1
|
An J, Imasaki T, Narita A, Niwa S, Sasaki R, Makino T, Nitta R, Kikkawa M. Dimerization of GAS2 mediates crosslinking of microtubules and F-actin. EMBO J 2025; 44:2997-3024. [PMID: 40169809 DOI: 10.1038/s44318-025-00415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 04/03/2025] Open
Abstract
The spectraplakin family protein GAS2 was originally identified as a growth arrest-specific protein, and recent studies have revealed its involvement in multiple cellular processes. Its dual interaction with actin filaments and microtubules highlights its essential role in cytoskeletal organization, such as cell division, apoptosis, and possibly tumorigenesis. However, the structural basis of cytoskeletal dynamics regulation by GAS2 remains unclear. In this study, we present cryo-electron microscopy structures of the GAS2 type 3 calponin homology domain (CH3) in complex with F-actin at 2.8 Å resolution, thus solving the first type CH3 domain structure bound to F-actin and confirming its actin-binding activity. We also provide the first near-atomic resolution cryo-EM structure of the GAS2-GAR domain bound to microtubules and identify conserved microtubule-binding residues. Our biochemical experiments show that GAS2 promotes microtubule nucleation and polymerization, and that its C-terminal region is essential for dimerization, bundling of both F-actin and microtubules, and microtubule nucleation. As mutations leading to expression of C-terminally truncated GAS2 have been linked to hearing loss, these findings suggest that the disruption of GAS2-dependent cytoskeletal organisation could underlie auditory dysfunction.
Collapse
Affiliation(s)
- Jiancheng An
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Imasaki
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akihiro Narita
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Shinsuke Niwa
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Ryohei Sasaki
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsukasa Makino
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Zhang L, Zheng D, Xu L, Wang H, Zhang S, Shi J, Jin N. A novel variant in GAS2 is associated with autosomal dominant nonsyndromic hearing impairment in a Chinese family. Hum Genomics 2024; 18:73. [PMID: 38956677 PMCID: PMC11218307 DOI: 10.1186/s40246-024-00628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Knockout of GAS2 (growth arrest-specific protein 2), causes disorganization and destabilization of microtubule bundles in supporting cells of the cochlear duct, leading to hearing loss in vivo. However, the molecular mechanism through which GAS2 variant results in hearing loss remains unknown. By Whole-exome sequencing, we identified a novel heterozygous splicing variant in GAS2 (c.616-2 A > G) as the only candidate mutation segregating with late-onset and progressive nonsyndromic hearing loss (NSHL) in a large dominant family. This splicing mutation causes an intron retention and produces a C-terminal truncated protein (named GAS2mu). Mechanistically, the degradation of GAS2mu via the ubiquitin-proteasome pathway is enhanced, and cells expressing GAS2mu exhibit disorganized microtubule bundles. Additionally, GAS2mu further promotes apoptosis by increasing the Bcl-xS/Bcl-xL ratio instead of through the p53-dependent pathway as wild-type GAS2 does, indicating that GAS2mu acts as a toxic molecule to exacerbate apoptosis. Our findings demonstrate that this novel variant of GAS2 promotes its own protein degradation, microtubule disorganization and cellular apoptosis, leading to hearing loss in carriers. This study expands the spectrum of GAS2 variants and elucidates the underlying pathogenic mechanisms, providing a foundation for future investigations of new therapeutic strategies to prevent GAS2-associated progressive hearing loss.
Collapse
Affiliation(s)
- Luping Zhang
- Institute for Translational Neuroscience, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Nantong University, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, 226001, China
| | - Danya Zheng
- Institute for Translational Neuroscience, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Nantong University, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, 226001, China
| | - Lian Xu
- Institute for Translational Neuroscience, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Nantong University, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, 226001, China
| | - Han Wang
- Institute for Translational Neuroscience, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Nantong University, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, 226001, China
| | - Shuqiang Zhang
- Institute for Translational Neuroscience, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Nantong University, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, 226001, China
| | - Jianhua Shi
- Institute for Translational Neuroscience, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Nantong University, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, 226001, China
| | - Nana Jin
- Institute for Translational Neuroscience, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Nantong University, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
3
|
Transcriptome RNA Sequencing Reveals That Circular RNAs Are Abundantly Expressed in Embryonic Breast Muscle of Duck. Vet Sci 2023; 10:vetsci10020075. [PMID: 36851380 PMCID: PMC10004440 DOI: 10.3390/vetsci10020075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Circular RNAs are widespread in various species and have important roles in myogenesis. However, the circular RNAs involved in breast muscle development in ducks have not yet been studied. Here, to identify circular RNAs during duck skeletal muscle development, three pectorales from Shan Ma ducks at E13 and E19, which represent undifferentiated and differentiated myoblasts, respectively, were collected and subjected to RNA sequencing. A total of 16,622 circular RNAs were identified, of which approximately 80% were exonic circular RNAs and 260 were markedly differentially expressed between E19 and E13. The parental genes of the differentially expressed circular RNAs were significantly enriched in muscle-related biological processes. Moreover, we found that the overexpression of circGAS2-2 promoted cell cycle progression and increased the proliferation viability of duck primary myoblasts; conversely, knockdown of circGAS2-2 retarded the cell cycle and reduced the proliferation viability of myoblasts. Taken together, our results demonstrate that circular RNAs are widespread and variously expressed during the development of duck skeletal muscle and that circGAS2-2 is involved in the regulation of myogenesis.
Collapse
|
4
|
García-Hidalgo MC, Peláez R, González J, Santisteve S, Benítez ID, Molinero M, Perez-Pons M, Belmonte T, Torres G, Moncusí-Moix A, Gort-Paniello C, Aguilà M, Seck F, Carmona P, Caballero J, Barberà C, Ceccato A, Fernández-Barat L, Ferrer R, Garcia-Gasulla D, Lorente-Balanza JÁ, Menéndez R, Motos A, Peñuelas O, Riera J, Bermejo-Martin JF, Torres A, Barbé F, de Gonzalo-Calvo D, Larráyoz IM. Genome-wide transcriptional profiling of pulmonary functional sequelae in ARDS- secondary to SARS-CoV-2 infection. Biomed Pharmacother 2022; 154:113617. [PMID: 36058144 PMCID: PMC9424524 DOI: 10.1016/j.biopha.2022.113617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 08/27/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Up to 80% of patients surviving acute respiratory distress syndrome (ARDS) secondary to SARS-CoV-2 infection present persistent anomalies in pulmonary function after hospital discharge. There is a limited understanding of the mechanistic pathways linked to post-acute pulmonary sequelae. AIM To identify the molecular underpinnings associated with severe lung diffusion involvement in survivors of SARS-CoV-2-induced ARDS. METHODS Survivors attended to a complete pulmonary evaluation 3 months after hospital discharge. RNA sequencing (RNA-seq) was performed using Illumina technology in whole-blood samples from 50 patients with moderate to severe diffusion impairment (DLCO<60%) and age- and sex-matched individuals with mild-normal lung function (DLCO≥60%). A transcriptomic signature for optimal classification was constructed using random forest. Transcriptomic data were analyzed for biological pathway enrichment, cellular deconvolution, cell/tissue-specific gene expression and candidate drugs. RESULTS RNA-seq identified 1357 differentially expressed transcripts. A model composed of 14 mRNAs allowed the optimal discrimination of survivors with severe diffusion impairment (AUC=0.979). Hallmarks of lung sequelae involved cell death signaling, cytoskeleton reorganization, cell growth and differentiation and the immune response. Resting natural killer (NK) cells were the most important immune cell subtype for the prediction of severe diffusion impairment. Components of the signature correlated with neutrophil, lymphocyte and monocyte counts. A variable expression profile of the transcripts was observed in lung cell subtypes and bodily tissues. One upregulated gene, TUBB4A, constitutes a target for FDA-approved drugs. CONCLUSIONS This work defines the transcriptional programme associated with post-acute pulmonary sequelae and provides novel insights for targeted interventions and biomarker development.
Collapse
Affiliation(s)
- María C. García-Hidalgo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Rafael Peláez
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, Logroño, Spain
| | - Jessica González
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Sally Santisteve
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Iván D. Benítez
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Marta Molinero
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Manel Perez-Pons
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Thalía Belmonte
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Gerard Torres
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Anna Moncusí-Moix
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Clara Gort-Paniello
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Maria Aguilà
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Faty Seck
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Paola Carmona
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Jesús Caballero
- Grup de Recerca Medicina Intensiva, Intensive Care Department Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - Carme Barberà
- Intensive Care Department, University Hospital Santa María, IRBLleida, Lleida, Spain
| | - Adrián Ceccato
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Hospital Universitari Sagrat Cor, Barcelona, Spain
| | - Laia Fernández-Barat
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Servei de Pneumologia, Hospital Clinic; Universitat de Barcelona; IDIBAPS, Barcelona, Spain
| | - Ricard Ferrer
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Intensive Care Department, Vall d’Hebron Hospital Universitari. SODIR Research Group, Vall d’Hebron Institut de Recerca (VHIR), Spain
| | | | - Jose Ángel Lorente-Balanza
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Hospital Universitario de Getafe, Madrid, Spain
| | - Rosario Menéndez
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Pulmonology Service, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Ana Motos
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Servei de Pneumologia, Hospital Clinic; Universitat de Barcelona; IDIBAPS, Barcelona, Spain
| | - Oscar Peñuelas
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Hospital Universitario de Getafe, Madrid, Spain
| | - Jordi Riera
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Intensive Care Department, Vall d’Hebron Hospital Universitari. SODIR Research Group, Vall d’Hebron Institut de Recerca (VHIR), Spain
| | - Jesús F. Bermejo-Martin
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Hospital Universitario Río Hortega de Valladolid, Valladolid, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Antoni Torres
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Pneumology Department, Clinic Institute of Thorax (ICT), Hospital Clinic of Barcelona, Insitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), ICREA, University of Barcelona (UB), Barcelona, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Correspondence to: Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Avda. Alcalde Rovira Roure 80, Lleida 25198, Spain
| | - Ignacio M. Larráyoz
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, Logroño, Spain,GRUPAC, Department of Nursing, University of La Rioja, Logroño, Spain,Correspondence to: Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area, Center for Biomedical Research of La Rioja, CIBIR. C. Piqueras, 98, Logroño 26006, Spain
| |
Collapse
|
5
|
Ma W, Wan Y, Zhang J, Yao J, Wang Y, Lu J, Liu H, Huang X, Zhang X, Zhou H, He Y, Wu D, Wang J, Zhao Y. Growth arrest‐specific protein 2 (
GAS2
) interacts with
CXCR4
to promote T‐cell leukemogenesis partially via
c‐MYC. Mol Oncol 2022; 16:3720-3734. [PMID: 36054080 PMCID: PMC9580887 DOI: 10.1002/1878-0261.13306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Although growth arrest‐specific protein 2 (GAS2) promotes the growth of T‐cell acute lymphoblastic leukemia (T‐ALL) cells in culture, the effect of GAS2 on T‐cell leukemogenesis has not been studied, and the mechanism remains unclear. In the present study, xenograft studies showed that GAS2 silencing impaired T‐cell leukemogenesis and decreased leukemic cell infiltration. Mechanistically, GAS2 regulated the protein expression of C‐X‐C chemokine receptor type 4 (CXCR4) rather than its transcript expression. Immunoprecipitation revealed that GAS2 interacted with CXCR4, and confocal analysis showed that GAS2 was partially co‐expressed with CXCR4, which provided a strong molecular basis for GAS2 to regulate CXCR4 expression. Importantly, CXCR4 overexpression alleviated the inhibitory effect of GAS2 silencing on the growth and migration of T‐ALL cells. Moreover, GAS2 or CXCR4 silencing inhibited the expression of NOTCH1 and c‐MYC. Forced expression of c‐MYC rescued the growth suppression induced by GAS2 or CXCR4 silencing. Meanwhile, GAS2 deficiency, specifically in blood cells, had a mild effect on normal hematopoiesis, including T‐cell development, and GAS2 silencing did not affect the growth of normal human CD3+ or CD34+ cells. Overall, our data indicate that GAS2 promotes T‐cell leukemogenesis through its interaction with CXCR4 to activate NOTCH1/c‐MYC, whereas impaired GAS2 expression has a mild effect on normal hematopoiesis. Therefore, our study suggests that targeting the GAS2/CXCR4 axis is a potential therapeutic strategy for T‐ALL.
