | - Joe V Chakkalakal
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester NY, United States.,Department of Biomedical Engineering, University of Rochester, Rochester NY, United States.,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester NY, United States.,Stem Cell and Regenerative Medicine Institute, and The Rochester Aging Research Center, University of Rochester Medical Center, Rochester NY, United States.,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester NY, United States
| |
Collapse
|
16
|
Nakai N, Iida N, Kitai S, Shimomura Y, Kitaura Y, Higashida K. BDK knockout skeletal muscle satellite cells exhibit enhanced protein translation initiation signal in response to BCAA in vitro. Biosci Biotechnol Biochem 2022; 86:610-617. [PMID: 35108367 DOI: 10.1093/bbb/zbac021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022]
Abstract
We examined the effects of branched-chain amino acids (BCAAs) and electrical pulse stimulation (EPS) on the mTORC1 pathway in muscle satellite cells (MSCs) isolated from branched-chain α-keto acid dehydrogenase kinase (BDK) knockout (KO) mice in vitro. MSCs were isolated from BDK KO and wild-type (WT) mice, proliferated, and differentiated into myotubes. BCAA stimulation increased the phosphorylation of p70 S6 kinase (p70S6K), a marker of protein translation initiation, in MSCs from WT and BDK KO mice, but the rate of the increase was higher in MSCs isolated from BDK KO mice. Contrarily, there was no difference in the increase in p70S6K phosphorylation by EPS. Acute BDK knockdown in MSCs from WT mice using shRNA decreased p70S6K phosphorylation in response to BCAA stimulation. Collectively, the susceptibility of mTORC1 to BCAA stimulation was elevated by chronic, but not acute, enhancement of BCAA catabolism.
Collapse
Affiliation(s)
- Naoya Nakai
- Department of Nutrition, University of Shiga Prefecture, Hikone, Shiga, Japan
| | - Noriko Iida
- Department of Nutrition, University of Shiga Prefecture, Hikone, Shiga, Japan
| | - Saki Kitai
- Department of Nutrition, University of Shiga Prefecture, Hikone, Shiga, Japan
| | - Yoshiharu Shimomura
- Department of Food and Nutritional Sciences, College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Yasuyuki Kitaura
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kazuhiko Higashida
- Department of Nutrition, University of Shiga Prefecture, Hikone, Shiga, Japan
| |
Collapse
|
17
|
Ganassi M, Zammit PS. Involvement of muscle satellite cell dysfunction in neuromuscular disorders: Expanding the portfolio of satellite cell-opathies. Eur J Transl Myol 2022; 32:10064. [PMID: 35302338 PMCID: PMC8992676 DOI: 10.4081/ejtm.2022.10064] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/11/2022] [Indexed: 12/03/2022] Open
Abstract
Neuromuscular disorders are a heterogeneous group of acquired or hereditary conditions that affect striated muscle function. The resulting decrease in muscle strength and motility irreversibly impacts quality of life. In addition to directly affecting skeletal muscle, pathogenesis can also arise from dysfunctional crosstalk between nerves and muscles, and may include cardiac impairment. Muscular weakness is often progressive and paralleled by continuous decline in the ability of skeletal muscle to functionally adapt and regenerate. Normally, the skeletal muscle resident stem cells, named satellite cells, ensure tissue homeostasis by providing myoblasts for growth, maintenance, repair and regeneration. We recently defined 'Satellite Cell-opathies' as those inherited neuromuscular conditions presenting satellite cell dysfunction in muscular dystrophies and myopathies (doi:10.1016/j.yexcr.2021.112906). Here, we expand the portfolio of Satellite Cell-opathies by evaluating the potential impairment of satellite cell function across all 16 categories of neuromuscular disorders, including those with mainly neurogenic and cardiac involvement. We explore the expression dynamics of myopathogenes, genes whose mutation leads to skeletal muscle pathogenesis, using transcriptomic analysis. This revealed that 45% of myopathogenes are differentially expressed during early satellite cell activation (0 - 5 hours). Of these 271 myopathogenes, 83 respond to Pax7, a master regulator of satellite cells. Our analysis suggests possible perturbation of satellite cell function in many neuromuscular disorders across all categories, including those where skeletal muscle pathology is not predominant. This characterisation further aids understanding of pathomechanisms and informs on development of prognostic and diagnostic tools, and ultimately, new therapeutics.
Collapse
Affiliation(s)
- Massimo Ganassi
- King's College London, Randall Centre for Cell and Molecular Biophysics, Guy's Campus, London.
| | - Peter S Zammit
- King's College London, Randall Centre for Cell and Molecular Biophysics, Guy's Campus, London.
| |
Collapse
|
18
|
Ganassi M, Muntoni F, Zammit PS. Defining and identifying satellite cell-opathies within muscular dystrophies and myopathies. Exp Cell Res 2022; 411:112906. [PMID: 34740639 PMCID: PMC8784828 DOI: 10.1016/j.yexcr.2021.112906] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/12/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022]
Abstract
Muscular dystrophies and congenital myopathies arise from specific genetic mutations causing skeletal muscle weakness that reduces quality of life. Muscle health relies on resident muscle stem cells called satellite cells, which enable life-course muscle growth, maintenance, repair and regeneration. Such tuned plasticity gradually diminishes in muscle diseases, suggesting compromised satellite cell function. A central issue however, is whether the pathogenic mutation perturbs satellite cell function directly and/or indirectly via an increasingly hostile microenvironment as disease progresses. Here, we explore the effects on satellite cell function of pathogenic mutations in genes (myopathogenes) that associate with muscle disorders, to evaluate clinical and muscle pathological hallmarks that define dysfunctional satellite cells. We deploy transcriptomic analysis and comparison between muscular dystrophies and myopathies to determine the contribution of satellite cell dysfunction using literature, expression dynamics of myopathogenes and their response to the satellite cell regulator PAX7. Our multimodal approach extends current pathological classifications to define Satellite Cell-opathies: muscle disorders in which satellite cell dysfunction contributes to pathology. Primary Satellite Cell-opathies are conditions where mutations in a myopathogene directly affect satellite cell function, such as in Progressive Congenital Myopathy with Scoliosis (MYOSCO) and Carey-Fineman-Ziter Syndrome (CFZS). Primary satellite cell-opathies are generally characterised as being congenital with general hypotonia, and specific involvement of respiratory, trunk and facial muscles, although serum CK levels are usually within the normal range. Secondary Satellite Cell-opathies have mutations in myopathogenes that affect both satellite cells and muscle fibres. Such classification aids diagnosis and predicting probable disease course, as well as informing on treatment and therapeutic development.
Collapse
Affiliation(s)
- Massimo Ganassi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom; NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
19
|
Gudagudi KB, d'Entrèves NP, Ollewagen T, Myburgh KH. Total mRNA and primary human myoblasts' in vitro cell cycle progression distinguishes between clones. Biochimie 2022; 196:161-170. [PMID: 35114349 DOI: 10.1016/j.biochi.2022.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 12/11/2022]
Abstract
Satellite cells are generally quiescent in vivo. Once activated, progression through the cell cycle begins. Immortalised myoblasts from a single cell line are fairly homogenous in culture, but primary human myoblasts (PHMs) demonstrate heterogeneity. This phenomenon is poorly understood however may impact on PHM expansion. This study aimed to evaluate cell cycle transition from growth to synthesis phases of the cell cycle (G1 to S phase) and total mRNA relevant to this transition in PHM clones derived from 2 donor biopsies. Proportions of cells transitioning from G1 to S phase were evaluated at 2-hourly intervals for 24 h (n = 3 for each) and total mRNA quantified. Both PHM clones revealed an exponential transition from G1 to S phase over time, with a significantly slower rate for PHMs from S9.1 compared to S6.3, which had a higher proportion of PHMs in S phase for most time-points (p < 0.05). After 24 h the proportion of PHMs in S phase was ∼13% (S6.3) compared to ∼22% (S9.1). Gene transcription increased as cells progressed from G1 to S phase. Although total RNA increased with similar linearity in both clones, S6.3 PHMs had consistently (10 out of 12 time points) significantly higher concentrations. Validating the 2-hourly assessment over 24 h, a 4-hourly assessment from 8 to 32 h revealed similar differences but included the beginning of a plateau. This study demonstrates that PHMs from different donors differ in both cell cycle progression and overall transcriptome revealing new aspects in the heterogeneity of isolated satellite cells in vitro.
