1
|
The Cytoskeleton and Its Roles in Self-Organization Phenomena: Insights from Xenopus Egg Extracts. Cells 2021; 10:cells10092197. [PMID: 34571847 PMCID: PMC8465277 DOI: 10.3390/cells10092197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 01/11/2023] Open
Abstract
Self-organization of and by the cytoskeleton is central to the biology of the cell. Since their introduction in the early 1980s, cytoplasmic extracts derived from the eggs of the African clawed-frog, Xenopus laevis, have flourished as a major experimental system to study the various facets of cytoskeleton-dependent self-organization. Over the years, the many investigations that have used these extracts uniquely benefited from their simplified cell cycle, large experimental volumes, biochemical tractability and cell-free nature. Here, we review the contributions of egg extracts to our understanding of the cytoplasmic aspects of self-organization by the microtubule and the actomyosin cytoskeletons as well as the importance of cytoskeletal filaments in organizing nuclear structure and function.
Collapse
|
2
|
Graziano S, Kreienkamp R, Coll-Bonfill N, Gonzalo S. Causes and consequences of genomic instability in laminopathies: Replication stress and interferon response. Nucleus 2019; 9:258-275. [PMID: 29637811 PMCID: PMC5973265 DOI: 10.1080/19491034.2018.1454168] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mammalian nuclei are equipped with a framework of intermediate filaments that function as a karyoskeleton. This nuclear scaffold, formed primarily by lamins (A-type and B-type), maintains the spatial and functional organization of the genome and of sub-nuclear compartments. Over the past decade, a body of evidence has highlighted the significance of these structural nuclear proteins in the maintenance of nuclear architecture and mechanical stability, as well as genome function and integrity. The importance of these structures is now unquestioned given the wide range of degenerative diseases that stem from LMNA gene mutations, including muscular dystrophy disorders, peripheral neuropathies, lipodystrophies, and premature aging syndromes. Here, we review our knowledge about how alterations in nuclear lamins, either by mutation or reduced expression, impact cellular mechanisms that maintain genome integrity. Despite the fact that DNA replication is the major source of DNA damage and genomic instability in dividing cells, how alterations in lamins function impact replication remains minimally explored. We summarize recent studies showing that lamins play a role in DNA replication, and that the DNA damage that accumulates upon lamins dysfunction is elicited in part by deprotection of replication forks. We also discuss the emerging model that DNA damage and replication stress are “sensed” at the cytoplasm by proteins that normally survey this space in search of foreign nucleic acids. In turn, these cytosolic sensors activate innate immune responses, which are materializing as important players in aging and cancer, as well as in the response to cancer immunotherapy.
Collapse
Affiliation(s)
- Simona Graziano
- a Edward A. Doisy Department of Biochemistry and Molecular Biology , Saint Louis University School of Medicine , St. Louis , MO , USA
| | - Ray Kreienkamp
- a Edward A. Doisy Department of Biochemistry and Molecular Biology , Saint Louis University School of Medicine , St. Louis , MO , USA
| | - Nuria Coll-Bonfill
- a Edward A. Doisy Department of Biochemistry and Molecular Biology , Saint Louis University School of Medicine , St. Louis , MO , USA
| | - Susana Gonzalo
- a Edward A. Doisy Department of Biochemistry and Molecular Biology , Saint Louis University School of Medicine , St. Louis , MO , USA
| |
Collapse
|
3
|
Kreienkamp R, Gonzalo S. Hutchinson-Gilford Progeria Syndrome: Challenges at Bench and Bedside. Subcell Biochem 2019; 91:435-451. [PMID: 30888661 DOI: 10.1007/978-981-13-3681-2_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The structural nuclear proteins known as "lamins" (A-type and B-type) provide a scaffold for the compartmentalization of genome function that is important to maintain genome stability. Mutations in the LMNA gene -encoding for A-type lamins- are associated with over a dozen of degenerative disorders termed laminopathies, which include muscular dystrophies, lipodystrophies, neuropathies, and premature ageing diseases such as Hutchinson Gilford Progeria Syndrome (HGPS). This devastating disease is caused by the expression of a truncated lamin A protein named "progerin". To date, there is no effective treatment for HGPS patients, who die in their teens from cardiovascular disease. At a cellular level, progerin expression impacts nuclear architecture, chromatin organization, response to mechanical stress, and DNA transactions such as transcription, replication and repair. However, the current view is that key mechanisms behind progerin toxicity still remain to be discovered. Here, we discuss new findings about pathological mechanisms in HGPS, especially the contribution of replication stress to cellular decline, and therapeutic strategies to ameliorate progerin toxicity. In particular, we present evidence for retinoids and calcitriol (hormonal vitamin D metabolite) being among the most potent compounds to ameliorate HGPS cellular phenotypes in vitro, providing the rationale for testing these compounds in preclinical models of the disease in the near term, and in patients in the future.
Collapse
Affiliation(s)
- Ray Kreienkamp
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Doisy Research Center, St Louis University School of Medicine, St. Louis, MO, USA
| | - Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Doisy Research Center, St Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Pappas SS, Liang CC, Kim S, Rivera CO, Dauer WT. TorsinA dysfunction causes persistent neuronal nuclear pore defects. Hum Mol Genet 2019; 27:407-420. [PMID: 29186574 DOI: 10.1093/hmg/ddx405] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/15/2017] [Indexed: 01/09/2023] Open
Abstract
A critical challenge to deciphering the pathophysiology of neurodevelopmental disease is identifying which of the myriad abnormalities that emerge during CNS maturation persist to contribute to long-term brain dysfunction. Childhood-onset dystonia caused by a loss-of-function mutation in the AAA+ protein torsinA exemplifies this challenge. Neurons lacking torsinA develop transient nuclear envelope (NE) malformations during CNS maturation, but no NE defects are described in mature torsinA null neurons. We find that during postnatal CNS maturation torsinA null neurons develop mislocalized and dysfunctional nuclear pore complexes (NPC) that lack NUP358, normally added late in NPC biogenesis. SUN1, a torsinA-related molecule implicated in interphase NPC biogenesis, also exhibits localization abnormalities. Whereas SUN1 and associated nuclear membrane abnormalities resolve in juvenile mice, NPC defects persist into adulthood. These findings support a role for torsinA function in NPC biogenesis during neuronal maturation and implicate altered NPC function in dystonia pathophysiology.
Collapse
Affiliation(s)
| | | | - Sumin Kim
- Cellular and Molecular Biology Program
| | | | - William T Dauer
- Department of Neurology.,Cellular and Molecular Biology Program.,Department of Cell and Developmental Biology.,VA Ann Arbor Health System, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Aze A, Fragkos M, Bocquet S, Cau J, Méchali M. RNAs coordinate nuclear envelope assembly and DNA replication through ELYS recruitment to chromatin. Nat Commun 2017; 8:2130. [PMID: 29242643 PMCID: PMC5730577 DOI: 10.1038/s41467-017-02180-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 11/13/2017] [Indexed: 12/17/2022] Open
Abstract
Upon fertilisation, the sperm pronucleus acquires the competence to replicate the genome through a cascade of events that link chromatin remodelling to nuclear envelope formation. The factors involved have been partially identified and are poorly characterised. Here, using Xenopus laevis egg extracts we show that RNAs are required for proper nuclear envelope assembly following sperm DNA decondensation. Although chromatin remodelling and pre-replication complex formation occur normally, RNA-depleted extracts show a defect in pre-RC activation. The nuclear processes affected by RNA-depletion included ELYS recruitment, which accounts for the deficiency in nuclear pore complex assembly. This results in failure in chromatin relaxation as well as in the import and proper nuclear concentration of the S-phase kinases necessary for DNA replication activation. Our results highlight a translation-independent RNA function necessary for the parental genome progression towards the early embryonic cell cycle programme. The factors that link chromatin remodelling to nuclear envelope formation in the sperm pronucleus are not fully characterised. Here, the authors show that in RNA-depleted Xenopus laevis egg extracts, ELYS recruitment and nuclear pore complex formation are impaired, resulting in defective nuclear processes.
