1
|
Yang L, Wang S, Pan H, Zhou X, Wei J, Zhou M, Yang Y, Quan Q. Glycolic acid-induced disruption of epidermal homeostasis in a skin equivalent model: Insights into temporal dynamics and mechanisms. Toxicol Lett 2024; 397:1-10. [PMID: 38710400 DOI: 10.1016/j.toxlet.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
Glycolic acid (GA) is extensively used in cosmetic formulations and skin peeling treatments but its adverse effects, notably severe disruption of epidermal structure, limit its clinical utility. However, the detailed impact of GA on epidermal homeostasis, including changes in structure and protein expression over time, is not fully understood. This study employed a reconstructed human epidermis (RHE) model to assess the effects of varying GA concentrations on epidermal proliferation, differentiation, and desquamation at different time points. Through histology, immunofluorescence, and immunohistochemistry, we observed that 35% GA concentration adversely caused abnormal epidermal homeostasis by affecting epidermal proliferation, differentiation and desquamation. Our findings reveal time-specific responses of key proteins to GA: Filaggrin, Involucrin, Loricrin, and Ki67 showed very early responses; KLK10 an early response; and AQP3 and K10 late responses. This research provides a detailed characterization of GA's effects in an RHE model, mimicking clinical superficial peeling and identifying optimal times for detecting GA-induced changes. Our results offer insights for designing interventions to mitigate GA's adverse effects on skin, enhancing the safety and efficacy of GA peeling treatments.
Collapse
Affiliation(s)
- Lingli Yang
- Yunnan Baiyao Group Co., Ltd., Kunming 650000, PR China; East Asia Skin Health Research Center, Beijing 100081, PR China; REAL DermaSci & Biotech Co., Ltd., Beijing 100081, PR China
| | - Siyi Wang
- Yunnan Baiyao Group Co., Ltd., Kunming 650000, PR China; East Asia Skin Health Research Center, Beijing 100081, PR China; REAL DermaSci & Biotech Co., Ltd., Beijing 100081, PR China
| | - Haihao Pan
- Yunnan Baiyao Group Co., Ltd., Kunming 650000, PR China; East Asia Skin Health Research Center, Beijing 100081, PR China; REAL DermaSci & Biotech Co., Ltd., Beijing 100081, PR China
| | - Xue Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Jing Wei
- East Asia Skin Health Research Center, Beijing 100081, PR China; REAL DermaSci & Biotech Co., Ltd., Beijing 100081, PR China
| | - Ming Zhou
- Yunnan Baiyao Group Co., Ltd., Kunming 650000, PR China; East Asia Skin Health Research Center, Beijing 100081, PR China; REAL DermaSci & Biotech Co., Ltd., Beijing 100081, PR China
| | - Yang Yang
- Yunnan Baiyao Group Co., Ltd., Kunming 650000, PR China; East Asia Skin Health Research Center, Beijing 100081, PR China; REAL DermaSci & Biotech Co., Ltd., Beijing 100081, PR China.
| | - Qianghua Quan
- Yunnan Baiyao Group Co., Ltd., Kunming 650000, PR China; East Asia Skin Health Research Center, Beijing 100081, PR China; REAL DermaSci & Biotech Co., Ltd., Beijing 100081, PR China.
| |
Collapse
|
2
|
Cui S, Rouabhia M, Semlali A, Zhang Z. Effects of electrical stimulation on human skin keratinocyte growth and the secretion of cytokines and growth factors. Biomed Mater 2021; 16. [PMID: 34592730 DOI: 10.1088/1748-605x/ac2bba] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022]
Abstract
Electrical stimulation (ES) has been widely explored and found effective in promoting wound healing. However, the role of ES on keratinocytes, a major player in wound healing, has not been well established. The present work investigated the cellular and molecular behaviors of human skin keratinocytes being exposed to ES. HaCaT keratinocytes were seeded on a novel electrically conductive and soft PPy-PU/PLLA membrane and cultured under electrical intensities of 100 or 200 mV mm-1for 6 and 24 h. The factors assessed after ES include cell proliferation, colony formation, cytokines, keratins, as well as phosphorylated ERK1/2 (pERK1/2) kinases. The results showed that the electrically stimulated cells exhibited a higher proliferative ability and secreted more IL-6, IL-1α, IL-8, GROα, FGF2, and VEGF-A. Interestingly, the 24 h ES induced a 'stimulus memory' by showing a significant rise in colony-forming efficiency in post-ES cells that were sub-cultured. Additionally, after stopping the 24 h ES, the productions of keratin 5 and keratin 14 were continuously increased for 3 d. The productions of keratin 10 and keratin 13 were significantly increased post the 6 h ES. Finally, the ES increased pERK1/2 kinases. The overall results demonstrated that the proliferation of keratinocytes and their secretion of cytokines and growth factors can be activated through appropriate ES to benefit skin wound healing.
Collapse
Affiliation(s)
- Shujun Cui
- Research Group on Oral Ecology, Faculty of Dentistry, Université Laval, Québec (QC), Canada.,Department of Surgery, Faculty of Medicine, Université Laval, Québec (QC), Canada.,Division of Regenerative Medicine, Research Center of CHU-Université Laval, Québec (QC), Canada
| | - Mahmoud Rouabhia
- Research Group on Oral Ecology, Faculty of Dentistry, Université Laval, Québec (QC), Canada
| | - Abdelhabib Semlali
- Research Group on Oral Ecology, Faculty of Dentistry, Université Laval, Québec (QC), Canada
| | - Ze Zhang
- Department of Surgery, Faculty of Medicine, Université Laval, Québec (QC), Canada.,Division of Regenerative Medicine, Research Center of CHU-Université Laval, Québec (QC), Canada
| |
Collapse
|
3
|
Frommherz L, Küsel J, Zimmer A, Fischer J, Has C. Withdrawn:
Skin fragility caused by biallelic
KRT10
mutations: an intriguing form of self‐improving epidermolytic ichthyosis. Br J Dermatol 2019; 182:780-785. [DOI: 10.1111/bjd.18325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2019] [Indexed: 12/20/2022]
Affiliation(s)
- L. Frommherz
- Department of Dermatology Medical Center – University of Freiburg Faculty of Medicine Hauptstraße 7 79104 Freiburg Germany
| | - J. Küsel
- Institute of Human Genetics Medical Center – University of Freiburg Faculty of Medicine Hauptstraße 7 79104 Freiburg Germany
| | - A. Zimmer
- Institute of Human Genetics Medical Center – University of Freiburg Faculty of Medicine Hauptstraße 7 79104 Freiburg Germany
| | - J. Fischer
- Institute of Human Genetics Medical Center – University of Freiburg Faculty of Medicine Hauptstraße 7 79104 Freiburg Germany
| | - C. Has
- Department of Dermatology Medical Center – University of Freiburg Faculty of Medicine Hauptstraße 7 79104 Freiburg Germany
| |
Collapse
|
4
|
Goleva E, Berdyshev E, Leung DY. Epithelial barrier repair and prevention of allergy. J Clin Invest 2019; 129:1463-1474. [PMID: 30776025 DOI: 10.1172/jci124608] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Allergic diseases have in common a dysfunctional epithelial barrier, which allows the penetration of allergens and microbes, leading to the release of type 2 cytokines that drive allergic inflammation. The accessibility of skin, compared with lung or gastrointestinal tissue, has facilitated detailed investigations into mechanisms underlying epithelial barrier dysfunction in atopic dermatitis (AD). This Review describes the formation of the skin barrier and analyzes the link between altered skin barrier formation and the pathogenesis of AD. The keratinocyte differentiation process is under tight regulation. During epidermal differentiation, keratinocytes sequentially switch gene expression programs, resulting in terminal differentiation and the formation of a mature stratum corneum, which is essential for the skin to prevent allergen or microbial invasion. Abnormalities in keratinocyte differentiation in AD skin result in hyperproliferation of the basal layer of epidermis, inhibition of markers of terminal differentiation, and barrier lipid abnormalities, compromising skin barrier and antimicrobial function. There is also compelling evidence for epithelial dysregulation in asthma, food allergy, eosinophilic esophagitis, and allergic rhinosinusitis. This Review examines current epithelial barrier repair strategies as an approach for allergy prevention or intervention.
