1
|
Liu J, Zeng X, Han K, Jia X, Zhou M, Zhang Z, Wang Y. The expression regulation of Cyclins and CDKs in ovary via miR-9c and miR-263a of Scylla paramamosain. Comp Biochem Physiol B Biochem Mol Biol 2021; 254:110567. [PMID: 33548504 DOI: 10.1016/j.cbpb.2021.110567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
Scylla paramamosain is an economically important cultured crab species in China. Cyclins and cyclin-dependent kinases (CDKs) play important roles in regulations of cell cycle and ovarian development. MiRNAs can negatively regulate gene expression at the post-transcriptional level through base-complementary pairing with the 3'-untranslated region (3-UTR) of the target gene. In this study, bioinformatics prediction showed that miR-9c and miR-263a identified from our group's gonad miRNAome of S. paramamosain may bind to the 3' UTR region of cyclin A, cyclin B, cyclin E, cyclin H, CDK1, and CDK2. Furthermore, the results of double luciferase reporter gene assay showed that the luciferase activities of HEK293T cells co-transfected with miR-9c mimics/miR-9c inhibitor and the 3'-UTR plasmid vectors of the five genes (cyclin A, cyclin B, cyclin H, CDK1, and CDK2) were significantly decreased/increased compared with those in the NC (negative control) and BC (blank control) groups. The results in miR-263a were similar to miR-9c, but all of the six genes could be regulated by miR-263a. In in vivo experiments, agomiR-9c (miR-9c enhancer) injection resulted in decreases of cyclin A and CDK1 expression level, and reverse effects were observed by injecting antagomiR-9c. AgomiR-263a decreased the expression of cyclin A, cyclin B, cyclin H, CDK1, and CDK2, but antagomiR-263a increased their expression. Both the in vitro and in vivo experiments confirmed functions of miR-9c and miR-263a in cell cycle progress of ovarian development by expression regulation of cyclin A, cyclin B, cyclin E, cyclin H, CDK1, and CDK2. The findings provide new insights into the reproductive regulation mechanism in mud crab and further enrich the knowledge of cell cycle and ovarian development regulation in invertebrates.
Collapse
Affiliation(s)
- Jianan Liu
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China
| | - Xianyuan Zeng
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen 361021, China; School of Life Sciences, Ningde Normal University, Ningde 352100, China
| | - Kunhuang Han
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen 361021, China; School of Life Sciences, Ningde Normal University, Ningde 352100, China
| | - Xiwei Jia
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China
| | - Mingcan Zhou
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziping Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yilei Wang
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
2
|
Zitouni S, Méchali F, Papin C, Choquet A, Roche D, Baldin V, Coux O, Bonne-Andrea C. The stability of Fbw7α in M-phase requires its phosphorylation by PKC. PLoS One 2017; 12:e0183500. [PMID: 28850619 PMCID: PMC5574586 DOI: 10.1371/journal.pone.0183500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/05/2017] [Indexed: 12/21/2022] Open
Abstract
Fbw7 is a tumor suppressor often deleted or mutated in human cancers. It serves as the substrate-recruiting subunit of a SCF ubiquitin ligase that targets numerous critical proteins for degradation, including oncoproteins and master transcription factors. Cyclin E was the first identified substrate of the SCFFbw7 ubiquitin ligase. In human cancers bearing FBXW7-gene mutations, deregulation of cyclin E turnover leads to its aberrant expression in mitosis. We investigated Fbw7 regulation in Xenopus eggs, which, although arrested in a mitotic-like phase, naturally express high levels of cyclin E. Here, we report that Fbw7α, the only Fbw7 isoform detected in eggs, is phosphorylated by PKC (protein kinase C) at a key residue (S18) in a manner coincident with Fbw7α inactivation. We show that this PKC-dependent phosphorylation and inactivation of Fbw7α also occurs in mitosis during human somatic cell cycles, and importantly is critical for Fbw7α stabilization itself upon nuclear envelope breakdown. Finally, we provide evidence that S18 phosphorylation, which lies within the intrinsically disordered N-terminal region specific to the α-isoform reduces the capacity of Fbw7α to dimerize and to bind cyclin E. Together, these findings implicate PKC in an evolutionarily-conserved pathway that aims to protect Fbw7α from degradation by keeping it transiently in a resting, inactive state.
Collapse
Affiliation(s)
- Sihem Zitouni
- Centre de Recherche de Biologie Cellulaire de Montpellier, CNRS, UMR 5237, Université de Montpellier, Montpellier, France
| | - Francisca Méchali
- Centre de Recherche de Biologie Cellulaire de Montpellier, CNRS, UMR 5237, Université de Montpellier, Montpellier, France
| | - Catherine Papin
- Institut de Génétique Humaine, CNRS, UMR 9002, Université de Montpellier, Montpellier, France
| | - Armelle Choquet
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Université de Montpellier, Montpellier, France
| | - Daniel Roche
- Centre de Recherche de Biologie Cellulaire de Montpellier, CNRS, UMR 5237, Université de Montpellier, Montpellier, France
- Institut de Biologie Computationnelle, LIRMM, CNRS, Université de Montpellier, Montpellier, France
| | - Véronique Baldin
- Centre de Recherche de Biologie Cellulaire de Montpellier, CNRS, UMR 5237, Université de Montpellier, Montpellier, France
| | - Olivier Coux
- Centre de Recherche de Biologie Cellulaire de Montpellier, CNRS, UMR 5237, Université de Montpellier, Montpellier, France
| | - Catherine Bonne-Andrea
- Centre de Recherche de Biologie Cellulaire de Montpellier, CNRS, UMR 5237, Université de Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
3
|
CPEB and miR-15/16 Co-Regulate Translation of Cyclin E1 mRNA during Xenopus Oocyte Maturation. PLoS One 2016; 11:e0146792. [PMID: 26829217 PMCID: PMC4734764 DOI: 10.1371/journal.pone.0146792] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/22/2015] [Indexed: 01/07/2023] Open
Abstract
Cell cycle transitions spanning meiotic maturation of the Xenopus oocyte and early embryogenesis are tightly regulated at the level of stored inactive maternal mRNA. We investigated here the translational control of cyclin E1, required for metaphase II arrest of the unfertilised egg and the initiation of S phase in the early embryo. We show that the cyclin E1 mRNA is regulated by both cytoplasmic polyadenylation elements (CPEs) and two miR-15/16 target sites within its 3’UTR. Moreover, we provide evidence that maternal miR-15/16 microRNAs co-immunoprecipitate with CPE-binding protein (CPEB), and that CPEB interacts with the RISC component Ago2. Experiments using competitor RNA and mutated cyclin E1 3’UTRs suggest cooperation of the regulatory elements to sustain repression of the cyclin E1 mRNA during early stages of maturation when CPEB becomes limiting and cytoplasmic polyadenylation of repressed mRNAs begins. Importantly, injection of anti-miR-15/16 LNA results in the early polyadenylation of endogenous cyclin E1 mRNA during meiotic maturation, and an acceleration of GVBD, altogether strongly suggesting that the proximal CPEB and miRNP complexes act to mutually stabilise each other. We conclude that miR-15/16 and CPEB co-regulate cyclin E1 mRNA. This is the first demonstration of the co-operation of these two pathways.
