1
|
Pereira RT, Samarakone C, Bridger JM, de Castro IJ. Pushing the envelope - How the genome interacts with the nuclear envelope in health and disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:155-190. [PMID: 39843135 DOI: 10.1016/bs.apcsb.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The nuclear envelope has for long been considered more than just the physical border between the nucleoplasm and the cytoplasm, emerging as a crucial player in genome organisation and regulation within the 3D nucleus. Consequently, its study has become a valuable topic in the research of cancer, ageing and several other diseases where chromatin organisation is compromised. In this chapter, we will delve into its several sub-elements, such as the nuclear lamina, nuclear pore complexes and nuclear envelope proteins, and their diverse roles in nuclear function and maintenance. We will explore their functions beyond nuclear structure and transport focusing on their interactions with chromatin and their paramount influence in its organisation, regulation and expression at the nuclear periphery. Finally, we will outline how this chromatin organisation and regulation at the nuclear envelope is affected in diseases, including laminopathies, cancer, neurodegenerative diseases and during viral infections.
Collapse
Affiliation(s)
- Rita Torres Pereira
- Genome Organisation and Dynamics Cluster, Center for Genome Engineering and Maintenance, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, London, United Kingdom
| | - Cresentia Samarakone
- Genome Organisation and Dynamics Cluster, Center for Genome Engineering and Maintenance, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, London, United Kingdom
| | - Joanna M Bridger
- Genome Organisation and Dynamics Cluster, Center for Genome Engineering and Maintenance, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, London, United Kingdom
| | - Ines J de Castro
- Genome Organisation and Dynamics Cluster, Center for Genome Engineering and Maintenance, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, London, United Kingdom.
| |
Collapse
|
2
|
Kim SJ, Park SH, Myung K, Lee KY. Lamin A/C facilitates DNA damage response by modulating ATM signaling and homologous recombination pathways. Anim Cells Syst (Seoul) 2024; 28:401-416. [PMID: 39176289 PMCID: PMC11340224 DOI: 10.1080/19768354.2024.2393820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024] Open
Abstract
Lamin A/C, a core component of the nuclear lamina, forms a mesh-like structure beneath the inner nuclear membrane. While its structural role is well-studied, its involvement in DNA metabolism remains unclear. We conducted sequential protein fractionation to determine the subcellular localization of early DNA damage response (DDR) proteins. Our findings indicate that most DDR proteins, including ATM and the MRE11-RAD50-NBS1 (MRN) complex, are present in the nuclease - and high salt-resistant pellet fraction. Notably, ATM and MRN remain stably associated with these structures throughout the cell cycle, independent of ionizing radiation (IR)-induced DNA damage. Although Lamin A/C interacts with ATM and MRN, its depletion does not disrupt their association with nuclease-resistant structures. However, it impairs the IR-enhanced association of ATM with the nuclear matrix and ATM-mediated DDR signaling, as well as the interaction between ATM and MRN. This disruption impedes the recruitment of MRE11 to damaged DNA and the association of damaged DNA with the nuclear matrix. Additionally, Lamin A/C depletion results in reduced protein levels of CtIP and RAD51, which is mediated by transcriptional regulation. This, in turn, impairs the efficiency of homologous recombination (HR). Our findings indicate that Lamin A/C plays a pivotal role in DNA damage repair (DDR) by orchestrating ATM-mediated signaling, maintaining HR protein levels, and ensuring efficient DNA repair processes.
Collapse
Affiliation(s)
- Seong-jung Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Su Hyung Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Kyoo-young Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Korea
| |
Collapse
|
3
|
Stiekema M, Houben F, Verheyen F, Borgers M, Menzel J, Meschkat M, van Zandvoort MAMJ, Ramaekers FCS, Broers JLV. The Role of Lamins in the Nucleoplasmic Reticulum, a Pleiomorphic Organelle That Enhances Nucleo-Cytoplasmic Interplay. Front Cell Dev Biol 2022; 10:914286. [PMID: 35784476 PMCID: PMC9243388 DOI: 10.3389/fcell.2022.914286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
Invaginations of the nuclear membrane occur in different shapes, sizes, and compositions. Part of these pleiomorphic invaginations make up the nucleoplasmic reticulum (NR), while others are merely nuclear folds. We define the NR as tubular invaginations consisting of either both the inner and outer nuclear membrane, or only the inner nuclear membrane. Specifically, invaginations of both the inner and outer nuclear membrane are also called type II NR, while those of only the inner nuclear membrane are defined as type I NR. The formation and structure of the NR is determined by proteins associated to the nuclear membrane, which induce a high membrane curvature leading to tubular invaginations. Here we review and discuss the current knowledge of nuclear invaginations and the NR in particular. An increase in tubular invaginations of the nuclear envelope is associated with several pathologies, such as laminopathies, cancer, (reversible) heart failure, and Alzheimer’s disease. Furthermore, viruses can induce both type I and II NR. In laminopathies, the amount of A-type lamins throughout the nucleus is generally decreased or the organization of lamins or lamin-associated proteins is disturbed. Also, lamin overexpression or modulation of lamin farnesylation status impacts NR formation, confirming the importance of lamin processing in NR formation. Virus infections reorganize the nuclear lamina via (de)phosphorylation of lamins, leading to an uneven thickness of the nuclear lamina and in turn lobulation of the nuclear membrane and the formation of invaginations of the inner nuclear membrane. Since most studies on the NR have been performed with cell cultures, we present additional proof for the existence of these structures in vivo, focusing on a variety of differentiated cardiovascular and hematopoietic cells. Furthermore, we substantiate the knowledge of the lamin composition of the NR by super-resolution images of the lamin A/C and B1 organization. Finally, we further highlight the essential role of lamins in NR formation by demonstrating that (over)expression of lamins can induce aberrant NR structures.
Collapse
Affiliation(s)
- Merel Stiekema
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Frederik Houben
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Healthcare, PXL University College, Hasselt, Belgium
| | - Fons Verheyen
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Marcel Borgers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | | | - Marc A. M. J. van Zandvoort
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, Netherlands
- Institute for Molecular Cardiovascular Research IMCAR, RWTH Aachen University, Aachen, Germany
| | - Frans C. S. Ramaekers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jos L. V. Broers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, Netherlands
- *Correspondence: Jos L. V. Broers,
| |
Collapse
|
4
|
Zehfus LR, Gillespie ZE, Almendáriz-Palacios C, Low NH, Eskiw CH. Haskap Berry Phenolic Subclasses Differentially Impact Cellular Stress Sensing in Primary and Immortalized Dermal Fibroblasts. Cells 2021; 10:cells10102643. [PMID: 34685623 PMCID: PMC8534008 DOI: 10.3390/cells10102643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023] Open
Abstract
It is generally accepted that dietary phenolics from fruits are of significant importance to human health. Unfortunately, there is minimal published data on how differences in phenolic structure(s) impact biological pathways at cellular and molecular levels. We observed that haskap berry extracts isolated with ethanol:formic acid:water or phenolic subclass fractions separated using different concentrations of ethanol (40% and 100%) impacted cell growth in a positive manner. All fractions and extracts significantly increased population doubling times. All extracts and fractions reduced intracellular free radicals; however, there were differences in these effects, indicating different abilities to scavenge free radicals. The extracts and fractions also exhibited differing impacts on transcripts encoding the antioxidant enzymes (CAT, SOD1, GPX1, GSS and HMOX1) and the phosphorylation state of nuclear factor-κB (NF-κB). We further observed that extracts and fractions containing different phenolic structures had divergent impacts on the mammalian target of rapamycin (mTOR) and sirtuin 1 (SIRT1). siRNA-mediated knockdown of SIRT1 transcripts demonstrated that this enzyme is key to eliciting haskap phenolic(s) impact on cells. We postulate that phenolic synergism is of significant importance when evaluating their dietary impact.
Collapse
Affiliation(s)
- Lily R. Zehfus
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (L.R.Z.); (C.A.-P.); (N.H.L.)
| | - Zoe E. Gillespie
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
| | - Carla Almendáriz-Palacios
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (L.R.Z.); (C.A.-P.); (N.H.L.)
| | - Nicholas H. Low
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (L.R.Z.); (C.A.-P.); (N.H.L.)
| | - Christopher H. Eskiw
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (L.R.Z.); (C.A.-P.); (N.H.L.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
- Correspondence: ; Tel.: +306-966-2454
| |
Collapse
|
5
|
Mehta IS, Riyahi K, Pereira RT, Meaburn KJ, Figgitt M, Kill IR, Eskiw CH, Bridger JM. Interphase Chromosomes in Replicative Senescence: Chromosome Positioning as a Senescence Biomarker and the Lack of Nuclear Motor-Driven Chromosome Repositioning in Senescent Cells. Front Cell Dev Biol 2021; 9:640200. [PMID: 34113611 PMCID: PMC8185894 DOI: 10.3389/fcell.2021.640200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/25/2021] [Indexed: 01/10/2023] Open
Abstract
This study demonstrates, and confirms, that chromosome territory positioning is altered in primary senescent human dermal fibroblasts (HDFs). The chromosome territory positioning pattern is very similar to that found in HDFs made quiescent either by serum starvation or confluence; but not completely. A few chromosomes are found in different locations. One chromosome in particular stands out, chromosome 10, which is located in an intermediate location in young proliferating HDFs, but is found at the nuclear periphery in quiescent cells and in an opposing location of the nuclear interior in senescent HDFs. We have previously demonstrated that individual chromosome territories can be actively and rapidly relocated, with 15 min, after removal of serum from the culture media. These chromosome relocations require nuclear motor activity through the presence of nuclear myosin 1β (NM1β). We now also demonstrate rapid chromosome movement in HDFs after heat-shock at 42°C. Others have shown that heat shock genes are actively relocated using nuclear motor protein activity via actin or NM1β (Khanna et al., 2014; Pradhan et al., 2020). However, this current study reveals, that in senescent HDFs, chromosomes can no longer be relocated to expected nuclear locations upon these two types of stimuli. This coincides with a entirely different organisation and distribution of NM1β within senescent HDFs.
