1
|
Golovnin A, Melnikova L, Babosha V, Pokholkova GV, Slovohotov I, Umnova A, Maksimenko O, Zhimulev IF, Georgiev P. The N-Terminal Part of Drosophila CP190 Is a Platform for Interaction with Multiple Architectural Proteins. Int J Mol Sci 2023; 24:15917. [PMID: 37958900 PMCID: PMC10648081 DOI: 10.3390/ijms242115917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
CP190 is a co-factor in many Drosophila architectural proteins, being involved in the formation of active promoters and insulators. CP190 contains the N-terminal BTB/POZ (Broad-Complex, Tramtrack and Bric a brac/POxvirus and Zinc finger) domain and adjacent conserved regions involved in protein interactions. Here, we examined the functional roles of these domains of CP190 in vivo. The best-characterized architectural proteins with insulator functions, Pita, Su(Hw), and dCTCF, interacted predominantly with the BTB domain of CP190. Due to the difficulty of mutating the BTB domain, we obtained a transgenic line expressing a chimeric CP190 with the BTB domain of the human protein Kaiso. Another group of architectural proteins, M1BP, Opbp, and ZIPIC, interacted with one or both of the highly conserved regions in the N-terminal part of CP190. Transgenic lines of D. melanogaster expressing CP190 mutants with a deletion of each of these domains were obtained. The results showed that these mutant proteins only partially compensated for the functions of CP190, weakly binding to selective chromatin sites. Further analysis confirmed the essential role of these domains in recruitment to regulatory regions associated with architectural proteins. We also found that the N-terminal of CP190 was sufficient for recruiting Z4 and Chromator proteins and successfully achieving chromatin opening. Taken together, our results and the results of previous studies showed that the N-terminal region of CP190 is a platform for simultaneous interaction with various DNA-binding architectural proteins and transcription complexes.
Collapse
Affiliation(s)
- Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Larisa Melnikova
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Valentin Babosha
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Galina V. Pokholkova
- Laboratory of Molecular Cytogenetics, Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia (I.F.Z.)
| | - Ivan Slovohotov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Anastasia Umnova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Igor F. Zhimulev
- Laboratory of Molecular Cytogenetics, Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia (I.F.Z.)
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
2
|
Role of Litopenaeus vannamei Yin Yang 1 in the Regulation of the White Spot Syndrome Virus Immediate Early Gene ie1. J Virol 2017; 91:JVI.02314-16. [PMID: 28077637 DOI: 10.1128/jvi.02314-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/29/2016] [Indexed: 01/26/2023] Open
Abstract
Yin Yang 1 (YY1) is a multifunctional zinc finger transcription factor that regulates many key cellular processes. In this study, we report the cloning of YY1 from Litopenaeus vannamei shrimp (LvYY1). This study shows that LvYY1 is ubiquitously expressed in shrimp tissues, and knockdown of LvYY1 expression by double-stranded RNA (dsRNA) injection in white spot syndrome virus (WSSV)-infected shrimp reduced both mRNA levels of the WSSV immediate early gene ie1 as well as overall copy numbers of the WSSV genome. The cumulative mortality rate of infected shrimp also declined with LvYY1 dsRNA injection. Using an insect cell model, we observed that LvYY1 activates ie1 expression, and a mutation introduced into the ie1 promoter subsequently repressed this capability. Moreover, reporter assay results suggested that LvYY1 is involved in basal transcriptional regulation via an interaction with L. vannamei TATA-binding protein (LvTBP). Electrophoretic mobility shift assay (EMSA) results further indicated that LvYY1 binds to a YY1-binding site in the region between positions -119 and -126 in the ie1 promoter. Chromatin immunoprecipitation analysis also confirmed that LvYY1 binds to the ie1 promoter in WSSV-infected shrimp. Taken together, these results indicate that WSSV uses host LvYY1 to enhance ie1 expression via a YY1-binding site and the TATA box in the ie1 promoter, thereby facilitating lytic activation and viral replication.IMPORTANCE WSSV has long been a scourge of the shrimp industry and remains a serious global threat. Thus, there is a pressing need to understand how the interactions between WSSV and its host drive infection, lytic development, pathogenesis, and mortality. Our successful cloning of L. vannamei YY1 (LvYY1) led to the elucidation of a critical virus-host interaction between LvYY1 and the WSSV immediate early gene ie1 We observed that LvYY1 regulates ie1 expression via a consensus YY1-binding site and TATA box. LvYY1 was also found to interact with L. vannamei TATA-binding protein (LvTBP), which may have an effect on basal transcription. Knockdown of LvYY1 expression inhibited ie1 transcription and subsequently reduced viral DNA replication and decreased cumulative mortality rates of WSSV-infected shrimp. These findings are expected to contribute to future studies involving WSSV-host interactions.
Collapse
|
3
|
Paharik AE, Kotasinska M, Both A, Hoang TMN, Büttner H, Roy P, Fey PD, Horswill AR, Rohde H. The metalloprotease SepA governs processing of accumulation-associated protein and shapes intercellular adhesive surface properties in Staphylococcus epidermidis. Mol Microbiol 2017; 103:860-874. [PMID: 27997732 DOI: 10.1111/mmi.13594] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2016] [Indexed: 12/11/2022]
Abstract
The otherwise harmless skin inhabitant Staphylococcus epidermidis is a major cause of healthcare-associated medical device infections. The species' selective pathogenic potential depends on its production of surface adherent biofilms. The Cell wall-anchored protein Aap promotes biofilm formation in S. epidermidis, independently from the polysaccharide intercellular adhesin PIA. Aap requires proteolytic cleavage to act as an intercellular adhesin. Whether and which staphylococcal proteases account for Aap processing is yet unknown. Here, evidence is provided that in PIA-negative S. epidermidis 1457Δica, the metalloprotease SepA is required for Aap-dependent S. epidermidis biofilm formation in static and dynamic biofilm models. qRT-PCR and protease activity assays demonstrated that under standard growth conditions, sepA is repressed by the global regulator SarA. Inactivation of sarA increased SepA production, and in turn augmented biofilm formation. Genetic and biochemical analyses demonstrated that SepA-related induction of biofilm accumulation resulted from enhanced Aap processing. Studies using recombinant proteins demonstrated that SepA is able to cleave the A domain of Aap at residue 335 and between the A and B domains at residue 601. This study identifies the mechanism behind Aap-mediated biofilm maturation, and also demonstrates a novel role for a secreted staphylococcal protease as a requirement for the development of a biofilm.
Collapse
Affiliation(s)
- Alexandra E Paharik
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Marta Kotasinska
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Both
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Tra-My N Hoang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Henning Büttner
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Paroma Roy
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paul D Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alexander R Horswill
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Holger Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Pauli T, Vedder L, Dowling D, Petersen M, Meusemann K, Donath A, Peters RS, Podsiadlowski L, Mayer C, Liu S, Zhou X, Heger P, Wiehe T, Hering L, Mayer G, Misof B, Niehuis O. Transcriptomic data from panarthropods shed new light on the evolution of insulator binding proteins in insects : Insect insulator proteins. BMC Genomics 2016; 17:861. [PMID: 27809783 PMCID: PMC5094011 DOI: 10.1186/s12864-016-3205-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/25/2016] [Indexed: 01/19/2023] Open
Abstract
Background Body plan development in multi-cellular organisms is largely determined by homeotic genes. Expression of homeotic genes, in turn, is partially regulated by insulator binding proteins (IBPs). While only a few enhancer blocking IBPs have been identified in vertebrates, the common fruit fly Drosophila melanogaster harbors at least twelve different enhancer blocking IBPs. We screened recently compiled insect transcriptomes from the 1KITE project and genomic and transcriptomic data from public databases, aiming to trace the origin of IBPs in insects and other arthropods. Results Our study shows that the last common ancestor of insects (Hexapoda) already possessed a substantial number of IBPs. Specifically, of the known twelve insect IBPs, at least three (i.e., CP190, Su(Hw), and CTCF) already existed prior to the evolution of insects. Furthermore we found GAF orthologs in early branching insect orders, including Zygentoma (silverfish and firebrats) and Diplura (two-pronged bristletails). Mod(mdg4) is most likely a derived feature of Neoptera, while Pita is likely an evolutionary novelty of holometabolous insects. Zw5 appears to be restricted to schizophoran flies, whereas BEAF-32, ZIPIC and the Elba complex, are probably unique to the genus Drosophila. Selection models indicate that insect IBPs evolved under neutral or purifying selection. Conclusions Our results suggest that a substantial number of IBPs either pre-date the evolution of insects or evolved early during insect evolution. This suggests an evolutionary history of insulator binding proteins in insects different to that previously thought. Moreover, our study demonstrates the versatility of the 1KITE transcriptomic data for comparative analyses in insects and other arthropods. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3205-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Pauli
- Center of Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 51113, Bonn, Germany.
| | - Lucia Vedder
- University of Tübingen, Geschwister-Scholl-Platz, 72074, Tübingen, Germany
| | - Daniel Dowling
- Johannes Gutenberg University Mainz, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Malte Petersen
- Center of Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 51113, Bonn, Germany
| | - Karen Meusemann
- Center of Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 51113, Bonn, Germany.,Department for Evolutionary Biology and Ecology (Institut for Biology I, Zoology), University of Freiburg, Hauptstr. 1, 79104, Freiburg, Germany.,Australian National Insect Collection, CSIRO National Research Collections Australia, Clunies Ross Street, Acton, ACT, 2601, Australia
| | - Alexander Donath
- Center of Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 51113, Bonn, Germany
| | - Ralph S Peters
- Zoological Research Museum Alexander Koenig, Arthropod Department, Adenauerallee 160, 53113, Bonn, Germany
| | - Lars Podsiadlowski
- University of Bonn, Institute of Evolutionary Biology and Ecology, An der Immenburg 1, 53121, Bonn, Germany
| | - Christoph Mayer
- Center of Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 51113, Bonn, Germany
| | - Shanlin Liu
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, Guangdong Province, 518083, China.,Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Xin Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China.,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Peter Heger
- University of Cologne, Cologne Biocenter, Institute for Genetics, Zülpicher Straße 47a, 50674, Köln, Germany
| | - Thomas Wiehe
- University of Cologne, Cologne Biocenter, Institute for Genetics, Zülpicher Straße 47a, 50674, Köln, Germany
| | - Lars Hering
- Department of Zoology, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Georg Mayer
- Department of Zoology, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Bernhard Misof
- Center of Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 51113, Bonn, Germany
| | - Oliver Niehuis
- Center of Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 51113, Bonn, Germany.
