1
|
Ma X, Li J, Liu N, Banerjee S, Hu X, Wang X, Dong J, Liu K, Yang C, Dong Z. Insights into the distinct membrane targeting mechanisms of WDR91 family proteins. Structure 2024; 32:2287-2300.e4. [PMID: 39426373 DOI: 10.1016/j.str.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/15/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
WDR91 and SORF1, members of the WD repeat-containing protein 91 family, control phosphoinositide conversion by inhibiting phosphatidylinositol 3-kinase activity on endosomes, which promotes endosome maturation. Here, we report the crystal structure of the human WDR91 WD40 domain complexed with Rab7 that has an unusual interface at the C-terminus of the Rab7 switch II region. WDR91 is highly selective for Rab7 among the tested GTPases. A LIS1 homology (LisH) motif within the WDR91 N-terminal domain (NTD) mediates self-association and may contribute partly to the augmented interaction between full-length WDR91 and Rab7. Both the Rab7 binding site and the LisH motif are indispensable for WDR91 function in endocytic trafficking. For the WDR91 orthologue SORF1 lacking the C-terminal WD40 domain, a C-terminal amphipathic helix (AH) mediates strong interactions with liposomes containing acidic lipids. During evolution the human WDR91 ancestor gene might have acquired a WD40 domain to replace the AH for endosomal membrane targeting.
Collapse
Affiliation(s)
- Xinli Ma
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450003, China
| | - Jian Li
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450003, China
| | - Nan Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Surajit Banerjee
- Northeastern Collaborative Access Team, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Xiaotong Hu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450003, China
| | - Xiaoyu Wang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450003, China
| | - Jianshu Dong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450003, China; College of Medicine, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chonglin Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450003, China; College of Medicine, Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
2
|
Laniel A, Marouseau É, Nguyen DT, Froehlich U, McCartney C, Boudreault PL, Lavoie C. Characterization of PGua 4, a Guanidinium-Rich Peptoid that Delivers IgGs to the Cytosol via Macropinocytosis. Mol Pharm 2023; 20:1577-1590. [PMID: 36781165 PMCID: PMC9997486 DOI: 10.1021/acs.molpharmaceut.2c00783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 02/15/2023]
Abstract
To investigate the structure-cellular penetration relationship of guanidinium-rich transporters (GRTs), we previously designed PGua4, a five-amino acid peptoid containing a conformationally restricted pattern of eight guanidines, which showed high cell-penetrating abilities and low cell toxicity. Herein, we characterized the cellular uptake selectivity, internalization pathway, and intracellular distribution of PGua4, as well as its capacity to deliver cargo. PGua4 exhibits higher penetration efficiency in HeLa cells than in six other cell lines (A549, Caco-2, fibroblast, HEK293, Mia-PaCa2, and MCF7) and is mainly internalized by clathrin-mediated endocytosis and macropinocytosis. Confocal microscopy showed that it remained trapped in endosomes at low concentrations but induced pH-dependent endosomal membrane destabilization at concentrations ≥10 μM, allowing its diffusion into the cytoplasm. Importantly, PGua4 significantly enhanced macropinocytosis and the cellular uptake and cytosolic delivery of large IgGs following noncovalent complexation. Therefore, in addition to its peptoid nature conferring high resistance to proteolysis, PGua4 presents characteristics of a promising tool for IgG delivery and therapeutic applications.
Collapse
Affiliation(s)
- Andréanne Laniel
- Institut de Pharmacologie
de Sherbrooke, Department of Pharmacology and Physiology, Faculty
of Medicine and Health Sciences, Université
de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Étienne Marouseau
- Institut de Pharmacologie
de Sherbrooke, Department of Pharmacology and Physiology, Faculty
of Medicine and Health Sciences, Université
de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Duc Tai Nguyen
- Institut de Pharmacologie
de Sherbrooke, Department of Pharmacology and Physiology, Faculty
of Medicine and Health Sciences, Université
de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Ulrike Froehlich
- Institut de Pharmacologie
de Sherbrooke, Department of Pharmacology and Physiology, Faculty
of Medicine and Health Sciences, Université
de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Claire McCartney
- Institut de Pharmacologie
de Sherbrooke, Department of Pharmacology and Physiology, Faculty
of Medicine and Health Sciences, Université
de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Pierre-Luc Boudreault
- Institut de Pharmacologie
de Sherbrooke, Department of Pharmacology and Physiology, Faculty
of Medicine and Health Sciences, Université
de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Christine Lavoie
- Institut de Pharmacologie
de Sherbrooke, Department of Pharmacology and Physiology, Faculty
of Medicine and Health Sciences, Université
de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
3
|
Bertović I, Kurelić R, Mahmutefendić Lučin H, Jurak Begonja A. Early Endosomal GTPase Rab5 (Ras-Related Protein in Brain 5) Regulates GPIbβ (Glycoprotein Ib Subunit β) Trafficking and Platelet Production In Vitro. Arterioscler Thromb Vasc Biol 2022; 42:e10-e26. [PMID: 34732055 DOI: 10.1161/atvbaha.121.316552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Maturation of megakaryocytes culminates with extensive membrane rearrangements necessary for proplatelet formation. Mechanisms required for proplatelet extension and origin of membranes are still poorly understood. GTPase Rab5 (Ras-related protein in brain 5) regulates endocytic uptake and homotypic fusion of early endosomes and regulates phosphatidylinositol 3-monophosphate production important for binding of effector proteins during early-to-late endosomal/lysosomal maturation. Approach and Results: To investigate the role of Rab5 in megakaryocytes, we expressed GFP (green fluorescent protein)-coupled Rab5 wild type and its point mutants Q79L (active) and N133L (inactive) in primary murine fetal liver-derived megakaryocytes. Active Rab5 Q79L induced the formation of enlarged early endosomes, while inactive Rab5 N133L caused endosomal fragmentation. Consistently, an increased amount of transferrin internalization in Rab5 Q79L was impaired in Rab5 N133L expressing megakaryocytes, when compared with GFP or Rab5 wild type. Moreover, trafficking of GPIbβ (glycoprotein Ib subunit beta), a subunit of major megakaryocytes receptor and membrane marker, was found to be mediated by Rab5 activity. While GPIbβ was mostly present along the plasma membrane, and within cytoplasmic vesicles in Rab5 wild type megakaryocytes, it accumulated in the majority of Rab5 Q79L enlarged endosomes. Conversely, Rab5 N133L caused mostly GPIbβ plasma membrane retention. Furthermore, Rab5 Q79L expression increased incorporation of the membrane dye (PKH26), indicating higher membrane content. Finally, while Rab5 Q79L increased proplatelet production, inactive Rab5 N133L strongly inhibited it and was coupled with a decrease in late endosomes/lysosomes. Localization of GPIbβ in enlarged endosomes was phosphatidylinositol 3-monophosphate dependent. CONCLUSIONS Taken together, our results demonstrate that Rab5-dependent endocytosis plays an important role in megakaryocytes receptor trafficking, membrane formation, and thrombopoiesis.
Collapse
Affiliation(s)
- Ivana Bertović
- Department of Biotechnology (I.B., R.K., A.J.B), University of Rijeka, Croatia
| | - Roberta Kurelić
- Department of Biotechnology (I.B., R.K., A.J.B), University of Rijeka, Croatia
| | | | | |
Collapse
|
4
|
Cabana VC, Bouchard AY, Sénécal AM, Ghilarducci K, Kourrich S, Cappadocia L, Lussier MP. RNF13 Dileucine Motif Variants L311S and L312P Interfere with Endosomal Localization and AP-3 Complex Association. Cells 2021; 10:cells10113063. [PMID: 34831286 PMCID: PMC8620429 DOI: 10.3390/cells10113063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Developmental and epileptic encephalopathies (DEE) are rare and serious neurological disorders characterized by severe epilepsy with refractory seizures and a significant developmental delay. Recently, DEE73 was linked to genetic alterations of the RNF13 gene, which convert positions 311 or 312 in the RNF13 protein from leucine to serine or proline, respectively (L311S and L312P). Using a fluorescence microscopy approach to investigate the molecular and cellular mechanisms affected by RNF13 protein variants, the current study shows that wild-type RNF13 localizes extensively with endosomes and lysosomes, while L311S and L312P do not extensively colocalize with the lysosomal marker Lamp1. Our results show that RNF13 L311S and L312P proteins affect the size of endosomal vesicles along with the temporal and spatial progression of fluorescently labeled epidermal growth factor, but not transferrin, in the endolysosomal system. Furthermore, GST-pulldown and co-immunoprecipitation show that RNF13 variants disrupt association with AP-3 complex. Knockdown of AP-3 complex subunit AP3D1 alters the lysosomal localization of wild-type RNF13 and similarly affects the size of endosomal vesicles. Importantly, our study provides a first step toward understanding the cellular and molecular mechanism altered by DEE73-associated genetic variations of RNF13.
Collapse
Affiliation(s)
- Valérie C. Cabana
- Département de Chimie, Université du Québec à Montréal, Montréal, QC H2X 2J6, Canada; (V.C.C.); (A.Y.B.); (A.M.S.); (K.G.); (L.C.)
- Centre d’Excellence en Recherche sur les Maladies Orphelines—Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada;
| | - Antoine Y. Bouchard
- Département de Chimie, Université du Québec à Montréal, Montréal, QC H2X 2J6, Canada; (V.C.C.); (A.Y.B.); (A.M.S.); (K.G.); (L.C.)
- Centre d’Excellence en Recherche sur les Maladies Orphelines—Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada;
| | - Audrey M. Sénécal
- Département de Chimie, Université du Québec à Montréal, Montréal, QC H2X 2J6, Canada; (V.C.C.); (A.Y.B.); (A.M.S.); (K.G.); (L.C.)
- Centre d’Excellence en Recherche sur les Maladies Orphelines—Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada;
| | - Kim Ghilarducci
- Département de Chimie, Université du Québec à Montréal, Montréal, QC H2X 2J6, Canada; (V.C.C.); (A.Y.B.); (A.M.S.); (K.G.); (L.C.)