Collapse
Affiliation(s)
- Wenjuan Ma
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
| | - Yan Wan
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
| | - Jianxiang Zhang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
| | - Jianan Yao
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
| | - Yifei Wang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
| | - Jinchang Lu
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
| | - Hong Liu
- The First Affiliated Hospital of Soochow University Key Laboratory of Thrombosis and Hemostasis, Ministry of Health Suzhou 215006 China
- National Clinical Research Center for Hematologic Diseases Suzhou 215006 China
| | - Xiaorui Huang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
| | - Xiuyan Zhang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
| | - Haixia Zhou
- The First Affiliated Hospital of Soochow University Key Laboratory of Thrombosis and Hemostasis, Ministry of Health Suzhou 215006 China
- National Clinical Research Center for Hematologic Diseases Suzhou 215006 China
| | - Yulong He
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
- National Clinical Research Center for Hematologic Diseases Suzhou 215006 China
- Cam‐Su Genomic Resources Center Soochow University Suzhou 215123 China
- State Key Laboratory of Radiation Medicine and Radioprotection Soochow University Suzhou 215123 China
- MOE Engineering Center of Hematological Disease Soochow University Suzhou 215123 China
| | - Depei Wu
- The First Affiliated Hospital of Soochow University Key Laboratory of Thrombosis and Hemostasis, Ministry of Health Suzhou 215006 China
- National Clinical Research Center for Hematologic Diseases Suzhou 215006 China
- MOE Engineering Center of Hematological Disease Soochow University Suzhou 215123 China
| | - Jianrong Wang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
- National Clinical Research Center for Hematologic Diseases Suzhou 215006 China
- State Key Laboratory of Radiation Medicine and Radioprotection Soochow University Suzhou 215123 China
- MOE Engineering Center of Hematological Disease Soochow University Suzhou 215123 China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology Suzhou 215123 China
| | - Yun Zhao
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
- National Clinical Research Center for Hematologic Diseases Suzhou 215006 China
- MOE Engineering Center of Hematological Disease Soochow University Suzhou 215123 China
| |
Collapse
|
6
|
Li YY, Cai Q, Li BS, Qiao SW, Jiang JY, Wang D, Du XC, Meng WY. The Effect of Porphyromonas gingivalis Lipopolysaccharide on the Pyroptosis of Gingival Fibroblasts. Inflammation 2021; 44:846-858. [PMID: 33140204 DOI: 10.1007/s10753-020-01379-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022]
Abstract
Periodontitis is a chronic inflammatory disease induced by Porphyromonas gingivalis (P. gingivalis) and other pathogens. P. gingivalis release various virulence factors including lipopolysaccharide (LPS). However, whether P. gingivalis-LPS inducing pyroptosis in human gingival fibroblasts (HGFs) remains unknown. In present study, P. gingivalis-LPS decreased the membrane integrity of HGFs, and pyroptosis-associated cytokines were upregulated at the mRNA level. In addition, pyroptosis proteins were highly expressed in gingival tissues of periodontitis. P. gingivalis-LPS induced gingivitis in the rat model, and the expression level of pyroptosis-associated proteins increased. Together, P. gingivalis-LPS can activate the pyroptosis reaction, which may be a pro-pyroptosis status in a relative low concentration.
Collapse
Affiliation(s)
- Yu-Yang Li
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, Jilin, China
| | - Qing Cai
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Bao-Sheng Li
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Shu-Wei Qiao
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, Jilin, China
| | - Jia-Yang Jiang
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, Jilin, China
| | - Dan Wang
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, Jilin, China
| | - Xue-Chun Du
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, Jilin, China
| | - Wei-Yan Meng
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
7
|
Transcriptional analysis of cleft palate in TGFβ3 mutant mice. Sci Rep 2020; 10:14940. [PMID: 32913205 PMCID: PMC7483747 DOI: 10.1038/s41598-020-71636-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/17/2020] [Indexed: 12/30/2022] Open
Abstract
Cleft palate (CP) is one of the most common craniofacial birth defects, impacting about 1 in 800 births in the USA. Tgf-β3 plays a critical role in regulating murine palate development, and Tgf-β3 null mutants develop cleft palate with 100% penetrance. In this study, we compared global palatal transcriptomes of wild type (WT) and Tgf-β3 −/− homozygous (HM) mouse embryos at the crucial palatogenesis stages of E14.5, and E16.5, using RNA-seq data. We found 1,809 and 2,127 differentially expressed genes at E16.5 vs. E14.5 in the WT and HM groups, respectively (adjusted p < 0.05; |fold change|> 2.0). We focused on the genes that were uniquely up/downregulated in WT or HM at E16.5 vs. E14.5 to identify genes associated with CP. Systems biology analysis relating to cell behaviors and function of WT and HM specific genes identified functional non-Smad pathways and preference of apoptosis to epithelial-mesenchymal transition. We identified 24 HM specific and 11 WT specific genes that are CP-related and/or involved in Tgf-β3 signaling. We validated the expression of 29 of the 35 genes using qRT-PCR and the trend of mRNA expression is similar to that of RNA-seq data . Our results enrich our understanding of genes associated with CP that are directly or indirectly regulated via TGF-β.
Collapse
|
8
|
Yang C, Wu F, Lu X, Jiang M, Liu W, Yu L, Tian J, Wen H. Growth arrest specific gene 2 in tilapia (Oreochromis niloticus): molecular characterization and functional analysis under low-temperature stress. BMC Mol Biol 2017; 18:18. [PMID: 28716034 PMCID: PMC5514492 DOI: 10.1186/s12867-017-0095-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/23/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Growth arrest specific 2 (gas2) gene is a component of the microfilament system that plays a major role in the cell cycle, regulation of microfilaments, and cell morphology during apoptotic processes. However, little information is available on fish gas2. In this study, the tilapia (Oreochromis niloticus) gas2 gene was cloned and characterized for the first time. RESULTS The open reading frame was 1020 bp, encoding 340 amino acids; the 5'-untranslated region (UTR) was 140 bp and the 3'-UTR was 70 bp, with a poly (A) tail. The highest promoter activity occurred in the regulatory region (-3000 to -2400 bp). The Gas2-GFP fusion protein was distributed within the cytoplasm. Quantitative reverse transcription-polymerase chain reaction and western blot analyses revealed that gas2 gene expression levels in the liver, muscle, and brain were clearly affected by low temperature stress. The results of gas2 RNAi showed decreased expression of the gas2 and P53 genes. CONCLUSION These results suggest that the tilapia gas2 gene may be involved in low temperature stress-induced apoptosis.
Collapse
Affiliation(s)
- ChangGeng Yang
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Fan Wu
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Xing Lu
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Ming Jiang
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Wei Liu
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Lijuan Yu
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Juan Tian
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Hua Wen
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| |
Collapse
|
9
|
Liebisch M, Bondeva T, Franke S, Hause S, Wolf G. Growth arrest specific 2-like protein 1 expression is upregulated in podocytes through advanced glycation end-products. Nephrol Dial Transplant 2017; 32:641-653. [PMID: 27638909 DOI: 10.1093/ndt/gfw313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/11/2016] [Indexed: 12/21/2022] Open
Abstract
Background Growth arrest specific 2-like protein 1 (GAS2L1) protein is a member of the GAS2 family of proteins, known to regulate apoptosis and cellular cytoskeleton reorganization in different cells. Recently we identified that Gas2l1 gene expression in podocytes is influenced by advanced glycation end product-bovine serum albumin(AGE-BSA). Methods The study was performed employing cultured podocytes and diabetic ( db/db ) mice, a model of type 2 diabetes. Akbuminuria as wellas urinary neutrophil gelatinase-associated lipocalin (NGAL) excretion as measured with specific ELISAs. Gene expression was analysed via semiquantitative and real-time polymerase chain reaction. The protein levels were determined by western blotting and immunostaining. Results We found that the Gas2l1 α isoform is expressed in podocytes. Treatment with AGE-BSA induced Gas2l1 α and Gas2 mRNA levels compared with controls incubated with non-glycated control BSA (Co-BSA). Moreover, application of the recombinant soluble receptor of AGEs (sRAGE), a competitor of cellular RAGE, reversed the AGE-BSA effect. Interestingly, AGE-BSA also increased the protein levels of GAS2L1α in a RAGE-dependent manner, but did not affect the GAS2 expression. Periodic acid-Schiff staining and albuminuria as well as urinary NGAL excretion revealed that db/db mice progressively developed diabetic nephropathy with renal accumulation of N ε -carboxy-methyl-lysine (immunohistochemistry, western blots). Analyses of GAS2L1α and GAS2 proteins in diabetic mice revealed that both were significantly elevated relative to their non-diabetic littermates. In addition, GAS2L1α and GAS2 proteins positively correlated with the accumulation of AGEs in the blood plasma of diabetic mice and the administration of sRAGE in diabetic mice reduced the glomerular expression of both proteins. Conclusions We show for the first time that the protein expression of GAS2L1α in vitro and in vivo is regulated by the AGE-RAGE axis. The suppression of AGE ligation with their RAGE in diabetic mice with progressive nephropathy reversed the GAS2L1α expression, thus suggesting a role of GAS2L1α in the development of diabetic disease, which needs to be further elucidated.