Collapse
|
4
|
Brandt YI, Mitchell T, Smolyakov GA, Osiński M, Hartley RS. Quantum dot assisted tracking of the intracellular protein Cyclin E in Xenopus laevis embryos. J Nanobiotechnology 2015; 13:31. [PMID: 25925383 PMCID: PMC4424550 DOI: 10.1186/s12951-015-0092-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/20/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Luminescent semiconductor nanocrystals, also known as quantum dots (QD), possess highly desirable optical properties that account for development of a variety of exciting biomedical techniques. These properties include long-term stability, brightness, narrow emission spectra, size tunable properties and resistance to photobleaching. QD have many promising applications in biology and the list is constantly growing. These applications include DNA or protein tagging for in vitro assays, deep-tissue imaging, fluorescence resonance energy transfer (FRET), and studying dynamics of cell surface receptors, among others. Here we explored the potential of QD-mediated labeling for the purpose of tracking an intracellular protein inside live cells. RESULTS We manufactured dihydrolipoic acid (DHLA)-capped CdSe-ZnS core-shell QD, not available commercially, and coupled them to the cell cycle regulatory protein Cyclin E. We then utilized the QD fluorescence capabilities for visualization of Cyclin E trafficking within cells of Xenopus laevis embryos in real time. CONCLUSIONS These studies provide "proof-of-concept" for this approach by tracking QD-tagged Cyclin E within cells of developing embryos, before and during an important developmental period, the midblastula transition. Importantly, we show that the attachment of QD to Cyclin E did not disrupt its proper intracellular distribution prior to and during the midblastula transition. The fate of the QD after cyclin E degradation following the midblastula transition remains unknown.
Collapse
Affiliation(s)
- Yekaterina I Brandt
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131-0001, USA.
| | - Therese Mitchell
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131-0001, USA.
| | - Gennady A Smolyakov
- Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, New Mexico, 87106-4343, USA.
| | - Marek Osiński
- Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, New Mexico, 87106-4343, USA.
| | - Rebecca S Hartley
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131-0001, USA.
| |
Collapse
|
5
|
Bonne-Andrea C, Kahli M, Mechali F, Lemaitre JM, Bossis G, Coux O. SUMO2/3 modification of cyclin E contributes to the control of replication origin firing. Nat Commun 2013; 4:1850. [PMID: 23673635 PMCID: PMC3674260 DOI: 10.1038/ncomms2875] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 04/11/2013] [Indexed: 11/12/2022] Open
Abstract
The small ubiquitin-like modifier (SUMO) pathway is essential for the maintenance of genome stability. We investigated its possible involvement in the control of DNA replication during S phase by using the Xenopus cell-free system. Here we show that the SUMO pathway is critical to limit the number and, thus, the density of replication origins that are activated in early S phase. We identified cyclin E, which regulates cyclin-dependent kinase 2 (Cdk2) to trigger origin firing, as an S-phase substrate of this pathway. We show that cyclin E is dynamically and highly conjugated to SUMO2/3 on chromatin, independently of Cdk2 activity and origin activation. Moreover, cyclin E is the predominant SUMO2/3 target on chromatin in early S phase, as cyclin E depletion abolishes, while its readdition restores, the SUMO2/3 signal. Together, our data indicate that cyclin E SUMOylation is important for controlling origin firing once the cyclin E–Cdk2 complex is recruited onto replication origins. The organized initiation of DNA replication at sites throughout the genome must be carefully choreographed to maintain genome stability. Bonne-Andrea and colleagues show that protein SUMOylation controls the density of origin firing, and identify cyclin E as an important substrate in this context.
Collapse
Affiliation(s)
- Catherine Bonne-Andrea
- Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR5237, University Montpellier I and II, 1919 route de Mende, 34293 Montpellier Cedex 05, France.
| | | | | | | | | | | |
Collapse
|
6
|
Petrov N, Zhidkova O, Serikov V, Zenin V, Popov B. Induction of Wnt/β-catenin signaling in mouse mesenchymal stem cells is associated with activation of the p130 and E2f4 and formation of the p130/Gsk3β/β-catenin complex. Stem Cells Dev 2011; 21:589-97. [PMID: 21631154 DOI: 10.1089/scd.2011.0048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Proteins p130 and E2f4, members of the retinoblastoma protein (pRb) family/E2F transcription factor family, are the key elements in regulation of cell cycle and differentiation. The functional role of the p130/E2f4 in mesenchymal stem cells (MSC) is unclear. We demonstrate here that activation of the Wnt/β-catenin pathway in mouse MSC is associated with accumulation of active forms of the p130, E2f4, and β-catenin but does not result in inhibition of cell cycle progression. The levels and phosphorylation patterns of p130, E2f4, and β-catenin in MSC do not change during cell cycle progression. This is different from control T98G glyoblastoma cells that accumulated differently phosphorylated forms of the p130 in quiescence, and under active proliferation. In MSC, synchronized at G0/G1 and S cell cycle phases, the p130 and β-catenin physically interact each other, whereas Gsk3β was associated and co-precipitated with both p130 and β-catenin. Our results indicate that Wnt/β-catenin and pRb signal pathways interact with each other and form common p130/Gsk3β/β-catenin complex during MSC cycle progression. Physiological relevance of such complex may be associated with coupling of the cell cycle and differentiation in MSC, which is related to a wide differentiation potential of these stem cells.