Collapse
Affiliation(s)
- Ishita S Mehta
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom.,Tata Institute of Fundamental Research, Mumbai, India
| | - Kumars Riyahi
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| | - Rita Torres Pereira
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| | - Karen J Meaburn
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| | - Martin Figgitt
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom.,Department of Life Sciences, Birmingham City University, Birmingham, United Kingdom
| | - Ian R Kill
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| | - Christopher H Eskiw
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joanna M Bridger
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
6
|
Ricci A, Orazi S, Biancucci F, Magnani M, Menotta M. The nucleoplasmic interactions among Lamin A/C-pRB-LAP2α-E2F1 are modulated by dexamethasone. Sci Rep 2021; 11:10099. [PMID: 33980953 PMCID: PMC8115688 DOI: 10.1038/s41598-021-89608-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/26/2021] [Indexed: 11/09/2022] Open
Abstract
Ataxia telangiectasia (AT) is a rare genetic neurodegenerative disease. To date, there is no available cure for the illness, but the use of glucocorticoids has been shown to alleviate the neurological symptoms associated with AT. While studying the effects of dexamethasone (dex) in AT fibroblasts, by chance we observed that the nucleoplasmic Lamin A/C was affected by the drug. In addition to the structural roles of A-type lamins, Lamin A/C has been shown to play a role in the regulation of gene expression and cell cycle progression, and alterations in the LMNA gene is cause of human diseases called laminopathies. Dex was found to improve the nucleoplasmic accumulation of soluble Lamin A/C and was capable of managing the large chromatin Lamin A/C scaffolds contained complex, thus regulating epigenetics in treated cells. In addition, dex modified the interactions of Lamin A/C with its direct partners lamin associated polypeptide (LAP) 2a, Retinoblastoma 1 (pRB) and E2F Transcription Factor 1 (E2F1), regulating local gene expression dependent on E2F1. These effects were differentially observed in both AT and wild type (WT) cells. To our knowledge, this is the first reported evidence of the role of dex in Lamin A/C dynamics in AT cells, and may represent a new area of research regarding the effects of glucocorticoids on AT. Moreover, future investigations could also be extended to healthy subjects or to other pathologies such as laminopathies since glucocorticoids may have other important effects in these contexts as well.
Collapse
Affiliation(s)
- Anastasia Ricci
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via A. Saffi 2, 61029, Urbino, Italy
| | - Sara Orazi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via A. Saffi 2, 61029, Urbino, Italy
| | - Federica Biancucci
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via A. Saffi 2, 61029, Urbino, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via A. Saffi 2, 61029, Urbino, Italy
| | - Michele Menotta
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via A. Saffi 2, 61029, Urbino, Italy.
| |
Collapse
|
7
|
Pradhan R, Nallappa MJ, Sengupta K. Lamin A/C modulates spatial organization and function of the Hsp70 gene locus via nuclear myosin I. J Cell Sci 2020; 133:jcs236265. [PMID: 31988151 DOI: 10.1242/jcs.236265] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
The structure-function relationship of the nucleus is tightly regulated, especially during heat shock. Typically, heat shock activates molecular chaperones that prevent protein misfolding and preserve genome integrity. However, the molecular mechanisms that regulate nuclear structure-function relationships during heat shock remain unclear. Here, we show that lamin A and C (hereafter lamin A/C; both lamin A and C are encoded by LMNA) are required for heat-shock-mediated transcriptional induction of the Hsp70 gene locus (HSPA genes). Interestingly, lamin A/C regulates redistribution of nuclear myosin I (NM1) into the nucleus upon heat shock, and depletion of either lamin A/C or NM1 abrogates heat-shock-induced repositioning of Hsp70 gene locus away from the nuclear envelope. Lamins and NM1 also regulate spatial positioning of the SC35 (also known as SRSF2) speckles - important nuclear landmarks that modulates Hsp70 gene locus expression upon heat shock. This suggests an intricate crosstalk between nuclear lamins, NM1 and SC35 organization in modulating transcriptional responses of the Hsp70 gene locus during heat shock. Taken together, this study unravels a novel role for lamin A/C in the regulation of the spatial dynamics and function of the Hsp70 gene locus upon heat shock, via the nuclear motor protein NM1.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Roopali Pradhan
- Biology, Main Building, First Floor, Room B-216, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Muhunden Jayakrishnan Nallappa
- Biology, Main Building, First Floor, Room B-216, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Kundan Sengupta
- Biology, Main Building, First Floor, Room B-216, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| |
Collapse
|
8
|
Ranade D, Pradhan R, Jayakrishnan M, Hegde S, Sengupta K. Lamin A/C and Emerin depletion impacts chromatin organization and dynamics in the interphase nucleus. BMC Mol Cell Biol 2019; 20:11. [PMID: 31117946 PMCID: PMC6532135 DOI: 10.1186/s12860-019-0192-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/16/2019] [Indexed: 12/26/2022] Open
Abstract
Background Nuclear lamins are type V intermediate filament proteins that maintain nuclear structure and function. Furthermore, Emerin - an interactor of Lamin A/C, facilitates crosstalk between the cytoskeleton and the nucleus as it also interacts with actin and Nuclear Myosin 1 (NM1). Results Here we show that the depletion of Lamin A/C or Emerin, alters the localization of the nuclear motor protein - Nuclear Myosin 1 (NM1) that manifests as an increase in NM1 foci in the nucleus and are rescued to basal levels upon the combined knockdown of Lamin A/C and Emerin. Furthermore, Lamin A/C-Emerin co-depletion destabilizes cytoskeletal organization as it increases actin stress fibers. This further impinges on nuclear organization, as it enhances chromatin mobility more toward the nuclear interior in Lamin A/C-Emerin co-depleted cells. This enhanced chromatin mobility was restored to basal levels either upon inhibition of Nuclear Myosin 1 (NM1) activity or actin depolymerization. In addition, the combined loss of Lamin A/C and Emerin alters the otherwise highly conserved spatial positions of chromosome territories. Furthermore, knockdown of Lamin A/C or Lamin A/C-Emerin combined, deregulates expression levels of a candidate subset of genes. Amongst these genes, both KLK10 (Chr.19, Lamina Associated Domain (LAD+)) and MADH2 (Chr.18, LAD-) were significantly repressed, while BCL2L12 (Chr.19, LAD-) is de-repressed. These genes differentially reposition with respect to the nuclear envelope. Conclusions Taken together, these studies underscore a remarkable interplay between Lamin A/C and Emerin in modulating cytoskeletal organization of actin and NM1 that impinges on chromatin dynamics and function in the interphase nucleus. Electronic supplementary material The online version of this article (10.1186/s12860-019-0192-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Devika Ranade
- Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Biology, Room#B-216, 1st Floor, Main Building, Pashan, Pune, Maharashtra, 411008, India
| | - Roopali Pradhan
- Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Biology, Room#B-216, 1st Floor, Main Building, Pashan, Pune, Maharashtra, 411008, India
| | - Muhunden Jayakrishnan
- Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Biology, Room#B-216, 1st Floor, Main Building, Pashan, Pune, Maharashtra, 411008, India
| | - Sushmitha Hegde
- Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Biology, Room#B-216, 1st Floor, Main Building, Pashan, Pune, Maharashtra, 411008, India
| | - Kundan Sengupta
- Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Biology, Room#B-216, 1st Floor, Main Building, Pashan, Pune, Maharashtra, 411008, India.
| |
Collapse
|
9
|
Clements CS, Bikkul MU, Ofosu W, Eskiw C, Tree D, Makarov E, Kill IR, Bridger JM. Presence and distribution of progerin in HGPS cells is ameliorated by drugs that impact on the mevalonate and mTOR pathways. Biogerontology 2019; 20:337-358. [PMID: 31041622 PMCID: PMC6535420 DOI: 10.1007/s10522-019-09807-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/29/2019] [Indexed: 12/12/2022]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare, premature ageing syndrome in children. HGPS is normally caused by a mutation in the LMNA gene, encoding nuclear lamin A. The classical mutation in HGPS leads to the production of a toxic truncated version of lamin A, progerin, which retains a farnesyl group. Farnesyltransferase inhibitors (FTI), pravastatin and zoledronic acid have been used in clinical trials to target the mevalonate pathway in HGPS patients to inhibit farnesylation of progerin, in order to reduce its toxicity. Some other compounds that have been suggested as treatments include rapamycin, IGF1 and N-acetyl cysteine (NAC). We have analysed the distribution of prelamin A, lamin A, lamin A/C, progerin, lamin B1 and B2 in nuclei of HGPS cells before and after treatments with these drugs, an FTI and a geranylgeranyltransferase inhibitor (GGTI) and FTI with pravastatin and zoledronic acid in combination. Confirming other studies prelamin A, lamin A, progerin and lamin B2 staining was different between control and HGPS fibroblasts. The drugs that reduced progerin staining were FTI, pravastatin, zoledronic acid and rapamycin. However, drugs affecting the mevalonate pathway increased prelamin A, with only FTI reducing internal prelamin A foci. The distribution of lamin A in HGPS cells was improved with treatments of FTI, pravastatin and FTI + GGTI. All treatments reduced the number of cells displaying internal speckles of lamin A/C and lamin B2. Drugs targeting the mevalonate pathway worked best for progerin reduction, with zoledronic acid removing internal progerin speckles. Rapamycin and NAC, which impact on the MTOR pathway, both reduced both pools of progerin without increasing prelamin A in HGPS cell nuclei.
