1
|
Hayes CA, Wilson D, De Leon MA, Mustapha MJ, Morales S, Odden MC, Ashpole NM. Insulin-like growth factor-1 and cognitive health: Exploring cellular, preclinical, and clinical dimensions. Front Neuroendocrinol 2025; 76:101161. [PMID: 39536910 DOI: 10.1016/j.yfrne.2024.101161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Age and insulin-like growth factor-1 (IGF-1) have an inverse association with cognitive decline and dementia. IGF-1 is known to have important pleiotropic functions beginning in neurodevelopment and extending into adulthood such as neurogenesis. At the cellular level, IGF-1 has pleiotropic signaling mechanisms through the IGF-1 receptor on neurons and neuroglia to attenuate inflammation, promote myelination, maintain astrocytic functions for homeostatic balances, and neuronal synaptogenesis. In preclinical rodent models of aging and transgenic models of IGF-1, increased IGF-1 improves cognition in a variety of behavioral paradigms along with reducing IGF-1 via knockout models being able to induce cognitive impairment. At the clinical levels, most studies highlight that increased levels of IGF-1 are associated with better cognition. This review provides a comprehensive and up-to-date evaluation of the association between IGF-1 and cognition at the cellular signaling levels, preclinical, and clinical levels.
Collapse
Affiliation(s)
- Cellas A Hayes
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Destiny Wilson
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Miguel A De Leon
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | | | - Sharon Morales
- Department of Biomedical Science, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Michelle C Odden
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Nicole M Ashpole
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
2
|
Luo R, Hu X, Li X, Lei F, Liao P, Yi L, Zhang X, Zhou B, Jiang R. Dysfunctional astrocyte glutamate uptake in the hypothalamic paraventricular nucleus contributes to visceral pain and anxiety-like behavior in mice with chronic pancreatitis. Glia 2024; 72:2022-2037. [PMID: 39046219 DOI: 10.1002/glia.24595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024]
Abstract
Abdominal visceral pain is a predominant symptom in patients with chronic pancreatitis (CP); however, the underlying mechanism of pain in CP remains elusive. We hypothesized that astrocytes in the hypothalamic paraventricular nucleus (PVH) contribute to CP pain pathogenesis. A mouse model of CP was established by repeated intraperitoneal administration of caerulein to induce abdominal visceral pain. Abdominal mechanical stimulation, open field and elevated plus maze tests were performed to assess visceral pain and anxiety-like behavior. Fiber photometry, brain slice Ca2+ imaging, electrophysiology, and immunohistochemistry were used to investigate the underlying mechanisms. Mice with CP displayed long-term abdominal mechanical allodynia and comorbid anxiety, which was accompanied by astrocyte glial fibrillary acidic protein reactivity, elevated Ca2+ signaling, and astroglial glutamate transporter-1 (GLT-1) deficits in the PVH. Specifically, reducing astrocyte Ca2+ signaling in the PVH via chemogenetics significantly rescued GLT-1 deficits and alleviated mechanical allodynia and anxiety in mice with CP. Furthermore, we found that GLT-1 deficits directly contributed to the hyperexcitability of VGLUT2PVH neurons in mice with CP, and that pharmacological activation of GLT-1 alleviated the hyperexcitability of VGLUT2PVH neurons, abdominal visceral pain, and anxiety in these mice. Taken together, our data suggest that dysfunctional astrocyte glutamate uptake in the PVH contributes to visceral pain and anxiety in mice with CP, highlighting GLT-1 as a potential therapeutic target for chronic pain in patients experiencing CP.
Collapse
Affiliation(s)
- Rong Luo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojun Hu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Li
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Lei
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Limei Yi
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Zhang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Bin Zhou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruotian Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Chikviladze M, Mamulashvili N, Sepashvili M, Narmania N, Ramsden J, Shanshiashvili L, Mikeladze D. Citrullinated isomer of myelin basic protein can induce inflammatory responses in astrocytes. IBRO Neurosci Rep 2024; 16:127-134. [PMID: 38288135 PMCID: PMC10823069 DOI: 10.1016/j.ibneur.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/15/2023] [Indexed: 01/31/2024] Open
Abstract
Purpose During the course of demyelinating inflammatory diseases, myelin-derived proteins, including myelin basic protein(MBP), are secreted into extracellular space. MBP shows extensive post-translational modifications, including deimination/citrullination. Deiminated MBP is structurally less ordered, susceptible to proteolytic attack, and more immunogenic than unmodified MBP. This study investigated the effect of the deiminated/citrullinated isomer of MBP(C8) and the unmodified isomer of MBP(C1) on cultured primary astrocytes. Methods MBP charge isomers were isolated/purified from bovine brain. Primary astrocyte cultures were prepared from the 2-day-old Wistar rats. For evaluation of glutamate release/uptake a Fluorimetric glutamate assay was used. Expression of peroxisome proliferator-activated receptor-gamma(PPAR-γ), excitatory amino acid transporter 2(EAAT2), the inhibitor of the nuclear factor kappa-B(ikB) and high mobility group-B1(HMGB1) protein were assayed by Western blot analysis. IL-17A expression was determined in cell medium by ELISA. Results We found that MBP(C8) and MBP(C1) acted differently on the uptake/release of glutamate in astrocytes: C1 increased glutamate uptake and did not change its release, whereas C8 decreased glutamate release but did not change its uptake. Both isomers increased the expression of PPAR-γ and EAAT2 to the same degree. Western blots of cell lysates revealed decreased expression of ikB and increased expression of HMGB1 proteins after treatment of astrocytes by C8. Moreover, C8-treated cells released more nitric oxide and proinflammatory IL-17A than C1-treated cells. Conclusions These data suggest that the most immunogenic deiminated isomer C8, in parallel to the decreases in glutamate release, elicits an inflammatory response and enhances the secretion of proinflammatory molecules via activation of nuclear factor kappa B(NF-kB). Summary statement The most modified-citrullinated myelin basic protein charge isomer decreases glutamate release, elicits an inflammatory response and enhances the secretion of proinflammatory molecules via activation of nuclear factor kappa B in astrocytes.
Collapse
Affiliation(s)
| | - Nino Mamulashvili
- Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
| | - Maia Sepashvili
- Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
- Department of Biochemistry, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Nana Narmania
- Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
- Department of Biochemistry, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Jeremy Ramsden
- Department of Biomedical Research, The University of Buckingham, Hunter Street, Buckingham MK18 1EG, UK
| | - Lali Shanshiashvili
- Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
- Department of Biochemistry, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - David Mikeladze
- Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
- Department of Biochemistry, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| |
Collapse
|
4
|
Silva-Parra J, Ramírez-Martínez L, Palafox-Gómez C, Sandu C, López-Bayghen E, Vega L, Elizondo G, Loaeza-Loaeza J, Hernández-Sotelo D, Hernández-Kelly LC, Felder-Schmittbuhl MP, Ortega A. Aryl Hydrocarbon Receptor Involvement in the Sodium-Dependent Glutamate/Aspartate Transporter Regulation in Cerebellar Bergmann Glia Cells. ACS Chem Neurosci 2024; 15:1276-1285. [PMID: 38454572 PMCID: PMC10958506 DOI: 10.1021/acschemneuro.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
Glutamate, the major excitatory neurotransmitter in the vertebrate brain, exerts its functions through the activation of specific plasma membrane receptors and transporters. Overstimulation of glutamate receptors results in neuronal cell death through a process known as excitotoxicity. A family of sodium-dependent glutamate plasma membrane transporters is responsible for the removal of glutamate from the synaptic cleft, preventing an excitotoxic insult. Glial glutamate transporters carry out more than 90% of the brain glutamate uptake activity and are responsible for glutamate recycling through the GABA/Glutamate/Glutamine shuttle. The aryl hydrocarbon receptor is a ligand-dependent transcription factor that integrates environmental clues through its ability to heterodimerize with different transcription factors. Taking into consideration the fundamental role of glial glutamate transporters in glutamatergic synapses and that these transporters are regulated at the transcriptional, translational, and localization levels in an activity-dependent fashion, in this contribution, we explored the involvement of the aryl hydrocarbon receptor, as a model of environmental integrator, in the regulation of the glial sodium-dependent glutamate/aspartate transporter. Using the model of chick cerebellar Bergmann glia cells, we report herein that the aryl hydrocarbon receptors exert a time-dependent decrease in the transporter mRNA levels and a diminution of its uptake activity. The nuclear factor kappa light chain enhancer of the activated B cell signaling pathway is involved in this regulation. Our results favor the notion of an environmentally dependent regulation of glutamate removal in glial cells and therefore strengthen the notion of the involvement of glial cells in xenobiotic neurotoxic effects.
Collapse
Affiliation(s)
- Janisse Silva-Parra
- Departamento
de Toxicología, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México 07360, Mexico
| | - Leticia Ramírez-Martínez
- Departamento
de Toxicología, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México 07360, Mexico
| | - Cecilia Palafox-Gómez
- Departamento
de Toxicología, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México 07360, Mexico
| | - Cristina Sandu
- Centre
National de la Recherche Scientifique, Université
de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg 00000, France
| | - Esther López-Bayghen
- Departamento
de Toxicología, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México 07360, Mexico
| | - Libia Vega
- Departamento
de Toxicología, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México 07360, Mexico
| | - Guillermo Elizondo
- Departamento
de Biología Celular, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México 07360, Mexico
| | - Jaqueline Loaeza-Loaeza
- Departamento
de Toxicología, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México 07360, Mexico
| | - Daniel Hernández-Sotelo
- Facultad
de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39070, Guerrero, Mexico
| | - Luisa C. Hernández-Kelly
- Departamento
de Toxicología, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México 07360, Mexico
| | - Marie-Paule Felder-Schmittbuhl
- Centre
National de la Recherche Scientifique, Université
de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg 00000, France
| | - Arturo Ortega
- Departamento
de Toxicología, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México 07360, Mexico
| |
Collapse
|
5
|
Olajide OJ, Chapman CA. Amyloid-β (1-42) peptide induces rapid NMDA receptor-dependent alterations at glutamatergic synapses in the entorhinal cortex. Neurobiol Aging 2021; 105:296-309. [PMID: 34144329 DOI: 10.1016/j.neurobiolaging.2021.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 12/29/2022]
Abstract
The hippocampus and entorhinal cortex (EC) accumulate amyloid beta peptides (Aβ) that promote neuropathology in Alzheimer's disease, but the early effects of Aβ on excitatory synaptic transmission in the EC have not been well characterized. To assess the acute effects of Aβ1-42 on glutamatergic synapses, acute brain slices from wildtype rats were exposed to Aβ1-42 or control solution for 3 hours, and tissue was analyzed using protein immunoblotting and quantitative PCR. Presynaptically, Aβ1-42 induced marked reductions in synaptophysin, synapsin-2a mRNA, and mGluR3 mRNA, and increased both VGluT2 protein and Ca2+-activated channel KCa2.2 mRNA levels. Postsynaptically, Aβ1-42 reduced PSD95 and GluN2B protein, and also downregulated GluN2B and GluN2A mRNA, without affecting scaffolding elements SAP97 and PICK1. mGluR5 mRNA was strongly increased, while mGluR1 mRNA was unaffected. Blocking either GluN2A- or GluN2B-containing NMDA receptors did not significantly prevent synaptic changes induced by Aβ1-42, but combined blockade did prevent synaptic alterations. These findings demonstrate that Aβ1-42 rapidly disrupts glutamatergic transmission in the EC through mechanisms involving concurrent activation of GluN2A- and GluN2B-containing NMDA receptors.