Collapse
Affiliation(s)
- Nikolay Petrov
- Laboratory of Cell Pathology, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | | | | |
Collapse
|
7
|
Brandt Y, Mitchell T, Wu Y, Hartley RS. Developmental downregulation of Xenopus cyclin E is phosphorylation and nuclear import dependent and is mediated by ubiquitination. Dev Biol 2011; 355:65-76. [PMID: 21539834 DOI: 10.1016/j.ydbio.2011.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 03/16/2011] [Accepted: 04/14/2011] [Indexed: 11/29/2022]
Abstract
Cyclins are regulatory subunits that bind to and activate catalytic Cdks. Cyclin E associates with Cdk2 to mediate the G1/S transition of the cell cycle. Cyclin E is overexpressed in breast, lung, skin, gastrointestinal, cervical, and ovarian cancers. Its overexpression correlates with poor patient prognosis and is involved in the etiology of breast cancer. We have been studying how cyclin E is normally downregulated during development in order to determine if disruption of similar mechanisms could either contribute to its overexpression in cancer, or be exploited to decrease its expression. In Xenopus laevis embryos, cyclin E protein level is high and constant until its abrupt destabilization by an undefined mechanism after the 12th cell cycle, which corresponds to the midblastula transition (MBT) and remodeling of the embryonic to the adult cell cycle. Since degradation of mammalian cyclin E is regulated by the ubiquitin proteasome system and is phosphorylation dependent, we examined the role of phosphorylation in Xenopus cyclin E turnover. We show that similarly to human cyclin E, phosphorylation of serine 398 and threonine 394 plays a role in cyclin E turnover at the MBT. Immunofluorescence analysis shows that cyclin E relocalizes from the cytoplasm to the nucleus preceding its degradation. When nuclear import is inhibited, cyclin E stability is markedly increased after the MBT. To investigate whether degradation of Xenopus cyclin E is mediated by the proteasomal pathway, we used proteasome inhibitors and observed a progressive accumulation of cyclin E in the cytoplasm after the MBT. Ubiquitination of cyclin E precedes its proteasomal degradation at the MBT. These results show that cyclin E destruction at the MBT requires both phosphorylation and nuclear import, as well as proteasomal activity.
Collapse
|
8
|
Gotoh T, Shigemoto N, Kishimoto T. Cyclin E2 is required for embryogenesis in Xenopus laevis. Dev Biol 2007; 310:341-7. [PMID: 17825278 DOI: 10.1016/j.ydbio.2007.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 07/17/2007] [Accepted: 08/01/2007] [Indexed: 10/23/2022]
Abstract
In mammalian cells, E-type cyclins (E1 and E2) are generally believed to be required for entry into S phase. However, in mice, cyclin E is largely dispensable for normal embryogenesis. Moreover, Drosophila cyclin E plays a critical role in cell fate determination in neural lineages independently of proliferation. Thus, the functions of cyclin E, particularly during early development, remain elusive. Here, we investigated the requirement for E-type cyclins during Xenopus embryogenesis. Although cyclin E1 has been reported as a maternal cyclin, inhibition of its translation in the embryo caused no serious defects. We isolated a Xenopus homologue of human cyclin E2, which was zygotically expressed. Sufficient inhibition of its expression led to death at late gastrula, while partial inhibition allowed survival. These observations indicate distinct roles for Xenopus cyclins E1 and E2, and an absolute requirement of cyclin E2 for Xenopus embryogenesis.
Collapse
Affiliation(s)
- Tetsuya Gotoh
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Nagatsuta 4259, Yokohama, Japan
| | | | | |
Collapse
|
9
|
Schnackenberg BJ, Palazzo RE, Marzluff WF. Cyclin E/Cdk2 is required for sperm maturation, but not DNA replication, in early sea urchin embryos. Genesis 2007; 45:282-91. [PMID: 17458867 DOI: 10.1002/dvg.20291] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The cell cycle is driven by the activity of cyclin/cdk complexes. In somatic cells, cyclin E/cdk2 oscillates throughout the cell cycle and has been shown to promote S-phase entry and initiation of DNA replication. In contrast, cyclin E/cdk2 activity remains constant throughout the early embryonic development of the sea urchin and localizes to the sperm nucleus following fertilization. We now show that cyclin E localization to the sperm nucleus following fertilization is not unique to the sea urchin, but also occurs in the surf clam, and inhibition of cyclin E/cdk2 activity by roscovitine inhibits the morphological changes indicative of male pronuclear maturation in sea urchin zygotes. Finally, we show that inhibition of cyclin E/cdk2 activity does not block DNA replication in the early cleavage cycles of the sea urchin. We conclude that cyclin E/cdk2 activity is required for male pronuclear maturation, but not for initiation of DNA replication in early sea urchin development.
Collapse
Affiliation(s)
- Bradley J Schnackenberg
- Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | | | | |
Collapse
|
10
|
Slevin MK, Gourronc F, Hartley RS. ElrA binding to the 3'UTR of cyclin E1 mRNA requires polyadenylation elements. Nucleic Acids Res 2007; 35:2167-76. [PMID: 17355986 PMCID: PMC1874641 DOI: 10.1093/nar/gkm084] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 01/29/2007] [Accepted: 01/30/2007] [Indexed: 01/02/2023] Open
Abstract
The early cell divisions of Xenopus laevis and other metazoan embryos occur in the presence of constitutively high levels of the cell cycle regulator cyclin E1. Upon completion of the 12th cell division, a time at which many maternal proteins are downregulated by deadenylation and destabilization of their encoding mRNAs, maternal cyclin E1 protein is downregulated while its mRNA is polyadenylated and stable. We report here that stable polyadenylation of cyclin E1 mRNA requires three cis-acting elements in the 3' untranslated region; the nuclear polyadenylation sequence, a contiguous cytoplasmic polyadenylation element and an upstream AU-rich element. ElrA, the Xenopus homolog of HuR and a member of the ELAV gene family binds the cyclin E1 3'UTR with high affinity. Deletion of these elements dramatically reduces the affinity of ElrA for the cyclin E1 3'UTR, abolishes polyadenylation and destabilizes the mRNA. Together, these findings provide compelling evidence that ElrA functions in polyadenylation and stabilization of cyclin E1 mRNA via binding these elements.
Collapse
Affiliation(s)
- Michael K. Slevin
- Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA 52242, USA Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Francoise Gourronc
- Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA 52242, USA Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Rebecca S. Hartley
- Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA 52242, USA Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
11
|
Chen JA, Chu ST, Amaya E. Maintenance of motor neuron progenitors in Xenopus requires a novel localized cyclin. EMBO Rep 2007; 8:287-92. [PMID: 17304238 PMCID: PMC1808035 DOI: 10.1038/sj.embor.7400903] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 11/27/2006] [Accepted: 12/19/2006] [Indexed: 12/22/2022] Open
Abstract
The ventral spinal cord contains a pool of motor neuron progenitors (pMNs), which sequentially generate motor neurons and oligodendrocytes in the embryo. The mechanisms responsible for the maintenance of pMNs are not clearly understood. We have identified a novel cyclin, cyclin Dx (ccndx), which is specifically expressed in pMNs in Xenopus. Here, we show that inhibition of ccndx causes paralysis in embryos. Furthermore, we show that maintenance of pMNs requires ccndx function. In addition, inhibition of ccndx results in the specific loss of differentiated motor neurons. However, the expression of interneuron or sensory neuron markers is unaffected in these embryos, suggesting that the role of ccndx is specifically to maintain pMNs. Thus, we have identified, for the first time, a tissue-specific cell-cycle regulator that is essential for the maintenance of a pool of neural progenitors in the vertebrate spinal cord.
