1
|
Buckley KH, Nestor-Kalinoski AL, Pizza FX. Intercellular Adhesion Molecule-1 Enhances Myonuclear Transcription during Injury-Induced Muscle Regeneration. Int J Mol Sci 2022; 23:7028. [PMID: 35806032 PMCID: PMC9267068 DOI: 10.3390/ijms23137028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
The local inflammatory environment of injured skeletal muscle contributes to the resolution of the injury by promoting the proliferation of muscle precursor cells during the initial stage of muscle regeneration. However, little is known about the extent to which the inflammatory response influences the later stages of regeneration when newly formed (regenerating myofibers) are accumulating myonuclei and undergoing hypertrophy. Our prior work indicated that the inflammatory molecule ICAM-1 facilitates regenerating myofiber hypertrophy through a process involving myonuclear positioning and/or transcription. The present study tested the hypothesis that ICAM-1 enhances global transcription within regenerating myofibers by augmenting the transcriptional activity of myonuclei positioned in linear arrays (nuclear chains). We found that transcription in regenerating myofibers was ~2-fold higher in wild type compared with ICAM-1-/- mice at 14 and 28 days post-injury. This occurred because the transcriptional activity of individual myonuclei in nuclei chains, nuclear clusters, and a peripheral location were ~2-fold higher in wild type compared with ICAM-1-/- mice during regeneration. ICAM-1's enhancement of transcription in nuclear chains appears to be an important driver of myofiber hypertrophy as it was statistically associated with an increase in myofiber size during regeneration. Taken together, our findings indicate that ICAM-1 facilitates myofiber hypertrophy after injury by enhancing myonuclear transcription.
Collapse
Affiliation(s)
- Kole H. Buckley
- School of Exercise and Rehabilitation Sciences, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606, USA;
| | | | - Francis X. Pizza
- School of Exercise and Rehabilitation Sciences, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606, USA;
| |
Collapse
|
2
|
Mechanosensation by endothelial PIEZO1 is required for leukocyte diapedesis. Blood 2022; 140:171-183. [PMID: 35443048 DOI: 10.1182/blood.2021014614] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/27/2022] [Indexed: 11/20/2022] Open
Abstract
The extravasation of leukocytes is a critical step during inflammation which requires the localized opening of the endothelial barrier. This process is initiated by the close interaction of leukocytes with various adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) on the surface of endothelial cells. Here we reveal that mechanical forces generated by leukocyte-induced clustering of ICAM-1 synergistically with fluid shear stress exerted by the flowing blood increase endothelial plasma membrane tension to activate the mechanosensitive cation channel PIEZO1. This leads to increases in [Ca2+]i and activation of downstream signaling events including phosphorylation of SRC, PYK2 and myosin light chain resulting in opening of the endothelial barrier. Mice with endothelium-specific Piezo1 deficiency show decreased leukocyte extravasation in different inflammation models. Thus, leukocytes and the hemodynamic microenvironment synergize to mechanically activate endothelial PIEZO1 and subsequent downstream signaling to initiate leukocyte diapedesis.
Collapse
|
3
|
Liang YC, Wu YP, Li XD, Chen SH, Ye XJ, Xue XY, Xu N. TNF-α-induced exosomal miR-146a mediates mesenchymal stem cell-dependent suppression of urethral stricture. J Cell Physiol 2019; 234:23243-23255. [PMID: 31144307 DOI: 10.1002/jcp.28891] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022]
Abstract
The effective treatment of urethral stricture remains a medical problem. The use of proinflammatory cytokines as stimuli to improve the reparative efficacy of mesenchymal stem cells (MSCs) towards damaged tissues represents an evolving field of investigation. However, the therapeutic benefits of this strategy in the treatment of urethral stricture remain unknown. Here, we enriched exosomes derived from human umbilical cord-derived MSCs pretreated with or without tumor necrosis factor alpha (TNF-α) to evaluate their therapeutic effects in an in vivo model of TGFβ1-induced urethral stricture. Male Sprague-Dawley rats received sham (saline) or TGFβ1 injections to urethral tissues followed by incisions in the urethra. Animals in the TGFβ1 injection (urethral fibrosis) cohort were subsequently injected with vehicle control, or with exosomes derived from MSCs cultured with or without TNF-α. After 4 weeks, rats underwent ultrasound evaluation and, following euthanasia, urethral tissues were harvested for histological and molecular analysis. In vitro, the effects of MSC-derived exosomes on fibroblast secretion of collagen and cytokines were studied by enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), and western blot analysis. Exosomes derived from MSCs pretreated with TNF-α were more effective in suppressing urethral fibrosis and stricture than exosomes from untreated MSCs. We found that miR-146a, an anti-inflammatory miRNA, was strongly upregulated in TNF-α-stimulated MSCs and was selectively packaged into exosomes. Moreover, miR-146a-containing exosomes were taken up by fibroblasts and inhibited fibroblast activation and associated inflammatory responses, a finding that may underlie the therapeutic mechanism for suppression of urethral stricture. Inhibition of miR-146a in TNF-α-treated MSCs partially reduced antifibrotic effects and increased the release of proinflammatory factors of exosomes derived from these cells. Together these findings demonstrate that exosomes derived from TNF-α-treated MSCs are of therapeutic benefit in urethral fibrosis, suggesting that this strategy may have utility as an adjuvant therapy in the treatment of urethral stricture diseases.
Collapse
Affiliation(s)
- Ying-Chun Liang
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yu-Peng Wu
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiao-Dong Li
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shao-Hao Chen
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiao-Jian Ye
- Department of Ultrasonography, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xue-Yi Xue
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ning Xu
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Wettschureck N, Strilic B, Offermanns S. Passing the Vascular Barrier: Endothelial Signaling Processes Controlling Extravasation. Physiol Rev 2019; 99:1467-1525. [PMID: 31140373 DOI: 10.1152/physrev.00037.2018] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A central function of the vascular endothelium is to serve as a barrier between the blood and the surrounding tissue of the body. At the same time, solutes and cells have to pass the endothelium to leave or to enter the bloodstream to maintain homeostasis. Under pathological conditions, for example, inflammation, permeability for fluid and cells is largely increased in the affected area, thereby facilitating host defense. To appropriately function as a regulated permeability filter, the endothelium uses various mechanisms to allow solutes and cells to pass the endothelial layer. These include transcellular and paracellular pathways of which the latter requires remodeling of intercellular junctions for its regulation. This review provides an overview on endothelial barrier regulation and focuses on the endothelial signaling mechanisms controlling the opening and closing of paracellular pathways for solutes and cells such as leukocytes and metastasizing tumor cells.
Collapse
Affiliation(s)
- Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| | - Boris Strilic
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| |
Collapse
|
5
|
Sun W, Fu S. Role of cancer-associated fibroblasts in tumor structure, composition and the microenvironment in ovarian cancer. Oncol Lett 2019; 18:2173-2178. [PMID: 31452720 PMCID: PMC6676664 DOI: 10.3892/ol.2019.10587] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/05/2019] [Indexed: 12/28/2022] Open
Abstract
Ovarian cancer (OVAC) remains the most lethal gynecological malignancy; it is ranked fifth among the most common types of cancer that affect women worldwide. Several aspects of the disease, including molecular pathogenesis, epidemiology, histological subtypes, poor prognosis at early stages due to the absence of specific signs and symptoms, and curative treatments in the advanced stages are all responsible for the poor survival rate, which is evaluated to be at 5 years once the cancer is diagnosed and treatment begins. A better understanding of the pathogenesis of ovarian cancer is therefore crucial, even though unexplored pathways, in order to improve the prognosis of patients with OVAC and to develop novel therapeutic approaches. Accordingly, the tumor microenvironment, defined as the combination of proteins produced by all tumor cells and by non-cancerous cells or the stroma, and composed of several cells, including those from the immune, inflammatory and adipose systems, as well as the mesenchymal stem, endothelial and fibroblasts cells, has recently attracted attention. Of particular interest are fibroblasts, which can be activated into cancer-associated fibroblast (CAFs) to become a potent supporter of carcinogenesis, promoting the initiation of epithelial tumor formation, tumor growth, angiogenesis and metastasis, as well as therapeutic resistance and immunosuppression. Thus, the targeting of CAFs for early diagnosis and effective therapy warrants our attention. In this review, we discuss the mechanisms through which CAFs may affect the structure, composition and microenvironment of the ovarian tumor. We also aim to highlight important aspects of OVAC pathobiology involving CAFs, in an attempt to provide insight into novel diagnostic windows and provide new therapeutic perspectives.
Collapse
Affiliation(s)
- Wei Sun
- Department of Gynecology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing Jiangsu 210029, P.R. China
| | - Shilong Fu
- Department of Gynecology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing Jiangsu 210029, P.R. China
| |
Collapse
|
6
|
Mechanisms of Blood-Brain Barrier Disruption in Herpes Simplex Encephalitis. J Neuroimmune Pharmacol 2018; 14:157-172. [PMID: 30456443 DOI: 10.1007/s11481-018-9821-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022]
Abstract
Herpes simplex encephalitis (HSE) is often caused by infection with herpes simplex virus 1 (HSV-1), a neurotropic double-stranded DNA virus. HSE infection always impacts the temporal and frontal lobes or limbic system, leading to edema, hemorrhage, and necrotic changes in the brain parenchyma. Additionally, patients often exhibit severe complications following antiviral treatment, including dementia and epilepsy. HSE is further associated with disruptions to the blood-brain barrier (BBB), which consists of microvascular endothelial cells, tight junctions, astrocytes, pericytes, and basement membranes. Following an HSV-1 infection, changes in BBB integrity and permeability can result in increased movement of viruses, immune cells, and/or cytokines into the brain parenchyma. This leads to an enhanced inflammatory response in the central nervous system and further damage to the brain. Thus, it is important to protect the BBB from pathogens to reduce brain damage from HSE. Here, we discuss HSE and the normal structure and function of the BBB. We also discuss growing evidence indicating an association between BBB breakdown and the pathogenesis of HSE, as well as future research directions and potential new therapeutic targets. Graphical Abstract During herpes simplex encephalitis, the functions and structures of each composition of BBB have been altered by different factors, thus the permeability and integrity of BBB have been broken. The review aim to explore the potential mechanisms and factors in the process, probe the next research targets and new therapeutic targets.