| |
Collapse
|
5
|
Carballar-Lejarazú R, Brennock P, James AA. Suppressor of hairy-wing, modifier of mdg4 and centrosomal protein of 190 gene orthologues of the gypsy insulator complex in the malaria mosquito, Anopheles stephensi. INSECT MOLECULAR BIOLOGY 2016; 25:460-469. [PMID: 27110891 PMCID: PMC4935592 DOI: 10.1111/imb.12233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
DNA insulators organize independent gene regulatory domains and can regulate interactions amongst promoter and enhancer elements. They have the potential to be important in genome enhancing and editing technologies because they can mitigate chromosomal position effects on transgenes. The orthologous genes of the Anopheles stephensi putative gypsy-like insulator protein complex were identified and expression characteristics studied. These genes encode polypeptides with all the expected protein domains (Cysteine 2 Histidine 2 (C2H2) zinc fingers and/or a bric-a-brac/poxvirus and zinc finger). The mosquito gypsy transcripts are expressed constitutively and are upregulated in ovaries of blood-fed females. We have uncovered significant experimental evidence that the gypsy insulator protein complex is widespread in vector mosquitoes.
Collapse
Affiliation(s)
- R Carballar-Lejarazú
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - P Brennock
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - A A James
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| |
Collapse
|
6
|
Plevock KM, Galletta BJ, Slep KC, Rusan NM. Newly Characterized Region of CP190 Associates with Microtubules and Mediates Proper Spindle Morphology in Drosophila Stem Cells. PLoS One 2015; 10:e0144174. [PMID: 26649574 PMCID: PMC4674064 DOI: 10.1371/journal.pone.0144174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 11/13/2015] [Indexed: 11/27/2022] Open
Abstract
CP190 is a large, multi-domain protein, first identified as a centrosome protein with oscillatory localization over the course of the cell cycle. During interphase it has a well-established role within the nucleus as a chromatin insulator. Upon nuclear envelope breakdown, there is a striking redistribution of CP190 to centrosomes and the mitotic spindle, in addition to the population at chromosomes. Here, we investigate CP190 in detail by performing domain analysis in cultured Drosophila S2 cells combined with protein structure determination by X-ray crystallography, in vitro biochemical characterization, and in vivo fixed and live imaging of cp190 mutant flies. Our analysis of CP190 identifies a novel N-terminal centrosome and microtubule (MT) targeting region, sufficient for spindle localization. This region consists of a highly conserved BTB domain and a linker region that serves as the MT binding domain. We present the 2.5 Å resolution structure of the CP190 N-terminal 126 amino acids, which adopts a canonical BTB domain fold and exists as a stable dimer in solution. The ability of the linker region to robustly localize to MTs requires BTB domain-mediated dimerization. Deletion of the linker region using CRISPR significantly alters spindle morphology and leads to DNA segregation errors in the developing Drosophila brain neuroblasts. Collectively, we highlight a multivalent MT-binding architecture in CP190, which confers distinct subcellular cytoskeletal localization and function during mitosis.
Collapse
Affiliation(s)
- Karen M. Plevock
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, United State of America
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, 27599, United States of America
| | - Brian J. Galletta
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, United State of America
| | - Kevin C. Slep
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, 27599, United States of America
- * E-mail: (NMR); (KCS)
| | - Nasser M. Rusan
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, United State of America
- * E-mail: (NMR); (KCS)
| |
Collapse
|
7
|
An equation to estimate the difference between theoretically predicted and SDS PAGE-displayed molecular weights for an acidic peptide. Sci Rep 2015; 5:13370. [PMID: 26311515 PMCID: PMC4550835 DOI: 10.1038/srep13370] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/23/2015] [Indexed: 12/11/2022] Open
Abstract
The molecular weight (MW) of a protein can be predicted based on its amino acids (AA) composition. However, in many cases a non-chemically modified protein shows an SDS PAGE-displayed MW larger than its predicted size. Some reports linked this fact to high content of acidic AA in the protein. However, the exact relationship between the acidic AA composition and the SDS PAGE-displayed MW is not established. Zebrafish nucleolar protein Def is composed of 753 AA and shows an SDS PAGE-displayed MW approximately 13 kDa larger than its predicted MW. The first 188 AA in Def is defined by a glutamate-rich region containing ~35.6% of acidic AA. In this report, we analyzed the relationship between the SDS PAGE-displayed MW of thirteen peptides derived from Def and the AA composition in each peptide. We found that the difference between the predicted and SDS PAGE-displayed MW showed a linear correlation with the percentage of acidic AA that fits the equation y = 276.5x − 31.33 (x represents the percentage of acidic AA, 11.4% ≤ x ≤ 51.1%; y represents the average ΔMW per AA). We demonstrated that this equation could be applied to predict the SDS PAGE-displayed MW for thirteen different natural acidic proteins.
Collapse
|
8
|
Functional role of dimerization and CP190 interacting domains of CTCF protein in Drosophila melanogaster. BMC Biol 2015; 13:63. [PMID: 26248466 PMCID: PMC4528719 DOI: 10.1186/s12915-015-0168-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/15/2015] [Indexed: 12/22/2022] Open
Abstract
Background Insulators play a central role in gene regulation, chromosomal architecture and genome function in higher eukaryotes. To learn more about how insulators carry out their diverse functions, we have begun an analysis of the Drosophila CTCF (dCTCF). CTCF is one of the few insulator proteins known to be conserved from flies to man. Results In the studies reported here we have focused on the identification and characterization of two dCTCF protein interaction modules. The first mediates dCTCF multimerization, while the second mediates dCTCF–CP190 interactions. The multimerization domain maps in the N-terminus of the dCTCF protein and likely mediates the formation of tetrameric complexes. The CP190 interaction module encompasses a sequence ~200 amino acids long that spans the C-terminal and mediates interactions with the N-terminal BTB domain of the CP190 protein. Transgene rescue experiments showed that a dCTCF protein lacking sequences critical for CP190 interactions was almost as effective as wild type in rescuing the phenotypic effects of a dCTCF null allele. The mutation did, however, affect CP190 recruitment to specific Drosophila insulator elements and had a modest effect on dCTCF chromatin association. A protein lacking the N-terminal dCTCF multimerization domain incompletely rescued the zygotic and maternal effect lethality of the null and did not rescue the defects in Abd-B regulation evident in surviving adult dCTCF mutant flies. Finally, we show that elimination of maternally contributed dCTCF at the onset of embryogenesis has quite different effects on development and Abd-B regulation than is observed when the homozygous mutant animals develop in the presence of maternally derived dCTCF activity. Conclusions Our results indicate that dCTCF–CP190 interactions are less critical for the in vivo functions of the dCTCF protein than the N-terminal dCTCF–dCTCF interaction domain. We also show that the phenotypic consequences of dCTCF mutations differ depending upon when and how dCTCF activity is lost. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0168-7) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Rao SG, Janiszewski MM, Duca E, Nelson B, Abhinav K, Panagakou I, Vass S, Heck MMS. Invadolysin acts genetically via the SAGA complex to modulate chromosome structure. Nucleic Acids Res 2015; 43:3546-62. [PMID: 25779050 PMCID: PMC4402531 DOI: 10.1093/nar/gkv211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/28/2015] [Indexed: 11/24/2022] Open
Abstract
Identification of components essential to chromosome structure and behaviour remains a vibrant area of study. We have previously shown that invadolysin is essential in Drosophila, with roles in cell division and cell migration. Mitotic chromosomes are hypercondensed in length, but display an aberrant fuzzy appearance. We additionally demonstrated that in human cells, invadolysin is localized on the surface of lipid droplets, organelles that store not only triglycerides and sterols but also free histones H2A, H2Av and H2B. Is there a link between the storage of histones in lipid droplets and the aberrantly structured chromosomes of invadolysin mutants? We have identified a genetic interaction between invadolysin and nonstop, the de-ubiquitinating protease component of the SAGA (Spt-Ada-Gcn5-acetyltransferase) chromatin-remodelling complex. invadolysin and nonstop mutants exhibit phenotypic similarities in terms of chromosome structure in both diploid and polyploid cells. Furthermore, IX-141/not1 transheterozygous animals accumulate mono-ubiquitinated histone H2B (ubH2B) and histone H3 tri-methylated at lysine 4 (H3K4me3). Whole mount immunostaining of IX-141/not1 transheterozygous salivary glands revealed that ubH2B accumulates surprisingly in the cytoplasm, rather than the nucleus. Over-expression of the Bre1 ubiquitin ligase phenocopies the effects of mutating either the invadolysin or nonstop genes. Intriguingly, nonstop and mutants of other SAGA subunits (gcn5, ada2b and sgf11) all suppress an invadolysin-induced rough eye phenotype. We conclude that the abnormal chromosome phenotype of invadolysin mutants is likely the result of disrupting the histone modification cycle, as accumulation of ubH2B and H3K4me3 is observed. We further suggest that the mislocalization of ubH2B to the cytoplasm has additional consequences on downstream components essential for chromosome behaviour. We therefore propose that invadolysin plays a crucial role in chromosome organization via its interaction with the SAGA complex.