Collapse
Affiliation(s)
- Marita Liebisch
- Department of Internal Medicine III, Jena University Hospital, Erlanger Allee, Jena, Germany
| | - Tzvetanka Bondeva
- Department of Internal Medicine III, Jena University Hospital, Erlanger Allee, Jena, Germany
| | - Sybille Franke
- Department of Internal Medicine III, Jena University Hospital, Erlanger Allee, Jena, Germany
| | - Stephan Hause
- Department of Internal Medicine III, Jena University Hospital, Erlanger Allee, Jena, Germany
| | - Gunter Wolf
- Department of Internal Medicine III, Jena University Hospital, Erlanger Allee, Jena, Germany
| |
Collapse
|
10
|
York JP, Ren YA, Zeng J, Bin Zhang, Wang F, Chen R, Liu J, Xia X, Zhang P. Growth Arrest Specific 2 (GAS2) is a Critical Mediator of Germ Cell Cyst Breakdown and Folliculogenesis in Mice. Sci Rep 2016; 6:34956. [PMID: 27734842 PMCID: PMC5062118 DOI: 10.1038/srep34956] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/21/2016] [Indexed: 01/25/2023] Open
Abstract
In the mouse ovary, the primordial follicle pool is established through a diverse array of signaling pathways and tissue remodeling events. Growth arrest specific gene two (GAS2) is a highly conserved cytoskeleton-associated protein whose in vivo function remains unclear. In Drosophila, loss of the GAS2 homolog, Pigs, results in infertility. We demonstrate herein that, in the mouse ovary, GAS2 is expressed in the stromal cells surrounding the oocyte cysts on 16.5 dpc, and in stromal cells surrounding growing follicles during juvenile and adult life. We have generated genetically engineered mice with inactivated Gas2. Gas2 homozygous mutant mice are viable but have severely impaired fertility in females, in which oocyte cyst breakdown is disrupted and follicle growth is impaired, with significantly reduced numbers of large antral follicles and corpora lutea. In these mutant mice, the organization of the basal lamina surrounding developing follicles is severely defective at multiple stages of folliculogenesis. We also found that Notch signaling activity was altered in ovaries from Gas2 null mice around the time of birth and during follicular development later in life. These results indicate that GAS2 is a critical and novel regulator of tissue remodeling in the ovary during oocyte cyst breakdown and folliculogenesis.
Collapse
Affiliation(s)
- J Philippe York
- Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yi Athena Ren
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jie Zeng
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Bin Zhang
- Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA
| | - Fang Wang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Rui Chen
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Jianqiao Liu
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Xuefeng Xia
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China.,Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA.,Biochemistry and Molecular Biology, Baylor College of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Pumin Zhang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Biochemistry and Molecular Biology, Baylor College of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
11
|
Tomasella A, Picco R, Ciotti S, Sgorbissa A, Bianchi E, Manfredini R, Benedetti F, Trimarco V, Frezzato F, Trentin L, Semenzato G, Delia D, Brancolini C. The isopeptidase inhibitor 2cPE triggers proteotoxic stress and ATM activation in chronic lymphocytic leukemia cells. Oncotarget 2016; 7:45429-45443. [PMID: 27259251 PMCID: PMC5216732 DOI: 10.18632/oncotarget.9742] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 05/22/2016] [Indexed: 11/25/2022] Open
Abstract
Relapse after treatment is a common and unresolved problem for patients suffering of the B-cell chronic lymphocytic leukemia (B-CLL). Here we investigated the ability of the isopeptidase inhibitor 2cPE to trigger apoptosis in leukemia cells in comparison with bortezomib, another inhibitor of the ubiquitin-proteasome system (UPS). Both inhibitors trigger apoptosis in CLL B cells and gene expression profiles studies denoted how a substantial part of genes up-regulated by these compounds are elements of adaptive responses, aimed to sustain cell survival. 2cPE treatment elicits the up-regulation of chaperones, proteasomal subunits and elements of the anti-oxidant response. Selective inhibition of these responses augments apoptosis in response to 2cPE treatment. We have also observed that the product of the ataxia telangiectasia mutated gene (ATM) is activated in 2cPE treated cells. Stimulation of ATM signaling is possibly dependent on the alteration of the redox homeostasis. Importantly ATM inhibition, mutations or down-modulation increase cell death in response to 2cPE. Overall this work suggests that 2cPE could offer new opportunities for the treatment of B-CLL.
Collapse
Affiliation(s)
- Andrea Tomasella
- Department of Medical and Biological Sciences, Università degli Studi di Udine, Udine, Italy
| | - Raffaella Picco
- Department of Medical and Biological Sciences, Università degli Studi di Udine, Udine, Italy
| | - Sonia Ciotti
- Department of Medical and Biological Sciences, Università degli Studi di Udine, Udine, Italy
| | - Andrea Sgorbissa
- Department of Medical and Biological Sciences, Università degli Studi di Udine, Udine, Italy
| | - Elisa Bianchi
- Centre for Regenerative Medicine “Stefano Ferrari”, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Rossella Manfredini
- Centre for Regenerative Medicine “Stefano Ferrari”, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Benedetti
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Trieste, Italy
| | - Valentina Trimarco
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Federica Frezzato
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Livio Trentin
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Domenico Delia
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudio Brancolini
- Department of Medical and Biological Sciences, Università degli Studi di Udine, Udine, Italy
- Centre for Regenerative Medicine “Stefano Ferrari”, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
12
|
Sun L, Zhou H, Liu H, Ge Y, Zhang X, Ma W, Wu D, Zhao Y. GAS2-Calpain2 axis contributes to the growth of leukemic cells. Acta Biochim Biophys Sin (Shanghai) 2015; 47:795-804. [PMID: 26358320 DOI: 10.1093/abbs/gmv080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/26/2015] [Indexed: 11/13/2022] Open
Abstract
Growth arrest specific 2 (GAS2) modulates cell cycle, apoptosis, and Calpain activity. GAS2-Calpain2 axis is required for the growth of BCR-ABL(+) hematopoietic cells and chronic myeloid leukemia cells. However, the expression of GAS2 in acute leukemia patients remains unclear and what role GAS2-Calpain2 axis plays in these leukemic cells is not known yet. In this study, GAS2 was found to have significantly higher expression in 16 various leukemic cell lines than in control cells. Using THP-1 cells (from acute myeloid leukemia patient, AML) and Jurkat cells (from acute lymphoid leukemia patient, ALL) as models, we found that GAS2 silence led to elevated Calpain activity, decreased cellular growth, and inhibition of colony-forming cell (CFC) production; and these effects could be rescued by GAS2 re-expression. Moreover, GAS2 silence prevented tumor formation of THP-1 cells in nude mice. In both THP-1 and Jurkat cells, GAS2 interacted with Calpain2 rather than Calpain1. The dominant negative form of GAS2 (GAS2DN, GAS2Δ171-313) had similar effects on leukemic cells through the activation of Calpain. Importantly, Calpain2 silence abolished the proliferation inhibition induced by GAS2 targeting. We also found that GAS2 was aberrantly expressed and Calpain activity was decreased in clinical isolates from acute leukemia patients. Taken together, our results demonstrated the deregulation of GAS2 in both AML and ALL and the requirement of GAS2-Calpain2 axis for the growth of leukemic cells, which will help to understand the molecular pathogenesis of hematological malignancies and possibly to develop novel approaches to treat these deadly diseases.
Collapse
Affiliation(s)
- Lili Sun
- Cyrus Tang Hematology Center, Soochow University, Suzhou 215123, China
| | - Haixia Zhou
- Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou 215006, China
| | - Hong Liu
- Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou 215006, China
| | - Yue Ge
- Cyrus Tang Hematology Center, Soochow University, Suzhou 215123, China
| | - Xiuyan Zhang
- Cyrus Tang Hematology Center, Soochow University, Suzhou 215123, China
| | - Wenjuan Ma
- Cyrus Tang Hematology Center, Soochow University, Suzhou 215123, China
| | - Depei Wu
- Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou 215006, China Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China
| | - Yun Zhao
- Cyrus Tang Hematology Center, Soochow University, Suzhou 215123, China Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China
| |
Collapse
|
13
|
Zhu R, Mok MTS, Kang W, Lau SSK, Yip WK, Chen Y, Lai PBS, Wong VWS, To KF, Sung JJY, Cheng ASL, Chan HLY. Truncated HBx-dependent silencing of GAS2 promotes hepatocarcinogenesis through deregulation of cell cycle, senescence and p53-mediated apoptosis. J Pathol 2015; 237:38-49. [PMID: 25925944 DOI: 10.1002/path.4554] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 04/15/2015] [Accepted: 04/22/2015] [Indexed: 12/27/2022]
Abstract
Hepatocellular carcinoma (HCC) is a worldwide threat to public health, especially in China, where chronic hepatitis B virus (HBV) infection is found in 80-90% of all HCCs. The HBV-encoded X antigen (HBx) is a trans-regulatory protein involved in virus-induced hepatocarcinogenesis. Although the carboxyl-terminus-truncated HBx, rather than the full-length counterpart, is frequently overexpressed in human HCCs, its functional mechanisms are not fully defined. We investigated the molecular function of a naturally occurring HBx variant which has 35 amino acids deleted at the C-terminus (HBxΔ35). Genome-wide scanning analysis and PCR validation identified growth arrest-specific 2 (GAS2) as a direct target of HBxΔ35 at transcriptional level in human immortalized liver cells. HBxΔ35 was found to bind the promoter region of GAS2 and attenuate its expression to promote hepatocellular proliferation and tumourigenicity. Further functional assays demonstrated that GAS2 induces p53-dependent apoptosis and senescence to counteract HBxΔ35-mediated tumourigenesis. Notably, GAS2 expression was significantly down-regulated in HCCs compared with the corresponding normal tissues. In conclusion, our integrated study uncovered a novel viral mechanism in hepatocarcinogenesis, wherein HBxΔ35 deregulates cell growth via direct silencing of GAS2 and thereby provides a survival advantage for pre-neoplastic hepatocytes to facilitate cancer development.
Collapse
Affiliation(s)
- Ranxu Zhu
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Department of Gastroenterology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Myth T S Mok
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Suki S K Lau
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Wing-Kit Yip
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Yangchao Chen
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Paul B S Lai
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Department of Surgery, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Vincent W S Wong
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ka-Fai To
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Joseph J Y Sung
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Alfred S L Cheng
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Henry L Y Chan
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
14
|
Stroud MJ, Nazgiewicz A, McKenzie EA, Wang Y, Kammerer RA, Ballestrem C. GAS2-like proteins mediate communication between microtubules and actin through interactions with end-binding proteins. J Cell Sci 2014; 127:2672-82. [PMID: 24706950 PMCID: PMC4058111 DOI: 10.1242/jcs.140558] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Crosstalk between the microtubule (MT) and actin cytoskeletons is fundamental to many cellular processes including cell polarisation and cell motility. Previous work has shown that members of the growth-arrest-specific 2 (GAS2) family mediate the crosstalk between filamentous actin (F-actin) and MTs, but the molecular basis of this process remained unclear. By using fluorescence microscopy, we demonstrate that three members of this family, GAS2-like 1, GAS2-like 2 and GAS2-like 3 (G2L1, G2L2 and G2L3, also known as GAS2L1, GAS2L2 and GAS2L3, respectively) are differentially involved in mediating the crosstalk between F-actin and MTs. Although all localise to actin and MTs, only the exogenous expression of G2L1 and G2L2 influenced MT stability, dynamics and guidance along actin stress fibres. Biochemical analysis and live-cell imaging revealed that their functions are largely due to the association of these proteins with MT plus-end-binding proteins that bind to SxIP or SxLP motifs located at G2L C-termini. Our findings lead to a model in which end-binding (EB) proteins play a key role in mediating actin–MT crosstalk.