Collapse
Affiliation(s)
- Craig S Clements
- Progeria Research Team, Ageing Studies Theme, Institute for Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Mehmet U Bikkul
- Progeria Research Team, Ageing Studies Theme, Institute for Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Wendy Ofosu
- Progeria Research Team, Ageing Studies Theme, Institute for Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK.,Department of Biomedical Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | - Christopher Eskiw
- Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7B 5A8, Canada
| | - David Tree
- Progeria Research Team, Ageing Studies Theme, Institute for Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Evgeny Makarov
- Progeria Research Team, Ageing Studies Theme, Institute for Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Ian R Kill
- Progeria Research Team, Ageing Studies Theme, Institute for Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Joanna M Bridger
- Progeria Research Team, Ageing Studies Theme, Institute for Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK. .,Genome Engineering and Maintenance Network, Ageing Studies Theme, Institute of Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
10
|
Metformin induces the AP-1 transcription factor network in normal dermal fibroblasts. Sci Rep 2019; 9:5369. [PMID: 30926854 PMCID: PMC6441003 DOI: 10.1038/s41598-019-41839-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/18/2019] [Indexed: 12/21/2022] Open
Abstract
Metformin is a widely-used treatment for type 2 diabetes and is reported to extend health and lifespan as a caloric restriction (CR) mimetic. Although the benefits of metformin are well documented, the impact of this compound on the function and organization of the genome in normal tissues is unclear. To explore this impact, primary human fibroblasts were treated in culture with metformin resulting in a significant decrease in cell proliferation without evidence of cell death. Furthermore, metformin induced repositioning of chromosomes 10 and 18 within the nuclear volume indicating altered genome organization. Transcriptome analyses from RNA sequencing datasets revealed that alteration in growth profiles and chromosome positioning occurred concomitantly with changes in gene expression profiles. We further identified that different concentrations of metformin induced different transcript profiles; however, significant enrichment in the activator protein 1 (AP-1) transcription factor network was common between the different treatments. Comparative analyses revealed that metformin induced divergent changes in the transcriptome than that of rapamycin, another proposed mimetic of CR. Promoter analysis and chromatin immunoprecipitation assays of genes that changed expression in response to metformin revealed enrichment of the transcriptional regulator forkhead box O3a (FOXO3a) in normal human fibroblasts, but not of the predicted serum response factor (SRF). Therefore, we have demonstrated that metformin has significant impacts on genome organization and function in normal human fibroblasts, different from those of rapamycin, with FOXO3a likely playing a role in this response.
Collapse
|
11
|
Serebryannyy LA, Ball DA, Karpova TS, Misteli T. Single molecule analysis of lamin dynamics. Methods 2019; 157:56-65. [PMID: 30145357 PMCID: PMC6387858 DOI: 10.1016/j.ymeth.2018.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/28/2022] Open
Abstract
The nuclear envelope (NE) is an essential cellular structure that contributes to nuclear stability, organization, and function. Mutations in NE-associated proteins result in a myriad of pathologies with widely diverse clinical manifestations, ages of onsets, and affected tissues. Notably, several hundred disease-causing mutations have been mapped to the LMNA gene, which encodes the intermediate filament proteins lamin A and C, two of the major architectural components of the nuclear envelope. However, how NE dysfunction leads to the highly variable pathologies observed in patient cells and tissues remains poorly understood. One model suggests alterations in the dynamic properties of the nuclear lamina and its associated proteins contribute to disease phenotype. Here, we describe the application of single molecule tracking (SMT) methodology to characterize the behavior of nuclear envelope transmembrane proteins and nuclear lamins in their native cellular environment at the single molecule level. As proof-of-concept, we demonstrate by SMT that Halo-tagged lamin B1, Samp1, lamin A, and lamin AΔ50 have distinct binding and kinetic properties, and we identify several disease-relevant mutants which exhibit altered binding dynamics. SMT is also able to separately probe the dynamics of the peripheral and the nucleoplasmic populations of lamin A mutants. We suggest that SMT is a robust and sensitive method to investigate the relationship between pathogenic mutations or cellular processes and protein dynamics at the NE.
Collapse
Affiliation(s)
- Leonid A Serebryannyy
- Cell Biology of Genomes Group, National Cancer Institute, National Institutes of Health, 41 Library Drive, Bethesda, MD 20892, USA
| | - David A Ball
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, Optical Microscopy Core, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, MD 20892, USA
| | - Tatiana S Karpova
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, Optical Microscopy Core, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, MD 20892, USA
| | - Tom Misteli
- Cell Biology of Genomes Group, National Cancer Institute, National Institutes of Health, 41 Library Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Bártová E, Legartová S, Krejčí J, Řezníčková P, Kovaříková AS, Suchánková J, Fedr R, Smirnov E, Hornáček M, Raška I. Depletion of A-type lamins and Lap2α reduces 53BP1 accumulation at UV-induced DNA lesions and Lap2α protein is responsible for compactness of irradiated chromatin. J Cell Biochem 2018; 119:8146-8162. [PMID: 29923310 DOI: 10.1002/jcb.26770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/02/2018] [Indexed: 12/29/2022]
Abstract
We studied how deficiency in lamins A/C and lamina-associated polypeptide 2α (Lap2α) affects DNA repair after irradiation. A-type lamins and Lap2α were not recruited to local DNA lesions and did not accumulate to γ-irradiation-induced foci (IRIF), as it is generally observed for well-known marker of DNA lesions, 53BP1 protein. At micro-irradiated chromatin of lmna double knockout (dn) and Lap2α dn cells, 53BP1 protein levels were reduced, compared to locally irradiated wild-type counterpart. Decreased levels of 53BP1 we also observed in whole populations of lmna dn and Lap2α dn cells, irradiated by UV light. We also studied distribution pattern of 53BP1 protein in a genome outside micro-irradiated region. In Lap2α deficient cells, identical fluorescence of mCherry-tagged 53BP1 protein was found at both microirradiated region and surrounding chromatin. However, a well-known marker of double strand breaks, γH2AX, was highly abundant in the lesion-surrounding genome of Lap2α deficient cells. Described changes, induced by irradiation in Lap2α dn cells, were not accompanied by cell cycle changes. In Lap2α dn cells, we additionally performed analysis by FLIM (Fluorescence Lifetime Imaging Microscopy) that showed different dynamic behavior of mCherry-tagged 53BP1 protein pools when it was compared with wild-type (wt) fibroblasts. This analysis revealed three different fractions of mCherry-53BP1 protein. Two of them showed identical exponential decay times (τ1 and τ3), but the decay rate of τ2 and amplitudes of fluorescence decays (A1-A3) were statistically different in wt and Lap2α dn fibroblasts. Moreover, γ-irradiation weakened an interaction between A-type lamins and Lap2α. Together, our results demonstrate how depletion of Lap2α affects DNA damage response (DDR) and how chromatin compactness is changed in Lap2α deficient cells exposed to radiation.
Collapse
Affiliation(s)
- Eva Bártová
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Soňa Legartová
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jana Krejčí
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Petra Řezníčková
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | | | - Jana Suchánková
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Radek Fedr
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Evgeny Smirnov
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Matúš Hornáček
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Ivan Raška
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
13
|
Bikkul MU, Clements CS, Godwin LS, Goldberg MW, Kill IR, Bridger JM. Farnesyltransferase inhibitor and rapamycin correct aberrant genome organisation and decrease DNA damage respectively, in Hutchinson-Gilford progeria syndrome fibroblasts. Biogerontology 2018; 19:579-602. [PMID: 29907918 PMCID: PMC6223735 DOI: 10.1007/s10522-018-9758-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is a rare and fatal premature ageing disease in children. HGPS is one of several progeroid syndromes caused by mutations in the LMNA gene encoding the nuclear structural proteins lamins A and C. In classic HGPS the mutation G608G leads to the formation of a toxic lamin A protein called progerin. During post-translational processing progerin remains farnesylated owing to the mutation interfering with a step whereby the farnesyl moiety is removed by the enzyme ZMPSTE24. Permanent farnesylation of progerin is thought to be responsible for the proteins toxicity. Farnesyl is generated through the mevalonate pathway and three drugs that interfere with this pathway and hence the farnesylation of proteins have been administered to HGPS children in clinical trials. These are a farnesyltransferase inhibitor (FTI), statin and a bisphosphonate. Further experimental studies have revealed that other drugs such as N-acetyl cysteine, rapamycin and IGF-1 may be of use in treating HGPS through other pathways. We have shown previously that FTIs restore chromosome positioning in interphase HGPS nuclei. Mis-localisation of chromosomes could affect the cells ability to regulate proper genome function. Using nine different drug treatments representing drug regimes in the clinic we have shown that combinatorial treatments containing FTIs are most effective in restoring specific chromosome positioning towards the nuclear periphery and in tethering telomeres to the nucleoskeleton. On the other hand, rapamycin was found to be detrimental to telomere tethering, it was, nonetheless, the most effective at inducing DNA damage repair, as revealed by COMET analyses.
Collapse
Affiliation(s)
- Mehmet U Bikkul
- Progeria Research Team, Healthy Ageing Theme, Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Craig S Clements
- Progeria Research Team, Healthy Ageing Theme, Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Lauren S Godwin
- Progeria Research Team, Healthy Ageing Theme, Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Martin W Goldberg
- Department of Biosciences, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, UK
| | - Ian R Kill
- Progeria Research Team, Healthy Ageing Theme, Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Joanna M Bridger
- Progeria Research Team, Healthy Ageing Theme, Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
14
|
Laurini E, Martinelli V, Lanzicher T, Puzzi L, Borin D, Chen SN, Long CS, Lee P, Mestroni L, Taylor MRG, Sbaizero O, Pricl S. Biomechanical defects and rescue of cardiomyocytes expressing pathologic nuclear lamins. Cardiovasc Res 2018; 114:846-857. [PMID: 29432544 PMCID: PMC5909658 DOI: 10.1093/cvr/cvy040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/06/2018] [Accepted: 02/07/2018] [Indexed: 02/07/2023] Open
Abstract
Aims Given the clinical impact of LMNA cardiomyopathies, understanding lamin function will fulfill a clinical need and will lead to advancement in the treatment of heart failure. A multidisciplinary approach combining cell biology, atomic force microscopy (AFM), and molecular modeling was used to analyse the biomechanical properties of human lamin A/C gene (LMNA) mutations (E161K, D192G, N195K) using an in vitro neonatal rat ventricular myocyte model. Methods and results The severity of biomechanical defects due to the three LMNA mutations correlated with the severity of the clinical phenotype. AFM and molecular modeling identified distinctive biomechanical and structural changes, with increasing severity from E161K to N195K and D192G, respectively. Additionally, the biomechanical defects were rescued with a p38 MAPK inhibitor. Conclusions AFM and molecular modeling were able to quantify distinct biomechanical and structural defects in LMNA mutations E161K, D192G, and N195K and correlate the defects with clinical phenotypic severity. Improvements in cellular biomechanical phenotype was demonstrated and may represent a mechanism of action for p38 MAPK inhibition therapy that is now being used in human clinical trials to treat laminopathies.
