1
|
Tan T, Wu C, Liu B, Pan BF, Hawke DH, Su Z, Liu S, Zhang W, Wang R, Lin SH, Kuang J. Revisiting the multisite phosphorylation that produces the M-phase supershift of key mitotic regulators. Mol Biol Cell 2022; 33:ar115. [PMID: 35976701 PMCID: PMC9635296 DOI: 10.1091/mbc.e22-04-0118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/11/2022] [Accepted: 08/10/2022] [Indexed: 11/11/2022] Open
Abstract
The term M-phase supershift denotes the phosphorylation-dependent substantial increase in the apparent molecular weight of numerous proteins of varied biological functions during M-phase induction. Although the M-phase supershift of multiple key mitotic regulators has been attributed to the multisite phosphorylation catalyzed by the Cdk1/cyclin B/Cks complex, this view is challenged by multiple lines of paradoxical observations. To solve this problem, we reconstituted the M-phase supershift of Xenopus Cdc25C, Myt1, Wee1A, APC3, and Greatwall in Xenopus egg extracts and characterized the supershift-producing phosphorylations. Our results demonstrate that their M-phase supershifts are each due to simultaneous phosphorylation of a considerable portion of S/T/Y residues in a long intrinsically disordered region that is enriched in both S/T residues and S/TP motifs. Although the major mitotic kinases in Xenopus egg extracts, Cdk1, MAPK, Plx1, and RSK2, are able to phosphorylate the five mitotic regulators, they are neither sufficient nor required to produce the M-phase supershift. Accordingly, inhibition of the four major mitotic kinase activities in Xenopus oocytes did not inhibit the M-phase supershift in okadaic acid-induced oocyte maturation. These findings indicate that the M-phase supershift is produced by a previously unrecognized category of mitotic phosphorylation that likely plays important roles in M-phase induction.
Collapse
Affiliation(s)
- Tan Tan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, The University of South China, Hengyang, Hunan 421001, China
| | - Chuanfen Wu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Boye Liu
- Key Laboratory for Biodiversity and Ecological Engineering of Ministry of Education
| | - Bih-Fang Pan
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - David H. Hawke
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Zehao Su
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Shuaishuai Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Wei Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ruoning Wang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jian Kuang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
2
|
Crncec A, Hochegger H. Triggering mitosis. FEBS Lett 2019; 593:2868-2888. [PMID: 31602636 DOI: 10.1002/1873-3468.13635] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 12/28/2022]
Abstract
Entry into mitosis is triggered by the activation of cyclin-dependent kinase 1 (Cdk1). This simple reaction rapidly and irreversibly sets the cell up for division. Even though the core step in triggering mitosis is so simple, the regulation of this cellular switch is highly complex, involving a large number of interconnected signalling cascades. We do have a detailed knowledge of most of the components of this network, but only a poor understanding of how they work together to create a precise and robust system that ensures that mitosis is triggered at the right time and in an orderly fashion. In this review, we will give an overview of the literature that describes the Cdk1 activation network and then address questions relating to the systems biology of this switch. How is the timing of the trigger controlled? How is mitosis insulated from interphase? What determines the sequence of events, following the initial trigger of Cdk1 activation? Which elements ensure robustness in the timing and execution of the switch? How has this system been adapted to the high levels of replication stress in cancer cells?
Collapse
Affiliation(s)
- Adrijana Crncec
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| |
Collapse
|
3
|
Nasa I, Kettenbach AN. Coordination of Protein Kinase and Phosphoprotein Phosphatase Activities in Mitosis. Front Cell Dev Biol 2018; 6:30. [PMID: 29623276 PMCID: PMC5874294 DOI: 10.3389/fcell.2018.00030] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/08/2018] [Indexed: 01/09/2023] Open
Abstract
Dynamic changes in protein phosphorylation govern the transitions between different phases of the cell division cycle. A "tug of war" between highly conserved protein kinases and the family of phosphoprotein phosphatases (PPP) establishes the phosphorylation state of proteins, which controls their function. More than three-quarters of all proteins are phosphorylated at one or more sites in human cells, with the highest occupancy of phosphorylation sites seen in mitosis. Spatial and temporal regulation of opposing kinase and PPP activities is crucial for accurate execution of the mitotic program. The role of mitotic kinases has been the focus of many studies, while the contribution of PPPs was for a long time underappreciated and is just emerging. Misconceptions regarding the specificity and activity of protein phosphatases led to the belief that protein kinases are the primary determinants of mitotic regulation, leaving PPPs out of the limelight. Recent studies have shown that protein phosphatases are specific and selective enzymes, and that their activity is tightly regulated. In this review, we discuss the emerging roles of PPPs in mitosis and their regulation of and by mitotic kinases, as well as mechanisms that determine PPP substrate recognition and specificity.