Collapse
Affiliation(s)
- Matthew J Stroud
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Alicja Nazgiewicz
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Edward A McKenzie
- Manchester Institute of Biotechnology, Faculty of Life Sciences, 131 Princess Street, Manchester M1 7DN, UK
| | - Yisu Wang
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, OFLC 106, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Christoph Ballestrem
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
15
|
Zhou H, Ge Y, Sun L, Ma W, Wu J, Zhang X, Hu X, Eaves CJ, Wu D, Zhao Y. Growth arrest specific 2 is up-regulated in chronic myeloid leukemia cells and required for their growth. PLoS One 2014; 9:e86195. [PMID: 24465953 PMCID: PMC3897655 DOI: 10.1371/journal.pone.0086195] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 12/09/2013] [Indexed: 12/18/2022] Open
Abstract
Although the generation of BCR-ABL is the molecular hallmark of chronic myeloid leukemia (CML), the comprehensive molecular mechanisms of the disease remain unclear yet. Growth arrest specific 2 (GAS2) regulates multiple cellular functions including cell cycle, apoptosis and calpain activities. In the present study, we found GAS2 was up-regulated in CML cells including CD34+ progenitor cells compared to their normal counterparts. We utilized RNAi and the expression of dominant negative form of GAS2 (GAS2DN) to target GAS2, which resulted in calpain activity enhancement and growth inhibition of both K562 and MEG-01 cells. Targeting GAS2 also sensitized K562 cells to Imatinib mesylate (IM). GAS2DN suppressed the tumorigenic ability of MEG-01 cells and impaired the tumour growth as well. Moreover, the CD34+ cells from CML patients and healthy donors were transduced with control and GAS2DN lentiviral vectors, and the CD34+ transduced (YFP+) progeny cells (CD34+YFP+) were plated for colony-forming cell (CFC) assay. The results showed that GAS2DN inhibited the CFC production of CML cells by 57±3% (n = 3), while affected those of normal hematopoietic cells by 31±1% (n = 2). Next, we found the inhibition of CML cells by GAS2DN was dependent on calpain activity but not the degradation of beta-catenin. Lastly, we generated microarray data to identify the differentially expressed genes upon GAS2DN and validated that the expression of HNRPDL, PTK7 and UCHL5 was suppressed by GAS2DN. These 3 genes were up-regulated in CML cells compared to normal control cells and the growth of K562 cells was inhibited upon HNRPDL silence. Taken together, we have demonstrated that GAS2 is up-regulated in CML cells and the inhibition of GAS2 impairs the growth of CML cells, which indicates GAS2 is a novel regulator of CML cells and a potential therapeutic target of this disease.
Collapse
MESH Headings
- Animals
- Calpain/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Gene Knockdown Techniques
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mice, Nude
- Microfilament Proteins/metabolism
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Transcriptome/genetics
- Transduction, Genetic
- Tumor Stem Cell Assay
- Up-Regulation
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Haixia Zhou
- The First Affiliated Hospital, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, Jiangsu Province, P.R. China
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Yue Ge
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Lili Sun
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Wenjuan Ma
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Jie Wu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Xiuyan Zhang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Xiaohui Hu
- The First Affiliated Hospital, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Connie J. Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - Depei Wu
- The First Affiliated Hospital, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, Jiangsu Province, P.R. China
- * E-mail: (DW); (YZ)
| | - Yun Zhao
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu Province, P.R. China
- * E-mail: (DW); (YZ)
| |
Collapse
|
16
|
BH3 mimetics reduce adhesion and migration of hepatoblastoma and hepatocellular carcinoma cells. Exp Cell Res 2013; 319:1443-50. [DOI: 10.1016/j.yexcr.2013.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/24/2013] [Accepted: 01/26/2013] [Indexed: 12/30/2022]
|
17
|
Ren R, Oakley RH, Cruz-Topete D, Cidlowski JA. Dual role for glucocorticoids in cardiomyocyte hypertrophy and apoptosis. Endocrinology 2012; 153:5346-60. [PMID: 22989630 PMCID: PMC3473206 DOI: 10.1210/en.2012-1563] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glucocorticoids and their synthetic derivatives are known to alter cardiac function in vivo; however, the nature of these effects and whether glucocorticoids act directly on cardiomyocytes are poorly understood. To explore the role of glucocorticoid signaling in the heart, we used rat embryonic H9C2 cardiomyocytes and primary cardiomyocytes as model systems. Dexamethasone (100 nm) treatment of cardiomyocytes caused a significant increase in cell size and up-regulated the expression of cardiac hypertrophic markers, including atrial natriuretic factor, β-myosin heavy chain, and skeletal muscle α-actin. In contrast, serum deprivation and TNFα exposure triggered cardiomyocyte apoptosis, and these apoptotic effects were inhibited by dexamethasone. Both the hypertrophic and anti-apoptotic actions of glucocorticoids were abolished by the glucocorticoid receptor (GR) antagonist RU486 and by short hairpin RNA-mediated GR depletion. Blocking the activity of the mineralocorticoid receptor had no effect on these glucocorticoid-dependent cardiomyocyte responses. Aldosterone (1 μm) activation of GR also promoted cardiomyocyte hypertrophy and cell survival. To elucidate the mechanism of the dual glucocorticoid actions, a genome-wide microarray was performed on H9C2 cardiomyocytes treated with vehicle or dexamethasone in the absence or presence of serum. Serum dramatically influenced the transcriptome regulated by GR, revealing potential glucocorticoid signaling mediators in both cardiomyocyte hypertrophy and apoptosis. These studies reveal a direct and dynamic role for glucocorticoids and GR signaling in the modulation of cardiomyocyte function.
Collapse
Affiliation(s)
- Rongqin Ren
- Molecular Endocrinology Group, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
18
|
Tanasova M, Sturla SJ. Chemistry and biology of acylfulvenes: sesquiterpene-derived antitumor agents. Chem Rev 2012; 112:3578-610. [PMID: 22482429 DOI: 10.1021/cr2001367] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marina Tanasova
- ETH Zurich, Institute of Food, Nutrition and Health, Zurich, Switzerland
| | | |
Collapse
|
19
|
Kerschgens J, Renaud S, Schütz F, Grasso L, Egener-Kuhn T, Delaloye JF, Lehr HA, Vogel H, Mermod N. Protein-binding microarray analysis of tumor suppressor AP2α target gene specificity. PLoS One 2011; 6:e22895. [PMID: 21876733 PMCID: PMC3158074 DOI: 10.1371/journal.pone.0022895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 07/08/2011] [Indexed: 12/22/2022] Open
Abstract
Cheap and massively parallel methods to assess the DNA-binding specificity of transcription factors are actively sought, given their prominent regulatory role in cellular processes and diseases. Here we evaluated the use of protein-binding microarrays (PBM) to probe the association of the tumor suppressor AP2α with 6000 human genomic DNA regulatory sequences. We show that the PBM provides accurate relative binding affinities when compared to quantitative surface plasmon resonance assays. A PBM-based study of human healthy and breast tumor tissue extracts allowed the identification of previously unknown AP2α target genes and it revealed genes whose direct or indirect interactions with AP2α are affected in the diseased tissues. AP2α binding and regulation was confirmed experimentally in human carcinoma cells for novel target genes involved in tumor progression and resistance to chemotherapeutics, providing a molecular interpretation of AP2α role in cancer chemoresistance. Overall, we conclude that this approach provides quantitative and accurate assays of the specificity and activity of tumor suppressor and oncogenic proteins in clinical samples, interfacing genomic and proteomic assays.
Collapse
Affiliation(s)
- Jan Kerschgens
- Institute of Biotechnology, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Cellular extrusion is a mechanism that removes dying cells from epithelial tissues to prevent compromising their barrier function. Extrusion occurs in all observed epithelia in vivo and can be modeled in vitro by inducing apoptosis in cultured epithelial monolayers. We established that actin and myosin form a ring that contracts in the surrounding cells that drives cellular extrusion. It is not clear, however, if all apoptotic pathways lead to extrusion and how apoptosis and extrusion are molecularly linked. Here, we find that both intrinsic and extrinsic apoptotic pathways activate cellular extrusion. The contraction force that drives cellular extrusion requires caspase activity. Further, necrosis does not trigger the cellular extrusion response, but instead necrotic cells are removed from epithelia by a passive, stochastic movement of epithelial cells.
Collapse
Affiliation(s)
- Daniel Andrade
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, 84112, USA.
| | | |
Collapse
|
21
|
Sporer KRB, Tempelman RJ, Ernst CW, Reed KM, Velleman SG, Strasburg GM. Transcriptional profiling identifies differentially expressed genes in developing turkey skeletal muscle. BMC Genomics 2011; 12:143. [PMID: 21385442 PMCID: PMC3060885 DOI: 10.1186/1471-2164-12-143] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 03/08/2011] [Indexed: 11/12/2022] Open
Abstract
Background Skeletal muscle growth and development from embryo to adult consists of a series of carefully regulated changes in gene expression. Understanding these developmental changes in agriculturally important species is essential to the production of high quality meat products. For example, consumer demand for lean, inexpensive meat products has driven the turkey industry to unprecedented production through intensive genetic selection. However, achievements of increased body weight and muscle mass have been countered by an increased incidence of myopathies and meat quality defects. In a previous study, we developed and validated a turkey skeletal muscle-specific microarray as a tool for functional genomics studies. The goals of the current study were to utilize this microarray to elucidate functional pathways of genes responsible for key events in turkey skeletal muscle development and to compare differences in gene expression between two genetic lines of turkeys. To achieve these goals, skeletal muscle samples were collected at three critical stages in muscle development: 18d embryo (hyperplasia), 1d post-hatch (shift from myoblast-mediated growth to satellite cell-modulated growth by hypertrophy), and 16wk (market age) from two genetic lines: a randombred control line (RBC2) maintained without selection pressure, and a line (F) selected from the RBC2 line for increased 16wk body weight. Array hybridizations were performed in two experiments: Experiment 1 directly compared the developmental stages within genetic line, while Experiment 2 directly compared the two lines within each developmental stage. Results A total of 3474 genes were differentially expressed (false discovery rate; FDR < 0.001) by overall effect of development, while 16 genes were differentially expressed (FDR < 0.10) by overall effect of genetic line. Ingenuity Pathways Analysis was used to group annotated genes into networks, functions, and canonical pathways. The expression of 28 genes involved in extracellular matrix regulation, cell death/apoptosis, and calcium signaling/muscle function, as well as genes with miscellaneous function was confirmed by qPCR. Conclusions The current study identified gene pathways and uncovered novel genes important in turkey muscle growth and development. Future experiments will focus further on several of these candidate genes and the expression and mechanism of action of their protein products.
Collapse
Affiliation(s)
- Kelly R B Sporer
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | |
Collapse
|
22
|
Monitoring the Effect of Docetaxel Treatment in MCF7 Xenografts Using Multimodal In Vivo and Ex Vivo Magnetic Resonance Methods, Histopathology, and Gene Expression. Transl Oncol 2010; 3:252-63. [PMID: 20689767 DOI: 10.1593/tlo.09322] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 03/17/2010] [Accepted: 03/22/2010] [Indexed: 12/15/2022] Open
Abstract
The purpose of this study was to evaluate the sensitivity of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), diffusion-weighted (DW)-MRI, in vivo MR spectroscopy (MRS), and ex vivo high-resolution magic angle spinning (HR MAS) MRS for the detection of early treatment effects after docetaxel administration. Docetaxel is an antitumor agent that leads to mitotic arrest, apoptosis, and mitotic catastrophe cell death. Gene expression analysis was performed to detect altered regulation in gene expression pathways related to docetaxel treatment effects. Histopathology was used as a measure of alterations in apoptosis and proliferation due to docetaxel. Experiments were performed using MCF7 mouse xenografts, randomized into a docetaxel (30 mg/kg) treatment group and a control group given saline. MRI/MRS was performed 1 day before treatment and 1, 3, and 6 days after treatment. Parametric images of the extracellular extravascular volume fraction (v(e)) transfer constant (K(trans)) and the apparent diffusion coefficient (ADC) were calculated from the DCE-MRI and DW-MRI data. Biopsies were analyzed by HR MAS MRS, and histopathology and gene expression profiles were determined (Illumina). A significant increase in the ADC 3 and 6 days after treatment and a significant decrease in total choline and a higher v(e) were found in treated tumors 6 days after treatment. No significant difference was found in the K(trans) between the two groups. Our results show that docetaxel induces apoptosis and decreases proliferation in MCF7 xenografts. Further, these phenomena can be monitored by in vivo MRS, DW-MRI, and gene expression.