Collapse
Affiliation(s)
- Olayemi Joseph Olajide
- Division of Neurobiology, Department of Anatomy, University of Ilorin, Ilorin, Nigeria; Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada
| | - Clifton Andrew Chapman
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada.
| |
Collapse
|
6
|
Rodríguez-Campuzano AG, Ortega A. Glutamate transporters: Critical components of glutamatergic transmission. Neuropharmacology 2021; 192:108602. [PMID: 33991564 DOI: 10.1016/j.neuropharm.2021.108602] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the vertebrate central nervous system. Once released, it binds to specific membrane receptors and transporters activating a wide variety of signal transduction cascades, as well as its removal from the synaptic cleft in order to avoid its extracellular accumulation and the overstimulation of extra-synaptic receptors that might result in neuronal death through a process known as excitotoxicity. Although neurodegenerative diseases are heterogenous in clinical phenotypes and genetic etiologies, a fundamental mechanism involved in neuronal degeneration is excitotoxicity. Glutamate homeostasis is critical for brain physiology and Glutamate transporters are key players in maintaining low extracellular Glutamate levels. Therefore, the characterization of Glutamate transporters has been an active area of glutamatergic research for the last 40 years. Transporter activity its regulated at different levels: transcriptional and translational control, transporter protein trafficking and membrane mobility, and through extensive post-translational modifications. The elucidation of these mechanisms has emerged as an important piece to shape our current understanding of glutamate actions in the nervous system.
Collapse
Affiliation(s)
- Ada G Rodríguez-Campuzano
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico.
| |
Collapse
|
7
|
Tarantini S, Balasubramanian P, Yabluchanskiy A, Ashpole NM, Logan S, Kiss T, Ungvari A, Nyúl-Tóth Á, Schwartzman ML, Benyo Z, Sonntag WE, Csiszar A, Ungvari Z. IGF1R signaling regulates astrocyte-mediated neurovascular coupling in mice: implications for brain aging. GeroScience 2021; 43:901-911. [PMID: 33674953 PMCID: PMC8110646 DOI: 10.1007/s11357-021-00350-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with a significant deficiency in circulating insulin-like growth factor-1 (IGF-1), which has an important role in the pathogenesis of age-related vascular cognitive impairment (VCI). Impairment of moment-to-moment adjustment of regional cerebral blood flow via neurovascular coupling (NVC) importantly contributes to VCI. Previous studies established a causal link between circulating IGF-1 deficiency and neurovascular dysfunction. Release of vasodilator mediators from activated astrocytes plays a key role in NVC. To determine the impact of impaired IGF-1 signaling on astrocytic function, astrocyte-mediated NVC responses were studied in a novel mouse model of astrocyte-specific knockout of IGF1R (GFAP-CreERT2/Igf1rf/f) and accelerated neurovascular aging. We found that mice with disrupted astrocytic IGF1R signaling exhibit impaired NVC responses, decreased stimulated release of the vasodilator gliotransmitter epoxy-eicosatrienoic acids (EETs), and upregulation of soluble epoxy hydrolase (sEH), which metabolizes and inactivates EETs. Collectively, our findings provide additional evidence that IGF-1 promotes astrocyte health and maintains normal NVC, protecting cognitive health.
Collapse
Affiliation(s)
- Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Nicole M Ashpole
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Pharmacology Division, Department of BioMolecular Sciences, University of Mississippi School of Pharmacy, Oxford, MS, USA
| | - Sreemathi Logan
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Rehabilitation Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
- Vascular Cognitive Impairment and Neurodegeneration Program/HCEMM, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Michal L Schwartzman
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Zoltan Benyo
- Vascular Cognitive Impairment and Neurodegeneration Program/HCEMM, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - William E Sonntag
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- Vascular Cognitive Impairment and Neurodegeneration Program/HCEMM, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- Vascular Cognitive Impairment and Neurodegeneration Program/HCEMM, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
8
|
Şengül B, Dursun E, Verkhratsky A, Gezen-Ak D. Overexpression of α-Synuclein Reorganises Growth Factor Profile of Human Astrocytes. Mol Neurobiol 2020; 58:184-203. [PMID: 32914394 DOI: 10.1007/s12035-020-02114-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 09/01/2020] [Indexed: 12/26/2022]
Abstract
Misfolding and accumulation of aberrant α-synuclein in the brain is associated with the distinct class of neurodegenerative diseases known as α-synucleinopathies, which include Parkinson's disease, dementia with Lewy bodies and multiple system atrophy. Pathological changes in astrocytes contribute to all neurological disorders, and astrocytes are reported to possess α-synuclein inclusions in the context of α-synucleinopathies. Astrocytes are known to express and secrete numerous growth factors, which are fundamental for neuroprotection, synaptic connectivity and brain metabolism; changes in growth factor secretion may contribute to pathobiology of neurological disorders. Here we analysed the effect of α-synuclein overexpression in cultured human astrocytes on growth factor expression and release. For this purpose, the intracellular and secreted levels of 33 growth factors (GFs) and 8 growth factor receptors (GFRs) were analysed in cultured human astrocytes by chemiluminescence-based western/dot blot. Overexpression of human α-synuclein in cultured foetal human astrocytes significantly changes the profile of GF production and secretion. We found that human astrocytes express and secrete FGF2, FGF6, EGF, IGF1, AREG, IGFBP2, IGFBP4, VEGFD, PDGFs, KITLG, PGF, TGFB3 and NTF4. Overexpression of human α-synuclein significantly modified the profile of GF production and secretion, with particularly strong changes in EGF, PDGF, VEGF and their receptors as well as in IGF-related proteins. Bioinformatics analysis revealed possible interactions between α-synuclein and EGFR and GDNF, as well as with three GF receptors, EGFR, CSF1R and PDGFRB.
Collapse
Affiliation(s)
- Büşra Şengül
- Brain and Neurodegenerative Disorders Research Laboratories, Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Erdinç Dursun
- Brain and Neurodegenerative Disorders Research Laboratories, Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.,Department of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK. .,Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Duygu Gezen-Ak
- Brain and Neurodegenerative Disorders Research Laboratories, Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
9
|
Prabhu D, Khan SM, Blackburn K, Marshall JP, Ashpole NM. Loss of insulin-like growth factor-1 signaling in astrocytes disrupts glutamate handling. J Neurochem 2019; 151:689-702. [PMID: 31563149 DOI: 10.1111/jnc.14879] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 12/25/2022]
Abstract
Insulin-like Growth Factor-1 (IGF-1) has been studied extensively for its ability to promote neuronal growth and excitability. Declining levels of IGF-1 have been correlated with impaired learning and memory as well as an increased risk of neurodegenerative diseases. While neuronal regulation by IGF-1 is well understood, the role of IGF-1 in influencing astrocyte function requires further exploration. Astrocytes regulate many aspects of the brain microenvironment, including controlling glutamate-glutamine cycling, which ultimately supports neuronal metabolism, neurotransmission, and protection from over stimulation. In this study, we examined whether IGF-1 acts through its cognate receptor, IGFR, to alter astrocytic glutamate handling. We utilized both small molecule IGFR inhibitors and Cre-driven genetic approaches to reduce IGFR in vivo and in cultured rodent astrocytes. When IGFR was knocked out of primary astrocytes derived from igfrf/f mice using AAV5-CMV-Cre, significant reductions in glutamate uptake were observed. Similarly, inhibition of IGFR with picropodophyllotoxin for 2 h, as well as 24 h, reduced glutamate uptake in vitro. Mechanistically, short-term inhibition of IGFR resulted in a significant decrease in glutamate transporter availability on the cell surface, as assessed by biotinylation. Long-term inhibition of IGFR led to significant reductions in mRNA expression of glutamate transport machinery, as assessed with qPCR. Reduced glutamate transporter mRNA was also observed in the brains of astrocyte-specific IGFR-deficient mice, three to four months after knock-out was induced with tamoxifen. Interestingly, long-term IGF-1 inhibition also resulted in an increase in adenosine triphosphate-stimulated glutamate release, though no change in adenosine triphosphate-stimulated calcium flux was observed nor were any changes in purinergic receptor protein expression. Together, these data suggest that reduced IGF-1 signaling will favor an accumulation of extrasynaptic glutamate, which may contribute to neurodegeneration in disease states where IGF-1 levels are low. Cover Image for this issue: doi: 10.1111/jnc.14534.
Collapse
Affiliation(s)
- Disha Prabhu
- Department of BioMolecular Sciences, University of Mississippi School of Pharmacy, University, Mississippi, USA
| | - Sariya M Khan
- Department of BioMolecular Sciences, University of Mississippi School of Pharmacy, University, Mississippi, USA
| | - Katherine Blackburn
- Department of BioMolecular Sciences, University of Mississippi School of Pharmacy, University, Mississippi, USA
| | - Jessica P Marshall
- Department of BioMolecular Sciences, University of Mississippi School of Pharmacy, University, Mississippi, USA
| | - Nicole M Ashpole
- Department of BioMolecular Sciences, University of Mississippi School of Pharmacy, University, Mississippi, USA.,Research Institute of Pharmaceutical Sciences, University of Mississippi School of Pharmacy, University, Mississippi, USA
| |
Collapse
|
10
|
Olivares-Bañuelos TN, Chí-Castañeda D, Ortega A. Glutamate transporters: Gene expression regulation and signaling properties. Neuropharmacology 2019; 161:107550. [PMID: 30822498 DOI: 10.1016/j.neuropharm.2019.02.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 12/24/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the vertebrate central nervous system. During synaptic activity, glutamate is released and binds to specific membrane receptors and transporters activating, in the one hand, a wide variety of signal transduction cascades, while in the other hand, its removal from the synaptic cleft. Extracellular glutamate concentrations are maintained within physiological levels mainly by glia glutamate transporters. Inefficient clearance of this amino acid is neurotoxic due to a prolonged hyperactivation of its postsynaptic receptors, exacerbating a wide array of intracellular events linked to an ionic imbalance, that results in neuronal cell death. This process is known as excitotoxicity and is the underlying mechanisms of an important number of neurodegenerative diseases. Therefore, it is important to understand the regulation of glutamate transporters function. The transporter activity can be regulated at different levels: gene expression, transporter protein targeting and trafficking, and post-translational modifications of the transporter protein. The identification of these mechanisms has paved the way to our current understanding the role of glutamate transporters in brain physiology and will certainly provide the needed biochemical information for the development of therapeutic strategies towards the establishment of novel therapeutic approaches for the treatment and/or prevention of pathologies associated with excitotoxicity insults. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Tatiana N Olivares-Bañuelos
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Carretera Tijuana-Ensenada No. 3917, Fraccionamiento Playitas, 22860, Ensenada, Baja California, Mexico
| | - Donají Chí-Castañeda
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico.
| |
Collapse
|
11
|
Mahmoud S, Gharagozloo M, Simard C, Gris D. Astrocytes Maintain Glutamate Homeostasis in the CNS by Controlling the Balance between Glutamate Uptake and Release. Cells 2019; 8:E184. [PMID: 30791579 PMCID: PMC6406900 DOI: 10.3390/cells8020184] [Citation(s) in RCA: 399] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 01/26/2023] Open
Abstract
Glutamate is one of the most prevalent neurotransmitters released by excitatory neurons in the central nervous system (CNS); however, residual glutamate in the extracellular space is, potentially, neurotoxic. It is now well-established that one of the fundamental functions of astrocytes is to uptake most of the synaptically-released glutamate, which optimizes neuronal functions and prevents glutamate excitotoxicity. In the CNS, glutamate clearance is mediated by glutamate uptake transporters expressed, principally, by astrocytes. Interestingly, recent studies demonstrate that extracellular glutamate stimulates Ca2+ release from the astrocytes' intracellular stores, which triggers glutamate release from astrocytes to the adjacent neurons, mostly by an exocytotic mechanism. This released glutamate is believed to coordinate neuronal firing and mediate their excitatory or inhibitory activity. Therefore, astrocytes contribute to glutamate homeostasis in the CNS, by maintaining the balance between their opposing functions of glutamate uptake and release. This dual function of astrocytes represents a potential therapeutic target for CNS diseases associated with glutamate excitotoxicity. In this regard, we summarize the molecular mechanisms of glutamate uptake and release, their regulation, and the significance of both processes in the CNS. Also, we review the main features of glutamate metabolism and glutamate excitotoxicity and its implication in CNS diseases.
