1
|
Qi T, Zhang J, Zhang K, Zhang W, Song Y, Lian K, Kan C, Han F, Hou N, Sun X. Unraveling the role of the FHL family in cardiac diseases: Mechanisms, implications, and future directions. Biochem Biophys Res Commun 2024; 694:149468. [PMID: 38183876 DOI: 10.1016/j.bbrc.2024.149468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Heart diseases are a major cause of morbidity and mortality worldwide. Understanding the molecular mechanisms underlying these diseases is essential for the development of effective diagnostic and therapeutic strategies. The FHL family consists of five members: FHL1, FHL2, FHL3, FHL4, and FHL5/Act. These members exhibit different expression patterns in various tissues including the heart. FHL family proteins are implicated in cardiac remodeling, regulation of metabolic enzymes, and cardiac biomechanical stress perception. A large number of studies have explored the link between FHL family proteins and cardiac disease, skeletal muscle disease, and ovarian metabolism, but a comprehensive and in-depth understanding of the specific molecular mechanisms targeting FHL on cardiac disease is lacking. The aim of this review is to explore the structure and function of FHL family members, to comprehensively elucidate the mechanisms by which they regulate the heart, and to explore in depth the changes in FHL family members observed in different cardiac disorders, as well as the effects of mutations in FHL proteins on heart health.
Collapse
Affiliation(s)
- Tongbing Qi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Wenqiang Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Yixin Song
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Kexin Lian
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| |
Collapse
|
2
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
3
|
Wette SG, Birch NP, Soop M, Zügel M, Murphy RM, Lamb GD, Smith HK. Expression of titin-linked putative mechanosensing proteins in skeletal muscle after power resistance exercise in resistance-trained men. J Appl Physiol (1985) 2020; 130:545-561. [PMID: 33356984 DOI: 10.1152/japplphysiol.00711.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Little is known about the molecular responses to power resistance exercise that lead to skeletal muscle remodeling and enhanced athletic performance. We assessed the expression of titin-linked putative mechanosensing proteins implicated in muscle remodeling: muscle ankyrin repeat proteins (Ankrd 1, Ankrd 2, and Ankrd 23), muscle-LIM proteins (MLPs), muscle RING-finger protein-1 (MuRF-1), and associated myogenic proteins (MyoD1, myogenin, and myostatin) in skeletal muscle in response to power resistance exercise with or without a postexercise meal, in fed, resistance-trained men. A muscle sample was obtained from the vastus lateralis of seven healthy men on separate days, 3 h after 90 min of rest (Rest) or power resistance exercise with (Ex + Meal) or without (Ex) a postexercise meal to quantify mRNA and protein levels. The levels of phosphorylated HSP27 (pHSP27-Ser15) and cytoskeletal proteins in muscle and creatine kinase activity in serum were also assessed. The exercise increased (P ≤ 0.05) pHSP27-Ser15 (∼6-fold) and creatine kinase (∼50%), whereas cytoskeletal protein levels were unchanged (P > 0.05). Ankrd 1 (∼15-fold) and MLP (∼2-fold) mRNA increased, whereas Ankrd 2, Ankrd 23, MuRF-1, MyoD1, and myostatin mRNA were unchanged. Ankrd 1 (∼3-fold, Ex) and MLPb (∼20-fold, Ex + Meal) protein increased, but MLPa, Ankrd 2, Ankrd 23, and the myogenic proteins were unchanged. The postexercise meal did not affect the responses observed. Power resistance exercise, as performed in practice, induced subtle early responses in the expression of MLP and Ankrd 1 yet had little effect on the other proteins investigated. These findings suggest possible roles for MLP and Ankrd 1 in the remodeling of skeletal muscle in individuals who regularly perform this type of exercise.NEW & NOTEWORTHY This is the first study to assess the early changes in the expression of titin-linked putative mechanosensing proteins and associated myogenic regulatory factors in skeletal muscle after power resistance exercise in fed, resistance-trained men. We report that power resistance exercise induces subtle early responses in the expression of Ankrd 1 and MLP, suggesting these proteins play a role in the remodeling of skeletal muscle in individuals who regularly perform this type of exercise.
Collapse
Affiliation(s)
- Stefan G Wette
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Nigel P Birch
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Mattias Soop
- Department of Surgery, Ersta Hospital, Karolinska Institutet at Danderyd Hospital, Stockholm, Sweden
| | - Martina Zügel
- Division of Sports and Rehabilitation Medicine, Department of Internal Medicine, University of Ulm, Ulm, Germany
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Graham D Lamb
- School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Heather K Smith
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Levin E, Leibinger M, Gobrecht P, Hilla A, Andreadaki A, Fischer D. Muscle LIM Protein Is Expressed in the Injured Adult CNS and Promotes Axon Regeneration. Cell Rep 2020; 26:1021-1032.e6. [PMID: 30673598 DOI: 10.1016/j.celrep.2018.12.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 09/05/2018] [Accepted: 12/05/2018] [Indexed: 01/01/2023] Open
Abstract
Muscle LIM protein (MLP) has long been regarded as a muscle-specific protein. Here, we report that MLP expression is induced in adult rat retinal ganglion cells (RGCs) upon axotomy, and its expression is correlated with their ability to regenerate injured axons. Specific knockdown of MLP in RGCs compromises axon regeneration, while overexpression in vivo facilitates optic nerve regeneration and regrowth of sensory neurons without affecting neuronal survival. MLP accumulates in the cell body, the nucleus, and in axonal growth cones, which are significantly enlarged by its overexpression. Only the MLP fraction in growth cones is relevant for promoting axon extension. Additional data suggest that MLP acts as an actin cross-linker, thereby facilitating filopodia formation and increasing growth cone motility. Thus, MLP-mediated effects on actin could become a therapeutic strategy for promoting nerve repair.
Collapse
Affiliation(s)
- Evgeny Levin
- Division of Experimental Neurology, Medical Faculty, Heinrich Heine University, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| | - Marco Leibinger
- Department of Cell Physiology, Ruhr University of Bochum, Universitätsstraße 150, 44780 Bochum, Germany; Division of Experimental Neurology, Medical Faculty, Heinrich Heine University, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| | - Philipp Gobrecht
- Department of Cell Physiology, Ruhr University of Bochum, Universitätsstraße 150, 44780 Bochum, Germany; Division of Experimental Neurology, Medical Faculty, Heinrich Heine University, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| | - Alexander Hilla
- Department of Cell Physiology, Ruhr University of Bochum, Universitätsstraße 150, 44780 Bochum, Germany; Division of Experimental Neurology, Medical Faculty, Heinrich Heine University, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| | - Anastasia Andreadaki
- Department of Cell Physiology, Ruhr University of Bochum, Universitätsstraße 150, 44780 Bochum, Germany; Division of Experimental Neurology, Medical Faculty, Heinrich Heine University, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| | - Dietmar Fischer
- Department of Cell Physiology, Ruhr University of Bochum, Universitätsstraße 150, 44780 Bochum, Germany; Division of Experimental Neurology, Medical Faculty, Heinrich Heine University, Merowingerplatz 1a, 40225 Düsseldorf, Germany.
| |
Collapse
|
5
|
Tang X, Pan L, Zhao S, Dai F, Chao M, Jiang H, Li X, Lin Z, Huang Z, Meng G, Wang C, Chen C, Liu J, Wang X, Ferro A, Wang H, Chen H, Gao Y, Lu Q, Xie L, Han Y, Ji Y. SNO-MLP (S-Nitrosylation of Muscle LIM Protein) Facilitates Myocardial Hypertrophy Through TLR3 (Toll-Like Receptor 3)-Mediated RIP3 (Receptor-Interacting Protein Kinase 3) and NLRP3 (NOD-Like Receptor Pyrin Domain Containing 3) Inflammasome Activation. Circulation 2020; 141:984-1000. [PMID: 31902237 DOI: 10.1161/circulationaha.119.042336] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND S-nitrosylation (SNO), a prototypic redox-based posttranslational modification, is involved in the pathogenesis of cardiovascular disease. The aim of this study was to determine the role of SNO of MLP (muscle LIM protein) in myocardial hypertrophy, as well as the mechanism by which SNO-MLP modulates hypertrophic growth in response to pressure overload. METHODS Myocardial samples from patients and animal models exhibiting myocardial hypertrophy were examined for SNO-MLP level using biotin-switch methods. SNO sites were further identified through liquid chromatography-tandem mass spectrometry. Denitrosylation of MLP by the mutation of nitrosylation sites or overexpression of S-nitrosoglutathione reductase was used to analyze the contribution of SNO-MLP in myocardial hypertrophy. Downstream effectors of SNO-MLP were screened through mass spectrometry and confirmed by coimmunoprecipitation. Recruitment of TLR3 (Toll-like receptor 3) by SNO-MLP in myocardial hypertrophy was examined in TLR3 small interfering RNA-transfected neonatal rat cardiomyocytes and in a TLR3 knockout mouse model. RESULTS SNO-MLP level was significantly higher in hypertrophic myocardium from patients and in spontaneously hypertensive rats and mice subjected to transverse aortic constriction. The level of SNO-MLP also increased in angiotensin II- or phenylephrine-treated neonatal rat cardiomyocytes. S-nitrosylated site of MLP at cysteine 79 was identified by liquid chromatography-tandem mass spectrometry and confirmed in neonatal rat cardiomyocytes. Mutation of cysteine 79 significantly reduced hypertrophic growth in angiotensin II- or phenylephrine-treated neonatal rat cardiomyocytes and transverse aortic constriction mice. Reducing SNO-MLP level by overexpression of S-nitrosoglutathione reductase greatly attenuated myocardial hypertrophy. Mechanistically, SNO-MLP stimulated TLR3 binding to MLP in response to hypertrophic stimuli, and disrupted this interaction by downregulating TLR3-attenuated myocardial hypertrophy. SNO-MLP also increased the complex formation between TLR3 and RIP3 (receptor-interacting protein kinase 3). This interaction in turn induced NLRP3 (nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3) inflammasome activation, thereby promoting the development of myocardial hypertrophy. CONCLUSIONS Our findings revealed a key role of SNO-MLP in myocardial hypertrophy and demonstrated TLR3-mediated RIP3 and NLRP3 inflammasome activation as the downstream signaling pathway, which may represent a therapeutic target for myocardial hypertrophy and heart failure.