Collapse
Affiliation(s)
- Elena Goleva
- Division of Pediatric Allergy and Clinical Immunology, Department of Pediatrics, and
| | - Evgeny Berdyshev
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Donald Ym Leung
- Division of Pediatric Allergy and Clinical Immunology, Department of Pediatrics, and.,Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
5
|
|
6
|
Rauhala L, Hämäläinen L, Dunlop TW, Pehkonen P, Bart G, Kokkonen M, Tammi M, Tammi R, Pasonen-Seppänen S. The organic osmolyte betaine induces keratin 2 expression in rat epidermal keratinocytes — A genome-wide study in UVB irradiated organotypic 3D cultures. Toxicol In Vitro 2015; 30:462-75. [DOI: 10.1016/j.tiv.2015.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 09/01/2015] [Accepted: 09/12/2015] [Indexed: 12/18/2022]
|
7
|
Kist R, Watson M, Crosier M, Robinson M, Fuchs J, Reichelt J, Peters H. The formation of endoderm-derived taste sensory organs requires a Pax9-dependent expansion of embryonic taste bud progenitor cells. PLoS Genet 2014; 10:e1004709. [PMID: 25299669 PMCID: PMC4191947 DOI: 10.1371/journal.pgen.1004709] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/26/2014] [Indexed: 11/18/2022] Open
Abstract
In mammals, taste buds develop in different regions of the oral cavity. Small epithelial protrusions form fungiform papillae on the ectoderm-derived dorsum of the tongue and contain one or few taste buds, while taste buds in the soft palate develop without distinct papilla structures. In contrast, the endoderm-derived circumvallate and foliate papillae located at the back of the tongue contain a large number of taste buds. These taste buds cluster in deep epithelial trenches, which are generated by intercalating a period of epithelial growth between initial placode formation and conversion of epithelial cells into sensory cells. How epithelial trench formation is genetically regulated during development is largely unknown. Here we show that Pax9 acts upstream of Pax1 and Sox9 in the expanding taste progenitor field of the mouse circumvallate papilla. While a reduced number of taste buds develop in a growth-retarded circumvallate papilla of Pax1 mutant mice, its development arrests completely in Pax9-deficient mice. In addition, the Pax9 mutant circumvallate papilla trenches lack expression of K8 and Prox1 in the taste bud progenitor cells, and gradually differentiate into an epidermal-like epithelium. We also demonstrate that taste placodes of the soft palate develop through a Pax9-dependent induction. Unexpectedly, Pax9 is dispensable for patterning, morphogenesis and maintenance of taste buds that develop in ectoderm-derived fungiform papillae. Collectively, our data reveal an endoderm-specific developmental program for the formation of taste buds and their associated papilla structures. In this pathway, Pax9 is essential to generate a pool of taste bud progenitors and to maintain their competence towards prosensory cell fate induction.
Collapse
Affiliation(s)
- Ralf Kist
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, United Kingdom
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michelle Watson
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Moira Crosier
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Max Robinson
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jennifer Fuchs
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Guy's Hospital, London, United Kingdom
| | - Julia Reichelt
- Institute of Cellular Medicine, Dermatological Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Heiko Peters
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
8
|
Loss of Keratin K2 Expression Causes Aberrant Aggregation of K10, Hyperkeratosis, and Inflammation. J Invest Dermatol 2014; 134:2579-2588. [DOI: 10.1038/jid.2014.197] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/24/2014] [Accepted: 04/02/2014] [Indexed: 11/09/2022]
|
9
|
Abstract
BACKGROUND The stratum corneum (SC) is the outermost region of the epidermis and plays key roles in cutaneous barrier function in mammals. The SC is composed of 'bricks', represented by flattened, protein-enriched corneocytes, and 'mortar', represented by intercellular lipid-enriched layers. As a result of this 'bricks and mortar' structure, the SC can be considered as a 'rampart' that encloses water and solutes essential for physiological homeostasis and that protects mammals from physical, chemical and biological assaults. STRUCTURES AND FUNCTIONS The corneocyte cytoskeleton contains tight bundles of keratin intermediate filaments aggregated with filaggrin monomers, which are subsequently degraded into natural moisturizing compounds by various proteases, including caspase 14. A cornified cell envelope is formed on the inner surface of the corneocyte plasma membrane by transglutaminase-catalysed cross-linking of involucrin and loricrin. Ceramides form a lipid envelope by covalently binding to the cornified cell envelope, and extracellular lamellar lipids play an important role in permeability barrier function. Corneodesmosomes are the main adhesive structures in the SC and are degraded by certain serine proteases, such as kallikreins, during desquamation. CLINICAL RELEVANCE The roles of the different SC components, including the structural proteins in corneocytes, extracellular lipids and some proteins associated with lipid metabolism, have been investigated in genetically engineered mice and in naturally occurring hereditary skin diseases, such as ichthyosis, ichthyosis syndrome and atopic dermatitis in humans, cattle and dogs.