Collapse
Affiliation(s)
- Shaimaa Mahmoud
- Program of Immunology, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Marjan Gharagozloo
- Program of Immunology, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Camille Simard
- Program of Immunology, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Denis Gris
- Program of Immunology, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
12
|
Even-Chen O, Barak S. The role of fibroblast growth factor 2 in drug addiction. Eur J Neurosci 2018; 50:2552-2561. [PMID: 30144335 DOI: 10.1111/ejn.14133] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/08/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022]
Abstract
Fibroblast growth factor 2 (FGF2) is a member of the FGF-family, which consists of 22 members, with four known FGF receptors (five in humans). Over the last 30 years, FGF2 has been extensively studied for its role in cell proliferation, differentiation, growth, survival and angiogenesis during development, as well as for its role in adult neurogenesis and regenerative plasticity. Over the past decade, FGF2 has been implicated in learning and memory, as well as in several neuropsychiatric disorders, including anxiety, stress, depression and drug addiction. In this review, we present accumulating evidence indicating the involvement of FGF2 in neuroadaptations caused by drugs of abuse, namely, amphetamine, cocaine, nicotine and alcohol. Moreover, evidence suggests that FGF2 is a positive regulator of alcohol and drug-related behaviors. Thus, although additional studies are yet required, we suggest that reducing FGF2 activity may provide a novel therapeutic approach for substance use disorders.
Collapse
Affiliation(s)
- Oren Even-Chen
- School of Psychological Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Segev Barak
- School of Psychological Sciences, Tel Aviv University, 69978, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
Ratcliffe LE, Vázquez Villaseñor I, Jennings L, Heath PR, Mortiboys H, Schwartzentruber A, Karyka E, Simpson JE, Ince PG, Garwood CJ, Wharton SB. Loss of IGF1R in Human Astrocytes Alters Complex I Activity and Support for Neurons. Neuroscience 2018; 390:46-59. [PMID: 30056117 PMCID: PMC6372003 DOI: 10.1016/j.neuroscience.2018.07.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 11/15/2022]
Abstract
We have established a novel human astrocyte-neuron co-culture system. Astrocytes provided contact-mediated support for neurite outgrowth. IGF1R-impaired astrocytes are less able to protect neurons under stress conditions. Microarray analysis of these astrocytes identified changes in energy metabolism.
The insulin/insulin-like growth factor 1 (IGF1) signaling pathways are implicated in longevity and in progression of Alzheimer’s disease. Previously, we showed that insulin-like growth factor 1 receptor (IGF1R) and downstream signaling transcripts are reduced in astrocytes in human brain with progression of Alzheimer’s neuropathology and developed a model of IGF1 signaling impairment in human astrocytes using an IGF1R-specific monoclonal antibody, MAB391. Here, we have established a novel human astrocyte-neuron co-culture system to determine whether loss of astrocytic IGF1R affects their support for neurons. Astrocyte-neuron co-cultures were developed using human primary astrocytes and differentiated Lund Human Mesencephalic Cells (LUHMES). Neurite outgrowth assays, performed to measure astrocytic support for neurons, showed astrocytes provided contact-mediated support for neurite outgrowth. Loss of IGF1R did not affect neurite outgrowth under control conditions but when challenged with hydrogen peroxide IGF1R-impaired astrocytes were less able to protect LUHMES. To determine how loss of IGF1R affects neuronal support MAB391-treated astrocytes were FACS sorted from GFP-LUHMES and their transcriptomic profile was investigated using microarrays. Changes in transcripts involved in astrocyte energy metabolism were identified, particularly NDUFA2 and NDUFB6, which are related to complex I assembly. Loss of complex I activity in MAB391-treated astrocytes validated these findings. In conclusion, reduced IGF1 signaling in astrocytes impairs their support for neurons under conditions of stress and this is associated with defects in the mitochondrial respiratory chain in astrocytes.
Collapse
Affiliation(s)
- Laura E Ratcliffe
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Irina Vázquez Villaseñor
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Luke Jennings
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Aurelie Schwartzentruber
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Evangelia Karyka
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Paul G Ince
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Claire J Garwood
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK.
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| |
Collapse
|
14
|
Logan S, Pharaoh GA, Marlin MC, Masser DR, Matsuzaki S, Wronowski B, Yeganeh A, Parks EE, Premkumar P, Farley JA, Owen DB, Humphries KM, Kinter M, Freeman WM, Szweda LI, Van Remmen H, Sonntag WE. Insulin-like growth factor receptor signaling regulates working memory, mitochondrial metabolism, and amyloid-β uptake in astrocytes. Mol Metab 2018; 9:141-155. [PMID: 29398615 PMCID: PMC5870102 DOI: 10.1016/j.molmet.2018.01.013] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 01/01/2023] Open
Abstract
Objective A decline in mitochondrial function and biogenesis as well as increased reactive oxygen species (ROS) are important determinants of aging. With advancing age, there is a concomitant reduction in circulating levels of insulin-like growth factor-1 (IGF-1) that is closely associated with neuronal aging and neurodegeneration. In this study, we investigated the effect of the decline in IGF-1 signaling with age on astrocyte mitochondrial metabolism and astrocyte function and its association with learning and memory. Methods Learning and memory was assessed using the radial arm water maze in young and old mice as well as tamoxifen-inducible astrocyte-specific knockout of IGFR (GFAP-CreTAM/igfrf/f). The impact of IGF-1 signaling on mitochondrial function was evaluated using primary astrocyte cultures from igfrf/f mice using AAV-Cre mediated knockdown using Oroboros respirometry and Seahorse assays. Results Our results indicate that a reduction in IGF-1 receptor (IGFR) expression with age is associated with decline in hippocampal-dependent learning and increased gliosis. Astrocyte-specific knockout of IGFR also induced impairments in working memory. Using primary astrocyte cultures, we show that reducing IGF-1 signaling via a 30–50% reduction IGFR expression, comparable to the physiological changes in IGF-1 that occur with age, significantly impaired ATP synthesis. IGFR deficient astrocytes also displayed altered mitochondrial structure and function and increased mitochondrial ROS production associated with the induction of an antioxidant response. However, IGFR deficient astrocytes were more sensitive to H2O2-induced cytotoxicity. Moreover, IGFR deficient astrocytes also showed significantly impaired glucose and Aβ uptake, both critical functions of astrocytes in the brain. Conclusions Regulation of astrocytic mitochondrial function and redox status by IGF-1 is essential to maintain astrocytic function and coordinate hippocampal-dependent spatial learning. Age-related astrocytic dysfunction caused by diminished IGF-1 signaling may contribute to the pathogenesis of Alzheimer's disease and other age-associated cognitive pathologies. Altered mitochondrial structure and function with IGFR deficiency in astrocytes is proposed. Increased reactive oxygen species production and susceptibility to peroxide induced cytotoxicity. Decreased Aβ uptake and impairment in spatial working memory.
Collapse
Affiliation(s)
- Sreemathi Logan
- Reynold's Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, USA.
| | - Gavin A Pharaoh
- Department of Physiology, University of Oklahoma Health Sciences Center, USA; Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, USA
| | - M Caleb Marlin
- Graduate College, University of Oklahoma Health Sciences Center, USA
| | - Dustin R Masser
- Reynold's Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, USA; Department of Physiology, University of Oklahoma Health Sciences Center, USA
| | - Satoshi Matsuzaki
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, USA
| | - Benjamin Wronowski
- Reynold's Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, USA; Department of Physiology, University of Oklahoma Health Sciences Center, USA
| | - Alexander Yeganeh
- Reynold's Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, USA
| | - Eileen E Parks
- Reynold's Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, USA
| | - Pavithra Premkumar
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, USA
| | - Julie A Farley
- Reynold's Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, USA
| | - Daniel B Owen
- Reynold's Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, USA
| | - Kenneth M Humphries
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, USA
| | - Michael Kinter
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, USA
| | - Willard M Freeman
- Reynold's Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, USA; Department of Physiology, University of Oklahoma Health Sciences Center, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, USA
| | - Luke I Szweda
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, USA
| | - Holly Van Remmen
- Department of Physiology, University of Oklahoma Health Sciences Center, USA; Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, USA
| | - William E Sonntag
- Reynold's Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, USA; Department of Physiology, University of Oklahoma Health Sciences Center, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, USA
| |
Collapse
|
15
|
Rose CR, Felix L, Zeug A, Dietrich D, Reiner A, Henneberger C. Astroglial Glutamate Signaling and Uptake in the Hippocampus. Front Mol Neurosci 2018; 10:451. [PMID: 29386994 PMCID: PMC5776105 DOI: 10.3389/fnmol.2017.00451] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022] Open
Abstract
Astrocytes have long been regarded as essentially unexcitable cells that do not contribute to active signaling and information processing in the brain. Contrary to this classical view, it is now firmly established that astrocytes can specifically respond to glutamate released from neurons. Astrocyte glutamate signaling is initiated upon binding of glutamate to ionotropic and/or metabotropic receptors, which can result in calcium signaling, a major form of glial excitability. Release of so-called gliotransmitters like glutamate, ATP and D-serine from astrocytes in response to activation of glutamate receptors has been demonstrated to modulate various aspects of neuronal function in the hippocampus. In addition to receptors, glutamate binds to high-affinity, sodium-dependent transporters, which results in rapid buffering of synaptically-released glutamate, followed by its removal from the synaptic cleft through uptake into astrocytes. The degree to which astrocytes modulate and control extracellular glutamate levels through glutamate transporters depends on their expression levels and on the ionic driving forces that decrease with ongoing activity. Another major determinant of astrocytic control of glutamate levels could be the precise morphological arrangement of fine perisynaptic processes close to synapses, defining the diffusional distance for glutamate, and the spatial proximity of transporters in relation to the synaptic cleft. In this review, we will present an overview of the mechanisms and physiological role of glutamate-induced ion signaling in astrocytes in the hippocampus as mediated by receptors and transporters. Moreover, we will discuss the relevance of astroglial glutamate uptake for extracellular glutamate homeostasis, focusing on how activity-induced dynamic changes of perisynaptic processes could shape synaptic transmission at glutamatergic synapses.
Collapse
Affiliation(s)
- Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Lisa Felix
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Andre Zeug
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Dirk Dietrich
- Department of Neurosurgery, University of Bonn Medical School, Bonn, Germany
| | - Andreas Reiner
- Cellular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany.,German Center for Degenerative Diseases (DZNE), Bonn, Germany.,Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
16
|
Karki P, Hong P, Johnson J, Pajarillo E, Son DS, Aschner M, Lee EY. Arundic Acid Increases Expression and Function of Astrocytic Glutamate Transporter EAAT1 Via the ERK, Akt, and NF-κB Pathways. Mol Neurobiol 2017; 55:5031-5046. [PMID: 28812276 PMCID: PMC5964991 DOI: 10.1007/s12035-017-0709-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/02/2017] [Indexed: 12/22/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the brain, but excessive synaptic glutamate must be removed to prevent excitotoxic injury and death. Two astrocytic glutamate transporters, excitatory amino acid transporter (EAAT) 1 and 2, play a major role in eliminating excess glutamate from the synapse. Dysregulation of EAAT1 contributes to the pathogenesis of multiple neurological disorders, such as Alzheimer's disease (AD), ataxia, traumatic brain injuries, and glaucoma. In the present study, we investigated the effect of arundic acid on EAAT1 to determine its efficacy in enhancing the expression and function of EAAT1, and its possible mechanisms of action. The studies were carried out in human astrocyte H4 cells as well as in human primary astrocytes. Our findings show that arundic acid upregulated EAAT1 expression at the transcriptional level by activating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Arundic acid increased astrocytic EAAT1 promoter activity, messenger RNA (mRNA)/protein levels, and glutamate uptake, while pharmacological inhibition of NF-κB or mutation on NF-κB binding sites in the EAAT1 promoter region abrogated these effects. Arundic acid increased NF-κB reporter activity and induced NF-κB nuclear translocation as well as its bindings to the EAAT1 promoter. Furthermore, arundic acid activated the Akt and ERK signaling pathways to enhance EAAT1 mRNA/protein levels. Finally, arundic acid attenuated manganese-induced decrease in EAAT1 expression by inhibiting expression of the transcription factor Ying Yang 1 (YY1). These results demonstrate that arundic acid increases the expression and function of EAAT1 via the Akt, ERK, and NF-κB signaling pathways, and reverses Mn-induced EAAT1 repression by inhibiting the Mn-induced YY1 activation.
