1
|
Sousa RAP, Nunes de Paula JH, Silva RJ, Teixeira SC, França FBF, Gonçalves AHL, Silva TRO, Granero-Rosa MJ, Silva MV, Gomes MDLM, Silva MV, Rodrigues Junior V, Mineo JR, Barbosa BF, Ferro EAV, Oliveira CJF, Gomes AO. Salivary shield: Rhodnius prolixus salivary glandular extract reduces intestinal immunopathology and protects against Toxoplasma gondii infection. Gut Pathog 2025; 17:13. [PMID: 40045369 PMCID: PMC11881255 DOI: 10.1186/s13099-024-00676-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/24/2024] [Indexed: 03/09/2025] Open
Abstract
C57BL/6 mice, orally infected with T. gondii, experience pronounced severe intestinal inflammation, causing necrosis, weight loss, and bacterial translocation. In addition, immunomodulatory molecules such as lipocalins, nitrophorins, and apyrases are present in R. prolixus saliva. Our objective was to assess the immunomodulatory effects of the salivary gland extract (SGE) of R. prolixus in mice orally infected by T. gondii. Experimental groups received no treatment (PBS) or SGE (10 µg and 30 µg) in the chronic infection phase and (30 µg) in the acute infection phase. Control groups were non-infected and treated or not treated with SGE (30 µg). SGE was injected intraperitoneally daily, and mice were infected by gavage with 20 cysts of T. gondii (ME-49 strain) on the third treatment day. The treatment duration for the experiment was 23 days for the chronic infection phase (corresponding to 20 days of infection) and 12 days for the acute infection phase (corresponding to 9 days of infection). SGE-treated mice showed reduced small intestine shortening, weight loss, clinical scores, and higher survival rates. Treated mice also exhibited increased secretion of regulatory and protective cytokines (IL-4, IL-2, IL-10, IL-22) and higher levels of IL-4 (chronic phase), IL-2, and IL-22 (acute phase) in the gut. SGE treatment (30 µg) demonstrated protective effects in both the duodenum and ileum of T. gondii-infected mice. Treated animals showed better-preserved villus architecture, increased goblet and Paneth cell counts, and shallower crypts. Correlation data revealed that treated animals exhibited a more regulated and protective immune response. Overall, SGE contributed to the preservation of intestinal integrity and the reduction of inflammation. Thus, we conclude that SGE induces a regulatory response, mitigating inflammation and protecting against T. gondii infection.
Collapse
Affiliation(s)
- Roberto Augusto Pereira Sousa
- Laboratório de Interações Celulares, Instituto de Ciências Biológicas E Naturais, Universidade Federal Do Triângulo Mineiro (UFTM). Av. Getúlio Guaritá, 159-Nossa Sra. da Abadia, Uberaba, Minas Gerais, 38025-440, Brazil
| | | | - Rafaela José Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Samuel Cota Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Amanda Helena Leão Gonçalves
- Laboratório de Interações Celulares, Instituto de Ciências Biológicas E Naturais, Universidade Federal Do Triângulo Mineiro (UFTM). Av. Getúlio Guaritá, 159-Nossa Sra. da Abadia, Uberaba, Minas Gerais, 38025-440, Brazil
| | - Túlio Rodrigues Oliveira Silva
- Laboratório de Interações Celulares, Instituto de Ciências Biológicas E Naturais, Universidade Federal Do Triângulo Mineiro (UFTM). Av. Getúlio Guaritá, 159-Nossa Sra. da Abadia, Uberaba, Minas Gerais, 38025-440, Brazil
| | - Maria Julia Granero-Rosa
- Laboratório de Interações Celulares, Instituto de Ciências Biológicas E Naturais, Universidade Federal Do Triângulo Mineiro (UFTM). Av. Getúlio Guaritá, 159-Nossa Sra. da Abadia, Uberaba, Minas Gerais, 38025-440, Brazil
| | - Murilo Vieira Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Marcos de Lucca Moreira Gomes
- Laboratório de Interações Celulares, Instituto de Ciências Biológicas E Naturais, Universidade Federal Do Triângulo Mineiro (UFTM). Av. Getúlio Guaritá, 159-Nossa Sra. da Abadia, Uberaba, Minas Gerais, 38025-440, Brazil
| | - Marcos Vinícius Silva
- Laboratório de Interações Celulares, Instituto de Ciências Biológicas E Naturais, Universidade Federal Do Triângulo Mineiro (UFTM). Av. Getúlio Guaritá, 159-Nossa Sra. da Abadia, Uberaba, Minas Gerais, 38025-440, Brazil
| | - Virmondes Rodrigues Junior
- Laboratório de Interações Celulares, Instituto de Ciências Biológicas E Naturais, Universidade Federal Do Triângulo Mineiro (UFTM). Av. Getúlio Guaritá, 159-Nossa Sra. da Abadia, Uberaba, Minas Gerais, 38025-440, Brazil
| | - José Roberto Mineo
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Bellisa Freitas Barbosa
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Carlo José Freire Oliveira
- Laboratório de Interações Celulares, Instituto de Ciências Biológicas E Naturais, Universidade Federal Do Triângulo Mineiro (UFTM). Av. Getúlio Guaritá, 159-Nossa Sra. da Abadia, Uberaba, Minas Gerais, 38025-440, Brazil
| | - Angelica Oliveira Gomes
- Laboratório de Interações Celulares, Instituto de Ciências Biológicas E Naturais, Universidade Federal Do Triângulo Mineiro (UFTM). Av. Getúlio Guaritá, 159-Nossa Sra. da Abadia, Uberaba, Minas Gerais, 38025-440, Brazil.
| |
Collapse
|
2
|
Szwajca M, Kazek G, Śmierciak N, Mizera J, Pomierny-Chamiolo L, Szwajca K, Biesaga B, Pilecki M. GDNF and miRNA-29a as biomarkers in the first episode of psychosis: uncovering associations with psychosocial factors. Front Psychiatry 2024; 15:1320650. [PMID: 38645418 PMCID: PMC11027163 DOI: 10.3389/fpsyt.2024.1320650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/14/2024] [Indexed: 04/23/2024] Open
Abstract
Aim Schizophrenia involves complex interactions between biological and environmental factors, including childhood trauma, cognitive impairments, and premorbid adjustment. Predicting its severity and progression remains challenging. Biomarkers like glial cell line-derived neurotrophic factor (GDNF) and miRNA-29a may bridge biological and environmental aspects. The goal was to explore the connections between miRNAs and neural proteins and cognitive functioning, childhood trauma, and premorbid adjustment in the first episode of psychosis (FEP). Method This study included 19 FEP patients who underwent clinical evaluation with: the Childhood Trauma Questionnaire (CTQ), the Premorbid Adjustment Scale (PAS), the Positive and Negative Syndrome Scale (PANSS), and the Montreal Cognitive Assessment Scale (MoCA). Multiplex assays for plasma proteins were conducted with Luminex xMAP technology. Additionally, miRNA levels were quantitatively determined through RNA extraction, cDNA synthesis, and RT-qPCR on a 7500 Fast Real-Time PCR System. Results Among miRNAs, only miR-29a-3p exhibited a significant correlation with PAS-C scores (r = -0.513, p = 0.025) and cognitive improvement (r = -0.505, p = 0.033). Among the analyzed proteins, only GDNF showed correlations with MoCA scores at the baseline and after 3 months (r = 0.533, p = 0.0189 and r = 0.598, p = 0.007), cognitive improvement (r = 0.511, p = 0.025), and CTQ subtests. MIF concentrations correlated with the PAS-C subscale (r = -0.5670, p = 0.011). Conclusion GDNF and miR-29a-3p are promising as biomarkers for understanding and addressing cognitive deficits in psychosis. This study links miRNA and MIF to premorbid adjustment and reveals GDNF's unique role in connection with childhood trauma.
Collapse
Affiliation(s)
- Marta Szwajca
- Department of Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Grzegorz Kazek
- Department of Pharmacological Screening, Jagiellonian University Medical College, Krakow, Poland
| | - Natalia Śmierciak
- Department of Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Józef Mizera
- Department of Toxicology, Jagiellonian University Medical College, Kraków, Poland
| | | | - Krzysztof Szwajca
- Department of Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Beata Biesaga
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | - Maciej Pilecki
- Department of Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
3
|
Shirai T, Okazaki S, Tanifuji T, Otsuka I, Miyachi M, Okada S, Shindo R, Horai T, Mouri K, Takahashi M, Kondo T, Ueno Y, Hishimoto A. Association study of a single nucleotide polymorphism in the hypoxia response element of the macrophage migration inhibitory factor gene promoter with suicide completers in the Japanese population. Neuropsychopharmacol Rep 2024; 44:262-266. [PMID: 38267013 PMCID: PMC10932791 DOI: 10.1002/npr2.12410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND More than 800 000 people die by suicide annually. The heritability of suicide is 30%-50%. We focused on the hypoxia response element (HRE), which promotes the expression of macrophage migration inhibitory factor (MIF) via the hypoxia-inducible factor (HIF) pathway, important in neurogenesis and neuroprotection. We examined a genetic polymorphism of rs17004038, a single-nucleotide polymorphism (SNP), in suicide completers and controls. METHODS The study population included 1336 suicide completers and 814 unrelated healthy controls. All participants were Japanese. We obtained peripheral blood, extracted DNA, and genotyped the patients for SNP rs17004038 (C > A). RESULTS No significant differences were observed between the two groups in either the allele or genotype analyses. Subgroup analyses by sex, age (<40 or ≥40), and suicide method (violent or nonviolent suicide) were performed with similar results. CONCLUSION No association was observed between SNP rs17004038 and suicide completion. Although it is challenging to collect a large number of samples from suicide completers, further MIF-related genetic studies, including those of rs17004038, are necessary with larger sample sizes.
Collapse
Affiliation(s)
- Toshiyuki Shirai
- Department of PsychiatryKobe University Graduate School of MedicineKobeJapan
| | - Satoshi Okazaki
- Department of PsychiatryKobe University Graduate School of MedicineKobeJapan
| | - Takaki Tanifuji
- Department of PsychiatryKobe University Graduate School of MedicineKobeJapan
| | - Ikuo Otsuka
- Department of PsychiatryKobe University Graduate School of MedicineKobeJapan
| | - Masao Miyachi
- Department of PsychiatryKobe University Graduate School of MedicineKobeJapan
| | - Shohei Okada
- Department of PsychiatryKobe University Graduate School of MedicineKobeJapan
| | - Ryota Shindo
- Department of PsychiatryKobe University Graduate School of MedicineKobeJapan
| | - Tadasu Horai
- Department of PsychiatryKobe University Graduate School of MedicineKobeJapan
| | - Kentaro Mouri
- Department of PsychiatryKobe University Graduate School of MedicineKobeJapan
| | - Motonori Takahashi
- Division of Legal Medicine, Department of Community Medicine and Social Health ScienceKobe University Graduate School of MedicineKobeJapan
| | - Takeshi Kondo
- Division of Legal Medicine, Department of Community Medicine and Social Health ScienceKobe University Graduate School of MedicineKobeJapan
| | - Yasuhiro Ueno
- Division of Legal Medicine, Department of Community Medicine and Social Health ScienceKobe University Graduate School of MedicineKobeJapan
| | - Akitoyo Hishimoto
- Department of PsychiatryKobe University Graduate School of MedicineKobeJapan
| |
Collapse
|
4
|
Rashchupkin IM, Shevela EY, Maksimova AA, Tikhonova MA, Ostanin AA, Chernykh ER. Effect of Differently Polarized Human Macrophages on the SH-SY5Y Cells Damaged by Ischemia and Hypoxia In Vitro. J Immunol Res 2023; 2023:5595949. [PMID: 37692837 PMCID: PMC10484653 DOI: 10.1155/2023/5595949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/12/2023] Open
Abstract
Macrophages are the major cells of innate immunity with a wide range of biological effects due to their great plasticity and heterogeneity. Macrophages play a key role in neuroregeneration following nervous tissue injury. However, the neuroregenerative potential of various macrophage phenotypes, including those polarized by efferocytosis, remains unexplored. The aim of this study was to compare the neuroregenerative and neuroprotective activity of soluble factors secreted by variously activated human macrophages on the functions of neural progenitors in an in vitro model of ischemia or ischemia/hypoxia. Macrophages were polarized by interferon-γ (M1), IL-4 (M2a), or interaction with apoptotic cells (M2(LS)). The effect of macrophages conditioned media on the proliferation, differentiation, and survival of SH-SY5Y cells damaged by serum deprivation alone (ischemic conditions) or in combination with CoCl2 (ischemic/hypoxic conditions) was assessed. All studied macrophages stimulated the proliferation and differentiation of SH-SY5Y cells. On day 3, the pro-proliferating effect of M1 and M2 was similar and did not depend on the severity of the damaging effect (ischemia or ischemia/hypoxia), while on day 7 and under ischemic/hypoxic conditions, the effects of M2(LS) exceeded those of M1 and M2a cells. The prodifferentiation effects of macrophages were manifested in both short- and long-term cultures, mainly under ischemic/hypoxic conditions, and were most characteristic of M2(LS) cells. Importantly, the ischemia/hypoxia model was accompanied by the pronounced death of SH-SY5Y cells. Only macrophages with the M2 phenotype demonstrated antiapoptotic activity, and the effect of M2(LS) was higher than that of M2a. The results obtained indicate that human macrophages have neuroprotective and neuroregenerative activity, which is mediated by soluble factors, is most characteristic for macrophages activated by efferocytosis (M2(LS)), and is most prominent under in vitro conditions simulating the combined effect of ischemia/hypoxia.