Collapse
Affiliation(s)
- Isha Nasa
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
4
|
Hégarat N, Rata S, Hochegger H. Bistability of mitotic entry and exit switches during open mitosis in mammalian cells. Bioessays 2016; 38:627-43. [PMID: 27231150 DOI: 10.1002/bies.201600057] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mitotic entry and exit are switch-like transitions that are driven by the activation and inactivation of Cdk1 and mitotic cyclins. This simple on/off reaction turns out to be a complex interplay of various reversible reactions, feedback loops, and thresholds that involve both the direct regulators of Cdk1 and its counteracting phosphatases. In this review, we summarize the interplay of the major components of the system and discuss how they work together to generate robustness, bistability, and irreversibility. We propose that it may be beneficial to regard the entry and exit reactions as two separate reversible switches that are distinguished by differences in the state of phosphatase activity, mitotic proteolysis, and a dramatic rearrangement of cellular components after nuclear envelope breakdown, and discuss how the major Cdk1 activity thresholds could be determined for these transitions.
Collapse
Affiliation(s)
- Nadia Hégarat
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Scott Rata
- Department of Biochemistry, Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, UK
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| |
Collapse
|
5
|
Hintermair C, Voß K, Forné I, Heidemann M, Flatley A, Kremmer E, Imhof A, Eick D. Specific threonine-4 phosphorylation and function of RNA polymerase II CTD during M phase progression. Sci Rep 2016; 6:27401. [PMID: 27264542 PMCID: PMC4893663 DOI: 10.1038/srep27401] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/18/2016] [Indexed: 11/08/2022] Open
Abstract
Dynamic phosphorylation of Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 heptad-repeats in the C-terminal domain (CTD) of the large subunit coordinates progression of RNA polymerase (Pol) II through the transcription cycle. Here, we describe an M phase-specific form of Pol II phosphorylated at Thr4, but not at Tyr1, Ser2, Ser5, and Ser7 residues. Thr4 phosphorylated Pol II binds to centrosomes and midbody and interacts with the Thr4-specific Polo-like kinase 1. Binding of Pol II to centrosomes does not require the CTD but may involve subunits of the non-canonical R2TP-Prefoldin-like complex, which bind to and co-localize with Pol II at centrosomes. CTD Thr4 mutants, but not Ser2 and Ser5 mutants, display severe mitosis and cytokinesis defects characterized by multipolar spindles and polyploid cells. We conclude that proper M phase progression of cells requires binding of Pol II to centrosomes to facilitate regulation of mitosis and cytokinesis in a CTD Thr4-P dependent manner.
Collapse
Affiliation(s)
- Corinna Hintermair
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center of Integrated Protein Science (CIPSM), Marchioninistrasse 25, 81377 Munich, Germany
| | - Kirsten Voß
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center of Integrated Protein Science (CIPSM), Marchioninistrasse 25, 81377 Munich, Germany
| | - Ignasi Forné
- Biomedical Center Munich, Center of Integrated Protein Science (CIPSM), ZFP, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Martin Heidemann
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center of Integrated Protein Science (CIPSM), Marchioninistrasse 25, 81377 Munich, Germany
| | - Andrew Flatley
- Institute of Molecular Immunology, Helmholtz Center Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Center Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Axel Imhof
- Biomedical Center Munich, Center of Integrated Protein Science (CIPSM), ZFP, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center of Integrated Protein Science (CIPSM), Marchioninistrasse 25, 81377 Munich, Germany
| |
Collapse
|
6
|
Bergs JWJ, Ten Cate R, Rodermond HM, Jaarsma PA, Medema JP, Darroudi F, Buist MR, Stalpers LJA, Haveman J, Van Bree C, Franken NAP. Transient inhibition of Calyculin A induced premature chromosome condensation by hyperthermia. Int J Hyperthermia 2009; 25:220-8. [PMID: 19212861 DOI: 10.1080/02656730802665658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The analysis of chromosomal aberrations by premature chromosome condensation (PCC) induced by Calyculin A (Cal) is feasible in tumor biopsies from patients and has the potential to predict sensitivity to radiotherapy. As hyperthermia (HT) improves radiotherapy outcome in certain tumor sites, it was investigated whether PCC induction is still possible after temperatures reached in the clinic. Human cervical carcinoma (CaSki) and lung carcinoma (SW-1573) cells were incubated with Cal to induce PCC