Collapse
Affiliation(s)
- Pratap Karki
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Peter Hong
- Department of Physiology, Meharry Medical College, Nashville, TN, 37208, USA
| | - James Johnson
- Department of Physiology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Edward Pajarillo
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Deok-Soo Son
- Department of Physiology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Eunsook Y Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32307, USA.
| |
Collapse
|
17
|
Krycer JR, Fazakerley DJ, Cater RJ, C Thomas K, Naghiloo S, Burchfield JG, Humphrey SJ, Vandenberg RJ, Ryan RM, James DE. The amino acid transporter, SLC1A3, is plasma membrane-localised in adipocytes and its activity is insensitive to insulin. FEBS Lett 2017; 591:322-330. [PMID: 28032905 DOI: 10.1002/1873-3468.12549] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/25/2016] [Accepted: 12/23/2016] [Indexed: 12/21/2022]
Abstract
The hormone insulin coordinates the catabolism of nutrients by protein phosphorylation. Phosphoproteomic analysis identified insulin-responsive phosphorylation of the Glu/Asp transporter SLC1A3/EAAT1 in adipocytes. The role of SLC1A3 in adipocytes is not well-understood. We show that SLC1A3 is localised to the plasma membrane and the major regulator of acidic amino acid uptake in adipocytes. However, its localisation and activity were unaffected by insulin or mutation of the insulin-regulated phosphosite. The latter was also observed using a heterologous expression system in Xenopus laevis oocytes. Thus, SLC1A3 maintains a constant import of acidic amino acids independently of nutritional status in adipocytes.
Collapse
Affiliation(s)
- James R Krycer
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Daniel J Fazakerley
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Rosemary J Cater
- Discipline of Pharmacology, Sydney Medical School, The University of Sydney, NSW, Australia
| | - Kristen C Thomas
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Sheyda Naghiloo
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - James G Burchfield
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Sean J Humphrey
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Robert J Vandenberg
- Discipline of Pharmacology, Sydney Medical School, The University of Sydney, NSW, Australia
| | - Renae M Ryan
- Discipline of Pharmacology, Sydney Medical School, The University of Sydney, NSW, Australia
| | - David E James
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, NSW, Australia
| |
Collapse
|
18
|
Regulation of Glutamate Transporter Expression in Glial Cells. ADVANCES IN NEUROBIOLOGY 2017; 16:199-224. [DOI: 10.1007/978-3-319-55769-4_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Chen X, Lu M, He X, Ma L, Birnbaumer L, Liao Y. TRPC3/6/7 Knockdown Protects the Brain from Cerebral Ischemia Injury via Astrocyte Apoptosis Inhibition and Effects on NF-кB Translocation. Mol Neurobiol 2016; 54:7555-7566. [PMID: 27826749 DOI: 10.1007/s12035-016-0227-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 10/10/2016] [Indexed: 12/23/2022]
Abstract
Ischemia contributes significantly to morbidity and mortality associated with many common neurological diseases. Calcium overload is an important mechanism of cerebral ischemia and reperfusion (I/R) injury. Despite decades of intense research, an effective beneficial treatment of stroke remains limited; few therapeutic strategies exist to combat the consequences of cerebral ischemia. Traditionally, a "neurocentric" view has dominated research in this field. Evidence is now accumulating that glial cells, especially astrocytes, play an important role in the pathophysiology of cerebral ischemia. Here, we show that transient receptor potential (TRP)C3/6/7 knockout (KO) mice subjected to an I/R procedure demonstrate ameliorated brain injury (infract size), compared to wild-type (WT) control animals. This is accompanied by reduction of NF-кB phosphorylation and an increase in protein kinase B (AKT) phosphorylation in I/R-injured brain tissues in TRPC3/6/7 KO mice. Also, the expression of pro-apoptotic protein Bcl-2 associated X (Bax) is down-regulated and that of anti-apoptotic protein Bcl-2 is upregulated in TRPC3/6/7-/- mice. Astrocytes isolated from TRPC3/6/7 KO mice and subjected to oxygen/glucose deprivation and subsequent reoxygenation (OGD-R, mimicking in vivo I/R injury) also exhibit enhanced Bcl-2 expression, reduced Bax expression, enhanced AKT phosphorylation, and reduced NF-кB phosphorylation. Furthermore, apoptotic rates of TRPC3/6/7 KO astrocytes cultured in OGD-R conditions were reduced significantly compared to WT control. These findings suggest TRPC3/6/7 channels play a detrimental role in brain I/R injury. Deletion of these channels can interfere with the activation of NF-кB (pro-apoptotic), promote activation of AKT (anti-apoptotic), and ultimately, ameliorate brain damage via inhibition of astrocyte apoptosis after cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Xiaoyun Chen
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Brain Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Min Lu
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Brain Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiju He
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Brain Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Le Ma
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Brain Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
- Institute of Biomedical Research (BIOMED), Catholic University of Argentina, C1107AFF, Buenos Aires, Argentina
| | - Yanhong Liao
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Brain Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
20
|
Takada T, Takata K, Ashihara E. Inhibition of monocarboxylate transporter 1 suppresses the proliferation of glioblastoma stem cells. J Physiol Sci 2016; 66:387-96. [PMID: 26902636 PMCID: PMC10717967 DOI: 10.1007/s12576-016-0435-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/26/2016] [Indexed: 02/01/2023]
Abstract
Recent evidence suggests that a minor subset of cancer cells, termed cancer stem cells (CSCs), have self-renewal and tumorigenic potential. Therefore, the characterization of CSCs is important for developing therapeutic strategies against cancer. Cancer cells rely on anaerobic glycolysis to produce ATP even under normoxic conditions, resulting in the generation of excess acidic substances. Cancer cells maintain a weakly alkaline intracellular pH to support functions. Glioblastoma is an aggressive malignancy with a poor 5-year survival rate. Based on the hypothesis that ion transport-related molecules regulate the viability and function of CSCs, we investigated the expression of ion transport-related molecules in glioblastoma CSCs (GSCs). Quantitative RT-PCR analysis showed that monocarboxylate transporter1 (MCT1) were upregulated in GSCs, and inhibition of MCT1 decreased the viability of GSCs compared with that of non-GSCs. Our findings indicate that MCT1 is involved in the maintenance of GSCs and is a promising therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Tetsuya Takada
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, 5 Nakauchi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Kazuyuki Takata
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, 5 Nakauchi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Eishi Ashihara
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, 5 Nakauchi, Yamashina-ku, Kyoto, 607-8414, Japan.
| |
Collapse
|
21
|
Martinez-Lozada Z, Guillem AM, Robinson MB. Transcriptional Regulation of Glutamate Transporters: From Extracellular Signals to Transcription Factors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 76:103-45. [PMID: 27288076 DOI: 10.1016/bs.apha.2016.01.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glutamate is the predominant excitatory neurotransmitter in the mammalian CNS. It mediates essentially all rapid excitatory signaling. Dysfunction of glutamatergic signaling contributes to developmental, neurologic, and psychiatric diseases. Extracellular glutamate is cleared by a family of five Na(+)-dependent glutamate transporters. Two of these transporters (GLAST and GLT-1) are relatively selectively expressed in astrocytes. Other of these transporters (EAAC1) is expressed by neurons throughout the nervous system. Expression of the last two members of this family (EAAT4 and EAAT5) is almost exclusively restricted to specific populations of neurons in cerebellum and retina, respectively. In this review, we will discuss our current understanding of the mechanisms that control transcriptional regulation of the different members of this family. Over the last two decades, our understanding of the mechanisms that regulate expression of GLT-1 and GLAST has advanced considerably; several specific transcription factors, cis-elements, and epigenetic mechanisms have been identified. For the other members of the family, little or nothing is known about the mechanisms that control their transcription. It is assumed that by defining the mechanisms involved, we will advance our understanding of the events that result in cell-specific expression of these transporters and perhaps begin to define the mechanisms by which neurologic diseases are changing the biology of the cells that express these transporters. This approach might provide a pathway for developing new therapies for a wide range of essentially untreatable and devastating diseases that kill neurons by an excitotoxic mechanism.
Collapse
Affiliation(s)
- Z Martinez-Lozada
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - A M Guillem
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - M B Robinson
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
22
|
A New Computational Model for Neuro-Glio-Vascular Coupling: Astrocyte Activation Can Explain Cerebral Blood Flow Nonlinear Response to Interictal Events. PLoS One 2016; 11:e0147292. [PMID: 26849643 PMCID: PMC4743967 DOI: 10.1371/journal.pone.0147292] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/01/2016] [Indexed: 12/31/2022] Open
Abstract
Developing a clear understanding of the relationship between cerebral blood flow (CBF) response and neuronal activity is of significant importance because CBF increase is essential to the health of neurons, for instance through oxygen supply. This relationship can be investigated by analyzing multimodal (fMRI, PET, laser Doppler…) recordings. However, the important number of intermediate (non-observable) variables involved in the underlying neurovascular coupling makes the discovery of mechanisms all the more difficult from the sole multimodal data. We present a new computational model developed at the population scale (voxel) with physiologically relevant but simple equations to facilitate the interpretation of regional multimodal recordings. This model links neuronal activity to regional CBF dynamics through neuro-glio-vascular coupling. This coupling involves a population of glial cells called astrocytes via their role in neurotransmitter (glutamate and GABA) recycling and their impact on neighboring vessels. In epilepsy, neuronal networks generate epileptiform discharges, leading to variations in astrocytic and CBF dynamics. In this study, we took advantage of these large variations in neuronal activity magnitude to test the capacity of our model to reproduce experimental data. We compared simulations from our model with isolated epileptiform events, which were obtained in vivo by simultaneous local field potential and laser Doppler recordings in rats after local bicuculline injection. We showed a predominant neuronal contribution for low level discharges and a significant astrocytic contribution for higher level discharges. Besides, neuronal contribution to CBF was linear while astrocytic contribution was nonlinear. Results thus indicate that the relationship between neuronal activity and CBF magnitudes can be nonlinear for isolated events and that this nonlinearity is due to astrocytic activity, highlighting the importance of astrocytes in the interpretation of regional recordings.
Collapse
|
23
|
Chisholm NC, Sohrabji F. Astrocytic response to cerebral ischemia is influenced by sex differences and impaired by aging. Neurobiol Dis 2016; 85:245-253. [PMID: 25843666 PMCID: PMC5636213 DOI: 10.1016/j.nbd.2015.03.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/16/2015] [Accepted: 03/26/2015] [Indexed: 12/21/2022] Open
Abstract
Ischemic stroke occurs more often among the elderly, and within this demographic, women are at an increased risk for stroke and have poorer functional recovery than men. This is also well replicated in animal studies where aging females are shown to have more extensive brain tissue loss as compared to adult females. Astrocytes provide nutrients for neurons, regulate glutamate levels, and release neurotrophins and thus play a key role in the events that occur following ischemia. In addition, astrocytes express receptors for gonadal hormones and synthesize several neurosteroids suggesting that the sex differences in stroke outcome may be mediated through astrocytes. This review discusses key astrocytic responses to ischemia including, reactive gliosis, excitotoxicity, and neuroinflammation. In light of the age and sex differences in stroke outcomes, this review highlights how aging and gonadal hormones influence these responses. Lastly, astrocyte specific changes in gene expression and epigenetic modifications during aging and following ischemia are discussed as possible molecular mechanisms for impaired astrocytic functioning.