Collapse
Affiliation(s)
- Antoine Aze
- Institute of Human Genetics, UMR 9002, CNRS and the University of Montpellier, Replication and Genome Dynamics, 141 rue de la Cardonille, 34396, Montpellier, France.
| | - Michalis Fragkos
- Institute of Human Genetics, UMR 9002, CNRS and the University of Montpellier, Replication and Genome Dynamics, 141 rue de la Cardonille, 34396, Montpellier, France.,Institut Gustave Roussy, Genetic Stability and Oncogenesis Department, 39 rue Camille Desmoulins, 94805, Villejuif, France
| | - Stéphane Bocquet
- Institute of Human Genetics, UMR 9002, CNRS and the University of Montpellier, Replication and Genome Dynamics, 141 rue de la Cardonille, 34396, Montpellier, France
| | - Julien Cau
- Institute of Human Genetics, UMR 9002, CNRS and the University of Montpellier, Montpellier RIO Imaging, 141 rue de la Cardonille, 34396, Montpellier, France
| | - Marcel Méchali
- Institute of Human Genetics, UMR 9002, CNRS and the University of Montpellier, Replication and Genome Dynamics, 141 rue de la Cardonille, 34396, Montpellier, France.
| |
Collapse
|
6
|
Nuclear pore complex tethers to the cytoskeleton. Semin Cell Dev Biol 2017; 68:52-58. [PMID: 28676424 DOI: 10.1016/j.semcdb.2017.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/23/2017] [Indexed: 12/21/2022]
Abstract
The nuclear envelope is tethered to the cytoskeleton. The best known attachments of all elements of the cytoskeleton are via the so-called LINC complex. However, the nuclear pore complexes, which mediate the transport of soluble and membrane bound molecules, are also linked to the microtubule network, primarily via motor proteins (dynein and kinesins) which are linked, most importantly, to the cytoplasmic filament protein of the nuclear pore complex, Nup358, by the adaptor BicD2. The evidence for such linkages and possible roles in nuclear migration, cell cycle control, nuclear transport and cell architecture are discussed.
Collapse
|
7
|
Abstract
DNA replication begins with the assembly of pre-replication complexes (pre-RCs) at thousands of DNA replication origins during the G1 phase of the cell cycle. At the G1-S-phase transition, pre-RCs are converted into pre-initiation complexes, in which the replicative helicase is activated, leading to DNA unwinding and initiation of DNA synthesis. However, only a subset of origins are activated during any S phase. Recent insights into the mechanisms underlying this choice reveal how flexibility in origin usage and temporal activation are linked to chromosome structure and organization, cell growth and differentiation, and replication stress.
Collapse
|
8
|
Clever M, Mimura Y, Funakoshi T, Imamoto N. Regulation and coordination of nuclear envelope and nuclear pore complex assembly. Nucleus 2013; 4:105-14. [PMID: 23412657 PMCID: PMC3621742 DOI: 10.4161/nucl.23796] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In metazoans with “open” mitosis, cells undergo structural changes involving the complete disassembly of the nuclear envelope (NE). In post-mitosis, the dividing cell faces the difficulty to reassemble NE structures in a highly regulated fashion around separated chromosomes. The de novo formation of nuclear pore complexes (NPCs), which are gateways between the cytoplasm and nucleoplasm across the nuclear membrane, is an archetype of macromolecular assembly and is therefore of special interest. The reformation of a functional NE further involves the reassembly and organization of other NE components, the nuclear membrane and NE proteins, around chromosomes in late mitosis.
Here, we discuss the function of NE components, such as lamins and INM proteins, in NE reformation and highlight recent results on coordination of NPC and NE assembly.
Collapse
Affiliation(s)
- Michaela Clever
- Cellular Dynamics Laboratory, RIKEN Advanced Science Institute 2-1 Hirosawa, Wako, Japan
| | | | | | | |
Collapse
|
9
|
Affiliation(s)
- Chin Yee Ho
- Cornell University, Weill Institute for Cell and Molecular Biology, Department of Biomedical Engineering, Ithaca, NY 14853, USA
| | | |
Collapse
|
10
|
Rafikova ER, Melikov K, Ramos C, Dye L, Chernomordik LV. Transmembrane protein-free membranes fuse into xenopus nuclear envelope and promote assembly of functional pores. J Biol Chem 2009; 284:29847-59. [PMID: 19696024 PMCID: PMC2785615 DOI: 10.1074/jbc.m109.044453] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/17/2009] [Indexed: 11/06/2022] Open
Abstract
Post-mitotic reassembly of nuclear envelope (NE) and the endoplasmic reticulum (ER) has been reconstituted in a cell-free system based on interphase Xenopus egg extract. To evaluate the relative contributions of cytosolic and transmembrane proteins in NE and ER assembly, we replaced a part of native membrane vesicles with ones either functionally impaired by trypsin or N-ethylmaleimide treatments or with protein-free liposomes. Although neither impaired membrane vesicles nor liposomes formed ER and nuclear membrane, they both supported assembly reactions by fusing with native membrane vesicles. At membrane concentrations insufficient to generate full-sized functional nuclei, addition of liposomes and their fusion with membrane vesicles resulted in an extensive expansion of NE, further chromatin decondensation, restoration of the functionality, and spatial distribution of the nuclear pore complexes (NPCs), and, absent newly delivered transmembrane proteins, an increase in NPC numbers. This rescue of the nuclear assembly by liposomes was inhibited by wheat germ agglutinin and thus required active nuclear transport, similarly to the assembly of full-sized functional NE with membrane vesicles. Mechanism of fusion between liposomes and between liposomes and membrane vesicles was investigated using lipid mixing assay. This fusion required interphase cytosol and, like fusion between native membrane vesicles, was inhibited by guanosine 5'-3-O-(thio)triphosphate, soluble N-ethylmaleimide-sensitive factor attachment protein, and N-ethylmaleimide. Our findings suggest that interphase cytosol contains proteins that mediate the fusion stage of ER and NE reassembly, emphasize an unexpected tolerance of nucleus assembly to changes in concentrations of transmembrane proteins, and reveal the existence of a feedback mechanism that couples NE expansion with NPC assembly.
Collapse
Affiliation(s)
- Elvira R. Rafikova
- From the Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892-1855
| | - Kamran Melikov
- From the Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892-1855
| | - Corinne Ramos
- the Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0347, and
| | - Louis Dye
- the Microscopy and Imaging Core, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892-1855
| | - Leonid V. Chernomordik
- From the Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892-1855
| |
Collapse
|
11
|
Prokocimer M, Davidovich M, Nissim-Rafinia M, Wiesel-Motiuk N, Bar DZ, Barkan R, Meshorer E, Gruenbaum Y. Nuclear lamins: key regulators of nuclear structure and activities. J Cell Mol Med 2009; 13:1059-85. [PMID: 19210577 PMCID: PMC4496104 DOI: 10.1111/j.1582-4934.2008.00676.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 01/19/2009] [Indexed: 11/27/2022] Open
Abstract
The nuclear lamina is a proteinaceous structure located underneath the inner nuclear membrane (INM), where it associates with the peripheral chromatin. It contains lamins and lamin-associated proteins, including many integral proteins of the INM, chromatin modifying proteins, transcriptional repressors and structural proteins. A fraction of lamins is also present in the nucleoplasm, where it forms stable complexes and is associated with specific nucleoplasmic proteins. The lamins and their associated proteins are required for most nuclear activities, mitosis and for linking the nucleoplasm to all major cytoskeletal networks in the cytoplasm. Mutations in nuclear lamins and their associated proteins cause about 20 different diseases that are collectively called laminopathies'. This review concentrates mainly on lamins, their structure and their roles in DNA replication, chromatin organization, adult stem cell differentiation, aging, tumorogenesis and the lamin mutations leading to laminopathic diseases.
Collapse
Affiliation(s)
- Miron Prokocimer
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Maya Davidovich
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Malka Nissim-Rafinia
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Naama Wiesel-Motiuk
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Daniel Z Bar
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Rachel Barkan
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Eran Meshorer
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Yosef Gruenbaum
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| |
Collapse
|
12
|
Shumaker DK, Solimando L, Sengupta K, Shimi T, Adam SA, Grunwald A, Strelkov SV, Aebi U, Cardoso MC, Goldman RD. The highly conserved nuclear lamin Ig-fold binds to PCNA: its role in DNA replication. ACTA ACUST UNITED AC 2008; 181:269-80. [PMID: 18426975 PMCID: PMC2315674 DOI: 10.1083/jcb.200708155] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study provides insights into the role of nuclear lamins in DNA replication. Our data demonstrate that the Ig-fold motif located in the lamin C terminus binds directly to proliferating cell nuclear antigen (PCNA), the processivity factor necessary for the chain elongation phase of DNA replication. We find that the introduction of a mutation in the Ig-fold, which alters its structure and causes human muscular dystrophy, inhibits PCNA binding. Studies of nuclear assembly and DNA replication show that lamins, PCNA, and chromatin are closely associated in situ. Exposure of replicating nuclei to an excess of the lamin domain containing the Ig-fold inhibits DNA replication in a concentration-dependent fashion. This inhibitory effect is significantly diminished in nuclei exposed to the same domain bearing the Ig-fold mutation. Using the crystal structures of the lamin Ig-fold and PCNA, molecular docking simulations suggest probable interaction sites. These findings also provide insights into the mechanisms underlying the numerous disease-causing mutations located within the lamin Ig-fold.