Collapse
|
23
|
Ogata T, Machida S, Oishi Y, Higuchi M, Muraoka I. Differential cell death regulation between adult-unloaded and aged rat soleus muscle. Mech Ageing Dev 2009; 130:328-36. [DOI: 10.1016/j.mad.2009.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 01/30/2009] [Accepted: 02/03/2009] [Indexed: 10/21/2022]
|
24
|
Li J, Niu XL, Madamanchi NR. Leukocyte antigen-related protein tyrosine phosphatase negatively regulates hydrogen peroxide-induced vascular smooth muscle cell apoptosis. J Biol Chem 2008; 283:34260-72. [PMID: 18854310 DOI: 10.1074/jbc.m806087200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reactive oxygen species (ROS) have been implicated in vascular smooth muscle cell (VSMC) apoptosis, a hallmark of advanced atherosclerotic lesions. Transient oxidation and inactivation of protein-tyrosine phosphatases play a critical role in cellular response to ROS production. However, the function of leukocyte antigen-related (LAR) protein-tyrosine phosphatase in ROS signaling is not known. To determine the expression of LAR in ROS-induced apoptosis, we investigated hydrogen peroxide-induced cell death and signaling in aortic VSMCs from wild-type and LAR(-/-) mice. Histone-associated DNA fragmentation and caspase-3/7 activity were significantly enhanced, mitochondrial membrane integrity was compromised, and cell viability was significantly decreased following H(2)O(2) treatment in LAR(-/-) VSMCs compared with wild-type cells. Stronger and sustained increase in autophosphorylation and activity of Fyn, an Src family tyrosine kinase, was observed in LAR(-/-) cells compared with wild-type cells following H(2)O(2) treatment. LAR binds to activated Fyn in H(2)O(2)-treated VSMCs, and recombinant LAR dephosphorylates phosphorylated-Fyn in vitro. In addition, LAR deficiency enhanced H(2)O(2)-induced phosphorylation of Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), and p38 mitogen-activated protein kinase (MAPK). PP2, a Fyn-specific inhibitor, blocked JAK2, STAT3, and p38 MAPK activation and significantly attenuated apoptosis induced by H(2)O(2). AG490, a JAK2-specific inhibitor, significantly attenuated H(2)O(2)-induced apoptosis, and blocked H(2)O(2)-induced activation of STAT3, but not p38 MAPK in both wild-type and LAR(-/-) VSMCs. Attenuation of Fyn expression by short hairpin RNA significantly decreased H(2)O(2)-induced downstream signaling and apoptosis in VSMCs. Together, these data indicate that LAR regulates Fyn/JAK2/STAT3 and Fyn/p38 MAPK pathways involved in ROS-induced apoptosis.
Collapse
Affiliation(s)
- Juxiang Li
- Department of Medicine, Carolina Cardiovascular Biology Center, University of North Carolina, Chapel Hill, North Carolina 27599-7126, USA
| | | | | |
Collapse
|
25
|
Lin WY, Hsu WY, Hish CH, Pan TM. Proteome changes in Caco-2 cells treated with Monascus-fermented red mold rice extract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:8987-8994. [PMID: 17927198 DOI: 10.1021/jf072197l] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Monascus-fermented red mold rice has been extensively used as a folk medicine for thousands of years. Monascus secondary metabolites, including monacolin K, monascorubrin, and ankaflavin, have been reported to have an antiproliferative effect on cancer cells. However, the cell machinery responsible for the antiproliferation of Monascus-fermented red mold rice treatment in cancer cells remains unclear. A proteomic approach using two-dimensional gel electrophoresis, matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry, and tandem mass spectrometry was used to identify proteins with modified expression in Caco-2 cells treated with Monascus-fermented red mold rice extract. A total of 20 proteins were identified with significantly altered expression (P < 0.05) in response to Monascus-fermented red mold rice extract treatment. The deregulated proteins that were identified included heat shock protein 70, protein kinase C epsilon type, clusterin-associated protein 1, and two tumor suppressors (N-chimaerin and calponin-2). Our results suggested the involvement of heat shock protein 70-mediated cytotoxicity in the Caco-2 cells treated with Monascus-fermented red mold rice extract.
Collapse
Affiliation(s)
- Wun-Yuan Lin
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taiwan, Republic of China
| | | | | | | |
Collapse
|
26
|
Wang P, Li JC. Trichosanthin-induced specific changes of cytoskeleton configuration were associated with the decreased expression level of actin and tubulin genes in apoptotic Hela cells. Life Sci 2007; 81:1130-40. [PMID: 17881009 DOI: 10.1016/j.lfs.2007.08.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/11/2007] [Accepted: 08/07/2007] [Indexed: 01/11/2023]
Abstract
Trichosanthin (TCS) possesses a broad spectrum of biological and pharmacological activities, including anti-cancer activities through apoptosis pathway. However, little is known about the effects of TCS on the cytoskeleton configuration and expression of actin and tubulin genes in Hela cell apoptosis. In the present study, apoptotic cytoskeleton structures were observed by confocal immunofluorescence microscopy, absolute amounts of actin and tubulin subunit mRNAs were determined by quantitative real-time PCR assays (QRT-PCR). Our results showed that the execution phase of cell apoptosis was a highly coordinated process of cellular reorganization, depolymerized microfilaments (MFs) accumulated in the coarsened cytoplasm and apoptotic bodies, followed by the formation of a ring microtubule (MT) structure beneath the plasma membrane. Importantly, apoptosis occurred by a suppression of actin and tubulin subunit gene expression. In particular, a rapid decrease in the amounts of gamma-actin mRNA preceded that of beta-actin; alpha- and beta-tubulin mRNAs were subsequently down-regulated in the later stage of Hela cell apoptosis. These results suggested that the execution of Hela cell apoptosis induced by TCS accompanied the specific changes of cytoskeleton configuration and, significantly, decreased the expression level of actin and tubulin subunit genes in different stages.
Collapse
Affiliation(s)
- Ping Wang
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China.
| | | |
Collapse
|
27
|
Andersson Y, Le H, Juell S, Fodstad Ø. AMP-activated protein kinase protects against anti-epidermal growth factor receptor-Pseudomonas exotoxin A immunotoxin-induced MA11 breast cancer cell death. Mol Cancer Ther 2006; 5:1050-9. [PMID: 16648577 DOI: 10.1158/1535-7163.mct-05-0318] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have shown previously that our 425.3PE immunotoxin inhibits protein synthesis and induces apoptosis in human breast cancer cells. In attempts to further elucidate the intracellular pathways implicated in its cellular effects, we found that the immunotoxin induced an initial stress response, which rapidly caused an imbalance in the cellular energy status with an increase in reactive oxygen species. The AMP-activated protein kinase (AMPK), a sensor of increased cellular AMP/ATP ratio, was activated by 425.3PE. An immunotoxin-induced activation of c-Jun NH2-terminal kinase (JNK) preceded and overlapped caspase-mediated cleavage of the alpha-subunit of AMPK in a time- and dose-dependent manner. The JNK activation occurred already at a dose level too low to induce any detectable changes in the apoptotic machinery or protein synthesis. In contrast, cycloheximide, even at a concentration causing a 90% inhibition of protein synthesis, did neither affect the ATP level nor activate JNK and AMPK. Pretreatment of the cells with the specific AMPK inhibitor compound C and JNK inhibitor SP600125 blocked activation of AMPK and JNK, respectively, and subsequently sensitized the cells to 425.3PE-induced cell death. Whereas the antioxidant N-acetyl-l-cysteine blocked the generation of reactive oxygen species and activation of JNK and AMPK, it did not block immunotoxin-induced apoptosis. Together, the results show that 425.3PE induces several parallel signaling events, observed initially as an early activation of survival pathways, protecting the cells against the toxic effects of the immunotoxin, followed by subsequent apoptosis induction and protein synthesis inhibition. Conceivably, therapeutic manipulation of the signaling intermediates AMPK and JNK might provide a means to maximize the anticancer effects of the 425.3 immunotoxin.
Collapse
Affiliation(s)
- Yvonne Andersson
- Department of Tumor Biology and Institute for Cancer Research, Norwegian Radium Hospital, 0310 Oslo, Norway.
| | | | | | | |
Collapse
|
28
|
West JD, Marnett LJ. Endogenous Reactive Intermediates as Modulators of Cell Signaling and Cell Death. Chem Res Toxicol 2006; 19:173-94. [PMID: 16485894 DOI: 10.1021/tx050321u] [Citation(s) in RCA: 217] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- James D West
- Department of Biochemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, 23rd Avenue at Pierce, Nashville, Tennessee 37212-0146, USA
| | | |
Collapse
|
29
|
Burkhardt BR, Greene SR, White P, Wong RK, Brestelli JE, Yang J, Robert CE, Brusko TM, Wasserfall CH, Wu J, Atkinson MA, Gao Z, Kaestner KH, Wolf BA. PANDER-induced cell-death genetic networks in islets reveal central role for caspase-3 and cyclin-dependent kinase inhibitor 1A (p21). Gene 2006; 369:134-41. [PMID: 16412588 DOI: 10.1016/j.gene.2005.10.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 10/28/2005] [Accepted: 10/29/2005] [Indexed: 11/18/2022]
Abstract
PANcreatic DERived factor is an islet-specific cytokine that promotes apoptosis in primary islets and islet cell lines. To elucidate the genetic mechanisms of PANDER-induced cell death we performed expression profiling using the mouse PancChip version 5.0 in conjunction with Ingenuity Pathway Analysis. Murine islets were treated with PANDER and differentially expressed genes were identified at 48 and 72 h post-treatment. 64 genes were differentially expressed in response to PANDER treatment. 22 genes are associated with cell death. In addition, the genes with the highest fold change were linked with cell death or apoptosis. The most significantly affected gene at 48 h was the downregulated cyclin-dependent kinase inhibitor 1A (CDKN1A or p21). Approximately half of the genes impacted at 72 h were linked to cell death. Cell death differentially expressed genes were confirmed by quantitative RT-PCR. Further analysis identified cell death genetic networks at both time points with 21 of the 22 cell death genes related in various biological pathways. Caspase-3 (CASP3) was biologically linked to CDKN1A in several genetic networks and these two genes were further examined. Elevated cleaved CASP3 levels in PANDER-treated beta-TC3 insulinoma cells were found to abrogate CDKN1A expression. Levels of CDKN1A were not affected in the absence of cleaved CASP3. PANDER-induced downregulation of CDKN1A expression coupled with induced CASP3-activation may serve a central role in islet cell death and offers further insight into the mechanisms of cytokine-induced beta-cell apoptosis.