Collapse
Affiliation(s)
- Shubha Gururaja Rao
- University of Edinburgh, Queen's Medical Research Institute, University/BHF Centre for Cardiovascular Science, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Michal M Janiszewski
- University of Edinburgh, Queen's Medical Research Institute, University/BHF Centre for Cardiovascular Science, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Edward Duca
- University of Edinburgh, Queen's Medical Research Institute, University/BHF Centre for Cardiovascular Science, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Bryce Nelson
- University of Edinburgh, Queen's Medical Research Institute, University/BHF Centre for Cardiovascular Science, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Kanishk Abhinav
- University of Edinburgh, Queen's Medical Research Institute, University/BHF Centre for Cardiovascular Science, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Ioanna Panagakou
- University of Edinburgh, Queen's Medical Research Institute, University/BHF Centre for Cardiovascular Science, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Sharron Vass
- University of Edinburgh, Queen's Medical Research Institute, University/BHF Centre for Cardiovascular Science, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Margarete M S Heck
- University of Edinburgh, Queen's Medical Research Institute, University/BHF Centre for Cardiovascular Science, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
10
|
Korenjak M, Kwon E, Morris RT, Anderssen E, Amzallag A, Ramaswamy S, Dyson NJ. dREAM co-operates with insulator-binding proteins and regulates expression at divergently paired genes. Nucleic Acids Res 2014; 42:8939-53. [PMID: 25053843 PMCID: PMC4132727 DOI: 10.1093/nar/gku609] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
dREAM complexes represent the predominant form of E2F/RBF repressor complexes in Drosophila. dREAM associates with thousands of sites in the fly genome but its mechanism of action is unknown. To understand the genomic context in which dREAM acts we examined the distribution and localization of Drosophila E2F and dREAM proteins. Here we report a striking and unexpected overlap between dE2F2/dREAM sites and binding sites for the insulator-binding proteins CP190 and Beaf-32. Genetic assays show that these components functionally co-operate and chromatin immunoprecipitation experiments on mutant animals demonstrate that dE2F2 is important for association of CP190 with chromatin. dE2F2/dREAM binding sites are enriched at divergently transcribed genes, and the majority of genes upregulated by dE2F2 depletion represent the repressed half of a differentially expressed, divergently transcribed pair of genes. Analysis of mutant animals confirms that dREAM and CP190 are similarly required for transcriptional integrity at these gene pairs and suggest that dREAM functions in concert with CP190 to establish boundaries between repressed/activated genes. Consistent with the idea that dREAM co-operates with insulator-binding proteins, genomic regions bound by dREAM possess enhancer-blocking activity that depends on multiple dREAM components. These findings suggest that dREAM functions in the organization of transcriptional domains.
Collapse
Affiliation(s)
- Michael Korenjak
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eunjeong Kwon
- Massachusetts General Hospital, Cutaneous Biology Research Center, Charlestown, MA 02129, USA
| | - Robert T Morris
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Endre Anderssen
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Arnaud Amzallag
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Sridhar Ramaswamy
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
11
|
Heger P, Wiehe T. New tools in the box: An evolutionary synopsis of chromatin insulators. Trends Genet 2014; 30:161-71. [DOI: 10.1016/j.tig.2014.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 01/19/2023]
|
12
|
Ahanger SH, Shouche YS, Mishra RK. Functional sub-division of the Drosophila genome via chromatin looping: the emerging importance of CP190. Nucleus 2013; 4:115-22. [PMID: 23333867 DOI: 10.4161/nucl.23389] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Insulators help in organizing the eukaryotic genomes into physically and functionally autonomous regions through the formation of chromatin loops. Recent findings in Drosophila and vertebrates suggest that insulators anchor multiple loci through long-distance interactions which may be mechanistically linked to insulator function. Important to such processes in Drosophila is CP190, a common co-factor of insulator complexes. CP190 is also known to associate with the nuclear matrix, components of the RNAi machinery, active promoters and borders of the repressive chromatin domains. Although CP190 plays a pivotal role in insulator function in Drosophila, vertebrates lack a probable functional equivalent of CP190 and employ CTCF as the major factor to carry out insulator function/chromatin looping. In this review, we discuss the emerging role of CP190 in tethering genome, specifically in the perspective of insulator function in Drosophila. Future studies aiming genome-wide role of CP190 in chromatin looping is likely to give important insights into the mechanism of genome organization.
Collapse
|
13
|
Nègre N, Brown CD, Shah PK, Kheradpour P, Morrison CA, Henikoff JG, Feng X, Ahmad K, Russell S, White RAH, Stein L, Henikoff S, Kellis M, White KP. A comprehensive map of insulator elements for the Drosophila genome. PLoS Genet 2010; 6:e1000814. [PMID: 20084099 PMCID: PMC2797089 DOI: 10.1371/journal.pgen.1000814] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 12/14/2009] [Indexed: 01/31/2023] Open
Abstract
Insulators are DNA sequences that control the interactions among genomic regulatory elements and act as chromatin boundaries. A thorough understanding of their location and function is necessary to address the complexities of metazoan gene regulation. We studied by ChIP–chip the genome-wide binding sites of 6 insulator-associated proteins—dCTCF, CP190, BEAF-32, Su(Hw), Mod(mdg4), and GAF—to obtain the first comprehensive map of insulator elements in Drosophila embryos. We identify over 14,000 putative insulators, including all classically defined insulators. We find two major classes of insulators defined by dCTCF/CP190/BEAF-32 and Su(Hw), respectively. Distributional analyses of insulators revealed that particular sub-classes of insulator elements are excluded between cis-regulatory elements and their target promoters; divide differentially expressed, alternative, and divergent promoters; act as chromatin boundaries; are associated with chromosomal breakpoints among species; and are embedded within active chromatin domains. Together, these results provide a map demarcating the boundaries of gene regulatory units and a framework for understanding insulator function during the development and evolution of Drosophila. The spatiotemporal specificity of gene expression is controlled by interactions among regulatory proteins, cis-regulatory elements, chromatin modifications, and genes. These interactions can occur over large distances, and the mechanisms by which they are controlled are poorly understood. Insulators are DNA sequences that can both block the interaction between regulatory elements and genes, as well as block the spread of regions of modified chromatin. To date, relatively few insulators have been identified in developing Drosophila embryos. We here present the genome wide identification of over 14,000 binding sites for 6 insulator-associated proteins. We demonstrate the existence of two broad classes of insulators. Insulators of both classes are enriched at the boundaries of a particular chromatin modification. However, only insulators bound by BEAF-32, CP190, and dCTCF are enriched in regions of open chromatin or demarcate gene boundaries, with a particular enrichment between differentially expressed promoters. Furthermore, insulators of this class are enriched at points of chromosomal rearrangement among the 12 species of sequenced Drosophila, suggesting that insulator defined regulatory boundaries are evolutionarily conserved.
Collapse
Affiliation(s)
- Nicolas Nègre
- Institute for Genomics and Systems Biology, Department of Human Genetics, and Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Christopher D. Brown
- Institute for Genomics and Systems Biology, Department of Human Genetics, and Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Parantu K. Shah
- Institute for Genomics and Systems Biology, Department of Human Genetics, and Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Pouya Kheradpour
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Carolyn A. Morrison
- Institute for Genomics and Systems Biology, Department of Human Genetics, and Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Jorja G. Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
| | - Xin Feng
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, New York, United States of America
| | - Kami Ahmad
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Steven Russell
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Robert A. H. White
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Lincoln Stein
- Ontario Institute for Cancer Research, Toronto, Canada
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Steven Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
| | - Kevin P. White
- Institute for Genomics and Systems Biology, Department of Human Genetics, and Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
14
|
An Entry/Gateway cloning system for general expression of genes with molecular tags in Drosophila melanogaster. BMC Cell Biol 2009; 10:8. [PMID: 19178707 PMCID: PMC2654426 DOI: 10.1186/1471-2121-10-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 01/29/2009] [Indexed: 11/16/2022] Open
Abstract
Background Tagged fusion proteins are priceless tools for monitoring the activities of biomolecules in living cells. However, over-expression of fusion proteins sometimes leads to the unwanted lethality or developmental defects. Therefore, vectors that can express tagged proteins at physiological levels are desirable tools for studying dosage-sensitive proteins. We developed a set of Entry/Gateway® vectors for expressing fluorescent fusion proteins in Drosophila melanogaster. The vectors were used to generate fluorescent CP190 which is a component of the gypsy chromatin insulator. We used the fluorescent CP190 to study the dynamic movement of related chromatin insulators in living cells. Results The Entry/Gateway® system is a timesaving technique for quickly generating expression constructs of tagged fusion proteins. We described in this study an Entry/Gateway® based system, which includes six P-element destination vectors (P-DEST) for expressing tagged proteins (eGFP, mRFP, or myc) in Drosophila melanogaster and a TA-based cloning vector for generating entry clones from unstable DNA sequences. We used the P-DEST vectors to express fluorecent CP190 at tolerable levels. Expression of CP190 using the UAS/Gal4 system, instead, led to either lethality or underdeveloped tissues. The expressed eGFP- or mRFP-tagged CP190 proteins are fully functional and rescued the lethality of the homozygous CP190 mutation. We visualized a wide range of CP190 distribution patterns in living cell nuclei, from thousands of tiny particles to less than ten giant ones, which likely reflects diverse organization of higher-order chromatin structures. We also visualized the fusion of multiple smaller insulator bodies into larger aggregates in living cells, which is likely reflective of the dynamic activities of reorganization of chromatin in living nuclei. Conclusion We have developed an efficient cloning system for expressing dosage-sensitive proteins in Drosophila melanogaster. This system successfully expresses functional fluorescent CP190 fusion proteins. The fluorescent CP190 proteins exist in insulator bodies of various numbers and sizes among cells from multiple living tissues. Furthermore, live imaging of the movements of these fluorescent-tagged proteins suggests that the assembly and disassembly of insulator bodies are normal activities in living cells and may be directed for regulating transcription.