- Centre d’Excellence en Recherche sur les Maladies Orphelines—Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada;
| | - Saïd Kourrich
- Centre d’Excellence en Recherche sur les Maladies Orphelines—Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada;
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC H2X 1Y4, Canada
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laurent Cappadocia
- Département de Chimie, Université du Québec à Montréal, Montréal, QC H2X 2J6, Canada; (V.C.C.); (A.Y.B.); (A.M.S.); (K.G.); (L.C.)
- Centre d’Excellence en Recherche sur les Maladies Orphelines—Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada;
| | - Marc P. Lussier
- Département de Chimie, Université du Québec à Montréal, Montréal, QC H2X 2J6, Canada; (V.C.C.); (A.Y.B.); (A.M.S.); (K.G.); (L.C.)
- Centre d’Excellence en Recherche sur les Maladies Orphelines—Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada;
- Correspondence: ; Tel.: +1-(514)-987-3000 (ext. 5591); Fax: +1-(514)-987-4054
| |
Collapse
|
5
|
Saminathan A, Devany J, Veetil AT, Suresh B, Pillai KS, Schwake M, Krishnan Y. A DNA-based voltmeter for organelles. NATURE NANOTECHNOLOGY 2021; 16:96-103. [PMID: 33139937 PMCID: PMC8513801 DOI: 10.1038/s41565-020-00784-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/21/2020] [Indexed: 05/16/2023]
Abstract
The role of membrane potential in most intracellular organelles remains unexplored because of the lack of suitable tools. Here, we describe Voltair, a fluorescent DNA nanodevice that reports the absolute membrane potential and can be targeted to organelles in live cells. Voltair consists of a voltage-sensitive fluorophore and a reference fluorophore for ratiometry, and acts as an endocytic tracer. Using Voltair, we could measure the membrane potential of different organelles in situ in live cells. Voltair can potentially guide the rational design of biocompatible electronics and enhance our understanding of how membrane potential regulates organelle biology.
Collapse
Affiliation(s)
- Anand Saminathan
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA
| | - John Devany
- Department of Physics, The University of Chicago, Chicago, IL, USA
| | - Aneesh Tazhe Veetil
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA
| | - Bhavyashree Suresh
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA
| | | | - Michael Schwake
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Biochemistry III/Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, Bielefeld, Germany
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
Ritt M, Sivaramakrishnan S. Engaging myosin VI tunes motility, morphology and identity in endocytosis. Traffic 2018; 19:10.1111/tra.12583. [PMID: 29869361 PMCID: PMC6437008 DOI: 10.1111/tra.12583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/14/2022]
Abstract
While unconventional myosins interact with different stages of the endocytic pathway, they are ascribed a transport function that is secondary to the protein complexes that control organelle identity. Endosomes are subject to a dynamic, continuous flux of proteins that control their characteristic properties, including their motility within the cell. Efforts to describe the changes in identity of this compartment have largely focused on the adaptors present on the compartment and not on the motile properties of the compartment itself. In this study, we use a combination of optogenetic and chemical-dimerization strategies to target exogenous myosin VI to early endosomes, and probe its influence on organelle motility, morphology and identity. Our analysis across timescales suggests a model wherein the artificial engagement of myosin VI motility on early endosomes restricts microtubule-based motion, followed by morphological changes characterized by the rapid condensation and disintegration of organelles, ultimately leading to the enhanced overlap of markers that demarcate endosomal compartments. Together, our findings show that synthetic engagement of myosin VI motility is sufficient to alter organelle homeostasis in the endocytic pathway.
Collapse
Affiliation(s)
- Michael Ritt
- Department of Genetics, Cell and Developmental Biology, University of Minnesota, Minneapolis, Minnesota
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell and Developmental Biology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
7
|
Gonzalez AC, Schweizer M, Jagdmann S, Bernreuther C, Reinheckel T, Saftig P, Damme M. Unconventional Trafficking of Mammalian Phospholipase D3 to Lysosomes. Cell Rep 2018; 22:1040-1053. [PMID: 29386126 DOI: 10.1016/j.celrep.2017.12.100] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/10/2017] [Accepted: 12/26/2017] [Indexed: 01/08/2023] Open
Abstract
Variants in the phospholipase D3 (PLD3) gene have genetically been linked to late-onset Alzheimer's disease. We present a detailed biochemical analysis of PLD3 and reveal its endogenous localization in endosomes and lysosomes. PLD3 reaches lysosomes as a type II transmembrane protein via a (for mammalian cells) uncommon intracellular biosynthetic route that depends on the ESCRT (endosomal sorting complex required for transport) machinery. PLD3 is sorted into intraluminal vesicles of multivesicular endosomes, and ESCRT-dependent sorting correlates with ubiquitination. In multivesicular endosomes, PLD3 is subjected to proteolytic cleavage, yielding a stable glycosylated luminal polypeptide and a rapidly degraded N-terminal membrane-bound fragment. This pathway closely resembles the delivery route of carboxypeptidase S to the yeast vacuole. Our experiments reveal a biosynthetic route of PLD3 involving proteolytic processing and ESCRT-dependent sorting for its delivery to lysosomes in mammalian cells.
Collapse
Affiliation(s)
| | - Michaela Schweizer
- Center of Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Sebastian Jagdmann
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel 24118, Germany
| | - Christian Bernreuther
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Medical Faculty, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Paul Saftig
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel 24118, Germany
| | - Markus Damme
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel 24118, Germany.
| |
Collapse
|
8
|
GGA2 interacts with EGFR cytoplasmic domain to stabilize the receptor expression and promote cell growth. Sci Rep 2018; 8:1368. [PMID: 29358589 PMCID: PMC5778047 DOI: 10.1038/s41598-018-19542-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/03/2018] [Indexed: 12/29/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) signaling and its downregulation upon ligand binding have been extensively documented. However, the mechanisms by which cells maintain steady-state EGFR expression remain poorly understood. Here, we report a novel role of Golgi-localized, γ-adaptin ear-containing, ADP ribosylation factor-binding protein 2 (GGA2) in the control of EGFR turnover. Whereas GGA1- or GGA3-depletion increased EGFR expression, GGA2-depletion by RNAi greatly reduced steady-state expression of EGFR, reflecting enhanced lysosomal degradation of EGFR. Subsequent pull-down assays showed interactions of VHS-GAT domains from three GGAs with the cytoplasmic juxtamembrane region (jxt) of EGFR, which was dependent on N108 in the VHS domain. Proximity ligation assay also revealed the steady-state interaction between GGA2 and EGFR in situ. Moreover, reduced expression of EGFR in GGA2-depleted cells was reversed by additional depletion of GGA1 or GGA3, suggesting that GGA1 and GGA3 promote EGFR degradation. In addition, GGA2-depleted cells had reduced EGF signaling and cell proliferation in cell culture and xenograft experiments. Finally, GGA2 was upregulated in 30.8% of human hepatocellular carcinomas and 23.3% of colorectal cancers. Together, these results indicate that GGA2 supports cell growth by interacting with EGFR for sustaining the receptor expression.
Collapse
|
9
|
Verma JK, Rastogi R, Mukhopadhyay A. Leishmania donovani resides in modified early endosomes by upregulating Rab5a expression via the downregulation of miR-494. PLoS Pathog 2017. [PMID: 28650977 PMCID: PMC5501680 DOI: 10.1371/journal.ppat.1006459] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several intracellular pathogens arrest the phagosome maturation in the host cells to avoid transport to lysosomes. In contrast, the Leishmania containing parasitophorous vacuole (PV) is shown to recruit lysosomal markers and thus Leishmania is postulated to be residing in the phagolysosomes in macrophages. Here, we report that Leishmania donovani specifically upregulates the expression of Rab5a by degrading c-Jun via their metalloprotease gp63 to downregulate the expression of miR-494 in THP-1 differentiated human macrophages. Our results also show that miR-494 negatively regulates the expression of Rab5a in cells. Subsequently, L. donovani recruits and retains Rab5a and EEA1 on PV to reside in early endosomes and inhibits transport to lysosomes in human macrophages. Similarly, we have also observed that Leishmania PV also recruits Rab5a by upregulating its expression in human PBMC differentiated macrophages. However, the parasite modulates the endosome by recruiting Lamp1 and inactive pro-CathepsinD on PV via the overexpression of Rab5a in infected cells. Furthermore, siRNA knockdown of Rab5a or overexpression of miR-494 in human macrophages significantly inhibits the survival of the parasites. These results provide the first mechanistic insights of parasite-mediated remodeling of endo-lysosomal trafficking to reside in a specialized early endocytic compartment.
Collapse
|
10
|
Morinaga T, Yanase S, Okamoto A, Yamaguchi N, Yamaguchi N. Recruitment of Lyn from endomembranes to the plasma membrane through calcium-dependent cell-cell interactions upon polarization of inducible Lyn-expressing MDCK cells. Sci Rep 2017; 7:493. [PMID: 28352128 PMCID: PMC5428707 DOI: 10.1038/s41598-017-00538-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/28/2017] [Indexed: 01/04/2023] Open
Abstract
Src-family kinases, expressed in a wide variety of cell types, are anchored to cellular membranes through posttranslational lipid modifications and involved in diverse cellular signalling. In epithelial cells, Src-family kinases are localized at the plasma membrane and participate in epithelial functions. Epithelial cell polarity is achieved through dynamic reorganization of protein trafficking. To examine the trafficking of Src-family kinases between polarized and non-polarized epithelial cells, we generated an MDCK cell line that can inducibly express a protein of interest in a polarized state at any time. We show here that Lyn, a member of Src-family kinases, mainly localizes to the plasma membrane in polarized MDCK cells and to endomembranes in non-polarized MDCK cells. Cell-cell interactions between adjacent MDCK cells recruit Lyn from endomembranes to the plasma membrane even without cell attachment to extracellular matrix scaffolds, and loss of cell-cell interactions by calcium deprivation relocates Lyn from the plasma membrane to endomembranes through Rab11-mediated recycling. Therefore, using our MDCK cells expressing inducible Lyn, we reveal that calcium-dependent cell-cell interactions play a critical role in plasma membrane localization of Lyn in polarized MDCK cells.