Collapse
Affiliation(s)
- Koji Nishifuji
- Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| | | |
Collapse
|
10
|
Wallace L, Roberts-Thompson L, Reichelt J. Deletion of K1/K10 does not impair epidermal stratification but affects desmosomal structure and nuclear integrity. J Cell Sci 2012; 125:1750-8. [PMID: 22375063 DOI: 10.1242/jcs.097139] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Keratins K1 and K10 are the most abundant proteins in the upper epidermis where they polymerize to form intermediate filaments (IFs). In addition to their well-established function in providing epidermal stability, K1/K10 (i.e. the dimer between K1 and K10) IFs are supposed to be important for terminal epidermal differentiation and barrier formation. It was previously shown that the imbalanced deletion of one of the partner keratins, K10, disturbed epidermal homoeostasis, although stability was provided by compensatory upregulation of K5/K14, which formed IFs together with the remaining K1. Here, we show that deletion of both partner keratins, K1 and K10, results in lethal postnatal skin fragility in mice. Krt1(-/-);Krt10(-/-) mice revealed that K1/K10 IFs are unexpectedly dispensable for epidermal stratification. Although the stratum corneum was less compact and cornified envelope differentiation was impaired, a dye exclusion assay showed that the development of a functional water barrier was surprisingly independent from the presence of K1/K10 IFs. The deletion of K1/K10 was not compensated by any other keratin pair such as the basal epidermal keratins K5/K14, and electron microscopy revealed total absence of IFs in the suprabasal epidermis. Although plakoglobin was unchanged, the expression of the desmosomal proteins desmoplakin, desmocollin 1 and desmoglein 1 were altered and suprabasal desmosomes were smaller in Krt1(-/-);Krt10(-/-) than in wild-type epidermis suggesting an involvement of K1/K10 IFs in desmosome dynamics. Furthermore, Krt1(-/-);Krt10(-/-) mice showed premature loss of nuclei during epidermal differentiation and lower levels of emerin, lamin A/C and Sun1, revealing a previously unknown function for IFs in maintaining nuclear integrity in the upper epidermis.
Collapse
Affiliation(s)
- Lee Wallace
- Institute of Cellular Medicine and North East England Stem Cell Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | | |
Collapse
|
11
|
Bornheim R, Müller M, Reuter U, Herrmann H, Büssow H, Magin TM. A dominant vimentin mutant upregulates Hsp70 and the activity of the ubiquitin-proteasome system, and causes posterior cataracts in transgenic mice. J Cell Sci 2008; 121:3737-46. [PMID: 18940912 DOI: 10.1242/jcs.030312] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vimentin is the main intermediate filament (IF) protein of mesenchymal cells and tissues. Unlike other IF-/- mice, vimentin-/- mice provided no evidence of an involvement of vimentin in the development of a specific disease. Therefore, we generated two transgenic mouse lines, one with a (R113C) point mutation in the IF-consensus motif in coil1A and one with the complete deletion of coil 2B of the rod domain. In epidermal keratins and desmin, point mutations in these parts of the alpha-helical rod domain cause keratinopathies and desminopathies, respectively. Here, we demonstrate that substoichiometric amounts of vimentin carrying the R113C point mutation disrupted the endogenous vimentin network in all tissues examined but caused a disease phenotype only in the eye lens, leading to a posterior cataract that was paralleled by the formation of extensive protein aggregates in lens fibre cells. Unexpectedly, central, postmitotic fibres became depleted of aggregates, indicating that they were actively removed. In line with an increase in misfolded proteins, the amounts of Hsp70 and ubiquitylated vimentin were increased, and proteasome activity was raised. We demonstrate here for the first time that the expression of mutated vimentin induces a protein-stress response that contributes to disease pathology in mice, and hypothesise that vimentin mutations cause cataracts in humans.
Collapse
Affiliation(s)
- Roland Bornheim
- Institut für Biochemie and Molekularbiologie, Abteilung für Zellbiochemie und LIMES, Universität Bonn, Nussallee 11, 53115 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Schmuth M, Gruber R, Elias PM, Williams ML. Ichthyosis update: towards a function-driven model of pathogenesis of the disorders of cornification and the role of corneocyte proteins in these disorders. ACTA ACUST UNITED AC 2008; 23:231-56. [PMID: 18159904 DOI: 10.1016/j.yadr.2007.07.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Matthias Schmuth
- Department of Dermatology, University of California, VAMC Metabolism 111F, 4150 Clement Street, San Francisco, CA 94121, USA.
| | | | | | | |
Collapse
|
13
|
Jing R, Wilhelmsson U, Goodwill W, Li L, Pan Y, Pekny M, Skalli O. Synemin is expressed in reactive astrocytes in neurotrauma and interacts differentially with vimentin and GFAP intermediate filament networks. J Cell Sci 2007; 120:1267-77. [PMID: 17356066 DOI: 10.1242/jcs.03423] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immature astrocytes and astrocytoma cells contain synemin and three other intermediate filament (IF) proteins: glial fibrillary acidic protein (GFAP), vimentin and nestin. Here, we show that, after neurotrauma, reactive astrocytes produce synemin and thus propose synemin as a new marker of reactive astrocytes. Comparison of synemin mRNA and protein levels in brain tissues and astrocyte cultures from wild-type, Vim-/- and Gfap-/-Vim-/- mice showed that in the absence of vimentin, synemin protein was undetectable although synemin mRNA was present at wild-type levels. By contrast, in Gfap-/- astrocytes, synemin protein and mRNA levels, as well as synemin incorporation into vimentin IFs, were unaltered. Biochemical assays with purified proteins suggested that synemin interacts with GFAP IFs like an IF-associated protein rather than like a polymerization partner, whereas the opposite was true for synemin interaction with vimentin. In transfection experiments, synemin did not incorporate into normal, filamentous GFAP networks, but integrated into vimentin and GFAP heteropolymeric networks. Thus, alongside GFAP, vimentin and nestin, reactive astrocytes contain synemin, whose accumulation is suppressed post-transcriptionally in the absence of a polymerization partner. In astrocytes, this partner is vimentin and not GFAP, which implies a functional difference between these two type III IF proteins.