Collapse
Affiliation(s)
- Dale K Shumaker
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Burke B, Stewart CL. The laminopathies: the functional architecture of the nucleus and its contribution to disease. Annu Rev Genomics Hum Genet 2008; 7:369-405. [PMID: 16824021 DOI: 10.1146/annurev.genom.7.080505.115732] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most inherited diseases are associated with mutations in a specific gene. Often, mutations in two or more different genes result in diseases with a similar phenotype. Rarely do different mutations in the same gene result in a multitude of seemingly different and unrelated diseases. Mutations in the Lamin A gene (LMNA), which encodes largely ubiquitously expressed nuclear proteins (A-type lamins), are associated with at least eight different diseases, collectively called the laminopathies. Studies examining how different tissue-specific diseases arise from unique LMNA mutations are providing unanticipated insights into the structural organization of the nucleus, and how disruption of this organization relates to novel mechanisms of disease.
Collapse
Affiliation(s)
- Brian Burke
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida 32610
| | | |
Collapse
|
14
|
Cox LS, Faragher RGA. From old organisms to new molecules: integrative biology and therapeutic targets in accelerated human ageing. Cell Mol Life Sci 2007; 64:2620-41. [PMID: 17660942 PMCID: PMC2773833 DOI: 10.1007/s00018-007-7123-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the basic biology of human ageing is a key milestone in attempting to ameliorate the deleterious consequences of old age. This is an urgent research priority given the global demographic shift towards an ageing population. Although some molecular pathways that have been proposed to contribute to ageing have been discovered using classical biochemistry and genetics, the complex, polygenic and stochastic nature of ageing is such that the process as a whole is not immediately amenable to biochemical analysis. Thus, attempts have been made to elucidate the causes of monogenic progeroid disorders that recapitulate some, if not all, features of normal ageing in the hope that this may contribute to our understanding of normal human ageing. Two canonical progeroid disorders are Werner's syndrome and Hutchinson-Gilford progeroid syndrome (also known as progeria). Because such disorders are essentially phenocopies of ageing, rather than ageing itself, advances made in understanding their pathogenesis must always be contextualised within theories proposed to help explain how the normal process operates. One such possible ageing mechanism is described by the cell senescence hypothesis of ageing. Here, we discuss this hypothesis and demonstrate that it provides a plausible explanation for many of the ageing phenotypes seen in Werner's syndrome and Hutchinson-Gilford progeriod syndrome. The recent exciting advances made in potential therapies for these two syndromes are also reviewed.
Collapse
Affiliation(s)
- L. S. Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - R. G. A. Faragher
- School of Pharmacy and Biomolecular Science, University of Brighton, Cockcroft Building, Moulescoomb, Brighton, BN2 4GJ UK
| |
Collapse
|
15
|
Kiseleva E, Morozova KN, Voeltz GK, Allen TD, Goldberg MW. Reticulon 4a/NogoA locates to regions of high membrane curvature and may have a role in nuclear envelope growth. J Struct Biol 2007; 160:224-35. [PMID: 17889556 PMCID: PMC2048824 DOI: 10.1016/j.jsb.2007.08.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 08/10/2007] [Accepted: 08/13/2007] [Indexed: 11/27/2022]
Abstract
Reticulon 4a (Rtn4a) is a membrane protein that shapes tubules of the endoplasmic reticulum (ER). The ER is attached to the nuclear envelope (NE) during interphase and has a role in post mitotic/meiotic NE reassembly. We speculated that Rtn4a has a role in NE dynamics. Using immuno-electron microscopy we found that Rtn4a is located at junctions between membranes in the cytoplasm, and between cytoplasmic membranes and the outer nuclear membrane in growing Xenopus oocyte nuclei. We found that during NE assembly in Xenopus egg extracts, Rtn4a localises to the edges of membranes that are flattening onto the chromatin. These results demonstrate that Rtn4a locates to regions of high membrane curvature in the ER and the assembling NE. Previously it was shown that incubation of egg extracts with antibodies against Rtn4a caused ER to form into large vesicles instead of tubules. To test whether Rtn4a contributes to NE assembly, we added the same Rtn4a antibody to nuclear assembly reactions. Chromatin was enclosed by membranes containing nuclear pore complexes, but nuclei did not grow. Instead large sacs of ER membranes attached to, but did not integrate into the NE. It is possible therefore that Rtn4a may have a role in NE assembly.
Collapse
Affiliation(s)
- Elena Kiseleva
- Laboratory of Morphology and Function of Cell Structure, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, 630090, Russia
| | - Ksenia N. Morozova
- Laboratory of Morphology and Function of Cell Structure, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, 630090, Russia
| | - Gia K. Voeltz
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Terrence D. Allen
- Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - Martin W. Goldberg
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK
- Corresponding author. Fax: +44 0 191 334 1201.
| |
Collapse
|
16
|
Philimonenko AA, Hodný Z, Jackson DA, Hozák P. The microarchitecture of DNA replication domains. Histochem Cell Biol 2005; 125:103-17. [PMID: 16247614 DOI: 10.1007/s00418-005-0090-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2005] [Indexed: 02/07/2023]
Abstract
Most DNA synthesis in HeLa cell nucleus is concentrated in discrete foci. These synthetic sites can be identified by electron microscopy after allowing permeabilized cells to elongate nascent DNA in the presence of biotin-dUTP. Biotin incorporated into nascent DNA can be then immunolabeled with gold particles. Two types of DNA synthetic sites/replication factories can be distinguished at ultrastructural level: (1) electron-dense structures--replication bodies (RB), and (2) focal replication sites with no distinct underlying structure--replication foci (RF). The protein composition of these synthetic sites was studied using double immunogold labeling. We have found that both structures contain (a) proteins involved in DNA replication (DNA polymerase alpha, PCNA), (b) regulators of the cell cycle (cyclin A, cdk2), and (c) RNA processing components like Sm and SS-B/La auto antigens, p80-coilin, hnRNPs A1 and C1/C2. However, at least four regulatory and structural proteins (Cdk1, cyclin B1, PML and lamin B1) differ in their presence in RB and RF. Moreover, in contrast to RF, RB have structural organization. For example, while DNA polymerase alpha, PCNA and hnRNP A1 were diffusely spread throughout RB, hnRNP C1/C2 was found only at the very outside. Surprisingly, RB contained only small amounts of DNA. In conclusion, synthetic sites of both types contain similar but not the same sets of proteins. RB, however, have more developed microarchitecture, apparently with specific functional zones. This data suggest possible differences in genome regions replicated by these two types of replication factories.
Collapse
Affiliation(s)
- Anatoly A Philimonenko
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20, Prague 4-Krc, Czech Republic
| | | | | | | |
Collapse
|
17
|
Alberio R, Johnson AD, Stick R, Campbell KHS. Differential nuclear remodeling of mammalian somatic cells by Xenopus laevis oocyte and egg cytoplasm. Exp Cell Res 2005; 307:131-41. [PMID: 15922733 DOI: 10.1016/j.yexcr.2005.02.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 02/17/2005] [Accepted: 02/19/2005] [Indexed: 11/29/2022]
Abstract
The mechanisms governing nuclear reprogramming have not been fully elucidated yet; however, recent studies show a universally conserved ability of both oocyte and egg components to reprogram gene expression in somatic cells. The activation of genes associated with pluripotency by oocyte/egg components may require the remodeling of nuclear structures, such that they can acquire the features of early embryos and pluripotent cells. Here, we report on the remodeling of the nuclear lamina of mammalian cells by Xenopus oocyte and egg extracts. Lamin A/C is removed from somatic cells incubated in oocyte and egg extracts in an active process that requires permeable nuclear pores. Removal of lamin A/C is specific, since B-type lamins are not changed, and it is not dependent on the incorporation Xenopus egg specific lamin III. Moreover, transcriptional activity is differentially regulated in somatic cells incubated in the extracts. Pol I and II transcriptions are maintained in cells in oocyte extracts; however, both activities are abolished in egg extracts. Our study shows that components of oocyte and egg extracts can modify the nuclear lamina of somatic cells and that this nuclear remodeling induces a structural change in the nucleus which may have implications for transcriptional activity. These experiments suggest that modifications in the nuclear lamina structure by the removal of somatic proteins and the incorporation of oocyte/egg components may contribute to the reprogramming of somatic cell nuclei and may define a characteristic configuration of pluripotent cells.