Collapse
Affiliation(s)
| | | | | | | | | | - Elena Removna Chernykh
- Scientific Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
5
|
Wang L, Yang J, Tan W, Guo Y, Li J, Duan C, Wei G, Chou M. Macrophage migration inhibitory factor MtMIF3 prevents the premature aging of Medicago truncatula nodules. PLANT, CELL & ENVIRONMENT 2023; 46:1004-1017. [PMID: 36515398 DOI: 10.1111/pce.14515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine involved in immune response in animals. However, the role of MIFs in plants such as Medicago truncatula, particularly in symbiotic nitrogen fixation, remains unclear. An investigation of M. truncatula-Sinorhizobium meliloti symbiosis revealed that MtMIF3 was mainly expressed in the nitrogen-fixing zone of the nodules. Silencing MtMIF3 using RNA interference (Ri) technology resulted in increased nodule numbers but higher levels of bacteroid degradation in the infected cells of the nitrogen-fixing zone, suggesting that premature aging was induced in MtMIF3-Ri nodules. In agreement with this conclusion, the activities of nitrogenase, superoxide dismutase and catalase were lower than those in controls, but cysteine proteinase activity was increased in nodulated roots at 28 days postinoculation. In contrast, the overexpression of MtMIF3 inhibited nodule senescence. MtMIF3 is localized in the plasma membrane, nucleus, and cytoplasm, where it interacts with methionine sulfoxide reductase B (MsrB), which is also localized in the chloroplasts of tobacco leaf cells. Taken together, these results suggest that MtMIF3 prevents premature nodule aging and protects against oxidation by interacting with MtMsrB.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jieyu Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Wenjun Tan
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yile Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jiaqi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Chuntao Duan
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Minxia Chou
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
6
|
Suresh V, Dash P, Suklabaidya S, Murmu KC, Sasmal PK, Jogdand GM, Parida D, Sethi M, Das B, Mohapatra D, Saha S, Prasad P, Satoskar A, Senapati S. MIF confers survival advantage to pancreatic CAFs by suppressing interferon pathway-induced p53-dependent apoptosis. FASEB J 2022; 36:e22449. [PMID: 35839070 DOI: 10.1096/fj.202101953r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/11/2022]
Abstract
The presence of activated pancreatic stellate cells (PSCs) in the pancreatic ductal adenocarcinoma (PDAC) microenvironment plays a significant role in cancer progression. Macrophage migration inhibitory factor (MIF) is overexpressed in PDAC tissues and expressed by both cancer and stromal cells. The pathophysiological role of MIF in PDAC-associated fibroblasts or PSCs is yet to be elucidated. Here we report that the PSCs of mouse or cancer-associated fibroblast cells (CAFs) of human expresses MIF and its receptors, whose expression gets upregulated upon LPS or TNF-α stimulation. In vitro functional experiments showed that MIF significantly conferred a survival advantage to CAFs/PSCs upon growth factor deprivation. Genetic or pharmacological inhibition of MIF also corroborated these findings. Further, co-injection of mouse pancreatic cancer cells with PSCs isolated from Mif-/- or Mif+/+ mice confirmed the pro-survival effect of MIF in PSCs and also demonstrated the pro-tumorigenic role of MIF expressed by CAFs in vivo. Differential gene expression analysis and in vitro mechanistic studies indicated that MIF expressed by activated CAFs/PSCs confers a survival advantage to these cells by suppression of interferon pathway induced p53 dependent apoptosis.
Collapse
Affiliation(s)
- Voddu Suresh
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Pujarini Dash
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Sujit Suklabaidya
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Krushna Chandra Murmu
- Regional Centre for Biotechnology, Faridabad, India
- Epigenetic and Chromatin Biology Unit, Institute of Life Sciences, Bhubaneswar, India
| | - Prakash K Sasmal
- Department of General Surgery, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Gajendra M Jogdand
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Deepti Parida
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Manisha Sethi
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Biswajit Das
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Debasish Mohapatra
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, India
- Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Subha Saha
- Regional Centre for Biotechnology, Faridabad, India
- Epigenetic and Chromatin Biology Unit, Institute of Life Sciences, Bhubaneswar, India
| | - Punit Prasad
- Epigenetic and Chromatin Biology Unit, Institute of Life Sciences, Bhubaneswar, India
| | - Abhay Satoskar
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
7
|
Morimoto Y, Tokumitsu A, Sone T, Hirota Y, Tamura R, Sakamoto A, Nakajima K, Toda M, Kawakami Y, Okano H, Ohta S. TPT1 Supports Proliferation of Neural Stem/Progenitor Cells and Brain Tumor Initiating Cells Regulated by Macrophage Migration Inhibitory Factor (MIF). Neurochem Res 2022; 47:2741-2756. [PMID: 35622214 DOI: 10.1007/s11064-022-03629-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022]
Abstract
One of the key areas in stem cell research is the identification of factors capable of promoting the expansion of Neural Stem Cell/Progenitor Cells (NSPCs) and understanding their molecular mechanisms for future use in clinical settings. We previously identified Macrophage Migration Inhibitory Factor (MIF) as a novel factor that can support the proliferation and/or survival of NSPCs based on in vitro functional cloning strategy and revealed that MIF can support the proliferation of human brain tumor-initiating cells (BTICs). However, the detailed downstream signaling for the functions has largely remained unknown. Thus, in the present study, we newly identified translationally-controlled tumor protein-1 (TPT1), which is expressed in the ventricular zone of mouse embryonic brain, as a downstream target of MIF signaling in mouse and human NSPCs and human BTICs. Using gene manipulation (over or downregulation of TPT1) techniques including CRISPR/Cas9-mediated heterozygous gene disruption showed that TPT1 contributed to the regulation of cell proliferation/survival in mouse NSPCs, human embryonic stem cell (hESC) derived-NSPCs, human-induced pluripotent stem cells (hiPSCs) derived-NSPCs and BTICs. Furthermore, gene silencing of TPT1 caused defects in neuronal differentiation in the NSPCs in vitro. We also identified the MIF-CHD7-TPT1-SMO signaling axis in regulating hESC-NSPCs and BTICs proliferation. Intriguingly, TPT1suppressed the miR-338 gene, which targets SMO in hESC-NSPCs and BTICs. Finally, mice with implanted BTICs infected with lentivirus-TPT1 shRNA showed a longer overall survival than control. These results also open up new avenues for the development of glioma therapies based on the TPT1 signaling pathway.
Collapse
Affiliation(s)
- Yukina Morimoto
- Department of Neurosurgery, Keio University of School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ayako Tokumitsu
- Division of Translational Research, Keio University Hospital Clinical and Translational Research Center, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takefumi Sone
- Department of Physiology, Keio University of School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuki Hirota
- Department of Anatomy, Keio University of School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ryota Tamura
- Department of Neurosurgery, Keio University of School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ayuna Sakamoto
- Division of Translational Research, Keio University Hospital Clinical and Translational Research Center, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University of School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University of School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yutaka Kawakami
- Cellular Signaling, Institute for Advanced Medical Research, Keio University of School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Immunology, School of Medicine, International University of Health and Welfare 4-3, Kozunomori, Narita, Chiba, 286-8686, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University of School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shigeki Ohta
- Cellular Signaling, Institute for Advanced Medical Research, Keio University of School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan. .,Department of Immunology, School of Medicine, International University of Health and Welfare 4-3, Kozunomori, Narita, Chiba, 286-8686, Japan.
| |
Collapse
|
8
|
Song S, Xiao Z, Dekker FJ, Poelarends GJ, Melgert BN. Macrophage migration inhibitory factor family proteins are multitasking cytokines in tissue injury. Cell Mol Life Sci 2022; 79:105. [PMID: 35091838 PMCID: PMC8799543 DOI: 10.1007/s00018-021-04038-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023]
Abstract
The family of macrophage migration inhibitory factor (MIF) proteins in humans consist of MIF, its functional homolog D-dopachrome tautomerase (D-DT, also known as MIF-2) and the relatively unknown protein named DDT-like (DDTL). MIF is a pleiotropic cytokine with multiple properties in tissue homeostasis and pathology. MIF was initially found to associate with inflammatory responses and therefore established a reputation as a pro-inflammatory cytokine. However, increasing evidence demonstrates that MIF influences many different intra- and extracellular molecular processes important for the maintenance of cellular homeostasis, such as promotion of cellular survival, antioxidant signaling, and wound repair. In contrast, studies on D-DT are scarce and on DDTL almost nonexistent and their functions remain to be further investigated as it is yet unclear how similar they are compared to MIF. Importantly, the many and sometimes opposing functions of MIF suggest that targeting MIF therapeutically should be considered carefully, taking into account timing and severity of tissue injury. In this review, we focus on the latest discoveries regarding the role of MIF family members in tissue injury, inflammation and repair, and highlight the possibilities of interventions with therapeutics targeting or mimicking MIF family proteins.
Collapse
|
9
|
Dourthe C, Julien C, Di Tommaso S, Dupuy JW, Dugot-Senant N, Brochard A, Le Bail B, Blanc JF, Chiche L, Balabaud C, Bioulac-Sage P, Saltel F, Raymond AA. Proteomic Profiling of Hepatocellular Adenomas Paves the Way to Diagnostic and Prognostic Approaches. Hepatology 2021; 74:1595-1610. [PMID: 33754354 DOI: 10.1002/hep.31826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/26/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Through an exploratory proteomic approach based on typical hepatocellular adenomas (HCAs), we previously identified a diagnostic biomarker for a distinctive subtype of HCA with high risk of bleeding, already validated on a multicenter cohort. We hypothesized that the whole protein expression deregulation profile could deliver much more informative data for tumor characterization. Therefore, we pursued our analysis with the characterization of HCA proteomic profiles, evaluating their correspondence with the established genotype/phenotype classification and assessing whether they could provide added diagnosis and prognosis values. APPROACH AND RESULTS From a collection of 260 cases, we selected 52 typical cases of all different subgroups on which we built a reference HCA proteomics database. Combining laser microdissection and mass-spectrometry-based proteomic analysis, we compared the relative protein abundances between tumoral (T) and nontumoral (NT) liver tissues from each patient and we defined a specific proteomic profile of each of the HCA subgroups. Next, we built a matching algorithm comparing the proteomic profile extracted from a patient with our reference HCA database. Proteomic profiles allowed HCA classification and made diagnosis possible, even for complex cases with immunohistological or genomic analysis that did not lead to a formal conclusion. Despite a well-established pathomolecular classification, clinical practices have not substantially changed and the HCA management link to the assessment of the malignant transformation risk remains delicate for many surgeons. That is why we also identified and validated a proteomic profile that would directly evaluate malignant transformation risk regardless of HCA subtype. CONCLUSIONS This work proposes a proteomic-based machine learning tool, operational on fixed biopsies, that can improve diagnosis and prognosis and therefore patient management for HCAs.
Collapse
Affiliation(s)
- Cyril Dourthe
- Univ. Bordeaux, INSERM, BaRITOn, U1053, Bordeaux, France.,Oncoprot Platform, TBM-Core US 005, Bordeaux, France
| | - Céline Julien
- Univ. Bordeaux, INSERM, BaRITOn, U1053, Bordeaux, France.,Department of Digestive Surgery, Bordeaux University Hospital, Bordeaux, France
| | - Sylvaine Di Tommaso
- Univ. Bordeaux, INSERM, BaRITOn, U1053, Bordeaux, France.,Oncoprot Platform, TBM-Core US 005, Bordeaux, France
| | | | | | | | - Brigitte Le Bail
- Univ. Bordeaux, INSERM, BaRITOn, U1053, Bordeaux, France.,Department of Pathology, Bordeaux University Hospital, Bordeaux, France
| | - Jean-Frédéric Blanc
- Univ. Bordeaux, INSERM, BaRITOn, U1053, Bordeaux, France.,Department of Hepatology and Oncology, Bordeaux University Hospital, Bordeaux, France
| | - Laurence Chiche
- Univ. Bordeaux, INSERM, BaRITOn, U1053, Bordeaux, France.,Department of Digestive Surgery, Bordeaux University Hospital, Bordeaux, France
| | | | | | - Frédéric Saltel
- Univ. Bordeaux, INSERM, BaRITOn, U1053, Bordeaux, France.,Oncoprot Platform, TBM-Core US 005, Bordeaux, France
| | - Anne-Aurélie Raymond
- Univ. Bordeaux, INSERM, BaRITOn, U1053, Bordeaux, France.,Oncoprot Platform, TBM-Core US 005, Bordeaux, France
| |
Collapse
|
10
|
Oedekoven CA, Belmonte M, Bode D, Hamey FK, Shepherd MS, Che JLC, Boyd G, McDonald C, Belluschi S, Diamanti E, Bastos HP, Bridge KS, Göttgens B, Laurenti E, Kent DG. Hematopoietic stem cells retain functional potential and molecular identity in hibernation cultures. Stem Cell Reports 2021; 16:1614-1628. [PMID: 33961793 PMCID: PMC8190576 DOI: 10.1016/j.stemcr.2021.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Advances in the isolation and gene expression profiling of single hematopoietic stem cells (HSCs) have permitted in-depth resolution of their molecular program. However, long-term HSCs can only be isolated to near purity from adult mouse bone marrow, thereby precluding studies of their molecular program in different physiological states. Here, we describe a powerful 7-day HSC hibernation culture system that maintains HSCs as single cells in the absence of a physical niche. Single hibernating HSCs retain full functional potential compared with freshly isolated HSCs with respect to colony-forming capacity and transplantation into primary and secondary recipients. Comparison of hibernating HSC molecular profiles to their freshly isolated counterparts showed a striking degree of molecular similarity, further resolving the core molecular machinery of HSC self-renewal while also identifying key factors that are potentially dispensable for HSC function, including members of the AP1 complex (Jun, Fos, and Ncor2), Sult1a1 and Cish. Finally, we provide evidence that hibernating mouse HSCs can be transduced without compromising their self-renewal activity and demonstrate the applicability of hibernation cultures to human HSCs.