Collapse
Affiliation(s)
- Kirankumar B Gudagudi
- Department of Physiological Sciences, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602, South Africa.
| | - Niccolò Passerin d'Entrèves
- Department of Physiological Sciences, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602, South Africa.
| | - Tracey Ollewagen
- Department of Physiological Sciences, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602, South Africa.
| | - Kathryn H Myburgh
- Department of Physiological Sciences, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602, South Africa.
| |
Collapse
|
20
|
Hong X, Campanario S, Ramírez-Pardo I, Grima-Terrén M, Isern J, Muñoz-Cánoves P. Stem cell aging in the skeletal muscle: The importance of communication. Ageing Res Rev 2022; 73:101528. [PMID: 34818593 DOI: 10.1016/j.arr.2021.101528] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/01/2021] [Accepted: 11/15/2021] [Indexed: 01/04/2023]
Abstract
Adult stem cells sustain tissue homeostasis and regeneration; their functional decline is often linked to aging, which is characterized by the progressive loss of physiological functions across multiple tissues and organs. The resident stem cells in skeletal muscle, termed satellite cells, are normally quiescent but activate upon injury to reconstitute the damaged tissue. In this review, we discuss the current understanding of the molecular processes that contribute to the functional failure of satellite cells during aging. This failure is due not only to intrinsic changes but also to extrinsic factors, most of which are still undefined but originate from the muscle tissue microenvironment of the satellite cells (the niche), or from the systemic environment. We also highlight the emerging applications of the powerful single-cell sequencing technologies in the study of skeletal muscle aging, particularly in the heterogeneity of the satellite cell population and the molecular interaction of satellite cells and other cell types in the niche. An improved understanding of how satellite cells communicate with their environment, and how this communication is perturbed with aging, will be helpful for defining countermeasures against loss of muscle regenerative capacity in sarcopenia.
Collapse
Affiliation(s)
- Xiaotong Hong
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain
| | - Silvia Campanario
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain
| | - Ignacio Ramírez-Pardo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain
| | - Mercedes Grima-Terrén
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain
| | - Joan Isern
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain; ICREA, E-08010 Barcelona, Spain.
| |
Collapse
|
21
|
Control of satellite cell function in muscle regeneration and its disruption in ageing. Nat Rev Mol Cell Biol 2021; 23:204-226. [PMID: 34663964 DOI: 10.1038/s41580-021-00421-2] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 12/19/2022]
Abstract
Skeletal muscle contains a designated population of adult stem cells, called satellite cells, which are generally quiescent. In homeostasis, satellite cells proliferate only sporadically and usually by asymmetric cell division to replace myofibres damaged by daily activity and maintain the stem cell pool. However, satellite cells can also be robustly activated upon tissue injury, after which they undergo symmetric divisions to generate new stem cells and numerous proliferating myoblasts that later differentiate to muscle cells (myocytes) to rebuild the muscle fibre, thereby supporting skeletal muscle regeneration. Recent discoveries show that satellite cells have a great degree of population heterogeneity, and that their cell fate choices during the regeneration process are dictated by both intrinsic and extrinsic mechanisms. Extrinsic cues come largely from communication with the numerous distinct stromal cell types in their niche, creating a dynamically interactive microenvironment. This Review discusses the role and regulation of satellite cells in skeletal muscle homeostasis and regeneration. In particular, we highlight the cell-intrinsic control of quiescence versus activation, the importance of satellite cell-niche communication, and deregulation of these mechanisms associated with ageing. The increasing understanding of how satellite cells are regulated will help to advance muscle regeneration and rejuvenation therapies.
Collapse
|
22
|
Rodriguez-Outeiriño L, Hernandez-Torres F, Ramírez-de Acuña F, Matías-Valiente L, Sanchez-Fernandez C, Franco D, Aranega AE. Muscle Satellite Cell Heterogeneity: Does Embryonic Origin Matter? Front Cell Dev Biol 2021; 9:750534. [PMID: 34722534 PMCID: PMC8554119 DOI: 10.3389/fcell.2021.750534] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
Muscle regeneration is an important homeostatic process of adult skeletal muscle that recapitulates many aspects of embryonic myogenesis. Satellite cells (SCs) are the main muscle stem cells responsible for skeletal muscle regeneration. SCs reside between the myofiber basal lamina and the sarcolemma of the muscle fiber in a quiescent state. However, in response to physiological stimuli or muscle trauma, activated SCs transiently re-enter the cell cycle to proliferate and subsequently exit the cell cycle to differentiate or self-renew. Recent evidence has stated that SCs display functional heterogeneity linked to regenerative capability with an undifferentiated subgroup that is more prone to self-renewal, as well as committed progenitor cells ready for myogenic differentiation. Several lineage tracing studies suggest that such SC heterogeneity could be associated with different embryonic origins. Although it has been established that SCs are derived from the central dermomyotome, how a small subpopulation of the SCs progeny maintain their stem cell identity while most progress through the myogenic program to construct myofibers is not well understood. In this review, we synthesize the works supporting the different developmental origins of SCs as the genesis of their functional heterogeneity.
Collapse
Affiliation(s)
- Lara Rodriguez-Outeiriño
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain
| | - Francisco Hernandez-Torres
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
| | - F. Ramírez-de Acuña
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain
| | - Lidia Matías-Valiente
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain
| | - Cristina Sanchez-Fernandez
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain
| | - Amelia Eva Aranega
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain
| |
Collapse
|
23
|
Fukada SI, Nakamura A. Exercise/Resistance Training and Muscle Stem Cells. Endocrinol Metab (Seoul) 2021; 36:737-744. [PMID: 34372625 PMCID: PMC8419599 DOI: 10.3803/enm.2021.401] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023] Open
Abstract
Skeletal muscle has attracted attention as endocrine organ, because exercise-dependent cytokines called myokines/exerkines are released from skeletal muscle and are involved in systemic functions. While, local mechanical loading to skeletal muscle by exercise or resistance training alters myofiber type and size and myonuclear number. Skeletal muscle-resident stem cells, known as muscle satellite cells (MuSCs), are responsible for the increased number of myonuclei. Under steady conditions, MuSCs are maintained in a mitotically quiescent state but exit from that state and start to proliferate in response to high physical activity. Alterations in MuSC behavior occur when myofibers are damaged, but the lethal damage to myofibers does not seem to evoke mechanical loading-dependent MuSC activation and proliferation. Given that MuSCs proliferate without damage, it is unclear how the different behaviors of MuSCs are controlled by different physical activities. Recent studies demonstrated that myonuclear number reflects the size of myofibers; hence, it is crucial to know the properties of MuSCs and the mechanism of myonuclear accretion by MuSCs. In addition, the elucidation of mechanical load-dependent changes in muscle resident cells, including MuSCs, will be necessary for the discovery of new myokines/exerkines and understating skeletal muscle diseases.
Collapse
Affiliation(s)
- So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Ayasa Nakamura
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| |
Collapse
|
24
|
Benedetti A, Cera G, De Meo D, Villani C, Bouche M, Lozanoska-Ochser B. A novel approach for the isolation and long-term expansion of pure satellite cells based on ice-cold treatment. Skelet Muscle 2021; 11:7. [PMID: 33731194 PMCID: PMC7968259 DOI: 10.1186/s13395-021-00261-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/18/2021] [Indexed: 01/07/2023] Open
Abstract
Satellite cells (SCs) are muscle stem cells capable of regenerating injured muscle. The study of their functional potential depends on the availability of methods for the isolation and expansion of pure SCs with preserved myogenic properties after serial passages in vitro. Here, we describe the ice-cold treatment (ICT) method, which is a simple, economical, and efficient method for the isolation and in vitro expansion of highly pure mouse and human SCs. It involves a brief (15-30 min) incubation on ice (0 °C) of a dish containing a heterogeneous mix of adherent muscle mononuclear cells, which leads to the detachment of only the SCs, and gives rise to cultures of superior purity compared to other commonly used isolation methods. The ICT method doubles up as a gentle passaging technique, allowing SC expansion over extended periods of time without compromising their proliferation and differentiation potential. Moreover, SCs isolated and expanded using the ICT method are capable of regenerating injured muscle in vivo. The ICT method involves minimal cell manipulation, does not require any expertise or expensive reagents, it is fast, and highly reproducible, and greatly reduces the number of animals or human biopsies required in order to obtain sufficient number of SCs. The cost-effectiveness, accessibility, and technical simplicity of this method, as well as its remarkable efficiency, will no doubt accelerate SC basic and translational research bringing their therapeutic use closer to the clinic.