Collapse
Affiliation(s)
- Erik Laurini
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Valentina Martinelli
- International Center for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Thomas Lanzicher
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Luca Puzzi
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Daniele Borin
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Suet Nee Chen
- Cardiovascular Institute and Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Carlin S Long
- Cardiovascular Institute and Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Patrice Lee
- Array BioPharma Inc., Boulder, CO 80301, USA
| | - Luisa Mestroni
- Cardiovascular Institute and Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Matthew R G Taylor
- Cardiovascular Institute and Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Sabrina Pricl
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
15
|
Bhattacharjee P, Dasgupta D, Sengupta K. DCM associated LMNA mutations cause distortions in lamina structure and assembly. Biochim Biophys Acta Gen Subj 2017; 1861:2598-2608. [PMID: 28844980 DOI: 10.1016/j.bbagen.2017.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/01/2017] [Accepted: 08/11/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND A and B-type lamins are integral scaffolding components of the nuclear lamina which impart rigidity and shape to all metazoan nuclei. Over 450 mutations in A-type lamins are associated with 16 human diseases including dilated cardiomyopathy (DCM). Here, we show that DCM mutants perturb the self-association of lamin A (LA) and it's binding with lamin B1 (LB1). METHODS We used confocal and superresolution microscopy (NSIM) to study the effect of LA mutants on the nuclear lamina. We further used circular dichroism, fluorescence spectroscopy and isothermal titration calorimetry (ITC) to probe the structural modulations, self-association and heteropolymeric association of mutant LA. RESULTS Transfection of mutants in cultured cell lines result in the formation of nuclear aggregates of varied size and distribution. Endogenous LB1 is sequestered into these aggregates. This is consistent with the ten-fold increase in association constant of the mutant proteins compared to the wild type. These mutants exhibit differential heterotypic interaction with LB1, along with significant secondary and tertiary structural alterations of the interacting proteins. Thermodynamic studies demonstrate that the mutants bind to LB1 with different stoichiometry, affinity and energetics. CONCLUSIONS In this report we show that increased self-association propensity of mutant LA modulates the LA-LB1 interaction and precludes the formation of an otherwise uniform laminar network. GENERAL SIGNIFICANCE Our results might highlight the role of homotypic and heterotypic interactions of LA in the pathogenesis of DCM and hence laminopathies in the broader sense.
Collapse
Affiliation(s)
- Pritha Bhattacharjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Dipak Dasgupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India.
| | - Kaushik Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India.
| |
Collapse
|
16
|
Buchwalter A, Hetzer MW. Nucleolar expansion and elevated protein translation in premature aging. Nat Commun 2017; 8:328. [PMID: 28855503 PMCID: PMC5577202 DOI: 10.1038/s41467-017-00322-z] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 06/22/2017] [Indexed: 01/08/2023] Open
Abstract
Premature aging disorders provide an opportunity to study the mechanisms that drive aging. In Hutchinson-Gilford progeria syndrome (HGPS), a mutant form of the nuclear scaffold protein lamin A distorts nuclei and sequesters nuclear proteins. We sought to investigate protein homeostasis in this disease. Here, we report a widespread increase in protein turnover in HGPS-derived cells compared to normal cells. We determine that global protein synthesis is elevated as a consequence of activated nucleoli and enhanced ribosome biogenesis in HGPS-derived fibroblasts. Depleting normal lamin A or inducing mutant lamin A expression are each sufficient to drive nucleolar expansion. We further show that nucleolar size correlates with donor age in primary fibroblasts derived from healthy individuals and that ribosomal RNA production increases with age, indicating that nucleolar size and activity can serve as aging biomarkers. While limiting ribosome biogenesis extends lifespan in several systems, we show that increased ribosome biogenesis and activity are a hallmark of premature aging. HGPS is a premature aging disease caused by mutations in the nuclear protein lamin A. Here, the authors show that cells from patients with HGPS have expanded nucleoli and increased protein synthesis, and report that nucleoli also expand as aging progresses in cells derived from healthy individuals.
Collapse
Affiliation(s)
- Abigail Buchwalter
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
17
|
Abstract
Nuclear lamins are components of the peripheral lamina that define the mechanical properties of nuclei and tether heterochromatin to the periphery. A-type lamins localize also to the nuclear interior, but the regulation and specific functions of this nucleoplasmic lamin pool are poorly understood. In this Commentary, we summarize known pathways that are potentially involved in the localization and dynamic behavior of intranuclear lamins, including their post-translational modifications and interactions with nucleoplasmic proteins, such as lamina-associated polypeptide 2α (LAP2α; encoded by TMPO). In addition, new data suggest that lamins in the nuclear interior have an important role in chromatin regulation and gene expression through dynamic binding to both hetero- and euchromatic genomic regions and promoter subdomains, thereby affecting epigenetic pathways and chromatin accessibility. Nucleoplasmic lamins also have a role in spatial chromatin organization and may be involved in mechanosignaling. In view of this newly emerging concept, we propose that the previously reported cellular phenotypes in lamin-linked diseases are, at least in part, rooted in an impaired regulation and/or function of the nucleoplasmic lamin A/C pool.
Collapse
Affiliation(s)
- Nana Naetar
- Center of Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 9, Vienna A-1030, Austria
| | - Simona Ferraioli
- Center of Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 9, Vienna A-1030, Austria
| | - Roland Foisner
- Center of Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 9, Vienna A-1030, Austria
| |
Collapse
|
18
|
Abstract
Previously thought to reside exclusively in the cytoplasm, the cytoskeletal protein keratin 17 (K17) has been recently identified inside the nucleus of tumor epithelial cells with a direct impact on cell proliferation and gene expression. We comment on fundamental questions raised by this new finding and the associated significance.
Collapse
Affiliation(s)
- Ryan P Hobbs
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Justin T Jacob
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
19
|
Rauschert I, Aldunate F, Preussner J, Arocena-Sutz M, Peraza V, Looso M, Benech JC, Agrelo R. Promoter hypermethylation as a mechanism for Lamin A/C silencing in a subset of neuroblastoma cells. PLoS One 2017; 12:e0175953. [PMID: 28422997 PMCID: PMC5397038 DOI: 10.1371/journal.pone.0175953] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 04/03/2017] [Indexed: 02/07/2023] Open
Abstract
Nuclear lamins support the nuclear envelope and provide anchorage sites for chromatin. They are involved in DNA synthesis, transcription, and replication. It has previously been reported that the lack of Lamin A/C expression in lymphoma and leukaemia is due to CpG island promoter hypermethylation. Here, we provide evidence that Lamin A/C is silenced via this mechanism in a subset of neuroblastoma cells. Moreover, Lamin A/C expression can be restored with a demethylating agent. Importantly, Lamin A/C reintroduction reduced cell growth kinetics and impaired migration, invasion, and anchorage-independent cell growth. Cytoskeletal restructuring was also induced. In addition, the introduction of lamin Δ50, known as Progerin, caused senescence in these neuroblastoma cells. These cells were stiffer and developed a cytoskeletal structure that differed from that observed upon Lamin A/C introduction. Of relevance, short hairpin RNA Lamin A/C depletion in unmethylated neuroblastoma cells enhanced the aforementioned tumour properties. A cytoskeletal structure similar to that observed in methylated cells was induced. Furthermore, atomic force microscopy revealed that Lamin A/C knockdown decreased cellular stiffness in the lamellar region. Finally, the bioinformatic analysis of a set of methylation arrays of neuroblastoma primary tumours showed that a group of patients (around 3%) gives a methylation signal in some of the CpG sites located within the Lamin A/C promoter region analysed by bisulphite sequencing PCR. These findings highlight the importance of Lamin A/C epigenetic inactivation for a subset of neuroblastomas, leading to enhanced tumour properties and cytoskeletal changes. Additionally, these findings may have treatment implications because tumour cells lacking Lamin A/C exhibit more aggressive behaviour.
Collapse
Affiliation(s)
- Ines Rauschert
- Laboratory of Cellular Signaling and Nanobiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Fabian Aldunate
- Epigenetics of Cancer and Aging Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Jens Preussner
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Miguel Arocena-Sutz
- Epigenetics of Cancer and Aging Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Vanina Peraza
- Epigenetics of Cancer and Aging Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Mario Looso
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Juan C. Benech
- Laboratory of Cellular Signaling and Nanobiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Ruben Agrelo
- Epigenetics of Cancer and Aging Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
20
|
Gillespie ZE, MacKay K, Sander M, Trost B, Dawicki W, Wickramarathna A, Gordon J, Eramian M, Kill IR, Bridger JM, Kusalik A, Mitchell JA, Eskiw CH. Rapamycin reduces fibroblast proliferation without causing quiescence and induces STAT5A/B-mediated cytokine production. Nucleus 2015; 6:490-506. [PMID: 26652669 PMCID: PMC4915505 DOI: 10.1080/19491034.2015.1128610] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/24/2015] [Accepted: 11/30/2015] [Indexed: 12/25/2022] Open
Abstract
Rapamycin is a well-known inhibitor of the Target of Rapamycin (TOR) signaling cascade; however, the impact of this drug on global genome function and organization in normal primary cells is poorly understood. To explore this impact, we treated primary human foreskin fibroblasts with rapamycin and observed a decrease in cell proliferation without causing cell death. Upon rapamycin treatment chromosomes 18 and 10 were repositioned to a location similar to that of fibroblasts induced into quiescence by serum reduction. Although similar changes in positioning occurred, comparative transcriptome analyses demonstrated significant divergence in gene expression patterns between rapamycin-treated and quiescence-induced fibroblasts. Rapamycin treatment induced the upregulation of cytokine genes, including those from the Interleukin (IL)-6 signaling network, such as IL-8 and the Leukemia Inhibitory Factor (LIF), while quiescent fibroblasts demonstrated up-regulation of genes involved in the complement and coagulation cascade. In addition, genes significantly up-regulated by rapamycin treatment demonstrated increased promoter occupancy of the transcription factor Signal Transducer and Activator of Transcription 5A/B (STAT5A/B). In summary, we demonstrated that the treatment of fibroblasts with rapamycin decreased proliferation, caused chromosome territory repositioning and induced STAT5A/B-mediated changes in gene expression enriched for cytokines.