Collapse
Affiliation(s)
- Runfeng Jing
- Department of Cellular Biology and Anatomy and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Compensation of type I and type II cytokeratin pools in lung cancer. Lung Cancer 2006; 55:295-302. [PMID: 17161499 DOI: 10.1016/j.lungcan.2006.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 09/06/2006] [Accepted: 10/30/2006] [Indexed: 10/23/2022]
Abstract
Cytokeratins (CKs) constitute the largest family of intermediate filament proteins, and are subdivided into type I (CK9-CK23) and type II (CK1-CK8) subclasses. CK19 is expressed in non-small cell lung cancer (NSCLC), and serum CK19 fragment (referred to as CYFRA21-1) is one of the tumor markers used in diagnosing NSCLC. Type I and type II CKs have been shown to form obligate 1:1 heteropolymers, suggesting that dynamic changes must occur in the expression levels of CK pools when one CK is suppressed. However, the absolute levels of CK expression and their dynamic changes have not been fully evaluated. Therefore, we quantitatively determined CK expression levels in NSCLC cell lines, and evaluated the rate of change of CK expression levels after RNA interference targeting of single CKs. In NSCLC cells, type I CK18 and type II CK8 are the dominant CKs, with absolute expression levels of 12-77pmol/10(6)cells, while the expression patterns of the CKs vary among cell lines. Moderate suppression of a single dominant CK caused downregulation in CKs of the complementary type, and upregulation of other CKs of the same type. In contrast, severe suppression of a single dominant CK caused almost complete suppression of all CKs. In addition, introduction of CK19 led to resistance to CK degradation by CK18 suppression. These data suggest the presence of a critical threshold expression level for a dominant CK and a role for CK19 in the compensation of type I and type II CK pools in NSCLC.
Collapse
|
15
|
Hass R, Kirchner M, Hollwitz B, Scharf A. 2D‐DIGE analysis revealed reduced cytokeratin signaling in placenta with preeclampsia. SIGNAL TRANSDUCTION 2006; 6:190-197. [DOI: 10.1002/sita.200500072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AbstractPreeclampsia represents a severe pregnancy disorder associated with premature delivery and fetal growth retardation which also involves certain imbalances of the placental maturation and the placental integration into the surrounding tissues. To characterize possible differences in the development of normal and preeclamptic placentae, two‐dimensional SDS‐PAGE of 10 normal placental protein homogenates was performed and compared to the protein pattern of homogenates from 10 preeclamptic placentae. Thus, acidic proteins particularly of about 56 kDa were identified in normal placentae which were nearly undetectable in protein homogenates of preeclamptic placentae. Peptide mass finger printing by MALDI identified cytokeratins, especially cytokeratin‐10 as one of the differentially expressed protein. Quantitative data were obtained by two‐dimensional difference‐gel electrophoresis (2D DIGE). Labeling of normal and preeclamptic placental proteins with the fluorophors Cy5 and Cy3, respectively, and subsequent separation of these mixed samples by 2D DIGE revealed a differentially expressed protein spot at a 12.8‐fold higher fluorescence intensity in normal placentae as compared to preeclamptic placentae. MALDI analysis of this differentially expressed protein spot identified cytokeratin. In order to verify these results in individual placenta probes, cytokeratin‐10 Western blots were performed in 3 normal and preeclamptic placental homogenates of different gestational ages, respectively. Whereas a marked 56 kDa cytokeratin‐10 expression appeared in all normal placentae, there was only little if any detectable cytokeratin‐10 present in the preeclamptic placentae, respectively. These findings suggest that preeclampsia is accompanied by a significantly reduced cytokeratin signaling provided by 2D‐DIGE‐coupled MALDI analysis which represents a suitable technique to identify e. g. disease‐related alterations in protein patterns.
Collapse
|
16
|
Reichelt J, Breiden B, Sandhoff K, Magin TM. Loss of keratin 10 is accompanied by increased sebocyte proliferation and differentiation. Eur J Cell Biol 2005; 83:747-59. [PMID: 15679119 DOI: 10.1078/0171-9335-00429] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Here, we present strong evidence that the targeted deletion of keratin 10 (K10) alters sebocyte differentiation in mice, mediated by an increased proliferation and differentiation of cells located in the periphery of the glands. This was not accompanied by the induction of the proliferation-associated keratins K6, K16 and K17. Sebaceous gland cells of K10-/- mice showed an accelerated turnover and secreted more sebum including wax esters, triglycerides, and cholesterol esters. The levels of the major epidermal lipids ceramides and cholesterol were also increased, whereas glycosylceramides and sphingomyelin were decreased which was not based on altered sphingolipid biosynthesis. The amount of Cer(OS), covalently bound to the cornified envelope, remained unchanged, as well as the amount of loricrin and involucrin. In agreement with the unaltered expression of beta-catenin and its targets cyclin D1 and c-Myc, we conclude that the altered composition of the suprabasal intermediate filament cytoskeleton in K10-/- mice increased the differentiation of epidermal stem cells towards the sebocyte lineage.
Collapse
Affiliation(s)
- Julia Reichelt
- Institut für Physiologische Chemie, Universität Bonn, Bonn, Germany.
| | | | | | | |
Collapse
|
17
|
Bratthauer GL, Miettinen M, Tavassoli FA. Cytokeratin immunoreactivity in lobular intraepithelial neoplasia. J Histochem Cytochem 2003; 51:1527-31. [PMID: 14566024 PMCID: PMC3957561 DOI: 10.1177/002215540305101112] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Eighteen commercially available antibodies reactive against different cytokeratin proteins were tested on classic examples of lobular intraepithelial neoplasia (LIN) and of ductal intraepithelial neoplasia (DIN) of the breast. About 90% of higher-grade DIN (AIDH and DCIS) show no or substantially diminished reaction with clone 34betaE12 (specified as reactive against keratins 1, 5, 10, and 14 as determined by the manufacturer), while the cells of LIN were found to express the antigen reactive with this antibody. To determine which of these four keratins are present in the cells of LIN, antibodies reactive against these individual four keratins were tested. None of the four antibodies to keratins 1, 5, 10, or 14 reacted with the cells of LIN. To investigate this further, 13 additional monoclonal antibodies to various other keratin proteins were tested on the cells of LIN. Those that successfully reacted with the cells of LIN were further tested on the cells of DIN. All of the individual antibodies reactive with the cells of LIN were also reactive with the cells of DIN to a degree, with clone RCK108 (reactive against keratin 19) coming the closest to demonstrating the reactivity seen with 34betaE12. We conclude that the reactivity seen in the cells of LIN with 34betaE12 is due to either (a) a crossreaction with keratin 19 that is slightly less prominent than the reaction of the individual clone RCK108, (b) a crossreaction with a keratin protein that was not tested (3, 11, 12), (c) a crossreaction with a protein closely resembling keratin in formalin-fixed, paraffin-embedded tissue, or (d) the detection of a mutated or truncated form of keratin 1, 5, 10, or 14 that cannot be detected by the individual monoclonal antibody.