Collapse
Affiliation(s)
- Ramiro Alberio
- Animal Development and Biotechnology Group, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leics, LE12 5RD, UK
| | | | | | | |
Collapse
|
18
|
Fischer AH, Bardarov S, Jiang Z. Molecular aspects of diagnostic nucleolar and nuclear envelope changes in prostate cancer. J Cell Biochem 2004; 91:170-84. [PMID: 14689589 DOI: 10.1002/jcb.10735] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prostate cancer is still diagnosed by pathologists based on subjective assessment of altered cell and tissue structure. The cellular-level structural changes diagnostic of some forms of cancer are known to be induced by cancer genes, but the relation between specific cellular-level structural features and cancer genes has not been explored in the prostate. Two important cell structural changes in prostate cancer-nucleolar enlargement and nuclear envelope (NE) irregularity-are discussed from the perspective that they should also relate to the function of the genes active in prostate cancer. Enlargement of the nucleolus is the key diagnostic feature of high-grade prostatic intraepithelial neoplasia (PIN), an early stage that appears to be the precursor to the majority of invasive prostate cancers. Nucleolar enlargement classically is associated with increased ribosome production, and production of new ribosomes appears essential for cell-cycle progression. Several cancer genes implicated in PIN are known (in other cell types) to augment ribosome production, including c-Myc, p27, retinoblastoma, p53, and growth factors that impact on ERK signaling. However, critical review of the available information suggests that increased ribosome production per se may be insufficient to explain nucleolar enlargement in PIN, and other newer functions of nucleoli may therefore need to be invoked. NE irregularity develops later in the clonal evolution of some prostate cancers, and it has adverse prognostic significance. Nuclear irregularity has recently been shown to develop dynamically during interphase following oncogene expression, without a requirement for post-mitotic NE reassembly. NE irregularity characteristic of some aggressive prostate cancers could reflect cytoskeletal forces exerted on the NE during active cell locomotion. NE irregularity could also promote chromosomal instability because it leads to chromosomal asymmetry in metaphase. Finally, NE irregularity could impact replication competence, transcriptional programming and nuclear pore function.
Collapse
Affiliation(s)
- Andrew H Fischer
- Department of Pathology, University of Massachusetts UMMHC, Worcester, Massachusetts 01655, USA.
| | | | | |
Collapse
|
19
|
Gruenbaum Y, Goldman RD, Meyuhas R, Mills E, Margalit A, Fridkin A, Dayani Y, Prokocimer M, Enosh A. The nuclear lamina and its functions in the nucleus. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 226:1-62. [PMID: 12921235 DOI: 10.1016/s0074-7696(03)01001-5] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nuclear lamina is a structure near the inner nuclear membrane and the peripheral chromatin. It is composed of lamins, which are also present in the nuclear interior, and lamin-associated proteins. The increasing number of proteins that interact with lamins and the compound interactions between these proteins and chromatin-associated proteins make the nuclear lamina a highly complex but also a very exciting structure. The nuclear lamina is an essential component of metazoan cells. It is involved in most nuclear activities including DNA replication, RNA transcription, nuclear and chromatin organization, cell cycle regulation, cell development and differentiation, nuclear migration, and apoptosis. Specific mutations in nuclear lamina genes cause a wide range of heritable human diseases. These diseases include Emery-Dreifuss muscular dystrophy, limb girdle muscular dystrophy, dilated cardiomyopathy (DCM) with conduction system disease, familial partial lipodystrophy (FPLD), autosomal recessive axonal neuropathy (Charcot-Marie-Tooth disorder type 2, CMT2), mandibuloacral dysplasia (MAD), Hutchison Gilford Progeria syndrome (HGS), Greenberg Skeletal Dysplasia, and Pelger-Huet anomaly (PHA). Genetic analyses in Caenorhabditis elegans, Drosophila, and mice show new insights into the functions of the nuclear lamina, and recent structural analyses have begun to unravel the molecular structure and assembly of lamins and their associated proteins.
Collapse
Affiliation(s)
- Yosef Gruenbaum
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mounkes L, Stewart CL. Structural organization and functions of the nucleus in development, aging, and disease. Curr Top Dev Biol 2004; 61:191-228. [PMID: 15350402 DOI: 10.1016/s0070-2153(04)61008-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Leslie Mounkes
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA
| | | |
Collapse
|
21
|
Fischer AH, Taysavang P, Jhiang SM. Nuclear envelope irregularity is induced by RET/PTC during interphase. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1091-100. [PMID: 12937150 PMCID: PMC1868259 DOI: 10.1016/s0002-9440(10)63468-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nuclear envelope (NE) irregularity is an important diagnostic feature of cancer, and its molecular basis is not understood. One possible cause is abnormal postmitotic NE re-assembly, such that a rounded contour is never achieved before the next mitosis. Alternatively, dynamic forces could deform the NE during interphase following an otherwise normal postmitotic NE re-assembly. To distinguish these possibilities, normal human thyroid epithelial cells were microinjected with the papillary thyroid carcinoma oncogene (RET/PTC1 short isoform, known to induce NE irregularity), an attenuated version of RET/PTC1 lacking the leucine zipper dimerization domain (RET/PTC1 Deltazip), H (V-12) RAS, and labeled dextran. Cells were fixed at 6 or 18 to 24 hours, stained for lamins and the products of microinjected plasmids, and scored blindly using previously defined criteria for NE irregularity. 6.5% of non-injected thyrocytes showed NE irregularity. Neither dextran nor RAS microinjections increased NE irregularity. In contrast, RET/PTC1 microinjection induced NE irregularity in 27% of cells at 6 hours and 37% of cells at 18 to 24 hours. RET/PTC1 Deltazip induced significantly less irregularity. Since irregularity develops quickly, and since no mitoses and only rare possible postmitotic cells were scored, postmitotic NE re-assembly does not appear necessary for RET/PTC signaling to induce an irregular NE contour.
Collapse
Affiliation(s)
- Andrew H Fischer
- Department of Pathology, Emory University Hospital, Atlanta, Georgia, USA.
| | | | | |
Collapse
|
22
|
Abstract
Intermediate filament (IF) proteins are the building blocks of cytoskeletal filaments, the main function of which is to maintain cell shape and integrity. The lamins are thought to be the evolutionary progenitors of IF proteins and they have profound influences on both nuclear structure and function. These influences require the lamins to have dynamic properties and dual identities--as building blocks and transcriptional regulators. Which one of these identities underlies a myriad of genetic diseases is a topic of intense debate.
Collapse
Affiliation(s)
- Christopher J Hutchison
- Department of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
23
|
Willsie JK, Clegg JS. Small heat shock protein p26 associates with nuclear lamins and HSP70 in nuclei and nuclear matrix fractions from stressed cells. J Cell Biochem 2002. [DOI: 10.1002/jcb.10040] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Dimitrova DS, Prokhorova TA, Blow JJ, Todorov IT, Gilbert DM. Mammalian nuclei become licensed for DNA replication during late telophase. J Cell Sci 2002; 115:51-9. [PMID: 11801723 PMCID: PMC1255924 DOI: 10.1242/jcs.115.1.51] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Mcm 2-7 are essential replication proteins that bind to chromatin in mammalian nuclei during late telophase. Here, we have investigated the relationship between Mcm binding, licensing of chromatin for replication, and specification of the dihydrofolate reductase (DHFR) replication origin. Approximately 20% of total Mcm3 protein was bound to chromatin in Chinese hamster ovary (CHO) cells during telophase, while an additional 25% bound gradually and cumulatively throughout G1-phase. To investigate the functional significance of this binding, nuclei prepared from CHO cells synchronized at various times after metaphase were introduced into Xenopus egg extracts, which were either immunodepleted of Mcm proteins or supplemented with geminin, an inhibitor of the Mcm-loading protein Cdt1. Within 1 hour after metaphase, coincident with completion of nuclear envelope formation, CHO nuclei were fully competent to replicate in both of these licensing-defective extracts. However, sites of initiation of replication in each of these extracts were found to be dispersed throughout the DHFR locus within nuclei isolated between 1 to 5 hours after metaphase, but became focused to the DHFR origin within nuclei isolated after 5 hours post-metaphase. Importantly, introduction of permeabilized post-ODP, but not pre-ODP, CHO nuclei into licensing-deficient Xenopus egg extracts resulted in the preservation of a significant degree of DHFR origin specificity, implying that the previously documented lack of specific origin selection in permeabilized nuclei is at least partially due to the licensing of new initiation sites by proteins in the Xenopus egg extracts. We conclude that the functional association of Mcm proteins with chromatin (i.e. replication licensing) in CHO cells takes place during telophase, several hours prior to the specification of replication origins at the DHFR locus.
Collapse
Affiliation(s)
- Daniela S Dimitrova
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| | | | | | | | | |
Collapse
|
25
|
Kiseleva E, Rutherford S, Cotter LM, Allen TD, Goldberg MW. Steps of nuclear pore complex disassembly and reassembly during mitosis in earlyDrosophilaembryos. J Cell Sci 2001; 114:3607-18. [PMID: 11707513 DOI: 10.1242/jcs.114.20.3607] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms of nuclear pore complex (NPC) assembly and disassembly during mitosis in vivo are not well defined. To address this and to identify the steps of the NPC disassembly and assembly, we investigated Drosophila embryo nuclear structure at the syncytial stage of early development using field emission scanning electron microscopy (FESEM), a high resolution surface imaging technique, and transmission electron microscopy. Nuclear division in syncytial embryos is characterized by semi-closed mitosis, during which the nuclear membranes are ruptured only at the polar regions and are arranged into an inner double membrane surrounded by an additional ‘spindle envelope’. FESEM analysis of the steps of this process as viewed on the surface of the dividing nucleus confirm our previous in vitro model for the assembly of the NPCs via a series of structural intermediates, showing for the first time a temporal progression from one intermediate to the next. Nascent NPCs initially appear to form at the site of fusion between the mitotic nuclear envelope and the overlying spindle membrane. A model for NPC disassembly is offered that starts with the release of the central transporter and the removal of the cytoplasmic ring subunits before the star ring.