Collapse
Affiliation(s)
- Xin Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Lihong Pan
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Shuang Zhao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Feiyue Dai
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Menglin Chao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Hong Jiang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Xuesong Li
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Zhe Lin
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Zhengrong Huang
- Department of Cardiology, the First Affiliated Hospital of Xiamen University, China (Z.H.)
| | - Guoliang Meng
- Nanjing Medical University, Nanjing, China (G.M.).,Department of Pharmacology, School of Pharmacy, Nantong University, China (G.M.)
| | - Chun Wang
- Department of Geriatrics, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, China (C.W.)
| | - Chan Chen
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China (C.C., J.L.)
| | - Jin Liu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China (C.C., J.L.)
| | - Xin Wang
- Faculty of Biology, Medicine and Health, the University of Manchester, United Kingdom (X.W.)
| | - Albert Ferro
- Cardiovascular Clinical Pharmacology, British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King's College London, United Kingdom (A.F.)
| | - Hong Wang
- Department of Pharmacology, Lewis Kats School of Medicine, Temple University, Philadelphia, PA (H.W.)
| | - Hongshan Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Yuanqing Gao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Qiulun Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Liping Xie
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Yi Han
- Department of Geriatrics, First Affiliated Hospital of Nanjing Medical University, China (Y.H.)
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.).,State Key Laboratory of Reproductive Medicine (Y.J.)
| |
Collapse
|
6
|
Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1462. [PMID: 31407867 PMCID: PMC6916202 DOI: 10.1002/wsbm.1462] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
Decades of research in skeletal muscle physiology have provided multiscale insights into the structural and functional complexity of this important anatomical tissue, designed to accomplish the task of generating contraction, force and movement. Skeletal muscle can be viewed as a biomechanical device with various interacting components including the autonomic nerves for impulse transmission, vasculature for efficient oxygenation, and embedded regulatory and metabolic machinery for maintaining cellular homeostasis. The "omics" revolution has propelled a new era in muscle research, allowing us to discern minute details of molecular cross-talk required for effective coordination between the myriad interacting components for efficient muscle function. The objective of this review is to provide a systems-level, comprehensive mapping the molecular mechanisms underlying skeletal muscle structure and function, in health and disease. We begin this review with a focus on molecular mechanisms underlying muscle tissue development (myogenesis), with an emphasis on satellite cells and muscle regeneration. We next review the molecular structure and mechanisms underlying the many structural components of the muscle: neuromuscular junction, sarcomere, cytoskeleton, extracellular matrix, and vasculature surrounding muscle. We highlight aberrant molecular mechanisms and their possible clinical or pathophysiological relevance. We particularly emphasize the impact of environmental stressors (inflammation and oxidative stress) in contributing to muscle pathophysiology including atrophy, hypertrophy, and fibrosis. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Developmental Biology > Developmental Processes in Health and Disease Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Kavitha Mukund
- Department of BioengineeringUniversity of CaliforniaSan DiegoCalifornia
| | - Shankar Subramaniam
- Department of Bioengineering, Bioinformatics & Systems BiologyUniversity of CaliforniaSan DiegoCalifornia
- Department of Computer Science and EngineeringUniversity of CaliforniaSan DiegoCalifornia
- Department of Cellular and Molecular Medicine and NanoengineeringUniversity of CaliforniaSan DiegoCalifornia
| |
Collapse
|
7
|
Sit B, Gutmann D, Iskratsch T. Costameres, dense plaques and podosomes: the cell matrix adhesions in cardiovascular mechanosensing. J Muscle Res Cell Motil 2019; 40:197-209. [PMID: 31214894 PMCID: PMC6726830 DOI: 10.1007/s10974-019-09529-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/15/2019] [Indexed: 12/12/2022]
Abstract
The stiffness of the cardiovascular environment changes during ageing and in disease and contributes to disease incidence and progression. For instance, increased arterial stiffness can lead to atherosclerosis, while stiffening of the heart due to fibrosis can increase the chances of heart failure. Cells can sense the stiffness of the extracellular matrix through integrin adhesions and other mechanosensitive structures and in response to this initiate mechanosignalling pathways that ultimately change the cellular behaviour. Over the past decades, interest in mechanobiology has steadily increased and with this also our understanding of the molecular basis of mechanosensing and transduction. However, much of our knowledge about the mechanisms is derived from studies investigating focal adhesions in non-muscle cells, which are distinct in several regards from the cell-matrix adhesions in cardiomyocytes (costameres) or vascular smooth muscle cells (dense plaques or podosomes). Therefore, we will look here first at the evidence for mechanical sensing in the cardiovascular system, before comparing the different cytoskeletal arrangements and adhesion sites in cardiomyocytes and vascular smooth muscle cells and what is known about mechanical sensing through the various structures.
Collapse
Affiliation(s)
- Brian Sit
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, London, UK
| | - Daniel Gutmann
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, London, UK
| | - Thomas Iskratsch
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, London, UK.
| |
Collapse
|
8
|
Janin A, Bessière F, Chauveau S, Chevalier P, Millat G. First identification of homozygous truncating CSRP3 variants in two unrelated cases with hypertrophic cardiomyopathy. Gene 2018; 676:110-116. [DOI: 10.1016/j.gene.2018.07.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 01/18/2023]
|
9
|
Li J, Gresham KS, Mamidi R, Doh CY, Wan X, Deschenes I, Stelzer JE. Sarcomere-based genetic enhancement of systolic cardiac function in a murine model of dilated cardiomyopathy. Int J Cardiol 2018; 273:168-176. [PMID: 30279005 DOI: 10.1016/j.ijcard.2018.09.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/27/2018] [Accepted: 09/20/2018] [Indexed: 01/28/2023]
Abstract
Diminished cardiac contractile function is a characteristic feature of dilated cardiomyopathy (DCM) and many other heart failure (HF) causing etiologies. We tested the hypothesis that targeting the sarcomere to increase cardiac contractility can effectively prevent the DCM phenotype in muscle-LIM protein knockout (MLP-/-) mice. The ablation of cardiac myosin binding protein C (MYBPC3-/-) protected the MLP-/- mice from developing the DCM phenotype. We examined the in vivo cardiac function and morphology of the resultant mouse model lacking both MLP and MYBPC3 (DKO) by echocardiography and pressure-volume catheterization and found a significant reduction in hypertrophy, as evidenced by normalized wall thickness and chamber dimensions, and improved systolic function, as evidenced by enhanced ejection fraction (~26% increase compared MLP-/- mice) and rate of pressure development (DKO 7851.0 ± 504.8 vs. MLP-/- 4496.4 ± 196.8 mmHg/s). To investigate the molecular basis for the improved DKO phenotype we performed mechanical experiments in skinned myocardium isolated from WT and the individual KO mice. Skinned myocardium isolated from DKO mice displayed increased Ca2+ sensitivity of force generation, and significantly accelerated rate of cross-bridge detachment (+63% compared to MLP-/-) and rate of XB recruitment (+58% compared to MLP-/-) at submaximal Ca2+ activations. The in vivo and in vitro functional enhancement of DKO mice demonstrates that enhancing the sarcomeric contractility can be cardioprotective in HF characterized by reduced cardiac output, such as in cases of DCM.
Collapse
Affiliation(s)
- Jiayang Li
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Kenneth S Gresham
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
| | - Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Chang Yoon Doh
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Xiaoping Wan
- The Heart and Vascular Research Center, Metro Health, Cleveland, OH, United States of America
| | - Isabelle Deschenes
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America; The Heart and Vascular Research Center, Metro Health, Cleveland, OH, United States of America
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America.
| |
Collapse
|
10
|
Hund TJ, Unudurthi SD, Greer-Short A, Patel N, Nassal D. Spectrin-based pathways underlying electrical and mechanical dysfunction in cardiac disease. Expert Rev Cardiovasc Ther 2018; 16:59-65. [PMID: 29257730 PMCID: PMC6064643 DOI: 10.1080/14779072.2018.1418664] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION In the heart, pathways that transduce extracellular environmental cues (e.g. mechanical force, inflammatory stress) into electrical and/or chemical signals at the cellular level are critical for the organ-level response to chronic biomechanical/neurohumoral stress. Specifically, a diverse array of membrane-bound receptors and stretch-activated proteins converge on a network of intracellular signaling cascades that control gene expression, protein translation, degradation and/or regulation. These cellular reprogramming events ultimately lead to changes in cell excitability, growth, proliferation, and/or survival. Areas covered: The actin/spectrin cytoskeleton has emerged as having important roles in not only providing structural support for organelle function but also in serving as a signaling 'superhighway,' linking signaling events at/near the membrane to distal cellular domains (e.g. nucleus, mitochondria). Furthermore, recent work suggests that the integrity of the actin/spectrin cytoskeleton is critical for canonical signaling of pathways involved in cellular response to stress. This review discusses these emerging roles for spectrin and consider implications for heart function and disease. Expert commentary: Despite growth in our understanding of the broader roles for spectrins in cardiac myocytes and other metazoan cells, there remain important unanswered questions, the answers to which may point the way to new therapies for human cardiac disease patients.
