1
|
Sun Z, Li Z, Wei Y, Xu L, Hang X, Kang Y. SMARCA4 Inhibits Breast Cancer Progression and Metastasis through RHOA Suppression. Cancer Res 2025; 85:1803-1818. [PMID: 39992701 PMCID: PMC12081196 DOI: 10.1158/0008-5472.can-24-2801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/07/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Triple-negative breast cancer (TNBC) is the most challenging subtype of the disease due to its aggressive nature and lack of targeted therapy options. To identify regulators of TNBC, we conducted a genome-wide CRISPR knockout screen in both three-dimensional (3D) tumor spheroid and two-dimensional cell culture models. The 3D spheroid model displayed unique potential in identifying putative tumor suppressors because of its closer mimicry of in vivo tumor growth conditions. Notably, the chromatin remodeling SWI/SNF complex emerged as a potent suppressor of tumor spheroid growth. Specifically, loss of the SWI/SNF ATPase subunit SMARCA4 promoted tumor spheroid growth with reduced compactness and enhanced primary tumor growth and metastasis across multiple TNBC models. SMARCA4 was required for the transcription of the Rho GTPase-activating factor ARHGAP29 by enhancing DNA accessibility through direct binding to its promoter. SMARCA4 loss resulted in reduced ARHGAP29 levels and hyperactive RHOA signaling, subsequently disrupting cell adhesion, facilitating the formation of a loose spheroid structure in vitro, and enhancing breast cancer growth and metastasis in vivo. These results establish SMARCA4 and SWI/SNF as tumor suppressors of TNBC through suppression of RHOA activity. Significance: CRISPR-knockout screen in 3D tumor spheroid revealed that SMARCA4, a SWI/SNF ATPase subunit, suppresses triple-negative breast cancer growth and metastasis by increasing ARHGAP29 transcription and inhibiting the RHOA signaling pathway.
Collapse
Affiliation(s)
- Zheng Sun
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Zhuo Li
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
- Present address: BeiGene Global Research, Shanghai, P.R. China
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ 08544
| | - Lillian Xu
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
- Present address: Johns Hopkins University School of Medicine, Baltimore, MD, 21205
| | - Xiang Hang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ 08544
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ 08544
| |
Collapse
|
2
|
Maar K, Thatcher JE, Karpov E, Rendeki S, Gallyas F, Bock-Marquette I. Thymosin Beta-4 Modulates Cardiac Remodeling by Regulating ROCK1 Expression in Adult Mammals. Int J Mol Sci 2025; 26:4131. [PMID: 40362372 PMCID: PMC12072014 DOI: 10.3390/ijms26094131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Although a myocardial infarction occurs roughly every minute in the U.S. alone, medical research has yet to unlock the key to fully enabling post-hypoxic myocardial regeneration. Thymosin beta-4 (TB4), a short, secreted peptide, was shown to possess a beneficial impact regarding myocardial cell survival, coronary re-growth and progenitor cell activation following myocardial infarction in adult mammals. It equally reduces scarring, however, the precise mechanisms through which the peptide assists this phenomenon have not been properly elucidated. Accordingly, the primary aim of our study was to identify novel molecular contributors responsible for the positive impact of TB4 during the remodeling processes of the infarcted heart. We performed miRNA profiling on adult mice hearts following permanent coronary ligation with or without systemic TB4 injection and searched for targets and novel mechanisms through which TB4 may mitigate pathological scarring in the heart. Our results revealed a significant increase in miR139-5p expression and identified ROCK1 as a potential target protein aligned. Real-time PCR, Western blot and immunostaining on adult mouse hearts and human cardiac cells revealed the peptide indirectly or directly modulates ROCK1 protein levels both in vivo and in vitro. We equally discovered TB4 may reverse or inhibit fibroblast/myofibroblast transformation and the potential downstream mechanisms by which TB4 alters cellular responses through ROCK1 are cell type specific. Given the beneficial effects of ROCK1 inhibition in various cardiac pathologies, we propose a potential utilization for TB4 as a ROCK1 inhibitor in the future.
Collapse
Affiliation(s)
- Klaudia Maar
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Jeffrey E. Thatcher
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Egor Karpov
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Szilard Rendeki
- Department of Anesthesiology and Intensive Therapy, University of Pecs Medical School, 7624 Pecs, Hungary
- Medical Skills Education and Innovation Centre, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Ildiko Bock-Marquette
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
3
|
Priante G, Ceol M, Gianesello L, Radu CM, Mantese R, Stefanelli LF, Cacciapuoti M, Martino FK, Calò LA, Anglani F, Nalesso F, Del Prete D. Human parietal epithelial cells as Trojan horses in albumin overload. Sci Rep 2025; 15:1761. [PMID: 39800742 PMCID: PMC11725586 DOI: 10.1038/s41598-024-84972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
Parietal Epithelial Cells (PECs) activation and proliferation are common to several distinct forms of glomerulopathies. Due to several stimuli, PECs can change to a progenitor (CD24+ and CD133/2+) or a pro-sclerotic (CD44+) phenotype. In addition, PECs, which are constantly exposed to filtered albumin, are known to be involved in albumin internalization, but how this mechanism occurs is unknown. We hypothesized that PECs can transport albumin via receptor-mediated endocytosis and that albumin overload may affect the state of PECs. Conditionally immortalized human PECs (hPECs) were incubated with different albumin concentrations at different times. Albumin internalization studies were performed. Protein expression was assessed using In-Cell Western and immunofluorescence. Cell morphology was analyzed by phase-contrast microscopy and F-actin staining. We demonstrate that hPECs internalize albumin via receptor-mediated mechanisms. Under albumin stimulation, megalin, cubilin, ClC-5, CD133/2, CD24, and CD44 were upregulated. The increase of pERK1/2, the upregulation of ROCK1, ROCK2, caspase -3, -6, and -7, and the morphological changes associated with loss of F-actin fibers indicated that inflammation, proliferation and apoptosis mechanisms had been activated. Our results demonstrate that long-term exposure to high doses of albumin induces up-regulation of molecules involved in the tubular protein uptake machinery and suggest that albumin overload is able to trigger a regenerative process as well as an activation state which might lead in vivo to glomerular crescent formation.