Collapse
Affiliation(s)
- Takao Morinaga
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan.,Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, 260-8717, Japan
| | - Sayuri Yanase
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Aya Okamoto
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Noritaka Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan.
| |
Collapse
|
11
|
Rastogi R, Verma JK, Kapoor A, Langsley G, Mukhopadhyay A. Rab5 Isoforms Specifically Regulate Different Modes of Endocytosis in Leishmania. J Biol Chem 2016; 291:14732-46. [PMID: 27226564 DOI: 10.1074/jbc.m116.716514] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Indexed: 11/06/2022] Open
Abstract
Differential functions of Rab5 isoforms in endocytosis are not well characterized. Here, we cloned, expressed, and characterized Rab5a and Rab5b from Leishmania and found that both of them are localized in the early endosome. To understand the role of LdRab5 isoforms in different modes of endocytosis in Leishmania, we generated transgenic parasites overexpressing LdRab5a, LdRab5b, or their dominant-positive (LdRab5a:Q93L and LdRab5b:Q80L) or dominant-negative mutants (LdRab5a:N146I and LdRab5b:N133I). Using LdRab5a or its mutants overexpressing parasites, we found that LdRab5a specifically regulates the fluid-phase endocytosis of horseradish peroxidase and also specifically induced the transport of dextran-Texas Red to the lysosomes. In contrast, cells overexpressing LdRab5b or its mutants showed that LdRab5b explicitly controls receptor-mediated endocytosis of hemoglobin, and overexpression of LdRab5b:WT enhanced the transport of internalized Hb to the lysosomes in comparison with control cells. To unequivocally demonstrate the role of Rab5 isoforms in endocytosis in Leishmania, we tried to generate null-mutants of LdRab5a and LdRab5b parasites, but both were lethal indicating their essential functions in parasites. Therefore, we used heterozygous LdRab5a(+/-) and LdRab5b(+/-) cells. LdRab5a(+/-) Leishmania showed 50% inhibition of HRP uptake, but hemoglobin endocytosis was uninterrupted. In contrast, about 50% inhibition of Hb endocytosis was observed in LdRab5b(+/-) cells without any significant effect on HRP uptake. Finally, we tried to identify putative LdRab5a and LdRab5b effectors. We found that LdRab5b interacts with clathrin heavy chain and hemoglobin receptor. However, LdRab5a failed to interact with the clathrin heavy chain, and interaction with hemoglobin receptor was significantly less. Thus, our results showed that LdRab5a and LdRab5b differentially regulate fluid phase and receptor-mediated endocytosis in Leishmania.
Collapse
Affiliation(s)
- Ruchir Rastogi
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| | - Jitender Kumar Verma
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| | - Anjali Kapoor
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| | - Gordon Langsley
- the INSERM U1016, CNRS UMR8104, Cochin Institute, 75014 Paris, France
| | - Amitabha Mukhopadhyay
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| |
Collapse
|
12
|
Garcia NA, Moncayo-Arlandi J, Sepulveda P, Diez-Juan A. Cardiomyocyte exosomes regulate glycolytic flux in endothelium by direct transfer of GLUT transporters and glycolytic enzymes. Cardiovasc Res 2015; 109:397-408. [PMID: 26609058 DOI: 10.1093/cvr/cvv260] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 11/10/2015] [Indexed: 12/25/2022] Open
Abstract
AIMS Cardiomyocytes (CMs) and endothelial cells (ECs) have an intimate anatomical relationship, which is essential for maintaining the metabolic requirements of the heart. Little is known about the mechanisms that regulate nutrient flow from ECs to associated CMs, especially in situations of acute stress when local active processes are required to regulate endothelial transport. We examined whether CM-derived exosomes can modulate glucose transport and metabolism in ECs. METHODS AND RESULTS In conditions of glucose deprivation, CMs increase the synthesis and secretion of exosomes. These exosomes are loaded with functional glucose transporters and glycolytic enzymes, which are internalized by ECs, leading to increased glucose uptake, glycolytic activity, and pyruvate production in recipient cells. CONCLUSION These findings establish CM-derived exosomes as key components of the cardio-endothelial communication system which, through intercellular protein complementation, would allow a rapid response from ECs to increase glucose transport and a putative uptake of metabolic fuels from blood to CMs. This CM-EC protein complementation process might have implications for metabolic regulation in health and disease.
Collapse
Affiliation(s)
- Nahuel A Garcia
- Mixt Unit for Cardiovascular Repair, Instituto de Investigación Sanitaria La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Javier Moncayo-Arlandi
- Cardiovascular Genetics Center, Institut d́Investigació Biomèdica de Girona, Girona, Spain
| | - Pilar Sepulveda
- Mixt Unit for Cardiovascular Repair, Instituto de Investigación Sanitaria La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Adva. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Antonio Diez-Juan
- Fundación IVI/INCLIVA, Valencia, Spain IGENOMICS, Calle Catedrático Agustín Escardino 9, Paterna, Valencia 46980, Spain
| |
Collapse
|
13
|
Nishimura YV, Shikanai M, Hoshino M, Ohshima T, Nabeshima YI, Mizutani KI, Nagata KI, Nakajima K, Kawauchi T. Cdk5 and its substrates, Dcx and p27kip1, regulate cytoplasmic dilation formation and nuclear elongation in migrating neurons. Development 2014; 141:3540-50. [PMID: 25183872 DOI: 10.1242/dev.111294] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neuronal migration is crucial for development of the mammalian-specific six-layered cerebral cortex. Migrating neurons are known to exhibit distinct features; they form a cytoplasmic dilation, a structure specific to migrating neurons, at the proximal region of the leading process, followed by nuclear elongation and forward movement. However, the molecular mechanisms of dilation formation and nuclear elongation remain unclear. Using ex vivo chemical inhibitor experiments, we show here that rottlerin, which is widely used as a specific inhibitor for PKCδ, suppresses the formation of a cytoplasmic dilation and nuclear elongation in cortical migrating neurons. Although our previous study showed that cortical neuronal migration depends on Jnk, another downstream target of rottlerin, Jnk inhibition disturbs only the nuclear elongation and forward movement, but not the dilation formation. We found that an unconventional cyclin-dependent kinase, Cdk5, is a novel downstream target of rottlerin, and that pharmacological or knockdown-mediated inhibition of Cdk5 suppresses both the dilation formation and nuclear elongation. We also show that Cdk5 inhibition perturbs endocytic trafficking as well as microtubule organization, both of which have been shown to be required for dilation formation. Furthermore, knockdown of Dcx, a Cdk5 substrate involved in microtubule organization and membrane trafficking, or p27(kip1), another Cdk5 substrate involved in actin and microtubule organization, disturbs the dilation formation and nuclear elongation. These data suggest that Cdk5 and its substrates, Dcx and p27(kip1), characterize migrating neuron-specific features, cytoplasmic dilation formation and nuclear elongation in the mouse cerebral cortex, possibly through the regulation of microtubule organization and an endocytic pathway.
Collapse
Affiliation(s)
- Yoshiaki V Nishimura
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan Laboratory of Neural Differentiation, Graduate School of Brain Science, Doshisha University, 4-1-1 Kizugawa-dai, Kizugawa-shi, Kyoto 619-0225, Japan Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya, Kasugai, Aichi 480-0392, Japan
| | - Mima Shikanai
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo 187-8502, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo 162-8430, Japan
| | - Yo-ichi Nabeshima
- Laboratory of Molecular Life Science, Foundation for Biomedical Research and Innovation, Kobe 650-0047, Japan
| | - Ken-Ichi Mizutani
- Laboratory of Neural Differentiation, Graduate School of Brain Science, Doshisha University, 4-1-1 Kizugawa-dai, Kizugawa-shi, Kyoto 619-0225, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya, Kasugai, Aichi 480-0392, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takeshi Kawauchi
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| |
Collapse
|
14
|
Shtanko O, Nikitina RA, Altuntas CZ, Chepurnov AA, Davey RA. Crimean-Congo hemorrhagic fever virus entry into host cells occurs through the multivesicular body and requires ESCRT regulators. PLoS Pathog 2014; 10:e1004390. [PMID: 25233119 PMCID: PMC4169490 DOI: 10.1371/journal.ppat.1004390] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/10/2014] [Indexed: 11/21/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne bunyavirus causing outbreaks of severe disease in humans, with a fatality rate approaching 30%. There are no widely accepted therapeutics available to prevent or treat the disease. CCHFV enters host cells through clathrin-mediated endocytosis and is subsequently transported to an acidified compartment where the fusion of virus envelope with cellular membranes takes place. To better understand the uptake pathway, we sought to identify host factors controlling CCHFV transport through the cell. We demonstrate that after passing through early endosomes in a Rab5-dependent manner, CCHFV is delivered to multivesicular bodies (MVBs). Virus particles localized to MVBs approximately 1 hour after infection and affected the distribution of the organelle within cells. Interestingly, blocking Rab7 activity had no effect on association of the virus with MVBs. Productive virus infection depended on phosphatidylinositol 3-kinase (PI3K) activity, which meditates the formation of functional MVBs. Silencing Tsg101, Vps24, Vps4B, or Alix/Aip1, components of the endosomal sorting complex required for transport (ESCRT) pathway controlling MVB biogenesis, inhibited infection of wild-type virus as well as a novel pseudotyped vesicular stomatitis virus (VSV) bearing CCHFV glycoprotein, supporting a role for the MVB pathway in CCHFV entry. We further demonstrate that blocking transport out of MVBs still allowed virus entry while preventing vesicular acidification, required for membrane fusion, trapped virions in the MVBs. These findings suggest that MVBs are necessary for infection and are the sites of virus-endosome membrane fusion. Crimean-Congo hemorrhagic fever virus (CCHFV) is the cause of a severe, often fatal disease in humans. While it has been demonstrated that CCHFV cell entry depends on clathrin-mediated endocytosis, low pH, and early endosomes, the identity of the endosomes where virus penetrates into cell cytoplasm to initiate genome replication is unknown. Here, we showed that CCHFV was transported through early endosomes to multivesicular bodies (MVBs). We also showed that MVBs were likely the last organelle virus encountered before escaping into the cytoplasm. Our work has identified new cellular factors essential for CCHFV entry and potential novel targets for therapeutic intervention against this pathogen.