Collapse
Affiliation(s)
- E Kiseleva
- CRC Department of Structural Cell Biology, Paterson Institute for Cancer Research, Christie Hospital, Wilmslow Road, Manchester, M20 9BX, UK
| | | | | | | | | |
Collapse
|
26
|
Kapon R, Nevo R, Shuhmaher N, Shahar D, Reich Z. From Single Complexes to Single Molecules Using Tapping Mode Scanning Force Microscopy and Capacitance-Based Motion Detection. ACTA ACUST UNITED AC 2001. [DOI: 10.1002/1438-5171(200107)2:2<85::aid-simo85>3.0.co;2-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Smythe C, Jenkins HE, Hutchison CJ. Incorporation of the nuclear pore basket protein nup153 into nuclear pore structures is dependent upon lamina assembly: evidence from cell-free extracts of Xenopus eggs. EMBO J 2000; 19:3918-31. [PMID: 10921874 PMCID: PMC306609 DOI: 10.1093/emboj/19.15.3918] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2000] [Revised: 06/08/2000] [Accepted: 06/14/2000] [Indexed: 11/14/2022] Open
Abstract
In cell-free extracts of Xenopus eggs that support the assembly of replication-competent nuclei, we found that lamin B(3) specifically associates with four polypeptides (termed SLAPs, soluble lamin associated proteins). Here, one SLAP is identified as the nuclear pore complex protein Nup153, one member of the F/GXFG motif-containing nucleoporins. In vitro translated Nup153 and lamin B(3) co-immunoprecipitate, and lamin B(3) interacts specifically with the C-terminal domain of Nup153. During nuclear envelope assembly, other F/GXFG-containing nucleoporins are incorporated into the nuclear envelope preceding lamina assembly. Incorporation of Nup153 occurs at the same time as lamina assembly. When lamina assembly is prevented using the dominant-negative mutant XlaminB delta 2+, Nup153 does not appear at the nuclear envelope, while other F/GXFG-containing nucleoporins and Nup93 are recruited normally. When the lamina of pre-assembled nuclei is disrupted using the same dominant-negative mutant, the distribution of other nucleoporins is unaffected. However, Nup153 recruitment at the nuclear envelope is lost. Our results indicate that both the recruitment and maintenance of Nup153 at the pore are dependent upon the integrity of the lamina.
Collapse
Affiliation(s)
- C Smythe
- The MRC Protein Phosphorylation Unit, MSI/WTB Complex, Dow Street, The University of Dundee, Dundee DD1 5EH, UK.
| | | | | |
Collapse
|
28
|
Moir RD, Spann TP, Herrmann H, Goldman RD. Disruption of nuclear lamin organization blocks the elongation phase of DNA replication. J Cell Biol 2000; 149:1179-92. [PMID: 10851016 PMCID: PMC2175110 DOI: 10.1083/jcb.149.6.1179] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/1999] [Accepted: 05/01/2000] [Indexed: 11/22/2022] Open
Abstract
The role of nuclear lamins in DNA replication is unclear. To address this, nuclei were assembled in Xenopus extracts containing AraC, a reversible inhibitor that blocks near the onset of the elongation phase of replication. Dominant-negative lamin mutants lacking their NH(2)-terminal domains were added to assembled nuclei to disrupt lamin organization. This prevented the resumption of DNA replication after the release of the AraC block. This inhibition of replication was not due to gross disruption of nuclear envelope structure and function. The organization of initiation factors was not altered by lamin disruption, and nuclei resumed replication when transferred to extracts treated with CIP, an inhibitor of the cyclin-dependent kinase (cdk) 2-dependent step of initiation. This suggests that alteration of lamin organization does not affect the initiation phase of DNA replication. Instead, we find that disruption of lamin organization inhibited chain elongation in a dose-dependent fashion. Furthermore, the established organization of two elongation factors, proliferating cell nuclear antigen, and replication factor complex, was disrupted by DeltaNLA. These findings demonstrate that lamin organization must be maintained in nuclei for the elongation phase of DNA replication to proceed.
Collapse
Affiliation(s)
- Robert D. Moir
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | - Timothy P. Spann
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | - Harald Herrmann
- Division of Cell Biology, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Robert D. Goldman
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| |
Collapse
|
29
|
Abstract
DNA replication is a highly conserved process among eukaryotes where it occurs within a unique organelle-the nucleus. The importance of this structure is indicated by the fact that assembly of prereplication complexes on cellular chromatin is delayed until mitosis is completed and a nuclear structure has formed. Although nuclear structure is dispensable for DNA replication in vitro, it does appear to play a role in vivo by regulating the concentration of proteins required to initiate DNA replication, by facilitating the assembly or activity of DNA replication forks, and by determining where in the genome initiation of DNA replication occurs.
Collapse
Affiliation(s)
- M L DePamphilis
- National Institute of Child Health and Human Development, Building 6, Room 416, Bethesda, Maryland, 20892-2753, USA
| |
Collapse
|
30
|
Gruenbaum Y, Wilson KL, Harel A, Goldberg M, Cohen M. Review: nuclear lamins--structural proteins with fundamental functions. J Struct Biol 2000; 129:313-23. [PMID: 10806082 DOI: 10.1006/jsbi.2000.4216] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nuclear lamina is located between the inner nuclear membrane and the peripheral chromatin. It is composed of both peripheral and integral membrane proteins, including lamins and lamina-associated proteins. Lamins can interact with one another, with lamina-associated proteins, with nuclear scaffold proteins, and with chromatin. Likewise, most of the lamina-associated proteins are likely to interact directly with chromatin. The nuclear lamina is required for proper cell cycle regulation, chromatin organization, DNA replication, cell differentiation, and apoptosis. Mutations in proteins of the nuclear lamina can disrupt these activities and cause genetic diseases. The structure and assembly of the nuclear lamina proteins and their roles in chromatin organization and cell cycle regulation were recently reviewed. In this review, we discuss the roles of the nuclear lamina in DNA replication and apoptosis and analyze how mutations in nuclear lamina proteins might cause genetic diseases.
Collapse
Affiliation(s)
- Y Gruenbaum
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | | | | | | | | |
Collapse
|
31
|
Tanaka T, Shimizu N. Induced detachment of acentric chromatin from mitotic chromosomes leads to their cytoplasmic localization at G(1) and the micronucleation by lamin reorganization at S phase. J Cell Sci 2000; 113 ( Pt 4):697-707. [PMID: 10652262 DOI: 10.1242/jcs.113.4.697] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Acentric and atelomeric double minute chromatin found in human cancer cells are eliminated from cells by selective incorporation into the micronuclei. We showed previously that most of the micronuclei were formed at S phase and mediated by the nuclear bud-shaped structures that selectively entrap double minutes. In this paper, we have examined the behavior of double minutes in relation to the nuclear lamin protein in cell cycle-synchronized human COLO 320DM tumor cells. At the G(1) phase, we observed that a portion of double minutes was localized at the cytoplasm and showed no association with lamin. The frequency of this localization was increased by hydroxyurea, an inducer of micronuclei, if treated at the preceding S phase. The acentric double minutes were normally segregated to daughter cells by attaching to the mitotic chromosomes, and the hydroxyurea-treatment induced their detachment, possibly through the introduction of the double strand break. When the cells entered S phase, our data suggested that the lamin protein accumulated around the cytoplasmic double minutes at the proximity of the nucleus leading to the formation of the nuclear bud-shaped structure and the initiation of DNA replication. This association of cytoplasmic double minutes with lamin coincided with the large-scale rearrangement of the intranuclear lamin protein. The implication of these findings as well as their application to a broad spectrum of other acentric, atelomeric and autonomously replicating molecules are discussed.
Collapse
Affiliation(s)
- T Tanaka
- Faculty of Integrated Arts, Hiroshima University, Higashi-hiroshima, Japan
| | | |
Collapse
|
32
|
Tchang F, Méchali M. Nuclear import of p53 during Xenopus laevis early development in relation to DNA replication and DNA repair. Exp Cell Res 1999; 251:46-56. [PMID: 10438570 DOI: 10.1006/excr.1999.4570] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The role of p53 in transcriptional activation of genes involved in cell cycle progression is well established. However, the wide range of functions attributed to this gene suggests that some of them might be unrelated to transcription. Here we investigated p53 localization and recruitment to chromatin during Xenopus early development when 12 rapid cell cycles occur without transcription of the genome. We show that after fertilization, part of the large store of p53 previously stored in the cytoplasm of the oocyte is imported into the nucleus. This import was further analyzed in relation with DNA replication and DNA repair using cell-free systems from Xenopus eggs. Formation of a nuclear lamina envelope is necessary for the import of p53 into the nucleus. p53 associates both with decondensed DNA and the nuclear lamina envelope, but no colocalization with prereplication or replication complexes is observed. We show that UV- or gamma-damaged nuclei recruit p53 as well as replication protein A (RPA) in large common foci. Together, these data suggest that p53 plays a role in the regulation of the accelerated S phases that occur during Xenopus early development, in a manner that does not rely on its transcription-mediated activity.