Collapse
|
15
|
Alieva IB, Uzbekov RE. The centrosome is a polyfunctional multiprotein cell complex. BIOCHEMISTRY (MOSCOW) 2008; 73:626-43. [DOI: 10.1134/s0006297908060023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Mohan M, Bartkuhn M, Herold M, Philippen A, Heinl N, Bardenhagen I, Leers J, White RAH, Renkawitz-Pohl R, Saumweber H, Renkawitz R. The Drosophila insulator proteins CTCF and CP190 link enhancer blocking to body patterning. EMBO J 2007; 26:4203-14. [PMID: 17805343 PMCID: PMC2230845 DOI: 10.1038/sj.emboj.7601851] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 08/15/2007] [Indexed: 01/08/2023] Open
Abstract
Insulator sequences guide the function of distantly located enhancer elements to the appropriate target genes by blocking inappropriate interactions. In Drosophila, five different insulator binding proteins have been identified, Zw5, BEAF-32, GAGA factor, Su(Hw) and dCTCF. Only dCTCF has a known conserved counterpart in vertebrates. Here we find that the structurally related factors dCTCF and Su(Hw) have distinct binding targets. In contrast, the Su(Hw) interacting factor CP190 largely overlapped with dCTCF binding sites and interacts with dCTCF. Binding of dCTCF to targets requires CP190 in many cases, whereas others are independent of CP190. Analysis of the bithorax complex revealed that six of the borders between the parasegment specific regulatory domains are bound by dCTCF and by CP190 in vivo. dCTCF null mutations affect expression of Abdominal-B, cause pharate lethality and a homeotic phenotype. A short pulse of dCTCF expression during larval development rescues the dCTCF loss of function phenotype. Overall, we demonstrate the importance of dCTCF in fly development and in the regulation of abdominal segmentation.
Collapse
Affiliation(s)
- Man Mohan
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Marek Bartkuhn
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Martin Herold
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Angela Philippen
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Nina Heinl
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Imke Bardenhagen
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Joerg Leers
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Robert A H White
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Renate Renkawitz-Pohl
- Philipps-Universität Marburg, Fachbereich Biologie, Entwicklungsbiologie, Marburg, Germany
| | - Harald Saumweber
- Cytogenetics Division, Institute of Biology, Humboldt University, Berlin, Germany
| | - Rainer Renkawitz
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring, Giessen, Germany
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58-62, Giessen 35392, Germany. Tel.: +49 641 99 35460; Fax: +49 641 99 35469; E-mail:
| |
Collapse
|
17
|
Delcros JG, Prigent C, Giet R. Dynactin targets Pavarotti-KLP to the central spindle during anaphase and facilitates cytokinesis in Drosophila S2 cells. J Cell Sci 2006; 119:4431-41. [PMID: 17046997 DOI: 10.1242/jcs.03204] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dynactin complex cooperates with the dynein complex in various systems for mitotic completion. Here we analysed the mitotic phenotype of Drosophila S2 cells following the knockdown of the dynactin subunit p150(Glued). We found that p150(Glued)-depleted cells were delayed in metaphase and that the centrosomes were poorly connected to mitotic spindle poles. In addition, anaphase occurred with asynchronous chromosome segregation. Although cyclin B was degraded in these anaphase cells, Aurora B, MEI-S322 and BubR1 were not released from the non-segregating chromosomes. We also found that the density and organisation of the central spindle were compromised, with Aurora B and polo kinases absent from the diminished number of microtubules. Pavarotti-KLP, a component of the centralspindlin complex required for the formation of stable microtubule bundles, was not immediately targeted to the plus ends of the microtubules following anaphase onset as happened in controls. Instead, it accumulated transiently at the cell cortex during early anaphase and its targeting to the central spindle was delayed. These data suggest that the dynactin complex contributes to cytokinesis by promoting stable targeting of the centralspindlin complex to microtubule plus ends at anaphase onset. The contribution of the dynein-dynactin complex to synchronous chromosome segregation and cytokinesis is discussed.
Collapse
Affiliation(s)
- Jean-Guy Delcros
- CNRS UMR 6061 Génétique et Développement, Groupe Cycle Cellulaire, Faculté de Médecine, IFR 140 Génomique Fonctionnelle et Santé, Université de Rennes I, 2 avenue du Pr. Léon Bernard, CS 34317, F-35043 Rennes CEDEX, France
| | | | | |
Collapse
|
18
|
McHugh B, Krause SA, Yu B, Deans AM, Heasman S, McLaughlin P, Heck MMS. Invadolysin: a novel, conserved metalloprotease links mitotic structural rearrangements with cell migration. ACTA ACUST UNITED AC 2005; 167:673-86. [PMID: 15557119 PMCID: PMC2172566 DOI: 10.1083/jcb.200405155] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cell cycle is widely known to be regulated by networks of phosphorylation and ubiquitin-directed proteolysis. Here, we describe IX-14/invadolysin, a novel metalloprotease present only in metazoa, whose activity appears to be essential for mitotic progression. Mitotic neuroblasts of Drosophila melanogaster IX-14 mutant larvae exhibit increased levels of nuclear envelope proteins, monopolar and asymmetric spindles, and chromosomes that appear hypercondensed in length with a surrounding halo of loosely condensed chromatin. Zymography reveals that a protease activity, present in wild-type larval brains, is missing from homozygous tissue, and we show that IX-14/invadolysin cleaves lamin in vitro. The IX-14/invadolysin protein is predominantly found in cytoplasmic structures resembling invadopodia in fly and human cells, but is dramatically relocalized to the leading edge of migrating cells. Strikingly, we find that the directed migration of germ cells is affected in Drosophila IX-14 mutant embryos. Thus, invadolysin identifies a new family of conserved metalloproteases whose activity appears to be essential for the coordination of mitotic progression, but which also plays an unexpected role in cell migration.
Collapse
Affiliation(s)
- Brian McHugh
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
19
|
Butcher RDJ, Chodagam S, Basto R, Wakefield JG, Henderson DS, Raff JW, Whitfield WGF. TheDrosophilacentrosome-associated protein CP190 is essential for viability but not for cell division. J Cell Sci 2004; 117:1191-9. [PMID: 14996941 DOI: 10.1242/jcs.00979] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Drosophila CP190 and CP60 proteins interact with each other and shuttle between the nucleus in interphase and the centrosome in mitosis. Both proteins can bind directly to microtubules in vitro, and have been shown to associate with a specific pattern of loci on salivary gland polytene chromosomes, but their functions are unknown. Here we show that reducing the level of CP190 or CP60 by >90% in tissue culture cells does not significantly interfere with centrosome or microtubule organisation, with cell division, or with cell viability. However, CP190 is an essential protein, as flies homozygous for mutations in the Cp190 gene die at late pupal stages of development. In larval brains of Cp190 mutants, mitosis is not radically perturbed, and a mutated form of CP190 (CP190ΔM), that cannot bind to microtubules or associate with centrosomes, can rescue the lethality associated with mutations in the Cp190 gene. Thus, CP190 plays an essential role in flies that is independent of its association with centrosomes or microtubules.
Collapse
Affiliation(s)
- R D J Butcher
- NERC Center for Population Biology, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | | | | | | | | | | | | |
Collapse
|
20
|
Megraw TL, Kilaru S, Turner FR, Kaufman TC. The centrosome is a dynamic structure that ejects PCM flares. J Cell Sci 2002; 115:4707-18. [PMID: 12415014 DOI: 10.1242/jcs.00134] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Drosophila Centrosomin (Cnn) protein is an essential core component of centrosomes in the early embryo. We have expressed a Cnn-GFP fusion construct in cleavage stage embryos, which rescues the maternal effect lethality of cnn mutant animals. The localization patterns seen with GFP-Cnn are identical to the patterns we see by immunofluorescent staining with anti-Cnn antibodies. Live imaging of centrosomes with Cnn-GFP reveals surprisingly dynamic features of the centrosome. Extracentrosomal particles of Cnn move radially from the centrosome and frequently change their direction. D-TACC colocalized with Cnn at these particles. We have named these extrusions 'flares'. Flares are dependent on microtubules, since disruption of the microtubule array severs the movement of these particles. Movement of flare particles is cleavage-cycle-dependent and appears to be attributed mostly to their association with dynamic astral microtubules. Flare activity decreases at metaphase, then increases at telophase and remains at this higher level of activity until the next metaphase. Flares appear to be similar to vertebrate PCM-1-containing 'centriolar satellites' in their behavior. By injecting rhodamine-actin, we observed that flares extend no farther than the actin cage. Additionally, disruption of the microfilament array increased the extent of flare movement. These observations indicate that centrosomes eject particles of Cnn-containing pericentriolar material that move on dynamic astral microtubules at a rate that varies with the cell cycle. We propose that flare particles play a role in organizing the actin cytoskeleton during syncytial cleavage.
Collapse
Affiliation(s)
- Timothy L Megraw
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
21
|
Giet R, McLean D, Descamps S, Lee MJ, Raff JW, Prigent C, Glover DM. Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. J Cell Biol 2002; 156:437-51. [PMID: 11827981 PMCID: PMC2173350 DOI: 10.1083/jcb.200108135] [Citation(s) in RCA: 261] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Disruption of the function of the A-type Aurora kinase of Drosophila by mutation or RNAi leads to a reduction in the length of astral microtubules in syncytial embryos, larval neuroblasts, and cultured S2 cells. In neuroblasts, it can also lead to loss of an organized centrosome and its associated aster from one of the spindle poles, whereas the centrosome at the other pole has multiple centrioles. When centrosomes are present at the poles of aurA mutants or aurA RNAi spindles, they retain many antigens but are missing the Drosophila counterpart of mammalian transforming acidic coiled coil (TACC) proteins, D-TACC. We show that a subpopulation of the total Aurora A is present in a complex with D-TACC, which is a substrate for the kinase. We propose that one of the functions of Aurora A kinase is to direct centrosomal organization such that D-TACC complexed to the MSPS/XMAP215 microtubule-associated protein may be recruited, and thus modulate the behavior of astral microtubules.