Collapse
Affiliation(s)
- Olena Shtanko
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Raisa A. Nikitina
- Laboratory of Regulation of Immunopoiesis, Institute for Clinical Immunology, Novosibirsk, Russian Federation
| | - Cengiz Z. Altuntas
- Texas Institute of Biotechnology Education and Research, North American University, Houston, Texas, United States of America
| | - Alexander A. Chepurnov
- Laboratory of Regulation of Immunopoiesis, Institute for Clinical Immunology, Novosibirsk, Russian Federation
| | - Robert A. Davey
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
15
|
c-Abl and Arg induce cathepsin-mediated lysosomal degradation of the NM23-H1 metastasis suppressor in invasive cancer. Oncogene 2013; 33:4508-4520. [PMID: 24096484 PMCID: PMC3979510 DOI: 10.1038/onc.2013.399] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/22/2013] [Accepted: 08/06/2013] [Indexed: 02/08/2023]
Abstract
Metastasis suppressors comprise a growing class of genes whose downregulation triggers metastatic progression. In contrast to tumor suppressors, metastasis suppressors are rarely mutated or deleted, and little is known regarding the mechanisms by which their expression is downregulated. Here, we demonstrate that the metastasis suppressor, NM23-H1, is degraded by lysosomal cysteine cathepsins (L,B), which directly cleave NM23-H1. In addition, activation of c-Abl and Arg oncoproteins induces NM23-H1 degradation in invasive cancer cells by increasing cysteine cathepsin transcription and activation. Moreover, c-Abl activates cathepsins by promoting endosome maturation, which facilitates trafficking of NM23-H1 to the lysosome where it is degraded. Importantly, the invasion- and metastasis-promoting activity of c-Abl/Arg is dependent on their ability to induce NM23-H1 degradation, and the pathway is clinically relevant as c-Abl/Arg activity and NM23-H1 expression are inversely correlated in primary breast cancers and melanomas. Thus, we demonstrate a novel mechanism by which cathepsin expression is upregulated in cancer cells (via Abl kinases). We also identify a novel role for intracellular cathepsins in invasion and metastasis (degradation of a metastasis suppressor). Finally, we identify novel crosstalk between oncogenic and metastasis suppressor pathways, thereby providing mechanistic insight into the process of NM23-H1 loss, which may pave the way for new strategies to restore NM23-H1 expression and block metastatic progression.
Collapse
|
16
|
Gailite I, Egger-Adam D, Wodarz A. The phosphoinositide-associated protein Rush hour regulates endosomal trafficking in Drosophila. Mol Biol Cell 2011; 23:433-47. [PMID: 22160599 PMCID: PMC3268723 DOI: 10.1091/mbc.e11-02-0154] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Endocytosis regulates multiple cellular processes, including the protein composition of the plasma membrane, intercellular signaling, and cell polarity. We have identified the highly conserved protein Rush hour (Rush) and show that it participates in the regulation of endocytosis. Rush localizes to endosomes via direct binding of its FYVE (Fab1p, YOTB, Vac1p, EEA1) domain to phosphatidylinositol 3-phosphate. Rush also directly binds to Rab GDP dissociation inhibitor (Gdi), which is involved in the activation of Rab proteins. Homozygous rush mutant flies are viable but show genetic interactions with mutations in Gdi, Rab5, hrs, and carnation, the fly homologue of Vps33. Overexpression of Rush disrupts progression of endocytosed cargo and increases late endosome size. Lysosomal marker staining is decreased in Rush-overexpressing cells, pointing to a defect in the transition between late endosomes and lysosomes. Rush also causes formation of endosome clusters, possibly by affecting fusion of endosomes via an interaction with the class C Vps/homotypic fusion and vacuole protein-sorting (HOPS) complex. These results indicate that Rush controls trafficking from early to late endosomes and from late endosomes to lysosomes by modulating the activity of Rab proteins.
Collapse
Affiliation(s)
- Ieva Gailite
- Stammzellbiologie, Abteilung Anatomie und Zellbiologie, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | | | | |
Collapse
|
17
|
Rosenfeld JL, Knoll BJ, Moore RH. Regulation of G-Protein-Coupled Receptor Activity by Rab GTPases. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820212398] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Zwaenepoel O, Tzenaki N, Vergetaki A, Makrigiannakis A, Vanhaesebroeck B, Papakonstanti EA. Functional CSF-1 receptors are located at the nuclear envelope and activated via the p110δ isoform of PI 3-kinase. FASEB J 2011; 26:691-706. [PMID: 22084313 DOI: 10.1096/fj.11-189753] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Colony stimulating factor-1 (CSF-1) and its receptor (CSF-1R) are key regulators of macrophage biology, and their elevated expression in cancer cells has been linked to poor prognosis. CSF-1Rs are thought to function at the plasma membrane. We show here that functional CSF-1Rs are present at the nuclear envelope of various cell types, including primary macrophages, human cancer cell lines, and primary human carcinomas. In response to CSF-1, added to intact cells or isolated nuclei, nucleus-associated CSF-1R became phosphorylated and triggered the phosphorylation of Akt and p27 inside the nucleus. Extracellularly added CSF-1 was also found to colocalize with nucleus-associated CSF-1Rs. All these activities were found to depend selectively on the activity of the p110δ isoform of phosphoinositide 3-kinase (PI3K). This finding was related to the p110δ-dependent translocation of exogenous CSF-1 to the nucleus-associated CSF-1Rs, correlating with a prominent role of p110δ in activation of the Rab5 GTPase, a key regulator of the endocytic trafficking. siRNA-silencing of Rab5a phenocopied p110δ inactivation and nuclear CSF-1 signaling. Our work demonstrates for the first time the presence of functional nucleus-associated CSF-1Rs, which are activated by extracellular CSF-1 by a mechanism that involves p110δ and Rab5 activity. These findings may have important implications in cancer development.
Collapse
Affiliation(s)
- Olivier Zwaenepoel
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Being deeply connected to signalling, cell dynamics, growth, regulation, and defence, endocytic processes are linked to almost all aspects of cell life and disease. In this review, we focus on endosomes in the classical endocytic pathway, and on the programme of changes that lead to the formation and maturation of late endosomes/multivesicular bodies. The maturation programme entails a dramatic transformation of these dynamic organelles disconnecting them functionally and spatially from early endosomes and preparing them for their unidirectional role as a feeder pathway to lysosomes.
Collapse
|
20
|
Zhang C, Li A, Zhang X, Xiao H. A novel TIP30 protein complex regulates EGF receptor signaling and endocytic degradation. J Biol Chem 2011; 286:9373-81. [PMID: 21252234 PMCID: PMC3058969 DOI: 10.1074/jbc.m110.207720] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/18/2011] [Indexed: 01/07/2023] Open
Abstract
Activated epidermal growth factor receptor (EGFR) continues to signal in the early endosome, but how this signaling process is regulated is less well understood. Here we describe a protein complex consisting of TIP30, endophilin B1, and acyl-CoA synthetase long chain family member 4 (ACSL4) that interacts with Rab5a and regulates EGFR endocytosis and signaling. These proteins are required for the proper endocytic trafficking of EGF-EGFR. Knockdown of TIP30, ACSL4, endophilin B1, or Rab5a in human liver cancer cells or genetic knock-out of Tip30 in mouse primary hepatocytes results in the trapping of EGF-EGFR complexes in early endosomes, leading to delayed EGFR degradation and prolonged EGFR signaling. Furthermore, we show that Rab5a colocalizes with vacuolar (H(+))-ATPases (V-ATPases) on transport vesicles. The TIP30 complex facilitates trafficking of Rab5a and V-ATPases to EEA1-positive endosomes in response to EGF. Together, these results suggest that this TIP30 complex regulates EGFR endocytosis by facilitating the transport of V-ATPases from trans-Golgi network to early endosomes.
Collapse
Affiliation(s)
- Chengliang Zhang
- From the Department of Biomedical and Integrative Physiology and
- Genetics Program, Michigan State University, East Lansing, Michigan 48824 and
| | - Aimin Li
- From the Department of Biomedical and Integrative Physiology and
- the Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xinchun Zhang
- Genetics Program, Michigan State University, East Lansing, Michigan 48824 and
| | - Hua Xiao
- From the Department of Biomedical and Integrative Physiology and
| |
Collapse
|
21
|
Kawauchi T, Sekine K, Shikanai M, Chihama K, Tomita K, Kubo KI, Nakajima K, Nabeshima YI, Hoshino M. Rab GTPases-dependent endocytic pathways regulate neuronal migration and maturation through N-cadherin trafficking. Neuron 2010; 67:588-602. [PMID: 20797536 DOI: 10.1016/j.neuron.2010.07.007] [Citation(s) in RCA: 271] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2010] [Indexed: 11/15/2022]
Abstract
Although membrane trafficking pathways are involved in basic cellular functions, the evolutionally expanded number of their related family proteins suggests additional roles for membrane trafficking in higher organisms. Here, we show that several Rab-dependent trafficking pathways differentially participate in neuronal migration, an essential step for the formation of the mammalian-specific six-layered brain structure. In vivo electroporation-mediated suppression of Rab5 or dynamin to block endocytosis caused a severe neuronal migration defect in mouse cerebral cortex. Among many downstream endocytic pathways, suppression of Rab11-dependent recycling pathways exhibited a similar migration disorder, whereas inhibition of Rab7-dependent lysosomal degradation pathways affected only the final phase of neuronal migration and dendrite morphology. Inhibition of Rab5 or Rab11 perturbed the trafficking of N-cadherin, whose suppression also disturbed neuronal migration. Taken together, our findings reveal physiological roles of endocytic pathways, each of which has specific functions in distinct steps of neuronal migration and maturation during mammalian brain formation.