Collapse
Affiliation(s)
- Thomas J. Hund
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus OH 43210
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
| | - Sathya D. Unudurthi
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus OH 43210
| | - Amara Greer-Short
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus OH 43210
| | - Nehal Patel
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus OH 43210
| | - Drew Nassal
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus OH 43210
| |
Collapse
|
11
|
Muscle Lim Protein and myosin binding protein C form a complex regulating muscle differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2308-2321. [DOI: 10.1016/j.bbamcr.2017.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 08/09/2017] [Accepted: 08/30/2017] [Indexed: 01/10/2023]
|
12
|
Ehsan M, Jiang H, L Thomson K, Gehmlich K. When signalling goes wrong: pathogenic variants in structural and signalling proteins causing cardiomyopathies. J Muscle Res Cell Motil 2017; 38:303-316. [PMID: 29119312 PMCID: PMC5742121 DOI: 10.1007/s10974-017-9487-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/28/2017] [Indexed: 12/20/2022]
Abstract
Cardiomyopathies are a diverse group of cardiac disorders with distinct phenotypes, depending on the proteins and pathways affected. A substantial proportion of cardiomyopathies are inherited and those will be the focus of this review article. With the wide application of high-throughput sequencing in the practice of clinical genetics, the roles of novel genes in cardiomyopathies are recognised. Here, we focus on a subgroup of cardiomyopathy genes [TTN, FHL1, CSRP3, FLNC and PLN, coding for Titin, Four and a Half LIM domain 1, Muscle LIM Protein, Filamin C and Phospholamban, respectively], which, despite their diverse biological functions, all have important signalling functions in the heart, suggesting that disturbances in signalling networks can contribute to cardiomyopathies.
Collapse
Affiliation(s)
- Mehroz Ehsan
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - He Jiang
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Kate L Thomson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Guo H, Isserlin R, Emili A, Burniston JG. Exercise-responsive phosphoproteins in the heart. J Mol Cell Cardiol 2017; 111:61-68. [DOI: 10.1016/j.yjmcc.2017.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/14/2017] [Accepted: 08/01/2017] [Indexed: 01/14/2023]
|
14
|
Abstract
Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. © 2017 American Physiological Society. Compr Physiol 7:891-944, 2017.
Collapse
Affiliation(s)
- Christine A Henderson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Christopher G Gomez
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Stefanie M Novak
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Lei Mi-Mi
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
15
|
Lange S, Gehmlich K, Lun AS, Blondelle J, Hooper C, Dalton ND, Alvarez EA, Zhang X, Bang ML, Abassi YA, Dos Remedios CG, Peterson KL, Chen J, Ehler E. MLP and CARP are linked to chronic PKCα signalling in dilated cardiomyopathy. Nat Commun 2016; 7:12120. [PMID: 27353086 PMCID: PMC4931343 DOI: 10.1038/ncomms12120] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 05/31/2016] [Indexed: 11/28/2022] Open
Abstract
MLP (muscle LIM protein)-deficient mice count among the first mouse models for dilated cardiomyopathy (DCM), yet the exact role of MLP in cardiac signalling processes is still enigmatic. Elevated PKCα signalling activity is known to be an important contributor to heart failure. Here we show that MLP directly inhibits the activity of PKCα. In end-stage DCM, PKCα is concentrated at the intercalated disc of cardiomyocytes, where it is sequestered by the adaptor protein CARP in a multiprotein complex together with PLCβ1. In mice deficient for both MLP and CARP the chronic PKCα signalling chain at the intercalated disc is broken and they remain healthy. Our results suggest that the main role of MLP in heart lies in the direct inhibition of PKCα and that chronic uninhibited PKCα activity at the intercalated disc in the absence of functional MLP leads to heart failure. Altered function of the muscle LIM protein (MLP) causes dilated cardiomyopathy in mice and humans. Lange et al. explain the molecular role of MLP in the heart by showing that it affects the signalling complex at the intercalated discs of failing hearts that consists of PKCα, PLCβ1 and CARP by inhibiting PKCα auto-phosphorylation and function.
Collapse
Affiliation(s)
- Stephan Lange
- School of Medicine, University of California, San Diego, La Jolla CA-92093, USA
| | - Katja Gehmlich
- BHF Centre of Research Excellence Oxford, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Alexander S Lun
- School of Medicine, University of California, San Diego, La Jolla CA-92093, USA
| | - Jordan Blondelle
- School of Medicine, University of California, San Diego, La Jolla CA-92093, USA
| | - Charlotte Hooper
- BHF Centre of Research Excellence Oxford, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Nancy D Dalton
- School of Medicine, University of California, San Diego, La Jolla CA-92093, USA
| | - Erika A Alvarez
- School of Medicine, University of California, San Diego, La Jolla CA-92093, USA
| | - Xiaoyu Zhang
- ACEA Biosciences, 6779 Mesa Ridge Rd #100, San Diego, CA-92121, USA
| | - Marie-Louise Bang
- Institute of Genetic and Biomedical Research, UOS Milan, National Research Council, Rozzano (Milan) 20089, Italy.,Humanitas Clinical and Research Center, Rozzano (Milan) 20089, Italy
| | - Yama A Abassi
- ACEA Biosciences, 6779 Mesa Ridge Rd #100, San Diego, CA-92121, USA
| | | | - Kirk L Peterson
- School of Medicine, University of California, San Diego, La Jolla CA-92093, USA
| | - Ju Chen
- School of Medicine, University of California, San Diego, La Jolla CA-92093, USA
| | - Elisabeth Ehler
- BHF Centre of Research Excellence at King's College London, Cardiovascular Division and Randall Division of Cell and Molecular Biophysics, London SE1 1UL, UK
| |
Collapse
|
16
|
Bang ML. Animal Models of Congenital Cardiomyopathies Associated With Mutations in Z-Line Proteins. J Cell Physiol 2016; 232:38-52. [PMID: 27171814 DOI: 10.1002/jcp.25424] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/10/2016] [Indexed: 01/15/2023]
Abstract
The cardiac Z-line at the boundary between sarcomeres is a multiprotein complex connecting the contractile apparatus with the cytoskeleton and the extracellular matrix. The Z-line is important for efficient force generation and transmission as well as the maintenance of structural stability and integrity. Furthermore, it is a nodal point for intracellular signaling, in particular mechanosensing and mechanotransduction. Mutations in various genes encoding Z-line proteins have been associated with different cardiomyopathies, including dilated cardiomyopathy, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, restrictive cardiomyopathy, and left ventricular noncompaction, and mutations even within the same gene can cause widely different pathologies. Animal models have contributed to a great advancement in the understanding of the physiological function of Z-line proteins and the pathways leading from mutations in Z-line proteins to cardiomyopathy, although genotype-phenotype prediction remains a great challenge. This review presents an overview of the currently available animal models for Z-line and Z-line associated proteins involved in human cardiomyopathies with special emphasis on knock-in and transgenic mouse models recapitulating the clinical phenotypes of human cardiomyopathy patients carrying mutations in Z-line proteins. Pros and cons of mouse models will be discussed and a future outlook will be given. J. Cell. Physiol. 232: 38-52, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research, UOS Milan, National Research Council and Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| |
Collapse
|
17
|
Vafiadaki E, Arvanitis DA, Sanoudou D. Muscle LIM Protein: Master regulator of cardiac and skeletal muscle functions. Gene 2015; 566:1-7. [PMID: 25936993 PMCID: PMC6660132 DOI: 10.1016/j.gene.2015.04.077] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/21/2015] [Accepted: 04/27/2015] [Indexed: 12/17/2022]
Abstract
Muscle LIM Protein (MLP) has emerged as a key regulator of striated muscle physiology and pathophysiology. Mutations in cysteine and glycine-rich protein 3 (CSRP3), the gene encoding MLP, are causative of human cardiomyopathies, whereas altered expression patterns are observed in human failing heart and skeletal myopathies. In vitro and in vivo evidences reveal a complex and diverse functional role of MLP in striated muscle, which is determined by its multiple interacting partners and subcellular distribution. Experimental evidence suggests that MLP is implicated in both myogenic differentiation and myocyte cytoarchitecture, although the full spectrum of its intracellular roles still unfolds.
Collapse
Affiliation(s)
- Elizabeth Vafiadaki
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Demetrios A Arvanitis
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Despina Sanoudou
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece; 4th Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
18
|
Caetano-Anollés K, Mishra S, Rodriguez-Zas SL. Synergistic and antagonistic interplay between myostatin gene expression and physical activity levels on gene expression patterns in triceps Brachii muscles of C57/BL6 mice. PLoS One 2015; 10:e0116828. [PMID: 25710176 PMCID: PMC4339580 DOI: 10.1371/journal.pone.0116828] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/15/2014] [Indexed: 12/28/2022] Open
Abstract
Levels of myostatin expression and physical activity have both been associated with transcriptome dysregulation and skeletal muscle hypertrophy. The transcriptome of triceps brachii muscles from male C57/BL6 mice corresponding to two genotypes (wild-type and myostatin-reduced) under two conditions (high and low physical activity) was characterized using RNA-Seq. Synergistic and antagonistic interaction and ortholog modes of action of myostatin genotype and activity level on genes and gene pathways in this skeletal muscle were uncovered; 1,836, 238, and 399 genes exhibited significant (FDR-adjusted P-value < 0.005) activity-by-genotype interaction, genotype and activity effects, respectively. The most common differentially expressed profiles were (i) inactive myostatin-reduced relative to active and inactive wild-type, (ii) inactive myostatin-reduced and active wild-type, and (iii) inactive myostatin-reduced and inactive wild-type. Several remarkable genes and gene pathways were identified. The expression profile of nascent polypeptide-associated complex alpha subunit (Naca) supports a synergistic interaction between activity level and myostatin genotype, while Gremlin 2 (Grem2) displayed an antagonistic interaction. Comparison between activity levels revealed expression changes in genes encoding for structural proteins important for muscle function (including troponin, tropomyosin and myoglobin) and for fatty acid metabolism (some linked to diabetes and obesity, DNA-repair, stem cell renewal, and various forms of cancer). Conversely, comparison between genotype groups revealed changes in genes associated with G1-to-S-phase transition of the cell cycle of myoblasts and the expression of Grem2 proteins that modulate the cleavage of the myostatin propeptide. A number of myostatin-feedback regulated gene products that are primarily regulatory were uncovered, including microRNA impacting central functions and Piezo proteins that make cationic current-controlling mechanosensitive ion channels. These important findings extend hypotheses of myostatin and physical activity master regulation of genes and gene pathways, impacting medical practices and therapies associated with muscle atrophy in humans and companion animal species and genome-enabled selection practices applied to food-production animal species.