immediately after 1 h treatment at temperatures ranging from 41 degrees C to 43 degrees C and after recovery for up to 24 h after treatment with 43 degrees C. Levels of phosphorylated Cdc2 (at the Tyr15 residue), histone H3 (at the Ser10 residue) and Cyclin B1 were investigated by immunoblotting. The amount of cells positive for phosphorylated histone H3 was determined by flow cytometry. Temperatures > or =42.5 degrees C inhibited the induction of PCC by Cal, while recovery of PCC-induction was observed at >20 h after treatment in both cell lines. The phosphorylation status of Cdc2 as well as of histone H3 in cells treated with Cal directly after HT at 43 degrees C was similar to that of cells treated with Cal alone or treated with Cal 24 h after HT at 43 degrees C. HT alone did not affect the levels of phosphorylated Cdc2, while phosphorylation levels of histone H3 were increased as compared with control status of these two proteins. Phosphorylated and total Cyclin B1 levels were not influenced by any of the treatments. Flow cytometric analysis confirmed that HT at 43 degrees C did not interfere with phosphorylation of histone H3. Our data indicate that HT transiently inhibits PCC induction by Cal in a temperature-dependent manner. Therefore, an interval of at least 24 h after HT should be applied before taking tumor biopsies for karyogram analysis of patients treated with temperatures above 42.5 degrees C.
Collapse
Affiliation(s)
- J W J Bergs
- Laboratory for Experimental Oncology and Radiobiology, Department of Radiation Oncology, Center for Experimental Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam 1100 DE, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhao Y, Haccard O, Wang R, Yu J, Kuang J, Jessus C, Goldberg ML. Roles of Greatwall kinase in the regulation of cdc25 phosphatase. Mol Biol Cell 2008; 19:1317-27. [PMID: 18199678 DOI: 10.1091/mbc.e07-11-1099] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We previously reported that immunodepletion of Greatwall kinase prevents Xenopus egg extracts from entering or maintaining M phase due to the accumulation of inhibitory phosphorylations on Thr14 and Tyr15 of Cdc2. M phase-promoting factor (MPF) in turn activates Greatwall, implying that Greatwall participates in an MPF autoregulatory loop. We show here that activated Greatwall both accelerates the mitotic G2/M transition in cycling egg extracts and induces meiotic maturation in G2-arrested Xenopus oocytes in the absence of progesterone. Activated Greatwall can induce phosphorylations of Cdc25 in the absence of the activity of Cdc2, Plx1 (Xenopus Polo-like kinase) or mitogen-activated protein kinase, or in the presence of an activator of protein kinase A that normally blocks mitotic entry. The effects of active Greatwall mimic in many respects those associated with addition of the phosphatase inhibitor okadaic acid (OA); moreover, OA allows cycling extracts to enter M phase in the absence of Greatwall. Taken together, these findings support a model in which Greatwall negatively regulates a crucial phosphatase that inhibits Cdc25 activation and M phase induction.
Collapse
Affiliation(s)
- Yong Zhao
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Park JH, Lin ML, Nishidate T, Nakamura Y, Katagiri T. PDZ-binding kinase/T-LAK cell-originated protein kinase, a putative cancer/testis antigen with an oncogenic activity in breast cancer. Cancer Res 2006; 66:9186-95. [PMID: 16982762 DOI: 10.1158/0008-5472.can-06-1601] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Breast cancer is one of the most common cancers among women. To discover molecular targets that are applicable for development of novel breast cancer therapy, we previously did genome-wide expression profile analysis of 81 breast cancers and found dozens of genes that were highly and commonly up-regulated in breast cancer cells. Among them, we here focused on one gene that encodes PDZ-binding kinase/T-LAK cell-originated protein kinase (PBK/TOPK), including a kinase domain. Northern blot analyses using mRNAs of normal human organs, breast cancer tissues, and cancer cell lines indicated this molecule to be a novel cancer/testis antigen. Reduction of PBK/TOPK expression by small interfering RNA resulted in significant suppression of cell growth probably due to dysfunction in the cytokinetic process. Immunocytochemical analysis with anti-PBK/TOPK antibody implicated a critical role of PBK/TOPK in an early step of mitosis. PBK/TOPK could phosphorylate histone H3 at Ser10 in vitro and in vivo, and mediated its growth-promoting effect through histone H3 modification. Because PBK/TOPK is the cancer/testis antigen and its kinase function is likely to be related to its oncogenic activity, we suggest PBK/TOPK to be a promising molecular target for breast cancer therapy.