Collapse
Affiliation(s)
- Takeshi Kawauchi
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lozach PY, Mancini R, Bitto D, Meier R, Oestereich L, Overby AK, Pettersson RF, Helenius A. Entry of bunyaviruses into mammalian cells. Cell Host Microbe 2010; 7:488-99. [PMID: 20542252 PMCID: PMC7172475 DOI: 10.1016/j.chom.2010.05.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 03/16/2010] [Accepted: 04/28/2010] [Indexed: 01/31/2023]
Abstract
The Bunyaviridae constitute a large family of enveloped animal viruses, many members of which cause serious diseases. However, early bunyavirus-host cell interactions and entry mechanisms remain largely uncharacterized. Investigating Uukuniemi virus, a bunyavirus of the genus Phlebovirus, we found that virus attachment to the cell surface was specific but inefficient, with 25% of bound viruses being endocytosed within 10 min, mainly via noncoated vesicles. The viruses entered Rab5a+ early endosomes and, subsequently, Rab7a+ and LAMP-1+ late endosomes. Acid-activated penetration, occurring 20-40 min after internalization, required maturation of early to late endosomes. The pH threshold for viral membrane fusion was 5.4, and entry was sensitive to temperatures below 25 degrees C. Together, our results indicate that Uukuniemi virus penetrates host cells by acid-activated membrane fusion from late endosomal compartments. This study also highlights the importance of the degradative branch of the endocytic pathway in facilitating entry of late-penetrating viruses.
Collapse
Affiliation(s)
- Pierre-Yves Lozach
- ETH Zurich, Institute of Biochemistry, Schafmattstrasse 18, CH-8093 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Poteryaev D, Datta S, Ackema K, Zerial M, Spang A. Identification of the switch in early-to-late endosome transition. Cell 2010; 141:497-508. [PMID: 20434987 DOI: 10.1016/j.cell.2010.03.011] [Citation(s) in RCA: 542] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 11/26/2009] [Accepted: 02/25/2010] [Indexed: 11/16/2022]
Abstract
Sequential transport from early to late endosomes requires the coordinated activities of the small GTPases Rab5 and Rab7. The transition between early and late endosomes could be mediated either through transport carriers or by Rab conversion, a process in which the loss of Rab5 from an endosome occurs concomitantly to the acquisition of Rab7. We demonstrate that Rab conversion is the mechanism by which proteins pass from early to late endosomes in Caenorhabditis elegans coelomocytes. Moreover, we identified SAND-1/Mon1 as the critical switch for Rab conversion in metazoa. SAND-1 serves a dual role in this process. First, it interrupts the positive feedback loop of RAB-5 activation by displacing RABX-5 from endosomal membranes; second, it times the recruitment of RAB-7, probably through interaction with the HOPS complex to the same membranes. SAND-1/Mon1 thus acts as a switch by controlling the localization of RAB-5 and RAB-7 GEFs.
Collapse
Affiliation(s)
- Dmitry Poteryaev
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel 4056, Switzerland
| | | | | | | | | |
Collapse
|
24
|
Mukhopadhyay S, Bachert C, Smith DR, Linstedt AD. Manganese-induced trafficking and turnover of the cis-Golgi glycoprotein GPP130. Mol Biol Cell 2010; 21:1282-92. [PMID: 20130081 PMCID: PMC2847531 DOI: 10.1091/mbc.e09-11-0985] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Manganese is an essential element that is also neurotoxic at elevated exposure. However, mechanisms regulating Mn homeostasis in mammalian cells are largely unknown. Because increases in cytosolic Mn induce rapid changes in the localization of proteins involved in regulating intracellular Mn concentrations in yeast, we were intrigued to discover that low concentrations of extracellular Mn induced rapid redistribution of the mammalian cis-Golgi glycoprotein Golgi phosphoprotein of 130 kDa (GPP130) to multivesicular bodies. GPP130 was subsequently degraded in lysosomes. The Mn-induced trafficking of GPP130 occurred from the Golgi via a Rab-7-dependent pathway and did not require its transit through the plasma membrane or early endosomes. Although the cytoplasmic domain of GPP130 was dispensable for its ability to respond to Mn, its lumenal stem domain was required and it had to be targeted to the cis-Golgi for the Mn response to occur. Remarkably, the stem domain was sufficient to confer Mn sensitivity to another cis-Golgi protein. Our results identify the stem domain of GPP130 as a novel Mn sensor in the Golgi lumen of mammalian cells.
Collapse
Affiliation(s)
- Somshuvra Mukhopadhyay
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
25
|
Wegner CS, Wegener CS, Malerød L, Pedersen NM, Progida C, Prodiga C, Bakke O, Stenmark H, Brech A. Ultrastructural characterization of giant endosomes induced by GTPase-deficient Rab5. Histochem Cell Biol 2009; 133:41-55. [PMID: 19830447 DOI: 10.1007/s00418-009-0643-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2009] [Indexed: 02/02/2023]
Abstract
The small GTPase Rab5 controls the fusogenic properties of early endosomes through GTP-dependent recruitment and activation of effector proteins. Expression of a GTPase-defective mutant, Rab5(Q79L), is known to cause formation of enlarged early endosomes. The ability of Rab5-GTP to recruit multiple effectors raises the question whether the Rab5(Q79L)-induced giant endosomes simply represent enlarged early endosomes or whether they have a more complex phenotype. In this report, we have addressed this issue by generating a HEp2 cell line with inducible expression of Rab5(Q79L) and performing ultrastructural analysis of Rab5(Q79L)-induced endosomes. We find that Rab5(Q79L) not only induces formation of enlarged early endosomes but also causes enlargement of later endocytic profiles. Most strikingly, Rab5(Q79L) causes formation of enlarged multivesicular endosomes with a large number of intraluminal vesicles, and endosomes that contain both early and late endocytic markers are frequently observed. In addition, we observe defects in the sorting of the EGF receptor and the transferrin receptor through this compartment.
Collapse
Affiliation(s)
- Catherine Sem Wegner
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Occurrence of an anomalous endocytic compartment in fibroblasts from Sandhoff disease patients. Mol Cell Biochem 2009; 335:273-82. [DOI: 10.1007/s11010-009-0277-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 09/16/2009] [Indexed: 10/20/2022]
|
27
|
Levecque C, Velayos-Baeza A, Holloway ZG, Monaco AP. The dyslexia-associated protein KIAA0319 interacts with adaptor protein 2 and follows the classical clathrin-mediated endocytosis pathway. Am J Physiol Cell Physiol 2009; 297:C160-8. [PMID: 19419997 PMCID: PMC2711651 DOI: 10.1152/ajpcell.00630.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Recently, genetic studies have implicated KIAA0319 in developmental dyslexia, the most common of the childhood learning disorders. The first functional data indicated that the KIAA0319 protein is expressed on the plasma membrane and may be involved in neuronal migration. Further analysis of the subcellular distribution of the overexpressed protein in mammalian cells indicates that KIAA0319 can colocalize with the early endosomal marker early endosome antigen 1 (EEA1) in large intracellular vesicles, suggesting that it is endocytosed. Antibody internalization assays with full-length KIAA0319 and deletion constructs confirmed that KIAA0319 is internalized and showed the importance of the cytoplasmic juxtamembranal region in this process. The present study has identified the medium subunit (μ2) of adaptor protein 2 (AP-2) as a binding partner of KIAA0319 in a yeast two-hybrid screen. Using Rab5 mutants or depletion of the μ-subunit of AP-2 or clathrin heavy chain by RNA interference, we demonstrate that KIAA0319 follows a clathrin-mediated endocytic pathway. We also identify tyrosine-995 of KIAA0319 as a critical amino acid required for the interaction with AP-2 and subsequent internalization. These results suggest the surface expression of KIAA0319 is regulated by endocytosis, supporting the idea that the internalization and recycling of the protein may be involved in fine tuning its role in neuronal migration.
Collapse
Affiliation(s)
- Clotilde Levecque
- Wellcome Trust Centre for Human Genetics, Univ. of Oxford, Roosevelt D., Oxford OX3 7BN, UK
| | | | | | | |
Collapse
|
28
|
Manipulation of rab GTPase function by intracellular bacterial pathogens. Microbiol Mol Biol Rev 2008; 71:636-52. [PMID: 18063721 PMCID: PMC2168649 DOI: 10.1128/mmbr.00023-07] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intracellular bacterial pathogens have evolved highly specialized mechanisms to enter and survive within their eukaryotic hosts. In order to do this, bacterial pathogens need to avoid host cell degradation and obtain nutrients and biosynthetic precursors, as well as evade detection by the host immune system. To create an intracellular niche that is favorable for replication, some intracellular pathogens inhibit the maturation of the phagosome or exit the endocytic pathway by modifying the identity of their phagosome through the exploitation of host cell trafficking pathways. In eukaryotic cells, organelle identity is determined, in part, by the composition of active Rab GTPases on the membranes of each organelle. This review describes our current understanding of how selected bacterial pathogens regulate host trafficking pathways by the selective inclusion or retention of Rab GTPases on membranes of the vacuoles that they occupy in host cells during infection.
Collapse
|
29
|
Frankenberg T, Kirschnek S, Häcker H, Häcker G. Phagocytosis-induced apoptosis of macrophages is linked to uptake, killing and degradation of bacteria. Eur J Immunol 2008; 38:204-15. [DOI: 10.1002/eji.200737379] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Hirota Y, Kuronita T, Fujita H, Tanaka Y. A role for Rab5 activity in the biogenesis of endosomal and lysosomal compartments. Biochem Biophys Res Commun 2007; 364:40-7. [DOI: 10.1016/j.bbrc.2007.09.089] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 09/21/2007] [Indexed: 12/01/2022]
|
31
|
Wang B, Yang L, Wang Z, Zheng H. Amyolid precursor protein mediates presynaptic localization and activity of the high-affinity choline transporter. Proc Natl Acad Sci U S A 2007; 104:14140-5. [PMID: 17709753 PMCID: PMC1955810 DOI: 10.1073/pnas.0704070104] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The key pathological features of Alzheimer's disease include synaptic dysfunction, profound changes in the cholinergic system, and deposition of beta-amyloid peptides generated by proteolytic processing of the amyloid-beta precursor protein (APP). However, the pathways linking APP with synaptic activity and cholinergic neuronal function are poorly understood. We report here that APP is essential in regulating the presynaptic expression and activity of the high-affinity choline transporter (CHT), a molecule that mediates the rate-limiting step of cholinergic synaptic transmission in both the neuromuscular junction and central cholinergic neurons. Loss of APP leads to aberrant localization of CHT at the neuromuscular synapses and reduced CHT activity at cholinergic projections. At the cellular level, we show that APP and CHT can be found in Rab5-positive endosomal compartments and that APP affects CHT endocytosis. Furthermore, we demonstrate that APP interacts with CHT through the C-terminal domain, providing support for a specific and direct regulation of CHT by APP through protein-protein interactions. These results identify a physiological activity of APP in cholinergic neurons, and our data indicate that deregulation of APP function may contribute to cholinergic impairment and AD pathogenesis.