Collapse
Affiliation(s)
- Kelsey Caetano-Anollés
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Sanjibita Mishra
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Khorana Scholars Program, Indo-US Science and Technology Forum, New Delhi, India
- National Institute of Technology, Rourkel, India
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
19
|
Levin E, Leibinger M, Andreadaki A, Fischer D. Neuronal expression of muscle LIM protein in postnatal retinae of rodents. PLoS One 2014; 9:e100756. [PMID: 24945278 PMCID: PMC4063954 DOI: 10.1371/journal.pone.0100756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/30/2014] [Indexed: 01/22/2023] Open
Abstract
Muscle LIM protein (MLP) is a member of the cysteine rich protein family and has so far been regarded as a muscle-specific protein that is mainly involved in myogenesis and the organization of cytoskeletal structure in myocytes, respectively. The current study demonstrates for the first time that MLP expression is not restricted to muscle tissue, but is also found in the rat naive central nervous system. Using quantitative PCR, Western blot and immunohistochemical analyses we detected MLP in the postnatal rat retina, specifically in the somas and dendritic arbors of cholinergic amacrine cells (AC) of the inner nuclear layer and the ganglion cell layer (displaced AC). Induction of MLP expression started at embryonic day 20 and peaked between postnatal days 7 and 14. It subsequently decreased again to non-detectable protein levels after postnatal day 28. MLP was identified in the cytoplasm and dendrites but not in the nucleus of AC. Thus, retinal MLP expression correlates with the morphologic and functional development of cholinergic AC, suggesting a potential role of this protein in postnatal maturation and making MLP a suitable marker for these neurons.
Collapse
Affiliation(s)
- Evgeny Levin
- Division of Experimental Neurology, Department of Neurology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Marco Leibinger
- Division of Experimental Neurology, Department of Neurology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anastasia Andreadaki
- Division of Experimental Neurology, Department of Neurology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dietmar Fischer
- Division of Experimental Neurology, Department of Neurology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
20
|
Human muscle LIM protein dimerizes along the actin cytoskeleton and cross-links actin filaments. Mol Cell Biol 2014; 34:3053-65. [PMID: 24934443 DOI: 10.1128/mcb.00651-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The muscle LIM protein (MLP) is a nucleocytoplasmic shuttling protein playing important roles in the regulation of myocyte remodeling and adaptation to hypertrophic stimuli. Missense mutations in human MLP or its ablation in transgenic mice promotes cardiomyopathy and heart failure. The exact function(s) of MLP in the cytoplasmic compartment and the underlying molecular mechanisms remain largely unknown. Here, we provide evidence that MLP autonomously binds to, stabilizes, and bundles actin filaments (AFs) independently of calcium and pH. Using total internal reflection fluorescence microscopy, we have shown how MLP cross-links actin filaments into both unipolar and mixed-polarity bundles. Quantitative analysis of the actin cytoskeleton configuration confirmed that MLP substantially promotes actin bundling in live myoblasts. In addition, bimolecular fluorescence complementation (BiFC) assays revealed MLP self-association. Remarkably, BiFC complexes mostly localize along actin filament-rich structures, such as stress fibers and sarcomeres, supporting a functional link between MLP self-association and actin cross-linking. Finally, we have demonstrated that MLP self-associates through its N-terminal LIM domain, whereas it binds to AFs through its C-terminal LIM domain. Together our data support that MLP contributes to the maintenance of cardiomyocyte cytoarchitecture by a mechanism involving its self-association and actin filament cross-linking.
Collapse
|
21
|
Vafiadaki E, Arvanitis DA, Papalouka V, Terzis G, Roumeliotis TI, Spengos K, Garbis SD, Manta P, Kranias EG, Sanoudou D. Muscle lim protein isoform negatively regulates striated muscle actin dynamics and differentiation. FEBS J 2014; 281:3261-79. [PMID: 24860983 DOI: 10.1111/febs.12859] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 05/14/2014] [Accepted: 05/22/2014] [Indexed: 11/28/2022]
Abstract
Muscle lim protein (MLP) has emerged as a critical regulator of striated muscle physiology and pathophysiology. Mutations in cysteine and glycine-rich protein 3 (CSRP3), the gene encoding MLP, have been directly associated with human cardiomyopathies, whereas aberrant expression patterns are reported in human cardiac and skeletal muscle diseases. Increasing evidence suggests that MLP has an important role in both myogenic differentiation and myocyte cytoarchitecture, although the full spectrum of its intracellular roles has not been delineated. We report the discovery of an alternative splice variant of MLP, designated as MLP-b, showing distinct expression in neuromuscular disease and direct roles in actin dynamics and muscle differentiation. This novel isoform originates by alternative splicing of exons 3 and 4. At the protein level, it contains the N-terminus first half LIM domain of MLP and a unique sequence of 22 amino acids. Physiologically, it is expressed during early differentiation, whereas its overexpression reduces C2C12 differentiation and myotube formation. This may be mediated through its inhibition of MLP/cofilin-2-mediated F-actin dynamics. In differentiated striated muscles, MLP-b localizes to the sarcomeres and binds directly to Z-disc components, including α-actinin, T-cap and MLP. The findings of the present study unveil a novel player in muscle physiology and pathophysiology that is implicated in myogenesis as a negative regulator of myotube formation, as well as in differentiated striated muscles as a contributor to sarcomeric integrity.
Collapse
Affiliation(s)
- Elizabeth Vafiadaki
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lamon S, Wallace MA, Russell AP. The STARS signaling pathway: a key regulator of skeletal muscle function. Pflugers Arch 2014; 466:1659-71. [DOI: 10.1007/s00424-014-1475-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 01/08/2023]
|
23
|
Pierzchala M, Hoekman AJW, Urbanski P, Kruijt L, Kristensen L, Young JF, Oksbjerg N, Goluch D, te Pas MFW. Validation of biomarkers for loin meat quality (M. longissimus) of pigs. J Anim Breed Genet 2014; 131:258-70. [PMID: 24506540 DOI: 10.1111/jbg.12081] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 01/04/2014] [Indexed: 11/29/2022]
Abstract
The aim of this study was to validate previously reported associations between microarray gene expression levels and pork quality traits using real-time PCR. Meat samples and meat quality data from 100 pigs were collected from a different pig breed to the one tested by microarray (Large White versus Pietrain) and a different country of origin (Denmark versus Germany). Ten genes (CARP, MB, CSRP3, TNNC1, VAPB, TNNI1, HSPB1, TNNT1, TIMP-1, RAD-like) were chosen from the original microarray study on the basis of the association between gene expression levels and the meat quality traits meat %, back fat, pH24, drip loss %, colour a*, colour b*, colour L*, WB-SF, SFA, MUFA, PUFA. Real-time PCR detection methods were developed for validation of all ten genes, confirming association with drip loss (two of two genes), ultimate pH (three of four genes), a* (redness) (two of six genes) and L*(lightness) (two of four genes). Furthermore, several new correlations for MUFA and PUFA were established due to additional meat quality trait information on fatty acid composition not available for the microarray study. Regression studies showed that the maximum explanation of the phenotypic variance of the meat quality traits was 50% for the ultimate pH trait using these ten genes only. Additional studies showed that the gene expression of several of the genes was correlated with each other. We conclude that the genes initially selected from the microarray study were robust, explaining variances of the genes for the meat quality traits.
Collapse
Affiliation(s)
- M Pierzchala
- Animal Breeding and Genetics Centre, Wageningen UR Livestock Research, Lelystad, The Netherlands; Institute of Genetics and Animal Breeding, Polish Academy of Science, Jastrzebiec, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sequeira V, Nijenkamp LLAM, Regan JA, van der Velden J. The physiological role of cardiac cytoskeleton and its alterations in heart failure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:700-22. [PMID: 23860255 DOI: 10.1016/j.bbamem.2013.07.011] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/01/2013] [Accepted: 07/08/2013] [Indexed: 12/11/2022]
Abstract
Cardiac muscle cells are equipped with specialized biochemical machineries for the rapid generation of force and movement central to the work generated by the heart. During each heart beat cardiac muscle cells perceive and experience changes in length and load, which reflect one of the fundamental principles of physiology known as the Frank-Starling law of the heart. Cardiac muscle cells are unique mechanical stretch sensors that allow the heart to increase cardiac output, and adjust it to new physiological and pathological situations. In the present review we discuss the mechano-sensory role of the cytoskeletal proteins with respect to their tight interaction with the sarcolemma and extracellular matrix. The role of contractile thick and thin filament proteins, the elastic protein titin, and their anchorage at the Z-disc and M-band, with associated proteins are reviewed in physiologic and pathologic conditions leading to heart failure. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé
Collapse
Affiliation(s)
- Vasco Sequeira
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Louise L A M Nijenkamp
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Jessica A Regan
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands; Department of Physiology, Molecular Cardiovascular Research Program, Sarver Heart Center, University of Arizona, Tucson, AZ 85724, USA
| | - Jolanda van der Velden
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands; ICIN-Netherlands Heart Institute, The Netherlands.
| |
Collapse
|
25
|
Clark KA, Kadrmas JL. Drosophila melanogaster muscle LIM protein and alpha-actinin function together to stabilize muscle cytoarchitecture: a potential role for Mlp84B in actin-crosslinking. Cytoskeleton (Hoboken) 2013; 70:304-16. [PMID: 23606669 PMCID: PMC3716849 DOI: 10.1002/cm.21106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 02/06/2023]
Abstract
Stabilization of tissue architecture during development and growth is essential to maintain structural integrity. Because of its contractile nature, muscle is especially susceptible to physiological stresses, and has multiple mechanisms to maintain structural integrity. The Drosophila melanogaster Muscle LIM Protein (MLP), Mlp84B, participates in muscle maintenance, yet its precise mechanism of action is still controversial. Through a candidate approach, we identified α-actinin as a protein that functions with Mlp84B to ensure muscle integrity. α-actinin RNAi animals die primarily as pupae, and Mlp84B RNAi animals are adult viable. RNAi knockdown of Mlp84B and α-actinin together produces synergistic early larval lethality and destabilization of Z-line structures. We recapitulated these phenotypes using combinations of traditional loss-of-function alleles and single-gene RNAi. We observe that Mlp84B induces the formation of actin loops in muscle cell nuclei in the absence of nuclear α-actinin, suggesting Mlp84B has intrinsic actin cross-linking activity, which may complement α-actinin cross-linking activity at sites of actin filament anchorage. These results reveal a molecular mechanism for MLP stabilization of muscle and implicate reduced actin crosslinking as the primary destabilizing defect in MLP-associated cardiomyopathies. Our data support a model in which α-actinin and Mlp84B have important and overlapping functions at sites of actin filament anchorage to preserve muscle structure and function.