Collapse
Affiliation(s)
- Jun-An Chen
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Sin-Tak Chu
- Institute of Biological Chemistry, Academia Sinica, Post Box 23-106, Taipei, Taiwan
| | - Enrique Amaya
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Tel: 44 161 275 1716; Fax: 44 161 275 1505; E-mail:
| |
Collapse
|
12
|
Geng Y, Lee YM, Welcker M, Swanger J, Zagozdzon A, Winer JD, Roberts JM, Kaldis P, Clurman BE, Sicinski P. Kinase-independent function of cyclin E. Mol Cell 2007; 25:127-39. [PMID: 17218276 DOI: 10.1016/j.molcel.2006.11.029] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 10/16/2006] [Accepted: 11/22/2006] [Indexed: 11/28/2022]
Abstract
E-type cyclins are thought to drive cell-cycle progression by activating cyclin-dependent kinases, primarily CDK2. We previously found that cyclin E-null cells failed to incorporate MCM helicase into DNA prereplication complex during G(0) --> S phase progression. We now report that a kinase-deficient cyclin E mutant can partially restore MCM loading and S phase entry in cyclin E-null cells. We found that cyclin E is loaded onto chromatin during G(0) --> S progression. In the absence of cyclin E, CDT1 is normally loaded onto chromatin, whereas MCM is not, indicating that cyclin E acts between CDT1 and MCM loading. We observed a physical association of cyclin E with CDT1 and with MCMs. We propose that cyclin E facilitates MCM loading in a kinase-independent fashion, through physical interaction with CDT1 and MCM. Our work indicates that-in addition to their function as CDK activators-E cyclins play kinase-independent functions in cell-cycle progression.
Collapse
Affiliation(s)
- Yan Geng
- Department of Cancer Biology, Dana-Farber Cancer Institute, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Popov B, Chang LS, Serikov V. Cell cycle-related transformation of the E2F4-p130 repressor complex. Biochem Biophys Res Commun 2005; 336:762-9. [PMID: 16153605 DOI: 10.1016/j.bbrc.2005.08.163] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 08/18/2005] [Indexed: 11/27/2022]
Abstract
During G0 phase the p130, member of the pRb tumor suppressor protein family, forms a repressor complex with E2F4 which is inactivated in G1/S by hyperphosphorylation of the p130. The role of p130 after G1/S remains poorly investigated. We found that in nuclear extracts of T98G cells, the p130-E2F4-DNA (pp-E2F4) complex does not dissociate at G1/S transition, but instead reverts to the p130-E2F4-cyclin E/A-cdk2 (cyc/cdk-pp-E2F4) complex, which is detected in S and G2/M phases of the cell cycle. Hyperphosphorylation of the p130 at G1/S transition is associated with a decrease of its total amount; however, this protein is still detected during the rest of the cell cycle, and it is increasingly hyperphosphorylated in the cytosol, but continuously dephosphorylated in the nucleus. Both nuclear and cytosol cell fractions in T98G cells contain a hyperphosphorylated form of p130 in complex with E2F4 at S and G2/M cell cycle phases. In contrast to T98G cells, transformation of the p130 containing cyc/cdk-pp-E2F4 complex into the p130-pp-E2F4 repressor does not occur in HeLa cells under growth restriction conditions.
Collapse
Affiliation(s)
- Boris Popov
- Institute of Cytology, Russian Academy of Sciences, 4, Tikhoretsky Ave., St. Petersburg 194064, Russia.
| | | | | |
Collapse
|
14
|
Richard-Parpaillon L, Cosgrove RA, Devine C, Vernon AE, Philpott A. G1/S phase cyclin-dependent kinase overexpression perturbs early development and delays tissue-specific differentiation in Xenopus. Development 2004; 131:2577-86. [PMID: 15115752 DOI: 10.1242/dev.01121] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cell division and differentiation are largely incompatible but the molecular links between the two processes are poorly understood. Here, we overexpress G1/S phase cyclins and cyclin-dependent kinases in Xenopus embryos to determine their effect on early development and differentiation. Overexpression of cyclin E prior to the midblastula transition (MBT), with or without cdk2, results in a loss of nuclear DNA and subsequent apoptosis at early gastrula stages. By contrast, overexpressed cyclin A2 protein does not affect early development and, when stabilised by binding to cdk2, persists to tailbud stages. Overexpression of cyclin A2/cdk2 in post-MBT embryos results in increased proliferation specifically in the epidermis with concomitant disruption of skin architecture and delay in differentiation. Moreover, ectopic cyclin A2/cdk2 also inhibits differentiation of primary neurons but does not affect muscle. Thus, overexpression of a single G1/S phase cyclin/cdk pair disrupts the balance between division and differentiation in the early vertebrate embryo in a tissue-specific manner.
Collapse
Affiliation(s)
- Laurent Richard-Parpaillon
- Department of Oncology, Cambridge University, Hutchison/MRC Research Centre, Addenbrookes Hospital, Hills Road, Cambridge CB2 2XZ, UK.
| | | | | | | | | |
Collapse
|
15
|
Abstract
Several cyclins and cdks have been cloned in Xenopus, but their developmental expression has not been thoroughly examined. We have analyzed the temporal and spatial expression of cdk1, cdk2, cdk4 and cyclins D1, D2, E, A1, A2 and B1 by in situ hybridization. The transcripts of these cyclins and cdks exhibit striking tissue-restricted expression patterns very early in development that cannot be strictly correlated with proliferation. While the cdks and their activating cyclins are expressed in somewhat overlapping patterns, they are not precisely coincident. Additionally, maternal and zygotic cyclin forms demonstrate markedly different expression patterns.
Collapse
Affiliation(s)
- Ann E Vernon
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XZ, UK
| | | |
Collapse
|
16
|
Iwamori N, Naito K, Sugiura K, Tojo H. Preimplantation-embryo-specific cell cycle regulation is attributed to the low expression level of retinoblastoma protein. FEBS Lett 2002; 526:119-23. [PMID: 12208517 DOI: 10.1016/s0014-5793(02)03121-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is known that a characteristic of the mammalian preimplantation-embryo-specific cell cycle is the substantially shortened G1-phase, although the regulation mechanisms of the unique cell cycle remain unclear. In the present study, we first examined the presence of retinoblastoma (RB) tumor suppressor gene product throughout mouse preimplantation embryo development and found that the RB expression was down-regulated between the four-cell and morula stages. Furthermore, the overexpression of RB protein in the mouse embryos during this phase inhibited their development significantly. These results suggest that the absence of RB protein contributes to the preimplantation-embryo-specific cell cycle.