Collapse
Affiliation(s)
- Nioka C Chisholm
- Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College of Medicine, Bryan, TX 77807, USA.
| |
Collapse
|
24
|
Stimulation of α7 nicotinic acetylcholine receptor regulates glutamate transporter GLAST via basic fibroblast growth factor production in cultured cortical microglia. Brain Res 2015; 1625:111-20. [PMID: 26327163 DOI: 10.1016/j.brainres.2015.08.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/20/2015] [Accepted: 08/22/2015] [Indexed: 12/23/2022]
Abstract
The α7 nicotinic acetylcholine (nACh) receptor expressed in microglia has a crucial role in neuroprotection. Simulation of α7 nACh receptor leads to increased expression of glutamate/aspartate transporter (GLAST), which in turn decreases synaptic glutamate levels. However, the upregulation of GLAST in cultured rat cortical microglia appears long after (over 18 h) stimulation of the α7 nACh receptor with nicotine. Thus, the current study elucidated the pathway responsible for the induction of GLAST expression in cultured cortical microglia. Nicotine-induced GLAST mRNA expression was significantly inhibited by cycloheximide pretreatment, indicating that a protein intermediary, such as a growth factor, is required for GLAST expression. The expression of fibroblast growth factor-2 (FGF-2) mRNA in cortical microglia was significantly increased 6 and 12h after treatment with nicotine, and this increase was potently inhibited by pretreatment with methyllycaconitine, a selective α7 nACh receptor antagonist. The treatment with nicotine also significantly increased FGF-2 protein expression. Furthermore, treatment with recombinant FGF-2 increased GLAST mRNA, protein expression and (14)C-glutamate uptake, a functional measurement of GLAST activity. Conversely, pretreatment with PD173074, an inhibitor of FGF receptor (FGFR) tyrosine kinase, significantly prevented the nicotine-induced expression of GLAST mRNA, its protein and (14)C-glutamate uptake. Reverse transcription polymerase chain reaction confirmed FGFR1 mRNA expression was confined to cultured cortical microglia. Together, the current findings demonstrate that the neuroprotective effect of activation of microglial α7 nACh receptors could be due to the expression of FGF-2, which in turn increases GLAST expression, thereby clearing glutamate from synapse and decreasing glutamate neurotransmission.
Collapse
|
25
|
Karki P, Kim C, Smith K, Son DS, Aschner M, Lee E. Transcriptional Regulation of the Astrocytic Excitatory Amino Acid Transporter 1 (EAAT1) via NF-κB and Yin Yang 1 (YY1). J Biol Chem 2015; 290:23725-37. [PMID: 26269591 DOI: 10.1074/jbc.m115.649327] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Indexed: 12/19/2022] Open
Abstract
Astrocytic glutamate transporter excitatory amino acid transporter (EAAT) 1, also known as glutamate aspartate transporter (GLAST) in rodents, is one of two glial glutamate transporters that are responsible for removing excess glutamate from synaptic clefts to prevent excitotoxic neuronal death. Despite its important role in neurophysiological functions, the molecular mechanisms of EAAT1 regulation at the transcriptional level remain to be established. Here, we report that NF-κB is a main positive transcription factor for EAAT1, supported by the following: 1) EAAT1 contains two consensus sites for NF-κB, 2) mutation of NF-κB binding sites decreased EAAT1 promoter activity, and 3) activation of NF-κB increased, whereas inhibition of NF-κB decreased EAAT1 promoter activity and mRNA/protein levels. EGF increased EAAT1 mRNA/protein levels and glutamate uptake via NF-κB. The transcription factor yin yang 1 (YY1) plays a role as a critical negative regulator of EAAT1, supported by the following: 1) the EAAT1 promoter contains multiple consensus sites for YY1, 2) overexpression of YY1 decreased EAAT1 promoter activity and mRNA/protein levels, and 3) knockdown of YY1 increased EAAT1 promoter activity and mRNA/protein levels. Manganese decreased EAAT1 expression via YY1. Epigenetic modifiers histone deacetylases (HDACs) served as co-repressors of YY1 to further decrease EAAT1 promoter activity, whereas inhibition of HDACs reversed manganese-induced decrease of EAAT1 expression. Taken together, our findings suggest that NF-κB is a critical positive regulator of EAAT1, mediating the stimulatory effects of EGF, whereas YY1 is a negative regulator of EAAT1 with HDACs as co-repressors, mediating the inhibitory effects of manganese on EAAT1 regulation.
Collapse
Affiliation(s)
- Pratap Karki
- From the Department of Physiology, School of Medicine, Meharry Medical College, Nashville, Tennessee 37208
| | - Clifford Kim
- the Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Keisha Smith
- From the Department of Physiology, School of Medicine, Meharry Medical College, Nashville, Tennessee 37208
| | - Deok-Soo Son
- From the Department of Physiology, School of Medicine, Meharry Medical College, Nashville, Tennessee 37208
| | - Michael Aschner
- the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Eunsook Lee
- From the Department of Physiology, School of Medicine, Meharry Medical College, Nashville, Tennessee 37208,
| |
Collapse
|
26
|
Abousaab A, Warsi J, Elvira B, Alesutan I, Hoseinzadeh Z, Lang F. Down-Regulation of Excitatory Amino Acid Transporters EAAT1 and EAAT2 by the Kinases SPAK and OSR1. J Membr Biol 2015; 248:1107-19. [PMID: 26233565 DOI: 10.1007/s00232-015-9826-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/24/2015] [Indexed: 11/27/2022]
Abstract
SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1) are cell volume-sensitive kinases regulated by WNK (with-no-K[Lys]) kinases. SPAK/OSR1 regulate several channels and carriers. SPAK/OSR1 sensitive functions include neuronal excitability. Orchestration of neuronal excitation involves the excitatory glutamate transporters EAAT1 and EAAT2. Sensitivity of those carriers to SPAK/OSR1 has never been shown. The present study thus explored whether SPAK and/or OSR1 contribute to the regulation of EAAT1 and/or EAAT2. To this end, cRNA encoding EAAT1 or EAAT2 was injected into Xenopus oocytes without or with additional injection of cRNA encoding wild-type SPAK or wild-type OSR1, constitutively active (T233E)SPAK, WNK insensitive (T233A)SPAK, catalytically inactive (D212A)SPAK, constitutively active (T185E)OSR1, WNK insensitive (T185A)OSR1 or catalytically inactive (D164A)OSR1. The glutamate (2 mM)-induced inward current (I Glu) was taken as a measure of glutamate transport. As a result, I Glu was observed in EAAT1- and in EAAT2-expressing oocytes but not in water-injected oocytes, and was significantly decreased by coexpression of SPAK and OSR1. As shown for EAAT2, SPAK, and OSR1 decreased significantly the maximal transport rate but significantly enhanced the affinity of the carrier. The effect of wild-type SPAK/OSR1 on EAAT1 and EAAT2 was mimicked by (T233E)SPAK and (T185E)OSR1, but not by (T233A)SPAK, (D212A)SPAK, (T185A)OSR1, or (D164A)OSR1. Coexpression of either SPAK or OSR1 decreased the EAAT2 protein abundance in the cell membrane of EAAT2-expressing oocytes. In conclusion, SPAK and OSR1 are powerful negative regulators of the excitatory glutamate transporters EAAT1 and EAAT2.
Collapse
Affiliation(s)
- Abeer Abousaab
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | - Jamshed Warsi
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | - Bernat Elvira
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | - Ioana Alesutan
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | - Zohreh Hoseinzadeh
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | - Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany.
| |
Collapse
|
27
|
Dezonne RS, Lima FRS, Trentin AG, Gomes FC. Thyroid hormone and astroglia: endocrine control of the neural environment. J Neuroendocrinol 2015; 27:435-45. [PMID: 25855519 DOI: 10.1111/jne.12283] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 02/03/2023]
Abstract
Thyroid hormones (THs) play key roles in brain development and function. The lack of THs during childhood is associated with the impairment of several neuronal connections, cognitive deficits and mental disorders. Several lines of evidence point to astrocytes as TH targets and as mediators of TH action in the central nervous system; however, the mechanisms underlying these events are still not completely known. In this review, we focus on advances in our understanding of the effects of THs on astroglial cells and the impact of these effects on neurone-astrocyte interactions. First, we discuss the signalling pathways involved in TH metabolism and the molecular mechanisms underlying TH receptor function. Then, we discuss data related to the effects of THs on astroglial cells, as well as studies regarding the generation of mutant TH receptor transgenic mice that have contributed to our understanding of TH function in brain development. We argue that astrocytes are key mediators of hormone actions on development of the cerebral cortex and cerebellum and that the identification of the molecules and pathways involved in these events might be important for determining the molecular-level basis of the neural deficits associated with endocrine diseases.
Collapse
Affiliation(s)
- R S Dezonne
- Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - F R S Lima
- Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - A G Trentin
- Departamento de Biologia Celular, Centro de Ciências Biológicas, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - F C Gomes
- Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
28
|
Li X, Zhao H, Tan X, Kostrzewa RM, Du G, Chen Y, Zhu J, Miao Z, Yu H, Kong J, Xu X. Inhibition of connexin43 improves functional recovery after ischemic brain injury in neonatal rats. Glia 2015; 63:1553-67. [PMID: 25988944 DOI: 10.1002/glia.22826] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaojing Li
- Department of Neurology; The Second Affiliated Hospital of Soochow University; Suzhou City China
- The Institute of Neuroscience, Soochow University; Suzhou City China
| | - Heqing Zhao
- Department of Neurology; The Second Affiliated Hospital of Soochow University; Suzhou City China
| | - Xianxing Tan
- Department of Neurology; The Second Affiliated Hospital of Soochow University; Suzhou City China
- The Institute of Neuroscience, Soochow University; Suzhou City China
| | - Richard M. Kostrzewa
- Department of Pharmacology; Quillen College of Medicine, East Tennessee State University; Johnson City Tennessee
| | - Gang Du
- Department of Neurology; The Second Affiliated Hospital of Soochow University; Suzhou City China
- The Institute of Neuroscience, Soochow University; Suzhou City China
| | - Yuanyuan Chen
- Department of Neurology; The Second Affiliated Hospital of Soochow University; Suzhou City China
- The Institute of Neuroscience, Soochow University; Suzhou City China
| | - Jiangtao Zhu
- Department of Neurology; The Second Affiliated Hospital of Soochow University; Suzhou City China
| | - Zhigang Miao
- The Institute of Neuroscience, Soochow University; Suzhou City China
| | - Hailong Yu
- Department of Neurology; Subei People's Hospital; Yangzhou City China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science; Faculty of Medicine, University of Manitoba; Winnipeg Manitoba Canada
| | - Xingshun Xu
- Department of Neurology; The Second Affiliated Hospital of Soochow University; Suzhou City China
- The Institute of Neuroscience, Soochow University; Suzhou City China
| |
Collapse
|
29
|
Chisholm NC, Henderson ML, Selvamani A, Park MJ, Dindot S, Miranda RC, Sohrabji F. Histone methylation patterns in astrocytes are influenced by age following ischemia. Epigenetics 2015; 10:142-52. [PMID: 25565250 DOI: 10.1080/15592294.2014.1001219] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In animal models, middle-aged females sustain greater ischemia-induced infarction as compared to adult females. This age difference in infarct severity is associated with reduced functional capacity of astrocytes, a critical neural support cell. The impaired response of astrocytes following stroke in middle-aged females may be related to epigenetic alterations, including histone acetylation or methylation. The present study measured the activity of enzymes that regulate histone acetylation and methylation in cerebral cortical astrocytes of adult (6 month) and middle-aged (11+ month) female rats 48 h following middle cerebral artery occlusion. H3K4 histone methyltransferase activity was decreased in astrocytes from middle-aged females. The next experiment therefore examined H3K4me3 (transcriptional enhancer) and H3K9me3 (transcriptional repressor) in astrocytes from adult and middle-aged females using ChIP-seq analysis. Adult females had more enriched H3K4me3 peaks (304 vs. 26) at transcriptional start sites and fewer H3K9me3 enriched peaks than middle-aged females (4 vs. 22), indicating a pattern of less active chromatin in astrocytes in the older group following ischemia. DAVID clustering analysis of H3K4me3 enriched genes found several functional categories, including cell motility, regulation of apoptosis and the vascular endothelial growth factor (VEGF) pathway. H3K4me3 was enriched at the miR-17-20 cluster and VEGFa, and analysis of a separate set of astrocytes confirmed that VEGF protein expression and miR-20 mRNA expression were significantly greater following ischemia in adult females compared to middle-aged females. These data indicate that astrocytes display less active chromatin with aging and provide new insight into possible mechanisms for differences in stroke severity observed during aging.