Collapse
Affiliation(s)
- Zoe E Gillespie
- Department of Food and Bioproduct Sciences; University of Saskatchewan; Saskatoon, Canada
- Institute of Environment, Health and Societies; Brunel University; London, Uxbridge, United Kingdom
| | - Kimberly MacKay
- Department of Computer Science; University of Saskatchewan; Saskatoon, Canada
| | - Michelle Sander
- Department of Food and Bioproduct Sciences; University of Saskatchewan; Saskatoon, Canada
| | - Brett Trost
- Department of Computer Science; University of Saskatchewan; Saskatoon, Canada
| | - Wojciech Dawicki
- Department of Medicine; Division of Respirology, Critical Care and Sleep Medicine; Royal University Hospital; Saskatoon, Canada
| | - Aruna Wickramarathna
- Department of Food and Bioproduct Sciences; University of Saskatchewan; Saskatoon, Canada
| | - John Gordon
- Department of Medicine; Division of Respirology, Critical Care and Sleep Medicine; Royal University Hospital; Saskatoon, Canada
| | - Mark Eramian
- Department of Computer Science; University of Saskatchewan; Saskatoon, Canada
| | - Ian R Kill
- Institute of Environment, Health and Societies; Brunel University; London, Uxbridge, United Kingdom
| | - Joanna M Bridger
- Institute of Environment, Health and Societies; Brunel University; London, Uxbridge, United Kingdom
| | - Anthony Kusalik
- Department of Computer Science; University of Saskatchewan; Saskatoon, Canada
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology; University of Toronto; Toronto, Canada
- Centre for the Analysis of Genome Evolution and Function; University of Toronto, Toronto, ON, Canada
| | - Christopher H Eskiw
- Department of Food and Bioproduct Sciences; University of Saskatchewan; Saskatoon, Canada
- Institute of Environment, Health and Societies; Brunel University; London, Uxbridge, United Kingdom
| |
Collapse
|
21
|
|
22
|
Kiel T, Busch A, Meyer-Rachner A, Hübner S. Laminopathy-inducing mutations reduce nuclear import of expressed prelamin A. Int J Biochem Cell Biol 2014; 53:271-80. [PMID: 24943589 DOI: 10.1016/j.biocel.2014.05.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/20/2014] [Accepted: 05/26/2014] [Indexed: 01/07/2023]
Abstract
Lamins are structural components of the nuclear lamina and integral parts of the nucleoplasm. The tripartite domain structure partitions the molecule into an amino-terminal head, central rod and a carboxy-terminal tail domain. The tail domain contains a nuclear localization sequence and in most lamins an additional CaaX motif, which is necessary to post-translationally process prelamin to mature lamin. As players of nuclear and cellular integrity, lamins must possess unrestrained access to the nucleus. To study whether nuclear trafficking of lamins is compromised in laminopathies, we determined relative nuclear import activities between expressed prelamin A and selected laminopathy-inducing mutants thereof. Furthermore, the impact of inhibition of maturation on nuclear import of expressed prelamin A was examined. To perform quantitative transport measurements, import competent but lamina incorporation-deficient GFP- or DsRed-tagged prelamin A deletion mutants were used, which lacked the head and rod domain (ΔHR-prelamin A). Nuclear accumulation of ΔHR-prelamin A carrying the lipodystrophy and metabolic syndrome-inducing mutations R419C and L421P or progeria-causing deletions was significantly reduced, but that of the maturation-deficient mutant ΔHR-prelamin A SSIM was significantly increased. In the case of the full length prelamin A mutants R419C and L421P altered subcellular localization and reduced lamina incorporation were detected, with the prelamin A-binding protein Narf being redistributed into R419-containing aggregates. The results suggest that impaired nuclear transport of certain prelamin A mutants may represent a contributing factor in the pathogenesis of certain laminopathies.
Collapse
Affiliation(s)
- T Kiel
- Julius-Maximilians-University of Würzburg, Institute of Anatomy and Cell Biology, Würzburg, Germany
| | - A Busch
- Julius-Maximilians-University of Würzburg, Institute of Anatomy and Cell Biology, Würzburg, Germany
| | - A Meyer-Rachner
- Julius-Maximilians-University of Würzburg, Institute of Anatomy and Cell Biology, Würzburg, Germany
| | - S Hübner
- Julius-Maximilians-University of Würzburg, Institute of Anatomy and Cell Biology, Würzburg, Germany.
| |
Collapse
|
23
|
Abstract
The spatial and temporal organization of the genome has emerged as an additional level of regulation of nuclear functions. Structural proteins associated with the nuclear envelope play important roles in the organization of the genome. The nuclear lamina, a polymeric meshwork formed by lamins (A- and B-type) and lamin-associated proteins, is viewed as a scaffold for tethering chromatin and protein complexes regulating a variety of nuclear functions. Alterations in lamins function impact DNA transactions such as transcription, replication, and repair, as well as epigenetic modifications that change chromatin structure. These data, and the association of defective lamins with a whole variety of degenerative disorders, premature aging syndromes, and cancer, provide evidence for these proteins operating as caretakers of the genome. In this chapter, we summarize current knowledge about the function of lamins in the maintenance of genome integrity, with special emphasis on the role of A-type lamins in the maintenance of telomere homeostasis and mechanisms of DNA damage repair. These findings have begun to shed some light onto molecular mechanisms by which alterations in A-type lamins induce genomic instability and contribute to the pathophysiology of aging and aging-related diseases, especially cancer.
Collapse
Affiliation(s)
- Susana Gonzalo
- Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, 1100 S Grand Ave, St. Louis, MO, 63104, USA,
| |
Collapse
|
24
|
Banerjee A, Rathee V, Krishnaswamy R, Bhattacharjee P, Ray P, Sood AK, Sengupta K. Viscoelastic behavior of human lamin A proteins in the context of dilated cardiomyopathy. PLoS One 2013; 8:e83410. [PMID: 24386194 PMCID: PMC3875444 DOI: 10.1371/journal.pone.0083410] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 11/04/2013] [Indexed: 11/18/2022] Open
Abstract
Lamins are intermediate filament proteins of type V constituting a nuclear lamina or filamentous meshwork which lines the nucleoplasmic side of the inner nuclear membrane. This protein mesh provides a supporting scaffold for the nuclear envelope and tethers interphase chromosome to the nuclear periphery. Mutations of mainly A-type lamins are found to be causative for at least 11 human diseases collectively termed as laminopathies majority of which are characterised by aberrant nuclei with altered structural rigidity, deformability and poor mechanotransduction behaviour. But the investigation of viscoelastic behavior of lamin A continues to elude the field. In order to address this problem, we hereby present the very first report on viscoelastic properties of wild type human lamin A and some of its mutants linked with Dilated cardiomyopathy (DCM) using quantitative rheological measurements. We observed a dramatic strain-softening effect on lamin A network as an outcome of the strain amplitude sweep measurements which could arise from the large compliance of the quasi-cross-links in the network or that of the lamin A rods. In addition, the drastic stiffening of the differential elastic moduli on superposition of rotational and oscillatory shear stress reflect the increase in the stiffness of the laterally associated lamin A rods. These findings present a preliminary insight into distinct biomechanical properties of wild type lamin A protein and its mutants which in turn revealed interesting differences.
Collapse
Affiliation(s)
- Avinanda Banerjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, West Bengal, India
| | - Vikram Rathee
- Department of Physics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Rema Krishnaswamy
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Campus, Bangalore, Karnataka, India
| | - Pritha Bhattacharjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, West Bengal, India
| | - Pulak Ray
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, West Bengal, India
| | - Ajay K. Sood
- Department of Physics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Kaushik Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
25
|
Santos M, Rebelo S, Van Kleeff PJM, Kim CE, Dauer WT, Fardilha M, da Cruz e Silva OA, da Cruz e Silva EF. The nuclear envelope protein, LAP1B, is a novel protein phosphatase 1 substrate. PLoS One 2013; 8:e76788. [PMID: 24116158 PMCID: PMC3792071 DOI: 10.1371/journal.pone.0076788] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/03/2013] [Indexed: 12/11/2022] Open
Abstract
Protein phosphatase 1 (PP1) binding proteins are quintessential regulators, determining substrate specificity and defining subcellular localization and activity of the latter. Here, we describe a novel PP1 binding protein, the nuclear membrane protein lamina associated polypeptide 1B (LAP1B), which interacts with the DYT1 dystonia protein torsinA. The PP1 binding domain in LAP1B was here identified as the REVRF motif at amino acids 55-59. The LAP1B:PP1 complex can be immunoprecipitated from cells in culture and rat cortex and the complex was further validated by yeast co-transformations and blot overlay assays. PP1, which is enriched in the nucleus, binds to the N-terminal nuclear domain of LAP1B, as shown by immunocolocalization and domain specific binding studies. PP1 dephosphorylates LAP1B, confirming the physiological relevance of this interaction. These findings place PP1 at a key position to participate in the pathogenesis of DYT1 dystonia and related nuclear envelope-based diseases.