Collapse
Affiliation(s)
- Giovanna Priante
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine - DIMED, University of Padua, Via Giustiniani 2, 35128, Padua, Italy.
| | - Monica Ceol
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine - DIMED, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Lisa Gianesello
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine - DIMED, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Claudia Maria Radu
- Thrombotic and Haemorrhagic Diseases Unit, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Rachele Mantese
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine - DIMED, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Lucia Federica Stefanelli
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine - DIMED, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Martina Cacciapuoti
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine - DIMED, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Francesca K Martino
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine - DIMED, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Lorenzo Arcangelo Calò
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine - DIMED, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Franca Anglani
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine - DIMED, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Federico Nalesso
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine - DIMED, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Dorella Del Prete
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine - DIMED, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| |
Collapse
|
4
|
Otto JE, Ursu O, Wu AP, Winter EB, Cuoco MS, Ma S, Qian K, Michel BC, Buenrostro JD, Berger B, Regev A, Kadoch C. Structural and functional properties of mSWI/SNF chromatin remodeling complexes revealed through single-cell perturbation screens. Mol Cell 2023; 83:1350-1367.e7. [PMID: 37028419 DOI: 10.1016/j.molcel.2023.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/07/2023] [Accepted: 03/10/2023] [Indexed: 04/09/2023]
Abstract
The mammalian SWI/SNF (mSWI/SNF or BAF) family of chromatin remodeling complexes play critical roles in regulating DNA accessibility and gene expression. The three final-form subcomplexes-cBAF, PBAF, and ncBAF-are distinct in biochemical componentry, chromatin targeting, and roles in disease; however, the contributions of their constituent subunits to gene expression remain incompletely defined. Here, we performed Perturb-seq-based CRISPR-Cas9 knockout screens targeting mSWI/SNF subunits individually and in select combinations, followed by single-cell RNA-seq and SHARE-seq. We uncovered complex-, module-, and subunit-specific contributions to distinct regulatory networks and defined paralog subunit relationships and shifted subcomplex functions upon perturbations. Synergistic, intra-complex genetic interactions between subunits reveal functional redundancy and modularity. Importantly, single-cell subunit perturbation signatures mapped across bulk primary human tumor expression profiles both mirror and predict cBAF loss-of-function status in cancer. Our findings highlight the utility of Perturb-seq to dissect disease-relevant gene regulatory impacts of heterogeneous, multi-component master regulatory complexes.
Collapse
Affiliation(s)
- Jordan E Otto
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Chemical Biology Program, Harvard University, Cambridge, MA, USA
| | - Oana Ursu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexander P Wu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Evan B Winter
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Sai Ma
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Kristin Qian
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, USA
| | - Brittany C Michel
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, USA
| | - Jason D Buenrostro
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Bonnie Berger
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, UA.
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Chemical Biology Program, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, UA.
| |
Collapse
|
5
|
SMARCA4: Current status and future perspectives in non-small-cell lung cancer. Cancer Lett 2023; 554:216022. [PMID: 36450331 DOI: 10.1016/j.canlet.2022.216022] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
SMARCA4, also known as transcription activator, is an ATP-dependent catalytic subunit of SWI/SNF (SWItch/Sucrose NonFermentable) chromatin-remodeling complexes that participates in the regulation of chromatin structure and gene expression by supplying energy. As a tumor suppressor that has aberrant expression in ∼10% of non-small-cell lung cancers (NSCLCs), SMARCA4 possesses many biological functions, including regulating gene expression, differentiation and transcription. Furthermore, NSCLC patients with SMARCA4 alterations have a weak response to conventional chemotherapy and poor prognosis. Therefore, the mechanisms of SMARCA4 in NSCLC development urgently need to be explored to identify novel biomarkers and precise therapeutic strategies for this subtype. This review systematically describes the biological functions of SMARCA4 and its role in NSCLC development, metastasis, functional epigenetics and potential therapeutic approaches for NSCLCs with SMARCA4 alterations. Additionally, this paper explores the relationship and regulatory mechanisms shared by SMARCA4 and its mutually exclusive catalytic subunit SMARCA2. We aim to provide innovative treatment strategies and improve clinical outcomes for NSCLC patients with SMARCA4 alterations.
Collapse
|
6
|
Bachman W, Maddala R, Chakraborty A, Eldawy C, Skiba NP, Rao PV. Glucocorticoids Preferentially Influence Expression of Nucleoskeletal Actin Network and Cell Adhesive Proteins in Human Trabecular Meshwork Cells. Front Cell Dev Biol 2022; 10:886754. [PMID: 35557957 PMCID: PMC9087352 DOI: 10.3389/fcell.2022.886754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
Clinical use of glucocorticoids is associated with increased intraocular pressure (IOP), a major risk factor for glaucoma. Glucocorticoids have been reported to induce changes in actin cytoskeletal organization, cell adhesion, extracellular matrix, fibrogenic activity, and mechanical properties of trabecular meshwork (TM) tissue, which plays a crucial role in aqueous humor dynamics and IOP homeostasis. However, we have a limited understanding of the molecular underpinnings regulating these myriad processes in TM cells. To understand how proteins, including cytoskeletal and cell adhesion proteins that are recognized to shuttle between the cytosolic and nuclear regions, influence gene expression and other cellular activities, we used proteomic analysis to characterize the nuclear protein fraction of dexamethasone (Dex) treated human TM cells. Treatment of human TM cells with Dex for 1, 5, or 7 days led to consistent increases (by ≥ two-fold) in the levels of various actin cytoskeletal regulatory, cell adhesive, and vesicle trafficking proteins. Increases (≥two-fold) were also observed in levels of Wnt signaling regulator (glypican-4), actin-binding chromatin modulator (BRG1) and nuclear actin filament depolymerizing protein (MICAL2; microtubule-associated monooxygenase, calponin and LIM domain containing), together with a decrease in tissue plasminogen activator. These changes were independently further confirmed by immunoblotting analysis. Interestingly, deficiency of BRG1 expression blunted the Dex-induced increases in the levels of some of these proteins in TM cells. In summary, these findings indicate that the widely recognized changes in actin cytoskeletal and cell adhesive attributes of TM cells by glucocorticoids involve actin regulated BRG1 chromatin remodeling, nuclear MICAL2, and glypican-4 regulated Wnt signaling upstream of the serum response factor/myocardin controlled transcriptional activity.
Collapse
Affiliation(s)
- William Bachman
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Ayon Chakraborty
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Camelia Eldawy
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Nikolai P. Skiba
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Ponugoti V. Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
7
|
Angiotensin II induced CSF1 transcription is mediated by a crosstalk between different epigenetic factors in vascular endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:1-11. [PMID: 30317027 DOI: 10.1016/j.bbagrm.2018.10.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 01/15/2023]
Abstract
Endothelium-derived colony stimulating factor (CSF1) plays a key role in a range of human pathologies. Angiotensin II (Ang II) has been documented to stimulate CSF1 transcription although the underlying epigenetic mechanism remains unclear. Here we report that induction of CSF1 transcription by Ang II in vascular endothelial cells paralleled alterations of signature histone modifications surrounding the CSF1 promoter. Specifically, ChIP assays indicated that there was a simultaneous up-regulation of both acetylated H3 and trimethylated H3K4, indicative of transcriptional activation, and down-regulation of dimethyl H3K9, implicated in transcriptional repression, surrounding the proximal CSF1 promoter. Further analysis revealed that silencing of brahma related gene 1 (BRG1), a chromatin remodeling protein, abrogated CSF1 induction by Ang II. In the meantime, BRG1 silencing erased H3 acetylation and H3K4 trimethylation and restored H3K9 dimethylation. Mechanistically, BRG1 interacted with and recruited SET1A, a histone H3K4 methyltransferase, and JMJD1A, a histone H3K9 demethylase, to the CSF1 promoter to alter chromatin structure thereby promoting CSF1 trans-activation in response to Ang II stimulation. Knockdown of either SET1A or JMJD1A blocked CSF1 induction by Ang II. Finally, we demonstrate that the crosstalk between BRG1 and histone modifying enzymes was mediated by the transcription factor AP-1. In conclusion, our data unveil a novel epigenetic mechanism whereby a BRG1-centered complex mediates transcriptional activation of CSF1 by Ang II in vascular endothelial cells.