Collapse
Affiliation(s)
- Kathleen A. Clark
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
- Department of Biology, University of Utah, Salt Lake City, UT 84112
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Julie L. Kadrmas
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
26
|
Wilson AJ, Schoenauer R, Ehler E, Agarkova I, Bennett PM. Cardiomyocyte growth and sarcomerogenesis at the intercalated disc. Cell Mol Life Sci 2013; 71:165-81. [PMID: 23708682 PMCID: PMC3889684 DOI: 10.1007/s00018-013-1374-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/27/2013] [Accepted: 05/13/2013] [Indexed: 12/02/2022]
Abstract
Cardiomyocytes grow during heart maturation or disease-related cardiac remodeling. We present evidence that the intercalated disc (ID) is integral to both longitudinal and lateral growth: increases in width are accommodated by lateral extension of the plicate tread regions and increases in length by sarcomere insertion within the ID. At the margin between myofibril and the folded membrane of the ID lies a transitional junction through which the thin filaments from the last sarcomere run to the ID membrane and it has been suggested that this junction acts as a proto Z-disc for sarcomere addition. In support of this hypothesis, we have investigated the ultrastructure of the ID in mouse hearts from control and dilated cardiomyopathy (DCM) models, the MLP-null and a cardiac-specific β-catenin mutant, cΔex3, as well as in human left ventricle from normal and DCM samples. We find that the ID amplitude can vary tenfold from 0.2 μm up to a maximum of ~2 μm allowing gradual expansion during heart growth. At the greatest amplitude, equivalent to a sarcomere length, A-bands and thick filaments are found within the ID membrane loops together with a Z-disc, which develops at the transitional junction position. Here, also, the tops of the membrane folds, which are rich in αII spectrin, become enlarged and associated with junctional sarcoplasmic reticulum. Systematically larger ID amplitudes are found in DCM samples. Other morphological differences between mouse DCM and normal hearts suggest that sarcomere inclusion is compromised in the diseased hearts.
Collapse
Affiliation(s)
- Amanda J Wilson
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK,
| | | | | | | | | |
Collapse
|
27
|
Bottje W, Kong BW. Cell Biology Symposium: feed efficiency: mitochondrial function to global gene expression. J Anim Sci 2012; 91:1582-93. [PMID: 23148240 DOI: 10.2527/jas.2012-5787] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Understanding the cellular basis of feed efficiency (FE) is instrumental to helping poultry and livestock industries continue to provide high-quality protein for an increasingly crowded world. To understand relationships of FE and gene expression, global RNA transcription was investigated in breast muscle obtained from a male broiler line fed the same diet and individually phenotyped for FE. In these studies, RNA samples obtained from broilers that exhibited either high FE (0.65 ± 0.01) or low FE (0.46 ± 0.01) were analyzed with an Agilent 44K chicken oligoarray. A 1.3-fold cutoff in expression (30% difference between groups) resulted in 782 genes that were differentially expressed (P < 0.05) in muscle between the high- and low-FE phenotypes. Ingenuity Pathway Analysis, an online software program, was used to identify genes, gene networks, and pathways associated with the phenotypic expression of FE. The results indicate that the high-FE phenotype exhibited increased expression of genes associated with 1) signal transduction pathways, 2) anabolic activities, and 3) energy-sensing and energy coordination activities, all of which would likely be favorable to cell growth and development. In contrast, the low-FE broiler phenotype exhibited upregulation of genes 1) associated with actin-myosin filaments, cytoskeletal architecture, and muscle fibers and 2) stress-related or stress-responsive genes. Because the low-FE broiler phenotype exhibits greater oxidative stress, it would appear that the low-FE phenotype is the product of inherent gene expression that is modulated by oxidative stress. The results of these studies begin to provide a comprehensive picture of gene expression in muscle, a major organ of energy demand in an animal, associated with phenotypic expression of FE.
Collapse
Affiliation(s)
- W Bottje
- Department of Poultry Science, Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville 72701, USA.
| | | |
Collapse
|
28
|
Bottje WG, Kong BW, Song JJ, Lee JY, Hargis BM, Lassiter K, Wing T, Hardiman J. Gene expression in breast muscle associated with feed efficiency in a single male broiler line using a chicken 44K microarray. II. Differentially expressed focus genes. Poult Sci 2012; 91:2576-87. [PMID: 22991544 DOI: 10.3382/ps.2012-02204] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Global RNA expression in breast muscle obtained from a male broiler line phenotyped for high or low feed efficiency (FE) was investigated using microarray analysis. Microarray procedures and validation were reported previously. By using an overlay function of a software program (Ingenuity Pathway Analysis, IPA) in which canonical pathways are projected onto a set of genes, a subset of 27 differentially expressed focus genes were identified. Focus genes that were upregulated in the high FE phenotype were associated with important signal transduction pathways (Jnk, G-coupled, and retinoic acid) or in sensing cell energy status and stimulating energy production that would likely enhance growth and development of muscle tissue. In contrast, focus genes that were upregulated in the low FE muscle phenotype were associated with cytoskeletal architecture (e.g., actin-myosin filaments), fatty acid oxidation, growth factors, or ones that would likely be induced in response to oxidative stress. The results of this study provide additional information on gene expression and the cellular basis of feed efficiency in broilers.
Collapse
Affiliation(s)
- W G Bottje
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Cardiac remodeling is not modulated by overexpression of muscle LIM protein (MLP). Basic Res Cardiol 2012; 107:262. [DOI: 10.1007/s00395-012-0262-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 02/14/2012] [Accepted: 03/07/2012] [Indexed: 12/17/2022]
|
30
|
Kong BW, Song JJ, Lee JY, Hargis BM, Wing T, Lassiter K, Bottje W. Gene expression in breast muscle associated with feed efficiency in a single male broiler line using a chicken 44K oligo microarray. I. Top differentially expressed genes. Poult Sci 2011; 90:2535-47. [PMID: 22010239 DOI: 10.3382/ps.2011-01435] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Global RNA expression in breast muscle obtained from a male broiler line phenotyped for high or low feed efficiency (FE) was investigated. Pooled RNA samples (n = 6/phenotype) labeled with cyanine 3 or cyanine 5 fluorescent dyes to generate cRNA probes were hybridized on a 4 × 44K chicken oligo microarray. Local polynomial regression normalization was applied to background-corrected red and green intensities with a moderated t-statistic. Corresponding P-values were computed and adjusted for multiple testing by false discovery rate to identify differentially expressed genes. Microarray validation was carried out by comparing findings with quantitative reverse-transcription PCR. A 1.3-fold difference in gene expression was set as a cutoff value, which encompassed 20% (782 of 4,011) of the total number of genes that were differentially expressed between FE phenotypes. Using an online software program (Ingenuity Pathway Analysis), the top 10 upregulated genes identified by Ingenuity Pathway Analysis in the high-FE group were generally associated with anabolic processes. In contrast, 7 of the top 10 downregulated genes in the high-FE phenotype (upregulated in the low-FE phenotype) were associated with muscle fiber development, muscle function, and cytoskeletal organization, with the remaining 3 genes associated with self-recognition or stress-responding genes. The results from this study focusing on only the top differentially expressed genes suggest that the high-FE broiler phenotype is derived from the upregulation of genes associated with anabolic processes as well as a downregulation of genes associated with muscle fiber development, muscle function, cytoskeletal organization, and stress response.
Collapse
Affiliation(s)
- B-W Kong
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Kojic S, Radojkovic D, Faulkner G. Muscle ankyrin repeat proteins: their role in striated muscle function in health and disease. Crit Rev Clin Lab Sci 2011; 48:269-94. [DOI: 10.3109/10408363.2011.643857] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
The sarcomeric Z-disc and Z-discopathies. J Biomed Biotechnol 2011; 2011:569628. [PMID: 22028589 PMCID: PMC3199094 DOI: 10.1155/2011/569628] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/12/2011] [Indexed: 02/06/2023] Open
Abstract
The sarcomeric Z-disc defines the lateral borders of the sarcomere and has primarily been seen as a structure important for mechanical stability. This view has changed dramatically within the last one or two decades. A multitude of novel Z-disc proteins and their interacting partners have been identified, which has led to the identification of additional functions and which have now been assigned to this structure. This includes its importance for intracellular signalling, for mechanosensation and mechanotransduction in particular, an emerging importance for protein turnover and autophagy, as well as its molecular links to the t-tubular system and the sarcoplasmic reticulum. Moreover, the discovery of mutations in a wide variety of Z-disc proteins, which lead to perturbations of several of the above-mentioned systems, gives rise to a diverse group of diseases which can be termed Z-discopathies. This paper provides a brief overview of these novel aspects as well as points to future research directions.