Collapse
|
7
|
Pizzollo J, Nielsen WJ, Shibata Y, Safi A, Crawford GE, Wray GA, Babbitt CC. Comparative Serum Challenges Show Divergent Patterns of Gene Expression and Open Chromatin in Human and Chimpanzee. Genome Biol Evol 2018; 10:826-839. [PMID: 29608722 PMCID: PMC5848805 DOI: 10.1093/gbe/evy041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
Humans experience higher rates of age-associated diseases than our closest living evolutionary relatives, chimpanzees. Environmental factors can explain many of these increases in disease risk, but species-specific genetic changes can also play a role. Alleles that confer increased disease susceptibility later in life can persist in a population in the absence of selective pressure if those changes confer positive adaptation early in life. One age-associated disease that disproportionately affects humans compared with chimpanzees is epithelial cancer. Here, we explored genetic differences between humans and chimpanzees in a well-defined experimental assay that mimics gene expression changes that happen during cancer progression: A fibroblast serum challenge. We used this assay with fibroblasts isolated from humans and chimpanzees to explore species-specific differences in gene expression and chromatin state with RNA-Seq and DNase-Seq. Our data reveal that human fibroblasts increase expression of genes associated with wound healing and cancer pathways; in contrast, chimpanzee gene expression changes are not concentrated around particular functional categories. Chromatin accessibility dramatically increases in human fibroblasts, yet decreases in chimpanzee cells during the serum response. Many regions of opening and closing chromatin are in close proximity to genes encoding transcription factors or genes involved in wound healing processes, further supporting the link between changes in activity of regulatory elements and changes in gene expression. Together, these expression and open chromatin data show that humans and chimpanzees have dramatically different responses to the same physiological stressor, and how a core physiological process can evolve quickly over relatively short evolutionary time scales.
Collapse
Affiliation(s)
- Jason Pizzollo
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst.,Department of Biology, University of Massachusetts Amherst
| | | | - Yoichiro Shibata
- Division of Medical Genetics, Department of Pediatrics, Duke University
| | - Alexias Safi
- Division of Medical Genetics, Department of Pediatrics, Duke University
| | - Gregory E Crawford
- Division of Medical Genetics, Department of Pediatrics, Duke University.,Center for Genomic and Computational Biology, Duke University
| | - Gregory A Wray
- Department of Biology, Duke University.,Center for Genomic and Computational Biology, Duke University.,Department of Evolutionary Anthropology, Duke University
| | | |
Collapse
|
8
|
TLR4 modulates inflammatory gene targets in the retina during Bacillus cereus endophthalmitis. BMC Ophthalmol 2018; 18:96. [PMID: 29661181 PMCID: PMC5902844 DOI: 10.1186/s12886-018-0764-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
Background Endophthalmitis is a serious intraocular infection that frequently results in significant inflammation and vision loss. Because current therapeutics are often unsuccessful in mitigating damaging inflammation during endophthalmitis, more rational targets are needed. Toll-like receptors (TLRs) recognize specific motifs on invading pathogens and initiate the innate inflammatory response. We reported that TLR4 contributes to the robust inflammation which is a hallmark of Bacillus cereus endophthalmitis. To identify novel, targetable host inflammatory factors in this disease, we performed microarray analysis to detect TLR4-dependent changes to the retinal transcriptome during B. cereus endophthalmitis. Results C57BL/6 J and TLR4−/− mouse eyes were infected with B. cereus and retinas were harvested at 4 h postinfection, a time representing the earliest onset of neutrophil infiltration. Genes related to acute inflammation and inflammatory cell recruitment including CXCL1 (KC), CXCL2 (MIP2-α), CXCL10 (IP-10), CCL2 (MCP1), and CCL3 (MIP1-α)) were significantly upregulated 5-fold or greater in C57BL/6 J retinas. The immune modulator IL-6, intercellular adhesion molecule ICAM1, and the inhibitor of cytokine signal transduction SOCS3 were upregulated 25-, 11-, and 10-fold, respectively, in these retinas. LIF, which is crucial for photoreceptor cell survival, was increased 6-fold. PTGS2/COX-2, which converts arachidonic acid to prostaglandin endoperoxide H2, was upregulated 9-fold. PTX3, typically produced in response to TLR engagement, was induced 15-fold. None of the aforementioned genes were upregulated in TLR4−/− retinas following B. cereus infection. Conclusions Our results have identified a cohort of mediators driven by TLR4 that may be important in regulating pro-inflammatory and protective pathways in the retina in response to B. cereus intraocular infection. This supports the prospect that blocking the activation of TLR-based pathways might serve as alternative targets for Gram-positive and Gram-negative endophthalmitis therapies in general. Electronic supplementary material The online version of this article (10.1186/s12886-018-0764-8) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Lappano R, Maggiolini M. GPER is involved in the functional liaison between breast tumor cells and cancer-associated fibroblasts (CAFs). J Steroid Biochem Mol Biol 2018; 176:49-56. [PMID: 28249728 DOI: 10.1016/j.jsbmb.2017.02.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 02/02/2017] [Accepted: 02/23/2017] [Indexed: 12/17/2022]
Abstract
The aggressiveness of breast tumors is deeply influenced by the surrounding stroma. In this regard, the functional crosstalk between cancer cells and the tumor microenvironment has received considerable attention in recent years. Cancer-associated fibroblasts (CAFs) are active components of the tumor stroma as they play a main role in the initiation, progression, metastasis and recurrence of breast malignancy. Hence, a better understanding of the mechanisms through which host stroma may contribute to cancer development would lead to novel therapeutic approaches aimed to target both tumor cells and the adjacent microenvironment. The G protein estrogen receptor (GPER/GPR30) has been involved in estrogenic signaling in normal and malignant cells, including breast cancer. It is noteworthy that the potential of GPER to mediate stimulatory effects of estrogens has been also shown in CAFs derived from patients with breast tumors, suggesting that GPER may act at the cross-road between cancer cells and these important components of the tumor microenvironment. This review recapitulates recent findings underlying the breast tumor-promoting action of CAFs, in particular their functional liaison with breast cancer cells via GPER toward the occurrence of malignant features.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| |
Collapse
|
10
|
Tao L, Huang G, Song H, Chen Y, Chen L. Cancer associated fibroblasts: An essential role in the tumor microenvironment. Oncol Lett 2017; 14:2611-2620. [PMID: 28927027 PMCID: PMC5588104 DOI: 10.3892/ol.2017.6497] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 05/08/2017] [Indexed: 01/04/2023] Open
Abstract
Fibroblasts in the tumor stroma are well recognized as having an indispensable role in carcinogenesis, including in the initiation of epithelial tumor formation. The association between cancer cells and fibroblasts has been highlighted in several previous studies. Regulation factors released from cancer-associated fibroblasts (CAFs) into the tumor microenvironment have essential roles, including the support of tumor growth, angiogenesis, metastasis and therapy resistance. A mutual interaction between tumor-induced fibroblast activation, and fibroblast-induced tumor proliferation and metastasis occurs, thus CAFs act as tumor supporters. Previous studies have reported that by developing fibroblast-targeting drugs, it may be possible to interrupt the interaction between fibroblasts and the tumor, thus resulting in the suppression of tumor growth, and metastasis. The present review focused on the reciprocal feedback loop between fibroblasts and cancer cells, and evaluated the potential application of anti-CAF agents in the treatment of cancer.
Collapse
Affiliation(s)
- Leilei Tao
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Guichun Huang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Haizhu Song
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yitian Chen
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
11
|
Benedicto A, Romayor I, Arteta B. Role of liver ICAM-1 in metastasis. Oncol Lett 2017; 14:3883-3892. [PMID: 28943897 DOI: 10.3892/ol.2017.6700] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/07/2017] [Indexed: 12/15/2022] Open
Abstract
Intercellular adhesion molecule (ICAM)-1, is a transmembrane glycoprotein of the immunoglobulin (Ig)-like superfamily, consisting of five extracellular Ig-like domains, a transmembrane domain and a short cytoplasmic tail. ICAM-1 is expressed in various cell types, including endothelial cells and leukocytes, and is involved in several physiological processes. Furthermore, it has additionally been reported to be expressed in various cancer cells, including melanoma, colorectal cancer and lymphoma. The majority of studies to date have focused on the expression of the ICAM-1 on the surface of tumor cells, without research into ICAM-1 expression at sites of metastasis. Cancer cells frequently metastasize to the liver, due to its unique physiology and specialized liver sinusoid capillary network. Liver sinusoidal endothelial cells constitutively express ICAM-1, which is upregulated under inflammatory conditions. Furthermore, liver ICAM-1 may be important during the development of liver metastasis. Therefore, it is necessary to improve the understanding of the mechanisms mediated by this adhesion molecule in order to develop host-directed anticancer therapies.
Collapse
Affiliation(s)
- Aitor Benedicto
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of The Basque Country, UPV/EHU, Leioa, E-48940 Vizcaya, Spain
| | - Irene Romayor
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of The Basque Country, UPV/EHU, Leioa, E-48940 Vizcaya, Spain
| | - Beatriz Arteta
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of The Basque Country, UPV/EHU, Leioa, E-48940 Vizcaya, Spain
| |
Collapse
|
12
|
Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood 2015; 126:1106-17. [PMID: 26100252 DOI: 10.1182/blood-2014-12-618025] [Citation(s) in RCA: 372] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/16/2015] [Indexed: 02/08/2023] Open
Abstract
Exosomes derived from solid tumor cells are involved in immune suppression, angiogenesis, and metastasis, but the role of leukemia-derived exosomes has been less investigated. The pathogenesis of chronic lymphocytic leukemia (CLL) is stringently associated with a tumor-supportive microenvironment and a dysfunctional immune system. Here, we explore the role of CLL-derived exosomes in the cellular and molecular mechanisms by which malignant cells create this favorable surrounding. We show that CLL-derived exosomes are actively incorporated by endothelial and mesenchymal stem cells ex vivo and in vivo and that the transfer of exosomal protein and microRNA induces an inflammatory phenotype in the target cells, which resembles the phenotype of cancer-associated fibroblasts (CAFs). As a result, stromal cells show enhanced proliferation, migration, and secretion of inflammatory cytokines, contributing to a tumor-supportive microenvironment. Exosome uptake by endothelial cells increased angiogenesis ex vivo and in vivo, and coinjection of CLL-derived exosomes and CLL cells promoted tumor growth in immunodeficient mice. Finally, we detected α-smooth actin-positive stromal cells in lymph nodes of CLL patients. These findings demonstrate that CLL-derived exosomes actively promote disease progression by modulating several functions of surrounding stromal cells that acquire features of cancer-associated fibroblasts.