Collapse
Affiliation(s)
- Jae-Hyun Park
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
9
|
Fletcher L, Muschel RJ. The centrosome and the DNA damage induced checkpoint. Cancer Lett 2006; 243:1-8. [PMID: 16764987 DOI: 10.1016/j.canlet.2006.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 01/11/2006] [Indexed: 01/08/2023]
Abstract
The centrosome, the microtubule-organizing center of the cell, acts as a localization point, where signaling molecules are able to interact. Many kinases and phosphatases critical for regulation of DNA damage signaling pathways localize to the centrosome. This review will discuss the possible involvement of the centrosome in mediating DNA damage checkpoint control, in particular the effect of DNA damage signaling pathways involved in initiation or maintenance of cell cycle arrest on the centrosome. The mechanisms that lead to centrosome abnormalities such as centrosome hyperamplification and multipolarity in response to DNA damage will also be addressed.
Collapse
Affiliation(s)
- Lynda Fletcher
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | |
Collapse
|
10
|
Panasyuk G, Nemazanyy I, Ovcharenko G, Lyzogubov V, Gout I, Filonenko V. Generation and characterization of monoclonal antibodies to protein kinase 2 (CK2) beta subunit. Hybridoma (Larchmt) 2005; 24:206-10. [PMID: 16120027 DOI: 10.1089/hyb.2005.24.206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Protein kinase 2 (CK2) is a ubiquitous and constitutively active serine/threonine protein kinase with various cell functions. It typically forms tetrameric complexes consisting of two catalytic (alpha and/or (alpha') and two regulatory (beta) subunits. The aim of this study was to produce monoclonal antibodies (MAbs) against the CK2beta subunit and to characterize their suitability for Western blotting, immunoprecipitation, and immunohistochemical applications. Bacterially expressed CK2beta-6His-GST recombinant protein has been used as an antigen. Balb/c mice were immunized and given a final boost, and their spleen cells were collected and fused with SP2/0 myeloma cells using PEG 2000. The fused cells were then selected in the HAT-RPMI medium. Anti- CK2beta high-titer antibody-producing hybridoma cell lines were identified by enzyme-linked immunosorbent assay (ELISA) and then subcloned by limiting dilution in HT-RPMI medium supplemented with 20% fetal bovine serum (FBS). A total of 10 IgG-producing cell lines were selected and further tested for their reactivity with the CK2beta subunit using ELISA, Western blots, immunoprecipitation, and immunostaining of formaldehyde-fixed paraffin-embedded tissue sections. The results obtained clearly indicate that several clones produce antibodies that recognize specifically recombinant and endogenous CK2beta subunit in Western blotting and immunoprecipitation, and are suitable for immunohistochemical analysis. In summary, the produced antibodies will be useful for researchers investigating signaling pathways involving CK2 kinase and their deregulation in human pathologies.
Collapse
Affiliation(s)
- Ganna Panasyuk
- Department of Structure and Function of Nucleic Acids, Institute of Molecular Biology and Genetics, NAS of Ukraine, Kyiv, Ukraine.
| | | | | | | | | | | |
Collapse
|
11
|
Fletcher L, Cerniglia GJ, Nigg EA, Yend TJ, Muschel RJ. Inhibition of centrosome separation after DNA damage: a role for Nek2. Radiat Res 2004; 162:128-35. [PMID: 15387139 DOI: 10.1667/rr3211] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
DNA damage results in cell cycle arrest in G2. Centrosomes also separate in G2, raising the question of whether separation occurs during the DNA damage-induced G2 arrest. Nek2, the mammalian homologue of NIMA, is a cell cycle-regulated serine/threonine protein kinase that regulates centrosome separation during G2. Here we show that damaged cells fail to activate Nek2. Both Nek2 levels and activity are reduced after DNA damage. Radiation inhibits the premature centrosome splitting induced by overexpression of Nek2, indicating that Nek2 is involved in activation of the G2 checkpoint and is not secondary to cell cycle arrest. We confirm using siRNA that centrosome separation and cell growth are impaired in the absence of Nek2. These studies define a previously unreported DNA damage response of inhibition of centrosome separation mechanistically linked to Nek2.