Collapse
Affiliation(s)
- Brant R Burkhardt
- Department of Pathology and Laboratory Medicine, 803D Abramson Research Center 3516 Civic Center Blvd., Children's Hospital of Philadelphia, Philadelphia, PA 19104-4318, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Janssen JJWM, Klaver SM, Waisfisz Q, Pasterkamp G, de Kleijn DPV, Schuurhuis GJ, Ossenkoppele GJ. Identification of genes potentially involved in disease transformation of CML. Leukemia 2005; 19:998-1004. [PMID: 15815727 DOI: 10.1038/sj.leu.2403735] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In patients with chronic myeloid leukemia (CML) who do not reach a (near) complete cytogenetic response, the disease progresses over several years from an indolent, chronic phase into a rapidly fatal blast crisis. Events that are responsible for this transformation process are largely unknown. To identify changes in gene expression that occurred during the course of the disease, we performed cDNA subtraction on sequentially stored peripheral blood mononuclear cell pellets, collected throughout the course of disease of a single CML patient. In total, 32 differentially expressed sequences were identified, of which 27 corresponded to known genes. On quantitative PCR, eight of these genes, YWHAZ, GAS2, IL8, IL6, PBEF1, CCL4, SAT and MMRN, showed comparable differential expression in additional CML patient samples. This set of genes can be considered as a starting point for further research on causes of disease transformation in CML and may lead to new targets in the treatment of resistant CML.
Collapse
Affiliation(s)
- J J W M Janssen
- Department of Hematology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
31
|
Lee AY, Park BC, Jang M, Cho S, Lee DH, Lee SC, Myung PK, Park SG. Identification of caspase-3 degradome by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics 2005; 4:3429-36. [PMID: 15468300 DOI: 10.1002/pmic.200400979] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The activation of caspases is a critical event for the execution phase of programmed cell death. Caspases are highly specific in their ability to activate or inhibit many crucial proteins in the cell via site-specific cleavage. To date, more than 60 proteins have been shown to be substrates of one or more caspases in mammalian cells, and the list is still growing. In this study, to identify human caspase-3 substrates, we digested lysates obtained from a caspase-3-deficient MCF-7 cell line with purified caspase-3 and analyzed eliminated or decreased spots by 2-DE. Proteins degraded by caspase-3, termed as caspase-3 degradome, are involved in a variety of cellular functions, such as stress-responsive proteins, signaling molecules, structural proteins, and unclassified proteins. Interestingly, the cellular level of vinculin, a caspase-3 substrate, was dramatically reduced during the apoptotic process, where the expression level of caspase-3 was increased. This degradomic approach could provide a powerful tool in finding physiological substrates of many proteolytic enzymes whose functions remain to be determined.
Collapse
Affiliation(s)
- Ah Young Lee
- Systemic Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Yusung, Taejon, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Clements KM, Burton-Wurster N, Nuttall ME, Lust G. Caspase-3/7 inhibition alters cell morphology in mitomycin-c treated chondrocytes. J Cell Physiol 2005; 205:133-40. [PMID: 15828017 DOI: 10.1002/jcp.20373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Apoptosis may play a role in osteoarthritis (OA). Apoptosis can proceed via two different pathways depending on the stimulus. However, both pathways converge upon the effector caspases, caspases-3 and -7. In some systems inhibition of caspases-3 and -7 can prevent apoptosis and may therefore have important therapeutic implications. To confirm this, apoptosis was induced in canine chondrocytes with mitomycin-c (MMC), either in the presence or absence of the general caspase inhibitor, Z-VAD FMK, or a specific caspase-3/7 inhibitor. Z-VAD FMK prevented MMC induced cell death. In contrast, inhibition of caspases-3 and -7 in the presence of MMC induced morphological changes that could be described as necrotic-like or paraptotic-like but did not prevent cell death. The addition of an inhibitor of caspase-8 or caspase-9 along with inhibitor of caspase-3/7 was required to reduce cell death. The morphological changes did not occur in the presence of the caspase-3/7 inhibitor alone and could be prevented by addition of Z-VAD FMK. These data lead to the conclusion that, if the apoptotic program cannot be completed, the cells are pushed into a necrotic or other nonapoptotic mode of death which may involve caspase-8 and/or caspase-9.
Collapse
Affiliation(s)
- Kristen M Clements
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
33
|
Schutte B, Henfling M, Kölgen W, Bouman M, Meex S, Leers MPG, Nap M, Björklund V, Björklund P, Björklund B, Lane EB, Omary MB, Jörnvall H, Ramaekers FCS. Keratin 8/18 breakdown and reorganization during apoptosis. Exp Cell Res 2004; 297:11-26. [PMID: 15194421 DOI: 10.1016/j.yexcr.2004.02.019] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Revised: 02/19/2004] [Indexed: 01/05/2023]
Abstract
Monoclonal antibodies that specifically recognize caspase cleaved K18 fragments or specific (phospho)epitopes on intact K8 and K18 were used for a detailed investigation of the temporal and causal relationship of proteolysis and phosphorylation in the collapse of the keratin cytoskeleton during apoptosis. Caspases involved in the specific proteolysis of keratins were analyzed biochemically using recombinant caspases and specific caspase inhibitors. Finally, the fate of the keratin aggregates was analyzed using the M30-ApoptoSense trade mark Elisa kit to measure shedding of caspase cleaved fragments into the supernatant of apoptotic cell cultures. From our studies, we conclude that C-terminal K18 cleavage at the (393)DALD/S site is an early event during apoptosis for which caspase 9 is responsible, both directly and indirectly by activating downstream caspases 3 and 7. Cleavage of the L1-2 linker region of the central alpha-helical rod domain is responsible for the final collapse of the keratin scaffold into large aggregates. Phosphorylation facilitates formation of these aggregates, but is not crucial. K8 and K18 remain associated in heteropolymeric aggregates during apoptosis. At later stages of the apoptotic process, that is, when the integrity of the cytoplasmic membrane becomes compromised, keratin aggregates are shed from the cells.
Collapse
Affiliation(s)
- Bert Schutte
- Department of Molecular Cell Biology (Box 17), Research Institute Growth and Development (GROW), University of Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kaneko Y, Kitazato K, Basaki Y. Integrin-linked kinase regulates vascular morphogenesis induced by vascular endothelial growth factor. J Cell Sci 2003; 117:407-15. [PMID: 14679308 DOI: 10.1242/jcs.00871] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Integrin-linked kinase (ILK) is one of the signaling moieties that interact with the cytoplasmic domains of integrin beta1 and beta3 subunits. Integrin-mediated outside-in signals cooperate with vascular endothelial growth factor (VEGF) receptor to promote morphological changes, cell proliferation and motility in endothelial cells. In this report we demonstrate that VEGF-induced vessel morphogenesis of human umbilical vein endothelial cells (HUVEC) was inhibited by the transfection of a dominant negative, kinase-deficient ILK (ILK-KD), as well as by treatment with the phosphatidylinositol 3-kinase inhibitor LY294002. VEGF induced phosphorylation of protein kinase B (PKB/Akt), a regulator of cell survival and apoptosis, on serine 473, but not on threonine 308, in an ILK-dependent manner. Furthermore, transfection of antisense ILK (ILK-AS) blocked the survival effect of VEGF in annexin-V binding assays, and a VEGF-mediated decrease in caspase activity was reversed by both ILK-KD and ILK-AS as measured by a homogeneous caspase-3/7 assay. We also demonstrate that both chemotactic migration and cell proliferation of HUVEC induced by VEGF were suppressed by the inhibition of ILK. We conclude that ILK plays an important role in vascular morphogenesis mediated by VEGF.
Collapse
Affiliation(s)
- Yayoi Kaneko
- Cancer Research Laboratory, Taiho Pharmaceutical Co. Ltd, 1-27 Misugidai, Hanno, Saitama, 357-8527, Japan
| | | | | |
Collapse
|
35
|
Nezis IP, Modes V, Mpakou V, Stravopodis DJ, Papassideri IS, Mammali I, Margaritis LH. Modes of programmed cell death during Ceratitis capitata oogenesis. Tissue Cell 2003; 35:113-9. [PMID: 12747933 DOI: 10.1016/s0040-8166(03)00010-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study, we demonstrate the existence of two distinct apoptotic patterns in nurse cells during Ceratitis capitata oogenesis. One is developmentally regulated and normally occurs during stages 12 and 13, and the other is stage specific and is sporadically observed during stages 7 and 8. The pre-apoptotic manifestation of the first pattern begins at stage 11 and is characterized by the formation of actin bundles. Subsequently, at stages 12 and 13, the nurse cell nuclei exhibit condensed chromatin and contain fragmented DNA, as revealed by TUNEL assay. The apoptotic nurse cell remnants are phagocytosed by the neighboring follicle cells at the end of oogenesis during stages 13 and 14. In the second apoptotic pattern, which occurs sporadically during stages 7 and 8, the nurse cells degenerate and are phagocytosed by the follicular epithelium that contains apoptotic cell bodies. The data presented herein, compared to previous reported results in Drosophila melanogaster and Dacus oleae (Nezis et al., 2000, 2001), strongly suggest that nurse cell apoptosis is a developmentally regulated and phylogenetically conserved mechanism in higher Dipteran. They also suggest that, the sporadic apoptotic pattern consists of a possible protective mechanism throughout oogenesis when damaged or abnormal egg chambers, are eliminated before they reach maturity.
Collapse
Affiliation(s)
- Ioannis P Nezis
- Faculty of Biology, Department of Cell Biology and Biophysics, University of Athens, Panepistimiopolis 15784, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
36
|
Lossi L, Merighi A. In vivo cellular and molecular mechanisms of neuronal apoptosis in the mammalian CNS. Prog Neurobiol 2003; 69:287-312. [PMID: 12787572 DOI: 10.1016/s0301-0082(03)00051-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Apoptosis has been recognized to be an essential process during neural development. It is generally assumed that about half of the neurons produced during neurogenesis die before completion of the central nervous system (CNS) maturation, and this process affects nearly all classes of neurons. In this review, we discuss the experimental data in vivo on naturally occurring neuronal death in normal, transgenic and mutant animals, with special attention to the cerebellum as a study model. The emerging picture is that of a dual wave of apoptotic cell death affecting central neurons at different stages of their life. The first wave consists of an early neuronal death of proliferating precursors and young postmitotic neuroblasts, and appears to be closely linked to cell cycle regulation. The second wave affects postmitotic neurons at later stages, and is much better understood in functional terms, mainly on the basis of the neurotrophic concept in its broader definition. The molecular machinery of late apoptotic death of postmitotic neurons more commonly follows the mitochondrial pathway of intracellular signal transduction, but the death receptor pathway may also be involved.Undoubtedly, analysis of naturally occurring neuronal death (NOND) in vivo will offer a basis for parallel and future studies aiming to elucidate the mechanisms of pathologic neuronal loss occurring as the result of conditions such as neurodegenerative disorders, trauma or ischemia.