Collapse
|
13
|
Konradi J, Mollenhauer M, Baldus S, Klinke A. Redox-sensitive mechanisms underlying vascular dysfunction in heart failure. Free Radic Res 2015; 49:721-42. [DOI: 10.3109/10715762.2015.1027200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Ren Y, Deng CL, Wan WD, Zheng JH, Mao GY, Yang SL. Suppressive effects of induced pluripotent stem cell-conditioned medium on in vitro hypertrophic scarring fibroblast activation. Mol Med Rep 2014; 11:2471-6. [PMID: 25524174 PMCID: PMC4337479 DOI: 10.3892/mmr.2014.3115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 11/19/2014] [Indexed: 01/19/2023] Open
Abstract
Hypertrophic scarring (HS) is a type of fibrosis that occurs in the skin, and is characterized by fibroblast activation and excessive collagen production. However, at present, therapeutic strategies for this condition are ineffective. Previous studies have identified that the mutual regulation of chronic inflammation, mechanical force and fibroblast activation leads to the formation of HS. Induced pluripotent stem cells (iPSCs) are novel bioengineered embryonic-like stem cells, initially created from mouse adult fibroblasts. The current study demonstrated that iPSC-conditioned medium (iPSC-CM) may significantly suppress hypertrophic scar fibroblast activation. It was observed that in the presence of iPSC-CM, the level of collagen I was markedly reduced and α-smooth muscle actin, a marker for myofibroblasts (activated fibroblasts that mediate mechanical force-induced HS formation), exhibited a significantly lower level of expression in human dermal fibroblasts (HDFs) activated with transforming growth factor-β1. Additionally, iPSC-CM attenuated the local inflammatory cell response by blocking the adhesion of human acute monocytic leukemia cell monocytes and fibroblasts in vitro. In addition, the contractile ability of HDFs may be reduced by iPSC-CM. These observations suggest that iPSC-CM may protect against processes leading to hypertrophic scarring by attenuating fibroblast activation, blocking inflammatory cell recruitment and adhesion and reducing the contractile ability of fibroblasts.
Collapse
Affiliation(s)
- Ye Ren
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Chen-Liang Deng
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Wei-Dong Wan
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Jiang-Hong Zheng
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Guang-Yu Mao
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Song-Lin Yang
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
15
|
Coquerel D, Neviere R, Delile E, Mulder P, Marechal X, Montaigne D, Renet S, Remy-Jouet I, Gomez E, Henry JP, do Rego JC, Richard V, Tamion F. Gene deletion of protein tyrosine phosphatase 1B protects against sepsis-induced cardiovascular dysfunction and mortality. Arterioscler Thromb Vasc Biol 2014; 34:1032-44. [PMID: 24578383 DOI: 10.1161/atvbaha.114.303450] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Cardiovascular dysfunction is a major cause of mortality in patients with sepsis. Recently, we showed that gene deletion or pharmacological inhibition of protein tyrosine phosphatase 1B (PTP1B) improves endothelial dysfunction and reduces the severity of experimental heart failure. However, the cardiovascular effect of PTP1B invalidation in sepsis is unknown. Thus, we explored the beneficial therapeutic effect of PTP1B gene deletion on lipopolysaccharide (LPS)-induced cardiovascular dysfunction, inflammation, and mortality. APPROACH AND RESULTS PTP1B(-/-) or wild-type mice received LPS (15 mg/kg) or vehicle followed by subcutaneous fluid resuscitation (saline, 30 mL/kg). α-1-dependent constriction and endothelium-dependent dilatation, assessed on isolated perfused mesenteric arteries, were impaired 8 hours after LPS and significantly improved in PTP1B(-/-) mice. This was associated with reduced vascular expression of interleukin1-β, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, cyclooxygenase-2, and inducible nitric oxide synthase mRNA. PTP1B gene deletion also limited LPS-induced cardiac dysfunction assessed by echocardiography, left ventricular pressure-volume curves, and in isolated perfused hearts. PTP1B(-/-) mice also displayed reduced LPS-induced cardiac expression of tumor necrosis factor-α, interleukin1-β, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and Gp91phox, as well as of several markers of cellular infiltration. PTP1B deficiency also reduced cardiac P38 and extracellular signal-regulated protein kinase 1 and 2 phosphorylation and increased phospholamban phosphorylation. Finally, PTP1B(-/-) mice displayed a markedly reduced LPS-induced mortality, an effect also observed using a pharmacological PTP1B inhibitor. PTP1B deletion also improved survival in a cecal ligation puncture model of sepsis. CONCLUSIONS PTP1B gene deletion protects against septic shock-induced cardiovascular dysfunction and mortality, and this may be the result of the profound reduction of cardiovascular inflammation. PTP1B is an attractive target for the treatment of sepsis.
Collapse
Affiliation(s)
- David Coquerel
- From the Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (D.C., E.D., P.M., S.R., I.R.-J., E.G., J.-P.H., V.R., F.T.); University of Rouen, Institute for Research and Innovation in Biomedicine, Rouen, France (D.C., E.D., P.M., S.R., I.R.-J., E.G., J.-P.H., J.-C.d.R., V.R., F.T.); EA 4484 and Department of Physiology, Faculty of Medicine, University of Lille, Lille, France (R.N., X.M., D.M.); Intensive Care Unit, University Hospital, Rouen, France (F.T.); and Platform of Behavioural Analysis (SCAC), Faculty of Medicine, Rouen, France (J.-C.d.R.)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sapey E, Greenwood H, Walton G, Mann E, Love A, Aaronson N, Insall RH, Stockley RA, Lord JM. Phosphoinositide 3-kinase inhibition restores neutrophil accuracy in the elderly: toward targeted treatments for immunosenescence. Blood 2014; 123:239-48. [PMID: 24191150 PMCID: PMC3888290 DOI: 10.1182/blood-2013-08-519520] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/16/2013] [Indexed: 12/28/2022] Open
Abstract
Immunosenescence is the functional deterioration of the immune system during natural aging. Despite increased susceptibility to bacterial infections in older adults, age-associated changes to neutrophil responses are only partially understood, and neutrophil migration has not been characterized in detail. Here we describe reduced chemotaxis but preserved chemokinesis toward a range of inflammatory stimuli in migrating neutrophils isolated from healthy older subjects. Cross-sectional data indicate that migratory behavior changes in the sixth decade of life. Crucially, aberrant migration may increase "bystander" tissue damage and heighten inflammation as a result of excess proteinase release during inaccurate chemotaxis, as well as reducing pathogen clearance. We show evidence of increased neutrophil proteinase activity in older adults, namely, raised levels of neutrophil proteinase substrate-derived peptides and evidence of primary granule release, associated with increased systemic inflammation. Inaccurate migration was causally associated with increased constitutive phosphoinositide 3-kinase (PI3K) signaling; untreated neutrophils from old donors demonstrated significant PI3K activation compared with cells from young donors. PI3K-blocking strategies, specifically inhibition of PI3Kγ or PI3Kδ, restored neutrophil migratory accuracy, whereas SHIP1 inhibition worsened migratory flaws. Targeting PI3K signaling may therefore offer a new strategy in improving neutrophil functions during infections and reduce inappropriate inflammation in older patients.
Collapse
|
17
|
Interleukin-1β induces hyaluronan and CD44-dependent cell protrusions that facilitate fibroblast-monocyte binding. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:2223-40. [PMID: 23583650 DOI: 10.1016/j.ajpath.2013.02.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 02/05/2013] [Accepted: 02/11/2013] [Indexed: 11/21/2022]
Abstract
Persistent inflammation is a well-known determinant of progressive tissue fibrosis; however, the mechanisms underlying this process remain unclear. There is growing evidence indicating a role of the cytokine IL-1β in profibrotic responses. We previously demonstrated that fibroblasts stimulated with IL-1β increased their generation of the polysaccharide hyaluronan (HA) and increased their expression of the HA synthase enzyme (HAS-2). The aim of this study was to determine the significance of IL-1β-induced changes in HA and HAS-2 generation. In this study, we found that stimulation of fibroblasts with IL-1β results in the relocalization of HA associated with the cell to the outer cell membrane, where it forms HAS2- and CD44-dependent cell membrane protrusions. CD44 is concentrated within the membrane protrusions, where it co-localizes with the intracellular adhesion molecule 1. Furthermore, we have identified that these cell protrusions enhance IL-1β-dependent fibroblast-monocyte binding through MAPK/ERK signaling. Although previous data have indicated the importance of the HA-binding protein TSG-6 in maintaining the transforming growth factor β1-dependent HA coat, TSG-6 was not essential for the formation of the IL-1β-dependent HA protrusions, thus identifying it as a key difference between IL-1β- and transforming growth factor β1-dependent HA matrices. In summary, these data suggest that IL-1β-dependent HA generation plays a role in fibroblast immune activation, leading to sequestration of monocytes within inflamed tissue and providing a possible mechanism for perpetual inflammation.
Collapse
|
18
|
Dearth CL, Goh Q, Marino JS, Cicinelli PA, Torres-Palsa MJ, Pierre P, Worth RG, Pizza FX. Skeletal muscle cells express ICAM-1 after muscle overload and ICAM-1 contributes to the ensuing hypertrophic response. PLoS One 2013; 8:e58486. [PMID: 23505517 PMCID: PMC3594308 DOI: 10.1371/journal.pone.0058486] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/04/2013] [Indexed: 11/18/2022] Open
Abstract
We previously reported that leukocyte specific β2 integrins contribute to hypertrophy after muscle overload in mice. Because intercellular adhesion molecule-1 (ICAM-1) is an important ligand for β2 integrins, we examined ICAM-1 expression by murine skeletal muscle cells after muscle overload and its contribution to the ensuing hypertrophic response. Myofibers in control muscles of wild type mice and cultures of skeletal muscle cells (primary and C2C12) did not express ICAM-1. Overload of wild type plantaris muscles caused myofibers and satellite cells/myoblasts to express ICAM-1. Increased expression of ICAM-1 after muscle overload occurred via a β2 integrin independent mechanism as indicated by similar gene and protein expression of ICAM-1 between wild type and β2 integrin deficient (CD18-/-) mice. ICAM-1 contributed to muscle hypertrophy as demonstrated by greater (p<0.05) overload-induced elevations in muscle protein synthesis, mass, total protein, and myofiber size in wild type compared to ICAM-1-/- mice. Furthermore, expression of ICAM-1 altered (p<0.05) the temporal pattern of Pax7 expression, a marker of satellite cells/myoblasts, and regenerating myofiber formation in overloaded muscles. In conclusion, ICAM-1 expression by myofibers and satellite cells/myoblasts after muscle overload could serve as a mechanism by which ICAM-1 promotes hypertrophy by providing a means for cell-to-cell communication with β2 integrin expressing myeloid cells.