Collapse
Affiliation(s)
- Mariana Santos
- Health Sciences Department, Centre for Cell Biology, Neuroscience Laboratory, University of Aveiro, Aveiro, Portugal
| | - Sandra Rebelo
- Health Sciences Department, Centre for Cell Biology, Neuroscience Laboratory, University of Aveiro, Aveiro, Portugal
| | - Paula J. M. Van Kleeff
- Health Sciences Department, Centre for Cell Biology, Signal Transduction Laboratory, University of Aveiro, Aveiro, Portugal
| | - Connie E. Kim
- Departments of Neurology and Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - William T. Dauer
- Departments of Neurology and Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Margarida Fardilha
- Health Sciences Department, Centre for Cell Biology, Signal Transduction Laboratory, University of Aveiro, Aveiro, Portugal
| | - Odete A. da Cruz e Silva
- Health Sciences Department, Centre for Cell Biology, Neuroscience Laboratory, University of Aveiro, Aveiro, Portugal
| | - Edgar F. da Cruz e Silva
- Health Sciences Department, Centre for Cell Biology, Signal Transduction Laboratory, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
26
|
Berk JM, Maitra S, Dawdy AW, Shabanowitz J, Hunt DF, Wilson KL. O-Linked β-N-acetylglucosamine (O-GlcNAc) regulates emerin binding to barrier to autointegration factor (BAF) in a chromatin- and lamin B-enriched "niche". J Biol Chem 2013; 288:30192-30209. [PMID: 24014020 DOI: 10.1074/jbc.m113.503060] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Emerin, a membrane component of nuclear "lamina" networks with lamins and barrier to autointegration factor (BAF), is highly O-GlcNAc-modified ("O-GlcNAcylated") in mammalian cells. Mass spectrometry analysis revealed eight sites of O-GlcNAcylation, including Ser-53, Ser-54, Ser-87, Ser-171, and Ser-173. Emerin O-GlcNAcylation was reduced ~50% by S53A or S54A mutation in vitro and in vivo. O-GlcNAcylation was reduced ~66% by the triple S52A/S53A/S54A mutant, and S173A reduced O-GlcNAcylation of the S52A/S53A/S54A mutant by ~30%, in vivo. We separated two populations of emerin, A-type lamins and BAF; one population solubilized easily, and the other required sonication and included histones and B-type lamins. Emerin and BAF associated only in histone- and lamin-B-containing fractions. The S173D mutation specifically and selectively reduced GFP-emerin association with BAF by 58% and also increased GFP-emerin hyper-phosphorylation. We conclude that β-N-acetylglucosaminyltransferase, an essential enzyme, controls two regions in emerin. The first region, defined by residues Ser-53 and Ser-54, flanks the LEM domain. O-GlcNAc modification at Ser-173, in the second region, is proposed to promote emerin association with BAF in the chromatin/lamin B "niche." These results reveal direct control of a conserved LEM domain nuclear lamina component by β-N-acetylglucosaminyltransferase, a nutrient sensor that regulates cell stress responses, mitosis, and epigenetics.
Collapse
Affiliation(s)
- Jason M Berk
- From the Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| | - Sushmit Maitra
- the Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Andrew W Dawdy
- the Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Jeffrey Shabanowitz
- the Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Donald F Hunt
- the Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Katherine L Wilson
- From the Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and.
| |
Collapse
|
27
|
Shahzidi S, Brech A, Sioud M, Li X, Suo Z, Nesland JM, Peng Q. Lamin A/C cleavage by caspase-6 activation is crucial for apoptotic induction by photodynamic therapy with hexaminolevulinate in human B-cell lymphoma cells. Cancer Lett 2013; 339:25-32. [PMID: 23916608 DOI: 10.1016/j.canlet.2013.07.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 07/24/2013] [Indexed: 01/16/2023]
Abstract
Photodynamic therapy (PDT) with a light-activated drug is an approved modality for cancer treatment. Hexaminolevulinate (HAL), a hexylester of 5-aminolevulinic acid as the photosensitising protoporphyrin IX (PpIX) precursor, is clinically used for both PDT and photodetection. Our previous studies have shown that HAL-PDT can effectively induce apoptosis in several human blood malignant cell lines. However, the mechanisms involved in the apoptotic induction are still not fully elucidated. In this study we have focused on the role of cellular lamin A/C in the apoptotic induction. HAL-PDT-mediated apoptosis was confirmed by various techniques including fluorescence microscopy and electron microscopy in both human B-cell lymphoma Ramos and Daudi cell lines. The lamin A/C, together with caspases-6 and -3, was cleaved during the apoptosis. Western blots, immunocytochemistry, fluorescence microscopy and electron microscopy demonstrated that the specific caspase-6 inhibitor abrogated the HAL-PDT-mediated cleavages of both caspase-6 and lamin A/C and subsequent apoptosis in these two cell lines, suggesting that the cleavage of lamin A/C by the caspase-6 activation is crucial for such apoptotic induction.
Collapse
Affiliation(s)
- Susan Shahzidi
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital and Medical Faculty, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
28
|
Bhattacharjee P, Banerjee A, Banerjee A, Dasgupta D, Sengupta K. Structural Alterations of Lamin A Protein in Dilated Cardiomyopathy. Biochemistry 2013; 52:4229-41. [DOI: 10.1021/bi400337t] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pritha Bhattacharjee
- Biophysics
Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Avinanda Banerjee
- Biophysics
Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Amrita Banerjee
- Biophysics
Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Dipak Dasgupta
- Biophysics
Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Kaushik Sengupta
- Biophysics
Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| |
Collapse
|
29
|
Dubinska-Magiera M, Zaremba-Czogalla M, Rzepecki R. Muscle development, regeneration and laminopathies: how lamins or lamina-associated proteins can contribute to muscle development, regeneration and disease. Cell Mol Life Sci 2012; 70:2713-41. [PMID: 23138638 PMCID: PMC3708280 DOI: 10.1007/s00018-012-1190-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 09/28/2012] [Accepted: 10/03/2012] [Indexed: 12/22/2022]
Abstract
The aim of this review article is to evaluate the current knowledge on associations between muscle formation and regeneration and components of the nuclear lamina. Lamins and their partners have become particularly intriguing objects of scientific interest since it has been observed that mutations in genes coding for these proteins lead to a wide range of diseases called laminopathies. For over the last 10 years, various laboratories worldwide have tried to explain the pathogenesis of these rare disorders. Analyses of the distinct aspects of laminopathies resulted in formulation of different hypotheses regarding the mechanisms of the development of these diseases. In the light of recent discoveries, A-type lamins—the main building blocks of the nuclear lamina—together with other key elements, such as emerin, LAP2α and nesprins, seem to be of great importance in the modulation of various signaling pathways responsible for cellular differentiation and proliferation.
Collapse
Affiliation(s)
- Magda Dubinska-Magiera
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335, Wroclaw, Poland
| | | | | |
Collapse
|
30
|
Abstract
There are an increasing number of studies reporting the movement of gene loci and whole chromosomes to new compartments within interphase nuclei. Some of the movements can be rapid, with relocation of parts of the genome within less than 15 min over a number of microns. Some of these studies have also revealed that the activity of motor proteins such as actin and myosin are responsible for these long-range movements of chromatin. Within the nuclear biology field, there remains some controversy over the presence of an active nuclear acto-myosin motor in interphase nuclei. However, both actin and myosin isoforms are localized to the nucleus, and there is a requirement for rapid and directed movements of genes and whole chromosomes and evidence for the involvement of motor proteins in this relocation. The presence of nuclear motors for chromatin movement is thus an important and timely debate to have.
Collapse
|
31
|
Nuclear actin and lamins in viral infections. Viruses 2012; 4:325-47. [PMID: 22590674 PMCID: PMC3347030 DOI: 10.3390/v4030325] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 12/11/2022] Open
Abstract
Lamins are the best characterized cytoskeletal components of the cell nucleus that help to maintain the nuclear shape and participate in diverse nuclear processes including replication or transcription. Nuclear actin is now widely accepted to be another cytoskeletal protein present in the nucleus that fulfills important functions in the gene expression. Some viruses replicating in the nucleus evolved the ability to interact with and probably utilize nuclear actin for their replication, e.g., for the assembly and transport of capsids or mRNA export. On the other hand, lamins play a role in the propagation of other viruses since nuclear lamina may represent a barrier for virions entering or escaping the nucleus. This review will summarize the current knowledge about the roles of nuclear actin and lamins in viral infections.
Collapse
|
32
|
Moiseeva O, Bourdeau V, Vernier M, Dabauvalle MC, Ferbeyre G. Retinoblastoma-independent regulation of cell proliferation and senescence by the p53-p21 axis in lamin A /C-depleted cells. Aging Cell 2011; 10:789-97. [PMID: 21535365 DOI: 10.1111/j.1474-9726.2011.00719.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The expression of A-type lamin is downregulated in several cancers, and lamin defects are the cause of several diseases including a form of accelerated aging. We report that depletion of lamin A/C expression in normal human cells leads to a dramatic downregulation of the Rb family of tumor suppressors and a defect in cell proliferation. Lamin A/C-depleted cells exhibited a flat morphology and accumulated markers of cellular senescence. This senescent phenotype was accompanied by engagement of the p53 tumor suppressor and induction of the p53 target gene p21 and was prevented by small hairpin RNAs against p53, p21, or by the oncoprotein Mdm2. The expression of E2F target genes, normally required for cell cycle progression, was downregulated after lamin A/C depletion but restored after the inactivation of p53. A similar senescence response was observed in myoblasts from a patient with a lamin A mutation causing muscular dystrophy. We thus reveal a previously unnoticed mechanism of controlling cell cycle genes expression, which depends on p53 but does not require the retinoblastoma family of tumor suppressors and that can be relevant to understand the pathogenesis of laminopathies and perhaps aging.
Collapse
Affiliation(s)
- Olga Moiseeva
- Biochemistry Department, Université de Montréal, Montréal, QC, Canada
| | | | | | | | | |
Collapse
|
33
|
Malhas A, Goulbourne C, Vaux DJ. The nucleoplasmic reticulum: form and function. Trends Cell Biol 2011; 21:362-73. [PMID: 21514163 DOI: 10.1016/j.tcb.2011.03.008] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/17/2011] [Accepted: 03/23/2011] [Indexed: 11/29/2022]
Abstract
The nuclear envelope (NE) physically separates nucleoplasm and cytoplasm, contributes to nuclear structural integrity, controls selective bidirectional transport of ions and macromolecular cargo, regulates gene expression, and acts as a mechanotransducer and a platform for signalling. It is noteworthy however that the NE is not simply a smooth-surfaced outer boundary but is interrupted by invaginations that reach deep within the nucleoplasm and could even traverse the nucleus completely. The existence of such a complex branched network of invaginations forming a nucleoplasmic reticulum (NR) provides sites that are capable of carrying out the 'conventional' NE functions deep within the nucleus in regions that would otherwise be remote from the nuclear periphery. In this review, we describe the structural features of NR in normal and pathological states and discuss the current understanding of their functional and possible pathological roles.
Collapse
Affiliation(s)
- Ashraf Malhas
- Sir William Dunn School of Pathology, Oxford OX1 3RE, UK
| | | | | |
Collapse
|
34
|
Abstract
HGPS (Hutchinson-Gilford progeria syndrome) is a rare genetic disease affecting children causing them to age and die prematurely. The disease is typically due to a point mutation in the coding sequence for the nuclear intermediate-type filament protein lamin A and gives rise to a dominant-negative splice variant named progerin. Accumulation of progerin within nuclei causes disruption to nuclear structure, causes and premature replicative senescence and increases apoptosis. Now it appears that accumulation of progerin may have more widespread effects than previously thought since the demonstration that the presence and distribution of some nucleolar proteins are also adversely affected in progeria cells. One of the major breakthroughs both in the lamin field and for this syndrome is that many of the cellular defects observed in HGPS patient cells and model systems can be restored after treatment with a class of compounds known as FTIs (farnesyltransferase inhibitors). Indeed, it is demonstrated that FTI-277 is able to completely restore nucleolar antigen localization in treated progeria cells. This is encouraging news for the HGPS patients who are currently undergoing clinical trials with FTI treatment.