Collapse
|
8
|
Guerrero-Martínez JA, Reyes JC. High expression of SMARCA4 or SMARCA2 is frequently associated with an opposite prognosis in cancer. Sci Rep 2018; 8:2043. [PMID: 29391527 PMCID: PMC5794756 DOI: 10.1038/s41598-018-20217-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/16/2018] [Indexed: 12/21/2022] Open
Abstract
The gene encoding the ATPase of the chromatin remodeling SWI/SNF complexes SMARCA4 (BRG1) is often mutated or silenced in tumors, suggesting a role as tumor suppressor. Nonetheless, recent reports show requirement of SMARCA4 for tumor cells growth. Here, we performed a computational meta-analysis using gene expression, prognosis, and clinicopathological data to clarify the role of SMARCA4 and the alternative SWI/SNF ATPase SMARCA2 (BRM) in cancer. We show that while the SMARCA4 gene is mostly overexpressed in tumors, SMARCA2 is almost invariably downexpressed in tumors. High SMARCA4 expression was associated with poor prognosis in many types of tumors, including liver hepatocellular carcinoma (LIHC), and kidney renal clear cell carcinoma (KIRC). In contrast, high SMARCA2 expression was associated with good prognosis. We compared tumors with high versus low expression of SMARCA4 or SMARCA2 in LIHC and KIRC cohorts from The Cancer Genome Atlas. While a high expression of SMARCA4 is associated with aggressive tumors, a high expression of SMARCA2 is associated with benign differentiated tumors, suggesting that SMARCA4 and SMARCA2 play opposite roles in cancer. Our results demonstrate that expression of SMARCA4 and SMARCA2 have a high prognostic value and challenge the broadly accepted general role of SMARCA4 as a tumor suppressor.
Collapse
Affiliation(s)
- Jose A Guerrero-Martínez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO). Av. Americo Vespucio 24, 41092, Seville, Spain
| | - Jose C Reyes
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO). Av. Americo Vespucio 24, 41092, Seville, Spain.
| |
Collapse
|
9
|
Wang ZJ, Martin JA, Mueller LE, Caccamise A, Werner CT, Neve RL, Gancarz AM, Li JX, Dietz DM. BRG1 in the Nucleus Accumbens Regulates Cocaine-Seeking Behavior. Biol Psychiatry 2016; 80:652-660. [PMID: 27422367 PMCID: PMC5050080 DOI: 10.1016/j.biopsych.2016.04.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Drug addiction is defined as a chronic disease characterized by compulsive drug seeking and episodes of relapse despite prolonged periods of drug abstinence. Neurobiological adaptations, including transcriptional and epigenetic alterations in the nucleus accumbens, are thought to contribute to this life-long disease state. We previously demonstrated that the transcription factor SMAD3 is increased after 7 days of withdrawal from cocaine self-administration. However, it is still unknown which additional factors participate in the process of chromatin remodeling and facilitate the binding of SMAD3 to promoter regions of target genes. Here, we examined the possible interaction of BRG1-also known as SMARCA4, an adenosine triphosphatase-containing chromatin remodeler-and SMAD3 in response to cocaine exposure. METHODS The expression of BRG1, as well as its binding to SMAD3 and target gene promoter regions, was evaluated in the nucleus accumbens and dorsal striatum of rats using western blotting, co-immunoprecipitation, and chromatin immunoprecipitation following abstinence from cocaine self-administration. Rats were assessed for cocaine-seeking behaviors after either intra-accumbal injections of the BRG1 inhibitor PFI3 or viral-mediated overexpression of BRG1. RESULTS After withdrawal from cocaine self-administration, BRG1 expression and complex formation with SMAD3 are increased in the nucleus accumbens, resulting in increased binding of BRG1 to the promoter regions of Ctnnb1, Mef2d, and Dbn1. Intra-accumbal infusion of PFI3 attenuated, whereas viral overexpression of Brg1 enhanced, cocaine-reinstatement behavior. CONCLUSIONS BRG1 is a key mediator of the SMAD3-dependent regulation of cellular and behavioral plasticity that mediates cocaine seeking after a period of withdrawal.
Collapse
Affiliation(s)
- Zi-Jun Wang
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York; Research Institute on Addictions, Program in Neuroscience, Department of Psychology, State University of New York at Buffalo, Buffalo, New York
| | - Jennifer A Martin
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York; Research Institute on Addictions, Program in Neuroscience, Department of Psychology, State University of New York at Buffalo, Buffalo, New York
| | - Lauren E Mueller
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York; Research Institute on Addictions, Program in Neuroscience, Department of Psychology, State University of New York at Buffalo, Buffalo, New York
| | - Aaron Caccamise
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York; Research Institute on Addictions, Program in Neuroscience, Department of Psychology, State University of New York at Buffalo, Buffalo, New York
| | - Craig T Werner
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York; Research Institute on Addictions, Program in Neuroscience, Department of Psychology, State University of New York at Buffalo, Buffalo, New York
| | - Rachael L Neve
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Amy M Gancarz
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York; Research Institute on Addictions, Program in Neuroscience, Department of Psychology, State University of New York at Buffalo, Buffalo, New York
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York
| | - David M Dietz
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York; Research Institute on Addictions, Program in Neuroscience, Department of Psychology, State University of New York at Buffalo, Buffalo, New York; Department of Psychology, California State University Bakersfield, Bakersfield, California.