Collapse
Affiliation(s)
- Christopher L. Dearth
- Department of Kinesiology, The University of Toledo, Toledo, Ohio, United States of America
| | - Qingnian Goh
- Department of Kinesiology, The University of Toledo, Toledo, Ohio, United States of America
| | - Joseph S. Marino
- Department of Kinesiology, The University of Toledo, Toledo, Ohio, United States of America
| | - Peter A. Cicinelli
- Department of Kinesiology, The University of Toledo, Toledo, Ohio, United States of America
| | - Maria J. Torres-Palsa
- Department of Kinesiology, The University of Toledo, Toledo, Ohio, United States of America
| | - Philippe Pierre
- Centre d'Immunologie de Marseille-Luminy U2M, Aix-Marseille Université, Marseille, France
- INSERM U631, Institut National de la Santé et Recherche Médicale, Marseille, France
- CNRS UMR6102, Centre National de la Recherche Scientifique, Marseille, France
| | - Randall G. Worth
- College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio, United States of America
| | - Francis X. Pizza
- Department of Kinesiology, The University of Toledo, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
19
|
Xiamenmycin attenuates hypertrophic scars by suppressing local inflammation and the effects of mechanical stress. J Invest Dermatol 2013; 133:1351-60. [PMID: 23303451 DOI: 10.1038/jid.2012.486] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hypertrophic scarring is a common disease affecting millions of people around the world, but there are currently no satisfactory drugs to treat the disease. Exaggerated inflammation and mechanical stress have been shown to be two main mechanisms of excessive fibrotic diseases. Here we found that a benzopyran natural product, xiamenmycin, could significantly attenuate hypertrophic scar formation in a mechanical stretch-induced mouse model. The compound suppressed local inflammation by reducing CD4+ lymphocyte and monocyte/macrophage retention in fibrotic foci and blocked fibroblast adhesion with monocytes. Both in vivo and in vitro studies found that the compound inhibited the mechanical stress-induced profibrotic effects by suppressing proliferation, activation, fibroblast contraction, and inactivating FAK, p38, and Rho guanosine triphosphatase signaling. Taken together, the compound could simultaneously suppress both the inflammatory and mechanical stress responses, which are the two pivotal pathological processes in hypertrophic scar formation, thus suggesting that xiamenmycin can serve as a potential agent for treating hypertrophic scar formation and other excessive fibrotic diseases.
Collapse
|
20
|
Abdala-Valencia H, Berdnikovs S, Cook-Mills JM. Vitamin E isoforms differentially regulate intercellular adhesion molecule-1 activation of PKCα in human microvascular endothelial cells. PLoS One 2012; 7:e41054. [PMID: 22815910 PMCID: PMC3398863 DOI: 10.1371/journal.pone.0041054] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/18/2012] [Indexed: 01/27/2023] Open
Abstract
Aims ICAM-1-dependent leukocyte recruitment in vivo is inhibited by the vitamin E isoform d-α-tocopherol and elevated by d-γ-tocopherol. ICAM-1 is reported to activate endothelial cell signals including protein kinase C (PKC), but the PKC isoform and the mechanism for ICAM-1 activation of PKC are not known. It is also not known whether ICAM-1 signaling in endothelial cells is regulated by tocopherol isoforms. We hypothesized that d-α-tocopherol and d-γ-tocopherol differentially regulate ICAM-1 activation of endothelial cell PKC. Results ICAM-1 crosslinking activated the PKC isoform PKCα but not PKCβ in TNFα-pretreated human microvascular endothelial cells. ICAM-1 activation of PKCα was blocked by the PLC inhibitor U73122, ERK1/2 inhibitor PD98059, and xanthine oxidase inhibitor allopurinol. ERK1/2 activation was blocked by inhibition of XO and PLC but not by inhibition of PKCα, indicating that ERK1/2 is downstream of XO and upstream of PKCα during ICAM-1 signaling. During ICAM-1 activation of PKCα, the XO-generated ROS did not oxidize PKCα. Interestingly, d-α-tocopherol inhibited ICAM-1 activation of PKCα but not the upstream signal ERK1/2. The d-α-tocopherol inhibition of PKCα was ablated by the addition of d-γ-tocopherol. Conclusions Crosslinking ICAM-1 stimulated XO/ROS which activated ERK1/2 that then activated PKCα. ICAM-1 activation of PKCα was inhibited by d-α-tocopherol and this inhibition was ablated by the addition of d-γ-tocopherol. These tocopherols regulated ICAM-1 activation of PKCα without altering the upstream signal ERK1/2. Thus, we identified a mechanism for ICAM-1 activation of PKC and determined that d-α-tocopherol and d-γ-tocopherol have opposing regulatory functions for ICAM-1-activated PKCα in endothelial cells.
Collapse
Affiliation(s)
- Hiam Abdala-Valencia
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Sergejs Berdnikovs
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Joan M. Cook-Mills
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
21
|
Yuan SY, Shen Q, Rigor RR, Wu MH. Neutrophil transmigration, focal adhesion kinase and endothelial barrier function. Microvasc Res 2011; 83:82-8. [PMID: 21864543 DOI: 10.1016/j.mvr.2011.06.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/20/2011] [Accepted: 06/29/2011] [Indexed: 11/30/2022]
Abstract
Neutrophil activation is an essential component of innate immune defense against infection and injury. In response to inflammatory stimulation, circulating neutrophils undergo a series of dynamic and metabolic changes characterized by β2-intergrin mediated adhesion to microvascular endothelium and subsequent transendothelial migration. During this process, neutrophils release granular contents containing digestive enzymes and produce cytotoxic agents such as reactive oxygen species and cytokines. These products target endothelial barriers inducing phosphorylation-triggered junction dissociation, actin stress fiber formation, and actomyosin contraction, manifest as paracellular hyperpermeability. Endothelial cell-matrix focal adhesions play an integral role in this process by providing structural support for endothelial conformational changes that facilitate neutrophil transmigration, as well as by recruiting intracellular molecules that constitute the hyperpermeability signaling cascades. As a central connector of the complex signaling network, focal adhesion kinase (FAK) is activated following neutrophil adhesion, and further mediates the reorganization of endothelial integrin-matrix attachments in a pattern coordinating with cytoskeleton contraction and junction opening. In this review, we present recent experimental evidence supporting the importance of FAK in neutrophil-dependent regulation of endothelial permeability. The discussion focuses on the mechanisms by which neutrophils activate FAK and its downstream effects on endothelial barriers.
Collapse
Affiliation(s)
- Sarah Y Yuan
- Division of Research, Department of Surgery, University of California at Davis School of Medicine, Sacramento, CA 95817, USA
| | | | | | | |
Collapse
|
22
|
Houghton J, Li H, Fan X, Liu Y, Liu JH, Rao VP, Poutahidis T, Taylor CL, Jackson EA, Hewes C, Lyle S, Cerny A, Bowen G, Cerny J, Moore N, Kurt-Jones EA, Erdman SE. Mutations in bone marrow-derived stromal stem cells unmask latent malignancy. Stem Cells Dev 2011; 19:1153-66. [PMID: 20199238 DOI: 10.1089/scd.2009.0439] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neoplastic epithelia may remain dormant and clinically unapparent in human patients for decades. Multiple risk factors including mutations in tumor cells or the stromal cells may affect the switch from dormancy to malignancy. Gene mutations, including p53 mutations, within the stroma of tumors are associated with a worse clinical prognosis; however, it is not known if these stromal mutations can promote tumors in genetically at-risk tissue. To address this question, Apc(Min/+) and Apc(Min/+) Rag2(-/-) mice, which have a predilection to mammary carcinoma (as well as wild-type (wt) mice), received mesenchymal stem cells (MSC) with mutant p53 (p53MSC) transferred via tail vein injection. In the wt mouse, p53MSC circulated in the periphery and homed to the marrow cavity where they could be recovered up to a year later without apparent effect on the health of the mouse. No mammary tumors were found. However, in mice carrying the Apc(Min/+) mutation, p53MSC homed to mammary tissue and significantly increased the incidence of mammary carcinoma. Tumor necrosis factor (TNF)-alpha-dependent factors elaborated from mesenchymal cells converted quiescent epithelia into clinically apparent disease. The increased cancer phenotype was completely preventable with neutralization of TNF-alpha or by transfer of CD4(+) regulatory T cells from immune competent donors, demonstrating that immune competency to regulate inflammation was sufficient to maintain neoplastic dormancy even in the presence of oncogenic epithelial and stromal mutations. The significant synergy between host immunity and mesenchymal cells identified here may restructure treatments to restore an anticancer microenvironment.
Collapse
Affiliation(s)
- JeanMarie Houghton
- Department of Medicine, Division of Gastroenterology, University of Massachusetts Medical School, Worcester, Massachusetts 01635, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nourshargh S, Hordijk PL, Sixt M. Breaching multiple barriers: leukocyte motility through venular walls and the interstitium. Nat Rev Mol Cell Biol 2010; 11:366-78. [PMID: 20414258 DOI: 10.1038/nrm2889] [Citation(s) in RCA: 424] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The shuttling of leukocytes between the bloodstream and interstitial tissues involves different locomotion strategies that are governed by locally presented soluble and cell-bound signals. Recent studies have furthered our understanding of the rapidly advancing field of leukocyte migration, particularly regarding cellular and subcellular events at the level of the venular wall. Furthermore, emerging cellular models are now addressing the transition from an adherent mode to a non-adherent state, incorporating mechanisms that support an efficient migratory profile of leukocytes in the interstitial tissue beyond the venular wall.
Collapse
Affiliation(s)
- Sussan Nourshargh
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, William Harvey Research Institute, Charterhouse Square, London, UK.
| | | | | |
Collapse
|
24
|
Chen K, Wang D, Du WT, Han ZB, Ren H, Chi Y, Yang SG, Zhu D, Bayard F, Han ZC. Human umbilical cord mesenchymal stem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism. Clin Immunol 2010; 135:448-58. [PMID: 20207200 DOI: 10.1016/j.clim.2010.01.015] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 01/21/2010] [Accepted: 01/27/2010] [Indexed: 12/13/2022]
Abstract
Human umbilical-cord-derived mesenchymal stem cells (hUC-MSCs) constitute an attractive alternative to bone-marrow-derived MSCs for potential clinical applications because of easy preparation and lower risk of viral contamination. In this study, both proliferation of human peripheral blood mononuclear cells (hPBMCs) and their IFN-gamma production in response to mitogenic or allogeneic stimulus were effectively inhibited by hUC-MSCs. Co-culture experiments in transwell systems indicated that the suppression was largely mediated by soluble factor(s). Blocking experiments identified prostaglandin E(2) (PGE(2)) as the major factor, because inhibition of PGE(2) synthesis almost completely mitigated the immunosuppressive effects, whereas neutralization of TGF-beta, IDO, and NO activities had little effects. Moreover, the inflammatory cytokines, IFN-gamma and IL-1beta, produced by hPBMCs upon activation notably upregulated the expression of cyclooxygenase-2 (COX-2) and the production of PGE(2) by hUC-MSCs. In conclusion, our data have demonstrated for the first time the PGE(2)-mediated mechanism by which hUC-MSCs exert their immunomodulatory effects.