Collapse
Affiliation(s)
- Naoki Iwamori
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, 113-8657 Tokyo, Japan.
| | | | | | | |
Collapse
|
17
|
Cosson B, Couturier A, Chabelskaya S, Kiktev D, Inge-Vechtomov S, Philippe M, Zhouravleva G. Poly(A)-binding protein acts in translation termination via eukaryotic release factor 3 interaction and does not influence [PSI(+)] propagation. Mol Cell Biol 2002; 22:3301-15. [PMID: 11971964 PMCID: PMC133780 DOI: 10.1128/mcb.22.10.3301-3315.2002] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Recent studies of translational control suggest that translation termination may not be simply the end of synthesizing a protein but rather be involved in modulating both the translation efficiency and stability of a given transcript. Using recombinant eukaryotic release factor 3 (eRF3) and cellular extracts, we have shown for Saccharomyces cerevisiae that yeast eRF3 and Pab1p can interact. This interaction, mediated by the N+M domain of eRF3 and amino acids 473 to 577 of Pab1p, was demonstrated to be direct by the two-hybrid approach. We confirmed that a genetic interaction exists between eRF3 and Pab1p and showed that Pab1p overexpression enhances the efficiency of termination in SUP35 (eRF3) mutant and [PSI(+)] cells. This effect requires the interaction of Pab1p with eRF3. These data further strengthen the possibility that Pab1p has a role in coupling translation termination events with initiation of translation. Several lines of evidence indicate that Pab1p does not influence [PSI(+)] propagation. First, "[PSI(+)]-no-more" mutations do not affect eRF3-Pab1p two-hybrid interaction. Second, overexpression of PAB1 does not cure the [PSI(+)] phenotype or solubilize detectable amounts of eRF3. Third, prion-curing properties of overexpressed HSP104p, which is required for formation and maintenance of [PSI(+)], were not modified by excess Pab1p.
Collapse
Affiliation(s)
- Bertrand Cosson
- Universite de Rennes 1, CNRS UMR 6061, 35043 Rennes Cedex, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Schnackenberg BJ, Marzluff WF. Novel localization and possible functions of cyclin E in early sea urchin development. J Cell Sci 2002; 115:113-21. [PMID: 11801729 DOI: 10.1242/jcs.115.1.113] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In somatic cells, cyclin E-cdk2 activity oscillates during the cell cycle and is required for the regulation of the G1/S transition. Cyclin E and its associated kinase activity remain constant throughout early sea urchin embryogenesis, consistent with reports from studies using several other embryonic systems. Here we have expanded these studies and show that cyclin E rapidly and selectively enters the sperm head after fertilization and remains concentrated in the male pronucleus until pronuclear fusion, at which time it disperses throughout the zygotic nucleus. We also show that cyclin E is not concentrated at the centrosomes but is associated with condensed chromosomes throughout mitosis for at least the first four cell cycles. Isolated mitotic spindles are enriched for cyclin E and cdk2, which are localized to the chromosomes. The chromosomal cyclin E is associated with active kinase during mitosis. We propose that cyclin E may play a role in the remodeling of the sperm head and re-licensing of the paternal genome after fertilization. Furthermore, cyclin E does not need to be degraded or dissociated from the chromosomes during mitosis; instead, it may be required on chromosomes during mitosis to immediately initiate the next round of DNA replication.
Collapse
Affiliation(s)
- Bradley J Schnackenberg
- Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
19
|
Audic Y, Boyle B, Slevin M, Hartley RS. Cyclin E morpholino delays embryogenesis in Xenopus. Genesis 2001; 30:107-9. [PMID: 11477684 DOI: 10.1002/gene.1041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Y Audic
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
20
|
Ellenrieder C, Bartosch B, Lee GY, Murphy M, Sweeney C, Hergersberg M, Carrington M, Jaussi R, Hunt T. The long form of CDK2 arises via alternative splicing and forms an active protein kinase with cyclins A and E. DNA Cell Biol 2001; 20:413-23. [PMID: 11506705 DOI: 10.1089/104454901750361479] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have reinvestigated the long form of cyclin-dependent kinase (CDK)2 that is expressed in many rodent cells. We show that the mRNA encoding CDK2L arises by alternative splicing and that the encoded protein can bind to, and be activated by, cyclins A and E. The complex of CDK2L with cyclin A has about half the specific activity of the equivalent CDK2-cyclin A complex. Also, CDK2L--cyclin A is inhibited to the same extent and by the same concentrations of p21(CIP1) as CDK2--cyclin A. The nucleotide sequences of intron V in the human and murine CDK2 genes, where the sequences encoding the 48-residue insert in CDK2L are located, show very high conservation in the position of the alternatively spliced exon and its surroundings. Despite this, we were not able to detect significant expression of CDK2L in human cell lines, although a low level is expressed in COS-1 cells from monkeys.
Collapse
Affiliation(s)
- C Ellenrieder
- Paul Scherrer Institute, Institute for Medical Radiobiology, 5232 Villigen-PSI, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sumerel JL, Moore JC, Schnackenberg BJ, Nichols JA, Canman JC, Wessel GM, Marzluff WF. Cyclin E and its associated cdk activity do not cycle during early embryogenesis of the sea Urchin. Dev Biol 2001; 234:425-40. [PMID: 11397011 DOI: 10.1006/dbio.2001.0260] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Female sea urchins store their gametes as haploid eggs. The zygote enters S-phase 1 h after fertilization, initiating a series of cell cycles that lack gap phases. We have cloned cyclin E from the sea urchin Strongylocentrotus purpuratus. Cyclin E is synthesized during oogenesis, is present in the germinal vesicle, and is released into the egg cytoplasm at oocyte maturation. Cyclin E synthesis is activated at fertilization, although there is no increase in cyclin E protein levels due to continuous turnover of the protein. Cyclin E protein levels decline in morula embryos, while cyclin E mRNA levels remain high. After the blastula stage, cyclin E mRNA and protein levels are very low, and cyclin E expression is predominant only in cells that are actively dividing. These include cells in the left coelomic pouch, which forms the adult rudiment in the embryo. The cyclin E present in the egg is complexed with a protein kinase. Activity of the cyclin E/cdk2 changes little during the initial cell cycles. In particular, cyclin E-cdk2 levels remain high during both S-phase and mitosis. Our results suggest that progression through the early embryonic cell cycles in the sea urchin does not require fluctuations in cyclin E kinase activity.