Collapse
Affiliation(s)
- Régis Giet
- Department of Genetics, Cancer Research Campaign Cell Cycle Genetics Group, University of Cambridge, Cambridge CB2 3EH, UK
| | | | | | | | | | | | | |
Collapse
|
22
|
Debec A, Grammont M, Berson G, Dastugue B, Sullivan W, Couderc JL. Toucan protein is essential for the assembly of syncytial mitotic spindles in Drosophila melanogaster. Genesis 2001; 31:167-75. [PMID: 11783007 DOI: 10.1002/gene.10019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The toc gene of Drosophila melanogaster encodes a 235-kD polypeptide with a coiled-coil domain, which is highly expressed during oogenesis (Grammont et al., 1997, 2000). We now report the localization of the Toucan protein during early embryonic development. The Toucan protein is present only during the syncytial stages and is associated with the nuclear envelope and the cytoskeletal structures of the syncytial embryo. In anaphase A, Toucan is concentrated at the spindle poles near the minus end of microtubules. This microtubule association is very dynamic during the nuclear cell cycle. Mutant embryos lacking the Toucan protein are blocked in a metaphase-like state. They display abnormal and nonfunctional spindles, characterized by broad poles, detachment of the centrosomes, and failure of migration of the chromosomes. These results strongly suggest that Toucan represents a factor essential for the assembly and the function of the syncytial mitotic spindles.
Collapse
Affiliation(s)
- A Debec
- Observatoire Océanologique, Laboratoire de Biologie du Développement, Université Pierre et Marie Curie/CNRS, Villefranche-sur-Mer, France
| | | | | | | | | | | |
Collapse
|
23
|
Raynaud-Messina B, Debec A, Tollon Y, Garès M, Wright M. Differential properties of the two Drosophila gamma-tubulin isotypes. Eur J Cell Biol 2001; 80:643-9. [PMID: 11713868 DOI: 10.1078/0171-9335-00195] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The functional significance of distinct gamma-tubulins in several unrelated eukaryotes remains an enigma due to the difficulties to investigate this question experimentally. Using specific nucleotidic and immunological probes, we have demonstrated that the two divergent Drosophila gamma-tubulins, gamma-tub23C and gamma-tub37CD, are expressed in cultured cells. Gamma-tub37CD is constantly detected at the centrosome and absent in the mitotic spindle, while gamma-tub23C is extensively recruited to the centrosome during mitosis and relocalizes in the mitotic spindle. The two gamma-tubulins exhibit distinct biochemical properties. Gamma-tub23C is present in the soluble gamma-tubulin small complexes (10S) and gamma-tubulin big complexes (35S) and is loosely associated to the cytoskeleton. In contrast, gamma-tub37CD is undetectable in the soluble fraction and exhibits a tight binding to the centrosome. Syncytial embryos also contain the two gamma-tubulin isotypes, which are differentially recruited at the centrosome. Gamma-tub23C is present in the 10S soluble complexes only, while y-tub37CD is contained in the two soluble complexes and is recruited at the centrosome where it exhibits an heterogeneous binding. These results demonstrated an heterogeneity of the two Drosophila gamma-tubulin isotypes both in the cytoskeletal and the soluble fractions. They suggest the direct implication of the 35S complex in the centrosomal recruitment of gamma-tubulin and a conditional functional redundancy between the two gamma-tubulins.
Collapse
Affiliation(s)
- B Raynaud-Messina
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Toulouse/France
| | | | | | | | | |
Collapse
|
24
|
Abstract
The Drosophila oocyte is a highly specialized cell type whose development utilizes MTOCs in various contexts. Figure 4 (see color insert) summarizes the characteristics of the MTOCs at different stages of oogenesis. Polarized mitoses are required to achieve oocyte determination. In the asymmetric germ-cell divisions that culminate in the egg chamber, the mitotic centrosomes are anchored to the spectrosome or fusome in order to produce the regular branching pattern of the cyst cells. It appears that the primary role of the fusome is to orchestrate the polarity and synchrony of oogenic mitoses. In the absence of fusomes or anchored spindles, the regular interconnected cyst network is lost and the oocyte does not differentiate. It is not known if the spindle itself is asymmetric, or whether either centrosome has equal potential to interact with the fusome. Several models can explain the need for polarized mitoses for oocyte differentiation. In one, an unequal distribution of unknown oocyte differentiation factors occurs from as early as the first cystoblast division. Here, the fusome may be required for the distribution of the factors. In another model, there is a mechanism that measures the number of ring canals in the cell, limiting the choice of oocyte to two potential pro-oocytes. In this model, polarized, synchronous divisions must occur to produce only two cells with the highest number of ring canals. In both of these models the centrosome plays an indirect role. A critical event in the determination of the oocyte is the formation of the MTOC. The oocyte MTOC forms shortly after completion of the germ cell mitoses and establishes a microtubule array along which factors required for oocyte determination are transported. It is unclear how this single MTOC forms in the 16-cell cyst, how the centrosomes become inactivated in the adjoining 15 nurse cells, or why the inactivated centrioles are transported into the oocyte. No molecular components of the MTOC are known except for centrosomin, which accumulates at the MTOC relatively late, at approximately stage 5 or 6 of oogenesis. The MTOC plays a central role in establishing the oocyte's polar coordinates. The oocyte microtubule array is required for the polar localization of axis-determining factors. At midoogenesis the MTOC appears to mediate the reversal of the microtubule array and the migration of the nucleus in the oocyte. The posterior follicle cells signal this reversal after receiving the gurken signal. What changes occur at the MTOC to trigger this cytoskeletal rearrangement? A better understanding of the MTOC's molecular components is necessary before we can begin to unravel the mechanisms underlying these events. The morphology of the MTOC changes after it shifts to the oocyte anterior. Staining with anti-centrosomin antibodies shows that the MTOC changes from discrete nucleus-associated bodies into a broad structure associated with the anterior cortex. The molecular mechanisms underlying this structural rearrangement of the MTOC at midoogenesis are presently unknown. Meiosis I occurs in the absence of centrosomes, but meiosis II spindles are linked by a shared, acentriolar, astral MTOC. The organization of the meiosis I spindle poles requires the NCD motor protein; however, the meiosis I spindle poles are acentriolar and contain no known centrosomal core proteins. The meiosis II astral spindle pole has a unique ring-shaped morphology and contains centrosomal proteins, such as gamma-tubulin. Strong mutations in the maternal gamma Tub37C gene do not block meiosis I, but prevent the progression of meiosis II.
Collapse
Affiliation(s)
- T L Megraw
- Department of Biology, Indiana University, Bloomington 47405, USA
| | | |
Collapse
|
25
|
Affiliation(s)
- W F Rothwell
- Sinsheimer Laboratories, Department of Biology, University of California, Santa Cruz 95064, USA
| | | |
Collapse
|
26
|
Barbosa V, Yamamoto RR, Henderson DS, Glover DM. Mutation of a Drosophila gamma tubulin ring complex subunit encoded by discs degenerate-4 differentially disrupts centrosomal protein localization. Genes Dev 2000; 14:3126-39. [PMID: 11124805 PMCID: PMC317135 DOI: 10.1101/gad.182800] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have cloned the Drosophila gene discs degenerate-4 (dd4) and find that it encodes a component of the gamma-tubulin ring complex (gammaTuRC) homologous to Spc98 of budding yeast. This provides the first opportunity to study decreased function of a member of the gamma-tubulin ring complex, other than gamma-tubulin itself, in a metazoan cell. gamma-tubulin is no longer at the centrosomes but is dispersed throughout dd4 cells and yet bipolar metaphase spindles do form, although these have a dramatically decreased density of microtubules. Centrosomin (CNN) remains in broad discrete bodies but only at the focused poles of such spindles, whereas Asp (abnormal spindle protein) is always present at the presumptive minus ends of microtubules, whether or not they are focused. This is consistent with the proposed role of Asp in coordinating the nucleation of mitotic microtubule organizing centers. The centrosome associated protein CP190 is partially lost from the spindle poles in dd4 cells supporting a weak interaction with gamma-tubulin, and the displaced protein accumulates in the vicinity of chromosomes. Electron microscopy indicates not only that the poles of dd4 cells have irregular amounts of pericentriolar material, but also that they can have abnormal centrioles. In six dd4 cells subjected to serial sectioning centrioles were missing from one of the two poles. This suggests that in addition to its role in nucleating cytoplasmic and spindle microtubules, the gammaTuRC is also essential to the structure of centrioles and the separation of centrosomes.
Collapse
Affiliation(s)
- V Barbosa
- Cancer Research Campaign, Cell Cycle Genetics Group, University of Cambridge, Department of Genetics, Cambridge, UK
| | | | | | | |
Collapse
|
27
|
Callaini G, Riparbelli MG. Patterns of microtubule assembly in taxol-treated early Drosophila embryo. CELL MOTILITY AND THE CYTOSKELETON 2000; 37:300-7. [PMID: 9258503 DOI: 10.1002/(sici)1097-0169(1997)37:4<300::aid-cm2>3.0.co;2-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Incubation of early Drosophila embryos with low concentrations of taxol (2.3 microM) revealed a pattern of microtubule assembly that was cell-cycle dependent. Microtubule bundling was observed during the pronuclear stage after resumption of meiosis, whereas at the onset of the first mitosis the microtubules organized in astral arrays. Taxol treatment showed differential microtubule assembly properties of the egg cytoplasm. The preferential assembly site for taxol-induced asters was the ventral cortex; in the dorsal cortex only microtubule bundling occurred. This dorsal-ventral heterogeneity of the ege cortex persisted until the third or fourth nuclear cycle. Microtubules did not organize in astral arrays in the inner cytoplasm, but only in mitotic spindles. CP190 and gamma-tubulin, usually found in the centrosome of the early Drosophila embryo, were absent in taxol-induced asters. These observations suggest that the mechanism driving the assembly of taxol-induced asters is not centrosome dependent in the early Drosophila embryo.