Collapse
Affiliation(s)
- L Lossi
- Department of Veterinary Morphophysiology, University of Torino, Via Leonardo da Vinci 44, I-10095 (TO), Grugliasco, Italy.
| | | |
Collapse
|
37
|
Goriounov D, Leung CL, Liem RKH. Protein products of human Gas2-related genes on chromosomes 17 and 22 (hGAR17 and hGAR22) associate with both microfilaments and microtubules. J Cell Sci 2003; 116:1045-58. [PMID: 12584248 DOI: 10.1242/jcs.00272] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The human Gas2-related gene on chromosome 22 (hGAR22) encodes two alternatively spliced mRNA species. The longer mRNA encodes a protein with a deduced molecular mass of 36.3 kDa (GAR22alpha), whereas the shorter mRNA encodes a larger protein with a deduced molecular mass of 72.6 kDa (GAR22beta). We show that both hGAR22 proteins contain a calponin homology actin-binding domain and a Gas2-related microtubule-binding domain. Using rapid amplification of cDNA ends, we have cloned the mouse orthologue of hGAR22, mGAR22, and found its protein products to be extremely well conserved. We also report the cDNA cloning of a human Gas2-related gene on chromosome 17 (hGAR17). hGAR17 also encodes two protein isoforms. The overall cytoskeletal binding properties of the hGAR17 and hGAR22 proteins are remarkably similar. hGAR17 mRNA expression is limited to skeletal muscle. Although hGAR22 and mGAR22 mRNAs are expressed nearly ubiquitously, mGAR22 protein can only be detected in testis and brain. Furthermore, only the beta isoform is present in these tissues. GAR22beta expression is induced in a variety of cultured cells by growth arrest. The absolute amounts of GAR22beta protein expressed are low. The beta isoforms of hGAR17 and hGAR22 appear to be able to crosslink microtubules and microfilaments in transfected cells. This finding suggests that the physiological functions of these proteins may involve integration of these two components of the cytoskeleton.
Collapse
Affiliation(s)
- Dmitri Goriounov
- Integrated Program in Cellular, Molecular, and Biophysical Studies, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
38
|
Abstract
Caspases are well known for their role in the execution of the apoptotic program by cleaving specific target proteins, leading to the dismantling of the cell, as well as for mediating cytokine maturation. Recent work has highlighted novel non-apoptotic activities of apoptotic caspases. These reports indicate that caspases are much more versatile enzymes than we originally expected. In addition to regulating cell survival and cytokine maturation, caspases may be involved in regulating cell differentiation, cell proliferation, spreading and receptor internalization.
Collapse
Affiliation(s)
- Alicia Algeciras-Schimnich
- The Ben May Institute for Cancer Research, University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
39
|
Shim KS, Lubec G. Drebrin, a dendritic spine protein, is manifold decreased in brains of patients with Alzheimer's disease and Down syndrome. Neurosci Lett 2002; 324:209-12. [PMID: 12009525 DOI: 10.1016/s0304-3940(02)00210-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Drebrin, located in the dendritic spines of the neuron, plays a role in the synaptic plasticity together with actin filaments. Although drebrin regulates the morphological changes of spines in neurodegenerative disease such as Alzheimer's disease (AD), drebrin in Down syndrome (DS) showing AD-like neuropathology has not been studied. We used Western blotting to determine protein levels of drebrin and F-actin in frontal, temporal cortex and cerebellum from patients with DS and AD as compared to controls. A monoclonal antibody against drebrin and F-actin was used. Drebrin levels were significantly decreased in frontal (means +/- standard deviation; DS 0.24 +/- 0.52; AD 0.16 +/- 0.14; controls 2.56 +/- 3.48) and temporal cortex (DS 0.07 +/- 0.11; AD 0.07 +/- 0.15; controls 1.71 +/- 1.51) and drebrin was also decreased when normalized with F-actin. No changes were observed in cerebellum. Decreased drebrin could not simply be due to cell loss (F-actin) or neuronal loss (comparable neuron-specific enolase between groups). Reduced drebrin could be responsible for or representing the loss of spine plasticity in DS and may be a useful indicator for the impaired arborization in neurodegenerative disorders.
Collapse
Affiliation(s)
- Ki Shuk Shim
- Department of Pediatrics, University of Vienna, Waehringer Guertel 18, A-1090 Vienna, Austria
| | | |
Collapse
|
40
|
Coleman ML, Olson MF. Rho GTPase signalling pathways in the morphological changes associated with apoptosis. Cell Death Differ 2002; 9:493-504. [PMID: 11973608 DOI: 10.1038/sj.cdd.4400987] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2001] [Revised: 10/26/2001] [Accepted: 11/05/2001] [Indexed: 01/06/2023] Open
Abstract
The killing and removal of superfluous cells is an important step during embryonic development, tissue homeostasis, wound repair and the resolution of inflammation. A specific sequence of biochemical events leads to a form of cell death termed apoptosis, and ultimately to the disassembly of the dead cell for phagocytosis. Dynamic rearrangements of the actin cytoskeleton are central to the morphological changes observed both in apoptosis and phagocytosis. Recent research has highlighted the importance of Rho GTPase signalling pathways to these changes in cellular architecture. In this review, we will discuss how these signal transduction pathways affect the structure of the actin cytoskeleton and allow for the efficient clearance of apoptotic cells.
Collapse
Affiliation(s)
- M L Coleman
- Cancer Research Campaign Centre for Cell and Molecular Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | |
Collapse
|
41
|
She BR, Liou GG, Lin-Chao S. Association of the growth-arrest-specific protein Gas7 with F-actin induces reorganization of microfilaments and promotes membrane outgrowth. Exp Cell Res 2002; 273:34-44. [PMID: 11795944 DOI: 10.1006/excr.2001.5435] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The growth-arrest-specific gene, Gas7, is required for neurite outgrowth in cerebellar neurons. Here we report that Gas7 can induce the formation of extended cellular processes in NIH3T3 cells by interacting with actin and mediating reorganization of microfilaments. The Gas 7 protein, which increased markedly during growth arrest of NIH3T3 cells and persisted transiently at high levels upon reentry of cells into the cell cycle, localized near the plasma membrane and selectively colocalized with microfilaments in membrane ruffles. Process extensions induced by ectopic overexpression of Gas7 were blocked by the actin-depolymerizing agent cytochalasin D, suggesting that membrane extensions produced by Gas7 require actin polymerization. Association of endogenous Gas7 protein with microfilaments was verified by F-actin affinity chromatography; direct binding of purified His-Gas7 to actin also was demonstrated and shown to be mediated by the Gas7 C-terminal domain. Similarly, localization of Gas7 in membrane ruffles was mediated by the C-terminal domain, although neither this region nor the N-terminal domain was individually sufficient to induce process formation. Biochemical studies and electron microscopy showed that both full-length Gas7 protein and its C-terminal region can promote actin assembly as well as the crosslinking of actin filaments. We propose that Gas7 localized near the plasma membrane induces the assembly of actin and the membrane outgrowth.
Collapse
Affiliation(s)
- Bin-Ru She
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | | | | |
Collapse
|
42
|
Lavastre V, Pelletier M, Saller R, Hostanska K, Girard D. Mechanisms involved in spontaneous and Viscum album agglutinin-I-induced human neutrophil apoptosis: Viscum album agglutinin-I accelerates the loss of antiapoptotic Mcl-1 expression and the degradation of cytoskeletal paxillin and vimentin proteins via caspases. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:1419-27. [PMID: 11801684 DOI: 10.4049/jimmunol.168.3.1419] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Viscum album agglutinin-I (VAA-I) is a plant lectin that possesses interesting potential therapeutic properties and immunomodulatory activities. We have recently found that VAA-I is a potent inducer of human neutrophil apoptosis, but the mechanism(s) involved require further elucidation. In this study, we found that VAA-I alters mitochondrial transmembrane potential and increases intracellular levels of reactive oxygen species (ROS). Despite these observations, treatment with the mitochondrial stabilizer, bongkrekic acid, or with catalase, known to degrade H(2)O(2), fails to reverse VAA-I-induced apoptosis. Moreover, VAA-I was found to induce apoptosis in PLB-985 cells deficient in gp91(phox), indicating that the lectin acts via an ROS-independent mechanism. Pretreatment of neutrophils with brefeldin A, an inhibitor of vesicular transport, was found to reverse VAA-I-induced apoptosis. Protein expression of Mcl-1 was decreased by VAA-I. The role of caspases in the degradation of cytoskeletal proteins during both spontaneous and VAA-I-induced neutrophil apoptosis was also investigated. Paxillin and vimentin were markedly degraded by VAA-I when compared with neutrophils that undergo spontaneous apoptosis, but not vinculin or alpha- and beta-tubulin. Caspases were involved in cytoskeletal protein degradation because preincubation with the pan-caspase inhibitor N-benzyloxycarbonyl-V-A-D-O-methylfluoromethyl ketone was found to reverse protein cleavage. We conclude that VAA-I needs to be internalized to mediate apoptosis and that its activity is not dependent on a cell surface receptor-mediated pathway. Also, we conclude that VAA-I induces apoptosis by ROS-independent and Mcl-1-dependent mechanisms and that caspases are involved in cytoskeletal protein degradation in both spontaneous and VAA-I-induced neutrophil apoptosis.
Collapse
Affiliation(s)
- Valérie Lavastre
- Institut National de la Recherche Scientifique-Institut Armand-Frappier/Santé Humaine, Universite du Quebec, 245 boulevard Hymus, Pointe-Claire, Quebec, Canada H9R 1G6
| | | | | | | | | |
Collapse
|
43
|
Liang Y, Nylander KD, Yan C, Schor NF. Role of caspase 3-dependent Bcl-2 cleavage in potentiation of apoptosis by Bcl-2. Mol Pharmacol 2002; 61:142-9. [PMID: 11752215 DOI: 10.1124/mol.61.1.142] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies from our laboratory have demonstrated that Bcl-2 has a proapoptotic effect on neocarzinostatin (NCS)-treated PC12 pheochromocytoma cells. In the present study, we examine the mechanisms of this effect and demonstrate its relevance for the in vivo situation. Four hours after NCS treatment, a 23-kDa cleavage product of Bcl-2 was detected in whole cell lysates of bcl-2-transfected PC12 cells. In contrast, bcl-2 transfection protected PC12 cells from cisplatin-induced apoptosis, and cisplatin treatment did not result in Bcl-2 cleavage. Similarly, Bcl-2 cleavage did not occur and Bcl-2-mediated protection from, rather than potentiation of apoptosis was observed after NCS treatment of MCF-7 breast cancer cells. The caspase 3-specific inhibitor Ac-DEVD-CHO prevented Bcl-2 cleavage and attenuated NCS-induced apoptosis in bcl-2-transfected PC12 cells, whereas it had no effect on NCS-induced apoptosis in mock-transfected PC12 cells. Furthermore, MCF-7 cells do not express caspase 3, a finding in concert with the lack of Bcl-2 cleavage in this line. In in vivo experiments, xenografts of bcl-2-transfected PC12 cells were more susceptible to NCS toxicity than were xenografts of mock-transfected PC12 cells. Caspase 3-mediated Bcl-2 cleavage therefore plays an important role in the potentiation by Bcl-2 of NCS-induced apoptosis.