Collapse
|
33
|
Mechanotransduction: the role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function. Pflugers Arch 2011; 462:89-104. [PMID: 21499986 DOI: 10.1007/s00424-011-0951-4] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 02/27/2011] [Indexed: 12/16/2022]
Abstract
Mechanotransduction refers to the conversion of mechanical forces into biochemical or electrical signals that initiate structural and functional remodeling in cells and tissues. The heart is a kinetic organ whose form changes considerably during development and disease, requiring cardiac myocytes to be mechanically durable and capable of fusing a variety of environmental signals on different time scales. During physiological growth, myocytes adaptively remodel to mechanical loads. Pathological stimuli can induce maladaptive remodeling. In both of these conditions, the cytoskeleton plays a pivotal role in both sensing mechanical stress and mediating structural remodeling and functional responses within the myocyte.
Collapse
|
34
|
Buyandelger B, Ng KE, Miocic S, Piotrowska I, Gunkel S, Ku CH, Knöll R. MLP (muscle LIM protein) as a stress sensor in the heart. Pflugers Arch 2011; 462:135-42. [PMID: 21484537 PMCID: PMC3114083 DOI: 10.1007/s00424-011-0961-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/11/2011] [Accepted: 03/24/2011] [Indexed: 01/22/2023]
Abstract
Muscle LIM protein (MLP, also known as cysteine rich protein 3 (CSRP3, CRP3)) is a muscle-specific-expressed LIM-only protein. It consists of 194 amino-acids and has been described initially as a factor involved in myogenesis (Arber et al. Cell 79:221-231, 1994). MLP soon became an important model for experimental cardiology when it was first demonstrated that MLP deficiency leads to myocardial hypertrophy followed by a dilated cardiomyopathy and heart failure phenotype (Arber et al. Cell 88:393-403, 1997). At this time, this was the first genetically altered animal model to develop this devastating disease. Interestingly, MLP was also found to be down-regulated in humans with heart failure (Zolk et al. Circulation 101:2674-2677, 2000) and MLP mutations are able to cause hypertrophic and dilated forms of cardiomyopathy in humans (Bos et al. Mol Genet Metab 88:78-85, 2006; Geier et al. Circulation 107:1390-1395, 2003; Hershberger et al. Clin Transl Sci 1:21-26, 2008; Knöll et al. Cell 111:943-955, 2002; Knöll et al. Circ Res 106:695-704, 2010; Mohapatra et al. Mol Genet Metab 80:207-215, 2003). Although considerable efforts have been undertaken to unravel the underlying molecular mechanisms-how MLP mutations, either in model organisms or in the human setting cause these diseases are still unclear. In contrast, only precise knowledge of the underlying molecular mechanisms will allow the development of novel and innovative therapeutic strategies to combat this otherwise lethal condition. The focus of this review will be on the function of MLP in cardiac mechanosensation and we shall point to possible future directions in MLP research.
Collapse
Affiliation(s)
- Byambajav Buyandelger
- Myocardial Genetics, British Heart Foundation-Centre for Research Excellence, National Heart & Lung Institute, Imperial College, South Kensington Campus, Flowers Building, 4th floor, London, SW7 2AZ, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
Baines AJ. The spectrin-ankyrin-4.1-adducin membrane skeleton: adapting eukaryotic cells to the demands of animal life. PROTOPLASMA 2010; 244:99-131. [PMID: 20668894 DOI: 10.1007/s00709-010-0181-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/05/2010] [Indexed: 05/29/2023]
Abstract
The cells in animals face unique demands beyond those encountered by their unicellular eukaryotic ancestors. For example, the forces engendered by the movement of animals places stresses on membranes of a different nature than those confronting free-living cells. The integration of cells into tissues, as well as the integration of tissue function into whole animal physiology, requires specialisation of membrane domains and the formation of signalling complexes. With the evolution of mammals, the specialisation of cell types has been taken to an extreme with the advent of the non-nucleated mammalian red blood cell. These and other adaptations to animal life seem to require four proteins--spectrin, ankyrin, 4.1 and adducin--which emerged during eumetazoan evolution. Spectrin, an actin cross-linking protein, was probably the earliest of these, with ankyrin, adducin and 4.1 only appearing as tissues evolved. The interaction of spectrin with ankyrin is probably a prerequisite for the formation of tissues; only with the advent of vertebrates did 4.1 acquires the ability to bind spectrin and actin. The latter activity seems to allow the spectrin complex to regulate the cell surface accumulation of a wide variety of proteins. Functionally, the spectrin-ankyrin-4.1-adducin complex is implicated in the formation of apical and basolateral domains, in aspects of membrane trafficking, in assembly of certain signalling and cell adhesion complexes and in providing stability to otherwise mechanically fragile cell membranes. Defects in this complex are manifest in a variety of hereditary diseases, including deafness, cardiac arrhythmia, spinocerebellar ataxia, as well as hereditary haemolytic anaemias. Some of these proteins also function as tumor suppressors. The spectrin-ankyrin-4.1-adducin complex represents a remarkable system that underpins animal life; it has been adapted to many different functions at different times during animal evolution.
Collapse
Affiliation(s)
- Anthony J Baines
- School of Biosciences and Centre for Biomedical Informatics, University of Kent, Canterbury, CT2 7NJ, UK.
| |
Collapse
|
36
|
Gunkel S, Heineke J, Hilfiker-Kleiner D, Knöll R. MLP: A stress sensor goes nuclear. J Mol Cell Cardiol 2009; 47:423-5. [DOI: 10.1016/j.yjmcc.2009.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 06/18/2009] [Accepted: 07/09/2009] [Indexed: 01/01/2023]
|
37
|
Muscle LIM protein interacts with cofilin 2 and regulates F-actin dynamics in cardiac and skeletal muscle. Mol Cell Biol 2009; 29:6046-58. [PMID: 19752190 DOI: 10.1128/mcb.00654-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The muscle LIM protein (MLP) and cofilin 2 (CFL2) are important regulators of striated myocyte function. Mutations in the corresponding genes have been directly associated with severe human cardiac and skeletal myopathies, and aberrant expression patterns have often been observed in affected muscles. Herein, we have investigated whether MLP and CFL2 are involved in common molecular mechanisms, which would promote our understanding of disease pathogenesis. We have shown for the first time, using a range of biochemical and immunohistochemical methods, that MLP binds directly to CFL2 in human cardiac and skeletal muscles. The interaction involves the inter-LIM domain, amino acids 94 to 105, of MLP and the amino-terminal domain, amino acids 1 to 105, of CFL2, which includes part of the actin depolymerization domain. The MLP/CFL2 complex is stronger in moderately acidic (pH 6.8) environments and upon CFL2 phosphorylation, while it is independent of Ca(2+) levels. This interaction has direct implications in actin cytoskeleton dynamics in regulating CFL2-dependent F-actin depolymerization, with maximal depolymerization enhancement at an MLP/CFL2 molecular ratio of 2:1. Deregulation of this interaction by intracellular pH variations, CFL2 phosphorylation, MLP or CFL2 gene mutations, or expression changes, as observed in a range of cardiac and skeletal myopathies, could impair F-actin depolymerization, leading to sarcomere dysfunction and disease.
Collapse
|
38
|
Campos LCG, Miyakawa AA, Barauna VG, Cardoso L, Borin TF, Dallan LADO, Krieger JE. Induction of CRP3/MLP expression during vein arterialization is dependent on stretch rather than shear stress. Cardiovasc Res 2009; 83:140-7. [PMID: 19351738 DOI: 10.1093/cvr/cvp108] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Cysteine- and glycine-rich protein 3/muscle LIM-domain protein (CRP3/MLP) mediates protein-protein interaction with actin filaments in the heart and is involved in muscle differentiation and vascular remodelling. Here, we assessed the induction of CRP3/MLP expression during arterialization in human and rat veins. METHODS AND RESULTS Vascular CRP3/MLP expression was mainly observed in arterial samples from both human and rat. Using quantitative real time RT-PCR, we demonstrated that the CRP3/MLP expression was 10 times higher in smooth muscle cells (SMCs) from human mammary artery (h-MA) vs. saphenous vein (h-SV). In endothelial cells (ECs), CRP3/MLP was scarcely detected in either h-MA or h-SV. Using an ex vivo flow through system that mimics arterial condition, we observed induction of CRP3/MLP expression in arterialized h-SV. Interestingly, the upregulation of CRP3/MLP was primarily dependent on stretch stimulus in SMCs, rather than shear stress in ECs. Finally, using a rat vein in vivo arterialization model, early (1-14 days) CRP3/MLP immunostaining was observed predominantly in the inner layer and later (28-90 days) it appeared more scattered in the vessel layers. CONCLUSION Here we provide evidence that CRP3/MLP is primarily expressed in arterial SMCs and that stretch is the main stimulus for CRP3/MLP induction in veins exposed to arterial haemodynamic conditions.
Collapse
Affiliation(s)
- Luciene Cristina Gastalho Campos
- Laboratory of Genetic and Molecular Cardiology, Heart Institute , University of Sao Paulo Medical School, Av. Dr. Eneas C. Aguiar, 44-10 andar, Sao Paulo SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
39
|
Schallus T, Fehér K, Ulrich AS, Stier G, Muhle-Goll C. Structure and dynamics of the human muscle LIM protein. FEBS Lett 2009; 583:1017-22. [PMID: 19230835 DOI: 10.1016/j.febslet.2009.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/10/2009] [Accepted: 02/11/2009] [Indexed: 12/01/2022]
Abstract
The family of cysteine rich proteins (CRP) comprises three closely homologous members that have been reported to interact with alpha-actinin. Muscular LIM protein (MLP/CRP3), the skeletal muscle variant, was originally discovered as a positive regulator of myogenesis and is suggested to be part of the stretch sensor of the myofibril through its interaction with telethonin (T-Cap). We determined the structure of both LIM domains of human MLP by nuclear magnetic resonance spectroscopy. We confirm by (15)N relaxation measurements that both LIM domains act as independent units and that the adjacent linker regions are fully flexible. With the published structures of CRP1 and CRP2, the complete family has now been structurally characterized.