| |
Collapse
|
10
|
Chen D, Yang Y, Cheng X, Fang F, Xu G, Yuan Z, Xia J, Kong H, Xie W, Wang H, Fang M, Gao Y, Xu Y. Megakaryocytic Leukemia 1 Directs a Histone H3 Lysine 4 Methyltransferase Complex to Regulate Hypoxic Pulmonary Hypertension. Hypertension 2015; 65:821-33. [DOI: 10.1161/hypertensionaha.114.04585] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Dewei Chen
- From the Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, Ministry of Education (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of Cardiovascular Disease and Department of Pathophysiology (Y.Y., X.C., F.F., M.F., Y.X.), and Department of Respiratory Medicine, the
| | - Yuyu Yang
- From the Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, Ministry of Education (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of Cardiovascular Disease and Department of Pathophysiology (Y.Y., X.C., F.F., M.F., Y.X.), and Department of Respiratory Medicine, the
| | - Xian Cheng
- From the Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, Ministry of Education (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of Cardiovascular Disease and Department of Pathophysiology (Y.Y., X.C., F.F., M.F., Y.X.), and Department of Respiratory Medicine, the
| | - Fei Fang
- From the Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, Ministry of Education (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of Cardiovascular Disease and Department of Pathophysiology (Y.Y., X.C., F.F., M.F., Y.X.), and Department of Respiratory Medicine, the
| | - Gang Xu
- From the Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, Ministry of Education (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of Cardiovascular Disease and Department of Pathophysiology (Y.Y., X.C., F.F., M.F., Y.X.), and Department of Respiratory Medicine, the
| | - Zhibin Yuan
- From the Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, Ministry of Education (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of Cardiovascular Disease and Department of Pathophysiology (Y.Y., X.C., F.F., M.F., Y.X.), and Department of Respiratory Medicine, the
| | - Jun Xia
- From the Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, Ministry of Education (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of Cardiovascular Disease and Department of Pathophysiology (Y.Y., X.C., F.F., M.F., Y.X.), and Department of Respiratory Medicine, the
| | - Hui Kong
- From the Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, Ministry of Education (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of Cardiovascular Disease and Department of Pathophysiology (Y.Y., X.C., F.F., M.F., Y.X.), and Department of Respiratory Medicine, the
| | - Weiping Xie
- From the Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, Ministry of Education (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of Cardiovascular Disease and Department of Pathophysiology (Y.Y., X.C., F.F., M.F., Y.X.), and Department of Respiratory Medicine, the
| | - Hong Wang
- From the Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, Ministry of Education (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of Cardiovascular Disease and Department of Pathophysiology (Y.Y., X.C., F.F., M.F., Y.X.), and Department of Respiratory Medicine, the
| | - Mingming Fang
- From the Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, Ministry of Education (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of Cardiovascular Disease and Department of Pathophysiology (Y.Y., X.C., F.F., M.F., Y.X.), and Department of Respiratory Medicine, the
| | - Yuqi Gao
- From the Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, Ministry of Education (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of Cardiovascular Disease and Department of Pathophysiology (Y.Y., X.C., F.F., M.F., Y.X.), and Department of Respiratory Medicine, the
| | - Yong Xu
- From the Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, Ministry of Education (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of Cardiovascular Disease and Department of Pathophysiology (Y.Y., X.C., F.F., M.F., Y.X.), and Department of Respiratory Medicine, the
| |
Collapse
|
11
|
Abstract
Epigenetic alterations are associated with all aspects of cancer, from tumor initiation to cancer progression and metastasis. It is now well understood that both losses and gains of DNA methylation as well as altered chromatin organization contribute significantly to cancer-associated phenotypes. More recently, new sequencing technologies have allowed the identification of driver mutations in epigenetic regulators, providing a mechanistic link between the cancer epigenome and genetic alterations. Oncogenic activating mutations are now known to occur in a number of epigenetic modifiers (i.e. IDH1/2, EZH2, DNMT3A), pinpointing epigenetic pathways that are involved in tumorigenesis. Similarly, investigations into the role of inactivating mutations in chromatin modifiers (i.e. KDM6A, CREBBP/EP300, SMARCB1) implicate many of these genes as tumor suppressors. Intriguingly, a number of neoplasms are defined by a plethora of mutations in epigenetic regulators, including renal, bladder, and adenoid cystic carcinomas. Particularly striking is the discovery of frequent histone H3.3 mutations in pediatric glioma, a particularly aggressive neoplasm that has long remained poorly understood. Cancer epigenetics is a relatively new, promising frontier with much potential for improving cancer outcomes. Already, therapies such as 5-azacytidine and decitabine have proven that targeting epigenetic alterations in cancer can lead to tangible benefits. Understanding how genetic alterations give rise to the cancer epigenome will offer new possibilities for developing better prognostic and therapeutic strategies.
Collapse
|
12
|
A link between the nuclear-localized srGAP3 and the SWI/SNF chromatin remodeler Brg1. Mol Cell Neurosci 2014; 60:10-25. [PMID: 24561795 DOI: 10.1016/j.mcn.2014.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 02/06/2014] [Accepted: 02/11/2014] [Indexed: 11/21/2022] Open
Abstract
The Slit-Robo GTPase activating protein 3 (srGAP3) is an important modulator of actin cytoskeletal dynamics and has an important influence on a variety of neurodevelopmental processes. Mutations in the SRGAP3 gene on chromosome 3p25 have been found in patients with intellectual disability. Genome-wide association studies and behavioral assays of knockout mice had also revealed SRGAP3 as a risk gene for schizophrenia. We have recently shown that srGAP3 protein undergoes regulated shuttling between the cytoplasm and the nucleus during neuronal development. It is shown here that nuclear-localized srGAP3 interacts with the SWI/SNF remodeling factor Brg1. This interaction is mediated by the C-terminal of srGAP3 and the ATPase motif of Brg1. In the primary cultured rat cortical neurons, the levels of nuclear-localized srGAP3 and its interaction with Brg1 have a significant impact on dendrite complexity. Furthermore, the interaction between srGAP3 and Brg1 was also involved in valproic acid (VPA) -induced neuronal differentiation of Neuro2a cells. We then show that GTP-bound Rac1 and GAP-43 may be potential mediators of nuclear srGAP3 and Brg1. Our results not only indicate a novel signaling pathway that contributes to neuronal differentiation and dendrite morphology, but also implicate a novel molecular mechanism underlying srGAP3 regulation of gene expression.
Collapse
|
13
|
Schofield AV, Bernard O. Rho-associated coiled-coil kinase (ROCK) signaling and disease. Crit Rev Biochem Mol Biol 2013; 48:301-16. [PMID: 23601011 DOI: 10.3109/10409238.2013.786671] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The small Rho GTPase family of proteins, encompassing the three major G-protein classes Rho, Rac and cell division control protein 42, are key mitogenic signaling molecules that regulate multiple cancer-associated cellular phenotypes including cell proliferation and motility. These proteins are known for their role in the regulation of actin cytoskeletal dynamics, which is achieved through modulating the activity of their downstream effector molecules. The Rho-associated coiled-coil kinase 1 and 2 (ROCK1 and ROCK2) proteins were the first discovered Rho effectors that were primarily established as players in RhoA-mediated stress fiber formation and focal adhesion assembly. It has since been discovered that the ROCK kinases actively phosphorylate a large cohort of actin-binding proteins and intermediate filament proteins to modulate their functions. It is well established that global cellular morphology, as modulated by the three cytoskeletal networks: actin filaments, intermediate filaments and microtubules, is regulated by a variety of accessory proteins whose activities are dependent on their phosphorylation by the Rho-kinases. As a consequence, they regulate many key cellular functions associated with malignancy, including cell proliferation, motility and viability. In this current review, we focus on the role of the ROCK-signaling pathways in disease including cancer.
Collapse
Affiliation(s)
- Alice V Schofield
- St Vincent's Institute of Medical Research, Cytoskeleton and Cancer Unit and Department of Medicine, St Vincent's Hospital, University of Melbourne, Victoria 3065, Australia
| | | |
Collapse
|
14
|
Imbalzano KM, Cohet N, Wu Q, Underwood JM, Imbalzano AN, Nickerson JA. Nuclear shape changes are induced by knockdown of the SWI/SNF ATPase BRG1 and are independent of cytoskeletal connections. PLoS One 2013; 8:e55628. [PMID: 23405182 PMCID: PMC3566038 DOI: 10.1371/journal.pone.0055628] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 01/02/2013] [Indexed: 11/24/2022] Open
Abstract
Changes in nuclear morphology occur during normal development and have been observed during the progression of several diseases. The shape of a nucleus is governed by the balance of forces exerted by nuclear-cytoskeletal contacts and internal forces created by the structure of the chromatin and nuclear envelope. However, factors that regulate the balance of these forces and determine nuclear shape are poorly understood. The SWI/SNF chromatin remodeling enzyme ATPase, BRG1, has been shown to contribute to the regulation of overall cell size and shape. Here we document that immortalized mammary epithelial cells show BRG1-dependent nuclear shape changes. Specifically, knockdown of BRG1 induced grooves in the nuclear periphery that could be documented by cytological and ultrastructural methods. To test the hypothesis that the observed changes in nuclear morphology resulted from altered tension exerted by the cytoskeleton, we disrupted the major cytoskeletal networks and quantified the frequency of BRG1-dependent changes in nuclear morphology. The results demonstrated that disruption of cytoskeletal networks did not change the frequency of BRG1-induced nuclear shape changes. These findings suggest that BRG1 mediates control of nuclear shape by internal nuclear mechanisms that likely control chromatin dynamics.