Collapse
Affiliation(s)
- Lynda Fletcher
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
12
|
Liu X, Yan S, Zhou T, Terada Y, Erikson RL. The MAP kinase pathway is required for entry into mitosis and cell survival. Oncogene 2004; 23:763-76. [PMID: 14737111 DOI: 10.1038/sj.onc.1207188] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this communication, we examined the role of the MAP kinase pathway in the G2/M phase of the cell cycle. Activation of the Plk1 and MAP kinase pathways was initially evaluated in FT210 cells, which arrest at G2 phase at the restrictive temperature (39 degrees C), due to a mutation in the cdc2 gene. Previous studies had shown that these cells enter mitosis at the nonpermissive temperature upon incubation with okadaic acid, a protein phosphatase 1 and 2A inhibitor. We show that treatment of FT210 cells at 39 degrees C with okadaic acid activated Plk1, as shown by hyperphosphorylation and elevated protein kinase activity, and also induced activation of the MAP kinase pathway. The specific Mek inhibitor PD98059 antagonized the okadaic acid-induced activation of both Plk1 and MAP kinases. This suggests that activation of the MAP kinase pathway may contribute to the okadaic acid-induced activation of Plk1 in FT210 cells at 39 degrees C. We also found that PD98059 strongly attenuated progression of HeLa cells through mitosis, and active Mek colocalizes with Plk1 at mitotic structures. To study the potential function of the MAP kinase pathway during mitosis, RNAi was used to specifically deplete five members of this pathway (Raf1, Mek1/2, Erk1/2). Each of these five protein kinases is required for cell proliferation and survival, and depletion of any of these proteins eventually leads to apoptosis. Treatment with Mek inhibitors also inhibited cell proliferation and caused apoptosis. A dramatic increase of Plk1 activities and a moderate increase of Cdc2 activities in Raf1-depleted cells indicate that Raf1-depleted cells arrest in the late G2 or M phase. Mek1 and Erk1 depletion also caused cell cycle arrest at G2, suggesting that these enzymes are required for the G2/M transition, whereas the loss of Mek2 or Erk2 caused arrest at G1.
Collapse
Affiliation(s)
- Xiaoqi Liu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | |
Collapse
|
13
|
Britton R, Roberge M, Brown C, van Soest R, Andersen RJ. New okadaic acid analogues from the marine sponge Merriamum oxeato and their effect on mitosis. JOURNAL OF NATURAL PRODUCTS 2003; 66:838-843. [PMID: 12828471 DOI: 10.1021/np0300129] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Inhibitors of the G2 DNA damage checkpoint can selectively sensitize cancer cells with impaired p53 tumor suppressor activity to killing by DNA-damaging drugs or ionizing radiation and have been proposed as a promising therapeutic strategy. An extract from the Northeastern Pacific marine sponge Merriamum oxeato showed G2 checkpoint inhibitory activity, and fractionation identified the known dinoflagellate toxin dinophysistoxin 1 (1) and the two novel analogues 27-O-acetylokadaic acid (2) and 27-O-acetyldinophysistoxin 1 (3) as the active compounds. The mixture of 1, 2, and 3 was extremely potent at inhibiting the G2 checkpoint (IC(50) = 1 ng/mL) and cellular protein Ser/Thr phosphatases (IC(50) = 1 ng/mL), and it radiosensitized MCF-7 breast cancer cells expressing mutated p53 at all concentrations tested. However, the mixture of 1, 2, and 3 was also very toxic to cells not exposed to DNA damage (IC(50) = 1 ng/mL), making these compounds poor candidates for therapeutic agents to augment the effectiveness of DNA-damaging therapies.