Collapse
Affiliation(s)
- Thomas Schallus
- Department of Biomolecular Mechanisms, Max-Planck-Institute for Medical Research, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
40
|
Gehmlich K, Geier C, Milting H, Fürst D, Ehler E. Back to square one: what do we know about the functions of muscle LIM protein in the heart? J Muscle Res Cell Motil 2008; 29:155-8. [PMID: 19115046 DOI: 10.1007/s10974-008-9159-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 12/03/2008] [Indexed: 11/28/2022]
Abstract
Muscle LIM Protein (MLP) is small, just 198 amino acid long protein, which is specifically expressed in slow skeletal muscle and cardiac tissues. This article will focus on the cardiac functions of MLP: the current knowledge about localisation data, binding partners and animal models for the protein will be summarised, and the role of MLP in maintaining a healthy heart be discussed. This review will furthermore attempt to identify gaps in our knowledge-and hence future research potential-with a special focus on MLP's role in cardiac mechano-signalling.
Collapse
Affiliation(s)
- Katja Gehmlich
- Centre for Cardiology in the Young, Department of Medicine, University College London, Paul O'Gorman Building, Ground Floor, 72 Huntley Street, London, WC1E 6DD, UK.
| | | | | | | | | |
Collapse
|
41
|
Geier C, Gehmlich K, Ehler E, Hassfeld S, Perrot A, Hayess K, Cardim N, Wenzel K, Erdmann B, Krackhardt F, Posch MG, Osterziel KJ, Bublak A, Nägele H, Scheffold T, Dietz R, Chien KR, Spuler S, Fürst DO, Nürnberg P, Ozcelik C. Beyond the sarcomere: CSRP3 mutations cause hypertrophic cardiomyopathy. Hum Mol Genet 2008; 17:2753-65. [PMID: 18505755 DOI: 10.1093/hmg/ddn160] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2025] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a frequent genetic cardiac disease and the most common cause of sudden cardiac death in young individuals. Most of the currently known HCM disease genes encode sarcomeric proteins. Previous studies have shown an association between CSRP3 missense mutations and either dilated cardiomyopathy (DCM) or HCM, but all these studies were unable to provide comprehensive genetic evidence for a causative role of CSRP3 mutations. We used linkage analysis and identified a CSRP3 missense mutation in a large German family affected by HCM. We confirmed CSRP3 as an HCM disease gene. Furthermore, CSRP3 missense mutations segregating with HCM were identified in four other families. We used a newly designed monoclonal antibody to show that muscle LIM protein (MLP), the protein encoded by CSRP3, is mainly a cytosolic component of cardiomyocytes and not tightly anchored to sarcomeric structures. Our functional data from both in vitro and in vivo analyses suggest that at least one of MLP's mutated forms seems to be destabilized in the heart of HCM patients harbouring a CSRP3 missense mutation. We also present evidence for mild skeletal muscle disease in affected persons. Our results support the view that HCM is not exclusively a sarcomeric disease and also suggest that impaired mechano-sensory stress signalling might be involved in the pathogenesis of HCM.
Collapse
Affiliation(s)
- Christian Geier
- Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Med. Klinik m. S. Kardiologie, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sagave JF, Moser M, Ehler E, Weiskirchen S, Stoll D, Günther K, Büttner R, Weiskirchen R. Targeted disruption of the mouse Csrp2 gene encoding the cysteine- and glycine-rich LIM domain protein CRP2 result in subtle alteration of cardiac ultrastructure. BMC DEVELOPMENTAL BIOLOGY 2008; 8:80. [PMID: 18713466 PMCID: PMC2529283 DOI: 10.1186/1471-213x-8-80] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 08/19/2008] [Indexed: 11/23/2022]
Abstract
BACKGROUND The cysteine and glycine rich protein 2 (CRP2) encoded by the Csrp2 gene is a LIM domain protein expressed in the vascular system, particularly in smooth muscle cells. It exhibits a bimodal subcellular distribution, accumulating at actin-based filaments in the cytosol and in the nucleus. In order to analyze the function of CRP2 in vivo, we disrupted the Csrp2 gene in mice and analysed the resulting phenotype. RESULTS A approximately 17.3 kbp fragment of the murine Csrp2 gene containing exon 3 through 6 was isolated. Using this construct we confirmed the recently determined chromosomal localization (Chromosome 10, best fit location between markers D10Mit203 proximal and D10Mit150 central). A gene disruption cassette was cloned into exon 4 and a mouse strain lacking functional Csrp2 was generated. Mice lacking CRP2 are viable and fertile and have no obvious deficits in reproduction and survival. However, detailed histological and electron microscopic studies reveal that CRP2-deficient mice have subtle alterations in their cardiac ultrastructure. In these mice, the cardiomyocytes display a slight increase in their thickness, indicating moderate hypertrophy at the cellular level. Although the expression of several intercalated disc-associated proteins such as beta-catenin, N-RAP and connexin-43 were not affected in these mice, the distribution of respective proteins was changed within heart tissue. CONCLUSION We conclude that the lack of CRP2 is associated with alterations in cardiomyocyte thickness and hypertrophy.
Collapse
Affiliation(s)
- Julia F Sagave
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH- University Hospital Aachen, Germany
| | - Markus Moser
- Max Planck-Institute for Biochemistry, Martinsried, Germany
| | - Elisabeth Ehler
- The Randall Division of Cell and Molecular Biophysics and The Cardiovascular Division, King's College London, UK
| | - Sabine Weiskirchen
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH- University Hospital Aachen, Germany
| | - Doris Stoll
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH- University Hospital Aachen, Germany
| | | | | | - Ralf Weiskirchen
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH- University Hospital Aachen, Germany
| |
Collapse
|
43
|
Mohoney DJ, Safdar A, Parise G, Melov S, Fu M, MacNeil L, Kaczor J, Payne ET, Tarnopolsky MA. Gene expression profiling in human skeletal muscle during recovery from eccentric exercise. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1901-10. [PMID: 18321953 PMCID: PMC2707850 DOI: 10.1152/ajpregu.00847.2007] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We used cDNA microarrays to screen for differentially expressed genes during recovery from exercise-induced muscle damage in humans. Male subjects (n = 4) performed 300 maximal eccentric contractions, and skeletal muscle biopsy samples were analyzed at 3 h and 48 h after exercise. In total, 113 genes increased 3 h postexercise, and 34 decreased. At 48 h postexercise, 59 genes increased and 29 decreased. On the basis of these data, we chose 19 gene changes and conducted secondary analyses using real-time RT-PCR from muscle biopsy samples taken from 11 additional subjects who performed an identical bout of exercise. Real-time RT-PCR analyses confirmed that exercise-induced muscle damage led to a rapid (3 h) increase in sterol response element binding protein 2 (SREBP-2), followed by a delayed (48 h) increase in the SREBP-2 gene targets Acyl CoA:cholesterol acyltransferase (ACAT)-2 and insulin-induced gene 1 (insig-1). The expression of the IL-1 receptor, a known regulator of SREBP-2, was also elevated after exercise. Taken together, these expression changes suggest a transcriptional program for increasing cholesterol and lipid synthesis and/or modification. Additionally, damaging exercise induced the expression of protein kinase H11, capping protein Z alpha (capZalpha), and modulatory calcineurin-interacting protein 1 (MCIP1), as well as cardiac ankryin repeat protein 1 (CARP1), DNAJB2, c-myc, and junD, each of which are likely involved in skeletal muscle growth, remodeling, and stress management. In summary, using DNA microarrays and RT-PCR, we have identified novel genes that respond to skeletal muscle damage, which, given the known biological functions, are likely involved in recovery from and/or adaptation to damaging exercise.
Collapse
Affiliation(s)
- D. J. Mohoney
- Department of Medical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - A. Safdar
- Department of Pediatrics and Medicine, McMaster University, Hamilton, Ontario, Canada
| | - G. Parise
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - S. Melov
- Buck Institute for Aging Research, Novato, California
| | - Minghua Fu
- Department of Pediatrics and Medicine, McMaster University, Hamilton, Ontario, Canada
| | - L. MacNeil
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - J. Kaczor
- Department of Pediatrics and Medicine, McMaster University, Hamilton, Ontario, Canada
| | - E. T. Payne
- Department of Medical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - M. A. Tarnopolsky
- Department of Pediatrics and Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
44
|
Zheng B, Wen JK, Han M. hhLIM is a novel F-actin binding protein involved in actin cytoskeleton remodeling. FEBS J 2008; 275:1568-1578. [PMID: 18331358 DOI: 10.1111/j.1742-4658.2008.06315.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Human heart LIM protein (hhLIM) is a newly cloned protein. In vitro analyses showed that green fluorescent protein (GFP)-tagged hhLIM protein accumulated in the cytoplasm of C2C12 cells and colocalized with F-actin, indicating that hhLIM is an actin-binding protein in C2C12 cells. Overexpression of hhLIM-GFP in C2C12 cells significantly stabilized actin filaments and delayed depolymerization of the actin cytoskeleton induced by cytochalasin B treatment. Expression of hhLIM-GFP in C2C12 cells also induced significant changes in the organization of the actin cytoskeleton, specifically, fewer and thicker actin bundles than in control cells, suggesting that hhLIM functions as an actin-bundling protein. This hypothesis was confirmed using low-speed co-sedimentation assays and direct observation of F-actin bundles that formed in vitro in the presence of hhLIM. hhLIM has two LIM domains. To identify the essential regions and sites for association, a series of truncated mutants was constructed which showed that LIM domain 2 has the same activity as full-length hhLIM. To further characterize the binding sites, the LIM domain was functionally destructed by replacing cysteine with serine in domain 2, and results showed that the second LIM domain plays a central role in bundling of F-actin. Taken together, these data identify hhLIM as an actin-binding protein that increases actin cytoskeleton stability by promoting bundling of actin filaments.