Collapse
|
35
|
Gupta P, Bilinska ZT, Sylvius N, Boudreau E, Veinot JP, Labib S, Bolongo PM, Hamza A, Jackson T, Ploski R, Walski M, Grzybowski J, Walczak E, Religa G, Fidzianska A, Tesson F. Genetic and ultrastructural studies in dilated cardiomyopathy patients: a large deletion in the lamin A/C gene is associated with cardiomyocyte nuclear envelope disruption. Basic Res Cardiol 2010; 105:365-77. [PMID: 20127487 DOI: 10.1007/s00395-010-0085-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 01/12/2010] [Accepted: 01/13/2010] [Indexed: 12/24/2022]
Abstract
Major nuclear envelope abnormalities, such as disruption and/or presence of intranuclear organelles, have rarely been described in cardiomyocytes from dilated cardiomyopathy (DCM) patients. In this study, we screened a series of 25 unrelated DCM patient samples for (a) cardiomyocyte nuclear abnormalities and (b) mutations in LMNA and TMPO as they are two DCM-causing genes that encode proteins involved in maintaining nuclear envelope architecture. Among the 25 heart samples investigated, we identified major cardiomyocyte nuclear abnormalities in 8 patients. Direct sequencing allowed the detection of three heterozygous LMNA mutations (p.D192G, p.Q353K and p.R541S) in three patients. By multiplex ligation-dependant probe amplification (MLPA)/quantitative real-time PCR, we found a heterozygous deletion encompassing exons 3-12 of the LMNA gene in one patient. Immunostaining demonstrated that this deletion led to a decrease in lamin A/C expression in cardiomyocytes from this patient. This LMNA deletion as well as the p.D192G mutation was found in patients displaying major cardiomyocyte nuclear envelope abnormalities, while the p.Q353K and p.R541S mutations were found in patients without specific nuclear envelope abnormalities. None of the DCM patients included in the study carried a mutation in the TMPO gene. Taken together, we found no evidence of a genotype-phenotype relationship between the onset and the severity of DCM, the presence of nuclear abnormalities and the presence or absence of LMNA mutations. We demonstrated that a large deletion in LMNA associated with reduced levels of the protein in the nuclear envelope suggesting a haploinsufficiency mechanism can lead to cardiomyocyte nuclear envelope disruption and thus underlie the pathogenesis of DCM.
Collapse
Affiliation(s)
- Pallavi Gupta
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Busch A, Kiel T, Heupel WM, Wehnert M, Hübner S. Nuclear protein import is reduced in cells expressing nuclear envelopathy-causing lamin A mutants. Exp Cell Res 2009; 315:2373-85. [PMID: 19442658 DOI: 10.1016/j.yexcr.2009.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 04/12/2009] [Accepted: 05/06/2009] [Indexed: 01/29/2023]
Abstract
Lamins, which form the nuclear lamina, not only constitute an important determinant of nuclear architecture, but additionally play essential roles in many nuclear functions. Mutations in A-type lamins cause a wide range of human genetic disorders (laminopathies). The importance of lamin A (LaA) in the spatial arrangement of nuclear pore complexes (NPCs) prompted us to study the role of LaA mutants in nuclear protein transport. Two mutants, causing prenatal skin disease restrictive dermopathy (RD) and the premature aging disease Hutchinson Gilford progeria syndrome, were used for expression in HeLa cells to investigate their impact on the subcellular localization of NPC-associated proteins and nuclear protein import. Furthermore, dynamics of the LaA mutants within the nuclear lamina were studied. We observed affected localization of NPC-associated proteins, diminished lamina dynamics for both LaA mutants and reduced nuclear import of representative cargo molecules. Intriguingly, both LaA mutants displayed similar effects on nuclear morphology and functions, despite their differences in disease severity. Reduced nuclear protein import was also seen in RD fibroblasts and impaired lamina dynamics for the nucleoporin Nup153. Our data thus represent the first study of a direct link between LaA mutant expression and reduced nuclear protein import.
Collapse
Affiliation(s)
- Albert Busch
- University of Würzburg, Institute of Anatomy and Cell Biology, Koellikerstrasse 6, 97070 Würzburg, Germany
| | | | | | | | | |
Collapse
|
37
|
Verstraeten VLRM, Caputo S, van Steensel MAM, Duband-Goulet I, Zinn-Justin S, Kamps M, Kuijpers HJH, Ostlund C, Worman HJ, Briedé JJ, Le Dour C, Marcelis CLM, van Geel M, Steijlen PM, van den Wijngaard A, Ramaekers FCS, Broers JLV. The R439C mutation in LMNA causes lamin oligomerization and susceptibility to oxidative stress. J Cell Mol Med 2009; 13:959-71. [PMID: 19220582 PMCID: PMC3823411 DOI: 10.1111/j.1582-4934.2009.00690.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Dunnigan-type familial partial lipodystrophy (FPLD) is a laminopathy characterized by an aberrant fat distribution and a metabolic syndrome for which oxidative stress has recently been suggested as one of the disease-causing mechanisms. In a family affected with FPLD, we identified a heterozygous missense mutation c.1315C>T in the LMNA gene leading to the p.R439C substitution. Cultured patient fibroblasts do not show any prelamin A accumulation and reveal honeycomb-like lamin A/C formations in a significant percentage of nuclei. The mutation affects a region in the C-terminal globular domain of lamins A and C, different from the FPLD-related hot spot. Here, the introduction of an extra cysteine allows for the formation of disulphide-mediated lamin A/C oligomers. This oligomerization affects the interaction properties of the C-terminal domain with DNA as shown by gel retardation assays and causes a DNA-interaction pattern that is distinct from the classical R482W FPLD mutant. Particularly, whereas the R482W mutation decreases the binding efficiency of the C-terminal domain to DNA, the R439C mutation increases it. Electron spin resonance spectroscopy studies show significantly higher levels of reactive oxygen species (ROS) upon induction of oxidative stress in R439C patient fibroblasts compared to healthy controls. This increased sensitivity to oxidative stress seems independent of the oligomerization and enhanced DNA binding typical for R439C, as both the R439C and R482W mutants show a similar and significant increase in ROS upon induction of oxidative stress by H2O2.
Collapse
|
38
|
Nuclear motors and nuclear structures containing A-type lamins and emerin: is there a functional link? Biochem Soc Trans 2009; 36:1384-8. [PMID: 19021560 DOI: 10.1042/bst0361384] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rapid interphase chromosome territory repositioning appears to function through the action of nuclear myosin and actin, in a nuclear motor complex. We have found that chromosome repositioning when cells leave the cell cycle is not apparent in cells that have mutant lamin A or that are lacking emerin. We discuss the possibility that there is a functional intranuclear complex comprising four proteins: nuclear actin, lamin A, emerin and nuclear myosin. If any of the components are lacking or aberrant, then the nuclear motor complex involved in moving chromosomes or genes will be dysfunctional, leading to an inability to move chromosomes in response to signalling events.
Collapse
|
39
|
Abstract
The laminopathy Hutchinson-Gilford progeria syndrome (HGPS) is caused by the mutant lamin A protein progerin and leads to premature aging of affected children. Despite numerous cell biological and biochemical insights into the basis for the cellular abnormalities seen in HGPS, the mechanism linking progerin to the organismal phenotype is not fully understood. To begin to address the mechanism behind HGPS using Drosophila melanogaster, we have ectopically expressed progerin and lamin A. We found that ectopic progerin and lamin A phenocopy several effects of laminopathies in developing and adult Drosophila, but that progerin causes a stronger phenotype than wild-type lamin A.
Collapse
|
40
|
Rowat AC, Lammerding J, Herrmann H, Aebi U. Towards an integrated understanding of the structure and mechanics of the cell nucleus. Bioessays 2008; 30:226-36. [PMID: 18293361 DOI: 10.1002/bies.20720] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Changes in the shape and structural organization of the cell nucleus occur during many fundamental processes including development, differentiation and aging. In many of these processes, the cell responds to physical forces by altering gene expression within the nucleus. How the nucleus itself senses and responds to such mechanical cues is not well understood. In addition to these external forces, epigenetic modifications of chromatin structure inside the nucleus could also alter its physical properties. To achieve a better understanding, we need to elucidate the relationship between nuclear structure and material properties. Recently, new approaches have been developed to systematically investigate nuclear mechanical properties. These experiments provide important new insights into the disease mechanism of a growing class of tissue-specific disorders termed 'nuclear envelopathies'. Here we review our current understanding of what determines the shape and mechanical properties of the cell nucleus.
Collapse
Affiliation(s)
- Amy C Rowat
- Department of Physics/School of Engineering and Applied Science, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | |
Collapse
|
41
|
The nuclear envelope as an integrator of nuclear and cytoplasmic architecture. FEBS Lett 2008; 582:2023-32. [PMID: 18474238 DOI: 10.1016/j.febslet.2008.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 05/02/2008] [Accepted: 05/05/2008] [Indexed: 12/11/2022]
Abstract
Initially perceived as little more than a container for the genome, our view of the nuclear envelope (NE) and its role in defining global nuclear architecture has evolved significantly in recent years. The recognition that certain human diseases arise from defects in NE components has provided new insight into its structural and regulatory functions. In particular, NE defects associated with striated muscle disease have been shown to cause structural perturbations not just of the nucleus itself but also of the cytoplasm. It is now becoming increasingly apparent that these two compartments display co-dependent mechanical properties. The identification of cytoskeletal binding complexes that localize to the NE now reveals a molecular framework that can seamlessly integrate nuclear and cytoplasmic architecture.