Collapse
Affiliation(s)
- Robert Britton
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | | | | | | | | |
Collapse
|
14
|
Kawabe T, Suganuma M, Ando T, Kimura M, Hori H, Okamoto T. Cdc25C interacts with PCNA at G2/M transition. Oncogene 2002; 21:1717-26. [PMID: 11896603 DOI: 10.1038/sj.onc.1205229] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2001] [Revised: 11/28/2001] [Accepted: 12/05/2001] [Indexed: 11/09/2022]
Abstract
Cdc25 activates maturation promoting factor (MPF) and promotes mitosis by removing the inhibitory phosphate from the Tyr-15 of Cdc2 in human cells. In this study, we searched the interacting protein(s) of human Cdc25C using the yeast two-hybrid screen and identified proliferating cell nuclear antigen (PCNA) as an interacting partner of Cdc25C. The interaction between Cdc25C and PCNA was confirmed in vitro and in vivo. Co-immunoprecipitation analyses using human T cell line, Jurkat, further revealed that Cdc25C interacted with PCNA transiently when cells began to enter mitosis. Immunofluorescence analysis also showed that Cdc25C and PCNA were transiently co-localized in the nucleus at the beginning of M phase. Together with the previous observations of the interaction between various cdc/cyclin and PCNA, our findings strongly suggested a potential role of PCNA at the G2 to M phase transition of cell cycle.
Collapse
Affiliation(s)
- Takumi Kawabe
- Department of Molecular Genetics, Nagoya City University Medical School, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Schwindling SL, Faust M, Montenarh M. Determination of the mitotic index by microinjection of fluorescently labelled tubulin. Eur J Cell Biol 2002; 81:169-74. [PMID: 11998869 DOI: 10.1078/0171-9335-00235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The microneedle injection technique is one of the most established procedures for the introduction of proteins into living cells. To analyse injected proteins which are important in cell cycle progression it is often necessary to determine the mitotic index. Measuring the mitotic index after microinjection is complicated because only a limited number of cells of the whole cell population is microinjected. Therefore, we attempted to establish a new method to determine the mitotic index using microinjection of fluorescently labelled alpha/beta-tubulin into mammalian cells which allows to monitor the injected cells simultaneously with the determination of the mitotic index. We demonstrated that fluorescently labelled tubulin incorporates efficiently into the mitotic spindle apparatus. Fluorescence remains stable for several hours which is sufficient to observe the progression of cells through the M-phase of the cell cycle. The determination of the mitotic index with the method presented here gave similar results to those determined using other methods. With this method also different stages of mitosis can be visualized by analysing various steps of spindle formation. Thus, this rapid method allows the monitoring of the injected cells after microneedle injection and simultaneously the determination of the mitotic index.
Collapse
Affiliation(s)
- Sandra L Schwindling
- Medical Biochemistry and Molecular Biology, University of the Saarland, Homburg, Germany
| | | | | |
Collapse
|
16
|
Moreno CS, Lane WS, Pallas DC. A mammalian homolog of yeast MOB1 is both a member and a putative substrate of striatin family-protein phosphatase 2A complexes. J Biol Chem 2001; 276:24253-60. [PMID: 11319234 PMCID: PMC3503316 DOI: 10.1074/jbc.m102398200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Striatin and S/G(2) nuclear autoantigen (SG2NA) are related proteins that contain membrane binding domains and associate with protein phosphatase 2A (PP2A) and many additional proteins that may be PP2A regulatory targets. Here we identify a major member of these complexes as class II mMOB1, a mammalian homolog of the yeast protein MOB1, and show that its phosphorylation appears to be regulated by PP2A. Yeast MOB1 is critical for cytoskeletal reorganization during cytokinesis and exit from mitosis. We show that mMOB1 associated with PP2A is not detectably phosphorylated in asynchronous murine fibroblasts. However, treatment with the PP2A inhibitor okadaic acid induces phosphorylation of PP2A-associated mMOB1 on serine. Moreover, specific inhibition of PP2A also results in hyperphosphorylation of striatin, SG2NA, and three unidentified proteins, suggesting that these proteins may also be regulated by PP2A. Indirect immunofluorescence produced highly similar staining patterns for striatin, SG2NA, and mMOB1, with the highest concentrations for each protein adjacent to the nuclear membrane. We also present evidence that these complexes may interact with each other. These data are consistent with a model in which PP2A may regulate mMOB1, striatin, and SG2NA to modulate changes in the cytoskeleton or interactions between the cytoskeleton and membrane structures.