Collapse
Affiliation(s)
| | - Li Yang
- *Huffington Center on Aging and
| | - Zilai Wang
- *Huffington Center on Aging and
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Hui Zheng
- *Huffington Center on Aging and
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
32
|
Kasahara K, Nakayama Y, Sato I, Ikeda K, Hoshino M, Endo T, Yamaguchi N. Role of Src-family kinases in formation and trafficking of macropinosomes. J Cell Physiol 2007; 211:220-32. [PMID: 17167779 DOI: 10.1002/jcp.20931] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Src-family kinases that localize to the cytoplasmic side of cellular membranes through lipid modification play a role in signaling events including membrane trafficking. Macropinocytosis is an endocytic process for solute uptake by large vesicles called macropinosomes. Although macropinosomes can be visualized following uptake of fluorescent macromolecules, little is known about the dynamics of macropinosomes in living cells. Here, we show that constitutive c-Src expression generates macropinosomes in a kinase-dependent manner. Live-cell imaging of GFP-tagged c-Src (Src-GFP) reveals that c-Src associates with macropinosomes via its N-terminus continuously from their generation at membrane ruffles, through their centripetal trafficking, to fusion with late endosomes and lysosomes. Fluorescence recovery after photobleaching (FRAP) of Src-GFP shows that Src-GFP is rapidly recruited to macropinosomal membranes from the plasma membrane and intracellular organelles through vesicle transport even in the presence of a protein synthesis inhibitor. Furthermore, using a HeLa cell line overexpressing inducible c-Src, we show that following stimulation with epidermal growth factor (EGF), high levels of c-Src kinase activity promote formation of macropinosomes associated with the lysosomal compartment. Unlike c-Src, Lyn and Fyn, which are palmitoylated Src kinases, only minimally induce macropinosomes, although a Lyn mutant in which the palmitoylation site is mutated efficiently induces macropinocytosis. We conclude that kinase activity of nonpalmitoylated Src kinases including c-Src may play an important role in the biogenesis and trafficking of macropinosomes.
Collapse
Affiliation(s)
- Kousuke Kasahara
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Li JY, Dahlström A. Axonal transport of neuropeptides: Retrograde tracing study in live cell cultures of rat sympathetic cervical ganglia. J Neurosci Res 2007; 85:2538-45. [PMID: 17410602 DOI: 10.1002/jnr.21285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Previous studies demonstrated that neuropeptides are transported with fast axonal transport. Considerable amounts (30-40%) of anterogradely transported peptides accumulated distal to a crush, apparently recycling to the cell bodies. In the present study, we used primary and compartmented cultures of sympathetic cervical ganglia (SCG) to address questions on the origin of the recycling peptides. In primary cultures, distinct labeling of neuropeptide Y (NPY) or secretoneurin (SN) immunoreactivities was detected in varicosities and in cell bodies, after administration of NPY or SN antibodies to the living cultures. Simultaneous addition to the medium with antibody against the N-terminal (lumen) domain of synaptotagmin, resulted in a partial overlapping between synaptotagmin and NPY/SN. In compartmented chamber cultures, in which cell body and proximal segments of the processes are restricted to the central chamber and the distal processes are present in peripheral compartments, antibody administration was performed in the peripheral compartment. KCl (60-120 mM) was added to the central chamber for 10 sec, followed by washing, and 30-60 min later clear labeling was detected in the cell bodies, suggesting that the antibodies were now present in structures that were transported from the distal segments in the peripheral compartment to the cell body. The results indicate 1) that peptide release from large dense cored vesicles is incomplete; 2) that the remaining peptides, together with the membrane, are retrogradely transported to cell bodies; and 3) that the recycling peptides accumulating distal to a crush of a peripheral nerve are most likely to be recycled from the nerve terminals.
Collapse
Affiliation(s)
- Jia-Yi Li
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.
| | | |
Collapse
|
34
|
Iyer V, Tran TM, Foster E, Dai W, Clark RB, Knoll BJ. Differential phosphorylation and dephosphorylation of beta2-adrenoceptor sites Ser262 and Ser355,356. Br J Pharmacol 2006; 147:249-59. [PMID: 16331289 PMCID: PMC1751300 DOI: 10.1038/sj.bjp.0706551] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Activated beta2-adrenoceptors are rapidly desensitized by phosphorylation of Ser262 by protein kinase A (PKA) and of Ser355,356 by G-protein-coupled receptor kinase (GRK). We sought to determine whether the phosphorylation and subsequent dephosphorylation of these sites had similar kinetics and requirements for receptor endocytosis. The phosphorylation of the PKA and GRK sites were measured using antibodies that recognize phosphoserine 262 and phosphoserine 355,356. Endocytosis in stably transfected HEK293 cells was blocked by inducible expression of dominant-negative dynamin-1 K44A or by treatment with hypertonic sucrose. The phosphorylation of the GRK site Ser355,356 during a 10 microM isoprenaline treatment rapidly reached a steady state, and the extent of kinetics of phosphorylation were unaffected by dynamin-1 K44A expression, and minimally by hypertonic sucrose. In contrast, phosphorylation of the PKA site Ser262 during a 10 microM isoprenaline treatment peaked after 2 min and then rapidly declined, while inhibition of endocytosis enhanced and prolonged phosphorylation. Treatment with 300 pM isoprenaline, a concentration too low to provoke endocytosis, also resulted in prolonged PKA site phosphorylation. The dephosphorylation of these sites was measured after removal of agonist. Significant dephosphorylation of phosphoserines 262 and 355,356 was observed under conditions of very low endocytosis, however dephosphorylation of the GRK site was greater if antagonist was present after removal of agonist. The results indicate that the kinetics of beta2-adrenoceptor GRK and PKA site phosphorylation are distinct and differently affected by endocytosis, and that receptor dephosphorylation can occur either at the plasma membrane or in internal compartments.
Collapse
Affiliation(s)
- Varsha Iyer
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Rm 521D, Science and Research Bldg 2, Houston, TX 77204, U.S.A
| | - Tuan M Tran
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School, P.O. Box 20708, Houston, TX 77225, U.S.A
| | - Estrella Foster
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Rm 521D, Science and Research Bldg 2, Houston, TX 77204, U.S.A
| | - Wenping Dai
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Rm 521D, Science and Research Bldg 2, Houston, TX 77204, U.S.A
| | - Richard B Clark
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School, P.O. Box 20708, Houston, TX 77225, U.S.A
| | - Brian J Knoll
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Rm 521D, Science and Research Bldg 2, Houston, TX 77204, U.S.A
- Author for correspondence:
| |
Collapse
|
35
|
Pellinen T, Arjonen A, Vuoriluoto K, Kallio K, Fransen JAM, Ivaska J. Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of beta1-integrins. ACTA ACUST UNITED AC 2006; 173:767-80. [PMID: 16754960 PMCID: PMC2063892 DOI: 10.1083/jcb.200509019] [Citation(s) in RCA: 308] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dynamic turnover of integrin cell adhesion molecules to and from the cell surface is central to cell migration. We report for the first time an association between integrins and Rab proteins, which are small GTPases involved in the traffic of endocytotic vesicles. Rab21 (and Rab5) associate with the cytoplasmic domains of alpha-integrin chains, and their expression influences the endo/exocytic traffic of integrins. This function of Rab21 is dependent on its GTP/GDP cycle and proper membrane targeting. Knock down of Rab21 impairs integrin-mediated cell adhesion and motility, whereas its overexpression stimulates cell migration and cancer cell adhesion to collagen and human bone. Finally, overexpression of Rab21 fails to induce cell adhesion via an integrin point mutant deficient in Rab21 association. These data provide mechanistic insight into how integrins are targeted to intracellular compartments and how their traffic regulates cell adhesion.
Collapse
Affiliation(s)
- Teijo Pellinen
- VTT Technical Research Centre of Finland, Medical Biotechnology, Turku FIN-20520, Finland
| | | | | | | | | | | |
Collapse
|
36
|
Zhang X, He X, Fu XY, Chang Z. Varp is a Rab21 guanine nucleotide exchange factor and regulates endosome dynamics. J Cell Sci 2006; 119:1053-62. [PMID: 16525121 DOI: 10.1242/jcs.02810] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The small GTPases Rab5 and Rab21 are closely related, and play essential roles in endocytic trafficking. Rab5 is regulated by VPS9-domain-containing guanine nucleotide exchange factors. Here, we describe a new VPS9-domain protein with ankyrin repeats, the VPS9-ankyrin-repeat protein (Varp). Varp interacts preferentially with GDP-bound Rab21 and has a much stronger guanine nucleotide exchange activity towards Rab21 than Rab5. Furthermore, RNAi-mediated depletion of endogenous Varp significantly disrupts the activity of Rab21 in HeLa cells. Ectopically expressed Varp mainly localizes to early endosomes and causes enlargement of early endosomes and giant late endosomes. Both the VPS9 domain and ankyrin-repeats are required for the endosomal localization and the activity of Varp in vivo. These results suggest that Varp is a potential Rab21 guanine nucleotide exchange factor and might regulate endosome dynamics in vivo.