Collapse
Affiliation(s)
- Anna Benedetti
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianluca Cera
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Orthopedics, Sapienza University of Rome, Rome, Italy
- Department of Orthopaedics and Traumatology, Policlinico Umberto I, Rome, Italy
| | - Daniele De Meo
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Orthopedics, Sapienza University of Rome, Rome, Italy
- Department of Orthopaedics and Traumatology, Policlinico Umberto I, Rome, Italy
| | - Ciro Villani
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Orthopedics, Sapienza University of Rome, Rome, Italy
- Department of Orthopaedics and Traumatology, Policlinico Umberto I, Rome, Italy
| | - Marina Bouche
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
| | - Biliana Lozanoska-Ochser
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
25
|
Yartseva V, Goldstein LD, Rodman J, Kates L, Chen MZ, Chen YJJ, Foreman O, Siebel CW, Modrusan Z, Peterson AS, Jovičić A. Heterogeneity of Satellite Cells Implicates DELTA1/NOTCH2 Signaling in Self-Renewal. Cell Rep 2021; 30:1491-1503.e6. [PMID: 32023464 DOI: 10.1016/j.celrep.2019.12.100] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/27/2019] [Accepted: 12/30/2019] [Indexed: 12/20/2022] Open
Abstract
How satellite cells and their progenitors balance differentiation and self-renewal to achieve sustainable tissue regeneration is not well understood. A major roadblock to understanding satellite cell fate decisions has been the difficulty of studying this process in vivo. By visualizing expression dynamics of myogenic transcription factors during early regeneration in vivo, we identify the time point at which cells undergo decisions to differentiate or self-renew. Single-cell RNA sequencing reveals heterogeneity of satellite cells, including a subpopulation enriched in Notch2 receptor expression, during both muscle homeostasis and regeneration. Furthermore, we reveal that differentiating cells express the Dll1 ligand. Using antagonistic antibodies, we demonstrate that the DLL1 and NOTCH2 signaling pair is required for satellite cell self-renewal. Thus, differentiating cells provide the self-renewing signal during regeneration, enabling proportional regeneration in response to injury while maintaining the satellite cell pool. These findings have implications for therapeutic control of muscle regeneration.
Collapse
Affiliation(s)
- Valeria Yartseva
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA; Department of Neuroscience, Genentech Inc., South San Francisco, CA 94080, USA
| | - Leonard D Goldstein
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA; Department of Bioinformatics & Computational Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Julia Rodman
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Lance Kates
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Mark Z Chen
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Ying-Jiun J Chen
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA; Department of Protein Chemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | - Oded Foreman
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Christian W Siebel
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Zora Modrusan
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA; Department of Protein Chemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | - Andrew S Peterson
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA; Seven Rivers Genomic Medicines, MedGenome, Foster City, CA, USA
| | - Ana Jovičić
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA; Department of Neuroscience, Genentech Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
26
|
Zumbaugh MD, Geiger AE, Luo J, Shen Z, Shi H, Gerrard DE. O-GlcNAc transferase is required to maintain satellite cell function. STEM CELLS (DAYTON, OHIO) 2021; 39:945-958. [PMID: 33634918 DOI: 10.1002/stem.3361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/06/2021] [Indexed: 11/05/2022]
Abstract
O-GlcNAcylation is a posttranslational modification considered to be a nutrient sensor that reports nutrient scarcity or surplus. Although O-GlcNAcylation exists in a wide range of cells and/or tissues, its functional role in muscle satellite cells (SCs) remains largely unknown. Using a genetic approach, we ablated O-GlcNAc transferase (OGT), and thus O-GlcNAcylation, in SCs. We first evaluated SC function in vivo using a muscle injury model and found that OGT deficient SCs had compromised capacity to repair muscle after an acute injury compared with the wild-type SCs. By tracing SC cycling rates in vivo using the doxycycline-inducible H2B-GFP mouse model, we found that SCs lacking OGT cycled at lower rates and reduced in abundance with time. Additionally, the self-renewal ability of OGT-deficient SCs after injury was decreased compared to that of the wild-type SCs. Moreover, in vivo, in vitro, and ex vivo proliferation assays revealed that SCs lacking OGT were incapable of expanding compared with their wild-type counterparts, a phenotype that may be explained, at least in part, by an HCF1-mediated arrest in the cell cycle. Taken together, our findings suggest that O-GlcNAcylation plays a critical role in the maintenance of SC health and function in normal and injured skeletal muscle.
Collapse
Affiliation(s)
- Morgan D Zumbaugh
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Ashley E Geiger
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Jing Luo
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Zhengxing Shen
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Hao Shi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - David E Gerrard
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
27
|
Furuichi Y, Kawabata Y, Aoki M, Mita Y, Fujii NL, Manabe Y. Excess Glucose Impedes the Proliferation of Skeletal Muscle Satellite Cells Under Adherent Culture Conditions. Front Cell Dev Biol 2021; 9:640399. [PMID: 33732705 PMCID: PMC7957019 DOI: 10.3389/fcell.2021.640399] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/04/2021] [Indexed: 01/08/2023] Open
Abstract
Glucose is a major energy source consumed by proliferating mammalian cells. Therefore, in general, proliferating cells have the preference of high glucose contents in extracellular environment. Here, we showed that high glucose concentrations impede the proliferation of satellite cells, which are muscle-specific stem cells, under adherent culture conditions. We found that the proliferation activity of satellite cells was higher in glucose-free DMEM growth medium (low-glucose medium with a glucose concentration of 2 mM) than in standard glucose DMEM (high-glucose medium with a glucose concentration of 19 mM). Satellite cells cultured in the high-glucose medium showed a decreased population of reserve cells, identified by staining for Pax7 expression, suggesting that glucose concentration affects cell fate determination. In conclusion, glucose is a factor that decides the cell fate of skeletal muscle-specific stem cells. Due to this unique feature of satellite cells, hyperglycemia may negatively affect the regenerative capability of skeletal muscle myofibers and thus facilitate sarcopenia.
Collapse
Affiliation(s)
- Yasuro Furuichi
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Yuki Kawabata
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Miho Aoki
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Yoshitaka Mita
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Nobuharu L Fujii
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Yasuko Manabe
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
28
|
Lala-Tabbert N, AlSudais H, Marchildon F, Fu D, Wiper-Bergeron N. CCAAT/enhancer-binding protein beta promotes muscle stem cell quiescence through regulation of quiescence-associated genes. Stem Cells 2020; 39:345-357. [PMID: 33326659 DOI: 10.1002/stem.3319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022]
Abstract
Regeneration of skeletal muscle depends on resident muscle stem cells called satellite cells that in healthy, uninjured muscle remain quiescent (noncycling). After activation and expansion of satellite cells postinjury, satellite cell numbers return to uninjured levels and return to mitotic quiescence. Here, we show that the transcription factor CCAAT/enhancer-binding protein beta (C/EBPβ) is required to maintain quiescence of satellite cells in uninjured muscle. We show that C/EBPβ is expressed in quiescent satellite cells in vivo and upregulated in noncycling myoblasts in vitro. Loss of C/EBPβ in satellite cells promotes their premature exit from quiescence resulting in spontaneous activation and differentiation of the stem cell pool. Forced expression of C/EBPβ in myoblasts inhibits proliferation by upregulation of 28 quiescence-associated genes. Furthermore, we find that caveolin-1 is a direct transcriptional target of C/EBPβ and is required for cell cycle exit in muscle satellite cells expressing C/EBPβ. The induction of mitotic quiescence is considered necessary for the long-term maintenance of adult stem cell populations with dysregulation driving increased differentiation of progenitors and depletion of the stem cell pool. Our findings place C/EBPβ as an important transcriptional regulator of muscle satellite cell quiescence.