Collapse
Affiliation(s)
- Gary L Bratthauer
- Department of Gynecologic and Breast Pathology, Armed Forces Institute of Pathology, Washington, DC 20306-6000, USA.
| | | | | |
Collapse
|
18
|
Peters T, Sedlmeier R, Büssow H, Runkel F, Lüers GH, Korthaus D, Fuchs H, Hrabé de Angelis M, Stumm G, Russ AP, Porter RM, Augustin M, Franz T. Alopecia in a novel mouse model RCO3 is caused by mK6irs1 deficiency. J Invest Dermatol 2003; 121:674-80. [PMID: 14632181 DOI: 10.1046/j.1523-1747.2003.12491.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Reduced coat 3 (Rco3) is a new spontaneous autosomal recessive mutation with defects in hair structure and progressive alopecia. Here we describe chromosomal mapping and molecular identification of the Rco3 mutation. The murine Rco3 locus maps to a 2-Mb interval on chromosome 15 encompassing the keratin type II gene cluster. Recently, mK6irs1 was described as a type II keratin expressed in Henle's and Huxley's layer of the murine inner root sheath. Genomic sequencing revealed a 10-bp deletion in exon 1 of mK6irs1 resulting in a frameshift after 58 amino acid residues and, therefore, the absence of 422 carboxy-terminal amino acid residues containing the complete alpha-helical rod domain. Henle's and Huxley's layers show no immunoreactivity with mK6irs1-specific antibodies and the absence of intermediate filament formation in electron microscopic images. These results indicate that the expression of functional mK6irs1 is indispensable for intermediate filament formation in the inner root sheath and highlights the importance of the keratinization of the inner root sheath in the normal formation of the hair shaft.
Collapse
Affiliation(s)
- T Peters
- Ingenium Pharmaceuticals AG, Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Akiyama M, Takizawa Y, Sawamura D, Matsuo I, Shimizu H. Disruption of the suprabasal keratin network by mutation M150T in the helix initiation motif of keratin 10 does not affect cornified cell envelope formation in human epidermis. Exp Dermatol 2003; 12:638-45. [PMID: 14705805 DOI: 10.1034/j.1600-0625.2003.00021.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Keratin 10 (K10) is known to be tightly bound to the cornified cell envelope (CCE) and this binding is thought to play an important role in enhancing the structural integrity of the cornified cells. Bullous congenital ichthyosiform erythroderma (BCIE) is a genetic disorder of keratinization caused by gene mutations in the conserved sequences of keratin 1 (K1) or K10, which leads to abnormal suprabasal keratin network assembly. In BCIE patients' skin, the keratin network abnormalities make the upper spinous and granular keratinocytes fragile and result in blister formation. However, the exact pathomechanism of the hyperkeratosis seen in BCIE is still unknown. The involvement of the CCE in the pathomechanism of hyperkeratosis in BCIE is controversial. Abnormal CCE assembly may cause hyperkeratosis as reported in cases of lamellar ichthyosis. Binding of K10 to CCE is thought to be a vital connection between the suprabasal keratin filament network and CCE. We hypothesize that abnormal suprabasal keratin assembly caused by either K1 or K10 mutations can disrupt CCE formation, resulting in the hyperkeratosis observed in BCIE. To clarify whether K10 and keratin network defects affect CCE formation in vivo, the ultrastructural and immunohistological features of CCE were studied in the epidermis of two Japanese BCIE patients from two independent families carrying an identical missense mutation M150T in the helix initiation motif of K10. Ultrastructurally, a 15-nm-thick, dense, normal-appearing CCE was formed at the cell periphery of the keratinized epidermal cells. Light and electron microscopic immunolabeling revealed that the major CCE precursor proteins, involucrin and loricrin, were normally distributed and restricted to CCE of the epidermis. Immunofluorescent labeling showed that epidermal TGases, TGase 1, TGase 2 and TGase 3, were expressed normally in the epidermis. These findings suggest that a normal CCE is formed during the process of human epidermal keratinization, even if the suprabasal keratin filament network is disrupted as with this particular K10 mutation, M150T in BCIE.
Collapse
Affiliation(s)
- M Akiyama
- Departament of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
20
|
Kimyai-Asadi A, Kotcher LB, Jih MH. The molecular basis of hereditary palmoplantar keratodermas. J Am Acad Dermatol 2002; 47:327-43; quiz 344-6. [PMID: 12196741 DOI: 10.1067/mjd.2002.124814] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In recent years, the gene defects causing many types of hereditary palmoplantar keratoderma have been discovered. These genes encode a variety of proteins involved in the terminal differentiation of keratinocytes and the formation of the cornified cell envelope. In this article, we review the molecular defects underlying various palmoplantar keratodermas with particular attention to the role of these molecules in the terminal differentiation of palmoplantar epidermis. Of the proteins involved in keratodermas, loricrin, keratins, and desmosomal proteins provide the protein structure of the cornified cell envelope. Connexins form intercellular gap junctions, which regulate ionic calcium signals necessary for the expression of the proteins that form the cornified cell envelope. Cathepsins likely mediate enzymatic processes necessary for the formation and dissolution of the cornified cell envelope. The clinical phenotypes produced by various mutations affecting these proteins are discussed vis-à-vis data from genetic, cellular, and molecular experiments.
Collapse
Affiliation(s)
- Arash Kimyai-Asadi
- Ronald O. Perelman Department of Dermatology, The New York University School of Medicine, New York, USA
| | | | | |
Collapse
|
21
|
Schmuth M, Yosipovitch G, Williams ML, Weber F, Hintner H, Ortiz-Urda S, Rappersberger K, Crumrine D, Feingold KR, Elias PM. Pathogenesis of the permeability barrier abnormality in epidermolytic hyperkeratosis. J Invest Dermatol 2001; 117:837-47. [PMID: 11676820 DOI: 10.1046/j.0022-202x.2001.01471.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Epidermolytic hyperkeratosis is a dominantly inherited ichthyosis, frequently associated with mutations in keratin 1 or 10 that result in disruption of the keratin filament cytoskeleton leading to keratinocyte fragility. In addition to blistering and a severe disorder of cornification, patients typically display an abnormality in permeability barrier function. The nature and pathogenesis of the barrier abnormality in epidermolytic hyperkeratosis are unknown, however. We assessed here, first, baseline transepidermal water loss and barrier recovery kinetics in patients with epidermolytic hyperkeratosis. Whereas baseline transepidermal water loss rates were elevated by approximately 3-fold, recovery rates were faster in epidermolytic hyperkeratosis than in age-matched controls. Electron microscopy showed no defect in either the cornified envelope or the adjacent cornified-bound lipid envelope, i.e., a corneocyte scaffold abnormality does not explain the barrier abnormality. Using the water-soluble tracer, colloidal lanthanum, there was no evidence of tracer accumulation in corneocytes, despite the fragility of nucleated keratinocytes. Instead, tracer, which was excluded in normal skin, moved through the extracellular stratum corneum domains. Increasing intercellular permeability correlated with decreased quantities and defective organization of extracellular lamellar bilayers. The decreased lamellar material, in turn, could be attributed to incompletely secreted lamellar bodies within granular cells, demonstrable not only by several morphologic findings, but also by decreased delivery of a lamellar body content marker, acid lipase, to the stratum corneum interstices. Yet, after acute barrier disruption a rapid release of preformed lamellar body contents was observed together with increased organelle contents in the extracellular spaces, accounting for the accelerated recovery kinetics in epidermolytic hyperkeratosis. Accelerated recovery, in turn, correlated with a restoration in calcium in outer stratum granulosum cells in epidermolytic hyperkeratosis after barrier disruption. Thus, the baseline permeability barrier abnormality in epidermolytic hyperkeratosis can be attributed to abnormal lamellar body secretion, rather than to corneocyte fragility or an abnormal cornified envelope/cornified-bound lipid envelope scaffold, a defect that can be overcome by external applications of stimuli for barrier repair.