Collapse
Affiliation(s)
- Ke Chen
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin 300020, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Barreiro O, Sánchez-Madrid F. Molecular basis of leukocyte-endothelium interactions during the inflammatory response. Rev Esp Cardiol 2009; 62:552-62. [PMID: 19406069 DOI: 10.1016/s1885-5857(09)71837-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The process of leukocyte extravasation, a critical step in the inflammatory response, involves the migration of leukocytes from the bloodstream towards target tissues, where they exert their effector function. Leukocyte extravasation is orchestrated by the combined action of cellular adhesion receptors and chemotactic factors, and involves radical morphological changes in both leukocytes and endothelial cells. Thus, it constitutes an active process for both cell types and promotes the rapid and efficient influx of leukocytes to inflammatory foci without compromising the integrity of the endothelial barrier. This article provides a review of leukocyte extravasation from both molecular and mechanical points of view, with a particular emphasis on the most recent findings on the topic. It includes a description of newly revealed steps in the adhesion cascade, such as slow rolling motion, intraluminal crawling and alternative pathways for transcellular migration, and discusses the functional role of novel adhesion receptors, the spatiotemporal organization of receptors at the plasma membrane and the signaling pathways that control different phases of the extravasation process.
Collapse
Affiliation(s)
- Olga Barreiro
- Servicio de Inmunología. Hospital Universitario de la Princesa. Universidad Autónoma de Madrid. Departamento de Biología Vascular e Inflamación. Centro Nacional de Investigaciones Cardiovasculares. Madrid. España
| | | |
Collapse
|
26
|
Barreiro O, Sánchez-Madrid F. Bases moleculares de las interacciones leucocito-endotelio durante la respuesta inflamatoria. Rev Esp Cardiol 2009. [DOI: 10.1016/s0300-8932(09)71035-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Abstract
Cytoadherence of PRBCs (Plasmodium falciparum-infected red blood cells) to host endothelium has been associated with pathology in severe malaria, but, despite extensive information on the primary processes involved in the adhesive interactions, the mechanisms underlying the disease are poorly understood. Endothelial cells have the ability to mobilize immune and pro-adhesive responses when exposed to both PRBCs and TNF (tumour necrosis factor). In addition, there is also an up-regulation by PRBCs and TNF and a concurrent down-regulation of a range of genes involved in inflammation and cell death, by PRBCs and TNF. We propose that the balance between positive and negative regulation will contribute to endothelial pathology during malarial infection. Apposition of PRBCs has been shown by a number of groups to activate signalling pathways. This is dependent, at least in part, on the cytoadherence characteristics of the invading isolate, such that the avidity of the PRBC for the receptor on host endothelium is proportional to the level of activation of the signalling pathways. An understanding of the post-adhesive processes produced by cytoadherence may help us to understand the variable pathology seen in malaria and to design appropriate therapies to alleviate severe disease.
Collapse
|
28
|
Elevated serum levels of intercellular adhesion molecule ICAM-1 in Pseudoxanthoma elasticum. Clin Chim Acta 2008; 394:54-8. [PMID: 18440309 DOI: 10.1016/j.cca.2008.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 04/01/2008] [Accepted: 04/01/2008] [Indexed: 02/08/2023]
Abstract
BACKGROUND Pseudoxanthoma elasticum (PXE, OMIM 177850 and 264800) is a rare heritable disorder predominantly affecting the skin, the eyes and the vascular system. The disease is caused by mutations in the ABCC6 gene and is characterized by calcification and extracellular matrix remodeling, including alterations of the vessel walls. Here, we investigated the cell adhesion molecules ICAM-1 in PXE patients. METHODS Soluble ICAM-1 was determined in 58 non-consanguineous PXE patients by quantitative sandwich enzyme immunoassay. The allelic frequencies of the ICAM-1 variant p.K469E were analyzed in patients and age- and sex-matched controls. RESULTS Soluble ICAM-1 levels were significantly elevated in male and female PXE patients (p<0.02 and p<0.001, respectively). In addition, the ICAM-1 concentration correlated with the ABCC6 gene status of the PXE patients. The ICAM variant p.K469E genotypes were not different in PXE patients and age- and sex-matched controls. CONCLUSIONS Our data show for the first time increased ICAM-1 concentrations in PXE patients, potentially due to the chronic oxidative stress and elevated protease activity followed by extracellular matrix remodeling which have been previously observed in PXE patients.
Collapse
|
29
|
Kim YS, Park GB, Song HK, Hur I, Lee HK, Kang JS, Hahm E, Lee WJ, Hur DY. Cross-linking of CD54 on Burkitt Lymphoma Cell Line Raji and Ramos Induces FasL Expression by Reactive Oxygen Species and Apoptosis of Adjacent Cells in Fas/FasL Interaction. J Immunother 2007; 30:727-39. [PMID: 17893565 DOI: 10.1097/cji.0b013e31814a69fa] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
CD54 is a cell surface adhesive glycoprotein, which is expressed in most cells. Interaction between CD54 and its ligands is involved in several cellular events including activation, proliferation, and cell death and also cell-to-cell adhesion. In the present study, we found that cross-linking of CD54 on Burkitt lymphoma cell lines, Raji and Ramos, induced apoptosis. We investigated that cross-linking of CD54 on Raji and Ramos using immobilized anti-CD54 mAb (clone 6.5B5) leads to apoptosis. CD54-induced apoptosis took place in association with an increase of intracellular reactive oxygen species (ROS) and a loss of the mitochondrial membrane potential and also the activation of caspases 3 and 9, resulting in the degradation of the proteolytic poly (ADP-ribose) polymerase. Pretreatment of each N-acetyl cystein and N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (a broad caspase inhibitor) blocked apoptosis. Cross-linking of CD54 immediately induced expression of fasL, which was inhibited by pretreatment of N-acetyl cystein. NOK-1 (antagonistic anti-fasL), ZB4 (antagonistic anti-fas), and N-benzyloxycarbonyl-Ile-Glu-Thr-Asp-fluoromethylketon (caspase 8 inhibitor) effectively rescued cells from apoptosis via adjacent fas-fasL interaction but did not block ROS generation. Taken together, it is concluded that engagement of CD54 on B lymphoma cell lines by anti-CD54 mAb may trigger fasL expression through ROS generation and may subsequently induce apoptosis in adjacent fas-fasL interaction.
Collapse
Affiliation(s)
- Yeong Seok Kim
- Department of Anatomy and Research Center for Women's Disease, Inje University Busan Paik Hospital, Busan, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The tumor microenvironment, composed of non-cancer cells and their stroma, has become recognized as a major factor influencing the growth of cancer. The microenvironment has been implicated in the regulation of cell growth, determining metastatic potential and possibly determining location of metastatic disease, and impacting the outcome of therapy. While the stromal cells are not malignant per se, their role in supporting cancer growth is so vital to the survival of the tumor that they have become an attractive target for chemotherapeutic agents. In this review, we will discuss the various cellular and molecular components of the stromal environment, their effects on cancer cell dynamics, and the rationale and implications of targeting this environment for control of cancer. Additionally, we will emphasize the role of the bone marrow-derived cell in providing cells for the stroma.
Collapse
Affiliation(s)
- Hanchen Li
- Division of Gastroenterology, Department of Medicine and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|
31
|
Hundhausen C, Schulte A, Schulz B, Andrzejewski MG, Schwarz N, von Hundelshausen P, Winter U, Paliga K, Reiss K, Saftig P, Weber C, Ludwig A. Regulated shedding of transmembrane chemokines by the disintegrin and metalloproteinase 10 facilitates detachment of adherent leukocytes. THE JOURNAL OF IMMUNOLOGY 2007; 178:8064-72. [PMID: 17548644 DOI: 10.4049/jimmunol.178.12.8064] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CX3CL1 (fractalkine) and CXCL16 are unique members of the chemokine family because they occur not only as soluble, but also as membrane-bound molecules. Expressed as type I transmembrane proteins, the ectodomain of both chemokines can be proteolytically cleaved from the cell surface, a process known as shedding. Our previous studies showed that the disintegrin and metalloproteinase 10 (ADAM10) mediates the largest proportion of constitutive CX3CL1 and CXCL16 shedding, but is not involved in the phorbolester-induced release of the soluble chemokines (inducible shedding). In this study, we introduce the calcium-ionophore ionomycin as a novel, very rapid, and efficient inducer of CX3CL1 and CXCL16 shedding. By transfection in COS-7 cells and ADAM10-deficient murine embryonic fibroblasts combined with the use of selective metalloproteinase inhibitors, we demonstrate that the inducible generation of soluble forms of these chemokines is dependent on ADAM10 activity. Analysis of the C-terminal cleavage fragments remaining in the cell membrane reveals multiple cleavage sites used by ADAM10, one of which is preferentially used upon stimulation with ionomycin. In adhesion studies with CX3CL1-expressing ECV-304 cells and cytokine-stimulated endothelial cells, we demonstrate that induced CX3CL1 shedding leads to the release of bound monocytic cell lines and PBMC from their cellular substrate. These data provide evidence for an inducible release mechanism via ADAM10 potentially important for leukocyte diapedesis.