Collapse
Affiliation(s)
- Caroline A Oedekoven
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Miriam Belmonte
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Daniel Bode
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Fiona K Hamey
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Mairi S Shepherd
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - James Lok Chi Che
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Grace Boyd
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK
| | - Craig McDonald
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Serena Belluschi
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Evangelia Diamanti
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Hugo P Bastos
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Katherine S Bridge
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK
| | - Berthold Göttgens
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Elisa Laurenti
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - David G Kent
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK; York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
11
|
Li T, Zhao X, Duan J, Cui S, Zhu K, Wan Y, Liu S, Peng Z, Wang L. Targeted inhibition of STAT3 in neural stem cells promotes neuronal differentiation and functional recovery in rats with spinal cord injury. Exp Ther Med 2021; 22:711. [PMID: 34007320 PMCID: PMC8120646 DOI: 10.3892/etm.2021.10143] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
STAT3 is expressed in neural stem cells (NSCs), where a number of studies have previously shown that STAT3 is involved in regulating NSC differentiation. However, the possible molecular mechanism and role of STAT3 in spinal cord injury (SCI) remain unclear. In the present study, the potential effect of STAT3 in NSCs was first investigated by using short hairpin RNA (shRNA)-mediated STAT3 knockdown in rat NSCs in vitro. Immunofluorescence of β3-tubulin and glial fibrillary acidic protein staining and western blotting showed that knocking down STAT3 expression promoted NSC neuronal differentiation, where the activity of mTOR was upregulated. Subsequently, rats underwent laminectomy and complete spinal cord transection followed by transplantation of NSCs transfected with control-shRNA or STAT3-shRNA at the injured site in vivo. Spinal cord-evoked potentials and the Basso-Beattie-Bresnahan scores were used to examine functional recovery. In addition, axonal regeneration and tissue repair were assessed using retrograde tracing with FluoroGold, hematoxylin and eosin, Nissl and immunofluorescence staining of β3-tubulin, glial fibrillary acidic protein and microtubule-associated protein 2 following SCI. The results showed that transplantation with NSCs transfected with STAT3-RNA enhanced functional recovery following SCI and promoted tissue repair in rats, in addition to improving neuronal differentiation of the transplanted NSCs in the injury site. Taken together, in vitro and in vivo evidence that inhibiting STAT3 could promote NSC neuronal differentiation was demonstrated in the present study. Therefore, transplantation with NSCs with STAT3 expression knocked down appears to hold promising potential for enhancing the benefit of NSC-mediated regenerative cell therapy for SCI.
Collapse
Affiliation(s)
- Tingting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510700, P.R. China
| | - Xiaoyang Zhao
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jing Duan
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Shangbin Cui
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Kai Zhu
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yong Wan
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Shaoyu Liu
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhiming Peng
- Department of Orthopaedics, Air Force General Hospital, Beijing 100142, P.R. China
| | - Le Wang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
12
|
Okazaki S, Boku S, Otsuka I, Horai T, Kimura A, Shimmyo N, Yamaki N, Hishimoto A. Clozapine increases macrophage migration inhibitory factor (MIF) expression via increasing histone acetylation of MIF promoter in astrocytes. J Psychiatr Res 2021; 135:237-242. [PMID: 33508542 DOI: 10.1016/j.jpsychires.2021.01.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 10/22/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine and promotes neurogenesis and neuroprotection in brains. In addition, MIF has been identified as a potential marker of schizophrenia (SCZ). Our recent study also showed that serum MIF level is higher in SCZ and positively correlated with antipsychotic doses, and that MIF promoter polymorphisms are associated with SCZ. Here, we investigated the effects of antipsychotics such as clozapine on MIF expression in primary cultured astrocytes derived from neonatal mouse forebrain. MIF mRNA expression was estimated with quantitative reverse-transcription polymerase chain reaction. MIF protein concentration was measured with enzyme-linked immunosorbent assay. The histone acetylation of MIF promoter was examined with chromatin immunoprecipitation assay. As a result, common antipsychotics, especially clozapine, increased MIF mRNA expression in a dose-dependent manner. Clozapine increased MIF mRNA expression and protein concentration in a time-dependent manner. Moreover, clozapine increased the acetylation of histone H3 at lysine 27 residues (H3K27) in MIF promoter. In conclusion, we provide novel evidence that antipsychotics such as clozapine increases MIF expression via the acetylation of H3K27 in astrocytes, and that MIF may have a potential role for astrocytes in the action mechanisms of antipsychotics.
Collapse
Affiliation(s)
- Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shuken Boku
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Neuropsychiatry, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan.
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tadasu Horai
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Atsushi Kimura
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naofumi Shimmyo
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naruhisa Yamaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Psychiatry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
13
|
Shao C, Hedberg C, Qian Y. In Vivo Imaging of the Macrophage Migration Inhibitory Factor in Liver Cancer with an Activity-Based Probe. Anal Chem 2021; 93:2152-2159. [PMID: 33406831 DOI: 10.1021/acs.analchem.0c03964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The macrophage migration inhibitory factor (MIF), a vital cytokine and biomarker, has been suggested to closely associate with the pathogenesis of liver cancer. However, a simple and effective approach for monitoring the change and distribution of cellular MIF is currently lacking and urgently needed, which could be helpful for a better understanding of its role in the progression of cancer. Herein, we report a novel activity-based probe, TPP2, which allows for direct labeling and imaging of endogenous MIF activity within live cells, clinical tissues, and in vivo in a mouse model of liver cancer. With this probe, we have intuitively observed the dynamic change of intracellular MIF activity by both flow cytometry and confocal imaging. We further found that TPP2 permits the identification and distinguishing of liver cancer in vitro and in vivo with high sensitivity and selectivity toward MIF. Our observations indicate that TPP2 could provide a promising new imaging approach for elucidating the MIF-related biological functions in liver cancer.
Collapse
Affiliation(s)
- Chenwen Shao
- School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road 1, Nanjing 210046, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Christian Hedberg
- Department of Chemistry, Chemical Biology Centre (KBC), Umeå University, Umeå 90187, Sweden
| | - Yong Qian
- School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road 1, Nanjing 210046, China
| |
Collapse
|
14
|
Macrophage migration inhibitory factor as a therapeutic target after traumatic spinal cord injury: a systematic review. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 30:1474-1494. [PMID: 33486594 DOI: 10.1007/s00586-021-06718-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/25/2020] [Accepted: 01/01/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Macrophages play an important role in mediating damage after Spinal cord injury (SCI) by secreting macrophage migration inhibitory factor (MMIF) as a secondary injury mediator. We aimed to systematically review the role of MMIF as a therapeutic target after traumatic SCI. METHODS Our systematic review has been performed according to the PRISMA 2009 Checklist. A systematic search in the scientific databases was carried out for studies published before 20 February 2019 from major databases. Two researchers independently screened titles. The risk of bias of eligible articles was assessed, and data were extracted. Finally, we systematically analyzed and interpreted related data. RESULTS 785 papers were selected for the title and abstract screening. 12 papers were included for data extraction. Eight animal studies were of high quality and the remaining two were of medium quality. One of the two human studies was of poor quality and the other was of fair quality. MMIF as a pro-inflammatory mediator can cause increased susceptibility to glutamate-related neurotoxicity, increased nitrite production, increased ERK activation, and increased COX2/PGE2 signaling pathway activation and subsequent stimulation of CCL5-related chemotaxis. Two human studies and six animal studies demonstrated that MMIF level increases after SCI. MMIF inhibition might be a potential therapeutic target in SCI by multiple different mechanisms (6/12 studies). CONCLUSION Most animal studies demonstrate significant neurologic improvement after administration of MMIF inhibitors, but these inhibitors have not been studied in humans yet. Further clinical trials are need to further understand MMIF inhibitor utility in acute or chronic SCI. LEVEL OF EVIDENCE I Diagnostic: individual cross-sectional studies with the consistently applied reference standard and blinding.
Collapse
|
15
|
Feedback activation of STAT3 limits the response to PI3K/AKT/mTOR inhibitors in PTEN-deficient cancer cells. Oncogenesis 2021; 10:8. [PMID: 33431808 PMCID: PMC7801611 DOI: 10.1038/s41389-020-00292-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
The PI3K/AKT/mTOR signaling pathway is constitutively active in PTEN-deficient cancer cells, and its targeted inhibition has significant anti-tumor effects. However, the efficacy of targeted therapies is often limited due to drug resistance. The relevant signaling pathways in PTEN-deficient cancer cells treated with the PI3K/mTOR inhibitor BEZ235 were screened using a phosphokinase array, and further validated following treatment with multiple PI3K/AKT/mTOR inhibitors or AKT knockdown. The correlation between PTEN expression levels and STAT3 kinase phosphorylation in the tissue microarrays of gastric cancer patients was analyzed by immunohistochemistry. Cell proliferation and clonogenic assays were performed on the suitably treated PTEN-deficient cancer cells. Cytokine arrays, small molecule inhibition and knockdown assays were performed to identify related factors. PTEN-deficient tumor xenografts were established in nude mice that were treated with PI3K/AKT/mTOR and/or STAT3 inhibitors. PTEN deficiency was positively correlated with low STAT3 activity. PI3K/mTOR inhibitors increased the expression and secretion of macrophage migration inhibitory factor (MIF) and activated the JAK1/STAT3 signaling pathway. Both cancer cells and in vivo tumor xenografts showed that the combined inhibition of PI3K/AKT/mTOR and STAT3 activity enhanced the inhibitory effect of BEZ235 on the proliferation of PTEN-deficient cancer cells. Our findings provide a scientific basis for a novel treatment strategy in cancer patients with PTEN deficiency.
Collapse
|
16
|
Song H, Shen Q, Hu S, Jin J. The role of macrophage migration inhibitory factor in promoting benign prostatic hyperplasia epithelial cell growth by modulating COX-2 and P53 signaling. Biol Open 2020; 9:bio053447. [PMID: 33148606 PMCID: PMC7673366 DOI: 10.1242/bio.053447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022] Open
Abstract
Inflammation and proinflammatory cytokines have been implicated in the progression of benign prostatic hyperplasia (BPH). Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine. Our previous study found that MIF is highly expressed in BPH epithelium. It has been reported that there is a correlation between MIF and clinical BPH progression. However, whether MIF has an effect on BPH epithelial cells is not clear. The aim of this study was to explore whether MIF has a role in BPH. Our results showed that immunohistochemistry (IHC) showed that MIF is highly expressed in the epithelium and that MIF and PCNA expression levels are higher in BPH samples than in control. CCK8 and flow cytometry assays showed that recombinant human MIF (rMIF) promoted the proliferation of BPH-1 and PWR-1E cells, while ISO-1 partially reversed this effect on proliferation. JC-1 assays showed that rMIF inhibited the apoptosis of BPH-1 and PWR-1E cells, and ISO-1 could partially reverse this inhibition. Moreover, western blotting indicated that rMIF downregulated P53 and upregulated COX-2. Furthermore, MIF-induced proliferation could be inhibited by celecoxib in the CCK8 and flow cytometry assay. MIF-inhibited apoptosis could be partially reversed by celecoxib in the JC-1 assay. Western blotting showed that celecoxib could partially reverse MIF-induced COX-2 upregulation and P53 downregulation. Together, MIF is highly expressed in BPH epithelium. In vitro, MIF promoted BPH epithelial cell growth by regulating COX-2 and P53 signaling. Targeting MIF may provide a new option for the improved treatment of BPH in the future.
Collapse
Affiliation(s)
- Hualin Song
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, 100034 Beijing, China
- National Research Center for Genitourinary Oncology, 100034 Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male), Molecular Diagnosis and Treatment Center, 100034 Beijing, China
| | - Qi Shen
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, 100034 Beijing, China
- National Research Center for Genitourinary Oncology, 100034 Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male), Molecular Diagnosis and Treatment Center, 100034 Beijing, China
| | - Shuai Hu
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, 100034 Beijing, China
- National Research Center for Genitourinary Oncology, 100034 Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male), Molecular Diagnosis and Treatment Center, 100034 Beijing, China
| | - Jie Jin
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, 100034 Beijing, China
- National Research Center for Genitourinary Oncology, 100034 Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male), Molecular Diagnosis and Treatment Center, 100034 Beijing, China
| |
Collapse
|
17
|
Inhibition of Macrophage Migration Inhibitory Factor Protects against Inflammation through a Toll-like Receptor-Related Pathway after Diffuse Axonal Injury in Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5946205. [PMID: 32964038 PMCID: PMC7492939 DOI: 10.1155/2020/5946205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/19/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022]
Abstract
Objective We have previously demonstrated that inflammation induced by toll-like receptors (TLRs) 2/4 exert cerebral deleterious effects after diffuse axonal injury (DAI); however, the underlying mechanisms are not fully understood. Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine involved in inflammatory responses. The purpose of this study was to investigate the role of MIF in inflammation induced by TLRs in the cortices of DAI rats. Methods The rat DAI model was established by head rotational acceleration and confirmed by β-APP, HE, and silver staining. MIF protein expression at 3 h, 6 h, 12 h, 1 d, and 3 d after DAI was measured by western blot. The localization of MIF was measured by immunofluorescence. MIF antagonist ISO-1 was intracerebroventricularly injected to inhibit MIF. Neuronal and axonal injury and glial responses were assessed by TUNEL, immunohistochemistry, and TEM. Expression of TLR2, TLR4, ERK, phospho-ERK, NF-κB, and phospho-NF-κB was examined by western blot. The level of IL-1β, IL-6, and TNF-α was measured by ELISA. Results MIF expression was significantly increased, peaking at 1 day after DAI, and MIF was mainly localized in microglial cells and neurons. ISO-1 suppressed neuronal apoptosis, axonal injury, and glial responses and decreased the expression of downstream signaling molecules related to TLR2/4, including ERK, phospho-ERK, NF-κB, phospho-NF-κB, IL-1β, IL-6, and TNF-α. Conclusion MIF was involved in the neuronal and axonal damage through a TLR-related pathway following DAI.
Collapse
|
18
|
Farr L, Ghosh S, Moonah S. Role of MIF Cytokine/CD74 Receptor Pathway in Protecting Against Injury and Promoting Repair. Front Immunol 2020; 11:1273. [PMID: 32655566 PMCID: PMC7325688 DOI: 10.3389/fimmu.2020.01273] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Wound healing after an injury is essential for life. An in-depth understanding of the healing process is necessary to ultimately improve the currently limited treatment options for patients suffering as a result of damage to various organs and tissues. Injuries, even the most minor, trigger an inflammatory response that protects the host and activates repair pathways. In recent years, substantial progress has been made in delineating the mechanisms by which inflammatory cytokines and their receptors facilitate tissue repair and regeneration. This mini review focuses on emerging literature on the role of the cytokine macrophage migration inhibitory factor (MIF) and its cell membrane receptor CD74, in protecting against injury and promoting healing in different parts of the body.