Collapse
Affiliation(s)
- Neena Lala-Tabbert
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Hamood AlSudais
- Graduate Program in Cellular and Molecular Medicine, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - François Marchildon
- Graduate Program in Cellular and Molecular Medicine, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Laboratory of Molecular Metabolism, The Rockefeller University, New York, New York, USA
| | - Dechen Fu
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA
| | - Nadine Wiper-Bergeron
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
29
|
Leung C, Murad KBA, Tan ALT, Yada S, Sagiraju S, Bode PK, Barker N. Lgr5 Marks Adult Progenitor Cells Contributing to Skeletal Muscle Regeneration and Sarcoma Formation. Cell Rep 2020; 33:108535. [PMID: 33357435 DOI: 10.1016/j.celrep.2020.108535] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/15/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Regeneration of adult skeletal muscle is driven largely by resident satellite cells, a stem cell population increasingly considered to display a high degree of molecular heterogeneity. In this study, we find that Lgr5, a receptor for Rspo and a potent mediator of Wnt/β-catenin signaling, marks a subset of activated satellite cells that contribute to muscle regeneration. Lgr5 is found to be rapidly upregulated in purified myogenic progenitors following acute cardiotoxin-induced injury. In vivo lineage tracing using our Lgr5-2ACreERT2R26tdTomatoLSL reporter mouse model shows that Lgr5+ cells can reconstitute damaged muscle fibers following muscle injury, as well as replenish the quiescent satellite cell pool. Moreover, conditional mutation in Lgr52ACreERT2;KrasG12D;Trp53flox/flox mice drives undifferentiated pleomorphic sarcoma formation in adult mice, thereby substantiating Lgr5+ cells as a cell of origin of sarcomas. Our findings provide the groundwork for developing Rspo/Wnt-signaling-based therapeutics to potentially enhance regenerative outcomes of skeletal muscles in degenerative muscle diseases.
Collapse
Affiliation(s)
- Carly Leung
- A(∗)STAR Institute of Medical Biology, Singapore 138648, Singapore; A(∗)STAR Institute of Molecular and Cellular Biology, Singapore 138648, Singapore
| | - Katzrin Bte Ahmad Murad
- A(∗)STAR Institute of Medical Biology, Singapore 138648, Singapore; A(∗)STAR Institute of Molecular and Cellular Biology, Singapore 138648, Singapore
| | - Adelyn Liang Thing Tan
- A(∗)STAR Institute of Medical Biology, Singapore 138648, Singapore; A(∗)STAR Institute of Molecular and Cellular Biology, Singapore 138648, Singapore
| | - Swathi Yada
- A(∗)STAR Institute of Medical Biology, Singapore 138648, Singapore; A(∗)STAR Institute of Molecular and Cellular Biology, Singapore 138648, Singapore
| | - Sowmya Sagiraju
- A(∗)STAR Institute of Medical Biology, Singapore 138648, Singapore; A(∗)STAR Institute of Molecular and Cellular Biology, Singapore 138648, Singapore
| | - Peter Karl Bode
- Department of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Nick Barker
- A(∗)STAR Institute of Medical Biology, Singapore 138648, Singapore; A(∗)STAR Institute of Molecular and Cellular Biology, Singapore 138648, Singapore; Cancer Research Institute, Kanazawa University, Kakuma-machi Kanazawa 920-1192, Japan; School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore.
| |
Collapse
|
30
|
Damaged Myofiber-Derived Metabolic Enzymes Act as Activators of Muscle Satellite Cells. Stem Cell Reports 2020; 15:926-940. [PMID: 32888505 PMCID: PMC7561495 DOI: 10.1016/j.stemcr.2020.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
Muscle satellite cells are normally quiescent but are rapidly activated following muscle damage. Here, we investigated whether damaged myofibers influence the activation of satellite cells. Our findings revealed that satellite cells are directly activated by damaged-myofiber-derived factors (DMDFs). DMDFs induced satellite cells to enter the cell cycle; however, the cells stayed at the G1 phase and did not undergo S phase, and these cells were reversible to the quiescent-like state. Proteome analysis identified metabolic enzymes, including GAPDH, as DMDFs, whose recombinant proteins stimulated the activation of satellite cells. Satellite cells pre-exposed to the DMDFs demonstrated accelerated proliferation ex vivo. Treatment with recombinant GAPDH prior to muscle injury promoted expansion of the satellite cell population in vivo. Thus, our results indicate that DMDFs are not only a set of biomarkers for muscle damage, but also act as moonlighting proteins involved in satellite cell activation at the initial step of muscle regeneration.
Collapse
|
31
|
Yoshioka K, Kitajima Y, Okazaki N, Chiba K, Yonekura A, Ono Y. A Modified Pre-plating Method for High-Yield and High-Purity Muscle Stem Cell Isolation From Human/Mouse Skeletal Muscle Tissues. Front Cell Dev Biol 2020; 8:793. [PMID: 32903486 PMCID: PMC7438441 DOI: 10.3389/fcell.2020.00793] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/28/2020] [Indexed: 01/01/2023] Open
Abstract
Primary culture of skeletal muscle stem cells (MuSCs) is indispensable to study the dynamics of muscle regeneration and homeostasis. Here we describe the modified pre-plating method for isolating MuSCs in culture with greatly improved purity, yield, and procedure time. The protocol is based on the distinct adhesion characteristics of MuSCs. We reduced the procedure time to 2.5 days to obtain highly purified MuSCs through a newly employed re-plating step, which repeats incubation and cell-suspension. The re-plating step efficiently traps remaining fibroblastic cells, but not MuSCs, on a collagen-coated dish. Additionally, we confirmed that MuSCs can be isolated from small amounts of human/mouse muscle tissues, enabling us to perform experiments with amount-limited specimens. Thus, our method can be performed with basic laboratory equipment suitable for most facilities and without sophisticated MuSC handling techniques.
Collapse
Affiliation(s)
- Kiyoshi Yoshioka
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yasuo Kitajima
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Narihiro Okazaki
- Department of Orthopaedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ko Chiba
- Department of Orthopaedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akihiko Yonekura
- Department of Orthopaedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
32
|
Gudagudi KB, d’Entrèves NP, Woudberg NJ, Steyn PJ, Myburgh KH. In vitro induction of quiescence in isolated primary human myoblasts. Cytotechnology 2020; 72:189-202. [PMID: 31993891 PMCID: PMC7192999 DOI: 10.1007/s10616-019-00365-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023] Open
Abstract
Adult skeletal muscle stem cells, satellite cells, remain in an inactive or quiescent state in vivo under physiological conditions. Progression through the cell cycle, including activation of quiescent cells, is a tightly regulated process. Studies employing in vitro culture of satellite cells, primary human myoblasts (PHMs), necessitate isolation myoblasts from muscle biopsies. Further studies utilizing these cells should endeavour to represent their native in vivo characteristics as closely as possible, also considering variability between individual donors. This study demonstrates the approach of utilizing KnockOut™ Serum Replacement (KOSR)-supplemented culture media as a quiescence-induction media for 10 days in PHMs isolated and expanded from three different donors. Cell cycle analysis demonstrated that treatment resulted in an increase in G1 phase and decreased S phase proportions in all donors (p < 0.005). The proportions of cells in G1 and G2 phases differed in proliferating myoblasts when comparing donors (p < 0.05 to p < 0.005), but following KOSR treatment, the proportion of cells in G1 (p = 0.558), S (p = 0.606) and G2 phases (p = 0.884) were equivalent between donors. When cultured in the quiescence-induction media, expression of CD34 and Myf5 remained constant above > 98% over time from day 0 to day 10. In contrast activation (CD56), proliferation (Ki67) and myogenic marker MyoD decreased, indicated de-differentiation. Induction of quiescence was accompanied in all three clones by fold change in p21 mRNA greater than 3.5 and up to tenfold. After induction of quiescence, differentiation into myotubes was not affected. In conclusion, we describe a method to induce quiescence in PHMs from different donors.
Collapse
Affiliation(s)
- Kirankumar B. Gudagudi
- Department of Physiological Sciences, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602 South Africa
| | - Niccolò Passerin d’Entrèves
- Department of Physiological Sciences, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602 South Africa
| | - Nicholas J. Woudberg
- Department of Physiological Sciences, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602 South Africa
| | - Paul J. Steyn
- Department of Physiological Sciences, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602 South Africa
- Department of Human Biology, University of Cape Town, Anzio Road, Observatory, South Africa
| | - Kathryn H. Myburgh
- Department of Physiological Sciences, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602 South Africa
| |
Collapse
|
33
|
Ruparelia AA, Ratnayake D, Currie PD. Stem cells in skeletal muscle growth and regeneration in amniotes and teleosts: Emerging themes. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e365. [PMID: 31743958 DOI: 10.1002/wdev.365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/22/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022]
Abstract
Skeletal muscle is a contractile, postmitotic tissue that retains the capacity to grow and regenerate throughout life in amniotes and teleost. Both muscle growth and regeneration are regulated by obligate tissue resident muscle stem cells. Given that considerable knowledge exists on the myogenic process, recent studies have focused on examining the molecular markers of muscle stem cells, and on the intrinsic and extrinsic signals regulating their function. From this, two themes emerge: firstly, muscle stem cells display remarkable heterogeneity not only with regards to their gene expression profile, but also with respect to their behavior and function; and secondly, the stem cell niche is a critical regulator of muscle stem cell function during growth and regeneration. Here, we will address the current understanding of these emerging themes with emphasis on the distinct processes used by amniotes and teleost, and discuss the challenges and opportunities in the muscle growth and regeneration fields. This article is characterized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Early Embryonic Development > Development to the Basic Body Plan Vertebrate Organogenesis > Musculoskeletal and Vascular.