Collapse
Key Words
- BCA, bicinchoninic acid
- ChIP, chromatin immunoprecipitation
- DNA, deoxyribonucleic acid
- DNMT1, DNA methyltransferase 1
- DTT, Dithiothreitol
- FDR, false discovery rate
- GFAP, glial fibrillary acidic protein
- GLAST, glutamate–aspartate transporter
- GLT-1, glial glutamate transporter 1
- H3K4, histone 3 lysine 4
- H3K4me3
- H3K9, histone 3 lysine 9
- HAT, histone acetyltransferase
- HBSS, hank's balanced salt solution
- HDAC
- HDAC, histone deacetyltransferase
- IGF-1, insulin-like growth factor-1
- Iba-1, ionized calcium binding adaptor molecule 1
- MACS, model-based analysis of ChIP-seq
- NeuN, neuronal nuclei
- PECAM, platelet endothelial cell adhesion molecule
- SICER, spatial clustering for identification of ChIP-enriched regions
- SIRT, sirtuin
- VEGF, vascular endothelial growth factor, mRNA
- acetylation
- aging
- epigenetics
- histone 3 lysine 4 trimethylation
- me3, trimethylation
- messenger ribonucleic acid
- qPCR, quantitative polymerase chain reaction
- stroke
- transcription
Collapse
Affiliation(s)
- Nioka C Chisholm
- a Women's Health in Neuroscience Program; Department of Neuroscience and Experimental Therapeutics; Texas A & M Health Science Center College of Medicine ; Bryan , TX USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Yang XT, Huang GH, Feng DF, Chen K. Insight into astrocyte activation after optic nerve injury. J Neurosci Res 2014; 93:539-48. [PMID: 25257183 DOI: 10.1002/jnr.23487] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Xi-Tao Yang
- Department of Neurosurgery, No. 3 People's Hospital; Shanghai Jiaotong University School of Medicine; Shanghai China
| | - Guo-Hui Huang
- Department of Neurosurgery, No. 3 People's Hospital; Shanghai Jiaotong University School of Medicine; Shanghai China
| | - Dong-Fu Feng
- Department of Neurosurgery, No. 3 People's Hospital; Shanghai Jiaotong University School of Medicine; Shanghai China
- Institute of Traumatic Medicine; Shanghai Jiaotong University School of Medicine; Shanghai China
| | - Kui Chen
- Department of Neurosurgery, No. 3 People's Hospital; Shanghai Jiaotong University School of Medicine; Shanghai China
| |
Collapse
|
31
|
Morioka N, Tokuhara M, Nakamura Y, Idenoshita Y, Harano S, Zhang FF, Hisaoka-Nakashima K, Nakata Y. Primary cultures of rat cortical microglia treated with nicotine increases in the expression of excitatory amino acid transporter 1 (GLAST) via the activation of the α7 nicotinic acetylcholine receptor. Neuroscience 2013; 258:374-84. [PMID: 24300109 DOI: 10.1016/j.neuroscience.2013.11.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/22/2013] [Accepted: 11/23/2013] [Indexed: 10/25/2022]
Abstract
Although the clearance of glutamate from the synapse under physiological conditions is performed by astrocytic glutamate transporters, their expression might be diminished under pathological conditions. Microglia glutamate transporters, however, might serve as a back-up system when astrocytic glutamate uptake is impaired, and could have a prominent neuroprotective function under pathological conditions. In the current study, the effect of nicotine, well known as a neuroprotective molecule, on the function of glutamate transporters in cultured rat cortical microglia was examined. Reverse transcription polymerase chain reaction and pharmacological approaches demonstrated that, glutamate/aspartate transporter (GLAST), not glutamate transporter 1 (GLT-1), is the major functional glutamate transporter in cultured cortical microglia. Furthermore, the α7 subunit was demonstrated to be the key subunit comprising nicotinic acetylcholine (nACh) receptors in these cells. Treatment of cortical microglia with nicotine led to a significant increase of GLAST mRNA expression and (14)C-glutamate uptake in a concentration- and time-dependent manner, which were markedly inhibited by pretreatment with methyllycaconitine, a selective α7 nACh receptor antagonist. The nicotine-induced expression of GLAST mRNA and protein is mediated through an inositol trisphosphate (IP3) and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) depend intracellular pathway, since pretreatment with either xestospongin C, an IP3 receptor antagonist, or KN-93, a CaMKII inhibitor, blocked GLAST expression. Together, these findings indicate that activation of nACh receptors, specifically those expressing the α7 subunit, on cortical microglia could be a key mechanism of the neuroprotective effect of nACh receptor ligands such as nicotine.
Collapse
Affiliation(s)
- N Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - M Tokuhara
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Y Nakamura
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Y Idenoshita
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - S Harano
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - F F Zhang
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - K Hisaoka-Nakashima
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Y Nakata
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
32
|
Lin CH, You JR, Wei KC, Gean PW. Stimulating ERK/PI3K/NFκB signaling pathways upon activation of mGluR2/3 restores OGD-induced impairment in glutamate clearance in astrocytes. Eur J Neurosci 2013; 39:83-96. [PMID: 24206109 DOI: 10.1111/ejn.12383] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 09/04/2013] [Accepted: 09/09/2013] [Indexed: 12/21/2022]
Abstract
We used the oxygen and glucose deprivation (OGD) method in cultured astrocytes as an in vitro ischemic model. We investigated whether activation of group-II metabotropic glutamate receptors (mGluR2/3) can reverse OGD-induced impairment in astrocytic glutamate/aspartate transporter (GLAST) expression and elucidated the signaling pathways involving the GLAST expression. Cultured astrocytes exposed to OGD for 6 h resulted in significant reductions in the GLAST expression and extracellular glutamate clearance. These reductions were effectively restored by mGluR2/3 activation with mGluR2/3 agonists, LY379268 or DCG-IV, after the 6 h OGD insult. These mGluR2/3-mediated restorative effects were inhibited by selective mGluR2/3 antagonists LY341459 or EGLU. The mGluR2/3 activation also induced activations of signaling pathways including extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K) and nuclear transcription factor-κB (NFκB). These activations were prevented by blocking mGluR2/3 with LY341459, an mGluR2/3 antagonist. Furthermore, blocking ERK, PI3K and NFκB signaling pathways with U0126, LY294002 and pyrrolidine dithiocarbamate, respectively, significantly inhibited the mGluR2/3-mediated restorative effects. These results suggest that application of mGluR2/3 agonists after OGD insult can effectively reverse the OGD-reduced expression of GLAST proteins and restore clearance of extracellular glutamate by serially activating ERK/PI3K/NFκB signaling pathways in cultured astrocytes.
Collapse
Affiliation(s)
- Chia-Ho Lin
- Department of Pharmacology, College of Medicine, Tzu Chi University, Hualien, 970, Taiwan
| | | | | | | |
Collapse
|
33
|
Astrocyte GRK2 as a novel regulator of glutamate transport and brain damage. Neurobiol Dis 2013; 54:206-15. [PMID: 23313319 DOI: 10.1016/j.nbd.2012.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 11/23/2012] [Accepted: 12/28/2012] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptor (GPCR) kinase 2 (GRK2) regulates cellular signaling via desensitization of GPCRs and by direct interaction with intracellular signaling molecules. We recently described that ischemic brain injury decreases cerebral GRK2 levels. Here we studied the effect of astrocyte GRK2-deficiency on neonatal brain damage in vivo. As astrocytes protect neurons by taking up glutamate via plasma-membrane transporters, we also studied the effect of GRK2 on the localization of the GLutamate ASpartate Transporter (GLAST). Brain damage induced by hypoxia-ischemia was significantly reduced in GFAP-GRK2(+/-) mice, which have a 60% reduction in astrocyte GRK2 compared to GFAP-WT littermates. In addition, GRK2-deficient astrocytes have higher plasma-membrane levels of GLAST and an increased capacity to take up glutamate in vitro. In search for the mechanism by which GRK2 regulates GLAST expression, we observed increased GFAP levels in GRK2-deficient astrocytes. GFAP and the cytoskeletal protein ezrin are known regulators of GLAST localization. In line with this evidence, GRK2-deficiency reduced phosphorylation of the GRK2 substrate ezrin and enforced plasma-membrane GLAST association after stimulation with the group I mGluR-agonist DHPG. When ezrin was silenced, the enhanced plasma-membrane GLAST association in DHPG-exposed GRK2-deficient astrocytes was prevented. In conclusion, we identified a novel role of astrocyte GRK2 in regulating plasma-membrane GLAST localization via an ezrin-dependent route. We demonstrate that the 60% reduction in astrocyte GRK2 protein level that is observed in GFAP-GRK2(+/-) mice is sufficient to significantly reduce neonatal ischemic brain damage. These findings underline the critical role of GRK2 regulation in astrocytes for dampening the extent of brain damage after ischemia.
Collapse
|
34
|
Lee E, Sidoryk-Wegrzynowicz M, Farina M, Rocha JBT, Aschner M. Estrogen attenuates manganese-induced glutamate transporter impairment in rat primary astrocytes. Neurotox Res 2012; 23:124-30. [PMID: 22878846 DOI: 10.1007/s12640-012-9347-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
The astrocytic glutamate transporters (GLT-1, GLAST) are critical for removing excess glutamate from synaptic sites, thereby maintaining glutamate homeostasis within the brain. 17β-Estradiol (E2) is one of the most active estrogen hormones possessing neuroprotective effects both in in vivo and in vitro models, and it has been shown to enhance astrocytic glutamate transporter function (Liang et al. in J Neurochem 80:807-814, 2002; Pawlak et al. in Brain Res Mol Brain Res 138:1-7, 2005). However, E2 is not clinically optimal for neuroprotection given its peripheral feminizing and proliferative effects; therefore, brain selective estrogen receptor modulators (neuro SERMs) (Zhao et al. in Neuroscience 132:299-311, 2005) that specifically target estrogenic mechanisms, but lack the systemic estrogen side effects offer more promising therapeutic modality for the treatment of conditions associated with excessive synaptic glutamate levels. This review highlights recent studies from our laboratory showing that E2 and SERMs effectively reverse glutamate transport inhibition in a manganese (Mn)-induced model of glutamatergic deregulation. Specifically, we discuss mechanisms by which E2 restores the expression and activity of glutamate uptake. We advance the hypothesis that E2 and related compounds, such as tamoxifen may offer a potential therapeutic modality in neurodegenerative disorders, which are characterized by altered glutamate homeostasis.
Collapse
Affiliation(s)
- Eunsook Lee
- Department of Physiology, Meharry Medical College, Nashville, TN 37208, USA.
| | | | | | | | | |
Collapse
|
35
|
O’Kusky J, Ye P. Neurodevelopmental effects of insulin-like growth factor signaling. Front Neuroendocrinol 2012; 33:230-51. [PMID: 22710100 PMCID: PMC3677055 DOI: 10.1016/j.yfrne.2012.06.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/09/2012] [Accepted: 06/07/2012] [Indexed: 11/28/2022]
Abstract
Insulin-like growth factor (IGF) signaling greatly impacts the development and growth of the central nervous system (CNS). IGF-I and IGF-II, two ligands of the IGF system, exert a wide variety of actions both during development and in adulthood, promoting the survival and proliferation of neural cells. The IGFs also influence the growth and maturation of neural cells, augmenting dendritic growth and spine formation, axon outgrowth, synaptogenesis, and myelination. Specific IGF actions, however, likely depend on cell type, developmental stage, and local microenvironmental milieu within the brain. Emerging research also indicates that alterations in IGF signaling likely contribute to the pathogenesis of some neurological disorders. This review summarizes experimental studies and shed light on the critical roles of IGF signaling, as well as its mechanisms, during CNS development.