Collapse
Affiliation(s)
- Laura Farr
- Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Swagata Ghosh
- Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Shannon Moonah
- Department of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
19
|
Florez-Sampedro L, Soto-Gamez A, Poelarends GJ, Melgert BN. The role of MIF in chronic lung diseases: looking beyond inflammation. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1183-L1197. [PMID: 32208924 DOI: 10.1152/ajplung.00521.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that has been associated with many diseases. Most studies found in literature describe MIF as a proinflammatory cytokine involved in chronic inflammatory conditions, but evidence from last years suggests that many of its key effects are not directly related to inflammation. In fact, MIF is constitutively expressed in most human tissues and in some cases in high levels, which does not reflect the pattern of expression of a classic proinflammatory cytokine. Moreover, MIF is highly expressed during embryonic development and decreases during adulthood, which point toward a more likely role as growth factor. Accordingly, MIF knockout mice develop age-related spontaneous emphysema, suggesting that MIF presence (e.g., in younger individuals and wild-type animals) is part of a healthy lung. In view of this new line of evidence, we aimed to review data on the role of MIF in the pathogenesis of chronic lung diseases.
Collapse
Affiliation(s)
- Laura Florez-Sampedro
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.,Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Abel Soto-Gamez
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.,European Institute for the Biology of Aging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Barbro N Melgert
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
20
|
Cheng WL, Kao YH, Chen YC, Lin YK, Chen SA, Chen YJ. Macrophage migration inhibitory factor increases atrial arrhythmogenesis through CD74 signaling. Transl Res 2020; 216:43-56. [PMID: 31669150 DOI: 10.1016/j.trsl.2019.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 09/04/2019] [Accepted: 10/02/2019] [Indexed: 01/23/2023]
Abstract
Macrophage migration inhibitory factor (MIF), a pleiotropic inflammatory cytokine, is highly expressed in patients with atrial fibrillation (AF). CD74 (major histocompatibility complex, class II invariant chain) is the main receptor for MIF. However, the role of the MIF/CD74 axis in atrial arrhythmogenesis is unclear. In this study, we investigated the effects of MIF/CD74 signaling on atrial electrophysiological characteristics and determined its underlying mechanisms. Confocal fluorescence microscopy, patch clamp, and western blot analysis were used to study calcium homeostasis, ionic currents, and calcium-related signaling in MIF-treated HL-1 atrial cardiomyocytes with or without anti-CD74 neutralized antibodies treatment. Furthermore, electrocardiographic telemetry recording and echocardiography were obtained from mice treated with MIF. Compared with controls, MIF-treated HL-1 myocytes had increased calcium transients, sarcoplasmic reticulum (SR) calcium content, Na+/Ca2+ exchanger (NCX) efflux rate, calcium leak, transient outward potassium current, and ultra-rapid delayed rectifier potassium current. Furthermore, MIF could induce expression of SR Ca2+ATPase, NCX, phosphorylation of ryanodine receptor 2 (RyR2), and activation of calcium/calmodulin kinase II (CaMKII) when compared with control cells. MIF-mediated electrical dysregulation and CaMKII-RyR2 signaling activation were attenuated through blocking of CD74. Moreover, MIF-injected mice had lesser left atrium fractional shortening, greater atrial fibrosis, and atrial ectopic beats than control (nonspecific immunoglobulin treated) or MIF combined with anti-CD74 neutralized antibody-treated mice. Consequently, our study on MIF/CD74 signaling has pointed out a new potential therapeutic intervention of AF patients with MIF elevation.
Collapse
Affiliation(s)
- Wan-Li Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shih-Ann Chen
- Division of Cardiology and Cardiovascular Research Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
21
|
Wright AA, Todorovic M, Murtaza M, St John JA, Ekberg JA. Macrophage migration inhibitory factor and its binding partner HTRA1 are expressed by olfactory ensheathing cells. Mol Cell Neurosci 2019; 102:103450. [PMID: 31794879 DOI: 10.1016/j.mcn.2019.103450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/10/2019] [Accepted: 11/27/2019] [Indexed: 01/10/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is an important regulator of innate immunity with key roles in neural regeneration and responses to pathogens, amongst a multitude of other functions. The expression of MIF and its binding partners has been characterised throughout the nervous system, with one key exception: the primary olfactory nervous system. Here, we showed in young mice (postnatal day 10) that MIF is expressed in the olfactory nerve by olfactory ensheathing glial cells (OECs) and by olfactory nerve fibroblasts. We also examined the expression of potential binding partners for MIF, and found that the serine protease HTRA1, known to be inhibited by MIF, was also expressed at high levels by OECs and olfactory fibroblasts in vivo and in vitro. We also demonstrated that MIF mediated segregation between OECs and J774a.1 cells (a monocyte/macrophage cell line) in co-culture, which suggests that MIF contributes to the fact that macrophages are largely absent from olfactory nerve fascicles. Phagocytosis assays of axonal debris demonstrated that MIF strongly stimulates phagocytosis by OECs, which indicates that MIF may play a role in the response of OECs to the continual turnover of olfactory axons that occurs throughout life.
Collapse
Affiliation(s)
- A A Wright
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - M Todorovic
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia; School of Nursing and Midwifery, Griffith University, Nathan, Queensland, Australia
| | - M Murtaza
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - J A St John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - J A Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
22
|
Cai L, Qin X, Xu Z, Song Y, Jiang H, Wu Y, Ruan H, Chen J. Comparison of Cytotoxicity Evaluation of Anticancer Drugs between Real-Time Cell Analysis and CCK-8 Method. ACS OMEGA 2019; 4:12036-12042. [PMID: 31460316 PMCID: PMC6682106 DOI: 10.1021/acsomega.9b01142] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 05/28/2019] [Indexed: 05/21/2023]
Abstract
Critical cytotoxicity evaluation of pharmaceuticals is necessary for the clinical practice of chemotherapy. To quantitatively evaluate cell viability, currently there are two main types of sensitive methods including real-time cell analysis (RTCA) and CCK-8 assay, in which RTCA records electrochemical signal changes around an incubated cell, whereas CCK-8 is based on the colorimetric method. Despite the different detection principles adopted for the cytotoxicity assessment, the comparison of the two methods in terms of the application scope is lacking. In this study, comparison studies were conducted between the RTCA and CCK-8 assays using anticancer drugs including doxorubicin hydrochloride, curcumin, irinotecan (CPT-11), taxol, and oxaliplatin, which are classified into two groups of drug molecules in the absence and presence of additives. The cytotoxicity evaluation of these drugs on cancer cells revealed that the physicochemical properties of drug formulations such as optical and electrochemical properties are closely linked with the readout of cytotoxic methods. The experimental results suggested that the preselection of cytotoxic assay is critical for the quantitative measurement of cytotoxicity of anticancer drugs, which is of clinical importance for their therapeutic usage.
Collapse
Affiliation(s)
- Ling Cai
- School
of Public Health and School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xijiang Qin
- School
of Public Health and School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Zhihui Xu
- School
of Public Health and School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yiyan Song
- School
of Public Health and School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Huijun Jiang
- School
of Public Health and School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yuan Wu
- Department
of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of
Cancer Research, The Affiliated Cancer Hospital
of Nanjing Medical University, Nanjing 210009, China
| | - Hongjie Ruan
- Department
of Gynecology, Obstetrics and Gynecology
Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| | - Jin Chen
- School
of Public Health and School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- The Key Laboratory of Modern Toxicology,
Ministry of Education, School
of Public Health, and Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| |
Collapse
|
23
|
MIF/CD74 axis participates in inflammatory activation of Schwann cells following sciatic nerve injury. J Mol Histol 2019; 50:355-367. [PMID: 31197516 DOI: 10.1007/s10735-019-09832-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 06/07/2019] [Indexed: 12/17/2022]
Abstract
Based on deep RNA sequencing of distal segments of lesioned sciatic nerves, a huge number of differentially expression genes (DEGs) were thus obtained and functionally analyzed. The inflammatory response was denoted as one of most significant biological processes following sciatic nerve injury. In the present study, ingenuity pathway analysis (IPA) demonstrated that macrophage migration inhibitory factor (MIF) was identified as a core regulator of inflammatory response through interaction with CD74 membrane receptor. By establishment of rat sciatic nerve transection model, we displayed that MIF was upregulated following sciatic nerve axotomy, in colocalization with Schwann cells (SCs). MIF promoted migration, proliferation, together with inflammatory responses of SCs in vitro. Immunoprecipitation showed that MIF interacted with CD74 receptor, through which to activate intracellular ERK and JNK signaling pathways. Interference of CD74 receptor using specific siRNA showed that the transcription of proinflammatory cytokines including TNF-α, IL-1β, as well as cytokine receptor TLR4 in SCs was significantly attenuated, supporting an participation of MIF/CD74 signal axis in SCs inflammatory response. The data provide a novel role of MIF in eliciting inflammatory response of peripheral nerve injury, which might be beneficial for precise therapy of peripheral nerve inflammation.
Collapse
|
24
|
Poser SW, Otto O, Arps-Forker C, Ge Y, Herbig M, Andree C, Gruetzmann K, Adasme MF, Stodolak S, Nikolakopoulou P, Park DM, Mcintyre A, Lesche M, Dahl A, Lennig P, Bornstein SR, Schroeck E, Klink B, Leker RR, Bickle M, Chrousos GP, Schroeder M, Cannistraci CV, Guck J, Androutsellis-Theotokis A. Controlling distinct signaling states in cultured cancer cells provides a new platform for drug discovery. FASEB J 2019; 33:9235-9249. [PMID: 31145643 DOI: 10.1096/fj.201802603rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer cells can switch between signaling pathways to regulate growth under different conditions. In the tumor microenvironment, this likely helps them evade therapies that target specific pathways. We must identify all possible states and utilize them in drug screening programs. One such state is characterized by expression of the transcription factor Hairy and Enhancer of Split 3 (HES3) and sensitivity to HES3 knockdown, and it can be modeled in vitro. Here, we cultured 3 primary human brain cancer cell lines under 3 different culture conditions that maintain low, medium, and high HES3 expression and characterized gene regulation and mechanical phenotype in these states. We assessed gene expression regulation following HES3 knockdown in the HES3-high conditions. We then employed a commonly used human brain tumor cell line to screen Food and Drug Administration (FDA)-approved compounds that specifically target the HES3-high state. We report that cells from multiple patients behave similarly when placed under distinct culture conditions. We identified 37 FDA-approved compounds that specifically kill cancer cells in the high-HES3-expression conditions. Our work reveals a novel signaling state in cancer, biomarkers, a strategy to identify treatments against it, and a set of putative drugs for potential repurposing.-Poser, S. W., Otto, O., Arps-Forker, C., Ge, Y., Herbig, M., Andree, C., Gruetzmann, K., Adasme, M. F., Stodolak, S., Nikolakopoulou, P., Park, D. M., Mcintyre, A., Lesche, M., Dahl, A., Lennig, P., Bornstein, S. R., Schroeck, E., Klink, B., Leker, R. R., Bickle, M., Chrousos, G. P., Schroeder, M., Cannistraci, C. V., Guck, J., Androutsellis-Theotokis, A. Controlling distinct signaling states in cultured cancer cells provides a new platform for drug discovery.
Collapse
Affiliation(s)
- Steven W Poser
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Oliver Otto
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
| | - Carina Arps-Forker
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Yan Ge
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany.,Biomedical Cybernetics Group, Department of Physics, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Center for Systems Biology Dresden (CSBD), Technische Universität Dresden, Dresden, Germany
| | - Maik Herbig
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
| | - Cordula Andree
- Technology Development Studio, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Konrad Gruetzmann
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melissa F Adasme
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
| | - Szymon Stodolak
- Division of Cancer and Stem Cells, University of Nottingham, Nottingham, United Kingdom
| | | | - Deric M Park
- Department of Neurology, Committee on Clinical Pharmacology and Pharmacogenomics, The University of Chicago, Chicago, Illinois, USA.,Innate Repair, London, United Kingdom
| | - Alan Mcintyre
- Division of Cancer and Stem Cells, University of Nottingham, Nottingham, United Kingdom
| | - Mathias Lesche
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Andreas Dahl
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Petra Lennig
- B - CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Stefan R Bornstein
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany.,Innate Repair, London, United Kingdom
| | - Evelin Schroeck
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany.,Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Barbara Klink
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany.,Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ronen R Leker
- Stroke Unit, Department of Neurology, Stroke Center and the Peritz and Chantal Sheinberg Cerebrovascular Research Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Marc Bickle
- Technology Development Studio, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - George P Chrousos
- First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Aghia Sophia Children's Hospital, Athens, Greece
| | - Michael Schroeder
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
| | - Carlo Vittorio Cannistraci
- Biomedical Cybernetics Group, Department of Physics, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Center for Systems Biology Dresden (CSBD), Technische Universität Dresden, Dresden, Germany.,Brain Bio-Inspired Computing (BBC) Lab, IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Jochen Guck
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
| | - Andreas Androutsellis-Theotokis
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany.,Division of Cancer and Stem Cells, University of Nottingham, Nottingham, United Kingdom.,Innate Repair, London, United Kingdom.,Center for Regenerative Therapies Dresden, Dresden, Germany
| |
Collapse
|
25
|
Ostrowski RP, Zhang JH. The insights into molecular pathways of hypoxia-inducible factor in the brain. J Neurosci Res 2018; 98:57-76. [PMID: 30548473 DOI: 10.1002/jnr.24366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022]
Abstract
The objectives of this present work were to review recent developments on the role of hypoxia-inducible factor (HIF) in the survival of cells under normoxic versus hypoxic and inflammatory brain conditions. The dual nature of HIF effects appears well established, based on the accumulated evidence of HIF playing both the role of adaptive factor and mediator of cell demise. Cellular HIF responses depend on pathophysiological conditions, developmental phase, comorbidities, and administered medications. In addition, HIF-1α and HIF-2α actions may vary in the same tissues. The multiple roles of HIF in stem cells are emerging. HIF not only regulates expression of target genes and thereby influences resultant protein levels but also contributes to epigenetic changes that may reciprocally provide feedback regulations loops. These HIF-dependent alterations in neurological diseases and its responses to treatments in vivo need to be examined alongside with a functional status of subjects involved in such studies. The knowledge of HIF pathways might be helpful in devising HIF-mimetics and modulating drugs, acting on the molecular level to improve clinical outcomes, as exemplified here by clinical and experimental data of selected brain diseases, occasionally corroborated by the data from disorders of other organs. Because of complex role of HIF in brain injuries, prospective therapeutic interventions need to differentially target HIF responses depending on their roles in the molecular mechanisms of neurologic diseases.