Collapse
Affiliation(s)
- Avnika A Ruparelia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia.,EMBL Australia, Monash University, Melbourne, Victoria, Australia
| | - Dhanushika Ratnayake
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia.,EMBL Australia, Monash University, Melbourne, Victoria, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia.,EMBL Australia, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
34
|
Sakamoto K, Furuichi Y, Yamamoto M, Takahashi M, Akimoto Y, Ishikawa T, Shimizu T, Fujimoto M, Takada-Watanabe A, Hayashi A, Mita Y, Manabe Y, Fujii NL, Ishibashi R, Maezawa Y, Betsholtz C, Yokote K, Takemoto M. R3hdml regulates satellite cell proliferation and differentiation. EMBO Rep 2019; 20:e47957. [PMID: 31524320 DOI: 10.15252/embr.201947957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/06/2019] [Accepted: 08/16/2019] [Indexed: 12/29/2022] Open
Abstract
In this study, we identified a previously uncharacterized skeletal satellite cell-secreted protein, R3h domain containing-like (R3hdml). Expression of R3hdml increases during skeletal muscle development and differentiation in mice. Body weight and skeletal muscle mass of R3hdml knockout (KO) mice are lower compared to control mice. Expression levels of cell cycle-related markers, phosphorylation of Akt, and expression of insulin-like growth factor within the skeletal muscle are reduced in R3hdml KO mice compared to control mice. Expression of R3hdml increases during muscle regeneration in response to cardiotoxin (CTX)-induced muscle injury. Recovery of handgrip strength after CTX injection was significantly impaired in R3hdml KO mice, which is rescued by R3hdml. Our results indicate that R3hdml is required for skeletal muscle development, regeneration, and, in particular, satellite cell proliferation and differentiation.
Collapse
Affiliation(s)
- Kenichi Sakamoto
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasuro Furuichi
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Masashi Yamamoto
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Megumi Takahashi
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, Tokyo, Japan
| | - Takahiro Ishikawa
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan.,Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Takahiko Shimizu
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan.,Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Masanori Fujimoto
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Aki Takada-Watanabe
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Aiko Hayashi
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshitaka Mita
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Yasuko Manabe
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Nobuharu L Fujii
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Ryoichi Ishibashi
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan.,Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology, Uppsala Universitet, Uppsala, Sweden.,Integrated Cardio Metabolic Center (ICMC), Karolinska Institutet, Novum, Huddinge, Sweden
| | - Koutaro Yokote
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan.,Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Minoru Takemoto
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Diabetes, Metabolism and Endocrinology, School of Medicine, International University of Health and Welfare, Narita, Chiba, Japan
| |
Collapse
|
35
|
Kitajima Y, Ono Y. Visualization of PAX7 protein dynamics in muscle satellite cells in a YFP knock-in-mouse line. Skelet Muscle 2018; 8:26. [PMID: 30139390 PMCID: PMC6108100 DOI: 10.1186/s13395-018-0174-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/01/2018] [Indexed: 11/13/2022] Open
Abstract
Background Satellite cells are residential muscle stem cells that express a paired box protein, PAX7. Results Here, we report a knock-in mouse line expressing a PAX7-enhanced yellow fluorescent protein (YFP) fusion protein that enables visualization of PAX7 protein dynamics in living satellite cells through YFP fluorescence. The YFP fluorescence signals in Pax7-YFP knock-in mice clearly recapitulated the endogenous expression of PAX7 protein in satellite cells. YFP+ satellite cells were efficiently isolated from muscle tissues by fluorescence-activated cell sorting. Homozygous Pax7-YFP knock-in mice (Pax7YFP/YFP) were viable, grew and regenerated muscle normally, and Pax7YFP/YFP mouse-derived satellite cells proliferated, differentiated, and self-renewed as efficiently as those from wild-type (Pax7+/+) mice. Conclusions Taken together, our Pax7-YFP mouse line is a useful tool to aid the development of stem-cell-based therapies for muscle diseases. Electronic supplementary material The online version of this article (10.1186/s13395-018-0174-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasuo Kitajima
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan.,Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Yusuke Ono
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan. .,Agency for Medical Research and Development (AMED), 1-7-1 Otemachi, Chiyodaku, Tokyo, 100-0004, Japan.
| |
Collapse
|
36
|
Khodabukus A, Prabhu N, Wang J, Bursac N. In Vitro Tissue-Engineered Skeletal Muscle Models for Studying Muscle Physiology and Disease. Adv Healthc Mater 2018; 7:e1701498. [PMID: 29696831 PMCID: PMC6105407 DOI: 10.1002/adhm.201701498] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/18/2018] [Indexed: 12/18/2022]
Abstract
Healthy skeletal muscle possesses the extraordinary ability to regenerate in response to small-scale injuries; however, this self-repair capacity becomes overwhelmed with aging, genetic myopathies, and large muscle loss. The failure of small animal models to accurately replicate human muscle disease, injury and to predict clinically-relevant drug responses has driven the development of high fidelity in vitro skeletal muscle models. Herein, the progress made and challenges ahead in engineering biomimetic human skeletal muscle tissues that can recapitulate muscle development, genetic diseases, regeneration, and drug response is discussed. Bioengineering approaches used to improve engineered muscle structure and function as well as the functionality of satellite cells to allow modeling muscle regeneration in vitro are also highlighted. Next, a historical overview on the generation of skeletal muscle cells and tissues from human pluripotent stem cells, and a discussion on the potential of these approaches to model and treat genetic diseases such as Duchenne muscular dystrophy, is provided. Finally, the need to integrate multiorgan microphysiological systems to generate improved drug discovery technologies with the potential to complement or supersede current preclinical animal models of muscle disease is described.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| | - Neel Prabhu
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| | - Jason Wang
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| | - Nenad Bursac
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| |
Collapse
|
37
|
Xie L, Yin A, Nichenko AS, Beedle AM, Call JA, Yin H. Transient HIF2A inhibition promotes satellite cell proliferation and muscle regeneration. J Clin Invest 2018. [PMID: 29533927 PMCID: PMC5983316 DOI: 10.1172/jci96208] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The remarkable regeneration capability of skeletal muscle depends on the coordinated proliferation and differentiation of satellite cells (SCs). The self-renewal of SCs is critical for long-term maintenance of muscle regeneration potential. Hypoxia profoundly affects the proliferation, differentiation, and self-renewal of cultured myoblasts. However, the physiological relevance of hypoxia and hypoxia signaling in SCs in vivo remains largely unknown. Here, we demonstrate that SCs are in an intrinsic hypoxic state in vivo and express hypoxia-inducible factor 2A (HIF2A). HIF2A promotes the stemness and long-term homeostatic maintenance of SCs by maintaining their quiescence, increasing their self-renewal, and blocking their myogenic differentiation. HIF2A stabilization in SCs cultured under normoxia augments their engraftment potential in regenerative muscle. Conversely, HIF2A ablation leads to the depletion of SCs and their consequent regenerative failure in the long-term. In contrast, transient pharmacological inhibition of HIF2A accelerates muscle regeneration by increasing SC proliferation and differentiation. Mechanistically, HIF2A induces the quiescence and self-renewal of SCs by binding the promoter of the Spry1 gene and activating Spry1 expression. These findings suggest that HIF2A is a pivotal mediator of hypoxia signaling in SCs and may be therapeutically targeted to improve muscle regeneration.