Collapse
Affiliation(s)
- Bin Zheng
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Jin-Kun Wen
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
45
|
Gupta MP, Samant SA, Smith SH, Shroff SG. HDAC4 and PCAF bind to cardiac sarcomeres and play a role in regulating myofilament contractile activity. J Biol Chem 2008; 283:10135-46. [PMID: 18250163 DOI: 10.1074/jbc.m710277200] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Reversible acetylation of lysine residues within a protein is considered a biologically relevant modification that rivals phosphorylation ( Kouzarides, T. (2000) EMBO J. 19, 1176-1179 ). The enzymes responsible for such protein modification are called histone acetyltransferases (HATs) and deacetylases (HDACs). A role of protein phosphorylation in regulating muscle contraction is well established ( Solaro, R. J., Moir, A. J., and Perry, S. V. (1976) Nature 262, 615-617 ). Here we show that reversible protein acetylation carried out by HATs and HDACs also plays a role in regulating the myofilament contractile activity. We found that a Class II HDAC, HDAC4, and an HAT, PCAF, associate with cardiac myofilaments. Primary cultures of cardiomyocytes as well as mouse heart sections examined by immunohistochemical and electron microscopic analyses revealed that both HDAC4 and PCAF associate with the Z-disc and I- and A-bands of cardiac sarcomeres. Increased acetylation of sarcomeric proteins by HDAC inhibition (using class I and II HDAC inhibitors or anti-HDAC4 antibody) enhanced the myofilament calcium sensitivity. We identified the Z-disc-associated protein, MLP, a sensor of cardiac mechanical stretch, as an acetylated target of PCAF and HDAC4. We also show that trichostatin-A, a class I and II HDAC inhibitor, increases myofilament calcium sensitivity of wild-type, but not of MLP knock-out mice, thus demonstrating a role of MLP in acetylation-dependent increased contractile activity of myofilaments. These studies provide the first evidence that HATs and HDACs play a role in regulation of muscle contraction.
Collapse
Affiliation(s)
- Mahesh P Gupta
- Department of Surgery, Committee on Molecular Medicine, Biological Science Division, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
46
|
Gautel M. The sarcomere and the nucleus: functional links to hypertrophy, atrophy and sarcopenia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 642:176-91. [PMID: 19181101 DOI: 10.1007/978-0-387-84847-1_13] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Skeletal muscle has a remarkable ability to rapidly adjust to changes in physiological requirements. This includes hypertrophic muscle growth and the atrophic loss of muscle mass, both of which occur in response to hormonal, endocrine and mechanical stimuli. In ageing muscle, sarcopenia (the loss of muscle fibres) can aggravate hormonally and mechanically induced atrophy. Hypertrophy and atrophy are associated with changes in sarcomeric protein composition and metabolic enzymes. The coordinated changes of transcriptional and splice mechanisms, protein turnover and cell fate integrates signalling pathways from hormone and cytokine receptors, as well as the sarcomere itself. This involves a number of proteins that shuttle between sarcomeric and nonsarcomeric localisations and thus convey signals from the contractile machinery to the nucleus. The M-band is emerging as a hub mainly for protein-kinase regulated ubiquitin signalling and protein turnover, whereas the I-band and Z-disk contain stretch-sensitive pathways involving transcriptional modifiers. Disruptions of these pathways can cause hereditary myopathies.
Collapse
Affiliation(s)
- Mathias Gautel
- Cardiovascular Division, King's College London, London, UK.
| |
Collapse
|
47
|
Tsukamoto Y, Hijiya N, Yano S, Yokoyama S, Nakada C, Uchida T, Matsuura K, Moriyama M. Arpp/Ankrd2, a member of the muscle ankyrin repeat proteins (MARPs), translocates from the I-band to the nucleus after muscle injury. Histochem Cell Biol 2007; 129:55-64. [PMID: 17926058 DOI: 10.1007/s00418-007-0348-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2007] [Indexed: 01/01/2023]
Abstract
Ankyrin-repeat protein with a PEST motif and a proline-rich region (Arpp), also designated as Ankrd2, is a member of the muscle ankyrin repeat proteins (MARPs), which have been proposed to be involved in muscle stress response pathways. Arpp/Ankrd2 is localized mainly in the I-band of striated muscle. However, it has recently been reported that Arpp/Ankrd2 can interact with nuclear proteins, such as premyelocytic leukemia protein (PML), p53 and YB-1 in vitro. In this study, to determine whether nuclear accumulation of Arpp/Ankrd2 actually occurs, we performed an immunohistochemical investigation of gastrocnemius muscles that had been injured by injection of cardiotoxin or contact with dry ice. We found that Arpp/Ankrd2 accumulated in the nuclei of myofibers located adjacent to severely damaged myofibers after muscle injury. Double-labeled immunohistochemistry revealed that Arpp/Ankrd2 accumulated in the nuclei of sarcomere-damaged myofibers. Furthermore, we found that Arpp/Ankrd2 tended to be localized in euchromatin where genes are transcriptionally activated. Based on these findings, we suggest that Arpp/Ankrd2 may translocate from the I-band to the nucleus in response to muscle damage and may participate in the regulation of gene expression.
Collapse
Affiliation(s)
- Yoshiyuki Tsukamoto
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu-city, Oita, 879-5593, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Schallus T, Edlich C, Stier G, Muhle-Goll C. 1H, 13C, and 15N assignment of the muscular LIM protein MLP/CRP3. BIOMOLECULAR NMR ASSIGNMENTS 2007; 1:41-43. [PMID: 19636821 DOI: 10.1007/s12104-007-9010-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 02/22/2007] [Indexed: 05/28/2023]
Abstract
The family of CRP proteins comprises three members, which are composed of two LIM domains separated by a long linker of more than 50 residues. We determined the structure of the muscle variant, MLP (CRP3), by nuclear magnetic resonance and show that the two LIM domains are independent of each other.
Collapse
Affiliation(s)
- Thomas Schallus
- Max-Planck-Institut für Medizinische Forschung, Jahnstrasse 29, Heidelberg 69120, Germany
| | | | | | | |
Collapse
|
49
|
Gehmlich K, Pinotsis N, Hayess K, van der Ven PFM, Milting H, El Banayosy A, Körfer R, Wilmanns M, Ehler E, Fürst DO. Paxillin and ponsin interact in nascent costameres of muscle cells. J Mol Biol 2007; 369:665-82. [PMID: 17462669 DOI: 10.1016/j.jmb.2007.03.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 03/13/2007] [Accepted: 03/13/2007] [Indexed: 11/30/2022]
Abstract
Muscle differentiation requires the transition from motile myoblasts to sessile myotubes and the assembly of a highly regular contractile apparatus. This striking cytoskeletal remodelling is coordinated with a transformation of focal adhesion-like cell-matrix contacts into costameres. To assess mechanisms underlying this differentiation process, we searched for muscle specific-binding partners of paxillin. We identified an interaction of paxillin with the vinexin adaptor protein family member ponsin in nascent costameres during muscle differentiation, which is mediated by an interaction of the second src homology domain 3 (SH3) domain of ponsin with the proline-rich region of paxillin. To understand the molecular basis of this interaction, we determined the structure of this SH3 domain at 0.83 A resolution, as well as its complex with the paxillin binding peptide at 1.63 A resolution. Upon binding, the paxillin peptide adopts a polyproline-II helix conformation in the complex. Contrary to the charged SH3 binding interface, the peptide contains only non-polar residues and for the first time such an interaction was observed structurally in SH3 domains. Fluorescence titration confirmed the ponsin/paxillin interaction, characterising it further by a weak binding affinity. Transfection experiments revealed further characteristics of ponsin functions in muscle cells: All three SH3 domains in the C terminus of ponsin appeared to synergise in targeting the protein to force-transducing structures. The overexpression of ponsin resulted in altered muscle cell-matrix contact morphology, suggesting its involvement in the establishment of mature costameres. Further evidence for the role of ponsin in the maintenance of mature mechanotransduction sites in cardiomyocytes comes from the observation that ponsin expression was down-regulated in end-stage failing hearts, and that this effect was reverted upon mechanical unloading. These results provide new insights in how low affinity protein-protein interactions may contribute to a fine tuning of cytoskeletal remodelling processes during muscle differentiation and in adult cardiomyocytes.
Collapse
Affiliation(s)
- Katja Gehmlich
- Institute of Biochemistry and Biology, University of Potsdam, Germany. <>
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Stam FJ, MacGillavry HD, Armstrong NJ, de Gunst MCM, Zhang Y, van Kesteren RE, Smit AB, Verhaagen J. Identification of candidate transcriptional modulators involved in successful regeneration after nerve injury. Eur J Neurosci 2007; 25:3629-37. [PMID: 17610582 DOI: 10.1111/j.1460-9568.2007.05597.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Successful regeneration of injured neurons requires a complex molecular response that involves the expression, modification and transport of a large number of proteins. The identity of neuronal proteins responsible for the initiation of regenerative neurite outgrowth is largely unknown. Dorsal root ganglion (DRG) neurons display robust and successful regeneration following lesion of their peripheral neurite, whereas outgrowth of central neurites is weak and does not lead to functional recovery. We have utilized this differential response to gain insight in the early transcriptional events associated with successful regeneration. Surprisingly, our study shows that peripheral and central nerve crushes elicit very distinct transcriptional activation, revealing a large set of novel genes that are differentially regulated within the first 24 h after the lesion. Here we show that Ankrd1, a gene known to act as a transcriptional modulator, is involved in neurite outgrowth of a DRG neuron-derived cell line as well as in cultured adult DRG neurons. This gene, and others identified in this study, may be part of the transcriptional regulatory module that orchestrates the onset of successful regeneration.
Collapse
Affiliation(s)
- Floor J Stam
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|