Collapse
Affiliation(s)
- Robert P Ostrowski
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - John H Zhang
- Departments of Anesthesiology and Physiology, School of Medicine, Loma Linda University, Loma Linda, California
| |
Collapse
|
26
|
Macrophage Inhibitory Factor-1 (MIF-1) controls the plasticity of multiple myeloma tumor cells. PLoS One 2018; 13:e0206368. [PMID: 30383785 PMCID: PMC6211687 DOI: 10.1371/journal.pone.0206368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/11/2018] [Indexed: 11/29/2022] Open
Abstract
Multiple Myeloma (MM) is the second most common hematological malignancy with a median survival of 5–10 years. While current treatments initially cause remission, relapse almost always occurs, leading to the hypothesis that a chemotherapy-resistant cancer stem cell (CSC) remains dormant, and undergoes self-renewal and differentiation to reestablish disease. Our finding is that the mature cancer cell (CD138+, rapidly proliferating and chemosensitive) has developmental plasticity; namely, the ability to dedifferentiate back into its own chemoresistant CSC progenitor, the CD138–, quiescent pre-plasma cell. We observe multiple cycles of differentiation and dedifferentiation in the absence of niche or supportive accessory cells, suggesting that soluble cytokines secreted by the MM cells themselves are responsible for this bidirectional interconversion and that stemness and chemoresistance are dynamic characteristics that can be acquired or lost and thus may be targetable. By examining cytokine secretion of CD138- and CD138+ RPMI-8226 cells, we identified that concomitant with interconversion, Macrophage Migration Inhibitory Factor (MIF-1) is secreted. The addition of a small molecule MIF-1 inhibitor (4-IPP) or MIF-1 neutralizing antibodies to CD138+ cells accelerated dedifferentiation back into the CD138- progenitor, while addition of recombinant MIF-1 drove cells towards CD138+ differentiation. A similar increase in the CD138- population is seen when MM tumor cells isolated from primary bone marrow aspirates are cultured in the presence of 4-IPP. As the CD138+ MM cell is chemosensitive, targeting MIF-1 and/or the pathways that it regulates could be a viable way to modulate stemness and chemosensitivity, which could in turn transform the treatment of MM.
Collapse
|
27
|
Ietta F, Ferro EAV, Bevilacqua E, Benincasa L, Maioli E, Paulesu L. Role of the Macrophage Migration Inhibitory Factor (MIF) in the survival of first trimester human placenta under induced stress conditions. Sci Rep 2018; 8:12150. [PMID: 30108299 PMCID: PMC6092320 DOI: 10.1038/s41598-018-29797-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/10/2018] [Indexed: 11/09/2022] Open
Abstract
Macrophage Migration Inhibitory Factor (MIF) is a multifunctional molecule highly secreted by human placenta mainly in the early phases of pregnancy. Studies in different cells show that MIF is a pro-survival factor by binding to its receptor CD74. By using the in vitro model of placental explants from first trimester pregnancy, we investigated the role of MIF in the survival of placental cells under induced stress conditions that promote apoptosis or mimic the hypoxia/re-oxygenation (H/R) injury that placenta could suffer in vivo. We demonstrated that recombinant MIF (rMIF) treatment was able to reduce caspase-3 activation when cultures were challenged with the apoptosis-inducer Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) while, in the cultures exposed to H/R, the treatment with rMIF did not show any effect. However, a significant increase in caspase-3 and caspase-8 activation was found when H/R-exposed cultures, were treated with anti-MIF or anti-CD74 antibody. We also observed that under H/R, a significant amount of endogenous MIF was released into the medium, which could account for the lack of effect of rMIF added to the cultures. Our results demonstrate for the first time that the MIF/CD74 axis contributes to maintain trophoblast homeostasis, by preventing abnormal apoptotic death.
Collapse
Affiliation(s)
- Francesca Ietta
- Department of Life Sciences, University of Siena, Via A. Moro 4, 53100, Siena, Italy.
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Av. Pará 1720, 38405320, Uberlândia, Brazil
| | - Estela Bevilacqua
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof Lineu Prestes 1524, 05508-900, São Paulo, Brazil
| | - Linda Benincasa
- Department of Life Sciences, University of Siena, Via A. Moro 4, 53100, Siena, Italy
| | - Emanuela Maioli
- Department of Life Sciences, University of Siena, Via A. Moro 4, 53100, Siena, Italy
| | - Luana Paulesu
- Department of Life Sciences, University of Siena, Via A. Moro 4, 53100, Siena, Italy
| |
Collapse
|
28
|
Nikolakopoulou P, Chatzigeorgiou A, Kourtzelis I, Toutouna L, Masjkur J, Arps-Forker C, Poser SW, Rozman J, Rathkolb B, Aguilar-Pimentel JA, Wolf E, Klingenspor M, Ollert M, Schmidt-Weber C, Fuchs H, Gailus-Durner V, Hrabe de Angelis M, Tsata V, Monasor LS, Troullinaki M, Witt A, Anastasiou V, Chrousos G, Yi CX, García-Cáceres C, Tschöp MH, Bornstein SR, Androutsellis-Theotokis A. Streptozotocin-induced β-cell damage, high fat diet, and metformin administration regulate Hes3 expression in the adult mouse brain. Sci Rep 2018; 8:11335. [PMID: 30054579 PMCID: PMC6063949 DOI: 10.1038/s41598-018-29434-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
Diabetes mellitus is a group of disorders characterized by prolonged high levels of circulating blood glucose. Type 1 diabetes is caused by decreased insulin production in the pancreas whereas type 2 diabetes may develop due to obesity and lack of exercise; it begins with insulin resistance whereby cells fail to respond properly to insulin and it may also progress to decreased insulin levels. The brain is an important target for insulin, and there is great interest in understanding how diabetes affects the brain. In addition to the direct effects of insulin on the brain, diabetes may also impact the brain through modulation of the inflammatory system. Here we investigate how perturbation of circulating insulin levels affects the expression of Hes3, a transcription factor expressed in neural stem and progenitor cells that is involved in tissue regeneration. Our data show that streptozotocin-induced β-cell damage, high fat diet, as well as metformin, a common type 2 diabetes medication, regulate Hes3 levels in the brain. This work suggests that Hes3 is a valuable biomarker helping to monitor the state of endogenous neural stem and progenitor cells in the context of diabetes mellitus.
Collapse
Affiliation(s)
| | - Antonios Chatzigeorgiou
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Dresden, Germany
| | - Ioannis Kourtzelis
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Dresden, Germany
| | - Louiza Toutouna
- Department of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Jimmy Masjkur
- Department of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Carina Arps-Forker
- Department of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Steven W Poser
- Department of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Feodor-Lynen Str. 25, 81377, Munich, Germany
| | - Juan Antonio Aguilar-Pimentel
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Feodor-Lynen Str. 25, 81377, Munich, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, Technical University Munich, EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Gregor-Mendel-Str. 2, 85350, Freising-Weihenstephan, Germany
- ZIEL - Institute for Food and Health, Technical University Munich, Gregor-Mendel-Str. 2, 85350, Freising-Weihenstephan, Germany
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Carsten Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technische Universität München, and Helmholtz Zentrum München, Ingolstädter Landstr.1, 85764, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Alte Akademie 8, 85354, Freising, Germany
| | - Vasiliki Tsata
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität Dresden, Dresden, Germany
| | | | - Maria Troullinaki
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Dresden, Germany
| | - Anke Witt
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Dresden, Germany
| | - Vivian Anastasiou
- DZD/Paul Langerhans Institute Dresden of Helmholtz Centre Munich, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - George Chrousos
- First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Aghia Sophia Children's Hospital, Athens, Greece
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Helmholtz Diabetes Center (HDC) & German Center for Diabetes Research (DZD), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Cristina García-Cáceres
- Helmholtz Diabetes Center (HDC) & German Center for Diabetes Research (DZD), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Matthias H Tschöp
- Helmholtz Diabetes Center (HDC) & German Center for Diabetes Research (DZD), Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Division of Metabolic Diseases, Technische Universität München, 80333, Munich, Germany
| | - Stefan R Bornstein
- Department of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Andreas Androutsellis-Theotokis
- Department of Medicine, Technische Universität Dresden, Dresden, Germany.
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität Dresden, Dresden, Germany.
- Division of Cancer and Stem Cells, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
29
|
Cheon SK, Kim HP, Park YL, Jang JE, Lim Y, Song SH, Han SW, Kim TY. Macrophage migration inhibitory factor promotes resistance to MEK blockade in KRAS mutant colorectal cancer cells. Mol Oncol 2018; 12:1398-1409. [PMID: 29896883 PMCID: PMC6068346 DOI: 10.1002/1878-0261.12345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/28/2018] [Accepted: 05/28/2018] [Indexed: 01/08/2023] Open
Abstract
Although MEK blockade has been highlighted as a promising antitumor drug, it has poor clinical efficacy in KRAS mutant colorectal cancer (CRC). Several feedback systems have been described in which inhibition of one intracellular pathway leads to activation of a parallel signaling pathway, thereby decreasing the effectiveness of single‐MEK targeted therapies. Here, we investigated a bypass mechanism of resistance to MEK inhibition in KRAS CRC. We found that KRAS mutant CRC cells with refametinib, MEK inhibitor, induced MIF secretion and resulted in activation of STAT3 and MAPK. MIF knockdown by siRNA restored sensitivity to refametinib in KRAS mutant cells. In addition, combination with refametinib and 4‐IPP, a MIF inhibitor, effectively reduced the activity of STAT3 and MAPK, more than single‐agent treatment. As a result, combined therapy was found to exhibit a synergistic growth inhibitory effect against refametinib‐resistant cells by inhibition of MIF activation. These results reveal that MIF‐induced STAT3 and MAPK activation evoked an intrinsic resistance to refametinib. Our results provide the basis for a rational combination strategy against KRAS mutant colorectal cancers, predicated on the understanding of cross talk between the MEK and MIF pathways.
Collapse
Affiliation(s)
- Seul-Ki Cheon
- Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Korea.,Cancer Research Institute, Seoul National University, Korea
| | - Hwang-Phill Kim
- Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Korea.,Cancer Research Institute, Seoul National University, Korea
| | - Ye-Lim Park
- Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Korea.,Cancer Research Institute, Seoul National University, Korea
| | - Jee-Eun Jang
- Cancer Research Institute, Seoul National University, Korea
| | - Yoojoo Lim
- Department of Internal Medicine, Seoul National University Hospital, Korea
| | - Sang-Hyun Song
- Cancer Research Institute, Seoul National University, Korea
| | - Sae-Won Han
- Cancer Research Institute, Seoul National University, Korea.,Department of Internal Medicine, Seoul National University Hospital, Korea
| | - Tae-You Kim
- Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Korea.,Cancer Research Institute, Seoul National University, Korea.,Department of Internal Medicine, Seoul National University Hospital, Korea
| |
Collapse
|
30
|
Increased serum levels and promoter polymorphisms of macrophage migration inhibitory factor in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2018; 83:33-41. [PMID: 29305329 DOI: 10.1016/j.pnpbp.2018.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/01/2018] [Accepted: 01/01/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND Numerous studies have suggested that an immune system imbalance plays an important role in schizophrenia. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine. It plays multiple roles in various biological processes, including inflammation and neurogenesis. Furthermore, several exhaustive serum proteomic profiling studies have identified MIF as a potential biomarker of schizophrenia. Here, we investigate MIF protein levels in serum and postmortem prefrontal cortex in patients with schizophrenia and controls. Moreover, we investigate the association of two functional polymorphisms in the MIF gene promoter region (MIF-794CATT5-8 microsatellite and MIF-173G/C single-nucleotide polymorphism [SNP]) with schizophrenia. METHODS We measured serum MIF levels with an enzyme-linked immunosorbent assay (ELISA) (51 patients vs. 86 controls) and postmortem brain MIF levels with a western blotting assay (18 patients vs. 22 controls). Subsequently, we genotyped the MIF-794CATT5-8 microsatellite with a fluorescence-based fragment assay and the MIF-173G/C SNP with a TaqMan SNP genotyping assay (1483 patients vs. 1454 controls). RESULTS Serum MIF levels were significantly higher in patients with schizophrenia than in controls (p=0.00118), and were positively correlated with antipsychotic dose (Spearman's r=0.222, p=0.0402). In addition, an earlier age of onset was observed in patients with a high serum MIF level (≥40ng/mL) than those with a low serum MIF level (<40ng/mL) (p=0.0392). However, postmortem brain MIF levels did not differ between patients with schizophrenia and controls. The association study revealed that the CATT6-G haplotype was nominally significantly associated with schizophrenia (p=0.0338), and that the CATT6 allele and CATT6-G haplotype were significantly associated with female adolescent-onset schizophrenia (AsOS) (corrected p=0.0222 and p=0.0147, respectively). CONCLUSIONS These results suggest that serum MIF level is a potential pharmacodynamic and/or monitoring marker of schizophrenia, and is related to a novel antipsychotic effect beyond dopamine antagonism. Furthermore, the MIF gene polymorphisms are associated with the risk for schizophrenia especially in adolescent females, and are potential stratification markers of schizophrenia. Further studies of MIF are warranted to elucidate the pathophysiology of schizophrenia and the effects of antipsychotics.