Collapse
Affiliation(s)
- Karen M Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | | | | | | | | | | |
Collapse
|
15
|
Bai J, Mei PJ, Liu H, Li C, Li W, Wu YP, Yu ZQ, Zheng JN. BRG1 expression is increased in human glioma and controls glioma cell proliferation, migration and invasion in vitro. J Cancer Res Clin Oncol 2012; 138:991-8. [PMID: 22362300 DOI: 10.1007/s00432-012-1172-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 02/07/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE The purposes of our study were to elucidate the role of BRG1 in the development of human glioma and to determine the effect of BRG1 on glioma cell growth, migration and invasion. METHODS Using tissue microarray and immunohistochemistry, we evaluated BRG1 staining in 190 glioma tissues, 8 normal brain tissues and 8 tumor adjacent normal brain tissues. We studied glioma cell proliferative ability with reduced BRG1 expression by siRNA using CCK-8 cell proliferation assay and cell cycle analysis. We studied the role of BRG1 in glioma cell migration and invasion by cell migration assay and matrigel invasion assay. We performed western blot to detect cyclin D1, cyclin B1 and MMP-2 protein expression. We also detected MMP-2 enzyme activity by gelatin zymography. RESULTS Our results showed that BRG1 expression was increased in benign tumor and malignant tumor compared with tumor adjacent normal brain tissue (P < 0.01 for both). We did not find any correlation between BRG1 expression and clinicopathological parameters. In addition, we found that knockdown of BRG1 in glioma cell lines inhibits cell growth due to the G1 phase arrest by downregulating cyclin D1. We further demonstrated that silencing of BRG1 in glioma cells inhibited the cell migration and invasion abilities, and downregulation of MMP-2 expression greatly contributed to the reduced cell invasion and migration abilities. CONCLUSIONS Our data indicated that BRG1 expression is significantly increased in human glioma and it may be involved in the process of glioma cell proliferation, migration and invasion.
Collapse
Affiliation(s)
- Jin Bai
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou 221002, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Romero OA, Setien F, John S, Gimenez-Xavier P, Gómez-López G, Pisano D, Condom E, Villanueva A, Hager GL, Sanchez-Cespedes M. The tumour suppressor and chromatin-remodelling factor BRG1 antagonizes Myc activity and promotes cell differentiation in human cancer. EMBO Mol Med 2012; 4:603-16. [PMID: 22407764 PMCID: PMC3407948 DOI: 10.1002/emmm.201200236] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/27/2012] [Accepted: 02/29/2012] [Indexed: 12/30/2022] Open
Abstract
BRG1, a member of the SWI/SNF complex, is mutated in cancer, but it is unclear how it promotes tumourigenesis. We report that re-expression of BRG1 in lung cancer cells up-regulates lung-specific transcripts, restoring the gene expression signature of normal lung. Using cell lines from several cancer types we found that those lacking BRG1 do not respond to retinoic acid (RA) or glucocorticoids (GC), while restoration of BRG1 restores sensitivity. Conversely, in SH-SY5Y cells, a paradigm of RA-dependent differentiation, abrogation of BRG1 prevented the response to RA. Further, our data suggest an antagonistic functional connection between BRG1 and MYC, whereby, refractoriness to RA and GC by BRG1 inactivation involves deregulation of MYC activity. Mechanistically, some of these effects are mediated by BRG1 binding to MYC and MYC-target promoters. The BRG1-MYC antagonism was also evident in primary tumours. Finally, BRG1 restoration significantly dampened invasion and progression and decreased MYC in lung cancer cells orthotopically implanted in nude mice. Thus, BRG1 inactivation enables cancer cells to sustain undifferentiated gene expression programs and prevent its response to environmental stimuli.
Collapse
Affiliation(s)
- Octavio A Romero
- Genes and Cancer Group, Cancer Epigenetics and Biology Program-PEBC, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Vizlin-Hodzic D, Runnberg R, Ryme J, Simonsson S, Simonsson T. SAF-A forms a complex with BRG1 and both components are required for RNA polymerase II mediated transcription. PLoS One 2011; 6:e28049. [PMID: 22162999 PMCID: PMC3232189 DOI: 10.1371/journal.pone.0028049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/31/2011] [Indexed: 11/18/2022] Open
Abstract
Background Scaffold attachment factor A (SAF-A) participates in the regulation of gene expression by organizing chromatin into transcriptionally active domains and by interacting directly with RNA polymerase II. Methodology Here we use co-localization, co-immunoprecipitation (co-IP) and in situ proximity ligation assay (PLA) to identify Brahma Related Gene 1 (BRG1), the ATP-driven motor of the human SWI-SNF chromatin remodeling complex, as another SAF-A interaction partner in mouse embryonic stem (mES) cells. We also employ RNA interference to investigate functional aspects of the SAF-A/BRG1 interaction. Principal Findings We find that endogenous SAF-A protein interacts with endogenous BRG1 protein in mES cells, and that the interaction does not solely depend on the presence of mRNA. Moreover the interaction remains intact when cells are induced to differentiate. Functional analyses reveal that dual depletion of SAF-A and BRG1 abolishes global transcription by RNA polymerase II, while the nucleolar RNA polymerase I transcription machinery remains unaffected. Conclusions We demonstrate that SAF-A interacts with BRG1 and that both components are required for RNA Polymerase II Mediated Transcription.
Collapse
Affiliation(s)
- Dzeneta Vizlin-Hodzic
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Rikard Runnberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Jessica Ryme
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Stina Simonsson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg, Sweden
- * E-mail: (ST); (TS)
| | - Tomas Simonsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- * E-mail: (ST); (TS)
| |
Collapse
|
18
|
Abstract
SWI/SNF chromatin remodelling complexes use the energy of ATP hydrolysis to remodel nucleosomes and to modulate transcription. Growing evidence indicates that these complexes have a widespread role in tumour suppression, as inactivating mutations in several SWI/SNF subunits have recently been identified at a high frequency in a variety of cancers. However, the mechanisms by which mutations in these complexes drive tumorigenesis are unclear. In this Review we discuss the contributions of SWI/SNF mutations to cancer formation, examine their normal functions and discuss opportunities for novel therapeutic interventions for SWI/SNF-mutant cancers.