Collapse
Affiliation(s)
- Liwei Xie
- Department of Biochemistry and Molecular Biology.,Center for Molecular Medicine, and
| | - Amelia Yin
- Department of Biochemistry and Molecular Biology.,Center for Molecular Medicine, and
| | - Anna S Nichenko
- Department of Kinesiology, The University of Georgia, Athens, Georgia, USA
| | - Aaron M Beedle
- Department of Pharmaceutical Sciences, Binghamton University-SUNY, Binghamton, New York, USA
| | - Jarrod A Call
- Department of Kinesiology, The University of Georgia, Athens, Georgia, USA.,Regenerative Bioscience Center, The University of Georgia, Athens, Georgia, USA
| | - Hang Yin
- Department of Biochemistry and Molecular Biology.,Center for Molecular Medicine, and
| |
Collapse
|
38
|
Fujita R, Yoshioka K, Seko D, Suematsu T, Mitsuhashi S, Senoo N, Miura S, Nishino I, Ono Y. Zmynd17 controls muscle mitochondrial quality and whole-body metabolism. FASEB J 2018; 32:5012-5025. [PMID: 29913553 DOI: 10.1096/fj.201701264r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Muscle mitochondria are crucial for systemic metabolic function, yet their regulation remains unclear. The zinc finger MYND domain-containing protein 17 (Zmynd17) was recently identified as a muscle-specific gene in mammals. Here, we investigated the role of Zmynd17 in mice. We found Zmynd17 predominantly expressed in skeletal muscle, especially in fast glycolytic muscle. Genetic Zmynd17 inactivation led to morphologic and functional abnormalities in muscle mitochondria, resulting in decreased respiratory function. Metabolic stress induced by a high-fat diet upregulated Zmynd17 expression and further exacerbated muscle mitochondrial morphology in Zmynd17-deficient mice. Strikingly, Zmynd17 deficiency significantly aggravated metabolic stress-induced hepatic steatosis, glucose intolerance, and insulin resistance. Furthermore, middle-aged mice lacking Zmynd17 exhibited impaired aerobic exercise performance, glucose intolerance, and insulin resistance. Thus, our results indicate that Zmynd17 is a metabolic stress-inducible factor that maintains muscle mitochondrial integrity, with its deficiency profoundly affecting whole-body glucose metabolism.-Fujita, R., Yoshioka, K., Seko, D., Suematsu, T., Mitsuhashi, S., Senoo, N., Miura, S., Nishino, I., Ono, Y. Zmynd17 controls muscle mitochondrial quality and whole-body metabolism.
Collapse
Affiliation(s)
- Ryo Fujita
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kiyoshi Yoshioka
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Daiki Seko
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takashi Suematsu
- Central Electron Microscope Laboratory, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Satomi Mitsuhashi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Nanami Senoo
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan; and
| | - Shinji Miura
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan; and
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yusuke Ono
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
39
|
Pagano AF, Brioche T, Arc-Chagnaud C, Demangel R, Chopard A, Py G. Short-term disuse promotes fatty acid infiltration into skeletal muscle. J Cachexia Sarcopenia Muscle 2018; 9:335-347. [PMID: 29248005 PMCID: PMC5879967 DOI: 10.1002/jcsm.12259] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/10/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Many physiological and/or pathological conditions lead to muscle deconditioning, a well-described phenomenon characterized by a loss of strength and muscle power mainly due to the loss of muscle mass. Fatty infiltrations, or intermuscular adipose tissue (IMAT), are currently well-recognized components of muscle deconditioning. Despite the fact that IMAT is present in healthy human skeletal muscle, its increase and accumulation are linked to muscle dysfunction. Although IMAT development has been largely attributable to inactivity, the precise mechanisms of its establishment are still poorly understood. Because the sedentary lifestyle that accompanies age-related sarcopenia may favour IMAT development, deciphering the early processes of muscle disuse is of great importance before implementing strategies to limit IMAT deposition. METHODS In our study, we took advantage of the dry immersion (DI) model of severe muscle inactivity to induce rapid muscle deconditioning during a short period. During the DI, healthy adult men (n = 12; age: 32 ± 5) remained strictly immersed, in a supine position, in a controlled thermo-neutral water bath. Skeletal muscle biopsies were obtained from the vastus lateralis before and after 3 days of DI. RESULTS We showed that DI for only 3 days was able to decrease myofiber cross-sectional areas (-10.6%). Moreover, protein expression levels of two key markers commonly used to assess IMAT, perilipin, and fatty acid binding protein 4, were upregulated. We also observed an increase in the C/EBPα and PPARγ protein expression levels, indicating an increase in late adipogenic processes leading to IMAT development. While many stem cells in the muscle environment can adopt the capacity to differentiate into adipocytes, fibro-adipogenic progenitors (FAPs) represent the population that appears to play a major role in IMAT development. In our study, we showed an increase in the protein expression of PDGFRα, the specific cell surface marker of FAPs, in response to 3 days of DI. It is well recognized that an unfavourable muscle environment drives FAPs to ectopic adiposity and/or fibrosis. CONCLUSIONS This study is the first to emphasize that during a short period of severe inactivity, muscle deconditioning is associated with IMAT development. Our study also reveals that FAPs could be the main resident muscle stem cell population implicated in ectopic adiposity development in human skeletal muscle.
Collapse
Affiliation(s)
- Allan F Pagano
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université de Montpellier, F-34060, Montpellier, France
| | - Thomas Brioche
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université de Montpellier, F-34060, Montpellier, France
| | - Coralie Arc-Chagnaud
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université de Montpellier, F-34060, Montpellier, France.,Freshage Research Group - Dept. Physiology, University of Valencia, CIBERFES, INCLIVA, Valencia, Spain
| | - Rémi Demangel
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université de Montpellier, F-34060, Montpellier, France
| | - Angèle Chopard
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université de Montpellier, F-34060, Montpellier, France
| | - Guillaume Py
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université de Montpellier, F-34060, Montpellier, France
| |
Collapse
|
40
|
Miersch C, Stange K, Röntgen M. Separation of functionally divergent muscle precursor cell populations from porcine juvenile muscles by discontinuous Percoll density gradient centrifugation. BMC Cell Biol 2018. [PMID: 29523096 PMCID: PMC5845299 DOI: 10.1186/s12860-018-0156-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Satellite cells (SC) and their descendants, muscle precursor cells (MPC), play a key role in postnatal muscle development, regeneration, and plasticity. Several studies have provided evidence that SC and MPC represent a heterogeneous population differing in their biochemical and functional properties. The identification and characterization of functionally divergent SC subpopulations should help to reveal the precise involvement of SC/MPC in these myogenic processes. The aim of the present work was therefore to separate SC subpopulations by using Percoll gradients and to characterize their myogenic marker profiles and their functional properties (adhesion, proliferation, and differentiation). RESULTS SC/MPC from muscles of 4-day-old piglets were isolated by trypsin digestion and enriched by Percoll density gradient centrifugation. A mixed myogenic cell population was obtained from the 40/70% interface (termed: mixed P40/70) of a 25/40/70% Percoll gradient. Thereafter, by using a more stepped 25/40/50/70% Percoll gradient, mixed P40/70 was divided into subpopulation 40/50 (SP40/50) collected from the 40/50% interface and subpopulation 50/70 (SP50/70) collected from the 50/70% interface. All three isolated populations proliferated and showed a myogenic phenotype characterized by the ability to express myogenic markers (Pax7, MyoD1, Desmin, and MyoG) and to differentiate into myotubes. However, compared with mixed P40/70, SP40/50 and SP50/70 exhibited distinct functional behavior. Growth kinetic curves over 90 h obtained by the xCELLigence system and proliferation assays revealed that SP40/50 and mixed P40/70 constituted a fast adhering and fast proliferating phenotype. In contrast, SP50/70 showed considerably slower adhesion and proliferation. The fast-proliferating SP40/50 showed the highest myogenic differentiation potential with higher fusion rates and the formation of more middle-sized and large myotubes. CONCLUSIONS The described Percoll density gradient centrifugation represents a useful tool for subdividing pig SC/MPC populations with divergent myogenic functions. The physiological role of SC subpopulations during myogenesis and the interaction of these populations can now be analyzed to a greater extent, shedding light on postnatal growth variations in pigs and probably in other animals.