Collapse
|
31
|
Nothnick WB, Falcone T, Olson MR, Fazleabas AT, Tawfik OW, Graham A. Macrophage Migration Inhibitory Factor Receptor, CD74, is Overexpressed in Human and Baboon ( Papio Anubis) Endometriotic Lesions and Modulates Endometriotic Epithelial Cell Survival and Interleukin 8 Expression. Reprod Sci 2018; 25:1557-1566. [PMID: 29592775 DOI: 10.1177/1933719118766262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
CD74 is the primary receptor for macrophage migration inhibitory factor (MIF). Although expression of MIF has been described in endometriotic lesions, the cellular localization and function of the MIF receptor, CD74, are poorly understood. To further explore the role of CD74 in the pathophysiology of endometriosis, we utilized specimens from women with diagnostically confirmed endometriosis, women with no signs or symptoms of endometriosis (controls), and 8 baboons with experimentally induced endometriosis. Compared to eutopic endometrium from women with endometriosis, CD74 transcript expression was significantly increased in endometriotic lesion tissue. Similarly, cellular expression of CD74 was significantly greater in ectopic lesion tissue compared to paired eutopic endometrium, which both expressed greater CD74 expression compared to eutopic endometrium from control patients. Localization of CD74 was predominant to epithelial cells of ectopic and matched eutopic endometrium and was not influenced by the stage of the menstrual cycle. Eutopic endometrium from control patients did not express detectable levels of CD74 protein by immunohistochemistry. This pattern of expression and CD74 protein localization could be recapitulated in endometriotic lesion tissue from baboons with experimentally induced disease. Transfection of the endometriotic epithelial cell lines, 12Z with CD74 short hairpin RNA (shRNA), resulted in a significant decrease in CD74 protein expression, which was associated with a significant reduction in cellular proliferation as well as the expression of the prosurvival cytokine interleukin 8. Together, these data support the hypothesis that CD74 is elevated in endometriotic lesion tissue and may contribute to the pathogenesis of endometriosis by promoting cell survival.
Collapse
Affiliation(s)
- Warren B Nothnick
- 1 Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,2 Center for Reproductive Sciences, University of Kansas Medical Center, Kansas City, KS, USA
| | - Tommaso Falcone
- 3 Department of Obstetrics, Gynecology and Women's Health Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mark R Olson
- 4 Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Asgerally T Fazleabas
- 4 Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Ossama W Tawfik
- 5 Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Amanda Graham
- 1 Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
32
|
Fex Svenningsen Å, Löring S, Sørensen AL, Huynh HUB, Hjæresen S, Martin N, Moeller JB, Elkjær ML, Holmskov U, Illes Z, Andersson M, Nielsen SB, Benedikz E. Macrophage migration inhibitory factor (MIF) modulates trophic signaling through interaction with serine protease HTRA1. Cell Mol Life Sci 2017; 74:4561-4572. [PMID: 28726057 PMCID: PMC5663815 DOI: 10.1007/s00018-017-2592-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/05/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023]
Abstract
Macrophage migration inhibitory factor (MIF), a small conserved protein, is abundant in the immune- and central nervous system (CNS). MIF has several receptors and binding partners that can modulate its action on a cellular level. It is upregulated in neurodegenerative diseases and cancer although its function is far from clear. Here, we report the finding of a new binding partner to MIF, the serine protease HTRA1. This enzyme cleaves several growth factors, extracellular matrix molecules and is implicated in some of the same diseases as MIF. We show that the function of the binding between MIF and HTRA1 is to inhibit the proteolytic activity of HTRA1, modulating the availability of molecules that can change cell growth and differentiation. MIF is therefore the first endogenous inhibitor ever found for HTRA1. It was found that both molecules were present in astrocytes and that the functional binding has the ability to modulate astrocytic activities important in development and disease of the CNS.
Collapse
Affiliation(s)
- Åsa Fex Svenningsen
- Department of Molecular Medicine-Neurobiology Research, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark.
| | - Svenja Löring
- Department of Molecular Medicine-Neurobiology Research, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Anna Lahn Sørensen
- Department of Molecular Medicine-Neurobiology Research, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
| | - Ha Uyen Buu Huynh
- Department of Molecular Medicine-Neurobiology Research, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
| | - Simone Hjæresen
- Department of Molecular Medicine-Neurobiology Research, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
| | - Nellie Martin
- Department of Neurology, Odense University Hospital, University of Southern Denmark, Sdr. Boulevard 29, 5000, Odense C, Denmark
| | - Jesper Bonnet Moeller
- Department of Molecular Medicine-Cancer and Inflammation, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
- Weill Cornell Medicine, Cornell University, 413 East 69th Street, New York, 10021, USA
| | - Maria Louise Elkjær
- Department of Neurology, Odense University Hospital, University of Southern Denmark, Sdr. Boulevard 29, 5000, Odense C, Denmark
| | - Uffe Holmskov
- Department of Molecular Medicine-Cancer and Inflammation, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, University of Southern Denmark, Sdr. Boulevard 29, 5000, Odense C, Denmark
| | - Malin Andersson
- Department of Pharmaceutical Biosciences, Uppsala University, Box 59, 751 24, Uppsala, Sweden
| | - Solveig Beck Nielsen
- Department of Molecular Medicine-Neurobiology Research, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
| | - Eirikur Benedikz
- Department of Molecular Medicine-Neurobiology Research, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
- Faculty of Health, University College Zealand, Parkvej 190, 4700, Næstved, Denmark
| |
Collapse
|
33
|
Xia W, Hou M. Macrophage migration inhibitory factor rescues mesenchymal stem cells from doxorubicin-induced senescence though the PI3K-Akt signaling pathway. Int J Mol Med 2017; 41:1127-1137. [PMID: 29207187 DOI: 10.3892/ijmm.2017.3282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/01/2017] [Indexed: 12/20/2022] Open
Abstract
Doxorubicin (DOXO), an anthracycline antibiotic, is a commonly used anticancer drug. Despite its widespread usage, the therapeutic effects of DOXO are limited by its cardiotoxicity. Mesenchymal stem cell (MSC)-based therapies have had positive outcomes in the treatment of DOXO-induced cardiac damage; however, DOXO exerts toxic effects on MSCs, decreasing the effectiveness of MSC therapy. Macrophage migration inhibitory factor (MIF) promotes MSC survival and rejuvenation, and thus is a promising candidate to protect MSCs against DOXO-induced injury. The present study revealed that DOXO induced the senescence of MSCs, resulting in decreased proliferation, viability and paracrine effects. However, pretreatment with MIF improved the proliferation rate, viability, paracrine function, telomere length and telomerase activity of MSCs. Furthermore, the results indicated that the molecular mechanism underlying the anti-senescent function of MIF involved the phosphatidylinositol 3-kinase (PI3K)-RAC-α serine/threonine-protein kinase (Akt) signaling pathway, which MIF activated. In agreement with this finding, silencing Akt was identified to abolish the anti-senescent effect of MIF. In addition, MIF decreased oxidative stress in MSCs, as revealed by the decreased production of reactive oxygen species and malondialdehyde, and the increased activity of superoxide dismutase. These results indicate that MIF can rescue MSCs from a state of DOXO-induced senescence by inhibiting oxidative stress and activating the PI3K-Akt signaling pathway. Thus, treatment with MIF may have an important therapeutic application for the rejuvenation of MSCs in patients with cancer being treated with DOXO.
Collapse
Affiliation(s)
- Wenzheng Xia
- Department of Neurosurgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Meng Hou
- Department of Radiation Oncology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
34
|
RNA-sequencing-based comparative analysis of human hepatic progenitor cells and their niche from alcoholic steatohepatitis livers. Cell Death Dis 2017; 8:e3164. [PMID: 29095436 PMCID: PMC5775409 DOI: 10.1038/cddis.2017.543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/17/2017] [Accepted: 09/05/2017] [Indexed: 02/07/2023]
Abstract
Hepatic progenitor cells (HPCs) are small cells with a relative large oval nucleus and a scanty cytoplasm situated in the canals of Hering that express markers of (immature) hepatocytes and cholangiocytes. HPCs are present in large numbers in alcoholic steatohepatitis (ASH), one of the leading causes of chronic liver disease. To date, the mechanisms responsible for proliferation and differentiation of human HPCs are still poorly understood and the role of HPCs in ASH development is unknown. In this study, we aimed to characterise human HPCs and their interactions with other cells through comparison, on both protein and RNA level, of HPC-enriched cell populations from adult human liver tissue using different isolation methods. Fresh human liver tissue was collected from ASH explant livers and HPC-enriched cell populations were obtained via four different isolation methods: side population (SP), epithelial cell adhesion molecule (EpCAM) and trophoblast antigen 2 (TROP-2) membrane marker isolation and laser capture microdissection. Gene expression profiles of fluorescent-activated cell-sorted HPCs, whole liver extracts and laser microdissected HPC niches were determined by RNA-sequencing. Immunohistochemical evaluation of the isolated populations indicated the enrichment of HPCs in the SP, EpCAM+ and TROP-2+ cell populations. Pathway analysis of the transcription profiles of human HPCs showed an enrichment and activation of known HPC pathways like Wnt/β-catenin, TWEAK and HGF. Integration of the HPC niche profile suggests autocrine signalling by HPCs (TNFα, PDGFB and VEGFA) as well as paracrine signalling from the surrounding niche cells including MIF and IGF-1. In addition, we identified IL-17 A signalling as a potentially novel pathway in HPC biology. In conclusion, we provide the first RNA-seq-based, comparative transcriptome analysis of isolated human HPCs from ASH patients and revealed active signalling between HPCs and their surrounding niche cells in ASH livers and suggest that HPCs can actively contribute to liver inflammation.
Collapse
|
35
|
Djudjaj S, Martin IV, Buhl EM, Nothofer NJ, Leng L, Piecychna M, Floege J, Bernhagen J, Bucala R, Boor P. Macrophage Migration Inhibitory Factor Limits Renal Inflammation and Fibrosis by Counteracting Tubular Cell Cycle Arrest. J Am Soc Nephrol 2017; 28:3590-3604. [PMID: 28801314 DOI: 10.1681/asn.2017020190] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/03/2017] [Indexed: 01/18/2023] Open
Abstract
Renal fibrosis is a common underlying process of progressive kidney diseases. We investigated the role of macrophage migration inhibitory factor (MIF), a pleiotropic proinflammatory cytokine, in this process. In mice subjected to unilateral ureteral obstruction, genetic deletion or pharmacologic inhibition of MIF aggravated fibrosis and inflammation, whereas treatment with recombinant MIF was beneficial, even in established fibrosis. In two other models of progressive kidney disease, global Mif deletion or MIF inhibition also worsened fibrosis and inflammation and associated with worse kidney function. Renal MIF expression was reduced in tubular cells in fibrotic compared with healthy murine and human kidneys. Bone marrow chimeras showed that Mif expression in bone marrow-derived cells did not affect fibrosis and inflammation after UUO. However, Mif gene deletion restricted to renal tubular epithelial cells aggravated these effects. In LPS-stimulated tubular cell cultures, Mif deletion led to enhanced G2/M cell-cycle arrest and increased expression of the CDK inhibitor 1B (p27Kip1) and of proinflammatory and profibrotic mediators. Furthermore, MIF inhibition reduced tubular cell proliferation in vitro In all three in vivo models, global Mif deletion or MIF inhibition caused similar effects and attenuated the expression of cyclin B1 in tubular cells. Mif deletion also resulted in reduced tubular cell apoptosis after UUO. Recombinant MIF exerted opposing effects on tubular cells in vitro and in vivo Our data identify renal tubular MIF as an endogenous renoprotective factor in progressive kidney diseases, raising the possibility of pharmacologic intervention with MIF pathway agonists, which are in advanced preclinical development.
Collapse
Affiliation(s)
| | | | | | | | - Lin Leng
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Marta Piecychna
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, Rheinish-Westphalian Technical University, Aachen University, Aachen, Germany.,Department of Vascular Biology, Institute for Stroke and Dementia Research, Munich University Hospital, Ludwig-Maximilians-University, Munich, Germany; and.,German Center for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Peter Boor
- Departments of Pathology and .,Nephrology and Immunology, and
| |
Collapse
|
36
|
Affiliation(s)
- Shigeki Ohta
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
37
|
Adzavon YM, Zhao P, Lv B, Liu M, Zhang X, Xie F, Yang L, Shang L, Zhang M, Li Q, Ma X. TLR7 and TLR8 agonist resiquimod (R848) differently regulates MIF expression in cells and organs. Cytokine 2017. [PMID: 28648870 DOI: 10.1016/j.cyto.2017.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Since its first description in 1966, macrophage migration inhibitory factor (MIF) was found to play a critical role in inflammatory and immune responses as well as in disease pathogenesis especially in tumor pathogenesis and cancer progression. MIF is expressed in different cell types and is associated with many disease severity and tumor pathogenesis. Here, we investigated the influence of TLR7 and TLR8 agonist resiquimod (R848), an immune response inducer used as a prophylactic agent for several infectious diseases as well as anticancer agents and vaccine adjuvant on MIF expression in cells and organs. Humans, mice and rats cell lines from different tissues (blood, retinal, nasopharynx, brain and liver) and C57BL/6J mice organs (brain, liver and spleen) were used for this investigation. In vitro, R848 induced MIF gene overexpression except in brain and liver cells. Furthermore, it enhanced cells ability to release soluble MIF and differently regulated mRNA expression of MIF-related receptors (CD74, CXCR4, CXCR2 and CD44). Its influence on MIF gene expression and MIF proteins release was more consistent in cancer cells. In vivo, a strong positive expression of MIF was observed in different regions in brain and spleen in response to R848 treatment; however in liver, increased MIF expression was observed in hepatocytes only. On the other hand, R848 treatment had induced a slight enhancement of MIF concentration in the plasma of C57BL/6J mice. Taken together, these data suggest that R848 differently regulates MIF mRNA expression depending on organ types and could influence MIF concentration in cellular microenvironment.