Collapse
Affiliation(s)
- Boris G Wilson
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology, Children's Hospital Boston, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
19
|
Inhibition of early stages of HIV-1 assembly by INI1/hSNF5 transdominant negative mutant S6. J Virol 2010; 85:2254-65. [PMID: 21159874 DOI: 10.1128/jvi.00006-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
INI1/hSNF5 is an HIV-1 integrase (IN) binding protein specifically incorporated into virions. A truncated mutant of INI1 (S6, amino acids 183 to 294) harboring the minimal IN binding Rpt1 domain potently inhibits HIV-1 particle production in a transdominant manner. The inhibition requires interaction of S6 with IN within Gag-Pol. While INI1 is a nuclear protein and harbors a masked nuclear export signal (NES), the transdominant negative mutant S6 is cytoplasmic, due to the unmasking of NES. Here, we examined the effects of subcellular localization of S6 on HIV-1 inhibition and further investigated the stages of assembly that are affected. We found that targeting a nuclear localization signal-containing S6 variant [NLS-S6(Rpt1)] to the nucleoplasm (but not to the nucleolus) resulted in complete reversal of inhibition of particle production. Electron microscopy indicated that although no electron-dense particles at any stage of assembly were seen in cells expressing S6, virions were produced in cells expressing the rescue mutant NLS-S6(Rpt1) to wild-type levels. Immunofluorescence analysis revealed that p24 exhibited a diffuse pattern of localization within the cytoplasm in cells expressing S6 in contrast to accumulation along the membrane in controls. Pulse-chase analysis indicated that in S6-expressing cells, although Gag(Pr55(gag)) protein translation was unaffected, processing and release of p24 were defective. Together, these results indicate that expression of S6 in the cytoplasm interferes with trafficking of Gag-Pol/Gag to the membrane and causes a defective processing leading to inhibition of assembly at an early stage prior to particle formation and budding.
Collapse
|
20
|
Saladi SV, Keenen B, Marathe HG, Qi H, Chin KV, de la Serna IL. Modulation of extracellular matrix/adhesion molecule expression by BRG1 is associated with increased melanoma invasiveness. Mol Cancer 2010; 9:280. [PMID: 20969766 PMCID: PMC3098014 DOI: 10.1186/1476-4598-9-280] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 10/22/2010] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Metastatic melanoma is an aggressive malignancy that is resistant to therapy and has a poor prognosis. The progression of primary melanoma to metastatic disease is a multi-step process that requires dynamic regulation of gene expression through currently uncharacterized epigenetic mechanisms. Epigenetic regulation of gene expression often involves changes in chromatin structure that are catalyzed by chromatin remodeling enzymes. Understanding the mechanisms involved in the regulation of gene expression during metastasis is important for developing an effective strategy to treat metastatic melanoma. SWI/SNF enzymes are multisubunit complexes that contain either BRG1 or BRM as the catalytic subunit. We previously demonstrated that heterogeneous SWI/SNF complexes containing either BRG1 or BRM are epigenetic modulators that regulate important aspects of the melanoma phenotype and are required for melanoma tumorigenicity in vitro. RESULTS To characterize BRG1 expression during melanoma progression, we assayed expression of BRG1 in patient derived normal skin and in melanoma specimen. BRG1 mRNA levels were significantly higher in stage IV melanomas compared to stage III tumors and to normal skin. To determine the role of BRG1 in regulating the expression of genes involved in melanoma metastasis, we expressed BRG1 in a melanoma cell line that lacks BRG1 expression and examined changes in extracellular matrix and adhesion molecule expression. We found that BRG1 modulated the expression of a subset of extracellular matrix remodeling enzymes and adhesion proteins. Furthermore, BRG1 altered melanoma adhesion to different extracellular matrix components. Expression of BRG1 in melanoma cells that lack BRG1 increased invasive ability while down-regulation of BRG1 inhibited invasive ability in vitro. Activation of metalloproteinase (MMP) 2 expression greatly contributed to the BRG1 induced increase in melanoma invasiveness. We found that BRG1 is recruited to the MMP2 promoter and directly activates expression of this metastasis associated gene. CONCLUSIONS We provide evidence that BRG1 expression increases during melanoma progression. Our study has identified BRG1 target genes that play an important role in melanoma metastasis and we show that BRG1 promotes melanoma invasive ability in vitro. These results suggest that increased BRG1 levels promote the epigenetic changes in gene expression required for melanoma metastasis to proceed.
Collapse
Affiliation(s)
- Srinivas Vinod Saladi
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Bridget Keenen
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Himangi G Marathe
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Huiling Qi
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Khew-Voon Chin
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH 43614, USA
- Center for Diabetes and Endocrine Research, The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Ivana L de la Serna
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| |
Collapse
|
21
|
Weissman B, Knudsen KE. Hijacking the chromatin remodeling machinery: impact of SWI/SNF perturbations in cancer. Cancer Res 2009; 69:8223-30. [PMID: 19843852 DOI: 10.1158/0008-5472.can-09-2166] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is increasing evidence that alterations in chromatin remodeling play a significant role in human disease. The SWI/SNF chromatin remodeling complex family mobilizes nucleosomes and functions as a master regulator of gene expression and chromatin dynamics whose functional specificity is driven by combinatorial assembly of a central ATPase and association with 10 to 12 unique subunits. Although the biochemical consequence of SWI/SNF in model systems has been extensively reviewed, the present article focuses on the evidence linking SWI/SNF perturbations to cancer initiation and tumor progression in human disease.
Collapse
Affiliation(s)
- Bernard Weissman
- Department of Pathology and Laboratory and Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
22
|
Lelièvre SA. Contributions of extracellular matrix signaling and tissue architecture to nuclear mechanisms and spatial organization of gene expression control. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1790:925-35. [PMID: 19328836 PMCID: PMC2728154 DOI: 10.1016/j.bbagen.2009.03.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 03/13/2009] [Accepted: 03/15/2009] [Indexed: 12/22/2022]
Abstract
Post-translational modification of histones, ATP-dependent chromatin remodeling, and DNA methylation are interconnected nuclear mechanisms that ultimately lead to the changes in chromatin structure necessary to carry out epigenetic gene expression control. Tissue differentiation is characterized by a specific gene expression profile in association with the acquisition of a defined tissue architecture and function. Elements critical for tissue differentiation, like extracellular stimuli, adhesion and cell shape properties, and transcription factors all contribute to the modulation of gene expression and thus, are likely to impinge on the nuclear mechanisms of epigenetic gene expression control. In this review, we analyze how these elements modify chromatin structure in a hierarchical manner by acting on the nuclear machinery. We discuss how mechanotransduction via the structural continuum of the cell and biochemical signaling to the cell nucleus integrate to provide a comprehensive control of gene expression. The role of nuclear organization in this control is highlighted, with a presentation of differentiation-induced nuclear structure and the concept of nuclear organization as a modulator of the response to incoming signals.