Collapse
Affiliation(s)
- F Tchang
- Genome Dynamics and Development, CNRS, 141 Rue de la Cardonille, Montpellier Cedex 5, 34396, France
| | | |
Collapse
|
33
|
Gajewski A, Krohne G. Subcellular distribution of the Xenopus p58/lamin B receptor in oocytes and eggs. J Cell Sci 1999; 112 ( Pt 15):2583-96. [PMID: 10393814 DOI: 10.1242/jcs.112.15.2583] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The p58/lamin B receptor of vertebrates is localized in the inner nuclear membrane. Antibodies raised against the bacterially expressed amino-terminal half of Xenopus p58 (Xp58) revealed that in Xenopus oocytes the vast majority of this membrane protein is localized in cytoplasmic membranes. Only very small amounts of p58 not detectable by immunofluorescence microscopy were contained in the oocyte nuclear envelope. In contrast, nuclear membranes of 2-cell stage embryos were successfully stained with p58 antibodies, nuclei reconstituted in vitro in Xenopus egg extracts contained p58, and the nucleoplasmic domain of Xp58 could be specifically bound to sperm chromatin in vitro. One major difference between oocytes and early embryonic cells is that no chromatin is associated with the oocyte inner nuclear membrane whereas the complement of lamins is identical in both cell types. To gain insight into the properties of oocyte p58 we microinjected isolated nuclei of cultured rat cells into the cytoplasm of Xenopus oocytes. The oocyte p58 was detectable by immunofluorescence microscopy within 16-20 hours in the nuclear membrane of rat nuclei. Our data indicate that the peripheral chromatin but not lamins are required for the retention of p58 in the inner nuclear membrane. Sucrose step gradient centrifugation of total oocyte membranes revealed that the oocyte p58 was predominantly recovered in membrane fractions that did not contain lamins whereas membrane associated lamins and p58 of unfertilized eggs were found in the same fractions. By electron microscopical immunolocalizations one major population of meiotic p58 vesicles was identified that contained exclusively p58 and a second minor population (ca. 11% of p58 vesicles) contained in addition to p58 membrane bound B-type lamins. Egg vesicles containing pore membrane proteins were predominantly recovered in gradient fractions that did not contain p58 and B-type lamins. Our data indicate that the targeting of p58 to chromatin at the end of mitosis in the early Xenopus embryo is a process independent from that of lamin targeting. Comparable to the situation in oocytes and eggs, a significant proportion of p58 of interphase cells could be recovered in fractions that did not contain lamins. This population of p58 molecules could be extracted from A6-cells with buffers containing 1% Triton X-100/0.15 M NaCl and could be pelleted by a 50,000 g centrifugation. A- and B-type lamins were not detectable in the p58 containing pellet.
Collapse
Affiliation(s)
- A Gajewski
- Division of Electron Microscopy, Biocenter of the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | |
Collapse
|
34
|
Lang C, Paulin-Levasseur M, Gajewski A, Alsheimer M, Benavente R, Krohne G. Molecular characterization and developmentally regulated expression of Xenopus lamina-associated polypeptide 2 (XLAP2). J Cell Sci 1999; 112 ( Pt 5):749-59. [PMID: 9973608 DOI: 10.1242/jcs.112.5.749] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lamina-associated polypeptides 2 (LAP2alpha, beta, gamma)/thymopoietins (TPalpha, beta, gamma) are a family of proteins that are generated by alternative splicing from a single gene. These proteins have been primarily characterized in mammals. One member of this protein family, the integral membrane protein LAP2beta/TPbeta, has been localized to the inner nuclear membrane of somatic cells where it binds to chromatin and B-type lamins. By cDNA cloning we have characterized XLAP2, a Xenopus homologue of the mammalian LAP2beta. Using LAP2-specific antibodies, the Mr 68,000 XLAP2 was found to be the only member of the LAP2/TP family expressed in somatic cells and adult tissues. XLAP2 was not detected in oocytes, eggs and in early embryos up to the gastrula stage at the mRNA and protein level demonstrating that it is not synthesized from maternal mRNA. In counterpart oocytes, eggs, and embryos contained one LAP2-related integral membrane proteins of Mr 84,000. Northern blot analysis with the XLAP2 cDNA showed that a single hybridizing mRNA band of 1.8-2.0 kb was present in Xenopus somatic cells whereas two other hybridizing mRNA species of 2.8-3.0 and 0. 9–1.1 kb were present in oocytes, eggs and early embryos. All together, these results indicated that at least three distinct LAP2-related proteins might be expressed in Xenopus. The LAP2/TP protein of Mr 84,000 is present in the early embryos but its amount decreases during embryogenesis concomitant with the increase of XLAP2 in the embryo. Our results are the first description of the developmentally regulated expression of integral nuclear envelope proteins during early embryogenesis.
Collapse
Affiliation(s)
- C Lang
- Division of Electron Microscopy, and Department of Cell and Developmental Biology, Biocenter of the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
The process by which eukaryotic cells decide when and where to initiate DNA replication has been illuminated in yeast, where specific DNA sequences (replication origins) bind a unique group of proteins (origin recognition complex) next to an easily unwound DNA sequence at which replication can begin. The origin recognition complex provides a platform on which additional proteins assemble to form a pre-replication complex that can be activated at S-phase by specific protein kinases. Remarkably, multicellular eukaryotes, such as frogs, flies, and mammals (metazoa), have counterparts to these yeast proteins that are required for DNA replication. Therefore, one might expect metazoan chromosomes to contain specific replication origins as well, a hypothesis that has long been controversial. In fact, recent results strongly support the view that DNA replication origins in metazoan chromosomes consist of one or more high frequency initiation sites and perhaps several low frequency ones that together can appear as a nonspecific initiation zone. Specific replication origins are established during G1-phase of each cell cycle by multiple parameters that include nuclear structure, chromatin structure, DNA sequence, and perhaps DNA modification. Such complexity endows metazoa with the flexibility to change both the number and locations of replication origins in response to the demands of animal development.
Collapse
Affiliation(s)
- M L DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2753, USA.
| |
Collapse
|
36
|
Lourim D, Krohne G. Chromatin binding and polymerization of the endogenous Xenopus egg lamins: the opposing effects of glycogen and ATP. J Cell Sci 1998; 111 ( Pt 24):3675-86. [PMID: 9819358 DOI: 10.1242/jcs.111.24.3675] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously identified and quantitated three B-type lamin isoforms present in the nuclei of mature Xenopus laevis oocytes, and in cell-free egg extracts. As Xenopus egg extracts are frequently used to analyze nuclear envelope assembly and lamina functions, we felt it was imperative that the polymerization and chromatin-binding properties of the endogenous B-type egg lamins be investigated. While we have demonstrated that soluble B-type lamins bind to chromatin, we have also observed that the polymerization of egg lamins does not require membranes or chromatin. Lamin assembly is enhanced by the addition of glycogen/glucose, or by the depletion of ATP from the extract. Moreover, the polymerization of egg cytosol lamins and their binding to demembranated sperm or chromatin assembled from naked lambda-DNA is inhibited by an ATP regeneration system. These ATP-dependent inhibitory activities can be overcome by the coaddition of glycogen to egg cytosol. We have observed that glycogen does not alter ATP levels during cytosol incubation, but rather, as glycogen-enhanced lamin polymerization is inhibited by okadaic acid, we conclude that glycogen activates protein phosphatases. Because protein phosphatase 1 (PP1) is the only phosphatase known to be specifically regulated by glycogen our data indicate that PP1 is involved in lamin polymerization. Our results show that ATP and glycogen effect lamin polymerization and chromatin binding by separate and opposing mechanisms.
Collapse
Affiliation(s)
- D Lourim
- Division of Electron Microscopy, Biocenter of the University of W urzburg, Am Hubland, D-97074 Würzburg, Germany
| | | |
Collapse
|
37
|
Ortega JM, DePamphilis ML. Nucleoskeleton and initiation of DNA replication in metazoan cells. J Cell Sci 1998; 111 ( Pt 24):3663-73. [PMID: 9819357 DOI: 10.1242/jcs.111.24.3663] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine whether or not initiation sites for DNA replication in mammalian cells are defined by association with nuclear structure, attachments between the nucleoskeleton and the hamster DHFR gene initiation zone were examined. Nucleoskeletons were prepared by encapsulating cells in agarose and then extracting them with a nonionic detergent in a physiological buffer. The fraction of DNA that remained following endonuclease digestion was resistant to salt, sensitive to Sarkosyl, and essentially unchanged by glutaraldehyde crosslinking. Although newly replicated DNA was preferentially attached to the nucleoskeleton, no specific sequence was preferentially attached within a 65 kb locus containing the DHFR gene, two origins of bi-directional replication and at least one nuclear matrix attachment region. Instead, the entire region went from preferentially unattached to preferentially attached as cells progressed from G1 to late S-phase. Thus, initiation sites in mammalian chromosomes are not defined by attachments to the nucleoskeleton. To further assess the relationship between the nucleoskeleton and DNA replication, plasmid DNA containing the DHFR initiation region was replicated in a Xenopus egg extract. All of the DNA associated with the nucleoskeleton prior to S-phase without preference for a particular sequence and was released upon mitosis. However, about half of this DNA was trapped rather than bound to the nucleoskeleton. Thus, attachments to the nucleoskeleton can form in the absence of either DNA replication or transcription, but if they are required for replication, they are not maintained once replication is completed.