Collapse
|
32
|
Wu X, Guo R, Wang Y, Cunningham PN. The role of ICAM-1 in endotoxin-induced acute renal failure. Am J Physiol Renal Physiol 2007; 293:F1262-71. [PMID: 17670897 DOI: 10.1152/ajprenal.00445.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The pathogenesis of acute renal failure (ARF) occurring during the course of sepsis is incompletely understood. Intercellular adhesion molecule-1 (ICAM-1) is a key cell adhesion molecule upregulated by LPS, which binds to the integrins CD11a/CD18 and CD11b/CD18 present on the surface of leukocytes. We hypothesized that ICAM-1 facilitates renal injury in LPS-induced ARF. To test this, three groups of mice (n = 8 per group) were injected intraperitoneally with 6 mg/kg LPS: 1) normal C57BL/6 mice, 2) mice with a targeted deficiency of ICAM-1 (ICAM-1(-/-)), and 3) mice expressing very low levels of CD18 (CD18-def). ICAM-1(-/-) mice were significantly resistant to LPS-mediated ARF, as opposed to CD18-def mice, which developed severe ARF, as did wild-type controls (48 h blood urea nitrogen 143 +/- 31.5, 70.8 +/- 24.4, and 185 +/- 16.6 mg/dl in wild-type, ICAM-1(-/-), and CD18-def mice, respectively, P < 0.05). At death, ICAM-1(-/-) mice had significantly less renal neutrophil infiltration than the other two groups, as well as less histological tubular injury. Depletion of neutrophils with mAb Gr-1 led to a profound exaggeration of tumor necrosis factor (TNF) release and high mortality, but neutrophil-depleted mice receiving 10-fold less LPS were protected against ARF despite TNF release similar to what is normally associated with LPS-induced ARF. LPS caused a significant increase in renal expression of chemokines; however, this increase was significantly exaggerated in CD18-def mice, which may account for their lack of protection. In conclusion, these data show that ICAM-1 plays a key role in LPS-induced ARF.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Section of Nephrology, University of Chicago, Chicago, Illinios, USA
| | | | | | | |
Collapse
|
33
|
Man S, Ubogu EE, Ransohoff RM. Inflammatory cell migration into the central nervous system: a few new twists on an old tale. Brain Pathol 2007; 17:243-50. [PMID: 17388955 PMCID: PMC8095646 DOI: 10.1111/j.1750-3639.2007.00067.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Understanding the mechanisms of leukocyte trafficking into the brain might provide insights into how to modulate pathologic immune responses or enhance host protective mechanisms in neuroinflammatory diseases such as multiple sclerosis. This review summarized our knowledge about the sites for leukocyte entry into the central nervous system, highlighting the routes from blood into the perivascular space and brain parenchyma through the blood-brain barrier. We further discussed the multistep paradigm of leukocyte-endothelial interactions at the blood-brain barrier, focusing on the adhesion molecules and chemokines involved in leukocyte transmigration. Luminal chemokines, which are immobilized on endothelial surfaces, initiate leukocyte integrin clustering and conformational change, leading to leukocyte arrest. Some leukocytes undergo post-arrest locomotion across the endothelial surface until interendothelial junctions are identified. Leukocytes then extend protrusions through the interendothelial junctions, in search of abluminal chemokines, which will serve as guidance cues for transmigration. Extravasating cells first accumulate in the perivascular space between the endothelial basement membrane and the basement membrane of the glia limitans. Matrix metalloproteases may be involved in leukocyte transverse across glia limitans into the brain parenchyma. The adhesion molecules and chemokine receptors provide attractive targets for neuroinflammatory diseases because of their important role in mediating central nervous system inflammation.
Collapse
Affiliation(s)
- Shumei Man
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Eroboghene E. Ubogu
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Richard M. Ransohoff
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
34
|
van Buul JD, Kanters E, Hordijk PL. Endothelial signaling by Ig-like cell adhesion molecules. Arterioscler Thromb Vasc Biol 2007; 27:1870-6. [PMID: 17585068 DOI: 10.1161/atvbaha.107.145821] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The migration of leukocytes across the endothelial lining of the vascular wall requires a complicated series of adhesion and signaling events. Endothelial Ig-like cell adhesion molecules (IgCAMs) such as intercellular adhesion molecule-1 play an important role, not only as ligands for leukocyte integrins, but also as signaling initiators. Clustering these IgCAMs triggers a wide range of events in the endothelial cells' interior, of which activation of Rho-like GTPases, induction of cytoskeletal changes, and the transient modulation of cell-cell contact are key events. This review discusses recent insights into this IgCAM-driven endothelial signaling and its consequences for leukocyte transendothelial migration.
Collapse
Affiliation(s)
- Jaap D van Buul
- Department of Molecular Cell Biology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
35
|
Ao L, Song Y, Fullerton DA, Dinarello CA, Meng X. The interaction between myocardial depressant factors in endotoxemic cardiac dysfunction: role of TNF-alpha in TLR4-mediated ICAM-1 expression. Cytokine 2007; 38:124-9. [PMID: 17683945 PMCID: PMC2727933 DOI: 10.1016/j.cyto.2007.05.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 05/10/2007] [Accepted: 05/22/2007] [Indexed: 10/23/2022]
Abstract
UNLABELLED Multiple pro-inflammatory mediators contribute to cardiac dysfunction caused by bacterial lipopolysaccharide (LPS). The rapid TNF-alpha response is likely involved in the induction of down-stream myocardial depressant factors. Studies by our laboratory and others indicate an important role for ICAM-1 in endotoxemic cardiac dysfunction through leukocyte-independent mechanisms. The purpose of this study was to determine: whether ICAM-1 knockout improves cardiac function during endotoxemia and whether TLR4 and TNF-alpha regulate LPS-induced myocardial ICAM-1 expression. METHODS AND RESULTS Mice were treated with Escherichia coli LPS (0.5mg/kg iv). Myocardial ICAM-1 levels were analyzed by immunoblotting and left ventricular developed pressure (LVDP) was assessed by the Langendorff technique. In wild-type mice, peak ICAM-1 levels were observed at 4h when myocardial contractility was depressed. Myocardial contractility was improved following LPS in mice lacking functional TLR4, TNF-alpha or ICAM-1. TLR4 mutation abolished ICAM-1 expression with abrogation of precedent TNF-alpha response. Similarly, TNF-alpha knockout reduced myocardial ICAM-1 level following LPS treatment. CONCLUSIONS ICAM-1 contributes to the mechanism of endotoxemic cardiac dysfunction. TNF-alpha is involved in the regulation of myocardial ICAM-1 expression by TLR4.
Collapse
Affiliation(s)
- Lihua Ao
- Department of Surgery, University of Colorado Health Sciences Center, Denver, Colorando, USA
| | | | | | | | | |
Collapse
|
36
|
Celli L, Ryckewaert JJ, Delachanal E, Duperray A. Evidence of a Functional Role for Interaction between ICAM-1 and Nonmuscle α-Actinins in Leukocyte Diapedesis. THE JOURNAL OF IMMUNOLOGY 2006; 177:4113-21. [PMID: 16951376 DOI: 10.4049/jimmunol.177.6.4113] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
ICAM-1 is involved in both adhesion and extravasation of leukocytes to endothelium during inflammation. It has been shown that the ICAM-1 cytoplasmic domain is important for transendothelial migration of leukocytes but the precise molecular mechanisms involving the intracytoplasmic portion of ICAM-1 is not known. To characterize precisely the molecular scaffolding associated with ICAM-1, we have used the yeast two-hybrid system, and we have identified six different proteins interacting with the ICAM-1 cytoplasmic domain. In this study, we report that the two forms of nonmuscle alpha-actinin (i.e., alpha-actinin 1 and alpha-actinin 4) associate with ICAM-1, and that these interactions are essential for leukocyte extravasation. These interactions were further confirmed by coimmunoprecipitation and immunofluorescence in endothelial cells and in ICAM-1-transfected Chinese hamster ovary cells. The function of these interactions was analyzed by point mutation of charged amino acids located on ICAM-1 cytoplasmic domain. We have identified three charged amino acids (arginine 480, lysine 481, and arginine 486) which are essential in the binding of alpha-actinins to the ICAM-1 cytoplasmic tail. Mutation of these amino acids completely inhibited ICAM-1-mediated diapedesis. Experiments with siRNA inhibiting specifically alpha-actinin 1 or alpha-actinin 4 on endothelial cells indicated that alpha-actinin 4 had a major role in this phenomenon. Thus, our data demonstrate that ICAM-1 directly interacts with cytoplasmic alpha-actinin 1 and 4 and that this interaction is required for leukocyte extravasation.
Collapse
Affiliation(s)
- Lionel Celli
- Institut National de la Santé et de la Recherche Médicale, Unité 578, Grenoble, France, and Université Grenoble I, Groupe de Recherche sur le Cancer du Poumon, Institut Albert Bonniot, Grenoble, France
| | | | | | | |
Collapse
|
37
|
Abstract
Tumours are known as wounds that do not heal - this implies that cells that are involved in angiogenesis and the response to injury, such as endothelial cells and fibroblasts, have a prominent role in the progression, growth and spread of cancers. Fibroblasts are associated with cancer cells at all stages of cancer progression, and their structural and functional contributions to this process are beginning to emerge. Their production of growth factors, chemokines and extracellular matrix facilitates the angiogenic recruitment of endothelial cells and pericytes. Fibroblasts are therefore a key determinant in the malignant progression of cancer and represent an important target for cancer therapies.
Collapse
Affiliation(s)
- Raghu Kalluri
- Center for Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
38
|
Domeij H, Yucel-Lindberg T, Modéer T. Cell interactions between human gingival fibroblasts and monocytes stimulate the production of matrix metalloproteinase-1 in gingival fibroblasts. J Periodontal Res 2006; 41:108-17. [PMID: 16499713 DOI: 10.1111/j.1600-0765.2005.00840.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Matrix metalloproteinase-1 (MMP-1) plays an important role in inflammatory diseases including periodontitis, which is characterized by tissue destruction and dense infiltration of mononuclear cells. OBJECTIVES The aim of this study was to investigate the effect of cell interactions between human gingival fibroblasts and human monocytes on the production of MMP-1 in a coculture model. METHODS The fibroblasts were cultured in either cell-to-cell contact with monocytes or in separated cocultures using a microporous membrane to prevent cell-to-cell contact. The mRNA expression of MMP-1 was analyzed using reverse transcription-polymerase chain reaction (RT-PCR) and the protein levels of MMP-1 in the cell medium were measured using enzyme-linked immunosorbent assay (ELISA). RESULTS Coculturing gingival fibroblasts with monocytes in cell-to-cell contact increased the mRNA expression of MMP-1 in both fibroblasts and monocytes. The protein levels of MMP-1 increased in the culture media of the cocultures and correlated to the number of fibroblasts as well as to the number of monocytes. When fibroblasts were cultured with monocytes in separated cocultures, the mRNA expression and protein level of MMP-1 increased in the fibroblasts. In addition, treatment of fibroblasts with conditioned medium from monocytes also stimulated the production of MMP-1 in the fibroblasts. Moreover, the levels of the MMP-1 inhibitor, tissue inhibitor of metalloproteinase-1 (TIMP-1), increased in cocultures with cell-to-cell contact, but not in fibroblasts of separated cocultures. The glucocorticoid dexamethasone and the tetracycline doxycycline reduced the enhanced level of MMP-1 in the cocultures with cell-to-cell contact. CONCLUSION The current study demonstrates that monocytes stimulate the production of MMP-1 in gingival fibroblasts by cell interactions, which may contribute to the maintenance of MMP-mediated tissue destruction in periodontitis.