Collapse
Affiliation(s)
- Yao Mawulikplimi Adzavon
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, PR China
| | - Pengxiang Zhao
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, PR China
| | - Baobei Lv
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, PR China
| | - Mengyu Liu
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, PR China
| | - Xin Zhang
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, PR China
| | - Fei Xie
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, PR China
| | - Linqi Yang
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, PR China
| | - Lei Shang
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, PR China
| | - Mingzi Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, PR China
| | - Qinjian Li
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, PR China
| | - Xuemei Ma
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, PR China.
| |
Collapse
|
38
|
La Manna MP, Orlando V, Dieli F, Di Carlo P, Cascio A, Cuzzi G, Palmieri F, Goletti D, Caccamo N. Quantitative and qualitative profiles of circulating monocytes may help identifying tuberculosis infection and disease stages. PLoS One 2017; 12:e0171358. [PMID: 28208160 PMCID: PMC5313257 DOI: 10.1371/journal.pone.0171358] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/19/2017] [Indexed: 01/31/2023] Open
Abstract
Tuberculosis (TB) is one of the most important cause of morbidity and death among infectious diseases, and continuous efforts are needed to improve diagnostic tools and therapy. Previous published studies showed that the absolute cells number of monocytes or lymphocytes in peripheral blood or yet the ratio of monocytes to lymphocytes displayed the ability to predict the risk of active TB. In the present study we evaluated the ratio of monocytes to lymphocytes variation and we also analyzed the ex-vivo expression of CD64 on monocytes as tools to identify biomarkers for discriminating TB stages. Significant differences were found when the average ratio of monocytes to lymphocytes of active TB patients was compared with latent TB infection (LTBI) subjects, cured TB and healthy donors (HD). By the receiver operator characteristics (ROC) curve analysis the cut-off value of 0.285, allowed the discrimination of active TB from HD, with a sensitivity of 91.04% and a specificity of 93.55% (95% of confidence interval: 0.92-0.99). The ROC curve analysis comparing TB patients and LTBI groups, led to a sensitivity and the specificity of the assay of 85.07% and 85.71%, respectively (95% of confidence interval: 0.85 to 0.96). The upregulation of CD64 expression on circulating monocytes in active TB patients could represent an additional biomarker for diagnosis of active TB. In conclusion, we found that the ML ratio or monocyte absolute count or phenotypic measures show predictive value for active TB.
Collapse
Affiliation(s)
- Marco Pio La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research(CLADIBIOR), Azienda Universitaria Ospedaliera Policlinico P. Giaccone, Palermo, Italy
| | - Valentina Orlando
- Central Laboratory of Advanced Diagnosis and Biomedical Research(CLADIBIOR), Azienda Universitaria Ospedaliera Policlinico P. Giaccone, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research(CLADIBIOR), Azienda Universitaria Ospedaliera Policlinico P. Giaccone, Palermo, Italy
- Dipartimento di Biopatologia e Biotecnologie Mediche, Università di Palermo, Palermo, Italy
| | - Paola Di Carlo
- Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Antonio Cascio
- Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases L. Spallanzani, Rome, Italy
| | - Fabrizio Palmieri
- Translational Research Unit, National Institute for Infectious Diseases L. Spallanzani, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases L. Spallanzani, Rome, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research(CLADIBIOR), Azienda Universitaria Ospedaliera Policlinico P. Giaccone, Palermo, Italy
- Dipartimento di Biopatologia e Biotecnologie Mediche, Università di Palermo, Palermo, Italy
| |
Collapse
|
39
|
Abstract
Macrophage migration inhibitory factor (MIF) plays an important role in supporting the proliferation and/or survival of murine neural stem/progenitor cells (NSPCs); however, the downstream effectors of this factor remain unknown. Here, we show that MIF increases the expression of Pax6 and Chd7 in NSPCs in vitro. During neural development, the chromatin remodeling factor Chd7 (chromatin helicase-DNA-binding protein 7) is expressed in the ventricular zone of the telencephalon of mouse brain at embryonic day 14.5, as well as in cultured NSPCs. Retroviral overexpression of Pax6 in NSPCs increased Chd7 gene expression. Lentivirally-expressed Chd7 shRNA suppressed cell proliferation and neurosphere formation, and inhibited neurogenesis in vitro, while decreasing gene expression of Hes5 and N-myc. In addition, CHD7 overexpression increased cell proliferation in human embryonic stem cell-derived NSPCs (ES-NSPCs). In Chd7 mutant fetal mouse brains, there were fewer intermediate progenitor cells (IPCs) compared to wildtype littermates, indicating that Chd7 contributes to neurogenesis in the early developmental mouse brain. Furthermore, in silico database analysis showed that, among members of the CHD family, CHD7 is highly expressed in human gliomas. Interestingly, high levels of CHD7 gene expression in human glioma initiating cells (GICs) compared to normal astrocytes were revealed and gene silencing of CHD7 decreased GIC proliferation. Collectively, our data demonstrate that CHD7 is an important factor in the proliferation and stemness maintenance of NSPCs, and CHD7 is a promising therapeutic target for the treatment of gliomas.
Collapse
|
40
|
Yuan H, Zhou Y, Lee MS, Zhang Y, Li WJ. A newly identified mechanism involved in regulation of human mesenchymal stem cells by fibrous substrate stiffness. Acta Biomater 2016; 42:247-257. [PMID: 27370906 DOI: 10.1016/j.actbio.2016.06.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/07/2016] [Accepted: 06/28/2016] [Indexed: 01/03/2023]
Abstract
UNLABELLED Stiffness of biomaterial substrates plays a critical role in regulation of cell behavior. Although the effect of substrate stiffness on cell behavior has been extensively studied, molecular mechanisms of regulation rather than those involving cytoskeletal activities still remain elusive. In this study, we fabricated aligned ultrafine fibers and treated the fiber with different annealing temperatures to produce fibrous substrates with different stiffness. Human mesenchymal stem cells (hMSCs) were then cultured on these fibrous substrates. Our results showed that annealing treatment did not change the diameter of electrospun fibers but increased their polymer crystallinity and mechanical properties. The mRNA expression of RUNX2 was upregulated while the mRNA expression of scleraxis was downregulated in response to an increase in substrate stiffness, suggesting that increased stiffness favorably drives hMSCs into the osteogenic lineage. With subsequent induction of osteogenic differentiation, osteogenesis of hMSCs on stiffer substrates was increased compared to that of the cells on control substrates. Cells on stiffer substrates increasingly activated AKT and YAP and upregulated transcript expression of YAP target genes compared to those on control substrates, and inhibition of AKT led to decreased expression of YAP and RUNX2. Furthermore, macrophage migration inhibitory factor (MIF) was increasingly produced by the cell on stiffer substrates, and knocking down MIF by siRNA resulted in decreased AKT phosphorylation. Taken together, we hereby demonstrate that simply using the annealing approach can manipulate stiffness of an aligned fibrous substrate without altering the material chemistry, and substrate stiffness dictates hMSC differentiation through the MIF-mediated AKT/YAP/RUNX2 pathway. STATEMENT OF SIGNIFICANCE Stiffness of biomaterial substrates plays a critical role in regulation of cell behavior. Although the effect of substrate stiffness on cell behavior has been extensively studied, molecular mechanisms of regulation rather than those involving cytoskeletal activities still remain elusive. In this manuscript, we report our new findings that simply using the annealing approach can manipulate stiffness of an aligned fibrous substrate without altering the material chemistry, and substrate stiffness dictates human mesenchymal stem cell (hMSC) differentiation through the macrophage migration inhibitory factor-mediated AKT/YAP/RUNX2 pathway. The findings are novel and interesting because we have identified a new mechanism rather than those involving cytoskeleton activity, by which substrate stiffness regulates hMSC behavior.
Collapse
|
41
|
Park M, Kim S, Fetterer RH, Dalloul RA. Functional characterization of the turkey macrophage migration inhibitory factor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 61:198-207. [PMID: 27062968 DOI: 10.1016/j.dci.2016.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a soluble protein that inhibits the random migration of macrophages and plays a pivotal immunoregulatory function in innate and adaptive immunity. The aim of this study was to clone the turkey MIF (TkMIF) gene, express the active protein, and characterize its basic function. The full-length TkMIF gene was amplified from total RNA extracted from turkey spleen, followed by cloning into a prokaryotic (pET11a) expression vector. Sequence analysis revealed that TkMIF consists of 115 amino acids with 12.5 kDa molecular weight. Multiple sequence alignment revealed 100%, 65%, 95% and 92% identity with chicken, duck, eagle and zebra finch MIFs, respectively. Recombinant TkMIF (rTkMIF) was expressed in Escherichia coli and purified through HPLC and endotoxin removal. SDS-PAGE analysis revealed an approximately 13.5 kDa of rTkMIF monomer containing T7 tag in soluble form. Western blot analysis showed that anti-chicken MIF (ChMIF) polyclonal antisera detected a monomer form of TkMIF at approximately 13.5 kDa size. Further functional analysis revealed that rTkMIF inhibits migration of both mononuclear cells and splenocytes in a dose-dependent manner, but was abolished by the addition of anti-ChMIF polyclonal antisera. qRT-PCR analysis revealed elevated transcripts of pro-inflammatory cytokines by rTkMIF in LPS-stimulated monocytes. rTkMIF also led to increased levels of IFN-γ and IL-17F transcripts in Con A-activated splenocytes, while IL-10 and IL-13 transcripts were decreased. Overall, the sequences of both the turkey and chicken MIF have high similarity and comparable biological functions with respect to migration inhibitory activities of macrophages and enhancement of pro-inflammatory cytokine expression, suggesting that turkey and chicken MIFs would be biologically cross-reactive.
Collapse
Affiliation(s)
- Myeongseon Park
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Sungwon Kim
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA; The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Raymond H Fetterer
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Rami A Dalloul
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
42
|
Toutouna L, Nikolakopoulou P, Poser SW, Masjkur J, Arps-Forker C, Troullinaki M, Grossklaus S, Bosak V, Friedrich U, Ziemssen T, Bornstein SR, Chavakis T, Androutsellis-Theotokis A. Hes3 expression in the adult mouse brain is regulated during demyelination and remyelination. Brain Res 2016; 1642:124-130. [DOI: 10.1016/j.brainres.2016.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 11/24/2022]
|
43
|
Cui J, Zhang F, Wang Y, Liu J, Ming X, Hou J, Lv B, Fang S, Yu B. Macrophage migration inhibitory factor promotes cardiac stem cell proliferation and endothelial differentiation through the activation of the PI3K/Akt/mTOR and AMPK pathways. Int J Mol Med 2016; 37:1299-309. [PMID: 27035848 PMCID: PMC4829139 DOI: 10.3892/ijmm.2016.2542] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 03/16/2016] [Indexed: 01/05/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) has pleiotropic immune functions in a number of inflammatory diseases. Recent evidence from expression and functional studies has indicated that MIF is involved in various aspects of cardiovascular disease. In this study, we aimed to determine whether MIF supports in vitro c-kit+CD45− cardiac stem cell (CSC) survival, proliferation and differentiation into endothelial cells, as well as the possible mechanisms involved. We observed MIF receptor (CD74) expression in mouse CSCs (mCSCs) using PCR and immunofluorescence staining, and MIF secretion by mCSCs using PCR and ELISA in vitro. Increasing amounts of exogenous MIF did not affect CD74 expression, but promoted mCSC survival, proliferation and endothelial differentiation. By contrast, treatment with an MIF inhibitor (ISO-1) or siRNA targeting CD74 (CD74-siRNA) suppressed the biological changes induced by MIF in the mCSCs. Increasing amounts of MIF increased the phosphorylation of Akt and mammalian target of rapamycin (mTOR), which are known to support cell survival, proliferation and differentiation. These effects of MIF on the mCSCs were abolished by LY294002 [a phosphoinositide 3-kinase (PI3K) inhibitor] and MK-2206 (an Akt inhibitor). Moreover, adenosine monophosphate-activated protein kinase (AMPK) phosphorylation increased following treatment with MIF. The AMPK inhibitor, compound C, partly blocked the pro-proliferative effects of MIF on the mCSCs. In conclusion, our results suggest that MIF promotes mCSC survival, proliferation and endothelial differentiation through the activation of the PI3K/Akt/mTOR and AMPK signaling pathways. Thus, MIF may prove to be a potential therapeutic factor in the treatment of heart failure and myocardial infarction by activating CSCs.
Collapse
Affiliation(s)
- Jinjin Cui
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Fengyun Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yongshun Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jingjin Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xing Ming
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jingbo Hou
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Bo Lv
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Shaohong Fang
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang 150081, P.R. China
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
44
|
Xia W, Hou M. Macrophage migration inhibitory factor induces autophagy to resist hypoxia/serum deprivation-induced apoptosis via the AMP-activated protein kinase/mammalian target of rapamycin signaling pathway. Mol Med Rep 2016; 13:2619-26. [PMID: 26847932 DOI: 10.3892/mmr.2016.4847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 10/23/2015] [Indexed: 11/05/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is an anti‑apoptotic agent in various cell types and protects the heart from stress‑induced injury by modulating autophagy. Autophagy, a conserved pathway for bulk degradation of intracellular proteins and organelles, helps to preserve and recycle energy and nutrients for cells to survive during starvation. The present study hypothesized that MIF protects bone marrow‑derived mesenchymal stem cells (MSCs) from apoptosis by modulating autophagy via the AMP‑activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) signaling pathway. MSCs were obtained from rat bone marrow and cultured. Apoptosis was induced by hypoxia/serum deprivation for 24 h and was assessed using flow cytometry. MIF protected MSCs from apoptosis by modulating autophagy via the AMPK/mTOR signaling pathway resulting in increased expression of autophagy‑associated proteins (including LC3BI/LC3BII, Beclin‑1 and autophagy protein 5), and by increased phosphorylation of AMPK and decreased phosphorylation of mTOR. The MIF anti‑apoptotic effects were blocked by autophagy inhibitor, 3‑methyladenine or AMPK inhibitor, Compound C. These results indicate that MIF exerts a permissive role in protecting MSCs from apoptosis by regulation of autophagy via the AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Wenzheng Xia
- Department of Neurosurgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Meng Hou
- Department of Radiation Oncology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
45
|
Yoon K. Gastric Cancer: H. pylori and Macrophage Migration Inhibitory Factor. HELICOBACTER PYLORI 2016:269-274. [DOI: 10.1007/978-981-287-706-2_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
46
|
Deftu AF, Fiorenzani P, Ceccarelli I, Pinassi J, Gambaretto M, Ristoiu V, Paulesu LR, Aloisi AM. Macrophage migration inhibitory factor modulates formalin induced behaviors in rats. ANIM BIOL 2016. [DOI: 10.1163/15707563-00002502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytokine proteins are involved in different signaling pathways throughout the central nervous system. To study the efficacy of an inflammatory cytokine, the macrophage migration inhibitory factor (MIF), which acts via several receptor molecules including the receptor CXCR2, male rats’ behaviors were determined after intracerebroventricular (ICV) administration of MIF. There were three treatments: One group received only the cytokine, a second group received MIF and an CXCR2 antagonist (SB265610), and a third, control group received only the carrier medium saline. All rats were subjected to a subcutaneous injection of formalin in the hind paw after the ICV administration. Pain behaviors induced after formalin injection showed increased values in the MIF group of licking in the first phase and increased values of flexing, licking and paw-jerk in the second phase. On the contrary, spontaneous behaviors induced by formalin injection changed alternatively between the two groups compared with saline. These results suggest a possible effect of cytokine MIF on central nervous processes implicated in pain modulation mediated by the receptor CXCR2.