Collapse
Affiliation(s)
- J M Ortega
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
38
|
Lemaitre JM, Géraud G, Méchali M. Dynamics of the genome during early Xenopus laevis development: karyomeres as independent units of replication. J Cell Biol 1998; 142:1159-66. [PMID: 9732278 PMCID: PMC2149347 DOI: 10.1083/jcb.142.5.1159] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During Xenopus laevis early development, the genome is replicated in less than 15 min every 30 min. We show that during this period, DNA replication proceeds in an atypical manner. Chromosomes become surrounded by a nuclear membrane lamina forming micronuclei or karyomeres. This genomic organization permits that prereplication centers gather on condensed chromosomes during anaphase and that DNA replication initiates autonomously in karyomeres at early telophase before nuclear reconstruction and mitosis completion. The formation of karyomeres is not dependent on DNA replication but requires mitotic spindle formation and the normal segregation of chromosomes. Thus, during early development, chromosomes behave as structurally and functionally independent units. The formation of a nuclear envelope around each chromosome provides an in vivo validation of its role in regulating initiation of DNA replication, enabling the rate of replication to accelerate and S phase to overlap M phase without illegitimate reinitiation. The abrupt disappearance of this atypical organization within one cell cycle after thirteen divisions defines a novel developmental transition at the blastula stage, which may affect both the replication and the transcription programs of development.
Collapse
Affiliation(s)
- J M Lemaitre
- Institut Jacques Monod, Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Embryologie Moléculaire, 75251 Paris Cedex 05, France
| | | | | |
Collapse
|
39
|
Abstract
Nuclear lamins are intermediate filament-type proteins that are the major building blocks of the nuclear lamina, a fibrous proteinaceous meshwork underlying the inner nuclear membrane. Lamins can also be localized in the nuclear interior, in a diffuse or spotted pattern. Nuclei assembled in vitro in the absence of lamins are fragile, indicating that lamins mechanically stabilize the cell nucleus. Available evidence also indicates a role for lamins in DNA replication, chromatin organization, spatial arrangement of nuclear pore complexes, nuclear growth, and anchorage of nuclear envelope proteins. In this review we summarize the current state of knowledge on the structure, assembly, and possible functional roles of nuclear lamins, emphasizing the information concerning the ability of nuclear lamins to self-assemble into distinct oligomers and polymers.
Collapse
Affiliation(s)
- N Stuurman
- M. E. Müller-Institute for Microscopy at the Biozentrum, University of Basel, Basel, CH-4056, Switzerland
| | | | | |
Collapse
|
40
|
Alsheimer M, Fecher E, Benavente R. Nuclear envelope remodelling during rat spermiogenesis: distribution and expression pattern of LAP2/thymopoietins. J Cell Sci 1998; 111 ( Pt 15):2227-34. [PMID: 9664044 DOI: 10.1242/jcs.111.15.2227] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lamina-associated polypeptide 2 (LAP2) and the thymopoietins (TPs) are a family of proteins described in somatic cells of mammals, which are derived by alternative splicing from a single gene. For one of the members of the family (LAP2 = TPbeta) it has been shown that this integral membrane protein locates to the inner membrane of the nuclear envelope, and that it binds to chromatin and B-type lamins. In the present study, we observed that during the third phase of spermatogenesis (i.e. spermiogenesis), TP-labelling shifted progressively to one half of the nuclear periphery in round spermatids. In the elongating spermatid the signal then becomes restricted to one spot located at the posterior (centriolar) pole of the nucleus. Changes in localization are accompanied by the disappearance, first of TPgamma, and later on of LAP2/TPbeta. TPalpha is the only member of the family detectable in the mature sperm. Concomitantly, lamin B1, the only nuclear lamina protein known to be expressed in mammalian spermatids, showed a similar behaviour, i.e. shifted progressively to the centriolar pole of spermatid nuclei before it became undetectable in fully differentiated mature sperms. These results are the first demonstration that expression and localization patterns of TPs are coordinately and differentially regulated with lamins during a differentiation process.
Collapse
Affiliation(s)
- M Alsheimer
- Department of Cell and Developmental Biology, Theodor-Boveri-Institute (Biocenter), University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | |
Collapse
|
41
|
Gilbert DM. Replication origins in yeast versus metazoa: separation of the haves and the have nots. Curr Opin Genet Dev 1998; 8:194-9. [PMID: 9610410 DOI: 10.1016/s0959-437x(98)80141-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The recent flood of information concerning Saccharomyces cerevisiae replication origins and the proteins that interact with them contrasts alarmingly to the trickle of progress in our understanding of metazoan origins. In mammalian cells, origins are complex and heterogeneous, and appear to be selected by features of nuclear architecture that are re-established after each mitosis. Studies in Xenopus egg extracts have shown that once per cell cycle replication does not require specific origin sequences, despite the identification of functional homologues to yeast origin-binding proteins. These observations suggest that initiation of DNA replication in higher eukaryotes is focused to specific genomic regions by features of chromosome structure.
Collapse
Affiliation(s)
- D M Gilbert
- Department of Biochemistry and Molecular Biology, SUNY Health Science Center, Syracuse 13210, USA.
| |
Collapse
|
42
|
Shumaker DK, Vann LR, Goldberg MW, Allen TD, Wilson KL. TPEN, a Zn2+/Fe2+ chelator with low affinity for Ca2+, inhibits lamin assembly, destabilizes nuclear architecture and may independently protect nuclei from apoptosis in vitro. Cell Calcium 1998; 23:151-64. [PMID: 9601611 DOI: 10.1016/s0143-4160(98)90114-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We used Xenopus egg extracts to examine the effects of TPEN, a chelator with strong affinities for Zn2+, Fe2+, and Mn2+, on nuclear assembly in vitro. At concentrations above 1 mM, TPEN blocked the assembly of the nuclear lamina and produced nuclei that were profoundly sensitive to stress-induced balloon-like 'shedding' of nuclear membranes away from chromatin-associated membranes. TPEN-arrested nuclei were also defective for DNA replication, which could be explained as secondary to the lack of a lamina. Imaging of TPEN-arrested nuclei by field emission in-lens scanning electron microscopy (FEISEM) revealed clustered, structurally-perturbed nuclear pore complexes. TPEN-arrested nuclei were defective in the accumulation of fluorescent karyophilic proteins. All detectable effects caused by TPEN were downstream of the effects of BAPTA, a Ca2+/Zn2+ chelator that blocks pore complex assembly at two distinct early stages. Surprisingly, TPEN-arrested nuclei, but not control nuclei, remained active for replication in apoptotic extracts, as assayed by [32P]-dCTP incorporation into high molecular weight DNA, suggesting that TPEN blocks a metal-binding protein(s) required for nuclear destruction during programmed cell death.
Collapse
Affiliation(s)
- D K Shumaker
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
43
|
Yang L, Guan T, Gerace L. Lamin-binding fragment of LAP2 inhibits increase in nuclear volume during the cell cycle and progression into S phase. J Cell Biol 1997; 139:1077-87. [PMID: 9382857 PMCID: PMC2140217 DOI: 10.1083/jcb.139.5.1077] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/1997] [Revised: 09/24/1997] [Indexed: 02/05/2023] Open
Abstract
Lamina-associated polypeptide 2 (LAP2) is an integral membrane protein of the inner nuclear membrane that binds to both lamin B and chromatin and has a putative role in nuclear envelope (NE) organization. We found that microinjection of a recombinant polypeptide comprising the nucleoplasmic domain of rat LAP2 (residues 1-398) into metaphase HeLa cells does not affect the reassembly of transport-competent nuclei containing NEs and lamina, but strongly inhibits nuclear volume increase. This effect appears to be specifically due to lamin binding, because it also is caused by microinjection of the minimal lamin-binding region of LAP2 (residues 298-373) but not by the chromatin-binding domain (residues 1-88). Injection of the lamin-binding region of rat LAP2 into early G1 phase HeLa cells also strongly affects nuclear growth; it almost completely prevents the threefold nuclear volume increase that normally occurs during the ensuing 10 h. Moreover, injection of the fragment during early G1 phase strongly inhibits entry of cells into S phase, whereas injection during S phase has no apparent effect on ongoing DNA replication. Since the lamin-binding fragment of LAP2 most likely acts by inhibiting dynamics of the nuclear lamina, our results suggest that a normal function of LAP2 involves regulation of nuclear lamina growth. These data also suggest that lamina dynamics are required for growth of the NE and for nuclear volume increase during the cell cycle, and that progression into S phase is dependent on the acquisition of a certain nuclear volume.