Collapse
Affiliation(s)
- G Callaini
- Department of Evolutionary Biology, University of Siena, Italy.
| | | |
Collapse
|
28
|
Sibon OC, Kelkar A, Lemstra W, Theurkauf WE. DNA-replication/DNA-damage-dependent centrosome inactivation in Drosophila embryos. Nat Cell Biol 2000; 2:90-5. [PMID: 10655588 DOI: 10.1038/35000041] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During early embryogenesis of Drosophila melanogaster, mutations in the DNA-replication checkpoint lead to chromosome-segregation failures. Here we show that these segregation failures are associated with the assembly of an anastral microtubule spindle, a mitosis-specific loss of centrosome function, and dissociation of several components of the gamma-tubulin ring complex from a core centrosomal structure. The DNA-replication inhibitor aphidicolin and DNA-damaging agents trigger identical mitotic defects in wild-type embryos, indicating that centrosome inactivation is a checkpoint-independent and mitosis-specific response to damaged or incompletely replicated DNA. We propose that centrosome inactivation is part of a damage-control system that blocks chromosome segregation when replication/damage checkpoint control fails.
Collapse
Affiliation(s)
- O C Sibon
- Department of Radiobiology, Faculty of Medicine, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
29
|
Gergely F, Kidd D, Jeffers K, Wakefield JG, Raff JW. D-TACC: a novel centrosomal protein required for normal spindle function in the early Drosophila embryo. EMBO J 2000; 19:241-52. [PMID: 10637228 PMCID: PMC305558 DOI: 10.1093/emboj/19.2.241] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/1999] [Revised: 11/10/1999] [Accepted: 11/11/1999] [Indexed: 11/14/2022] Open
Abstract
We identify Drosophila TACC (D-TACC) as a novel protein that is concentrated at centrosomes and interacts with microtubules. We show that D-TACC is essential for normal spindle function in the early embryo; if D-TACC function is perturbed by mutation or antibody injection, the microtubules emanating from centrosomes in embryos are short and chromosomes often fail to segregate properly. The C-terminal region of D-TACC interacts, possibly indirectly, with microtubules, and can target a heterologous fusion protein to centrosomes and microtubules in embryos. This C-terminal region is related to the mammalian transforming, acidic, coiled-coil-containing (TACC) family of proteins. The function of the TACC proteins is unknown, but the genes encoding the known TACC proteins are all associated with genomic regions that are rearranged in certain cancers. We show that at least one of the mammalian TACC proteins appears to be associated with centrosomes and microtubules in human cells. We propose that this conserved C-terminal 'TACC domain' defines a new family of microtubule-interacting proteins.
Collapse
Affiliation(s)
- F Gergely
- Wellcome/CRC Institute and Department of Genetics, Tennis Court Road, Cambridge CB2 1QR, UK
| | | | | | | | | |
Collapse
|
30
|
Kaltschmidt JA, Davidson CM, Brown NH, Brand AH. Rotation and asymmetry of the mitotic spindle direct asymmetric cell division in the developing central nervous system. Nat Cell Biol 2000; 2:7-12. [PMID: 10620800 DOI: 10.1038/71323] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The asymmetric segregation of cell-fate determinants and the generation of daughter cells of different sizes rely on the correct orientation and position of the mitotic spindle. In the Drosophila embryo, the determinant Prospero is localized basally and is segregated equally to daughters of similar cell size during epidermal cell division. In contrast, during neuroblast division Prospero is segregated asymmetrically to the smaller daughter cell. This simple switch between symmetric and asymmetric segregation is achieved by changing the orientation of cell division: neural cells divide in a plane perpendicular to that of epidermoblast division. Here, by labelling mitotic spindles in living Drosophila embryos, we show that neuroblast spindles are initially formed in the same axis as epidermal cells, but rotate before cell division. We find that daughter cells of different sizes arise because the spindle itself becomes asymmetric at anaphase: apical microtubules elongate, basal microtubules shorten, and the midbody moves basally until it is positioned asymmetrically between the two spindle poles. This observation contradicts the widely held hypothesis that the cleavage furrow is always placed midway between the two centrosomes.
Collapse
Affiliation(s)
- J A Kaltschmidt
- Wellcome/CRC Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | | | | | | |
Collapse
|
31
|
Cullen CF, Deák P, Glover DM, Ohkura H. mini spindles: A gene encoding a conserved microtubule-associated protein required for the integrity of the mitotic spindle in Drosophila. J Cell Biol 1999; 146:1005-18. [PMID: 10477755 PMCID: PMC2169485 DOI: 10.1083/jcb.146.5.1005] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We describe a new Drosophila gene, mini spindles (msps) identified in a cytological screen for mitotic mutant. Mutation in msps disrupts the structural integrity of the mitotic spindle, resulting in the formation of one or more small additional spindles in diploid cells. Nucleation of microtubules from centrosomes, metaphase alignment of chromosomes, or the focusing of spindle poles appears much less affected. The msps gene encodes a 227-kD protein with high similarity to the vertebrate microtubule-associated proteins (MAPs), human TOGp and Xenopus XMAP215, and with limited similarity to the Dis1 and STU2 proteins from fission yeast and budding yeast. Consistent with their sequence similarity, Msps protein also associates with microtubules in vitro. In the embryonic division cycles, Msps protein localizes to centrosomal regions at all mitotic stages, and spreads over the spindles during metaphase and anaphase. The absence of centrosomal staining in interphase of the cellularized embryos suggests that the interactions between Msps protein and microtubules or centrosomes may be regulated during the cell cycle.
Collapse
Affiliation(s)
- C. Fiona Cullen
- Institute of Cell and Molecular Biology, The University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Peter Deák
- Cancer Research Campaign Laboratories, Department of Anatomy and Physiology, The University of Dundee, DD1 4HN, United Kingdom
- Cancer Research Campaign Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - David M. Glover
- Cancer Research Campaign Laboratories, Department of Anatomy and Physiology, The University of Dundee, DD1 4HN, United Kingdom
- Cancer Research Campaign Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Hiroyuki Ohkura
- Institute of Cell and Molecular Biology, The University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
- Cancer Research Campaign Laboratories, Department of Anatomy and Physiology, The University of Dundee, DD1 4HN, United Kingdom
| |
Collapse
|
32
|
Abstract
As an organizer of the microtubule cytoskeleton in animals, the centrosome has an important function. From the early light microscopic observation of the centrosome to examination by electron microscopy, the centrosome field is now in an era of molecular identification and precise functional analyses. Tables compiling centrosomal proteins and reviews on the centrosome are presented here and demonstrate how active the field is. However, despite this intense research activity, many classical questions are still unanswered. These include those regarding the precise function of centrioles, the mechanism of centrosome duplication and assembly, the origin of the centrosome, and the regulation and mechanism of the centrosomal microtubule nucleation activity. Fortunately, these questions are becoming elucidated based on experimental data discussed here. Given the fact that the centrosome is primarily a site of microtubule nucleation, special focus is placed on the process of microtubule nucleation and on the regulation of centrosomal microtubule nucleation capacity during the cell cycle and in some tissues.
Collapse
Affiliation(s)
- S S Andersen
- Department of Molecular Biology, Princeton University, New Jersey 08540-1014, USA
| |
Collapse
|
33
|
Moritz M, Zheng Y, Alberts BM, Oegema K. Recruitment of the gamma-tubulin ring complex to Drosophila salt-stripped centrosome scaffolds. J Cell Biol 1998; 142:775-86. [PMID: 9700165 PMCID: PMC2148159 DOI: 10.1083/jcb.142.3.775] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/1998] [Revised: 06/30/1998] [Indexed: 02/08/2023] Open
Abstract
Extracting isolated Drosophila centrosomes with 2 M KI generates salt-resistant scaffolds that lack the centrosomal proteins CP190, CP60, centrosomin, and gamma-tubulin. To clarify the role of these proteins in microtubule nucleation by centrosomes and to identify additional centrosome components required for nucleation, we have developed an in vitro complementation assay for centrosome function. Centrosome aster formation is reconstituted when these inactive, salt-stripped centrosome scaffolds are supplemented with a soluble fraction of a Drosophila embryo extract. The CP60 and CP190 can be removed from this extract without effect, whereas removing the gamma-tubulin destroys the complementing activity. Consistent with these results, we find no evidence that these three proteins form a complex together. Instead, gamma-tubulin is found in two distinct protein complexes of 240,000 and approximately 3,000,000 D. The larger complex, which is analogous to the Xenopus gamma-tubulin ring complex (gammaTuRC) (Zheng, Y., M.L. Wong, B. Alberts, and T. Mitchison. 1995. Nature. 378:578-583), is necessary but not sufficient for complementation. An additional factor found in the extract is required. These results provide the first evidence that the gammaTuRC is required for microtubule nucleation at the centrosome.