Collapse
Affiliation(s)
- M Schmuth
- Internal Medicine, University of California, San Francisco, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Reichelt J, Büssow H, Grund C, Magin TM. Formation of a normal epidermis supported by increased stability of keratins 5 and 14 in keratin 10 null mice. Mol Biol Cell 2001; 12:1557-68. [PMID: 11408568 PMCID: PMC37324 DOI: 10.1091/mbc.12.6.1557] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The expression of distinct keratin pairs during epidermal differentiation is assumed to fulfill specific and essential cytoskeletal functions. This is supported by a great variety of genodermatoses exhibiting tissue fragility because of keratin mutations. Here, we show that the loss of K10, the most prominent epidermal protein, allowed the formation of a normal epidermis in neonatal mice without signs of fragility or wound-healing response. However, there were profound changes in the composition of suprabasal keratin filaments. K5/14 persisted suprabasally at elevated protein levels, whereas their mRNAs remained restricted to the basal keratinocytes. This indicated a novel mechanism regulating keratin turnover. Moreover, the amount of K1 was reduced. In the absence of its natural partner we observed the formation of a minor amount of novel K1/14/15 filaments as revealed by immunogold electron microscopy. We suggest that these changes maintained epidermal integrity. Furthermore, suprabasal keratinocytes contained larger keratohyalin granules similar to our previous K10T mice. A comparison of profilaggrin processing in K10T and K10(-/-) mice revealed an accumulation of filaggrin precursors in the former but not in the latter, suggesting a requirement of intact keratin filaments for the processing. The mild phenotype of K10(-/-) mice suggests that there is a considerable redundancy in the keratin gene family.
Collapse
Affiliation(s)
- J Reichelt
- Institute of Genetics, University of Bonn, 53117 Bonn, Germany
| | | | | | | |
Collapse
|
23
|
Abstract
The purpose of this study was to characterize the cytokeratins (CKs) present in the clinically normal skin of dogs. Skin samples from five German shepherds, five Boxers, five Cocker spaniels, five Yorkshire terriers and five mongrels were examined biochemically (using gel electrophoresis and western blotting) and immunohistochemically (using a alkaline phosphatase anti-alkaline phosphatase technique). Results indicated that the canine epidermis expressed the cytokeratins 1, 5, 6, 10/11, 14 and 16. There were no consistent differences in CK expression between the examined breeds with the exception of an individual polymorphism in CK1 and CK10/11. Immunohistochemical studies showed CK 14 labelling of the basal cell layer whereas CK10/11 staining was seen in the suprabasal cell layer of epidermis. Surprisingly, expression of CK6, known as 'stress' cytokeratin, was demonstrated in all epidermal samples. These results indicate that there is a striking consistency of cytokeratin expression in different breeds which should be useful in the investigation and characterization of canine skin diseases.
Collapse
Affiliation(s)
- J H Walter
- Institute of Veterinary Pathology, Freie Universität Berlin, Strasse 518 Nr. 15, 14163 Berlin, Germany.
| |
Collapse
|
24
|
Sprecher E, Ishida-Yamamoto A, Becker OM, Marekov L, Miller CJ, Steinert PM, Neldner K, Richard G. Evidence for novel functions of the keratin tail emerging from a mutation causing ichthyosis hystrix. J Invest Dermatol 2001; 116:511-9. [PMID: 11286616 DOI: 10.1046/j.1523-1747.2001.01292.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Unraveling the molecular basis of inherited disorders of epithelial fragility has led to understanding of the complex structure and function of keratin intermediate filaments. Keratins are organized as a central alpha-helical rod domain flanked by nonhelical, variable end domains. Pathogenic mutations in 19 different keratin genes have been identified in sequences corresponding to conserved regions at the beginning and end of the rod. These areas have been recognized as zones of overlap between aligned keratin proteins and are thought to be crucial for proper assembly of keratin intermediate filaments. Consequently, all keratin disorders of skin, hair, nail, and mucous membranes caused by mutations in rod domain sequences are characterized by perinuclear clumping of fragmented keratin intermediate filaments, thus compromising mechanical strength and cell integrity. We report here the first mutation in a keratin gene (KRT1) that affects the variable tail domain (V2) and results in a profoundly different abnormality of the cytoskeletal architecture leading to a severe form of epidermal hyperkeratosis known as ichthyosis hystrix Curth-Macklin. Structural analyses disclosed a failure in keratin intermediate filament bundling, retraction of the cytoskeleton from the nucleus, and failed translocation of loricrin to the desmosomal plaques. These data provide the first in vivo evidence for the crucial role of a keratin tail domain in supramolecular keratin intermediate filament organization and barrier formation.
Collapse
Affiliation(s)
- E Sprecher
- Department of Dermatology and Cutaneous Biology and the Jefferson Institute of Molecular Medicine, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Virtanen M, Törmä H, Vahlquist A. Keratin 4 upregulation by retinoic acid in vivo: a sensitive marker for retinoid bioactivity in human epidermis. J Invest Dermatol 2000; 114:487-93. [PMID: 10692107 DOI: 10.1046/j.1523-1747.2000.00901.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Retinoids affect keratinocyte differentiation and modulate the expression of many epidermal proteins, among them cellular retinoic acid-binding protein II and the family of cytokeratins. The upregulation of the former protein is a well-known phenomenon, whereas the retinoid-induced regulation of epidermal keratin expression is more complex and only partially understood. We studied the effect of topical retinoids on the expression in healthy skin of cellular retinoic acid-binding protein II, tazarotene-induced genes 1 and 2, several epidermal keratins (K1, K2e, and K10), and two mucous keratins (K4 and K13) known to appear in epidermis under certain abnormal conditions. Reverse transcription-polymerase chain reaction experiments showed that the K4 expression was the one most overtly induced by 2 wk of open treatment with 0.05% of retinoic acid and tazarotene. Using real-time quantitative polymerase chain reaction (TaqMan) and normalization of the mRNA values to beta-actin, the increase in K4 was found to be 100-1000-fold. In comparison, the expression of K13 and cellular retinoic acid-binding protein II was increased 10-50-fold, the K1 and K10 mRNA levels remained unchanged, and the K2e level decreased by a factor of 100-1000. In parallel biopsies, immunohistochemistry showed no change in K1, K2e, or K10 staining, but a strong de novo appearance of K4 in the granular layer after retinoid treatment. In a separate study, occlusive application of 0.025% retinoic acid in four healthy subjects produced a maximal K4 mRNA signal after 48 h and strong K4 staining after 80 h. Finally, a dose-response study showed that the de novo appearance of K4 can be utilized as a sensitive test for retinoid bioactivity in epidermis in vivo.