Collapse
Affiliation(s)
- John O’Kusky
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada V5Z 1M9
| | - Ping Ye
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
36
|
Lewis DK, Thomas KT, Selvamani A, Sohrabji F. Age-related severity of focal ischemia in female rats is associated with impaired astrocyte function. Neurobiol Aging 2012; 33:1123.e1-16. [PMID: 22154819 PMCID: PMC5636220 DOI: 10.1016/j.neurobiolaging.2011.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 11/02/2011] [Accepted: 11/04/2011] [Indexed: 01/07/2023]
Abstract
In middle-aged female rats, focal ischemia leads to a larger cortical infarction as compared with younger females. To determine if stroke-induced cytotoxicity in middle-aged females was associated with impaired astrocyte function, astrocytes were harvested and cultured from the ischemic cortex of young and middle-aged female rats. Middle-aged astrocytes cleared significantly less glutamate from media as compared with young female astrocytes. Furthermore, astrocyte-conditioned media from middle-aged female astrocytes induced greater migration of peripheral blood monocyte cells (PBMCs) and expressed higher levels of the chemoattractant macrophage inflammatory protein-1 (MIP-1). Middle-aged astrocytes also induced greater migration of neural progenitor cells (NPCs), however, their ability to promote neuronal differentiation of neural progenitor cells was similar to young astrocytes. In males, where cortical infarct volume is similar in young and middle-aged animals, no age-related impairment was observed in astrocyte function. These studies show that the aging astrocyte may directly contribute to infarct severity by inefficient glutamate clearance and enhanced cytokine production and suggest a cellular target for improved stroke therapy among older females.
Collapse
Affiliation(s)
- Danielle K. Lewis
- Women’s Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College Station, TX, USA
| | - Kristen T. Thomas
- Women’s Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College Station, TX, USA
| | - Amutha Selvamani
- Women’s Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College Station, TX, USA
| | - Farida Sohrabji
- Women’s Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College Station, TX, USA
| |
Collapse
|
37
|
Sato K, Kuriwaki JI, Takahashi K, Saito Y, Oka JI, Otani Y, Sha Y, Nakazawa K, Sekino Y, Ohwada T. Discovery of a Tamoxifen-related compound that suppresses glial l-glutamate transport activity without interaction with estrogen receptors. ACS Chem Neurosci 2012; 3:105-13. [PMID: 22860180 DOI: 10.1021/cn200091w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 11/14/2011] [Indexed: 11/28/2022] Open
Abstract
We recently found that tamoxifen suppresses l-glutamate transport activity of cultured astrocytes. Here, in an attempt to separate the l-glutamate transporter-inhibitory activity from the estrogen receptor-mediated genomic effects, we synthesized several compounds structurally related to tamoxifen. Among them, we identified two compounds, 1 (YAK01) and 3 (YAK037), which potently inhibited l-glutamate transporter activity. The inhibitory effect of 1 was found to be mediated through estrogen receptors and the mitogen-activated protein kinase (MAPK)/phosphatidylinositol 3-kinase (PI3K) pathway, though 1 showed greatly reduced transactivation activity compared with that of 17β-estradiol. On the other hand, compound 3 exerted its inhibitory effect through an estrogen receptor-independent and MAPK-independent, but PI3K-dependent pathway, and showed no transactivation activity. Compound 3 may represent a new platform for developing novel l-glutamate transporter inhibitors with higher brain transfer rates and reduced adverse effects.
Collapse
Affiliation(s)
- Kaoru Sato
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences, 1-18-1 Kamiyoga,
Setagaya-ku, Tokyo 158-8501, Japan
| | - Jun-ichi Kuriwaki
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences, 1-18-1 Kamiyoga,
Setagaya-ku, Tokyo 158-8501, Japan
| | - Kanako Takahashi
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences, 1-18-1 Kamiyoga,
Setagaya-ku, Tokyo 158-8501, Japan
| | - Yoshihiko Saito
- Laboratory of Pharmacology, Faculty
of Pharmaceutical Sciences, Tokyo University of Science, 2541 Yamazaki, Noda-city, Chiba 278-8510, Japan
| | - Jun-ichiro Oka
- Laboratory of Pharmacology, Faculty
of Pharmaceutical Sciences, Tokyo University of Science, 2541 Yamazaki, Noda-city, Chiba 278-8510, Japan
| | - Yuko Otani
- Laboratory of Organic and Medicinal
Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo
113-0033, Japan
| | - Yu Sha
- Laboratory of Organic and Medicinal
Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo
113-0033, Japan
| | - Ken Nakazawa
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences, 1-18-1 Kamiyoga,
Setagaya-ku, Tokyo 158-8501, Japan
| | - Yuko Sekino
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences, 1-18-1 Kamiyoga,
Setagaya-ku, Tokyo 158-8501, Japan
| | - Tomohiko Ohwada
- Laboratory of Organic and Medicinal
Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo
113-0033, Japan
| |
Collapse
|
38
|
Persson M, Rönnbäck L. Microglial self-defence mediated through GLT-1 and glutathione. Amino Acids 2011; 42:207-19. [PMID: 21373770 DOI: 10.1007/s00726-011-0865-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 02/17/2011] [Indexed: 11/27/2022]
Abstract
Glutamate is stored in synaptic vesicles in presynaptic neurons. It is released into the synaptic cleft to provide signalling to postsynaptic neurons. Normally, the astroglial glutamate transporters GLT-1 and GLAST take up glutamate to mediate a high signal-to-noise ratio in the synaptic signalling, and also to prevent excitotoxic effects by glutamate. In astrocytes, glutamate is transformed into glutamine, which is safely transported back to neurons. However, in pathological conditions, such as an ischemia or virus infection, astroglial transporters are down-regulated which could lead to excitotoxicity. Lately, it was shown that even microglia can express glutamate transporters during pathological events. Microglia have two systems for glutamate transport: GLT-1 for transport into the cells and the x (c) (-) system for transport out of the cells. We here review results from our work and others, which demonstrate that microglia in culture express GLT-1, but not GLAST, and transport glutamate from the extracellular space. We also show that TNF-α can induce increased microglial GLT-1 expression, possibly associating the expression with inflammatory systems. Furthermore, glutamate taken up through GLT-1 may be used for direct incorporation into glutathione and to fuel the intracellular glutamate pool to allow cystine uptake through the x (c) (-) system. This can lead to a defence against oxidative stress and have an antiviral function.
Collapse
Affiliation(s)
- Mikael Persson
- Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Per Dubbsgatan 14, 1tr, 41345, Gothenburg, Sweden
| | | |
Collapse
|
39
|
Tilleux S, Hermans E. Down-regulation of astrocytic GLAST by microglia-related inflammation is abrogated in dibutyryl cAMP-differentiated cultures. J Neurochem 2010; 105:2224-36. [PMID: 18298666 DOI: 10.1111/j.1471-4159.2008.05305.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The influence of neuroinflammation on glutamate uptake by glial cells was examined after exposing primary cultures of rat astrocytes to conditioned culture medium from lipopolysaccharide-activated microglia. While such treatment triggered an inflammatory response in astrocytes, as revealed by the induction of cytokine expression, a significant decrease in GLAST expression and activity was observed after 72 h. This regulation of glutamate transporter was not observed with medium from naive microglia, but was mimicked by direct addition of tumor necrosis factor-alpha (TNF-alpha), a major cytokine released from activated microglia. Hence, on its own, TNF-alpha also triggered inflammation in astrocyte cultures, highlighting complex cross-talk between astrocytes and microglia in inflammatory conditions. This putatively detrimental regulation of GLAST in response to inflammation was also studied in cells exposed to dibutyryl cAMP, recognized as a model of astrocytes exhibiting a typical differentiated or activated phenotype. In this model, the conditioned culture medium from activated microglia, as well as TNF-alpha, were found to increase glutamate uptake capacity. Consistently, both of these treatments caused only modest induction of an inflammatory response in dibutyryl cAMP-matured astrocytes as compared to undifferentiated astrocytes. Together, these results suggest that differentiated/activated astrocytes are endowed with the capacity to confront inflammatory insults and that drugs influencing the astrocytes phenotype would deserve further consideration in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Sébastien Tilleux
- Laboratoire de Pharmacologie Expérimentale, Université Catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
40
|
Sharif A, Prevot V. ErbB receptor signaling in astrocytes: a mediator of neuron-glia communication in the mature central nervous system. Neurochem Int 2010; 57:344-58. [PMID: 20685225 DOI: 10.1016/j.neuint.2010.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 03/29/2010] [Accepted: 05/18/2010] [Indexed: 10/19/2022]
Abstract
Astrocytes are now recognized as active players in the developing and mature central nervous system. Each astrocyte contacts vascular structures and thousands of synapses within discrete territories. These cells receive a myriad of inputs and generate appropriate responses to regulate the function of brain microdomains. Emerging evidence has implicated receptors of the ErbB tyrosine kinase family in the integration and processing of neuronal inputs by astrocytes: ErbB receptors can be activated by a wide range of neuronal stimuli; they control critical steps of glutamate-glutamine metabolism; and they regulate the biosynthesis and release of various glial-derived neurotrophic factors, gliomediators and gliotransmitters. These key properties of astrocytic ErbB signaling in neuron-glia interactions have significance for the physiology of the mature central nervous system, as exemplified by the central control of reproduction within the hypothalamus, and are also likely to contribute to pathological situations, since both dysregulation of ErbB signaling and glial dysfunction occur in many neurological disorders.
Collapse
Affiliation(s)
- Ariane Sharif
- Inserm, Jean-Pierre Aubert Research Center, U837, Development and Plasticity of the postnatal Brain, Lille, France.
| | | |
Collapse
|
41
|
Laureys G, Clinckers R, Gerlo S, Spooren A, Wilczak N, Kooijman R, Smolders I, Michotte Y, De Keyser J. Astrocytic beta(2)-adrenergic receptors: from physiology to pathology. Prog Neurobiol 2010; 91:189-99. [PMID: 20138112 DOI: 10.1016/j.pneurobio.2010.01.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 12/07/2009] [Accepted: 01/27/2010] [Indexed: 12/24/2022]
Abstract
Evidence accumulates for a key role of the beta(2)-adrenergic receptors in the many homeostatic and neuroprotective functions of astrocytes, including glycogen metabolism, regulation of immune responses, release of neurotrophic factors, and the astrogliosis that occurs in response to neuronal injury. A dysregulation of the astrocytic beta(2)-adrenergic-pathway is suspected to contribute to the physiopathology of a number of prevalent and devastating neurological conditions such as multiple sclerosis, Alzheimer's disease, human immunodeficiency virus encephalitis, stroke and hepatic encephalopathy. In this review we focus on the physiological functions of astrocytic beta(2)-adrenergic receptors, and their possible impact in disease states.
Collapse
Affiliation(s)
- Guy Laureys
- Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit Brussel, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gui SB, Zhang YZ, Sun MZ, Wang HY, He Y, Li D. Effect of bone marrow stromal cell-conditioned medium on the glutamate uptake of peroxide-injured astrocytes. J Clin Neurosci 2009; 16:1205-10. [PMID: 19589682 DOI: 10.1016/j.jocn.2008.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 09/24/2008] [Accepted: 11/02/2008] [Indexed: 11/28/2022]
Abstract
We aimed to investigate the effect of bone marrow stromal cell-conditioned medium (BCM) on glutamate uptake of peroxide (H(2)O(2))-injured astrocytes. Bone marrow stromal cells (BMSC) were isolated from rat bone marrow. Confluent BMSC cultures were incubated with serum-free Dulbecco's Modified Eagle's Medium to create the BCM. Astrocytes were isolated from 1-day-old rats. H(2)O(2)-injured astrocytes were cultured in BCM (experimental group) or serum-free medium (control group). The labeled glutamate ((3)H-L-glutamate) uptake by H(2)O(2)-injured astrocytes with or without BCM was compared after 1 and 3 days. We found that astrocytes cultured in BCM exhibited increased glutamate uptake compared to those cultured in serum-free medium following H(2)O(2)-induced injury (p<0.01) and concluded that BCM increased the glutamate uptake capability of H(2)O(2)-injured rat astrocytes. The therapeutic benefits associated with BMSC transplantation following brain injury might be partly due to increased glutamate uptake by astrocytes.