Collapse
Affiliation(s)
- Ye Liang
- The Pediatric Center for Neuroscience, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
44
|
Herzig MCS, Liang H, Johnson AE, Woynarowska B, Woynarowski JM. Irofulven induces apoptosis in breast cancer cells regardless of caspase-3 status. Breast Cancer Res Treat 2002; 71:133-43. [PMID: 11883439 DOI: 10.1023/a:1013855615712] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Caspase-3 deficiency can limit the efficiency of pro-apoptotic anticancer treatments. Irofulven (hydroxymethylacyl-fulvene, HMAF. MGI 114, NSC 683863) is an antitumor drug, currently in a Phase III and multiple Phase II trials, which can differentiate between tumor and normal cells in apoptosis induction. This study investigated whether apoptosis induced by irofulven requires caspase-3. Irofulven action was compared in breast cancer cells differing in caspase-3 status: deficient MCF-7 cells and proficient MDA-MB-231 cells and in normal human mammary epithelial cells, HMEC. Irofulven induces significant, concentration and time-dependent apoptotic DNA fragmentation in breast cancer cell lines, regardless of caspase-3 status. After 12, 24 and 48 h incubation at 1 microM irofulven (approximately 3 x GI50), fragmented DNA comprised 3.7, 14.1 and 34.6% and 8.4, 12.6 and 20.3% of total DNA in MCF-7 and MDA-MB-231 cells, respectively. Cell viability (trypan blue exclusion) remained largely unaffected during the first 24 h but decreased markedly after 48 h, indicating secondary necrosis. Net losses in cell numbers were apparent at 48 h. Normal HMEC cells were refractory to 1 microM drug with only approximately 3-9% fragmented DNA after 12-48 h, although apoptosis was observed at drug levels >3 microM. The broad-spectrum caspase inhibitor Z-VAD-fmk inhibited irofulven-induced apoptosis of all cell lines at 20 microM with nearly complete abrogation of apoptosis at 100 microM. Irofulven treatment resulted in marginal caspase-3 processing in MDA-MB-231 and HMEC cells. These results indicate that whereas the caspase cascade mediates irofulven- induced apoptosis, caspase-3 is dispensable (supported by NIH CA70091 and CA78706).
Collapse
Affiliation(s)
- Maryanne C S Herzig
- Cancer Therapy and Research Center, The University of Texas, San Antonio, USA
| | | | | | | | | |
Collapse
|
45
|
Paroni G, Henderson C, Schneider C, Brancolini C. Caspase-2-induced apoptosis is dependent on caspase-9, but its processing during UV- or tumor necrosis factor-dependent cell death requires caspase-3. J Biol Chem 2001; 276:21907-15. [PMID: 11399776 DOI: 10.1074/jbc.m011565200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian caspases are a family of cysteine proteases that plays a critical role in apoptosis. We have analyzed caspase-2 processing in human cell lines containing defined mutations in caspase-3 and caspase-9. Here we demonstrate that caspase-2 processing, during cell death induced by UV irradiation, depends both on caspase-9 and caspase-3 activity, while, during TNF-alpha-dependent apoptosis, capase-2 processing is independent of caspase-9 but still requires caspase-3. In vitro procaspase-2 is the preferred caspase cleaved by caspase-3, while caspase-7 cleaves procaspase-2 with reduced efficiency. We have also demonstrated that caspase-2-mediated apoptosis requires caspase-9 and that cells co-expressing caspase-2 and a dominant negative form of caspase-9 are impaired in activating a normal apoptotic response and release cytochrome c into the cytoplasm. Our findings suggest a role played by caspase-2 as a regulator of the mitochondrial integrity and open questions on the mechanisms responsible for its activation during cell death.
Collapse
Affiliation(s)
- G Paroni
- Dipartimento di Scienze e Tecnologie Biomediche, Sezione di Biologia, Universita' di Udine, P. le Kolbe 4, Udine 33100, Italy
| | | | | | | |
Collapse
|
46
|
Li J, Peet GW, Balzarano D, Li X, Massa P, Barton RW, Marcu KB. Novel NEMO/IkappaB kinase and NF-kappa B target genes at the pre-B to immature B cell transition. J Biol Chem 2001; 276:18579-90. [PMID: 11279141 DOI: 10.1074/jbc.m100846200] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The IkappaB kinase (IKK) signaling complex is responsible for activating NF-kappaB-dependent gene expression programs. Even though NF-kappaB-responsive genes are known to orchestrate stress-like responses, critical gaps in our knowledge remain about the global effects of NF-kappaB activation on cellular physiology. DNA microarrays were used to compare gene expression programs in a model system of 70Z/3 murine pre-B cells versus their IKK signaling-defective 1.3E2 variant with lipopolysaccharide (LPS), interleukin-1 (IL-1), or a combination of LPS + phorbol 12-myristate 13-acetate under brief (2 h) or long term (12 h) stimulation. 70Z/3-1.3E2 cells lack expression of NEMO/IKKgamma/IKKAP-1/FIP-3, an essential positive effector of the IKK complex. Some stimulated hits were known NF-kappaB target genes, but remarkably, the vast majority of the up-modulated genes and an unexpected class of repressed genes were all novel targets of this signaling pathway, encoding transcription factors, receptors, extracellular ligands, and intracellular signaling factors. Thirteen stimulated (B-ATF, Pim-2, MyD118, Pea-15/MAT1, CD82, CD40L, Wnt10a, Notch 1, R-ras, Rgs-16, PAC-1, ISG15, and CD36) and five repressed (CCR2, VpreB, lambda5, SLPI, and CMAP/Cystatin7) genes, respectively, were bona fide NF-kappaB targets by virtue of their response to a transdominant IkappaBalphaSR (super repressor). MyD118 and ISG15, although directly induced by LPS stimulation, were unaffected by IL-1, revealing the existence of direct NF-kappaB target genes, which are not co-induced by the LPS and IL-1 Toll-like receptors.
Collapse
Affiliation(s)
- J Li
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut 06877-0368, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
White SR, Williams P, Wojcik KR, Sun S, Hiemstra PS, Rabe KF, Dorscheid DR. Initiation of apoptosis by actin cytoskeletal derangement in human airway epithelial cells. Am J Respir Cell Mol Biol 2001; 24:282-94. [PMID: 11245627 DOI: 10.1165/ajrcmb.24.3.3995] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Changes in epithelial cell shape can lead to cell death and detachment. Actin filaments are cleaved during apoptosis, but whether disruption in the actin cytoskeletal network, as one manifestation of cell shape change, can itself induce apoptosis is not known. We tested this hypothesis in the airway epithelial cell line 1HAEo(-) and in primary airway epithelial cells by preventing actin filament elongation with cytochalasin D or by aggregating actin filaments with jasplakinolide. Disruption of actin filament integrity promptly induced apoptosis in adherent epithelial cells within 5 h. Jasplakinolide-induced apoptosis did not disrupt focal adhesions, whereas cytochalasin D-induced apoptosis decreased focal adhesion protein expression and occurred despite ligation of the fibronectin receptor. Death induction was abrogated by the caspase inhibitors z-VAD-fmk and Ac-DEVD-cho but not by blocking the Fas (CD95) receptor. Whereas cytochalasin D--induced apoptosis was associated with cleavage of pro-caspase-8, jasplakinolide-induced apoptosis was not. Both agents induced formation of a death-inducing signaling complex. These data demonstrate that disruption of actin filament integrity with either cytochalasin D or jasplakinolide induces apoptosis in airway epithelial cells but by different mechanisms, and suggest that actin may be an early modulator of apoptotic commitment.
Collapse
Affiliation(s)
- S R White
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, Division of Biological Sciences, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Nezis IP, Stravopodis DJ, Papassideri I, Margaritis LH. Actin cytoskeleton reorganization of the apoptotic nurse cells during the late developmental stages of oogenesis in Dacus oleae. CELL MOTILITY AND THE CYTOSKELETON 2001; 48:224-33. [PMID: 11223953 DOI: 10.1002/1097-0169(200103)48:3<224::aid-cm1011>3.0.co;2-o] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the present study, we demonstrate the actin cytoskeleton reorganization during nurse cells apoptosis of the olive fruit fly Dacus oleae. At the developmental stage 9A of oogenesis, the actin microfilaments are assembled in numerous ring canals and subcortically support all the nurse cells, as is shown by phalloidin-FITC staining. During the following stages, 9B and 10A, this structural pattern remains the same. The developmental stage 10B is characterized by actin microfilament rearrangement and formation of actin cables that are symmetrically organized around the nurse cell nuclei. At stage 11, when the dumping process begins, these actin cables seem to retain each nurse cell nucleus in the cell center, away from blocking the ring canals. The early stage 12 is characterized by an asynchronous nurse cell nuclear chromatin condensation, while at late stage 12 the actin cables become very thick, as adjacent ones overlap one another and traverse the disorganized apoptotic nurse cell nuclei that already have fragmented DNA, as is demonstrated by acridine orange staining and TUNEL assay. Finally, during stage 13, the apoptotic nuclear remnants are phagocytosed by the neighboring follicle cells. The data presented herein compared to previous reported results in Drosophila [Nezis et al., 2000: Eur J Cell Biol 79:610-620], demonstrate that actin cytoskeleton reorganization during nurse cell apoptosis is a developmentally regulated physiological mechanism, phylogenetically conserved in higher Dipteran.
Collapse
Affiliation(s)
- I P Nezis
- Faculty of Biology, Department of Cell Biology and Biophysics, University of Athens, Athens, Greece
| | | | | | | |
Collapse
|
49
|
Abstract
The expedition into the apoptosis signaling pathway, although it has just begun, has resulted in the discovery of a significant number of remarkable signaling molecules at all levels of this novel pathway After the pinnacle of this frenetic cloning effort has been reached, however, it is important to put this pathway and its constituents into a biological and pathophysiological context. It has become clear that cell death does not automatically mean activation of caspases. The recent discovery of a function of effector caspases of the apoptosis pathway outside of apoptosis is currently revolutionizing our view of these seemingly unrelated and rather counteracting processes, cell death and cell proliferation. It appears that caspases play a much more fundamental role in cells than originally expected.
Collapse
Affiliation(s)
- A H Stegh
- The Ben May Institute for Cancer Research University of Chicago, Illinois 60637, USA
| | | |
Collapse
|
50
|
Abstract
Caspases are a family of mammalian proteases related to the ced-3 gene of Caenorhabditis elegans. They mediate many of the morphological and biochemical features of apoptosis, including structural dismantling of cell bodies and nuclei, fragmentation of genomic DNA, destruction of regulatory proteins, and propagation of other pro-apoptotic molecules. Based on their substrate specificities and DNA sequence homologies, the 14 currently identified caspases may be divided into three groups: apoptotic initiators, apoptotic executioners, and inflammatory mediators. Caspases are activated through two principal pathways, known as the "extrinsic pathway," which is initiated by cell surface death receptor ligation, and the intrinsic pathway, which arises from mitochondria. Endogenous inhibitors, such as the inhibitors of apoptosis (IAP) family, modulate caspase activity at various points within these pathways. Upon activation, caspases appear to play an important role in sequelae of traumatic brain injury, spinal cord injury, and cerebral ischemia. In addition, they may also play a role in mediating cell death in chronic neurodegenerative conditions such as Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. This article reviews the current literature on the role of caspases in acute and chronic CNS injury, and provides evidence for the potential therapeutic use of caspase inhibitors in the setting of these conditions.
Collapse
Affiliation(s)
- B A Eldadah
- Department of Neuroscience, Georgetown University School of Medicine, Washington, DC, USA
| | | |
Collapse
|