Collapse
Affiliation(s)
- M Virtanen
- Department of Medical Sciences, Section of Dermatology and Venereology, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
26
|
Takahashi K, Coulombe PA, Miyachi Y. Using transgenic models to study the pathogenesis of keratin-based inherited skin diseases. J Dermatol Sci 1999; 21:73-95. [PMID: 10511477 DOI: 10.1016/s0923-1811(99)00023-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the past decade, the production of transgenic animals whose genome is modified to contain DNA transgenes of interest has significantly contributed to expand our understanding of the molecular etiology and pathobiology of several inherited skin diseases. This technology has led to the discovery that mutations affecting specific keratin genes are responsible for a wide spectrum of inherited bullous diseases, which are collectively characterized by blistering after minor trauma. Type I and type II keratin proteins are restricted to, and very abundant in, epithelial cells, where they occur as a pancytoplasmic network of cytoskeletal filaments. Although it had long been suspected that a primary function of keratin filaments may be to contribute to the physical strength of epithelial sheets, a formal demonstration came from studies of transgenic mouse models and patients suffering from keratin-based blistering diseases. Here we review the basic characteristics of keratin gene and their proteins and relate them to the molecular pathogenesis of relevant inherited skin blistering diseases. A particular emphasis is placed on the role of transgenic mouse models in the past, current, and future studies of these genodermatoses.
Collapse
Affiliation(s)
- K Takahashi
- Department of Dermatology, Kyoto University Graduate School of Medicine, Shogo-in, Japan.
| | | | | |
Collapse
|
27
|
Troy TC, Turksen K. In vitro characteristics of early epidermal progenitors isolated from keratin 14 (K14)-deficient mice: insights into the role of keratin 17 in mouse keratinocytes. J Cell Physiol 1999; 180:409-21. [PMID: 10430181 DOI: 10.1002/(sici)1097-4652(199909)180:3<409::aid-jcp12>3.0.co;2-v] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Keratin 14 (K14) is believed to play a pivotal role in the maintenance of epidermal cell shape and contributing to their resistance to mechanical trauma, thereby protecting the cells from lysing. Mice harboring a K14 null mutation produce phenotypic characteristics of epidermolysis bullosa simplex, a skin blistering disease (Lloyd et al., 1995, J Cell Biol 129:1329-1344). K14 null animals die several days after birth, making the detailed study of the consequences of K14 deletion in epidermal cell physiology in vivo particularly difficult. To define the consequences of K14 loss more precisely, we used an in vitro approach by isolating K14-/- cell lines and studying epidermal differentiation in the K14 null background. Several keratinocyte cell lines were generated from 6-day-old mice homozygous for a targeted disruption of the K14 gene (lines designated MKC-5, MKC-23, and MKC-33) and from their wild-type littermates (lines designated MKC-1 and MKC-6). Under low Ca2+ (0.066 mM) and low serum (2%) conditions, both wild-type and mutant cells were able to adhere to collagen type I-coated dishes and form epithelial sheets. They maintained basal epidermal cell characteristics and continued to proliferate without obvious signs of terminal differentiation; however, K14-/- cells proliferated two- to threefold slower than did their wild-type counterparts. The distribution of K5, the natural partner of K14, at the immunofluorescence level was also normal looking in the K14-/- MKC-5 cells, but with fewer filaments detectable, consistent with the approximately 20% reduction in K5 detectable on immunoblots. K17 expression was increased approximately 40% in the K14-/- cells. The levels of K15 and K16 were not different in the MKC-5 and MKC-6 cell lines, suggesting that they are not contributing factors to the stabilization of K5 in the mutant cells. K8, K19, and vimentin were undetectable in both lines. Both MKC-5 and MKC-6 cells underwent morphological and biochemical differentiation in response to a switch to high Ca2+ medium. These findings indicate that K14-/- MKC-5 cells preserve the morphological, biochemical, and physiological characteristics of epidermal cells for an extensive period of time in vitro, likely due to the compensatory expression of K17. The culturing capacity of these cells also permits the analysis of keratinocyte growth and differentiation in the absence of K14. In addition, the culturing methods we describe will be useful for the generation of epithelial cell lines from a wealth of increasingly available knockout mouse strains with early lethality.
Collapse
Affiliation(s)
- T C Troy
- Loeb Health Research Institute, Ottawa Hospital, Ontario, Canada
| | | |
Collapse
|
28
|
Reichelt J, Doering T, Schnetz E, Fartasch M, Sandhoff K, Magin AM. Normal ultrastructure, but altered stratum corneum lipid and protein composition in a mouse model for epidermolytic hyperkeratosis. J Invest Dermatol 1999; 113:329-34. [PMID: 10469329 DOI: 10.1046/j.1523-1747.1999.00702.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recently, we established keratin 10-deficient mice, serving as a model for the hyperkeratotic skin disorder epidermolytic hyperkeratosis. The considerable ichthyosis in these mice suggested alterations in terminal differentiation and in the formation of a functional epidermal barrier. Here, we report on the ultrastructural organization and composition of the stratum corneum lipids and on the expression of two major cornified envelope proteins. Electron microscopy of ruthenium tetroxide postfixed skin samples demonstrated a normal extrusion and morphology of lamellar bodies as well as the formation of bona fide lamellar layers in neonatal keratin 10-deficient mice. When we studied the composition of the major stratum corneum lipids, however, we found significant changes. Most importantly, the analysis of ceramide subpopulations revealed that the total amount of ceramide 2 was elevated in keratin 10-deficient mice, whereas ceramides 1, 3, 4, and 5 were decreased among total stratum corneum lipids. The amount of the ceramide precursors sphingomyelin and glucosylceramide was reduced in the stratum corneum without accompanying changes in the mRNA coding for acid sphingomyelinase. Notably, we found an increased mRNA and protein content for involucrin in neonatal keratin 10-deficient mice, whereas the expression of loricrin was not changed. Our data demonstrate that, although the formation of lipid layers in the stratum corneum appeared to be normal, its lipid composition is significantly altered in keratin 10-deficient mice.