Collapse
Affiliation(s)
- Song-Bai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | |
Collapse
|
43
|
Lee ESY, Sidoryk M, Jiang H, Yin Z, Aschner M. Estrogen and tamoxifen reverse manganese-induced glutamate transporter impairment in astrocytes. J Neurochem 2009; 110:530-44. [PMID: 19453300 DOI: 10.1111/j.1471-4159.2009.06105.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronic exposure to manganese (Mn) can cause manganism, a neurodegenerative disorder similar to Parkinson's disease. The toxicity of Mn includes impairment of astrocytic glutamate transporters. 17beta-Estradiol (E2) has been shown to be neuroprotective in various neurodegenerative diseases including Parkinson's disease and Alzheimer's disease, and some selective estrogen receptor modulators, including tamoxifen (TX), also possess neuroprotective properties. We have tested our hypothesis that E2 and TX reverse Mn-induced glutamate transporter impairment in astrocytes. The results established that E2 and TX increased glutamate transporter function and reversed Mn-induced glutamate uptake inhibition, primarily via the up-regulation of glutamate/aspartate transporter (GLAST). E2 and TX also increased astrocytic GLAST mRNA levels and attenuated the Mn-induced inhibition of GLAST mRNA expression. In addition, E2 and TX effectively increased the expression of transforming growth factor beta1, a potential modulator of the stimulatory effects of E2/TX on glutamate transporter function. This effect was mediated by the activation of MAPK/extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt signaling pathways. These novel findings suggest, for the first time, that E2 and TX enhance astrocytic glutamate transporter expression via increased transforming growth factor beta1 expression. Furthermore, the present study is the first to show that both E2 and TX effectively reverse Mn-induced glutamate transport inhibition by restoring its expression and activity, thus offering a potential therapeutic modality in neurodegenerative disorders characterized by altered glutamate homeostasis.
Collapse
Affiliation(s)
- Eun-Sook Y Lee
- Department of Neurology, Meharry Medical College, Nashville, Tennessee 37208, USA.
| | | | | | | | | |
Collapse
|
44
|
Poblete-Naredo I, Angulo C, Hernández-Kelly L, López-Bayghen E, Aguilera J, Ortega A. Insulin-dependent regulation of GLAST/EAAT1 in Bergmann glial cells. Neurosci Lett 2009; 451:134-8. [DOI: 10.1016/j.neulet.2008.12.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 12/01/2008] [Accepted: 12/24/2008] [Indexed: 11/25/2022]
|
45
|
Mendes-de-Aguiar CBN, Alchini R, Decker H, Alvarez-Silva M, Tasca CI, Trentin AG. Thyroid hormone increases astrocytic glutamate uptake and protects astrocytes and neurons against glutamate toxicity. J Neurosci Res 2008; 86:3117-25. [DOI: 10.1002/jnr.21755] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Sato K, Saito Y, Oka JI, Ohwada T, Nakazawa K. Effects of tamoxifen on L-glutamate transporters of astrocytes. J Pharmacol Sci 2008; 107:226-30. [PMID: 18544895 DOI: 10.1254/jphs.08039sc] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Tamoxifen (Tam) decreased the clearance of L-glutamate (L-Glu) by cultured astrocytes at 1 pM, 1 nM, and 1 microM, but became toxic at 10 microM. When L-Glu transporters were mostly inhibited by threo-beta-benzyloxyaspartate (TBOA) (1 mM) or D,L-threo-beta-hydroxyaspartate (THA) (1 mM), Tam (1 nM) did not change extracellular L-Glu concentration, confirming that Tam attenuates L-Glu transport through L-Glu transporters. ICI182,780, LY294002, and U0126 inhibited the effect of Tam dose-dependently, suggesting the involvement of estrogen receptors (ERs), the phosphatidylinositol 3-kinase (PI3K) cascade, and the mitogen-activated protein kinase (MAPK) cascade in the effect of Tam.
Collapse
Affiliation(s)
- Kaoru Sato
- Division of Pharmacology, National Institute of Health Sciences, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
47
|
Palin K, Bluthé RM, McCusker RH, Moos F, Dantzer R, Kelley KW. TNFalpha-induced sickness behavior in mice with functional 55 kD TNF receptors is blocked by central IGF-I. J Neuroimmunol 2007; 187:55-60. [PMID: 17512609 PMCID: PMC2915825 DOI: 10.1016/j.jneuroim.2007.04.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Revised: 02/23/2007] [Accepted: 04/10/2007] [Indexed: 02/06/2023]
Abstract
A variety of pathogenic insults cause synthesis of tumor necrosis factor (TNF)alpha in the brain, resulting in sickness behavior. Here we used TNF-receptor (TNF-R)2-deficient and wild-type mice to demonstrate that the reduction in social exploration of a novel juvenile, the increase in immobility and the loss of body weight caused by central TNFalpha (i.c.v., 50 ng/mouse) are blocked by central pre-treatment with the multifunctional peptide, insulin-like growth factor (IGF-I; i.c.v., 300 ng/mouse). These results establish that sickness behavior induced by central TNFalpha via the TNF-R1 (p55) is directly opposed by IGF-I in the brain.
Collapse
Affiliation(s)
- Karine Palin
- Department of Animal Sciences, Integrative Immunology and Behavior Program, Laboratory of Integrative Immunophysiology, University of Illinois at Urbana-Champaign, IL, USA
| | - Rose-Marie Bluthé
- Integrative Neurobiology, FRE 2723 CNRS, University Bordeaux, UMR 1244 INRA, 146 rue Léo Saignat, Bordeaux, F-33077, France
| | - Robert H. McCusker
- Department of Animal Sciences, Integrative Immunology and Behavior Program, Laboratory of Integrative Immunophysiology, University of Illinois at Urbana-Champaign, IL, USA
| | - Françoise Moos
- Integrative Neurobiology, FRE 2723 CNRS, University Bordeaux, UMR 1244 INRA, 146 rue Léo Saignat, Bordeaux, F-33077, France
| | - Robert Dantzer
- Department of Animal Sciences, Integrative Immunology and Behavior Program, Laboratory of Integrative Immunophysiology, University of Illinois at Urbana-Champaign, IL, USA
- Department of Medical Pathology, Integrative Immunology and Behavior Program, Laboratory of Integrative Immunophysiology, University of Illinois at Urbana-Champaign, IL, USA
| | - Keith W. Kelley
- Department of Animal Sciences, Integrative Immunology and Behavior Program, Laboratory of Integrative Immunophysiology, University of Illinois at Urbana-Champaign, IL, USA
- Department of Medical Pathology, Integrative Immunology and Behavior Program, Laboratory of Integrative Immunophysiology, University of Illinois at Urbana-Champaign, IL, USA
- Correspondence: Keith W. Kelley, Phone (217) 333-5141; Fax (217) 244-5617;
| |
Collapse
|
48
|
Fernandez S, Fernandez AM, Lopez-Lopez C, Torres-Aleman I. Emerging roles of insulin-like growth factor-I in the adult brain. Growth Horm IGF Res 2007; 17:89-95. [PMID: 17317256 DOI: 10.1016/j.ghir.2007.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
All tissues in the body are under the influence of insulin-like growth factor-I (IGF-I). Together with insulin, IGF-I is a key regulator of cell metabolism and growth. IGF-I also acts in the central nervous system, where it affects many different cell populations. In this brief review, we discuss the many roles of IGF-I in the adult brain, and present the idea that diseases affecting the brain will perturb IGF-I activity, although more refined studies at the molecular and cellular level are needed before we can firmly established this possibility. We also suggest that under normal physiological conditions IGF-I may play a significant role in higher brain functions underlying cognition, and may serve a homeostatic role during brain aging. Among newly emerging issues, the effects of IGF-I on non-neuronal cells within the nervous system and their impact in brain physiology and pathology are becoming very important in understanding the biology of this peptide in the brain.
Collapse
Affiliation(s)
- S Fernandez
- Laboratory of Neuroendocrinology, Cajal Institute, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
49
|
Akashiba H, Matsuki N, Nishiyama N. Calpain activation is required for glutamate-induced p27 down-regulation in cultured cortical neurons. J Neurochem 2006; 99:733-44. [PMID: 16824045 DOI: 10.1111/j.1471-4159.2006.04100.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent evidence suggests that cell cycle-related molecules play pivotal roles in multiple forms of cell death in post-mitotic neurons. Nevertheless, it remains unclear what molecular mechanisms are involved in the regulation of expression levels and activities of these molecules. We showed previously that treatment with extracellular glutamate decreases cyclin-dependent kinase inhibitor p27 before neuronal cell death. In this study, we demonstrate that reductions of both p27 and neuronal viability were dependent on activity of calpain, a Ca(2+)-dependent protease, but not on activity of caspase 3. Interestingly, the glutamate-induced reduction of p27 was not dependent on the ubiquitin-proteasome system. In fact, p27 was present only in the neuronal nucleus, whereas calpain 1, a ubiquitous calpain, was observed both in the neuronal nucleus and cytoplasm in control cultures. Glutamate treatment did not change the localization patterns of p27 and calpain 1. It reduced p27 expression level in the nucleus in a calpain-dependent manner. In vitro experiments using neuronal cell lysate and p27 recombinant protein revealed that p27 was degraded as a substrate of activated calpain 1. These results suggest that calpain(s), activated by glutamate treatment, degrade(s) p27 in the nucleus of neurons, which might promote aberrant cell cycle progression.
Collapse
Affiliation(s)
- Hiroki Akashiba
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
50
|
Vermeiren C, Najimi M, Vanhoutte N, Tilleux S, de Hemptinne I, Maloteaux JM, Hermans E. Acute up-regulation of glutamate uptake mediated by mGluR5a in reactive astrocytes. J Neurochem 2005; 94:405-16. [PMID: 15998291 DOI: 10.1111/j.1471-4159.2005.03216.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Excitatory transmission in the CNS necessitates the existence of dynamic controls of the glutamate uptake achieved by astrocytes, both in physiological conditions and under pathological circumstances characterized by gliosis. In this context, this study was aimed at evaluating the involvement of group I metabotropic glutamate receptors (mGluR) in the regulation of glutamate transport in a model of rat astrocytes undergoing in vitro activation using a cocktail of growth factors (G5 supplement). The vast majority of the cells were found to take up aspartate, mainly through the glutamate/aspartate transporter (GLAST), and at least 60% expressed functional mGluR5a. When exposed for 15 s to the selective group I mGluR agonist (S)-3,5-dihydroxyphenylglycine, reactive astrocytes showed a significant increase in their capacity to take up aspartate. This effect was confirmed at the single-cell level, since activation of mGluRs significantly increased the initial slope of aspartate-dependent Na+ entry associated with the activity of glutamate transporters. This up-regulation was inhibited by an antagonist of mGluR5 and, more importantly, was sensitive to a specific glutamate transporter 1 (GLT-1) blocker. The acute influence of mGluR5 on aspartate uptake was phospholipase C- and protein kinase C-dependent, and was mimicked by phorbol esters. We conclude that mGluR5a contributes to a dynamic control of GLT-1 function in activated astrocytes, acting as a glial sensor of the extracellular glutamate concentration in order to acutely regulate the excitatory transmission.
Collapse
Affiliation(s)
- Céline Vermeiren
- Laboratoire de Pharmacologie Expérimentale, Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|