Collapse
Affiliation(s)
- Alexandru F. Deftu
- 1Department of Anatomy, Animal Physiology and Biophysics, University of Bucharest, Splaiul Independentei 91-95, Bucharest, 050095, Romania
| | - Paolo Fiorenzani
- 2Department of Medical, Surgical and Neural Science, University of Siena, Italy
| | - Ilaria Ceccarelli
- 2Department of Medical, Surgical and Neural Science, University of Siena, Italy
| | - Jessica Pinassi
- 2Department of Medical, Surgical and Neural Science, University of Siena, Italy
| | - Martina Gambaretto
- 2Department of Medical, Surgical and Neural Science, University of Siena, Italy
| | - Violeta Ristoiu
- 1Department of Anatomy, Animal Physiology and Biophysics, University of Bucharest, Splaiul Independentei 91-95, Bucharest, 050095, Romania
| | | | - Anna-Maria Aloisi
- 2Department of Medical, Surgical and Neural Science, University of Siena, Italy
| |
Collapse
|
47
|
Fan YP, Hsia CC, Tseng KW, Liao CK, Fu TW, Ko TL, Chiu MM, Shih YH, Huang PY, Chiang YC, Yang CC, Fu YS. The Therapeutic Potential of Human Umbilical Mesenchymal Stem Cells From Wharton's Jelly in the Treatment of Rat Peritoneal Dialysis-Induced Fibrosis. Stem Cells Transl Med 2015; 5:235-47. [PMID: 26718649 DOI: 10.5966/sctm.2015-0001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 10/08/2015] [Indexed: 11/16/2022] Open
Abstract
A major complication in continuous, ambulatory peritoneal dialysis in patients with end-stage renal disease who are undergoing long-term peritoneal dialysis (PD) is peritoneal fibrosis, which can result in peritoneal structural changes and functional ultrafiltration failure. Human umbilical mesenchymal stem cells (HUMSCs) in Wharton's jelly possess stem cell properties and are easily obtained and processed. This study focuses on the effects of HUMSCs on peritoneal fibrosis in in vitro and in vivo experiments. After 24-hour treatment with mixture of Dulbecco's modified Eagle's medium and PD solution at a 1:3 ratio, primary human peritoneal mesothelial cells became susceptible to PD-induced cell death. Such cytotoxic effects were prevented by coculturing with primary HUMSCs. In a rat model, intraperitoneal injections of 20 mM methylglyoxal (MGO) in PD solution for 3 weeks (the PD/MGO 3W group) markedly induced abdominal cocoon formation, peritoneal thickening, and collagen accumulation. Immunohistochemical analyses indicated neoangiogenesis and significant increase in the numbers of ED-1- and α-smooth muscle actin (α-SMA)-positive cells in the thickened peritoneum in the PD/MGO 3W group, suggesting that PD/MGO induced an inflammatory response. Furthermore, PD/MGO treatment for 3 weeks caused functional impairments in the peritoneal membrane. However, in comparison with the PD/MGO group, intraperitoneal administration of HUMSCs into the rats significantly ameliorated the PD/MGO-induced abdominal cocoon formation, peritoneal fibrosis, inflammation, neoangiogenesis, and ultrafiltration failure. After 3 weeks of transplantation, surviving HUMSCs were found in the peritoneum in the HUMSC-grafted rats. Thus, xenografts of HUMSCs might provide a potential therapeutic strategy in the prevention of peritoneal fibrosis. Significance: This study demonstrated that direct intraperitoneal transplantation of human umbilical mesenchymal stem cells into the rat effectively prevented peritoneal dialysis/methylglyoxal-induced abdominal cocoon formation, ultrafiltration failure, and peritoneal membrane alterations such as peritoneal thickening, fibrosis, and inflammation. These findings provide a basis for a novel approach for therapeutic benefits in the treatment of encapsulating peritoneal sclerosis.
Collapse
Affiliation(s)
- Yu-Pei Fan
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Ching-Chih Hsia
- Division of Nephrology, Department of Internal Medicine, Taipei City Hospital, Ren-Ai Branch, Taipei, Taiwan, Republic of China
| | - Kuang-Wen Tseng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan, Republic of China
| | - Chih-Kai Liao
- School of Medicine, I-Shou University, Kaohsiung City, Taiwan, Republic of China
| | - Tz-Win Fu
- Laboratory Medicine Department, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Tsui-Ling Ko
- Department of Optometry, Shu-Zen College of Medicine and Management, Kaohsiung City, Taiwan, Republic of China
| | - Mei-Miao Chiu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China Department of Medicine, Mackay Medical College, New Taipei, Taiwan, Republic of China
| | - Yang-Hsin Shih
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China School of Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Pei-Yu Huang
- Institute of Physiology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Yi-Chia Chiang
- Taipei Municipal Zhong Shan Girls High School, Taipei, Taiwan, Republic of China
| | - Chih-Ching Yang
- Department of Planning, Ministry of Health and Welfare, Executive Yuan, Taipei, Taiwan, Republic of China Department of Internal Medicine
| | - Yu-Show Fu
- Department of Anatomy and Cell Biology, School of Medicine, Department of Education and Research, Taipei City Hospital, Taipei, Taiwan, Republic of China
| |
Collapse
|
48
|
Yang H, Zheng S, Mao Y, Chen Z, Zheng C, Li H, Sumners C, Li Q, Yang P, Lei B. Modulating of ocular inflammation with macrophage migration inhibitory factor is associated with notch signalling in experimental autoimmune uveitis. Clin Exp Immunol 2015; 183:280-93. [PMID: 26400205 DOI: 10.1111/cei.12710] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/11/2015] [Accepted: 09/22/2015] [Indexed: 12/29/2022] Open
Abstract
The aim of this study was to examine whether macrophage migration inhibitory factor (MIF) could exaggerate inflammatory response in a mouse model of experimental autoimmune uveitis (EAU) and to explore the underlying mechanism. Mutant serotype 8 adeno-associated virus (AAV8) (Y733F)-chicken β-actin (CBA)-MIF or AAV8 (Y733F)-CBA-enhanced green fluorescent protein (eGFP) vector was delivered subretinally into B10.RIII mice, respectively. Three weeks after vector delivery, EAU was induced with a subcutaneous injection of a mixture of interphotoreceptor retinoid binding protein (IRBP) peptide with CFA. The levels of proinflammatory cytokines were detected by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). Retinal function was evaluated with electroretinography (ERG). We found that the expression of MIF and its two receptors CD74 and CD44 was increased in the EAU mouse retina. Compared to AAV8.CBA.eGFP-injected and untreated EAU mice, the level of proinflammatory cytokines, the expression of Notch1, Notch4, delta-like ligand 4 (Dll4), Notch receptor intracellular domain (NICD) and hairy enhancer of split-1 (Hes-1) increased, but the ERG a- and b-wave amplitudes decreased in AAV8.CBA.MIF-injected EAU mice. The Notch inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT) reduced the expression of NICD, Hes-1 and proinflammatory cytokines. Further, a MIF antagonist ISO-1 attenuated intraocular inflammation, and inhibited the differentiation of T helper type 1 (Th1) and Th17 in EAU mice. We demonstrated that over-expression of MIF exaggerated ocular inflammation, which was associated with the activation of the Notch signalling. The expression of both MIF and its receptors are elevated in EAU mice. Over-expression of MIF exaggerates ocular inflammation, and this exaggerated inflammation is associated with the activation of the Notch signalling and Notch pathway. Our data suggest that the MIF-Notch axis may play an important role in the pathogenesis of EAU. Both the MIF signalling pathways may be promising targets for developing novel therapeutic interventions for uveitis.
Collapse
Affiliation(s)
- H Yang
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - S Zheng
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Y Mao
- School of Biotechnology, Southern Medical University, Guangzhou, China
| | - Z Chen
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - C Zheng
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - H Li
- School of Biotechnology, Southern Medical University, Guangzhou, China
| | - C Sumners
- Department of Physiology and Functional Genomics and McKnight Brain Institute, Gainesville, FL, USA
| | - Q Li
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - P Yang
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - B Lei
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| |
Collapse
|
49
|
Djudjaj S, Lue H, Rong S, Papasotiriou M, Klinkhammer BM, Zok S, Klaener O, Braun GS, Lindenmeyer MT, Cohen CD, Bucala R, Tittel AP, Kurts C, Moeller MJ, Floege J, Ostendorf T, Bernhagen J, Boor P. Macrophage Migration Inhibitory Factor Mediates Proliferative GN via CD74. J Am Soc Nephrol 2015; 27:1650-64. [PMID: 26453615 DOI: 10.1681/asn.2015020149] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/24/2015] [Indexed: 01/09/2023] Open
Abstract
Pathologic proliferation of mesangial and parietal epithelial cells (PECs) is a hallmark of various glomerulonephritides. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that mediates inflammation by engagement of a receptor complex involving the components CD74, CD44, CXCR2, and CXCR4. The proliferative effects of MIF may involve CD74 together with the coreceptor and PEC activation marker CD44. Herein, we analyzed the effects of local glomerular MIF/CD74/CD44 signaling in proliferative glomerulonephritides. MIF, CD74, and CD44 were upregulated in the glomeruli of patients and mice with proliferative glomerulonephritides. During disease, CD74 and CD44 were expressed de novo in PECs and colocalized in both PECs and mesangial cells. Stress stimuli induced MIF secretion from glomerular cells in vitro and in vivo, in particular from podocytes, and MIF stimulation induced proliferation of PECs and mesangial cells via CD74. In murine crescentic GN, Mif-deficient mice were almost completely protected from glomerular injury, the development of cellular crescents, and the activation and proliferation of PECs and mesangial cells, whereas wild-type mice were not. Bone marrow reconstitution studies showed that deficiency of both nonmyeloid and bone marrow-derived Mif reduced glomerular cell proliferation and injury. In contrast to wild-type mice, Cd74-deficient mice also were protected from glomerular injury and ensuing activation and proliferation of PECs and mesangial cells. Our data suggest a novel molecular mechanism and glomerular cell crosstalk by which local upregulation of MIF and its receptor complex CD74/CD44 mediate glomerular injury and pathologic proliferation in GN.
Collapse
Affiliation(s)
- Sonja Djudjaj
- Department of Pathology, Department of Nephrology and Immunology, and
| | - Hongqi Lue
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Song Rong
- Department of Nephrology and Immunology, and
| | | | | | | | - Ole Klaener
- Department of Pathology, Department of Nephrology and Immunology, and
| | | | - Maja T Lindenmeyer
- Division of Nephrology and Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Clemens D Cohen
- Division of Nephrology and Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Andre P Tittel
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany; and
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany; and
| | | | | | | | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen, Germany;
| | - Peter Boor
- Department of Pathology, Department of Nephrology and Immunology, and Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
50
|
Poser SW, Chenoweth JG, Colantuoni C, Masjkur J, Chrousos G, Bornstein SR, McKay RD, Androutsellis-Theotokis A. Concise Review: Reprogramming, Behind the Scenes: Noncanonical Neural Stem Cell Signaling Pathways Reveal New, Unseen Regulators of Tissue Plasticity With Therapeutic Implications. Stem Cells Transl Med 2015; 4:1251-7. [PMID: 26371344 DOI: 10.5966/sctm.2015-0105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/08/2015] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED Interest is great in the new molecular concepts that explain, at the level of signal transduction, the process of reprogramming. Usually, transcription factors with developmental importance are used, but these approaches give limited information on the signaling networks involved, which could reveal new therapeutic opportunities. Recent findings involving reprogramming by genetic means and soluble factors with well-studied downstream signaling mechanisms, including signal transducer and activator of transcription 3 (STAT3) and hairy and enhancer of split 3 (Hes3), shed new light into the molecular mechanisms that might be involved. We examine the appropriateness of common culture systems and their ability to reveal unusual (noncanonical) signal transduction pathways that actually operate in vivo. We then discuss such novel pathways and their importance in various plastic cell types, culminating in their emerging roles in reprogramming mechanisms. We also discuss a number of reprogramming paradigms (mouse induced pluripotent stem cells, direct conversion to neural stem cells, and in vivo conversion of acinar cells to β-like cells). Specifically for acinar-to-β-cell reprogramming paradigms, we discuss the common view of the underlying mechanism (involving the Janus kinase-STAT pathway that leads to STAT3-tyrosine phosphorylation) and present alternative interpretations that implicate STAT3-serine phosphorylation alone or serine and tyrosine phosphorylation occurring in sequential order. The implications for drug design and therapy are important given that different phosphorylation sites on STAT3 intercept different signaling pathways. We introduce a new molecular perspective in the field of reprogramming with broad implications in basic, biotechnological, and translational research. SIGNIFICANCE Reprogramming is a powerful approach to change cell identity, with implications in both basic and applied biology. Most efforts involve the forced expression of key transcription factors, but recently, success has been reported with manipulating signal transduction pathways that might intercept them. It is important to start connecting the function of the classic reprogramming genes to signaling pathways that also mediate reprogramming, unifying the sciences of signal transduction, stem cell biology, and epigenetics. Neural stem cell studies have revealed the operation of noncanonical signaling pathways that are now appreciated to also operate during reprogramming, offering new mechanistic explanations.
Collapse
Affiliation(s)
- Steven W Poser
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Josh G Chenoweth
- Lieber Institute for Brain Development, Baltimore, Maryland, USA
| | - Carlo Colantuoni
- Lieber Institute for Brain Development, Baltimore, Maryland, USA
| | - Jimmy Masjkur
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - George Chrousos
- First Department of Pediatrics, University of Athens Medical School, Athens, Greece Aghia Sophia Children's Hospital, Athens, Greece
| | - Stefan R Bornstein
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Ronald D McKay
- Lieber Institute for Brain Development, Baltimore, Maryland, USA
| | - Andreas Androutsellis-Theotokis
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany Center for Regenerative Therapies Dresden, Dresden, Germany
| |
Collapse
|