Collapse
|
42
|
Burke B, Stewart CL. The laminopathies: the functional architecture of the nucleus and its contribution to disease. Annu Rev Genomics Hum Genet 2008; 7:369-405. [PMID: 16824021 DOI: 10.1146/annurev.genom.7.080505.115732] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most inherited diseases are associated with mutations in a specific gene. Often, mutations in two or more different genes result in diseases with a similar phenotype. Rarely do different mutations in the same gene result in a multitude of seemingly different and unrelated diseases. Mutations in the Lamin A gene (LMNA), which encodes largely ubiquitously expressed nuclear proteins (A-type lamins), are associated with at least eight different diseases, collectively called the laminopathies. Studies examining how different tissue-specific diseases arise from unique LMNA mutations are providing unanticipated insights into the structural organization of the nucleus, and how disruption of this organization relates to novel mechanisms of disease.
Collapse
Affiliation(s)
- Brian Burke
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida 32610
| | | |
Collapse
|
43
|
Pereira S, Bourgeois P, Navarro C, Esteves-Vieira V, Cau P, De Sandre-Giovannoli A, Lévy N. HGPS and related premature aging disorders: from genomic identification to the first therapeutic approaches. Mech Ageing Dev 2008; 129:449-59. [PMID: 18513784 DOI: 10.1016/j.mad.2008.04.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 03/27/2008] [Accepted: 04/06/2008] [Indexed: 01/25/2023]
Abstract
Progeroid syndromes are heritable human disorders displaying features that recall premature ageing. In these syndromes, premature aging is defined as "segmental" since only some of its features are accelerated. A number of cellular biological pathways have been linked to aging, including regulation of the insulin/growth hormone axis, pathways involving ROS metabolism, caloric restriction, and DNA repair. The number of identified genes associated with progeroid syndromes has increased in recent years, possibly shedding light as well on mechanisms underlying ageing in general. Among these, premature aging syndromes related to alterations of the LMNA gene have recently been identified. This review focuses on Hutchinson-Gilford Progeria syndrome and Restrictive Dermopathy, two well-characterized Lamin-associated premature aging syndromes, pointing out the current knowledge concerning their pathophysiology and the development of possible therapeutic approaches.
Collapse
Affiliation(s)
- Sandrine Pereira
- INSERM U910, Faculté de Médecine la Timone, 27 Boulevard Jean Moulin, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 2008; 22:832-53. [PMID: 18381888 PMCID: PMC2732390 DOI: 10.1101/gad.1652708] [Citation(s) in RCA: 746] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past few years it has become evident that the intermediate filament proteins, the types A and B nuclear lamins, not only provide a structural framework for the nucleus, but are also essential for many aspects of normal nuclear function. Insights into lamin-related functions have been derived from studies of the remarkably large number of disease-causing mutations in the human lamin A gene. This review provides an up-to-date overview of the functions of nuclear lamins, emphasizing their roles in epigenetics, chromatin organization, DNA replication, transcription, and DNA repair. In addition, we discuss recent evidence supporting the importance of lamins in viral infections.
Collapse
Affiliation(s)
- Thomas Dechat
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Katrin Pfleghaar
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Kaushik Sengupta
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Takeshi Shimi
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Dale K. Shumaker
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Liliana Solimando
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Robert D. Goldman
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| |
Collapse
|
45
|
Parnaik VK. Role of Nuclear Lamins in Nuclear Organization, Cellular Signaling, and Inherited Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 266:157-206. [DOI: 10.1016/s1937-6448(07)66004-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
The mutant form of lamin A that causes Hutchinson-Gilford progeria is a biomarker of cellular aging in human skin. PLoS One 2007; 2:e1269. [PMID: 18060063 PMCID: PMC2092390 DOI: 10.1371/journal.pone.0001269] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 11/10/2007] [Indexed: 01/11/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS, OMIM 176670) is a rare disorder characterized by accelerated aging and early death, frequently from stroke or coronary artery disease. 90% of HGPS cases carry the LMNA G608G (GGC>GGT) mutation within exon 11 of LMNA, activating a splice donor site that results in production of a dominant negative form of lamin A protein, denoted progerin. Screening 150 skin biopsies from unaffected individuals (newborn to 97 years) showed that a similar splicing event occurs in vivo at a low level in the skin at all ages. While progerin mRNA remains low, the protein accumulates in the skin with age in a subset of dermal fibroblasts and in a few terminally differentiated keratinocytes. Progerin-positive fibroblasts localize near the basement membrane and in the papillary dermis of young adult skin; however, their numbers increase and their distribution reaches the deep reticular dermis in elderly skin. Our findings demonstrate that progerin expression is a biomarker of normal cellular aging and may potentially be linked to terminal differentiation and senescence in elderly individuals.
Collapse
|
47
|
Shalev SA, De Sandre-Giovannoli A, Shani AA, Levy N. An association of Hutchinson-Gilford progeria and malignancy. Am J Med Genet A 2007; 143A:1821-6. [PMID: 17618517 DOI: 10.1002/ajmg.a.31803] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mutations in the LMNA gene encoding lamins A/C are responsible for a variety of disorders, commonly referred to as "laminopathies," including the segmental premature aging syndrome Hutchinson-Gilford progeria. We describe in this report the rare association of osteosarcoma and slowly progressing progeria in an 11-year-old girl carrying a truncating heterozygous c.1868C > G (p.T623S) prelamin A mutation. These findings are discussed in light of recent data on the pathophysiological mechanisms underlying progeria and "physiological" aging in human, as well as previous data on other well-known segmental aging syndromes.
Collapse
Affiliation(s)
- Stavit A Shalev
- The Genetics Institute, Ha'Emek Medical Center, Afula, Israel.
| | | | | | | |
Collapse
|
48
|
Vaillant DC, Paulin-Levasseur M. Evaluation of mammalian cell-free systems of nuclear disassembly and assembly. J Histochem Cytochem 2007; 56:157-73. [PMID: 17967934 DOI: 10.1369/jhc.7a7330.2007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian cell-free systems are very useful for the biochemical and structural study of nuclear disassembly and assembly. Through experimental manipulations, the role of specific proteins in these processes can be studied. Recently, we intended to examine the involvement of integral and peripheral inner nuclear membrane proteins in nuclear disassembly and assembly. However, we could not achieve proper disassembly when isolated interphase HeLa nuclei were exposed to mitotic soluble extracts obtained from the same cell line and containing cyclin B1. Homogenates of synchronized mitotic HeLa cells left to reassemble their nuclei generated incomplete nuclear envelopes on chromatin masses. Digitonin-permeabilized mitotic cells also assembled incomplete nuclei, generating a lot of cytoplasmic inclusions of inner nuclear membrane proteins as an intermediate. These results were therefore used as a basis for a critical evaluation of mammalian cell-free systems. We present here evidence that cell synchronization itself can interfere with the progress of nuclear assembly, possibly by causing aberrant nuclear disassembly and/or by inducing the formation of an abnormal number of mitotic spindles.
Collapse
Affiliation(s)
- Dominique C Vaillant
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
| | | |
Collapse
|
49
|
Nitta RT, Smith CL, Kennedy BK. Evidence that proteasome-dependent degradation of the retinoblastoma protein in cells lacking A-type lamins occurs independently of gankyrin and MDM2. PLoS One 2007; 2:e963. [PMID: 17896003 PMCID: PMC1978514 DOI: 10.1371/journal.pone.0000963] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 09/06/2007] [Indexed: 12/11/2022] Open
Abstract
Background A-type lamins, predominantly lamins A and C, are nuclear intermediate filaments believed to act as scaffolds for assembly of transcription factors. Lamin A/C is necessary for the retinoblastoma protein (pRB) stabilization through unknown mechanism(s). Two oncoproteins, gankyrin and MDM2, are known to promote pRB degradation in other contexts. Consequently, we tested the hypothesis that gankyrin and/or MDM2 are required for enhanced pRB degradation in Lmna−/− fibroblasts. Principal Findings. To determine if gankyrin promotes pRB destabilization in the absence of lamin A/C, we first analyzed its protein levels in Lmna−/− fibroblasts. Both gankyrin mRNA levels and protein levels are increased in these cells, leading us to further investigate its role in pRB degradation. Consistent with prior reports, overexpression of gankyrin in Lmna+/+ cells destabilizes pRB. This decrease is functionally significant, since gankyrin overexpressing cells are resistant to p16ink4a-mediated cell cycle arrest. These findings suggest that lamin A-mediated degradation of pRB would be gankyrin-dependent. However, effective RNAi-enforced reduction of gankyrin expression in Lmna−/− cells was insufficient to restore pRB stability. To test the importance of MDM2, we disrupted the MDM2-pRB interaction by transfecting Lmna−/− cells with p14arf. p14arf expression was also insufficient to stabilize pRB or confer cell cycle arrest, suggesting that MDM2 also does not mediate pRB degradation in Lmna−/− cells. Conclusions/Significance Our findings suggest that pRB degradation in Lmna−/− cells occurs by gankyrin and MDM2-independent mechanisms, leading us to propose the existence of a third proteasome-dependent pathway for pRB degradation. Two findings from this study also increase the likelihood that lamin A/C functions as a tumor suppressor. First, protein levels of the oncoprotein gankyrin are elevated in Lmna−/− fibroblasts. Second, Lmna−/− cells are refractory to p14arf-mediated cell cycle arrest, as was previously shown with p16ink4a. Potential roles of lamin A/C in the suppression of tumorigenesis are discussed.
Collapse
Affiliation(s)
- Ryan T. Nitta
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Catherine L. Smith
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Brian K. Kennedy
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
50
|
Kudlow BA, Kennedy BK, Monnat RJ. Werner and Hutchinson-Gilford progeria syndromes: mechanistic basis of human progeroid diseases. Nat Rev Mol Cell Biol 2007; 8:394-404. [PMID: 17450177 DOI: 10.1038/nrm2161] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Progeroid syndromes have been the focus of intense research in part because they might provide a window into the pathology of normal ageing. Werner syndrome and Hutchinson-Gilford progeria syndrome are two of the best characterized human progeroid diseases. Mutated genes that are associated with these syndromes have been identified, mouse models of disease have been developed, and molecular studies have implicated decreased cell proliferation and altered DNA-damage responses as common causal mechanisms in the pathogenesis of both diseases.
Collapse
Affiliation(s)
- Brian A Kudlow
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|