Collapse
Affiliation(s)
- J L Sumerel
- Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Furstenthal L, Kaiser BK, Swanson C, Jackson PK. Cyclin E uses Cdc6 as a chromatin-associated receptor required for DNA replication. J Cell Biol 2001; 152:1267-78. [PMID: 11257126 PMCID: PMC2199215 DOI: 10.1083/jcb.152.6.1267] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2000] [Accepted: 01/23/2001] [Indexed: 01/01/2023] Open
Abstract
Using an in vitro chromatin assembly assay in Xenopus egg extract, we show that cyclin E binds specifically and saturably to chromatin in three phases. In the first phase, the origin recognition complex and Cdc6 prereplication proteins, but not the minichromosome maintenance complex, are necessary and biochemically sufficient for ATP-dependent binding of cyclin E--Cdk2 to DNA. We find that cyclin E binds the NH(2)-terminal region of Cdc6 containing Cy--Arg-X-Leu (RXL) motifs. Cyclin E proteins with mutated substrate selection (Met-Arg-Ala-Ile-Leu; MRAIL) motifs fail to bind Cdc6, fail to compete with endogenous cyclin E--Cdk2 for chromatin binding, and fail to rescue replication in cyclin E--depleted extracts. Cdc6 proteins with mutations in the three consensus RXL motifs are quantitatively deficient for cyclin E binding and for rescuing replication in Cdc6-depleted extracts. Thus, the cyclin E--Cdc6 interaction that localizes the Cdk2 complex to chromatin is important for DNA replication. During the second phase, cyclin E--Cdk2 accumulates on chromatin, dependent on polymerase activity. In the third phase, cyclin E is phosphorylated, and the cyclin E--Cdk2 complex is displaced from chromatin in mitosis. In vitro, mitogen-activated protein kinase and especially cyclin B--Cdc2, but not the polo-like kinase 1, remove cyclin E--Cdk2 from chromatin. Rebinding of hyperphosphorylated cyclin E--Cdk2 to interphase chromatin requires dephosphorylation, and the Cdk kinase-directed Cdc14 phosphatase is sufficient for this dephosphorylation in vitro. These three phases of cyclin E association with chromatin may facilitate the diverse activities of cyclin E--Cdk2 in initiating replication, blocking rereplication, and allowing resetting of origins after mitosis.
Collapse
Affiliation(s)
- Laura Furstenthal
- Program in Cancer Biology, Stanford University School of Medicine, Palo Alto, California 94305
| | - Brett K. Kaiser
- Program in Cancer Biology, Stanford University School of Medicine, Palo Alto, California 94305
| | - Craig Swanson
- Program in Biophysics, Stanford University School of Medicine, Palo Alto, California 94305
| | - Peter K. Jackson
- Department of Pathology and Department of Microbiology and Immunology
- Program in Cancer Biology, Stanford University School of Medicine, Palo Alto, California 94305
| |
Collapse
|
23
|
Audic Y, Anderson C, Bhatty R, Hartley RS. Zygotic regulation of maternal cyclin A1 and B2 mRNAs. Mol Cell Biol 2001; 21:1662-71. [PMID: 11238903 PMCID: PMC86712 DOI: 10.1128/mcb.21.5.1662-1671.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
At the midblastula transition, the Xenopus laevis embryonic cell cycle is remodeled from rapid alternations between S and M phases to become the complex adult cell cycle. Cell cycle remodeling occurs after zygotic transcription initiates and is accompanied by terminal downregulation of maternal cyclins A1 and B2. We report here that the disappearance of both cyclin A1 and B2 proteins is preceded by the rapid deadenylation of their mRNAs. A specific mechanism triggers this deadenylation. This mechanism depends upon discrete regions of the 3' untranslated regions and requires zygotic transcription. Together, these results strongly suggest that zygote-dependent deadenylation of cyclin A1 and cyclin B2 mRNAs is responsible for the downregulation of these proteins. These studies also raise the possibility that zygotic control of maternal cyclins plays a role in establishing the adult cell cycle.
Collapse
Affiliation(s)
- Y Audic
- Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
24
|
Gay F, Anglade I, Gong Z, Salbert G. The LIM/homeodomain protein islet-1 modulates estrogen receptor functions. Mol Endocrinol 2000; 14:1627-48. [PMID: 11043578 DOI: 10.1210/mend.14.10.0538] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
LIM/Homeodomain (HD) proteins are classically considered as major transcriptional regulators which, in cooperation with other transcription factors, play critical roles in the developing nervous system. Among LIM/HD proteins, Islet-1 (ISL1) is the earliest known marker of motoneuron differentiation and has been extensively studied in this context. However, ISL1 expression is not restricted to developing motoneurons. In both embryonic and adult central nervous system of rodent and fish, ISL1 is found in discrete brain areas known to express the estrogen receptor (ER). These observations led us to postulate the possible involvement of ISL1 in the control of brain functions by steroid hormones. Dual immunohistochemistry for ISL1 and ER provided evidence for ISL1-ER coexpression by the same neuronal subpopulation within the rat hypothalamic arcuate nucleus. The relationship between ER and ISL1 was further analyzed at the molecular level and we could show that 1) ISL1 directly interacts in vivo and in vitro with the rat ER, as well as with various other nuclear receptors; 2) ISL1-ER interaction is mediated, at least in part, by the ligand binding domain of ER and is significantly strengthened by estradiol; 3) as a consequence, ISL1 prevents ER dimerization in solution, thus leading to a strong and specific inhibition of ER DNA binding activity; 4) ISL1, via its N-terminal LIM domains, specifically inhibits the ER-driven transcriptional activation in some promoter contexts, while ER can serve as a coactivator for ISL1 in other promoter contexts. Taken together, these data suggest that ISL1-ER cross-talk could differentially regulate the expression of ER and ISL1 target genes.