Collapse
Affiliation(s)
- Helena Domeij
- Department of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden.
| | | | | |
Collapse
|
39
|
Abstract
Rho family GTPases are key signal transducers that regulate cell adhesion and migration and a variety of other cellular responses, including changes in gene expression. In this review, we discuss how Rho GTPases regulate signaling by endothelial cell receptors involved in leukocyte extravasation. First, Rho GTPases affect the expression of some leukocyte adhesion molecules on endothelial cells, such as intracellular adhesion molecule-1 and E-selectin, that can be induced by proinflammatory mediators, hypoxia, or shear stress. Second, Rho GTPases are activated by engagement of several leukocyte adhesion receptors and contribute to both early morphological changes and subsequent alterations in gene expression. Rho GTPases are therefore candidate targets for inhibiting leukocyte transendothelial migration in heart disease and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Eva Cernuda-Morollón
- Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine, London, UK
| | | |
Collapse
|
40
|
Domeij H, Modéer T, Quezada HC, Yucel-Lindberg T. Cell expression of MMP-1 and TIMP-1 in co-cultures of human gingival fibroblasts and monocytes: the involvement of ICAM-1. Biochem Biophys Res Commun 2005; 338:1825-33. [PMID: 16288711 DOI: 10.1016/j.bbrc.2005.10.137] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 10/22/2005] [Indexed: 12/15/2022]
Abstract
Matrix metalloproteinase-1 (MMP-1) plays an important role in the degradation of collagen in inflammatory diseases. The aim of this study was to investigate the cellular expression of MMP-1 and its inhibitor, tissue inhibitor of metalloproteinase-1 (TIMP-1), in gingival fibroblasts co-cultured with monocytes and the possible mediating role of intercellular adhesion molecule-1 (ICAM-1). In co-cultures, the expression of MMP-1 and TIMP-1 increased in fibroblasts, but not in monocytes, although the number of MMP-1+ and TIMP-1+ adhered monocytes increased. Moreover, ICAM-1 expression in both fibroblasts and adhered monocytes increased. In the presence of an anti-ICAM-1 antibody, the expression of MMP-1 in fibroblasts decreased whereas the number of TIMP-1+ adhered monocytes increased. The p38 MAPK inhibitor SB203580 reduced MMP-1 expression in fibroblasts, as well as ICAM-1 expression in both fibroblasts and adhered monocytes. The results suggest that co-culture with monocytes enhances cellular expression of MMP-1 and TIMP-1 in gingival fibroblasts, and that the increased MMP-1 expression, in contrast to TIMP-1, is partly mediated by the adhesion molecule ICAM-1 and the p38 MAPK signal pathway.
Collapse
Affiliation(s)
- Helena Domeij
- Department of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
| | | | | | | |
Collapse
|
41
|
Lawson C, Holder AL, Stanford RE, Smith J, Rose ML. Anti-intercellular adhesion molecule-1 antibodies in sera of heart transplant recipients: a role in endothelial cell activation. Transplantation 2005; 80:264-71. [PMID: 16041273 DOI: 10.1097/01.tp.0000165433.88295.4c] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Antiendothelial antibodies to non-human leukocyte antigens are made by a subset of heart transplant recipients, but the specificity of such antibodies is undefined. Intercellular adhesion molecule (ICAM)-1 is an abundantly expressed adhesion molecule with polymorphic residues, expressed on the surface of endothelial cells. The hypothesis that ICAM-1 acts as a minor histocompatibility antigen and that anti-ICAM-1 antibodies, directed against polymorphic residues, could be one component of the antiendothelial antibodies found after heart transplantation has been tested. METHODS Chinese hamster ovary cells were transfected with full-length polymorphic variants of human ICAM-1. The binding of antibodies (immunoglobulin [Ig] G or IgM) to these cells was measured using sera from 50 heart transplant recipients (pretransplant and 1 and 2 years posttransplant) and sera from 20 normal volunteers by flow cytometry. The recipients and donors were genotyped for ICAM-1 polymorphisms. RESULTS Sixty-eight percent (n=34) of patients made IgM antibodies that bound to ICAM-1. However, it seems unlikely that ICAM-1 is a minor transplantation antigen, because there were no differences in antibody production from recipients matched or mismatched for ICAM-1 alleles. The antibodies bound to mouse endothelial cells that were engineered to overexpress human ICAM-1, and induced a robust activation of the Erk-2 mitogen-activated protein kinase pathway. CONCLUSIONS Anti-ICAM-1 antibodies are produced after cardiac transplantation, but not to polymorphic residues. Such antibodies may contribute to the endothelial activation by binding to the endothelium, causing activation of proinflammatory signaling pathways.
Collapse
Affiliation(s)
- Charlotte Lawson
- Transplant Immunology Group, Imperial College, Heart Science Centre, Harefield Hospital, Harefield, Middlesex, United Kingdom.
| | | | | | | | | |
Collapse
|
42
|
Turowski P, Adamson P, Greenwood J. Pharmacological targeting of ICAM-1 signaling in brain endothelial cells: potential for treating neuroinflammation. Cell Mol Neurobiol 2005; 25:153-70. [PMID: 15962512 PMCID: PMC11529501 DOI: 10.1007/s10571-004-1380-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2003] [Accepted: 08/20/2003] [Indexed: 10/25/2022]
Abstract
(1) The vasculature of the blood-brain barrier allows only comparatively few leukocytes to enter and survey the healthy central nervous system (CNS). However, during pathological CNS inflammation, the number of leukocytes adhering to and penetrating the CNS vasculature increases strongly. (2) Endothelial adhesion molecules do not only mediate firm adhesion of leukocyte to vascular beds but also trigger signaling cascades within the endothelial cell, which play a crucial role in modulating subsequent leukocyte diapedesis. (3) Signaling through endothelial intercellular adhesion molecule-1 (ICAM-1, CD54) has been shown to induce changes of the endothelial cytoskeleton, transcription, and interendothelial junctions, all of which may be important in modulating endothelial disposition to infiltrating leukocytes. Furthermore, a number of recent reports document that drugs interfering with endothelial ICAM-1 signaling, efficiently reduce leukocyte migration both in vitro and in animal models of CNS inflammation. (4) These approaches are novel in as much as they target vascular beds rather than the penetrating leukocytes. Since endothelial ICAM-1 signaling appears to differ between different vascular beds we propose that such compounds could potentially be used as exquisite drugs in the treatment of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Patric Turowski
- Division of Cell Therapy, Institute of Ophthalmology, University College London, 11-43 Bath Street, London ECIV 9EL, UK.
| | | | | |
Collapse
|
43
|
Wang Q, Yerukhimovich M, Gaarde WA, Popoff IJ, Doerschuk CM. MKK3 and -6-dependent activation of p38alpha MAP kinase is required for cytoskeletal changes in pulmonary microvascular endothelial cells induced by ICAM-1 ligation. Am J Physiol Lung Cell Mol Physiol 2004; 288:L359-69. [PMID: 15516490 DOI: 10.1152/ajplung.00292.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies demonstrated that neutrophil adherence induces ICAM-1-dependent cytoskeletal changes in TNF-alpha-treated pulmonary microvascular endothelial cells that are prevented by a pharmacological inhibitor of p38 MAP kinase. This study determined whether neutrophil adherence induces activation of p38 MAP kinase in endothelial cells, the subcellular localization of phosphorylated p38, which MAP kinase kinases lead to p38 activation, which p38 isoform is activated, and what the downstream targets may be. Confocal microscopy showed that neutrophil adhesion for 2 or 6 min induced an increase in phosphorylated p38 in endothelial cells that was punctate and concentrated in the central region of the endothelial cells. Studies using small interfering RNA (siRNA) to inhibit the protein expression of MAP kinase kinase 3 and 6, either singly or in combination, showed that both MAP kinase kinases were required for p38 phosphorylation. Studies using an antisense oligonucleotide to p38alpha demonstrated that inhibition of the protein expression of p38alpha 1) inhibited activation of p38 MAP kinase without affecting the protein expression of p38beta; 2) prevented phosphorylation of heat shock protein 27, an actin binding protein that may induce actin polymerization upon phosphorylation; 3) attenuated cytoskeletal changes; and 4) attenuated neutrophil migration to the EC borders. Thus MAP kinase kinase3- and 6-dependent activation of the alpha-isoform of p38 MAP kinase is required for the cytoskeletal changes induced by neutrophil adherence and influences subsequent neutrophil migration toward endothelial cell junctions.
Collapse
Affiliation(s)
- Qin Wang
- Division of Integrative Biology, Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | |
Collapse
|
44
|
Ziegelstein RC, He C, Hu Q. Hypoxia/reoxygenation stimulates Ca2+-dependent ICAM-1 mRNA expression in human aortic endothelial cells. Biochem Biophys Res Commun 2004; 322:68-73. [PMID: 15313174 DOI: 10.1016/j.bbrc.2004.07.080] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Indexed: 11/16/2022]
Abstract
Increased endothelial ICAM-1 expression is found in normal aging and in atherosclerosis and is related to the chronic effects of oxidative stress. We examined the Ca(2+)-dependence of ICAM-1 mRNA expression in human aortic endothelial cells (HAEC) exposed to hypoxia/reoxygenation (H/R) as a model of oxidative stress. HAEC were exposed to glucose-free hypoxia (95% N(2)/5% CO(2)) for 60 min and were then reoxygenated (21% O(2)/5% CO(2)) and observed for up to 6h. Reactive oxygen species (ROS) generation was measured by dichlorofluorescein fluorescence and ICAM-1 mRNA was assessed by Northern blot. Upon reoxygenation after hypoxia, ROS production occurred in HAEC and was inhibited by diphenyleneiodonium and by polyethylene glycol-catalase, suggesting the involvement of NADPH oxidase-derived hydrogen peroxide. Hypoxia alone did not increase either ROS production or ICAM-1 mRNA levels, but a 2.5-fold increase in ICAM-1 mRNA was noted by 30 min of reoxygenation. This was not observed in Ca(2+)-free buffer or in cells treated with diphenyleneiodonium. Thus, H/R upregulates ICAM-1 mRNA in HAEC by a Ca(2+)- and ROS-dependent mechanism. Characterizing the signaling pathways involved in H/R-induced adhesion molecule expression may result in a better understanding of the vascular biology of normal aging and the pathobiology of atherosclerosis.