Collapse
Affiliation(s)
- Sophie A Lelièvre
- Department of Basic Medical Sciences and Cancer Center, Purdue University, Lynn, West Lafayette, IN 47907-2026, USA.
| |
Collapse
|
23
|
Mao X, Nie X, Cao F, Chen J. Functional analysis of ScSwi1 and CaSwi1 in invasive and pseudohyphal growth of Saccharomyces cerevisiae. Acta Biochim Biophys Sin (Shanghai) 2009; 41:594-602. [PMID: 19578723 DOI: 10.1093/abbs/gmp047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Here we reported that, in Saccharomyces cerevisiae, deleting Swi1 (ScSwi1), a core component in Swi/Snf complex, caused defects of invasive growth, pseudohyphal growth, FLO11 expression, and proper cell separation. Re-introduction of SWI1 into the swi1 mutants could suppress all defects observed. We also showed that overproducing Swi1 could suppress the defect of flo8 cells in pseudohyphal growth in diploids, but not invasive growth in haploids. Overexpression of SWI1 could not bypass the requirement of Ste12 or Tec1 in invasive growth or pseudohyphal growth. We concluded that the Swi/Snf complex was required for FLO11 expression and proper cell separation, and both the FLO8 and STE12 genes should be present for the complex to function for the invasive growth but only the STE12 gene was required for the pseudohyphal growth. Ectopic expression of Candida albicans SWI1 (CaSWI1) could partially complement the defects examined of haploid Scswi1 mutants, but failed to complement the defects examined of diploid Scswi1/ Scswi1 mutants. Overexpressing CaSwi1 mitigated invasive and pseudohyphal growth defects resulting from deletions in the MAP kinase and cAMP pathways. The integrity of S. cerevisiae Swi/Snf complex is required for invasive and filamentous growth promoted by overexpressing CaSwi1.
Collapse
Affiliation(s)
- Xuming Mao
- Institute of Biochemistry, Zhejiang University, Hangzhou 310058, China
| | | | | | | |
Collapse
|
24
|
Chromatin remodelling and actin organisation. FEBS Lett 2008; 582:2041-50. [PMID: 18442483 DOI: 10.1016/j.febslet.2008.04.032] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 04/15/2008] [Accepted: 04/21/2008] [Indexed: 11/22/2022]
Abstract
Chromatin remodelling is a prerequisite for nuclear processes, and cells have several different ways of remodelling the chromatin structure. The ATP-dependent chromatin remodelling complexes are large multiprotein complexes that use ATP to change DNA-histone contacts. These complexes are classified into 4 sub-families depending on the central ATPase. The switch mating type/sucrose non-fermenting (SWI/SNF) complexes are mainly involved in transcriptional regulation, and this means that they are involved in many processes, such as the formation of actin filaments in the cytoplasm. SWI/SNF complexes are involved in the regulation of genes expressing cell adhesion proteins and extracellular matrix proteins. Actin is also present in the nucleus, affecting transcription, RNA processing and export. In addition, actin and actin-related proteins are subunits of SWI/SNF complexes and the INO80-containing complexes, another subfamily of ATP-dependent chromatin remodelling complexes. Not all functions of the actin and actin-related proteins in the complexes are yet clear: it is known that they play important roles in maintaining the stability of the proteins, possibly by bridging subunits and recruiting the complexes to chromatin.
Collapse
|
25
|
Wu CF, Delsert C, Faure S, Traverso EE, Kloc M, Kuang J, Etkin LD, Morin N. Tumorhead distribution to cytoplasmic membrane of neural plate cells is positively regulated by Xenopus p21-activated kinase 1 (X-PAK1). Dev Biol 2007; 308:169-86. [PMID: 17560976 DOI: 10.1016/j.ydbio.2007.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 05/02/2007] [Accepted: 05/17/2007] [Indexed: 11/29/2022]
Abstract
Tumorhead (TH) regulates neural plate cell proliferation during Xenopus early development, and gain or loss of function prevents neural differentiation. TH shuttles between the nuclear and cytoplasmic/cortical cell compartments in embryonic cells. In this study, we show that subcellular distribution of TH is important for its functions. Targeting TH to the cell cortex/membrane potentiates a TH gain of function phenotype and results in neural plate expansion and inhibition of neuronal differentiation. We have found that TH subcellular localization is regulated, and that its shuttling between the nucleus and the cell cortex/cytoplasm is controlled by the catalytic activity of p21-activated kinase, X-PAK1. The phenotypes of embryos that lack, or have excess, X-PAK1 activity mimic the phenotypes induced by loss or gain of TH functions, respectively. We provide evidence that X-PAK1 is an upstream regulator of TH and discuss potential functions of TH at the cell cortex/cytoplasmic membrane and in the nucleus.
Collapse
Affiliation(s)
- Chuan-Fen Wu
- Department of Molecular Genetics, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Rosson GB, Bartlett C, Reed W, Weissman BE. BRG1 loss in MiaPaCa2 cells induces an altered cellular morphology and disruption in the organization of the actin cytoskeleton. J Cell Physiol 2005; 205:286-94. [PMID: 15887247 DOI: 10.1002/jcp.20397] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BRG1 and Brahma are critical and mutually exclusive subunits of the multi-constituent SWI/SNF chromatin remodeling complexes. These complexes play a key role in transcriptional regulation by dynamically altering chromatin architecture. Although the two proteins are very similar in structure, murine models demonstrate a clear dichotomy in BRG1/BRM function as heterozygous loss of BRG1 results in tumor development whereas homozygous loss of BRM does not. BRG1 and/or BRM protein is absent or disrupted in approximately 17% of all human adenocarcinomas. Concomitant loss is frequent in non-small cell lung carcinomas and incurs a negative prognosis. The mechanism(s) whereby loss of BRG1 (but apparently not BRM) may contribute to tumor development and/or progression is/are ill defined. In this study, we employ MiaPaCa2, a human pancreatic adenocarcinoma cell line that lacks BRM but retains BRG1 expression to evaluate the impact of BRG1 and BRM individually on growth and tumorigenicity. We show that the MiaPaca2 cell line can apparently tolerate only very low levels of BRM after restoration of stable expression. Reduction of expression of BRG1 via shRNAi in stable clones of MiaPaCa2 results in a marked change in morphology and alterations in actin cytoskeletal organization but does not appear to exert a significant effect on in vitro growth of the cell line. Our results implicate a role for the SWI/SNF complex in the regulation of cellular differentiation.
Collapse
Affiliation(s)
- Gary B Rosson
- Department of Pathology and Laboratory Medicine, University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
27
|
Hill DA, Chiosea S, Jamaluddin S, Roy K, Fischer AH, Boyd DD, Nickerson JA, Imbalzano AN. Inducible changes in cell size and attachment area due to expression of a mutant SWI/SNF chromatin remodeling enzyme. J Cell Sci 2005; 117:5847-54. [PMID: 15537831 DOI: 10.1242/jcs.01502] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The SWI/SNF enzymes belong to a family of ATP-dependent chromatin remodeling enzymes that have been functionally implicated in gene regulation, development, differentiation and oncogenesis. BRG1, the catalytic core subunit of some of the SWI/SNF enzymes, can interact with known tumor suppressor proteins and can act as a tumor suppressor itself. We report that cells that inducibly express ATPase-deficient versions of BRG1 increase in cell volume, area of attachment and nuclear size upon expression of the mutant BRG1 protein. Examination of focal adhesions reveals qualitative changes in paxillin distribution but no difference in the actin cytoskeletal structure. Increases in cell size and shape correlate with over-expression of two integrins and the urokinase-type plasminogen activator receptor (uPAR), which is also involved in cell adhesion and is often over-expressed in metastatic cancer cells. These findings demonstrate that gene expression pathways affected by chromatin remodeling enzymes can regulate the physical dimensions of mammalian cell morphology.