Collapse
Affiliation(s)
- Xinjun Zhang
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing (100084), China
| | | | | | | |
Collapse
|
37
|
Vidricaire G, Tremblay MJ. Rab5 and Rab7, but Not ARF6, Govern the Early Events of HIV-1 Infection in Polarized Human Placental Cells. THE JOURNAL OF IMMUNOLOGY 2005; 175:6517-30. [PMID: 16272306 DOI: 10.4049/jimmunol.175.10.6517] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Trophoblasts, the structural cells of the placenta, are thought to play a determinant role in in utero HIV type 1 (HIV-1) transmission. We have accumulated evidence suggesting that HIV-1 infection of these cells is associated with uptake by an unusual clathrin/caveolae-independent endocytic pathway and that endocytosis is followed by trafficking through multiple organelles. Furthermore, part of this trafficking involves the transit of HIV-1 from transferrin-negative to EEA1 and transferrin-positive endosomes, suggesting a merger from nonclassical to classical endocytic pathways in these cells. In the present article, the relationship between the presence of HIV-1 within specific endosomes and infection was studied. We demonstrate that viral infection is virtually lost when endosome inhibitors are added shortly after exposure to HIV-1. Thus, contrary to what is seen in CD4+ T lymphocytes, the initial presence of HIV-1 within the endosomes is mandatory for infection to take place. Importantly, this process is independent of the viral envelope proteins gp120 and gp41. The Rab family of small GTPases coordinates the vesicular transport between the different endocytic organelles. Experiments performed with various expression vectors indicated that HIV-1 infection in polarized trophoblasts relies on Rab5 and Rab7 without the contribution of Arf6 or Rab11. Furthermore, we conclude that Rab5 drives movements from raft-rich region to early endosomes, and this transit is required for subsequently reaching late endosomes via Rab7. This complex trafficking is mandatory for HIV-1 infection to proceed in human polarized trophoblasts.
Collapse
Affiliation(s)
- Gaël Vidricaire
- Research Center in Infectious Diseases, Centre Hospitalier de l'Université Laval Research Center, and Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | | |
Collapse
|
38
|
Star EN, Newton AJ, Murthy VN. Real-time imaging of Rab3a and Rab5a reveals differential roles in presynaptic function. J Physiol 2005; 569:103-17. [PMID: 16141272 PMCID: PMC1464220 DOI: 10.1113/jphysiol.2005.092528] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We investigated the roles of two Rab-family proteins, Rab3a and Rab5a, in hippocampal synaptic transmission using real-time fluorescence imaging. During synaptic activity, Rab3a dissociated from synaptic vesicles and dispersed into neighbouring axonal regions. Dispersion required calcium-dependent exocytosis and was complete before the entire vesicle pool turned over. In contrast, even prolonged synaptic activity produced limited dispersion of Rab5a. A GTPase-deficient mutant, Rab3a (Q81L), dispersed more slowly than wild-type Rab3a, and decreased the rate of exocytosis and the size of the recycling pool of vesicles. While overexpression of Rab3a did not affect vesicle recycling, overexpression of Rab5a reduced the recycling pool size by 50%. We propose that while Rab3a preferentially associates with recycling synaptic vesicles and modulates their trafficking, Rab5a is largely excluded from recycling vesicles.
Collapse
Affiliation(s)
- Erin N Star
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
39
|
Prada-Delgado A, Carrasco-Marín E, Peña-Macarro C, Del Cerro-Vadillo E, Fresno-Escudero M, Leyva-Cobián F, Alvarez-Dominguez C. Inhibition of Rab5a exchange activity is a key step for Listeria monocytogenes survival. Traffic 2005; 6:252-65. [PMID: 15702993 DOI: 10.1111/j.1600-0854.2005.00265.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Listeria monocytogenes (LM) modifies the phagocytic compartment by targeting Rab5a function through an unknown mechanism. Inhibition of Rab5a exchange by LM can be considered the main virulence mechanism as it favours viability of the parasite within the phagosome as well as the exclusion of putative listericidal lysosomal proteases such as cathepsin-D. The significance of this survival mechanism is evidenced by the overexpression of Rab5a mutants in CHO cells that promoted GDP exchange on Rab5a and eliminated pathogenic LM. The following mutants showed listericidal effects: Rab5a:Q79L, a constitutively active mutant with accelerated GDP exchange and Rab5a GEF, Vps9, which overactivates the endogenous protein. Clearance of LM from these phagosomes was controlled by the hydrolytic action of cathepsin-D as suggested by the lysosomal protease inhibitor chloroquine, or the cathepsin-D inhibitor, pepstatin A, which caused a reversion of listericidal activity. Moreover, the effects of LM on Rab5a phagocytic function mimics those reported for the GDP locked dominant negative Rab5a mutant, S34N. Transfection of these mutants into CHO cells increased pathogen survival as they showed higher numbers of viable bacteria, complete inhibition of GDP exchange on Rab5a and impairment of the listericidal action probably exerted by cathepsin-D. We cotransfected functional Rab5a GEF into this dominant negative mutant and restored normal LM intraphagosomal viability, Rab5a exchange and listericidal action of cathepsin-D.
Collapse
Affiliation(s)
- Amaya Prada-Delgado
- Servicio de Inmunología, Hospital Universitario 'Marqués de Valdecilla', Servicio Cántabro de Salud, 39008-Santander, Spain
| | | | | | | | | | | | | |
Collapse
|
40
|
Mesa R, Magadán J, Barbieri A, López C, Stahl PD, Mayorga LS. Overexpression of Rab22a hampers the transport between endosomes and the Golgi apparatus. Exp Cell Res 2004; 304:339-53. [PMID: 15748882 DOI: 10.1016/j.yexcr.2004.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 11/09/2004] [Accepted: 11/13/2004] [Indexed: 12/27/2022]
Abstract
The transport and sorting of soluble and membrane-associated macromolecules arriving at endosomal compartments require a complex set of Rab proteins. Rab22a has been localized to the endocytic compartment; however, very little is known about the function of Rab22a and inconsistent results have been reported in studies performed in different cell lines. To characterize the function of Rab22a in endocytic transport, the wild-type protein (Rab22a WT), a hydrolysis-deficient mutant (Rab22a Q64L), and a mutant with reduced affinity for GTP (Rab22a S19N) were expressed in CHO cells. None of the three Rab22a constructs affected the transport of rhodamine-dextran to lysosomes, the digestion of internalized proteins, or the lysosomal localization of cathepsin D. In contrast with the mild effect of Rab22a on the endosome-lysosome route, cells expressing Rab22a WT and Rab22a Q64L presented a strong delay in the retrograde transport of cholera toxin from endosomes to the Golgi apparatus. Moreover, these cells accumulated the cation independent mannose 6-phosphate receptor in endosomes. These observations indicate that Rab22a can affect the trafficking from endosomes to the Golgi apparatus probably by promoting fusion among endosomes and impairing the proper segregation of membrane domains required for targeting to the trans-Golgi network (TGN).
Collapse
Affiliation(s)
- Rosana Mesa
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | | | | | | | | | | |
Collapse
|
41
|
Fiorini C, Mograbi B, Cronier L, Bourget I, Decrouy X, Nebout M, Ferrua B, Malassine A, Samson M, Fénichel P, Segretain D, Pointis G. Dominant negative effect of connexin33 on gap junctional communication is mediated by connexin43 sequestration. J Cell Sci 2004; 117:4665-72. [PMID: 15331631 DOI: 10.1242/jcs.01335] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gap junctional intercellular communication is involved in the control of cell proliferation and differentiation. Connexin33, a member of the multi-gene family of gap junction proteins, exerts an inhibitory effect on intercellular communication when injected into Xenopus oocytes. However, the molecular mechanisms involved remain to be elucidated. Our results show that connexin33 was only expressed within the seminiferous tubules in the testis. In contrast to the majority of connexins, connexin33 was unphosphorylated. Immunoprecipitation experiments revealed that connexin33 physically interacted with connexin43, mainly with the phosphorylated P1 isoform of connexin43 but not with connexin26 and connexin32, two other connexins expressed in the tubular compartment. In Sertoli cells and COS-7 cells, connexin43 was located at the plasma membrane, whereas in connexin33 transfected cells, the specific association of connexin33/43 was sequestered in the intracellular compartment. High-resolution fluorescent deconvolution microscopy indicated that the connexin33/43 complex was mainly found within early endosomes. Sequestration of connexin33/43 complex was associated with a complete inhibition of the gap junctional coupling between adjacent cells. These findings provide the first evidence of a new mechanistic model by which a native connexin, exerting a dominant negative effect, can inhibit gap junctional intercellular communication. In the testis, connexin33 could exert a specific role on germ cell proliferation by suppressing the regulatory effect of connexin43.
Collapse
Affiliation(s)
- Céline Fiorini
- INSERM EMI 00-09, IFR 50, Faculté de Médecine, Avenue de Valombrose, 06107 Nice CEDEX 02, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fujita H, Umezuki Y, Imamura K, Ishikawa D, Uchimura S, Nara A, Yoshimori T, Hayashizaki Y, Kawai J, Ishidoh K, Tanaka Y, Himeno M. Mammalian class E Vps proteins, SBP1 and mVps2/CHMP2A, interact with and regulate the function of an AAA-ATPase SKD1/Vps4B. J Cell Sci 2004; 117:2997-3009. [PMID: 15173323 DOI: 10.1242/jcs.01170] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SKD1 belongs to the AAA-ATPase family and is one of the mammalian class E Vps (vacuolar protein sorting) proteins. Previously we have reported that the overexpression of an ATPase activity-deficient form of SKD1 (suppressor of potassium transport growth defect), SKD1(E235Q), leads the perturbation of membrane transport through endosomes and lysosomes, however, the molecular mechanism behind the action of SKD1 is poorly understood. We have identified two SKD1-binding proteins, SBP1 and mVps2, by yeast two-hybrid screening and we assign them as mammalian class E Vps proteins. The primary sequence of SBP1 indicates 22.5% identity with that of Vta1p from Saccharomyces cerevisiae, which was recently identified as a novel class E Vps protein binding to Vps4p. In fact, SBP1 binds directly to SKD1 through its C-terminal region (198-309). Endogenous SBP1 is exclusively localized to cytosol, however it is redirected to an aberrant endosomal structure, the E235Q compartment, in the cells expressing SKD1(E235Q). The ATPase activity of SKD1 regulates both the membrane association of, and assembly of, a large hetero-oligomer protein complex, containing SBP1, which is potentially involved in membrane transport through endosomes and lysosomes. The N-terminal half (1-157) of human SBP1 is identical to lyst-interacting protein 5 and intriguingly, SKD1 ATPase activity significantly influences the membrane association of lyst protein. The SKD1-SBP1 complex, together with lyst protein, may function in endosomal membrane transport. A primary sequence of mVps2, a mouse homologue of human CHMP2A/BC-2, indicates 44.4% identity with Vps2p/Did4p/Chm2p from Saccharomyces cerevisiae. mVps2 also interacts with SKD1 and is localized to the E235Q compartment. Intriguingly, the N-terminal coiled-coil region of mVps2 is required for the formation of the E235Q compartment but not for binding to SKD1. We propose that both SBP1 and mVps2 regulate SKD1 function in mammalian cells.