Collapse
Affiliation(s)
- Roy C Ziegelstein
- Johns Hopkins Bayview Medical Center, Johns Hopkins University School of Medicine, Baltimore, MD 21224-2780, USA
| | | | | |
Collapse
|
45
|
Zhang XL, Selbi W, de la Motte C, Hascall V, Phillips A. Renal proximal tubular epithelial cell transforming growth factor-beta1 generation and monocyte binding. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:763-73. [PMID: 15331401 PMCID: PMC1618593 DOI: 10.1016/s0002-9440(10)63339-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/17/2004] [Indexed: 12/29/2022]
Abstract
With increasing awareness of the importance of renal cortical interstitial fibrosis, interest has focused on the mechanisms that stimulate generation of profibrotic factors including transforming growth factor (TGF)-beta1, by resident cells, such as proximal tubular epithelial cells (PTCs). Infiltration of monocytes, has been implicated in the pathogenesis of a wide variety of renal diseases, however, how interaction between monocytes and PTCs may affect the generation of TGF-beta1 by the resident cell is unknown. We demonstrate that monocytes stimulate TGF-beta1 transcription and protein synthesis by PTCs. This was dependent on direct cell contact and TGF-beta1 transcriptional activation that was dependent on ICAM-1 binding of unstimulated monocytes. This was mimicked by antibody cross-linking of PTC surface ICAM-1. We have previously identified hyaluronan (HA)-based structures on the surface of PTCs, both primary cultures and the HK-2 cell line. Removal of cell-surface HA increased ICAM-1-dependent monocyte binding and stimulation of TGF-beta1 synthesis. Furthermore, we demonstrate that binding of monocytes to HA-based structures on the cell surface of HK-2 cells interferes with this response. In summary, we have demonstrated that HA-based pericellular structures down-regulate proinflammatory and profibrotic responses by modulation of monocyte-driven ICAM-1-dependent cell activation and TGF-beta1 generation.
Collapse
Affiliation(s)
- Xiao Liang Zhang
- Institute of Nephrology, University of Wales College of Medicine, Cardiff, United Kingdom
| | | | | | | | | |
Collapse
|
46
|
Clayton A, Turkes A, Dewitt S, Steadman R, Mason MD, Hallett MB. Adhesion and signaling by B cell-derived exosomes: the role of integrins. FASEB J 2004; 18:977-9. [PMID: 15059973 DOI: 10.1096/fj.03-1094fje] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Exosomes are nanometer-sized vesicles secreted by various cells, with potentially diverse roles in physiology. Although emphasis has been placed on their involvement in immune modulation, their potential for more wide-ranging biological effects has not been appreciated. A common exosome feature is the expression of adhesion molecules, which include the integrin family. We have for the first time addressed the possible function of B cell-derived exosome-integrins by examining adhesive interactions of exosomes (immobilized onto beads) with extracellular matrix (ECM) components and cytokine-treated fibroblasts. Integrin (beta1 and beta2) expression was demonstrated by Western blotting and flow cytometry. Binding studies (with blocking antibodies) demonstrated their function in adhesion to collagen-I, fibronectin, and tumor necrosis factor (TNF)-alpha-activated fibroblasts. Exosome adhesion to TNF-alpha-activated fibroblasts also triggered integrin-dependent changes in cytosolic calcium, measured by single cell imaging. Thus, B cell-derived exosomes express functional integrins, which are capable of mediating anchorage to ECM and cell-surface adhesion molecules, and may be a novel mode of delivering adhesion signals at distances beyond that of direct cell-cell contact during inflammation.
Collapse
Affiliation(s)
- Aled Clayton
- Section of Clinical Oncology, Department of Medicine, University of Wales College of Medicine, Velindre Hospital, Whitchurch, Cardiff, UK.
| | | | | | | | | | | |
Collapse
|
47
|
Monslow J, Williams JD, Guy CA, Price IK, Craig KJ, Williams HJ, Williams NM, Martin J, Coleman SL, Topley N, Spicer AP, Buckland PR, Davies M, Bowen T. Identification and analysis of the promoter region of the human hyaluronan synthase 2 gene. J Biol Chem 2004; 279:20576-81. [PMID: 14988410 DOI: 10.1074/jbc.m312666200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Hyaluronan (HA) is a linear glycosaminoglycan of the vertebrate extracellular matrix that is synthesized at the plasma membrane by the HA synthase (HAS) enzymes HAS1, -2 and -3. The regulation of HA synthesis has been implicated in a variety of extracellular matrix-mediated and pathological processes, including renal fibrosis. We have recently described the genomic structures of each of the human HAS genes. In the present study, we analyzed the HAS2 promoter region. In 5'-rapid amplification of cDNA ends analysis of purified mRNA from human renal epithelial proximal tubular cells, we detected an extended sequence for HAS2 exon 1, relocating the transcription initiation site 130 nucleotides upstream of the reference HAS2 mRNA sequence, GenBank accession number NM_005328. A luciferase reporter gene assay of nested fragments spanning the 5' terminus of NM_005328 demonstrated the constitutive promoter activity of sequences directly upstream of the repositioned transcription initiation site but not of the newly designated exonic nucleotides. Using reverse transcription-PCR, expression of this extended HAS2 mRNA was demonstrated in a variety of human cell types, and orthologous sequences were detected in mouse and rat kidney. Alignment of human, murine, and equine genomic DNA sequences upstream of the repositioned HAS2 exon 1 provided evidence for the evolutionary conservation of specific transcription factor binding sites. The location of the HAS2 promoter will facilitate analysis of the transcriptional regulation of this gene in a variety of pathological contexts as well as in developmental models in which HAS2 null animals have an embryonic lethal phenotype.
Collapse
Affiliation(s)
- Jamie Monslow
- Institute of Nephrology, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN, Wales, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tada H, Sugawara S, Nemoto E, Imamura T, Potempa J, Travis J, Shimauchi H, Takada H. Proteolysis of ICAM-1 on human oral epithelial cells by gingipains. J Dent Res 2003; 82:796-801. [PMID: 14514759 DOI: 10.1177/154405910308201007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cysteine proteinases (gingipains) from Porphyromonas gingivalis are considered key virulence factors of severe periodontitis and host immune evasion. Since expression of intercellular adhesion molecule-1 (ICAM-1) on gingival epithelium is indispensable in polymorphonuclear leukocyte (PMN) migration at the site of periodontitis, we examined the effects of gingipains on the expression of ICAM-1 on human oral epithelial cell lines (KB and HSC-2) by flow cytometry and Western blotting. We found that three purified forms of gingipains efficiently reduced ICAM-1 expression on the cells in a time- and dose-dependent manner. Gingipains reduced the expression on fixed cells and degraded the ICAM-1 in the cell membranes, indicating that the reduction resulted from direct proteolysis. They then disturbed the ICAM-1-dependent adhesion of PMNs to the cells. These results indicate that gingipains cleave ICAM-1 on oral epithelial cells, consequently disrupting PMN-oral epithelial cell interaction, and are involved in immune evasion by the bacterium in periodontal tissues.
Collapse
Affiliation(s)
- H Tada
- Department of Microbiology and Immunology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ozawa A, Tada H, Tamai R, Uehara A, Watanabe K, Yamaguchi T, Shimauchi H, Takada H, Sugawara S. Expression of IL-2 receptor beta and gamma chains by human gingival fibroblasts and up-regulation of adhesion to neutrophils in response to IL-2. J Leukoc Biol 2003; 74:352-9. [PMID: 12949238 DOI: 10.1189/jlb.0103044] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To investigate the role of human gingival fibroblasts (HGF), the major constituents of gingival tissue in periodontal inflammatory disease, the expression of interleukin-2 receptor (IL-2R) alpha, beta, and gamma chains was examined. Immunohistochemistry showed a pronounced accumulation of CD8(+) T cells in the inflamed lamina propria of gingival tissue from patients with adult periodontitis. HGF express IL-2Rbeta and IL-2Rgamma at mRNA and protein levels, but the expression of IL-2Ralpha could not be detected, as assessed by reverse transcriptase-polymerase chain reaction and flow cytometry. IL-2Rbeta, and -gamma expressed on HGF were functionally active, as addition of neutralizing anti-IL-2Rbeta and -gamma antibodies caused inhibition of the IL-2-induced production of monocyte chemoattractant protein-1 (MCP-1), and addition of IL-2 induced phosphorylation of Janus tyrosine kinase 3, which is critical in signaling through IL-2Rgamma in HGF. The IL-2-induced MCP-1 production was significantly inhibited by pretreatment with neutralizing antibody to IL-15. Addition of IL-2 also induced a marked up-regulation of the expression of intercellular adhesion molecule-1 (ICAM-1) on the surface of HGF, which in turn, significantly augmented the adhesion of human neutrophils, which were inhibited by an anti-ICAM-1 antibody. These results suggest that HGF express functional IL-2Rbetagamma, respond to IL-2 from infiltrated T cells, and actively participate in the inflammatory process in the periodontal region and that IL-15 produced by HGF sustains IL-2-mediated signaling in HGF.
Collapse
Affiliation(s)
- Akiko Ozawa
- Department of Microbiology and Immunology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ponthieux A, Lambert D, Herbeth B, Droesch S, Pfister M, Visvikis S. Association between Gly241Arg ICAM-1 gene polymorphism and serum sICAM-1 concentration in the Stanislas cohort. Eur J Hum Genet 2003; 11:679-86. [PMID: 12939654 DOI: 10.1038/sj.ejhg.5201033] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Intracellular adhesion molecule-1 (ICAM-1), a cellular adhesion molecule that mediates the interaction of activated endothelial cells with leukocytes, is involved in various inflammatory and cardiovascular disorders. The relation between these markers and genetic polymorphism, however, remains to be elucidated. The aim of this study is to estimate the effect of a single-base polymorphism at codon 241 in exon 4 of ICAM-1 gene on serum sICAM-1 concentration in a healthy population, taking into account other biological determinants of sICAM-1 level. Serum sICAM-1 levels and the G/R241 polymorphism of the ICAM-1 gene were measured in a large healthy population consisting of 413 children aged 6-21 years and 363 adults aged 38-55 years extracted from the Stanislas cohort. The R241 allele was significantly associated with lower sICAM-1 levels and explained 3.4 and 1.9% of the sICAM-1 variability in children and adults, respectively. A codominant pattern contributed better to the model after adjustment for covariates as the RR homozygote effect was higher than that of the GR heterozygote. Moreover, significant independent associations were found between sICAM-1 and smoking, insulin resistance index (HOMA IR), interleukin-6 level, and alkaline phosphatase and aspartate aminotransferase activities. In conclusion, this study revealed a significant association between the G/R241 ICAM-1 polymorphism and serum sICAM-1 levels, probably due to the impairment in binding of ICAM-1 to leukocyte integrin Mac-1 protein.
Collapse
|