Collapse
Affiliation(s)
- Carlos S. Moreno
- Department of Biochemistry and Winship Cancer Center, Emory University School of Medicine, Atlanta, Georgia 30322
| | - William S. Lane
- Harvard Microchemistry and Proteomics Analysis Facility, Harvard University, Cambridge, Massachusetts 02138
| | - David C. Pallas
- Department of Biochemistry and Winship Cancer Center, Emory University School of Medicine, Atlanta, Georgia 30322
- To whom correspondence should be addressed: Dept. of Biochemistry, Emory University School of Medicine, 1510 Clifton Rd., Atlanta, GA 30322. Tel.: 404-727-5620; Fax: 404-727-3231;
| |
Collapse
|
17
|
Curman D, Cinel B, Williams DE, Rundle N, Block WD, Goodarzi AA, Hutchins JR, Clarke PR, Zhou BB, Lees-Miller SP, Andersen RJ, Roberge M. Inhibition of the G2 DNA damage checkpoint and of protein kinases Chk1 and Chk2 by the marine sponge alkaloid debromohymenialdisine. J Biol Chem 2001; 276:17914-9. [PMID: 11279124 DOI: 10.1074/jbc.m100728200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cells can respond to DNA damage by activating checkpoints that delay cell cycle progression and allow time for DNA repair. Chemical inhibitors of the G(2) phase DNA damage checkpoint may be used as tools to understand better how the checkpoint is regulated and may be used to sensitize cancer cells to DNA-damaging therapies. However, few inhibitors are known. We used a cell-based assay to screen natural extracts for G(2) checkpoint inhibitors and identified debromohymenialdisine (DBH) from a marine sponge. DBH is distinct structurally from previously known G(2) checkpoint inhibitors. It inhibited the G(2) checkpoint with an IC(50) of 8 micrometer and showed moderate cytotoxicity (IC(50) = 25 micrometer) toward MCF-7 cells. DBH inhibited the checkpoint kinases Chk1 (IC(50) = 3 micrometer) and Chk2 (IC(50) = 3.5 micrometer) but not ataxia-telangiectasia mutated (ATM), ATM-Rad3-related protein, or DNA-dependent protein kinase in vitro, indicating that it blocks two major branches of the checkpoint pathway downstream of ATM. It did not cause the activation or inhibition of different signal transduction proteins, as determined by mobility shift analysis in Western blots, suggesting that it inhibits a narrow range of protein kinases in vivo.
Collapse
Affiliation(s)
- D Curman
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Liu D, Liao C, Wolgemuth DJ. A role for cyclin A1 in the activation of MPF and G2-M transition during meiosis of male germ cells in mice. Dev Biol 2000; 224:388-400. [PMID: 10926775 DOI: 10.1006/dbio.2000.9776] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell-cycle transition at G2-M is controlled by MPF (M-phase-promoting factor), a complex consisting of the Cdc2 kinase and a B-type cyclin. We have shown that in mice, targeted disruption of an A-type cyclin gene, cyclin A1, results in a block of spermatogenesis prior to the entry into metaphase I. The meiotic arrest is accompanied by a defect in Cdc2 kinase activation at the G2--M transition, raising the possibility that a cyclin A1-dependent process dictates the activation of MPF. Here we show that like Cdc2, the expression of B-type cyclins is retained in cyclin A1-deficient spermatocytes, while their associated kinases are kept at inactive states. Treatment of arrested germ cells with the protein phosphatase type-1 and -2A inhibitor okadaic acid restores the MPF activity and induces entry into M phase and the formation of normally condensed chromosome bivalents, concomitant with hyperphosphorylation of Cdc25 proteins. Conversely, inhibition of tyrosine phosphatases, including Cdc25s, by vanadate suppresses the okadaic acid-induced metaphase induction. The highest levels of Cdc25A and Cdc25C expression and their subcellular localization during meiotic prophase coincide with that of cyclin A1, and when overexpressed in HeLa cells, cyclin A1 coimmunoprecipitates with Cdc25A. Furthermore, the protein kinase complexes consisting of cyclin A1 and either Cdc2 or Cdk2 phosphorylate both Cdc25A and Cdc25C in vitro. These results suggest that in normal meiotic male germ cells, cyclin A1 participates in the regulation of other protein kinases or phosphatases critical for the G2-M transition. In particular, it may be directly involved in the initial amplification of MPF through the activating phosphorylation on Cdc25 phosphatases.