Collapse
Affiliation(s)
- Claudia Miersch
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, Growth and Development Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Katja Stange
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, Growth and Development Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Monika Röntgen
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, Growth and Development Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
41
|
Yang Q, Li Y, Zhang X, Chen D. Zac1/GPR39 phosphorylating CaMK-II contributes to the distinct roles of Pax3 and Pax7 in myogenic progression. Biochim Biophys Acta Mol Basis Dis 2018; 1864:407-419. [DOI: 10.1016/j.bbadis.2017.10.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 09/15/2017] [Accepted: 10/22/2017] [Indexed: 12/12/2022]
|
42
|
|
43
|
Zammit PS. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol 2017; 72:19-32. [PMID: 29127046 DOI: 10.1016/j.semcdb.2017.11.011] [Citation(s) in RCA: 509] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/19/2022]
Abstract
Discovery of the myogenic regulatory factor family of transcription factors MYF5, MYOD, Myogenin and MRF4 was a seminal step in understanding specification of the skeletal muscle lineage and control of myogenic differentiation during development. These factors are also involved in specification of the muscle satellite cell lineage, which becomes the resident stem cell compartment inadult skeletal muscle. While MYF5, MYOD, Myogenin and MRF4 have subtle roles in mature muscle, they again play a crucial role in directing satellite cell function to regenerate skeletal muscle: linking the genetic control of developmental and regenerative myogenesis. Here, I review the role of the myogenic regulatory factors in developing and mature skeletal muscle, satellite cell specification and muscle regeneration.
Collapse
Affiliation(s)
- Peter S Zammit
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, UK.
| |
Collapse
|
44
|
Theret M, Gsaier L, Schaffer B, Juban G, Ben Larbi S, Weiss-Gayet M, Bultot L, Collodet C, Foretz M, Desplanches D, Sanz P, Zang Z, Yang L, Vial G, Viollet B, Sakamoto K, Brunet A, Chazaud B, Mounier R. AMPKα1-LDH pathway regulates muscle stem cell self-renewal by controlling metabolic homeostasis. EMBO J 2017; 36:1946-1962. [PMID: 28515121 DOI: 10.15252/embj.201695273] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 12/31/2022] Open
Abstract
Control of stem cell fate to either enter terminal differentiation versus returning to quiescence (self-renewal) is crucial for tissue repair. Here, we showed that AMP-activated protein kinase (AMPK), the master metabolic regulator of the cell, controls muscle stem cell (MuSC) self-renewal. AMPKα1-/- MuSCs displayed a high self-renewal rate, which impairs muscle regeneration. AMPKα1-/- MuSCs showed a Warburg-like switch of their metabolism to higher glycolysis. We identified lactate dehydrogenase (LDH) as a new functional target of AMPKα1. LDH, which is a non-limiting enzyme of glycolysis in differentiated cells, was tightly regulated in stem cells. In functional experiments, LDH overexpression phenocopied AMPKα1-/- phenotype, that is shifted MuSC metabolism toward glycolysis triggering their return to quiescence, while inhibition of LDH activity rescued AMPKα1-/- MuSC self-renewal. Finally, providing specific nutrients (galactose/glucose) to MuSCs directly controlled their fate through the AMPKα1/LDH pathway, emphasizing the importance of metabolism in stem cell fate.
Collapse
Affiliation(s)
- Marine Theret
- Institut Neuromyogène, Université Claude Bernard Lyon 1, Villeurbanne, France.,INSERM U1217, Villeurbanne, France.,CNRS UMR 5310, Villeurbanne, France.,Université Paris Descartes, Paris, France
| | - Linda Gsaier
- Institut Neuromyogène, Université Claude Bernard Lyon 1, Villeurbanne, France.,INSERM U1217, Villeurbanne, France.,CNRS UMR 5310, Villeurbanne, France
| | - Bethany Schaffer
- Department of Genetic and the Cancer Biology Program, University of Stanford, Stanford, CA, USA
| | - Gaëtan Juban
- Institut Neuromyogène, Université Claude Bernard Lyon 1, Villeurbanne, France.,INSERM U1217, Villeurbanne, France.,CNRS UMR 5310, Villeurbanne, France
| | - Sabrina Ben Larbi
- Institut Neuromyogène, Université Claude Bernard Lyon 1, Villeurbanne, France.,INSERM U1217, Villeurbanne, France.,CNRS UMR 5310, Villeurbanne, France
| | - Michèle Weiss-Gayet
- Institut Neuromyogène, Université Claude Bernard Lyon 1, Villeurbanne, France.,INSERM U1217, Villeurbanne, France.,CNRS UMR 5310, Villeurbanne, France
| | - Laurent Bultot
- Nestlé Institute of Health Sciences SA, Lausanne, Switzerland.,School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Caterina Collodet
- Nestlé Institute of Health Sciences SA, Lausanne, Switzerland.,School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marc Foretz
- Université Paris Descartes, Paris, France.,INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France
| | - Dominique Desplanches
- Institut Neuromyogène, Université Claude Bernard Lyon 1, Villeurbanne, France.,INSERM U1217, Villeurbanne, France.,CNRS UMR 5310, Villeurbanne, France
| | - Pascual Sanz
- Instituto de Biomedecina de Valencia, CSIC, Valencia, Spain
| | - Zizhao Zang
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Lin Yang
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Guillaume Vial
- INSERM U1042, Université Grenoble Alpes, La Tronche, France
| | - Benoit Viollet
- Université Paris Descartes, Paris, France.,School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,INSERM U1016, Institut Cochin, Paris, France
| | - Kei Sakamoto
- Nestlé Institute of Health Sciences SA, Lausanne, Switzerland.,School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Anne Brunet
- Department of Genetic and the Cancer Biology Program, University of Stanford, Stanford, CA, USA
| | - Bénédicte Chazaud
- Institut Neuromyogène, Université Claude Bernard Lyon 1, Villeurbanne, France.,INSERM U1217, Villeurbanne, France.,CNRS UMR 5310, Villeurbanne, France
| | - Rémi Mounier
- Institut Neuromyogène, Université Claude Bernard Lyon 1, Villeurbanne, France .,INSERM U1217, Villeurbanne, France.,CNRS UMR 5310, Villeurbanne, France
| |
Collapse
|
45
|
Molecular and functional heterogeneity of early postnatal porcine satellite cell populations is associated with bioenergetic profile. Sci Rep 2017; 7:45052. [PMID: 28344332 PMCID: PMC5366807 DOI: 10.1038/srep45052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/20/2017] [Indexed: 12/19/2022] Open
Abstract
During postnatal development, hyperplastic and hypertrophic processes of skeletal muscle growth depend on the activation, proliferation, differentiation, and fusion of satellite cells (SC). Therefore, molecular and functional SC heterogeneity is an important component of muscle plasticity and will greatly affect long-term growth performance and muscle health. However, its regulation by cell intrinsic and extrinsic factors is far from clear. In particular, there is only minor information on the early postnatal period which is critical for muscle maturation and the establishment of adult SC pools. Here, we separated two SC subpopulations (P40/50, P50/70) from muscle of 4-day-old piglets. Our results characterize P40/50 as homogeneous population of committed (high expression of Myf5), fast-proliferating muscle progenitors. P50/70 constituted a slow-proliferating phenotype and contains high numbers of differentiated SC progeny. During culture, P50/70 is transformed to a population with lower differentiation potential that contains 40% Pax7-positive cells. A reversible state of low mitochondrial activity that results from active down-regulation of ATP-synthase is associated with the transition of some of the P50/70 cells to this more primitive fate typical for a reserve cell population. We assume that P40/50 and P50/70 subpopulations contribute unequally in the processes of myofiber growth and maintenance of the SC pool.
Collapse
|
46
|
Abstract
Skeletal muscle stem cells, originally termed satellite cells for their position adjacent to differentiated muscle fibers, are absolutely required for the process of skeletal muscle repair and regeneration. In the last decade, satellite cells have become one of the most studied adult stem cell systems and have emerged as a standard model not only in the field of stem cell-driven tissue regeneration but also in stem cell dysfunction and aging. Here, we provide background in the field and discuss recent advances in our understanding of muscle stem cell function and dysfunction, particularly in the case of aging, and the potential involvement of muscle stem cells in genetic diseases such as the muscular dystrophies.