Collapse
Affiliation(s)
- F Gay
- Equipe Information et Programmation Cellulaire, UMR 6026 Centre Nationale de la Recherche Scientifique, Université de Rennes I, France
| | | | | | | |
Collapse
|
25
|
Romanowski P, Marr J, Madine MA, Rowles A, Blow JJ, Gautier J, Laskey RA. Interaction of Xenopus Cdc2 x cyclin A1 with the origin recognition complex. J Biol Chem 2000; 275:4239-43. [PMID: 10660590 DOI: 10.1074/jbc.275.6.4239] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The initiation of DNA replication in eukaryotes is regulated in a minimum of at least two ways. First, several proteins, including origin recognition complex (ORC), Cdc6 protein, and the minichromosome maintenance (MCM) protein complex, need to be assembled on chromatin before initiation. Second, cyclin-dependent kinases regulate DNA replication in both a positive and a negative way by inducing the initiation of DNA replication at G(1)/S transition and preventing further rounds of origin firing within the same cell cycle. Here we characterize a link between the two levels. Immunoprecipitation of Xenopus origin recognition complex with anti-XOrc1 or anti-XOrc2 antibodies specifically co-immunoprecipitates a histone H1 kinase activity. The kinase activity is sensitive to several inhibitors of cyclin-dependent kinases including 6-dimethylaminopurine (6-DMAP), olomoucine, and p21(Cip1). This kinase activity also copurifies with ORC over several fractionation steps and was identified as a complex of the Cdc2 catalytic subunit and cyclin A1. Neither Cdk2 nor cyclin E could be detected in ORC immunoprecipitations. Reciprocal immunoprecipitations with anti-Xenopus Cdc2 or anti-Xenopus cyclin A1 antibodies specifically co-precipitate XOrc1 and XOrc2. Our results indicate that Xenopus ORC and Cdc2 x cyclin A1 physically interact and demonstrate a physical link between an active cyclin-dependent kinase and proteins involved in the initiation of DNA replication.
Collapse
Affiliation(s)
- P Romanowski
- Wellcome/Cancer Research Campaign Institute, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Although proteins involved in DNA replication in yeast have counterparts in multicellular organisms, the definition of an origin of DNA replication and its control in higher eukaryotes might obey to different rules. Origins of DNA replication that are site-specific have been found, supporting the notion that specific DNA regions are used to initiate DNA synthesis along metazoan chromosomes. However, the notion that specific sequences will define origins is still being debated. The variety and complexity of transcriptional programs that have to be regulated in multicellular organisms may impose a plasticity that would not be compatible with a fixed origin simply defined at the sequence level. Such a plasticity would be essential to developmental programs where the control of DNA replication could be more integrated to the control of gene expression than in unicellular eukaryotes.
Collapse
Affiliation(s)
- P Françon
- Institute of Human Genetics, CNRS, Genome Dynamics and Development, Montpellier, France
| | | | | |
Collapse
|
27
|
Moore JD, Yang J, Truant R, Kornbluth S. Nuclear import of Cdk/cyclin complexes: identification of distinct mechanisms for import of Cdk2/cyclin E and Cdc2/cyclin B1. J Cell Biol 1999; 144:213-24. [PMID: 9922449 PMCID: PMC2132890 DOI: 10.1083/jcb.144.2.213] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/1998] [Revised: 12/08/1998] [Indexed: 11/22/2022] Open
Abstract
Reversible phosphorylation of nuclear proteins is required for both DNA replication and entry into mitosis. Consequently, most cyclin-dependent kinase (Cdk)/cyclin complexes are localized to the nucleus when active. Although our understanding of nuclear transport processes has been greatly enhanced by the recent identification of nuclear targeting sequences and soluble nuclear import factors with which they interact, the mechanisms used to target Cdk/cyclin complexes to the nucleus remain obscure; this is in part because these proteins lack obvious nuclear localization sequences. To elucidate the molecular mechanisms responsible for Cdk/cyclin transport, we examined nuclear import of fluorescent Cdk2/cyclin E and Cdc2/cyclin B1 complexes in digitonin-permeabilized mammalian cells and also examined potential physical interactions between these Cdks, cyclins, and soluble import factors. We found that the nuclear import machinery recognizes these Cdk/cyclin complexes through direct interactions with the cyclin component. Surprisingly, cyclins E and B1 are imported into nuclei via distinct mechanisms. Cyclin E behaves like a classical basic nuclear localization sequence-containing protein, binding to the alpha adaptor subunit of the importin-alpha/beta heterodimer. In contrast, cyclin B1 is imported via a direct interaction with a site in the NH2 terminus of importin-beta that is distinct from that used to bind importin-alpha.
Collapse
Affiliation(s)
- J D Moore
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
28
|
Cueille N, Nougarede R, Mechali F, Philippe M, Bonne-Andrea C. Functional interaction between the bovine papillomavirus virus type 1 replicative helicase E1 and cyclin E-Cdk2. J Virol 1998; 72:7255-62. [PMID: 9696820 PMCID: PMC109948 DOI: 10.1128/jvi.72.9.7255-7262.1998] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have found that the replicative helicase E1 of bovine papillomavirus type 1 (BPV-1) interacts with a key cell cycle regulator of S phase, the cyclin E-Cdk2 kinase. The E1 helicase, which interacts with cyclin E and not with Cdk2, presents the highest affinity for catalytically active kinase complexes. In addition, E1, cyclin E, and Cdk2 expressed in Xenopus egg extracts are quantitatively coimmunoprecipitated from crude extracts by either anti-Cdk2 or anti-E1 antibodies. E1 protein is also a substrate of the cyclin E-Cdk2 kinase in vitro. Using the viral components required for in vitro BPV-1 replication and free-membrane cytosol from Xenopus eggs, we show that efficient replication of BPV plasmids is dependent on the addition of E1-cyclin E-Cdk2 complexes. Thus, the BPV initiator of replication and cyclin E-Cdk2 are likely to function together as a protein complex which may be the key to the cell cycle regulation of papillomavirus replication.
Collapse
Affiliation(s)
- N Cueille
- Centre de Recherches de Biochimie Macromoléculaire, CNRS, UPR 1086, 34293 Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
29
|
Uzbekov R, Chartrain I, Philippe M, Arlot-Bonnemains Y. Cell cycle analysis and synchronization of the Xenopus cell line XL2. Exp Cell Res 1998; 242:60-8. [PMID: 9665802 DOI: 10.1006/excr.1998.4097] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have determined the length of the cell cycle and its different phases in a permanent Xenopus tadpole cell line, XL2. Following BrdU labeling, the total length of the cell cycle was estimated as 28 h. The different phases of the cell cycle, G1, S, G2, and M were, respectively, 14 h, 10 h 45 min, 2 h 30 min, and 54 min. Knowing these parameters, we were able to develop methods that selectively enrich cells in different phases of the cycle. Treatment with aphidicolin resulted in a S phase block in which more than 85% of the cells showed S phase chromosomes. Almost 60% of the cells were arrested in mitosis after a double block with aphidicolin/nocodazole or aphidicolin/ALLN (acetyl-leucyl-leucyl-norleucinal) treatment. This synchronization protocol will greatly facilitate studies of biochemical events associated with specific gene regulation through the cell cycle. Our synchronization protocol does not disturb cell metabolism as the expression of cyclin B2 during the cell cycle is in agreement with the results obtained with mammalian cells.