Collapse
Affiliation(s)
- M Moritz
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-0448, USA
| | | | | | | |
Collapse
|
34
|
Helps NR, Brewis ND, Lineruth K, Davis T, Kaiser K, Cohen PT. Protein phosphatase 4 is an essential enzyme required for organisation of microtubules at centrosomes in Drosophila embryos. J Cell Sci 1998; 111 ( Pt 10):1331-40. [PMID: 9570751 DOI: 10.1242/jcs.111.10.1331] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein serine/threonine phosphatase 4 (PP4), which localises to centrosomes/spindle pole bodies in human cells, is shown to exhibit a similar localisation in Drosophila cells and embryos and possess a highly conserved (91% identical) amino acid sequence from humans to invertebrates. A homozygous Drosophila melanogaster strain mutant in the PP4 gene at 19C1-2 has been produced using P element mutagenesis. This strain, termed centrosomes minus microtubules (cmm), has reduced amounts of PP4 mRNA, approximately 25% of normal PP4 protein in early embryos and exhibits a semi-lethal phenotype with only 10% viability in certain conditions. Reversion mutagenesis shows that the phenotype is due to the presence of the P element in the PP4 mRNA. In early cmm embryos, nuclear divisions become asynchronous and large regions containing centrosomes with no well defined radiating microtubules are visible. In such areas, most nuclei arrest during mitosis with condensed DNA, and mitotic spindle microtubules are either absent, or aberrant and unconnected to the centrosome. A reduction in the staining of gamma-tubulin at centrosomes in cmm embryos suggests a conformational change or relocation of this protein, which is known to be essential for initiation of microtubule growth. These findings indicate that PP4 is required for nucleation, growth and/or stabilisation of microtubules at centrosomes/spindle pole bodies.
Collapse
Affiliation(s)
- N R Helps
- Medical Research Council Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, Dundee DD1 4HN, Scotland, UK
| | | | | | | | | | | |
Collapse
|
35
|
Li K, Xu EY, Cecil JK, Turner FR, Megraw TL, Kaufman TC. Drosophila centrosomin protein is required for male meiosis and assembly of the flagellar axoneme. J Cell Biol 1998; 141:455-67. [PMID: 9548723 PMCID: PMC2148447 DOI: 10.1083/jcb.141.2.455] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/1997] [Revised: 01/26/1998] [Indexed: 02/07/2023] Open
Abstract
Centrosomes and microtubules play crucial roles during cell division and differentiation. Spermatogenesis is a useful system for studying centrosomal function since it involves both mitosis and meiosis, and also transformation of the centriole into the sperm basal body. Centrosomin is a protein localized to the mitotic centrosomes in Drosophila melanogaster. We have found a novel isoform of centrosomin expressed during spermatogenesis. Additionally, an anticentrosomin antibody labels both the mitotic and meiotic centrosomes as well as the basal body. Mutational analysis shows that centrosomin is required for spindle organization during meiosis and for organization of the sperm axoneme. These results suggest that centrosomin is a necessary component of the meiotic centrosomes and the spermatid basal body.
Collapse
Affiliation(s)
- K Li
- Howard Hughes Medical Institute, Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | | | |
Collapse
|
36
|
Rothwell WF, Fogarty P, Field CM, Sullivan W. Nuclear-fallout, a Drosophila protein that cycles from the cytoplasm to the centrosomes, regulates cortical microfilament organization. Development 1998; 125:1295-303. [PMID: 9477328 DOI: 10.1242/dev.125.7.1295] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
nuclear fallout (nuf) is a maternal effect mutation that specifically disrupts the cortical syncytial divisions during Drosophila embryogenesis. We show that the nuf gene encodes a highly phosphorylated novel protein of 502 amino acids with C-terminal regions predicted to form coiled-coils. During prophase of the late syncytial divisions, Nuf concentrates at the centrosomes and is generally cytoplasmic throughout the rest of the nuclear cycle. In nuf-derived embryos, the recruitment of actin from caps to furrows during prophase is disrupted. This results in incomplete metaphase furrows specifically in regions distant from the centrosomes. The nuf mutation does not disrupt anillin or peanut recruitment to the metaphase furrows indicating that Nuf is not involved in the signaling of metaphase furrow formation. These results also suggest that anillin and peanut localization are independent of actin localization to the metaphase furrows. nuf also disrupts the initial stages of cellularization and produces disruptions in cellularization furrows similar to those observed in the metaphase furrows. The localization of Nuf to centrosomal regions throughout cellularization suggests that it plays a similar role in the initial formation of both metaphase and cellularization furrows. A model is presented in which Nuf provides a functional link between centrosomes and microfilaments.
Collapse
Affiliation(s)
- W F Rothwell
- Department of Biology, University of California, Santa Cruz, California 95064, USA
| | | | | | | |
Collapse
|
37
|
Riparbelli MG, Stouthamer R, Dallai R, Callaini G. Microtubule organization during the early development of the parthenogenetic egg of the hymenopteran Muscidifurax uniraptor. Dev Biol 1998; 195:89-99. [PMID: 9520327 DOI: 10.1006/dbio.1997.8841] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The origin of the zygotic centrosome is an important step in developmental biology. It is generally thought that sperm at fertilization plays a central role in forming the functional centrosome which subsequently organizes the first mitotic spindle. However, this view is not applicable in the case of parthenogenetic eggs which develop without the sperm contribution. To clarify the problem of the origin of the zygotic centrosome during parthenogenetic development, we studied a hymenopteran, Muscidifurax uniraptor. Antitubulin antibody revealed that after activation several asters assembled in the egg cytoplasm. The number of asters varied in relation to the cell cycle. They became visible from anaphase of the first meiotic division and increased in number as meiosis progressed, reaching a maximum at the first mitosis. From anaphase-telophase of the first mitosis they decreased in number and were no longer found during the third mitotic division. To elucidate the nature of these asters we performed an ultrastructural study with transmission electron microscopy and immunofluorescence with antibodies against anti-gamma-tubulin and CP190. In this way we showed the presence in these asters of centrosomal components and centrioles. Our observations suggest that the cytoplasm of Muscidifurax eggs contains a pool of inactive centrosomal precursor proteins becoming able to nucleate microtubules into well-defined asters containing centrioles after activation.
Collapse
Affiliation(s)
- M G Riparbelli
- Department of Evolutionary Biology, University of Siena, Via Mattioli 4, Siena, 53100, Italy
| | | | | | | |
Collapse
|
38
|
Riparbelli MG, Callaini G. gamma-Tubulin is transiently associated with the Drosophila oocyte meiotic apparatus. Eur J Cell Biol 1998; 75:21-8. [PMID: 9523151 DOI: 10.1016/s0171-9335(98)80042-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Evidence of a distinct microtubule organizing center in the meiotic apparatus of the fertilized Drosophila egg is provided by means of specific antibodies. This center contained gamma-tubulin and CP190 antigens and nucleated a transient array of radial microtubules. When the eggs were incubated with the microtubule-depolymerizing drug colchicine, gamma-tubulin became undetectable in correspondence with the meiotic chromosomes, whereas it was visible near the sperm nucleus. Since the main difference between male and female microtubule organizing centers was the presence/absence of the centrioles, we propose that these organelles were mainly involved in the spatial organization of the microtubule nucleating material.
Collapse
Affiliation(s)
- M G Riparbelli
- Department of Evolutionary Biology, University of Siena, Italy
| | | |
Collapse
|
39
|
Callaini G, Whitfield WG, Riparbelli MG. Centriole and centrosome dynamics during the embryonic cell cycles that follow the formation of the cellular blastoderm in Drosophila. Exp Cell Res 1997; 234:183-90. [PMID: 9223385 DOI: 10.1006/excr.1997.3618] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have used immunofluorescence and electron microscopy to examine centrosome dynamics during the first postblastodermic mitoses in the Drosophila embryo. The centrosomal material, as recognized by antibodies against CP190 and gamma-tubulin, does not show the typical shape changes observed in syncytial embryos, but remains compact throughout mitosis. Centrioles, however, behave as during the syncytial mitoses, with each daughter cell inheriting two separated centrioles at the end of telophase. During interphase in epithelial cells that have a distinct G1 phase, two isolated centrioles are found, suggesting that the separation of sister centrioles is tightly coupled to a mitotic oscillator in both the "abbreviated" and the "complete" embryonic division cycles. The centrioles of the Drosophila embryo sharply differed from the sperm basal body, having a cartwheel structure with nine microtubular doublets and a central tubule. This "immature" centriolar morphology was shown to persist throughout embryonic development, clearly demonstrating that these centrioles are able to replicate despite their apparently neotenic structure.
Collapse
Affiliation(s)
- G Callaini
- Department of Evolutionary Biology, University of Siena, Italy
| | | | | |
Collapse
|
40
|
Riparbelli MG, Whitfield WG, Dallai R, Callaini G. Assembly of the zygotic centrosome in the fertilized Drosophila egg. Mech Dev 1997; 65:135-44. [PMID: 9256351 DOI: 10.1016/s0925-4773(97)00066-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Zygotic centrosome assembly in fertilized Drosophila eggs was analyzed with the aid of an antiserum Rb188, previously shown to be specific for CP190, a 190 kDa centrosome-associated protein (Whitfield et al. (1988) J. Cell Sci. 89, 467-480; Whitfield et al. (1995) J. Cell Sci. 108, 3377-3387). The CP190 protein was detected in two discrete spots, associated with the anterior and posterior ends of the elongating nucleus of Drosophila spermatids. As the spermatids matured, this labelling gradually disappeared and was no longer visible in sperm dissected from spermathecae and ventral receptacles. gamma-Tubulin was also found in association with the posterior end of the sperm nucleus during spermiogenesis, but was not detected in mature sperm. This suggests that CP190 and gamma-tubulin are not present in detectable quantities in fertilizing sperm. CP190 was not detected in association with the sperm nucleus of newly fertilized eggs removed from the uterus, whereas many CP190-positive particles were associated with microtubules of the sperm aster from anaphase I to anaphase II. These particles disappeared during early telophase II and only one pair of CP190-positive spots remained visible at the microtubule focus of the sperm aster. These spots were associated with one aster through telophase, and then moved away to form two smaller asters from which the first mitotic spindle was organized. Colchicine treatment suggested that at least some CP190 protein is an integral part of the centrosome rather than merely being transported along microtubules. Centrosomal localization of the CP190 antigen was prevented by incubation of the permeabilized zygote in 20 mM EDTA.