Collapse
Affiliation(s)
- Hideaki Fujita
- Division of Pharmaceutical Cell Biology, Kyushu University Graduate School of Pharmaceutical Sciences, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Millman EE, Rosenfeld JL, Vaughan DJ, Nguyen J, Dai W, Alpizar-Foster E, Clark RB, Knoll BJ, Moore RH. Endosome sorting of beta 2-adrenoceptors is GRK5 independent. Br J Pharmacol 2003; 141:277-84. [PMID: 14691047 PMCID: PMC1574185 DOI: 10.1038/sj.bjp.0705504] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. We have investigated the role of G protein-coupled receptor kinase 5 (GRK5) in the regulation of endosome sorting of human beta(2)-adrenoceptors. 2. Expressing GRK5 at a high level significantly increased the extent of internalization of wild-type beta(2)-adrenoceptors and of an internalization-defective mutant receptor, and increased receptor phosphorylation at serines 355 and 356 in the cytoplasmic tail. 3. Overexpressing GRK5 did not alter beta(2)-adrenoceptor recycling as assessed by immunofluorescence microscopy and radioligand binding assays nor was there any change in receptor downregulation. 4. These data indicate that GRK5 does not regulate the sorting of beta(2)-adrenoceptors in the endocytic pathway.
Collapse
Affiliation(s)
- Ellen E Millman
- Department of Pediatrics and Molecular Physiology and Biophysics, Baylor College of Medicine, 6621 Fannin, CCC1040, Houston, TX 77030, U.S.A
| | - Jennifer L Rosenfeld
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Science and Research Bldg 2, Rm 521D, Houston, TX 77204, U.S.A
| | - David J Vaughan
- Department of Pediatrics and Molecular Physiology and Biophysics, Baylor College of Medicine, 6621 Fannin, CCC1040, Houston, TX 77030, U.S.A
| | - Jacqueline Nguyen
- Department of Pediatrics and Molecular Physiology and Biophysics, Baylor College of Medicine, 6621 Fannin, CCC1040, Houston, TX 77030, U.S.A
| | - WenPing Dai
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Science and Research Bldg 2, Rm 521D, Houston, TX 77204, U.S.A
| | - Estrella Alpizar-Foster
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Science and Research Bldg 2, Rm 521D, Houston, TX 77204, U.S.A
| | - Richard B Clark
- Department of Integrative Biology and Pharmacology, University of Texas Health Sciences Center-Houston, 6431 Fannin, Houston, TX, 77030, U.S.A
| | - Brian J Knoll
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Science and Research Bldg 2, Rm 521D, Houston, TX 77204, U.S.A
| | - Robert H Moore
- Department of Pediatrics and Molecular Physiology and Biophysics, Baylor College of Medicine, 6621 Fannin, CCC1040, Houston, TX 77030, U.S.A
- Author for correspondence:
| |
Collapse
|
44
|
Rajotte D, Stearns CD, Kabcenell AK. Isolation of mast cell secretory lysosomes using flow cytometry. Cytometry A 2003; 55:94-101. [PMID: 14505314 DOI: 10.1002/cyto.a.10065] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Mast cells are specialized secretory cells of the immune system. Through exocytosis of their secretory lysosomes and secretory granules, mast cells release biologically active substances such as histamine and proteases. Mast cell secretory granules have been studied extensively but much less attention has been given to secretory lysosomes. Studies on mast cell secretory lysosomes are limited by the lack of selective markers and the difficulty to isolate this organelle from conventional lysosomes. Our goal was to develop better tools to study secretory lysosomes. METHODS We engineered a rat mast cell line over expressing a rat mast cell protease (RMCP) tagged with a red fluorescent protein (RMCP-DsRed). We used single organelle flow analysis (SOFA) to detect fluorescently labeled secretory lysosomes. The labeled organelles were then sorted using the fluorescence-assisted organelle sorting (FAOS) method. RESULTS We show that the RMCP-DsRed fusion protein selectively localizes to the lysosomal compartment and is exocytosed upon activation, confirming its localization in secretory lysosomes. Lysosomal fractions from cells expressing the RMCP-DsRed fusion were analyzed by SOFA and a specific population of secretory lysosome was identified. Finally, we sorted secretory lysosomes and showed that the sorted material had a higher specific activity for the compartment marker hexosaminidase than a sample obtained by conventional methods. CONCLUSIONS Our work further demonstrates the usefulness of flow cytometry to study cellular organelles, and provides new tools to better understand the physiology of secretory lysosomes.
Collapse
Affiliation(s)
- Daniel Rajotte
- Department of Biology, Boehringer Ingelheim Pharmaceuticals, Research and Development Center, Ridgefield, Connecticut 06877, USA.
| | | | | |
Collapse
|
45
|
Duclos S, Corsini R, Desjardins M. Remodeling of endosomes during lysosome biogenesis involves 'kiss and run' fusion events regulated by rab5. J Cell Sci 2003; 116:907-18. [PMID: 12571288 DOI: 10.1242/jcs.00259] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The small GTPase rab5 has been shown to play key roles in the function of both endocytic and phagocytic organelles. Although these organelles share several additional common features, different processes have been proposed to explain their biogenesis. In the present study, we provide evidence that lysosome biogenesis involves mechanisms similar to those previously described for the formation of phagolysosomes. Transient interactions ('kiss and run') between endocytic organelles are shown to occur during lysosome biogenesis. These interactions are regulated initially by the GTPase activity of rab5, as demonstrated by the loss of size-selective fusion between endosomes in cells expressing a GTPase-deficient mutant of rab5. Endocytic compartments in these cells sequentially display properties of early and late endosomes. However, the formation of lysosomes and the sorting of endocytic solute materials to small electron dense vacuoles are not affected by the rab5 mutation. Together, our results indicate that endosome maturation occurs during the early part of lysosome biogenesis. This process involves transient fusion events regulated, in part, by the small GTPase rab5.
Collapse
Affiliation(s)
- Sophie Duclos
- Département de pathologie et biologie cellulaire, Université de Montréal, CP 6128, Succ. Centre ville, Montréal, QC, H3C 3J7, Canada
| | | | | |
Collapse
|
46
|
Kuronita T, Eskelinen EL, Fujita H, Saftig P, Himeno M, Tanaka Y. A role for the lysosomal membrane protein LGP85 in the biogenesis and maintenance of endosomal and lysosomal morphology. J Cell Sci 2002; 115:4117-31. [PMID: 12356916 DOI: 10.1242/jcs.00075] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LGP85 (LIMP II) is a type III transmembrane glycoprotein that is located primarily in the limiting membranes of lysosomes and late endosomes. Despite being the abundant molecule of these compartments, whether LGP85 merely resides as one of the constituents of these membranes or plays a role in the regulation of endosome and lysosome biogenesis remains unclear. To elucidate these questions, we examined the effects of overexpression of LGP85 on the morphology and membrane traffic of the endosomal/lysosomal system. Here we demonstrate that overexpression of LGP85 causes an enlargement of early endosomes and late endosomes/lysosomes. Such a morphological alteration was not observed by overexpression of other lysosomal membrane proteins, LGP107 (LAMP-1) or LGP96 (LAMP-2), reflecting a LGP85-specific function. We further demonstrate that overexpression of LGP85 impairs the endocytic membrane traffic out of these enlarged compartments, which may be correlated with or account for the accumulation of cholesterol observed in these compartments. Interestingly, co-transfection of LGP85 and the dominant-negative form of Rab5b (Rab5bS34N) abolished the formation of large vacuoles, suggesting that the GTP-bound active form of Rab5b is involved in the enlargement of endosomal/lysosomal compartments induced by overexpression of LGP85. Thus, these findings provide important new insights into the role of LGP85 in the biogenesis and the maintenance of endosomes/lysosomes. We conclude that LGP85 may participate in reorganizing the endosomal/lysosomal compartments.
Collapse
Affiliation(s)
- Toshio Kuronita
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Berón W, Gutierrez MG, Rabinovitch M, Colombo MI. Coxiella burnetii localizes in a Rab7-labeled compartment with autophagic characteristics. Infect Immun 2002; 70:5816-21. [PMID: 12228312 PMCID: PMC128334 DOI: 10.1128/iai.70.10.5816-5821.2002] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The obligate intracellular bacterium Coxiella burnetii, the agent of Q fever in humans and of coxiellosis in other animals, survives and replicates within large, acidified, phagolysosome-like vacuoles known to fuse homo- and heterotypically with other vesicles. To further characterize these vacuoles, HeLa cells were infected with C. burnetii phase II; 48 h later, bacteria-containing vacuoles were labeled by LysoTracker, a marker of acidic compartments, and accumulated monodansylcadaverine and displayed protein LC3, both markers of autophagic vacuoles. Furthermore, 3-methyladenine and wortmannin, agents known to inhibit early stages in the autophagic process, each blocked Coxiella vacuole formation. These autophagosomal features suggest that Coxiella vacuoles interact with the autophagic pathway. The localization and role of wild-type and mutated Rab5 and Rab7, markers of early and late endosomes, respectively, were also examined to determine the role of these small GTPases in the trafficking of C. burnetii phase II. Green fluorescent protein (GFP)-Rab5 and GFP-Rab7 constructs were overexpressed and visualized by fluorescence microscopy. Coxiella-containing large vacuoles were labeled with wild-type Rab7 (Rab7wt) and with GTPase-deficient mutant Rab7Q67L, whereas no colocalization was observed with the dominant-negative mutant Rab7T22N. The vacuoles were also decorated by GFP-Rab5Q79L but not by GFP-Rab5wt. These results suggest that Rab7 participates in the biogenesis of the parasitophorous vacuoles.
Collapse
Affiliation(s)
- Walter Berón
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza 5500, Argentina
| | | | | | | |
Collapse
|