Collapse
Affiliation(s)
- David A Hill
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Medjkane S, Novikov E, Versteege I, Delattre O. The Tumor Suppressor hSNF5/INI1 Modulates Cell Growth and Actin Cytoskeleton Organization. Cancer Res 2004; 64:3406-13. [PMID: 15150092 DOI: 10.1158/0008-5472.can-03-3004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
hSNF5/INI1, which encodes a component of the ATP-dependent chromatin remodeling hSWI-SNF complex, is a tumor suppressor gene mutated in malignant rhabdoid tumors. We have developed a tetracycline-based hSNF5/INI1-inducible system in a hSNF5/INI1-deficient malignant rhabdoid tumor cell line and studied time course variation of 22,000 genes/expressed sequence tags upon hSNF5/INI1 induction. A total of 482 responsive genes were identified and further clustered into 9 groups of coregulated genes. Among genes with early and strong inductions, the use of a fusion protein with the hormone-binding domain of the estrogen receptor enabled the identification of a subset of direct targets regulated independently of de novo protein synthesis. We show that the G(1) arrest induced by hSNF5/INI1 is reversible and associated with the down-regulation of components of the DNA replication complex. We also identify an unsuspected role of hSNF5/INI1 in cytoskeleton organization. Indeed, induction of hSNF5/INI1 induces dramatic modifications of the cell shape including complete disruption of the actin stress fiber network and disappearance of focal adhesions associated with up-regulation of genes involved in the organization of the actin cytoskeleton. We document a strong decrease of Rho activity upon hSNF5/INI1 expression, suggesting that the regulation of this activity constitutes a crucial step of the hSNF5/INI1-induced reorganization of the actin network. This study identifies hSNF5/INI1 target genes and provides evidence that hSNF5/INI1 may modulate the cell cycle control and cytoskeleton organization through the regulation of the retinoblastoma protein-E2F and Rho pathways.
Collapse
Affiliation(s)
- Souhila Medjkane
- INSERM U509, Laboratoire de Pathologie Moléculaire des Cancers, Institut Curie, Paris, France
| | | | | | | |
Collapse
|
29
|
Abstract
Human BRG1, a subunit of the Swi/Snf chromatin remodeling apparatus, has been implicated in regulation of cellular proliferation and is a candidate tumor suppressor. Reintroduction of BRG1 into a breast tumor cell line, ALAB, carrying a defined mutation in the BRG1 gene, induced growth arrest. Gene expression data revealed that the arrest may in part be accounted for by down-regulation of select E2F target genes such as cyclin E, but more dramatically, by up-regulation of mRNAs for the cyclin-dependent kinase inhibitors p21 and p15. Protein levels of both p15 and p21 were induced, and p21 protein was recruited to a complex with cyclin-dependent kinase, CDK2, to inhibit its activity. BRG1 can associate with the p21 promoter in a p53-independent manner, suggesting that the induction of p21 by BRG1 may be direct. Further, using microarray and real-time PCR analysis we identified several novel BRG1-regulated genes. Our work provides further evidence for a role for BRG1 in the regulation of several genes involved in key steps in tumorigenesis and has revealed a potential mechanism for BRG1-induced growth arrest.
Collapse
|
30
|
Wu K, Bottazzi ME, de la Fuente C, Deng L, Gitlin SD, Maddukuri A, Dadgar S, Li H, Vertes A, Pumfery A, Kashanchi F. Protein profile of tax-associated complexes. J Biol Chem 2003; 279:495-508. [PMID: 14530271 DOI: 10.1074/jbc.m310069200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Infection with human T-cell leukemia virus type 1 (HTLV-1) results in adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. Tax, a 40-kDa protein, regulates viral and cellular transcription, host signal transduction, the cell cycle, and apoptosis. Tax has been shown to modulate cellular CREB and NFkappaB pathways; however, to date, its role in binding to various host cellular proteins involved in tumorigenesis has not been fully described. In this study, we describe the Tax-associated proteins and their functions in cells using several approaches. Tax eluted from a sizing column mostly at an apparent molecular mass of 1800 kDa. Following Tax immunoprecipitation, washes with high salt buffer, two-dimensional gel separation, and mass spectrometric analysis, a total of 32 proteins was identified. Many of these proteins belong to the signal transduction and cytoskeleton pathways and transcription/chromatin remodeling. A few of these proteins, including TXBP151, have been shown previously to bind to Tax. The interaction of Tax with small GTPase-cytoskeleton proteins, such as ras GAP1m, Rac1, Cdc42, RhoA, and gelsolin, indicates how Tax may regulate migration, invasion, and adhesion in T-cell cancers. Finally, the physical and functional association of Tax with the chromatin remodeling SWI/SNF complex was assessed using in vitro chromatin remodeling assays, chromatin remodeling factor BRG1 mutant cells, and RNA interference experiments. Collectively, Tax is able to bind and regulate many cellular proteins that regulate transcription and cytoskeletal related pathways, which might explain the pleiotropic effects of Tax leading to T-cell transformation and leukemia in HTLV-1-infected patients.
Collapse
Affiliation(s)
- Kaili Wu
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yamamichi-Nishina M, Ito T, Mizutani T, Yamamichi N, Watanabe H, Iba H. SW13 cells can transition between two distinct subtypes by switching expression of BRG1 and Brm genes at the post-transcriptional level. J Biol Chem 2003; 278:7422-30. [PMID: 12493776 DOI: 10.1074/jbc.m208458200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The human adrenal carcinoma cell line, SW13, has been reported to be deficient in both BRG1 and Brm expression and therefore is considered to lack a functional SWI/SNF complex. We found that the original cell line of SW13 is composed of two subtypes, one that expresses neither BRG1 nor Brm (SW13(vim-)) and the another, which does express both (SW13(vim+)). The presence of BRG1 and Brm in SW13 correlates completely with the cellular ability to express such genes as vimentin, collagenase, c-met, and CD44 that were under the control of a transcription factor, AP-1, which was shown previously to require a functional SWI/SNF complex for its transactivating activity. Transient treatment with inhibitors of histone deacetylase induced a stable transition of SW13(vim-) to a cell type indistinguishable from SW13(vim+), suggesting that these two subtypes are epigenetically different. Run-on analysis indicated that, unlike these four genes driven by AP-1, transcription of the BRG1 and Brm genes in SW13(vim-) are initiated at a frequency comparable with SW13(vim+). In both SW13(vim-) and SW13(vim+) cells, the BRG1 and Brm genes were transcribed through the entire gene at a similar efficiency, indicating that their expression was completely suppressed at the post-transcriptional level in SW13(vim-) cells. We would like to propose that SW13 can spontaneously transition between two subtypes by switching expression of BRG1 and Brm at the post-transcriptional level.
Collapse
Affiliation(s)
- Mitsue Yamamichi-Nishina
- Division of Host-Parasite Interaction, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | |
Collapse
|