Collapse
Affiliation(s)
- D Liu
- The Integrated Program in Cellular, Molecular and Biophysical Studies, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | |
Collapse
|
19
|
Matsumoto M, Yamaguchi T, Nakazono K, Fukumaki Y, Terada S. High pressure sensitizes murine erythroleukemia cells to caffeine-induced premature mitosis. THE JAPANESE JOURNAL OF PHYSIOLOGY 2000; 50:329-36. [PMID: 11016983 DOI: 10.2170/jjphysiol.50.329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Murine erythroleukemia (MEL) cells were exposed to a high pressure of 80 MPa or aphidicolin (APH), DNA polymerase inhibitor. The effects of caffeine on cell cycle were examined using these cells. During the culture of 80 MPa-treated MEL cells at atmospheric pressure, the cells arrested in the G2 phase, and cyclin B and hyperphosphorylated p34(cdc2) were accumulated. Namely, maturation promoting factor (MPF) composed of p34(cdc2) and cyclin B was inactive. However, upon exposure to caffeine, these cells entered prematurely into mitosis by activating MPF. Caffeine-induced premature mitosis was suppressed by butyrolactone I and orthovanadate. On the other hand, APH-treated MEL cells, which were not exposed to 80 MPa, were not so sensitive to caffeine-induced premature mitosis despite cyclin B accumulation. In this case, dephosphorylation of p34(cdc2) was not induced by caffeine. Interestingly, caffeine-induced premature mitosis in the 80 MPa-treated cells was also suppressed by APH. These results suggest that the premature mitosis of 80 MPa-treated MEL cells by caffeine is induced by active MPF, and that APH-sensitive molecules such as DNA polymerase may also play an important role in the checkpoint that controls the transition from G2 to M phase.
Collapse
Affiliation(s)
- M Matsumoto
- Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka, 814-0180, Japan.
| | | | | | | | | |
Collapse
|
20
|
Mori C, Allen JW, Dix DJ, Nakamura N, Fujioka M, Toshimori K, Eddy EM. Completion of meiosis is not always required for acrosome formation in HSP70-2 null mice. Biol Reprod 1999; 61:813-22. [PMID: 10456862 DOI: 10.1095/biolreprod61.3.813] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Hsp70-2 is a unique member of the mouse 70-kDa heat shock protein family that is synthesized during meiosis in spermatogenic cells. Germ cells in male mice homozygous for a targeted mutation in the Hsp70-2 gene (Hsp70-2(-/-)) arrest in development and undergo apoptosis at the end of the pachytene spermatocyte stage of meiotic prophase. However, cells with a putative acrosome were present occasionally in histological sections of the testes of juvenile and adult Hsp70-2(-/-) mice. This study verified that acrosomes were present and investigated the relationship between acrosome formation and the process of meiosis. Histochemistry with the periodic acid-Schiff procedure and immunostaining with monoclonal antibody MN7 verified that acrosomes were present in Hsp70-2(-/-) mice, and electron microscopy showed that some of these cells had condensing nuclei characteristic of step 8-9 spermatids. The frequency of acrosome-containing cells in Hsp70-2(-/-) mice was less than 0.01% of that in wild-type mice. Propidium iodide staining and cytophotometry indicated that the average DNA content of nuclei in MN7-positive cells in Hsp70-2(-/-) mice was usually about twice, or occasionally the same as, that of nuclei in round spermatids of wild-type mice. Meiotic metaphase I and II chromosome spreads were observed in spermatogenic cells from Hsp70-2(-/-) mice but at a much lower frequency than in wild-type mice. These results indicate that not all pachytene spermatocytes in Hsp70-2(-/-) mice arrest in meiosis, but they may divide once or sometimes twice and begin acrosome formation and nuclear condensation. This demonstrates that some aspects of spermatid development can occur without the completion of meiosis in mice, as has been reported recently for Drosophila.
Collapse
Affiliation(s)
- C Mori
- Department of Anatomy and Developmental Biology and Central Laboratory for Electron Microscopy, Faculty of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
In eukaryotes, G2/M progression is mediated by activation of mitosis promoting factor (MPF). To ensure faithful chromosome segregation, the activity of key mitotic inducers and inhibitors are coupled with chromosome replication, spindle pole duplication, morphogenesis, and DNA damage. Evidence gathered in the past two years has underscored the importance of positioning MPF and its regulators in the proper place at the proper time to ensure orderly progression through the G2/M transition. Altering the spatial organization of G2/M regulators also contributes to prevention of mitosis following DNA damage.
Collapse
Affiliation(s)
- R Ohi
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | |
Collapse
|