Collapse
Affiliation(s)
- R Uzbekov
- UPR 41 CNRS Universite de Rennes 1, France
| | | | | | | |
Collapse
|
30
|
Keyomarsi K, Herliczek TW. The role of cyclin E in cell proliferation, development and cancer. PROGRESS IN CELL CYCLE RESEARCH 1998; 3:171-91. [PMID: 9552414 DOI: 10.1007/978-1-4615-5371-7_14] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Normal cell proliferation is under strict regulation governed by checkpoints located at distinct points in the cell cycle. The deregulation of these checkpoint events and the molecules associated with them may transform a normal cell into a cancer cell. One of these checkpoints whose deregulation results in transformation occurs at the Restriction point, near the G1/S boundary. The periodic appearance of one of the recently identified regulatory cyclins, cyclin E, coincides precisely with the timing of the Restriction point. The deregulation in the expression and activity of cyclin E has been associated with a number of cancers and is thought to be involved in the process of oncogenesis. In this chapter, we summarise the current knowledge on the regulation and apparent function of cyclin E in normal proliferating cells and in developing tissue and alterations of these processes in cancer.
Collapse
Affiliation(s)
- K Keyomarsi
- Wadsworth Center, New York State Department of Health, Albany 12201, USA
| | | |
Collapse
|
31
|
Taieb F, Chartrain I, Chevalier S, Haccard O, Jessus C. Cyclin D2 arrests Xenopus early embryonic cell cycles. Exp Cell Res 1997; 237:338-46. [PMID: 9434629 DOI: 10.1006/excr.1997.3800] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Xenopus cyclin D2 mRNA is a member of the class of maternal RNAs. It is rare and stable during early embryonic development. To investigate the potential role of cyclin D2 during early embryonic cell cycles, cyclin D2 was injected into one blastomere of a two-cell embryo. This injection induced a cell cycle arrest in the injected blastomere. To analyze more precisely the mechanism of this arrest, we took advantage of cycling egg extracts that recapitulate major events of the cell cycle when supplemented with demembranated sperm heads. When Xenopus cyclin D2 is added to egg extracts, the first round of DNA replication occurs as in control extracts. However, Xenopus cyclin D2 blocks subsequent rounds of DNA replication and the oscillations of histone H1 kinase activity associated with cdc2 kinase, indicating that the cell cycle is arrested after the first S-phase. The block induced by Xenopus cyclin D2 is not due to a lack of the mitotic cyclin B2 that accumulates normally. Radiolabeled Xenopus cyclin D2 enters nuclei after completion of the first S-phase and remains stable over the entire period of the arrest. These features suggest that Xenopus cyclin D2 could play an original role during early development, controlling the G2-phase and/or the G2/M transition.
Collapse
Affiliation(s)
- F Taieb
- Laboratoire de Physiologie de la Reproduction, INRA/URA-CNRS 1449, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | |
Collapse
|
32
|
Tian J, Thomsen GH, Gong H, Lennarz WJ. Xenopus Cdc6 confers sperm binding competence to oocytes without inducing their maturation. Proc Natl Acad Sci U S A 1997; 94:10729-34. [PMID: 9380703 PMCID: PMC23465 DOI: 10.1073/pnas.94.20.10729] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/1997] [Indexed: 02/05/2023] Open
Abstract
Amphibian eggs normally require meiotic maturation to be competent for fertilization. A necessary prerequisite for this event is sperm binding, and we show that under normal physiological conditions this property is acquired at, but not before, meiotic maturation. Immature oocytes do not bind sperm, but injection of total egg poly(A)+ mRNA into immature oocytes confers sperm binding in the absence of meiotic maturation. Using an expression cloning approach we have isolated a single cDNA from egg poly(A)+ mRNA that can induce sperm binding in immature oocytes. The cDNA was found to encode Xenopus Cdc6, a protein that previously has been shown to function in initiation of DNA replication and cell cycle control. This unanticipated finding provides evidence of a link between a regulator of the cell cycle and alterations in cell surface properties that affect gamete binding.
Collapse
Affiliation(s)
- J Tian
- Department of Biochemistry and Cell Biology and the Institute for Cell and Developmental Biology, State University of New York at Stony Brook, Stony Brook, NY 11794-5215, USA
| | | | | | | |
Collapse
|
33
|
Mahbubani HM, Chong JP, Chevalier S, Thömmes P, Blow JJ. Cell cycle regulation of the replication licensing system: involvement of a Cdk-dependent inhibitor. J Cell Biol 1997; 136:125-35. [PMID: 9008708 PMCID: PMC2132454 DOI: 10.1083/jcb.136.1.125] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The replication licensing factor (RLF) is an essential initiation factor that is involved in preventing re-replication of chromosomal DNA in a single cell cycle. In Xenopus egg extracts, it can be separated into two components: RLF-M, a complex of MCM/P1 polypeptides, and RLF-B, which is currently unpurified. In this paper we investigate variations in RLF activity throughout the cell cycle. Total RLF activity is low in metaphase, due to a lack of RLF-B activity and the presence of an RLF inhibitor. RLF-B is rapidly activated on exit from metaphase, and then declines during interphase. The RLF inhibitor present in metaphase extracts is dependent on the activity of cyclin-dependent kinases (Cdks). Affinity depletion of Cdks from metaphase extracts removed the RLF inhibitor, while Cdc2/cyclin B directly inhibited RLF activity. In metaphase extracts treated with the protein kinase inhibitor 6-dimethylaminopurine (6-DMAP), both cyclin B and the RLF inhibitor were stabilized although the extracts morphologically entered interphase. These results are consistent with studies in other organisms that invoke a key role for Cdks in preventing re-replication of DNA in a single cell cycle.
Collapse
Affiliation(s)
- H M Mahbubani
- Imperial Cancer Research Fund, Clare Hall Laboratories, Potters Bar, Herts, United Kingdom
| | | | | | | | | |
Collapse
|
34
|
Abstract
Studies on the initiation of DNA replication in eukaryotes have progressed recently through different approaches that promise to converge. Proteins interacting with the origin recognition complex form a prereplicative complex early in the cell cycle. The regulation of the binding of MCM/P1 proteins to chromatin plays a key role in the replication licensing system which prevents re-replication in a single cell cycle. Cyclin-dependent kinases provide an overall control of the cell cycle by stimulating S-phase entry and possibly by preventing re-establishment of prereplicative complexes in G2 phase.
Collapse
Affiliation(s)
- S Chevalier
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire, EN6 3LD, UK.
| | | |
Collapse
|