Collapse
Affiliation(s)
- J Reichelt
- Institut für Genetik and Bonner Forum Biomedizin, Friedrich-Wilhelms-Universität, Bonn, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Arin MJ, Longley MA, Epstein EH, Scott G, Goldsmith LA, Rothnagel JA, Roop DR. A novel mutation in the 1A domain of keratin 2e in ichthyosis bullosa of Siemens. J Invest Dermatol 1999; 112:380-2. [PMID: 10084318 DOI: 10.1046/j.1523-1747.1999.00529.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ichthyosis bullosa of Siemens (IBS) is a rare autosomal dominant skin disorder with clinical features similar to epidermolytic hyperkeratosis (EHK). Both diseases have been linked to the type II keratin cluster on chromosome 12q. Hyperkeratosis and blister formation are relatively mild in IBS compared with EHK, and the lysis of keratinocytes is restricted to the upper spinous and granular layers of the epidermis of IBS patients, whereas in EHK lysis occurs in the lower spinous layer. Recently, mutations in the helix initiation and termination motifs of keratin 2e (K2e) have been described in IBS patients. The majority of the mutations reported to date lie in the 2B region. In this report, we have examined a large kindred in which the disease was originally diagnosed as EHK and mapped to the type II keratin cluster on chromosome 12q. Molecular analysis revealed a novel amino acid substitution at the beginning of the conserved 1A region of the rod domain (I4N) of K2e, resulting from a T to A transversion in codon 188.
Collapse
Affiliation(s)
- M J Arin
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Porter RM, Hutcheson AM, Rugg EL, Quinlan RA, Lane EB. cDNA cloning, expression, and assembly characteristics of mouse keratin 16. J Biol Chem 1998; 273:32265-72. [PMID: 9822705 DOI: 10.1074/jbc.273.48.32265] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
There has been speculation as to the existence of the mouse equivalent of human type I keratin 16 (K16). The function of this keratin is particularly intriguing because, in normal epidermis, it is usually confined to hair follicles and only becomes expressed in the suprabasal intrafollicular regions when the epidermis is traumatized. Previous studies suggested that K16 is highly expressed in the skin of mice carrying a truncated K10 gene. We therefore used the skin of heterozygous and homozygous mice to create a cDNA library, and we report here the successful cloning and sequencing of mouse K16. Recent in vitro studies suggested that filaments formed by human K16 are shorter than those formed by other type I keratins. One hypothesis put forward was that a proline residue in the 1B subdomain of the helical domain was responsible. The data presented here demonstrate that this proline is not conserved between mouse and human, casting doubt on the proposed function of this proline residue in filament assembly. In vitro assembly studies showed that mouse K16 produced long filaments in vitro. Also, in contrast to previous observations, transfection studies of PtK2 cells showed that mouse K16 (without the proline) and also human K16 (with the proline) can incorporate into the endogenous K8/K18 network without detrimental effect. In addition, K16 from both species can form filaments de novo when transfected with human K5 into immortalized human lens epithelial cells, which do not express keratins. These results suggest that reduced assembly capabilities due to unusual sequence characteristics in helix 1B are not the key to the unique function of K16. Rather, these data implicate the tail domain of K16 as the more likely protein domain that determines the unique functions.
Collapse
Affiliation(s)
- R M Porter
- Cancer Research Campaign Cell Structure Research Group, Department of Anatomy and Physiology, Medical Sciences Institute/Wellcome Trust Building Complex, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom.
| | | | | | | | | |
Collapse
|
31
|
Porter RM, Reichelt J, Lunny DP, Magin TM, Lane EB. The relationship between hyperproliferation and epidermal thickening in a mouse model for BCIE. J Invest Dermatol 1998; 110:951-7. [PMID: 9620304 DOI: 10.1046/j.1523-1747.1998.00218.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epidermal thickening is a phenomenon common to many genodermatoses but little is known about the underlying causes. We have recently created a mouse model for the human skin disease bullous congenital ichthyosiform erythroderma by gene targeting. Mice heterozygous for a truncated keratin 10 gene exhibit acanthosis and hyperkeratosis as seen in the human disease. The degree of epidermal thickening is highly variable, offering a novel opportunity to investigate how epidermal homeostasis is modulated in keratin disorders by comparing epidermis from different body regions. We have performed bromodeoxyuridine labeling experiments and detected proliferation antigens by immunohistochemical means to compare proliferation in the epidermis of wild-type and heterozygous mice. These results have been compared with the expression of epidermal differentiation markers and of the "hyperproliferation associated" keratins K6 and K16. These experiments indicated that hyperproliferation is only partly responsible for the morphologic changes and that other mechanisms such as decreased desquamation are likely to be involved.
Collapse
Affiliation(s)
- R M Porter
- Department of Anatomy and Physiology, Medical Sciences Institute, University of Dundee, UK
| | | | | | | | | |
Collapse
|
32
|
Magin TM, Schröder R, Leitgeb S, Wanninger F, Zatloukal K, Grund C, Melton DW. Lessons from keratin 18 knockout mice: formation of novel keratin filaments, secondary loss of keratin 7 and accumulation of liver-specific keratin 8-positive aggregates. J Cell Biol 1998; 140:1441-51. [PMID: 9508776 PMCID: PMC2132680 DOI: 10.1083/jcb.140.6.1441] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/1997] [Revised: 01/15/1998] [Indexed: 02/06/2023] Open
Abstract
Here, we report on the analysis of keratin 18 null mice. Unlike the ablation of K8, which together with K18 is expressed in embryonic and simple adult epithelia, K18 null mice are viable, fertile, and show a normal lifespan. In young K18 null mice, hepatocytes were completely devoid of keratin filaments. Nevertheless, typical desmosomes were formed and maintained. Old K18 null mice, however, developed a distinctive liver pathology with abnormal hepatocytes containing K8-positive aggregates. These stained positively for ubiquitin and MM120-1 and were identified as Mallory bodies, one hallmark of human alcoholic hepatitis. This is the first demonstration that the ablation of one keratin leads to the accumulation of its single partner. Another striking finding was the absence or drastic down regulation of K7 in several tissues despite its ongoing transcription. Moreover, K18 null mice revealed new insights in the filament-forming capacity of the tail-less K19 in vivo. Due to the unexpected secondary loss of K7, only K8/19 are expressed in the uterine epithelium of K18 null mice. Immunoelectron microscopy of this tissue demonstrated the presence of typical K8/19 IF, thus highlighting in vivo that K19 is a fully competent partner for K8.
Collapse
Affiliation(s)
- T M Magin
- Institut fuer Genetik, Abteilung Molekulargenetik, Universitat Bonn, Bonn, Germany.
| | | | | | | | | | | | | |
Collapse
|