Collapse
Affiliation(s)
- L Yang
- Departments of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
44
|
Abstract
The past decade has witnessed an explosion of new information about the nature of DNA replication in eukaryotic cells. Much of this information has resulted from the advent of novel methods for identifying and characterizing origins of DNA replication in the genomes of viruses, plasmids, and cells. These methods can map with remarkable precision sites where replication begins. In addition, they provide assays for origin activity that can be used to identify the sequence of events leading to the formation and activation of prereplication complexes at specific sites in chromosomal DNA. I summarize briefly the current view of eukaryotic replication origins and the methods that have been used to identify and characterize them. Selected methods that show promise for future applications are then described in detail in subsequent articles.
Collapse
Affiliation(s)
- M L DePamphilis
- National Institute of Child Health and Human Development, Bethesda, Maryland 20892-2753, USA
| |
Collapse
|
45
|
Ellis DJ, Jenkins H, Whitfield WG, Hutchison CJ. GST-lamin fusion proteins act as dominant negative mutants in Xenopus egg extract and reveal the function of the lamina in DNA replication. J Cell Sci 1997; 110 ( Pt 20):2507-18. [PMID: 9372440 DOI: 10.1242/jcs.110.20.2507] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A cDNA encoding Xlamin B1 was cloned from a whole ovary mRNA by RT-PCR. GST-lamin fusion constructs were generated from this cDNA by first creating convenient restriction sites within the Xlamin B1 coding sequence, using PCR directed mutagenesis, and then sub-cloning relevant sequences into pGEX-4T-3. Two expression constructs were made, the first, termed delta 2+ lacked sequences encoding the amino-terminal 'head domain' of lamin B1 but included sequences encoding the nuclear localization signal sequence (NLS). The second expression construct, termed delta 2-, lacked sequences encoding the amino-terminal 'head domain' as well as sequences encoding the NLS. Purified fusion proteins expressed from these constructs, when added to egg extracts prior to sperm pronuclear assembly, formed hetero-oligomers with the endogenous lamin B3. The delta 2+ fusion protein prevented nuclear lamina assembly but not nuclear membrane assembly. The resulting nuclei were small (approximately 10 microns in diameter), did not assemble replication centers and failed to initiate DNA replication. When the delta 2- fusion protein was added to egg extracts prior to sperm pronuclear assembly, lamina assembly was delayed but not prevented. The resulting nuclei although small (approximately 12 microns), did form replication centers and initiated DNA replication. When added to egg extracts after sperm pronuclear assembly was completed delta 2+, but not delta 2-, entered the pre-formed nuclei causing lamina disassembly. However, the disassembly of the lamina by delta 2+ did not result in the disruption of replication centers and indeed these centres remained functional. These results are consistent with the hypothesis that lamina assembly precedes and is required for the formation of replication centers but does not support those centers directly.
Collapse
Affiliation(s)
- D J Ellis
- Department of Biological Sciences, University of Dundee, Scotland, UK
| | | | | | | |
Collapse
|
46
|
Affiliation(s)
- J Liu
- Section of Genetics and Development, Cornell University, Ithaca, NY 14853-2703, USA
| | | | | |
Collapse
|
47
|
Allen TD, Bennion GR, Rutherpord SA, Reipert S, Ramalho A, Kiseleva E, Goldberg MW. Macromolecular substructure in nuclear pore complexes by in-lens field-emission scanning electron microscopy. SCANNING 1997; 19:403-410. [PMID: 9304867 DOI: 10.1002/sca.4950190603] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Scanning electron microscopy (SEM) has produced a wealth of novel images that have significantly complemented our perception of biological structure and function, derived initially from transmission electron microscopy (TEM) information. SEM is a surface imaging technology, and its impact at the subcellular level has been restricted by reduced resolution in comparison with TEM. Recently, SEM resolution has been considerably improved by the advent of high-brightness sources used in field-emission instruments (FEISEM) which have produced resolution of around 1 nm, virtually equivalent to TEM "working resolution." Here we review our findings in the use of FEISEM in the imaging of nuclear envelopes and their associated structures, such as nuclear pore complexes, and the relationships of structure and function. FEISEM allows the structurally orientated cell biologist to visualise, directly and in three dimensions, subcellular structure and its modulation with a view to understanding its functional significance.
Collapse
Affiliation(s)
- T D Allen
- CRC Department of Structural Cell Biology, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester, U.K
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The nuclear envelope consists of two parallel membranes enclosing an aqueous lumen. In places there are pores in both membranes at which the two membranes are joined. Within these pores reside the nuclear pore complexes. The current structural models of the nuclear pore complex have been derived from a number of studies using different electron microscopical techniques. Recently, using surface imaging techniques such as field emission in-lens scanning electron microscopy, novel structures have been identified, particularly at the periphery of the structure, most notably the nucleoplasmic basket. One limitation of the current models is that they are based almost entirely on nuclear envelopes isolated from amphibian oocytes and a pressing question is whether this structure is the same in other organisms and tissues. Here we have studied the structure of nuclear envelopes isolated from bird oocytes. We show that the overall structure is remarkably conserved. In particular, recently discovered peripheral structures appear very similar. We see variations in basket conformation but believe that this is related to the functional states of individual pore complexes.
Collapse
Affiliation(s)
- M W Goldberg
- Department of Structural Cell Biology, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester, United Kingdom
| | | | | |
Collapse
|
49
|
Lenz-Böhme B, Wismar J, Fuchs S, Reifegerste R, Buchner E, Betz H, Schmitt B. Insertional mutation of the Drosophila nuclear lamin Dm0 gene results in defective nuclear envelopes, clustering of nuclear pore complexes, and accumulation of annulate lamellae. J Cell Biol 1997; 137:1001-16. [PMID: 9166402 PMCID: PMC2136230 DOI: 10.1083/jcb.137.5.1001] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nuclear lamins are thought to play an important role in disassembly and reassembly of the nucleus during mitosis. Here, we describe a Drosophila lamin Dm0 mutant resulting from a P element insertion into the first intron of the Dm0 gene. Homozygous mutant animals showed a severe phenotype including retardation in development, reduced viability, sterility, and impaired locomotion. Immunocytochemical and ultrastructural analysis revealed that reduced lamin Dm0 expression caused an enrichment of nuclear pore complexes in cytoplasmic annulate lamellae and in nuclear envelope clusters. In several cells, particularly the densely packed somata of the central nervous system, defective nuclear envelopes were observed in addition. All aspects of the mutant phenotype were rescued upon P element-mediated germline transformation with a lamin Dm0 transgene. These data constitute the first genetic proof that lamins are essential for the structural organization of the cell nucleus.
Collapse
Affiliation(s)
- B Lenz-Böhme
- Max-Planck-Institut für Hirnforschung, Abteilung Neurochemie, D-60528 Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Liu J, Lin H, Lopez JM, Wolfner MF. Formation of the male pronuclear lamina in Drosophila melanogaster. Dev Biol 1997; 184:187-96. [PMID: 9133429 DOI: 10.1006/dbio.1997.8523] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Upon fertilization, a sperm nucleus reorganizes to become a male pronucleus. This reorganization includes breakdown and reformation of the nuclear envelope of the male pronucleus. In this study, we used a maternally encoded nuclear lamina protein, YA, in parallel with another lamina protein, lamin Dm, as probes to study the formation of the male pronuclear lamina in Drosophila melanogaster. Ectopically expressed YA is present in the nuclear envelopes of spermatocytes, but not in mature sperm, similar to endogenous lamin Dm. This suggests that the nuclear envelope of Drosophila sperm differs from that of somatic cells. Upon fertilization, YA and lamin Dm are recruited to the periphery of the male-derived nucleus before or during the early stages of migration by the male pronucleus. Using a paternal effect mutation, snky, we found that recruitment of lamina proteins to the male pronucleus requires, and probably accompanies, reorganization of the sperm nucleus. In order to identify factors that affect the recruitment of nuclear lamina proteins to the male pronucleus, we examined the subcellular localization of YA and lamin Dm in mutant embryos defective for the function of either the male pronucleus (mh, K81, and pal or both pronuclei (gnu, png, and plu). None of these mutations affect the recruitment of YA or lamin Dm to the male pronuclear envelope, suggesting that the mutations affect processes independent of, or after, reorganization of the nuclear envelope. Double mutant analyses between Ya and gnu suggest that YA plays a role in the nuclear envelope permissive for rounds of DNA replication.
Collapse
Affiliation(s)
- J Liu
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | | | |
Collapse
|