Collapse
Affiliation(s)
- M G Riparbelli
- Department of Evolutionary Biology, University of Siena, Italy
| | | | | | | |
Collapse
|
41
|
Yang Z, Gallicano GI, Yu QC, Fuchs E. An unexpected localization of basonuclin in the centrosome, mitochondria, and acrosome of developing spermatids. J Cell Biol 1997; 137:657-69. [PMID: 9151672 PMCID: PMC2139879 DOI: 10.1083/jcb.137.3.657] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/1997] [Revised: 02/21/1997] [Indexed: 02/04/2023] Open
Abstract
Basonuclin is a zinc finger protein that was thought to be restricted to keratinocytes of stratified squamous epithelia. In epidermis, basonuclin is associated with the nuclei of mitotically active basal cells but not in terminally differentiating keratinocytes. We report here the isolation of a novel form of basonuclin, which we show is also expressed in stratified epithelia. Most unexpectedly, we find both forms in testis, where a surprising localization pattern was uncovered. While basonuclin RNA expression occurs in mitotically active germ cells, protein was not detected until the meiotic stage, where basonuclin localized to the appendage of the distal centriole of spermatocytes and spermatids. Near the end of spermiogenesis, basonuclin also accumulated in the acrosome and mitochondrial sheath surrounding the flagellum. Intriguingly, a perfect six-amino acid residue mitochondrial targeting sequence (Komiya, T., N. Hachiya, M. Sakaguchi, T. Omura, and K. Mihara. 1994. J. Biol. Chem. 269:30893-30897; Shore, G.C., H.M. McBride, D.G. Millar, N.A. Steenaart, and M. Nguyen. 1995. Eur. J. Biochem. 227: 9-18; McBride, H.M., I.S. Goping, and G.C. Shore. 1996. J. Cell. Biol. 134:307-313) is present in basonuclin 1a but not in the 1b form. Moreover, three distinct affinity-purified peptide antibodies gave this unusual pattern of basonuclin antibody staining, which was confirmed by cell fractionation studies. Our findings suggest a unique role for basonuclin in centrosomes within the developing spermatid, and a role for one of the protein forms in germ cell mitochondrial function. Its localization with the acrosome suggests that it may also perform a special function during or shortly after fertilization.
Collapse
Affiliation(s)
- Z Yang
- Department of Molecular Genetics and Cell Biology, The Howard Hughes Medical Institute, The University of Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
42
|
Esteban MR, Campos MC, Perondini AL, Goday C. Role of microtubules and microtubule organizing centers on meiotic chromosome elimination in Sciara ocellaris. J Cell Sci 1997; 110 ( Pt 6):721-30. [PMID: 9099946 DOI: 10.1242/jcs.110.6.721] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spindle formation and chromosome elimination during male meiosis in Sciara ocellaris (Diptera, Sciaridae) has been studied by immunofluorescence techniques. During meiosis I a monopolar spindle is formed from a single polar complex (centrosome-like structure). This single centrosomal structure persists during meiosis II and is responsible for the non-disjunction of the maternal X chromatids. During meiosis I and II non-spindle microtubules are assembled in the cytoplasmic bud regions of the spermatocytes. The chromosomes undergoing elimination during both meiotic divisions are segregated to the bud region where they associate with bundles of microtubules. The presence and distribution of centrosomal antigens in S. ocellaris meiotic spindles and bud regions has been investigated using different antibodies. gamma-Tubulin and centrin are present in the bud as well as in the single polar complex of first meiotic spindle. The results suggest that spermatocyte bud regions contain microtubule-organizing centres (MTOCs) that nucleate cytoplasmic microtubules that are involved in capturing chromosomes in the bud regions. The distribution of actin and myosin in the spermatocytes during meiosis is also reported.
Collapse
Affiliation(s)
- M R Esteban
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | |
Collapse
|
43
|
Lopez JM, Wolfner MF. The developmentally regulated Drosophila embryonic nuclear lamina protein ‘Young Arrest’ (fs(1)Ya) is capable of associating with chromatin. J Cell Sci 1997; 110 ( Pt 5):643-51. [PMID: 9092946 DOI: 10.1242/jcs.110.5.643] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Drosophila fs(1)Ya protein (YA) is an essential component of the early embryonic nuclear lamina. Mutant zygotes lacking functional YA arrest in the first division cycles following fertilization, hence having a ‘Young Arrest’ of their development. The nuclear lamina is thought to act as the structural backbone for the nucleus and to provide anchoring sites for interphase chromosomes. Here, we demonstrate in vitro that YA is not required for the de novo formation of nuclear structures. Since YA's sequence predicts potential DNA binding motifs, this protein may instead function to connect the lamina and chromosomes, and thus aid in organizing the nucleus. We ectopically expressed YA in polytene cells and demonstrated its association with polytene chromosomes, preferentially at interbands. Furthermore, our in vitro studies indicate that embryonic YA protein is capable of associating with decondensed chromatin. These observations suggest that YA may be required for the interaction between chromatin and the nuclear envelope during early embryogenesis.
Collapse
Affiliation(s)
- J M Lopez
- Section of Genetics and Development, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
44
|
Abstract
In many cell types the formation of microtubules from tubulin subunits is initiated at defined nucleation sites at the centrosome. These sites contain the conserved gamma-tubulin which is in association with additional not very will characterised proteins, identified as components of a gamma-tubulin ring complex from Xenopus egg extracts or from suppressor screens in the yeast Saccharomyces cerevisiae. In this review we discuss two recently proposed models of how the gamma-tubulin complex assists in the assembly of tubulin to form microtubules. These models propose different roles for gamma-tubulin and the other proteins in the complex in tubulin assembly. While the structure and composition of a microtubule nucleation site is becoming clearer, it is still unknown how the cell-cycle dependent regulation of microtubule nucleation sites is achieved and whether they disassemble after microtubule formation in order to allow microtubule fluxes towards the centrosome which have been observed in mitotic cells.
Collapse
Affiliation(s)
- G Pereira
- Max-Planck Institut für Biochemie, Genzentrum, Martinsried, Germany
| | | |
Collapse
|
45
|
Baluska F, Volkmann D, Barlow PW. Nuclear components with microtubule-organizing properties in multicellular eukaryotes: functional and evolutionary considerations. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 175:91-135. [PMID: 9203357 DOI: 10.1016/s0074-7696(08)62126-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The nucleus and the microtubular cytoskeleton of eukaryotic cells appear to be structurally and functionally interrelated. Together they constitute a "cell body". One of the most important components of this body is a primary microtubule-organizing center (MTOC-I) located on or near the nuclear surface and composed of material that, in addition to constitutive centrosomal material, also comprises some nuclear matrix components. The MTOC-I shares a continuity with the mitotic spindle and, in animal cells, with the centrosome also. Secondary microtubule-organizing centers (MTOC-IIs) are a special feature of walled plant cells and are found at the plasma membrane where they organize arrays of cortical MTs that are essential for ordered cell wall synthesis and hence for cellular morphogenesis. MTOC-IIs are held to be similar in origin to the MTOC-I, but their material has been translocated to the cell periphery, perhaps by MTs organized and radiating from the MTOC-I. Many intranuclear, matrix-related components have been identified to participate in MT organization during mitosis and cytokinesis; some of them also seem to be related to the condensation and decondensation of chromatin during the mitotic chromosome cycle.
Collapse
Affiliation(s)
- F Baluska
- Botanisches Institut, Universität Bonn, Germany
| | | | | |
Collapse
|
46
|
Abstract
The centrosomin (cnn) gene encodes a protein associated with mitotic centrosomes in Drosophila melanogaster and is a target of homeotic gene regulation. Here we report that CNN is an essential component of the centrosome. Loss of zygotic cnn expression disrupts the development of the second midgut constriction, the gastric caeca, and the nervous system. Embryos that lack maternal as well as zygotic cnn expression display defects in nuclear division, chromosome alignment, and microtubule organization, while adult flies that are mosaic for cnn-cells exhibit defects indicative of a block in cell proliferation. We propose that cnn provides an example of homeotic genes directly regulating the accumulation of essential cellular proteins to carry out segment-specific morphogenetic functions.
Collapse
Affiliation(s)
- K Li
- Howard Hughes Medical Institute Department of Biology Indiana University, Bloomington 47405, USA
| | | |
Collapse
|
47
|
Riparbelli MG, Callaini G. Meiotic spindle organization in fertilized Drosophila oocyte: presence of centrosomal components in the meiotic apparatus. J Cell Sci 1996; 109 ( Pt 5):911-8. [PMID: 8743938 DOI: 10.1242/jcs.109.5.911] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined spindle reorganization during the completion of meiosis in fertilized and unfertilized oocytes of Drosophila using indirect immunofluorescence and laser scanning confocal microscopy. The results defined a complex pathway of spindle assembly during resumption of meiosis, and revealed a transient array of microtubules radiating from the equatorial region of the spindle towards discrete foci in the egg cortex. A monastral array of microtubules was observed between twin metaphase II spindles in fertilized and unfertilized eggs. The microtubules originated from disk-shaped material stained with Rb188 antibody specific for an antigen associated with the centrosome of Drosophila embryos. The Drosophila egg, therefore, contains a maternal pool of centrosomal components undetectable in mature inactivated oocytes. These components nucleate microtubules in a monastral array after activation, but are unable to organize bipolar spindles.
Collapse
Affiliation(s)
- M G Riparbelli
- Department of Evolutionary Biology, University of Siena, Italy
| | | |
Collapse
|