Collapse
Affiliation(s)
- Ddw Cornelison
- Division of Biological Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| | - Eusebio Perdiguero
- Cell Biology Group, Department of Experimental and Health Sciences (DCEXS), Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), 08003, Barcelona, Spain.
| |
Collapse
|
47
|
Paris ND, Soroka A, Klose A, Liu W, Chakkalakal JV. Smad4 restricts differentiation to promote expansion of satellite cell derived progenitors during skeletal muscle regeneration. eLife 2016; 5. [PMID: 27855784 PMCID: PMC5138033 DOI: 10.7554/elife.19484] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/16/2016] [Indexed: 01/17/2023] Open
Abstract
Skeletal muscle regenerative potential declines with age, in part due to deficiencies in resident stem cells (satellite cells, SCs) and derived myogenic progenitors (MPs); however, the factors responsible for this decline remain obscure. TGFβ superfamily signaling is an inhibitor of myogenic differentiation, with elevated activity in aged skeletal muscle. Surprisingly, we find reduced expression of Smad4, the downstream cofactor for canonical TGFβ superfamily signaling, and the target Id1 in aged SCs and MPs during regeneration. Specific deletion of Smad4 in adult mouse SCs led to increased propensity for terminal myogenic commitment connected to impaired proliferative potential. Furthermore, SC-specific Smad4 disruption compromised adult skeletal muscle regeneration. Finally, loss of Smad4 in aged SCs did not promote aged skeletal muscle regeneration. Therefore, SC-specific reduction of Smad4 is a feature of aged regenerating skeletal muscle and Smad4 is a critical regulator of SC and MP amplification during skeletal muscle regeneration. DOI:http://dx.doi.org/10.7554/eLife.19484.001 Even in adulthood, injured muscles can repair themselves largely because they contain groups of stem cells known as satellite cells. These cells divide to produce progenitor cells that later develop, or differentiate, into new muscle fibers. However as muscles get older, this repair process becomes less effective, in part because the satellite cells do not respond as strongly to injury. It remains obscure precisely why the repair process declines with age. A protein called TGFβ is part of a signaling pathway that prevents the muscle progenitor cells from differentiating into muscle fibers, and TGFβ signaling is overactive in older muscles. Most TGFβ signaling operates via a protein called Smad4, and Paris et al. now show that older satellite cells and progenitor cells from the muscles of old mice produce less Smad4 when they are regenerating. Next, the gene for Smad4 was deleted specifically from the satellite cells of mice. By examining the fate of these cells, Paris et al. found that Smad4 normally maintained the population of satellite cells by preventing them from differentiating into muscle fibers too soon. This was the case when both adult and aged muscle was regenerating. All in all, Smad4 is clearly important for directing satellite cells to regenerate properly; aged cells have less Smad4 and are less able to regenerate. Future studies are now needed to determine how disrupting Smad4 in other resident cell types may influence the regeneration of muscles in mice. DOI:http://dx.doi.org/10.7554/eLife.19484.002
Collapse
Affiliation(s)
- Nicole D Paris
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, United States
| | - Andrew Soroka
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, United States.,Department of Pathology, University of Rochester Medical Center, Rochester, United States
| | - Alanna Klose
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, United States
| | - Wenxuan Liu
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, United States.,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, United States
| | - Joe V Chakkalakal
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, United States.,Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, United States.,The Rochester Aging Research Center, University of Rochester Medical Center, Rochester, United States
| |
Collapse
|
48
|
Shadrin IY, Khodabukus A, Bursac N. Striated muscle function, regeneration, and repair. Cell Mol Life Sci 2016; 73:4175-4202. [PMID: 27271751 PMCID: PMC5056123 DOI: 10.1007/s00018-016-2285-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 12/18/2022]
Abstract
As the only striated muscle tissues in the body, skeletal and cardiac muscle share numerous structural and functional characteristics, while exhibiting vastly different size and regenerative potential. Healthy skeletal muscle harbors a robust regenerative response that becomes inadequate after large muscle loss or in degenerative pathologies and aging. In contrast, the mammalian heart loses its regenerative capacity shortly after birth, leaving it susceptible to permanent damage by acute injury or chronic disease. In this review, we compare and contrast the physiology and regenerative potential of native skeletal and cardiac muscles, mechanisms underlying striated muscle dysfunction, and bioengineering strategies to treat muscle disorders. We focus on different sources for cellular therapy, biomaterials to augment the endogenous regenerative response, and progress in engineering and application of mature striated muscle tissues in vitro and in vivo. Finally, we discuss the challenges and perspectives in translating muscle bioengineering strategies to clinical practice.
Collapse
Affiliation(s)
- I Y Shadrin
- Department of Biomedical Engineering, Duke University, 3000 Science Drive, Hudson Hall 136, Durham, NC, 27708-90281, USA
| | - A Khodabukus
- Department of Biomedical Engineering, Duke University, 3000 Science Drive, Hudson Hall 136, Durham, NC, 27708-90281, USA
| | - N Bursac
- Department of Biomedical Engineering, Duke University, 3000 Science Drive, Hudson Hall 136, Durham, NC, 27708-90281, USA.
| |
Collapse
|
49
|
Hosseinzadeh S, Rezayat SM, Vashegani-Farahani E, Mahmoudifard M, Zamanlui S, Soleimani M. Nanofibrous hydrogel with stable electrical conductivity for biological applications. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.05.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Alonso-Martin S, Rochat A, Mademtzoglou D, Morais J, de Reyniès A, Auradé F, Chang THT, Zammit PS, Relaix F. Gene Expression Profiling of Muscle Stem Cells Identifies Novel Regulators of Postnatal Myogenesis. Front Cell Dev Biol 2016; 4:58. [PMID: 27446912 PMCID: PMC4914952 DOI: 10.3389/fcell.2016.00058] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/02/2016] [Indexed: 01/02/2023] Open
Abstract
Skeletal muscle growth and regeneration require a population of muscle stem cells, the satellite cells, located in close contact to the myofiber. These cells are specified during fetal and early postnatal development in mice from a Pax3/7 population of embryonic progenitor cells. As little is known about the genetic control of their formation and maintenance, we performed a genome-wide chronological expression profile identifying the dynamic transcriptomic changes involved in establishment of muscle stem cells through life, and acquisition of muscle stem cell properties. We have identified multiple genes and pathways associated with satellite cell formation, including set of genes specifically induced (EphA1, EphA2, EfnA1, EphB1, Zbtb4, Zbtb20) or inhibited (EphA3, EphA4, EphA7, EfnA2, EfnA3, EfnA4, EfnA5, EphB2, EphB3, EphB4, EfnBs, Zfp354c, Zcchc5, Hmga2) in adult stem cells. Ephrin receptors and ephrins ligands have been implicated in cell migration and guidance in many tissues including skeletal muscle. Here we show that Ephrin receptors and ephrins ligands are also involved in regulating the adult myogenic program. Strikingly, impairment of EPHB1 function in satellite cells leads to increased differentiation at the expense of self-renewal in isolated myofiber cultures. In addition, we identified new transcription factors, including several zinc finger proteins. ZFP354C and ZCCHC5 decreased self-renewal capacity when overexpressed, whereas ZBTB4 increased it, and ZBTB20 induced myogenic progression. The architectural and transcriptional regulator HMGA2 was involved in satellite cell activation. Together, our study shows that transcriptome profiling coupled with myofiber culture analysis, provides an efficient system to identify and validate candidate genes implicated in establishment/maintenance of muscle stem cells. Furthermore, tour de force transcriptomic profiling provides a wealth of data to inform for future stem cell-based muscle therapies.
Collapse
Affiliation(s)
- Sonia Alonso-Martin
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10Créteil, France; Université Paris Est, Faculté de MedecineCréteil, France; Ecole Nationale Veterinaire d'AlfortMaison Alfort, France
| | - Anne Rochat
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10 Créteil, France
| | - Despoina Mademtzoglou
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10Créteil, France; Université Paris Est, Faculté de MedecineCréteil, France; Ecole Nationale Veterinaire d'AlfortMaison Alfort, France
| | - Jessica Morais
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10 Créteil, France
| | - Aurélien de Reyniès
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer Paris, France
| | - Frédéric Auradé
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, Center for Research in Myology Paris, France
| | - Ted Hung-Tse Chang
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10 Créteil, France
| | - Peter S Zammit
- Randall Division of Cell and Molecular Biophysics, King's College London London, UK
| | - Frédéric Relaix
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10Créteil, France; Université Paris Est, Faculté de MedecineCréteil, France; Ecole Nationale Veterinaire d'AlfortMaison Alfort, France; Etablissement Français du SangCréteil, France; APHP, Hopitaux Universitaires Henri Mondor, DHU Pepsy and Centre de Référence des Maladies Neuromusculaires GNMHCréteil, France
| |
Collapse
|